|
a/README.md |
|
b/README.md |
1 |
Lung Cancer Prediction Web App |
1 |
Lung Cancer Prediction Web App |
2 |
|
2 |
|
3 |
 |
|
|
4 |
Description |
3 |
Description
|
5 |
This project is a web app that predicts the likelihood of lung cancer based on various risk factors. |
4 |
This project is a web app that predicts the likelihood of lung cancer based on various risk factors. |
6 |
|
5 |
|
7 |
## Table of Contents |
6 |
## Table of Contents
|
8 |
- [Installation](#installation) |
7 |
- [Installation](#installation)
|
9 |
- [Usage](#usage) |
8 |
- [Usage](#usage)
|
10 |
- [Screenshots](#screenshots) |
9 |
- [Screenshots](#screenshots)
|
11 |
- [Technologies Used](#technologies-used) |
10 |
- [Technologies Used](#technologies-used)
|
12 |
- [Model Information](#model-information) |
11 |
- [Model Information](#model-information)
|
13 |
- [References](#references) |
12 |
- [References](#references) |
14 |
|
13 |
|
15 |
## Installation |
14 |
## Installation
|
16 |
1. Clone the repository. |
15 |
1. Clone the repository.
|
17 |
2. Install the required dependencies using `pip install -r requirements.txt`. |
16 |
2. Install the required dependencies using `pip install -r requirements.txt`.
|
18 |
3. Run the web app using `streamlit run lungcancerpred_webapp.py`. |
17 |
3. Run the web app using `streamlit run lungcancerpred_webapp.py`. |
19 |
|
18 |
|
20 |
## Usage |
19 |
## Usage
|
21 |
1. Open the web app in your browser. |
20 |
1. Open the web app in your browser.
|
22 |
2. Enter the patient's details in the input fields. |
21 |
2. Enter the patient's details in the input fields.
|
23 |
3. Click on the "Predict" button to get the lung cancer prediction. |
22 |
3. Click on the "Predict" button to get the lung cancer prediction. |
24 |
|
23 |
|
25 |
## Screenshots |
24 |
## Screenshots
|
26 |
 |
25 |
 |
27 |
|
26 |
|
28 |
## Technologies Used |
27 |
## Technologies Used
|
29 |
- Python |
28 |
- Python
|
30 |
- Streamlit |
29 |
- Streamlit
|
31 |
- Pandas |
30 |
- Pandas
|
32 |
- Scikit-learn |
31 |
- Scikit-learn |
33 |
|
32 |
|
34 |
## Model Information |
33 |
## Model Information
|
35 |
The lung cancer prediction model was trained on a dataset of patient records and achieved an accuracy of 90%. |
34 |
The lung cancer prediction model was trained on a dataset of patient records and achieved an accuracy of 90%. |
36 |
|
35 |
|
37 |
|
36 |
|
38 |
## References |
37 |
## References
|
39 |
1. Dataset source: [https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link] |
38 |
1. Dataset source: [https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link]
|