Switch to unified view

a/README.md b/README.md
1
Lung Cancer Prediction Web App
1
Lung Cancer Prediction Web App
2
2
3
![Lung Cancer Prediction](screenshots/Untitled.png)
4
Description
3
Description
5
This project is a web app that predicts the likelihood of lung cancer based on various risk factors.
4
This project is a web app that predicts the likelihood of lung cancer based on various risk factors.
6
5
7
## Table of Contents
6
## Table of Contents
8
- [Installation](#installation)
7
- [Installation](#installation)
9
- [Usage](#usage)
8
- [Usage](#usage)
10
- [Screenshots](#screenshots)
9
- [Screenshots](#screenshots)
11
- [Technologies Used](#technologies-used)
10
- [Technologies Used](#technologies-used)
12
- [Model Information](#model-information)
11
- [Model Information](#model-information)
13
- [References](#references)
12
- [References](#references)
14
13
15
## Installation
14
## Installation
16
1. Clone the repository.
15
1. Clone the repository.
17
2. Install the required dependencies using `pip install -r requirements.txt`.
16
2. Install the required dependencies using `pip install -r requirements.txt`.
18
3. Run the web app using `streamlit run lungcancerpred_webapp.py`.
17
3. Run the web app using `streamlit run lungcancerpred_webapp.py`.
19
18
20
## Usage
19
## Usage
21
1. Open the web app in your browser.
20
1. Open the web app in your browser.
22
2. Enter the patient's details in the input fields.
21
2. Enter the patient's details in the input fields.
23
3. Click on the "Predict" button to get the lung cancer prediction.
22
3. Click on the "Predict" button to get the lung cancer prediction.
24
23
25
## Screenshots
24
## Screenshots
26
![Screenshot 1](screenshots/sreamlitss.png)
25
![Screenshot 1](screenshots/sreamlitss.png)
27
26
28
## Technologies Used
27
## Technologies Used
29
- Python
28
- Python
30
- Streamlit
29
- Streamlit
31
- Pandas
30
- Pandas
32
- Scikit-learn
31
- Scikit-learn
33
32
34
## Model Information
33
## Model Information
35
The lung cancer prediction model was trained on a dataset of patient records and achieved an accuracy of 90%.
34
The lung cancer prediction model was trained on a dataset of patient records and achieved an accuracy of 90%.
36
35
37
36
38
## References
37
## References
39
1. Dataset source: [https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link]
38
1. Dataset source: [https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link]