|
a |
|
b/Lung Cancer Prediction.py |
|
|
1 |
# Mount Google Drive to access dataset files |
|
|
2 |
from google.colab import drive |
|
|
3 |
drive.mount('/content/drive', force_remount=True) |
|
|
4 |
|
|
|
5 |
# Define paths to the training, validation, and test datasets |
|
|
6 |
train_folder = '/content/drive/MyDrive/dataset/train' |
|
|
7 |
test_folder = '/content/drive/MyDrive/dataset/test' |
|
|
8 |
validate_folder = '/content/drive/MyDrive/datasetvalid' |
|
|
9 |
|
|
|
10 |
# Define paths to the specific classes within the dataset |
|
|
11 |
normal_folder = '/normal' |
|
|
12 |
adenocarcinoma_folder = '/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib' |
|
|
13 |
large_cell_carcinoma_folder = '/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa' |
|
|
14 |
squamous_cell_carcinoma_folder = '/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa' |
|
|
15 |
|
|
|
16 |
# Import necessary libraries |
|
|
17 |
import warnings |
|
|
18 |
warnings.filterwarnings('ignore') |
|
|
19 |
|
|
|
20 |
import pandas as pd |
|
|
21 |
import numpy as np |
|
|
22 |
import seaborn as sns |
|
|
23 |
import matplotlib.pyplot as plt |
|
|
24 |
from sklearn.preprocessing import MinMaxScaler, StandardScaler |
|
|
25 |
from sklearn import datasets |
|
|
26 |
from sklearn.model_selection import train_test_split |
|
|
27 |
from sklearn.neighbors import KNeighborsClassifier |
|
|
28 |
from sklearn.svm import SVC |
|
|
29 |
from sklearn.decomposition import PCA |
|
|
30 |
from sklearn.preprocessing import LabelEncoder |
|
|
31 |
|
|
|
32 |
import tensorflow as tf |
|
|
33 |
import tensorflow.keras |
|
|
34 |
from tensorflow.keras.preprocessing.image import ImageDataGenerator |
|
|
35 |
from tensorflow.keras.models import Sequential |
|
|
36 |
from tensorflow.keras.layers import Dense, Dropout, SpatialDropout2D, Activation, Lambda, Flatten, LSTM |
|
|
37 |
from tensorflow.keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D |
|
|
38 |
from tensorflow.keras.optimizers import Adam, RMSprop |
|
|
39 |
from tensorflow.keras import utils |
|
|
40 |
|
|
|
41 |
print("Libraries Imported") |
|
|
42 |
|
|
|
43 |
# Set the image size for resizing |
|
|
44 |
IMAGE_SIZE = (350, 350) |
|
|
45 |
|
|
|
46 |
# Initialize the image data generators for training and testing |
|
|
47 |
train_datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True) |
|
|
48 |
test_datagen = ImageDataGenerator(rescale=1./255) |
|
|
49 |
|
|
|
50 |
# Define the batch size for training |
|
|
51 |
batch_size = 8 |
|
|
52 |
|
|
|
53 |
# Create the training data generator |
|
|
54 |
train_generator = train_datagen.flow_from_directory( |
|
|
55 |
train_folder, |
|
|
56 |
target_size=IMAGE_SIZE, |
|
|
57 |
batch_size=batch_size, |
|
|
58 |
color_mode="rgb", |
|
|
59 |
class_mode='categorical' |
|
|
60 |
) |
|
|
61 |
|
|
|
62 |
# Create the validation data generator |
|
|
63 |
validation_generator = test_datagen.flow_from_directory( |
|
|
64 |
test_folder, |
|
|
65 |
target_size=IMAGE_SIZE, |
|
|
66 |
batch_size=batch_size, |
|
|
67 |
color_mode="rgb", |
|
|
68 |
class_mode='categorical' |
|
|
69 |
) |
|
|
70 |
|
|
|
71 |
# Set up callbacks for learning rate reduction, early stopping, and model checkpointing |
|
|
72 |
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint |
|
|
73 |
|
|
|
74 |
learning_rate_reduction = ReduceLROnPlateau(monitor='loss', patience=5, verbose=2, factor=0.5, min_lr=0.000001) |
|
|
75 |
early_stops = EarlyStopping(monitor='loss', min_delta=0, patience=6, verbose=2, mode='auto') |
|
|
76 |
checkpointer = ModelCheckpoint(filepath='best_model.hdf5', verbose=2, save_best_only=True, save_weights_only=True) |
|
|
77 |
|
|
|
78 |
# Define the number of output classes |
|
|
79 |
OUTPUT_SIZE = 4 |
|
|
80 |
|
|
|
81 |
# Load a pre-trained model (Xception) without the top layers and freeze its weights |
|
|
82 |
pretrained_model = tf.keras.applications.Xception(weights='imagenet', include_top=False, input_shape=[*IMAGE_SIZE, 3]) |
|
|
83 |
pretrained_model.trainable = False |
|
|
84 |
|
|
|
85 |
# Create a new model with the pre-trained base and additional layers for classification |
|
|
86 |
model = Sequential() |
|
|
87 |
model.add(pretrained_model) |
|
|
88 |
model.add(GlobalAveragePooling2D()) |
|
|
89 |
model.add(Dense(OUTPUT_SIZE, activation='softmax')) |
|
|
90 |
|
|
|
91 |
print("Pretrained model used:") |
|
|
92 |
pretrained_model.summary() |
|
|
93 |
|
|
|
94 |
print("Final model created:") |
|
|
95 |
model.summary() |
|
|
96 |
|
|
|
97 |
# Compile the model with an optimizer, loss function, and evaluation metric |
|
|
98 |
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) |
|
|
99 |
|
|
|
100 |
# Train the model with the training and validation data generators |
|
|
101 |
history = model.fit( |
|
|
102 |
train_generator, |
|
|
103 |
steps_per_epoch=25, |
|
|
104 |
epochs=50, |
|
|
105 |
callbacks=[learning_rate_reduction, early_stops, checkpointer], |
|
|
106 |
validation_data=validation_generator, |
|
|
107 |
validation_steps=20 |
|
|
108 |
) |
|
|
109 |
|
|
|
110 |
print("Final training accuracy =", history.history['accuracy'][-1]) |
|
|
111 |
print("Final testing accuracy =", history.history['val_accuracy'][-1]) |
|
|
112 |
|
|
|
113 |
# Function to display training curves for loss and accuracy |
|
|
114 |
def display_training_curves(training, validation, title, subplot): |
|
|
115 |
if subplot % 10 == 1: |
|
|
116 |
plt.subplots(figsize=(10, 10), facecolor='#F0F0F0') |
|
|
117 |
plt.tight_layout() |
|
|
118 |
ax = plt.subplot(subplot) |
|
|
119 |
ax.set_facecolor('#F8F8F8') |
|
|
120 |
ax.plot(training) |
|
|
121 |
ax.plot(validation) |
|
|
122 |
ax.set_title('model ' + title) |
|
|
123 |
ax.set_ylabel(title) |
|
|
124 |
ax.set_xlabel('epoch') |
|
|
125 |
ax.legend(['train', 'valid.']) |
|
|
126 |
|
|
|
127 |
# Display training curves for loss and accuracy |
|
|
128 |
display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 211) |
|
|
129 |
display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 212) |
|
|
130 |
|
|
|
131 |
# Save the trained model |
|
|
132 |
model.save('/content/drive/MyDrive/dataset/trained_lung_cancer_model.h5') |
|
|
133 |
|
|
|
134 |
# Function to load and preprocess an image for prediction |
|
|
135 |
from tensorflow.keras.preprocessing import image |
|
|
136 |
import numpy as np |
|
|
137 |
|
|
|
138 |
def load_and_preprocess_image(img_path, target_size): |
|
|
139 |
img = image.load_img(img_path, target_size=target_size) |
|
|
140 |
img_array = image.img_to_array(img) |
|
|
141 |
img_array = np.expand_dims(img_array, axis=0) |
|
|
142 |
img_array /= 255.0 # Rescale the image like the training images |
|
|
143 |
return img_array |
|
|
144 |
|
|
|
145 |
# Load, preprocess, and predict the class of an image |
|
|
146 |
img_path = '/content/sq.png' |
|
|
147 |
img = load_and_preprocess_image(img_path, IMAGE_SIZE) |
|
|
148 |
predictions = model.predict(img) |
|
|
149 |
predicted_class = np.argmax(predictions[0]) |
|
|
150 |
class_labels = list(train_generator.class_indices.keys()) |
|
|
151 |
predicted_label = class_labels[predicted_class] |
|
|
152 |
|
|
|
153 |
print(f"The image belongs to class: {predicted_label}") |
|
|
154 |
|
|
|
155 |
# Display the image with the predicted class |
|
|
156 |
plt.imshow(image.load_img(img_path, target_size=IMAGE_SIZE)) |
|
|
157 |
plt.title(f"Predicted: {predicted_label}") |
|
|
158 |
plt.axis('off') |
|
|
159 |
plt.show() |
|
|
160 |
|
|
|
161 |
# Repeat the process for additional images |
|
|
162 |
img_path = '/content/ad3.png' |
|
|
163 |
img = load_and_preprocess_image(img_path, IMAGE_SIZE) |
|
|
164 |
predictions = model.predict(img) |
|
|
165 |
predicted_class = np.argmax(predictions[0]) |
|
|
166 |
predicted_label = class_labels[predicted_class] |
|
|
167 |
print(f"The image belongs to class: {predicted_label}") |
|
|
168 |
plt.imshow(image.load_img(img_path, target_size=IMAGE_SIZE)) |
|
|
169 |
plt.title(f"Predicted: {predicted_label}") |
|
|
170 |
plt.axis('off') |
|
|
171 |
plt.show() |
|
|
172 |
|
|
|
173 |
img_path = '/content/l3.png' |
|
|
174 |
img = load_and_preprocess_image(img_path, IMAGE_SIZE) |
|
|
175 |
predictions = model.predict(img) |
|
|
176 |
predicted_class = np.argmax(predictions[0]) |
|
|
177 |
predicted_label = class_labels[predicted_class] |
|
|
178 |
print(f"The image belongs to class: {predicted_label}") |
|
|
179 |
plt.imshow(image.load_img(img_path, target_size=IMAGE_SIZE)) |
|
|
180 |
plt.title(f"Predicted: {predicted_label}") |
|
|
181 |
plt.axis('off') |
|
|
182 |
plt.show() |
|
|
183 |
|
|
|
184 |
img_path = '/content/n8.jpg' |
|
|
185 |
img = load_and_preprocess_image(img_path, IMAGE_SIZE) |
|
|
186 |
predictions = model.predict(img) |
|
|
187 |
predicted_class = np.argmax(predictions[0]) |
|
|
188 |
predicted_label = class_labels[predicted_class] |
|
|
189 |
print(f"The image belongs to class: {predicted_label}") |
|
|
190 |
plt.imshow(image.load_img(img_path, target_size=IMAGE_SIZE)) |
|
|
191 |
plt.title(f"Predicted: {predicted_label}") |
|
|
192 |
plt.axis('off') |
|
|
193 |
plt.show() |