[ebf7be]: / code / train-generator.py

Download this file

149 lines (115 with data), 6.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
Purpose: train a machine learning segmenter that can segment out the nodules on a given 2D patient CT scan slice
Note:
- this will train from scratch, with no preloaded weights
- weights are saved to unet.hdf5 in the specified output folder
"""
from __future__ import print_function
import os
from glob import glob
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D
from keras.optimizers import Adam
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
TRAIN_PATH = '/home/ubuntu/data/train_pre/'
VAL_PATH = '/home/ubuntu/data/val_pre/'
TEST_PATH = '/home/ubuntu/data/test_pre/'
IMG_ROWS = 512
IMG_COLS = 512
SMOOTH = 1.
K.set_image_dim_ordering('th') # Theano dimension ordering in this code
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + SMOOTH) / (K.sum(y_true_f) + K.sum(y_pred_f) + SMOOTH)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def dice_coef_np(y_true,y_pred):
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.sum(y_true_f * y_pred_f)
return (2. * intersection + SMOOTH) / (np.sum(y_true_f) + np.sum(y_pred_f) + SMOOTH)
def get_unet():
inputs = Input((1,IMG_ROWS, IMG_COLS))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1.0e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model
def generator(path,batch_size):
lung_mask_list = glob(path + 'final_lung_mask_*.npy')
nodule_mask_list = glob(path + 'final_nodule_mask_*.npy')
lung_mask_list.sort()
nodule_mask_list.sort()
flag = 0
start = 0
cnt = 0
while (1):
for i in range(len(lung_mask_list)):
lung_file = lung_mask_list[i]
nodule_file = nodule_mask_list[i]
lung = np.load(lung_file)
nodule = np.load(nodule_file)
if(flag):
lung_train = np.concatenate((lung_train,lung[0:batch_supply]),axis=0).reshape([batch_size,1,512,512])
nodule_train = np.concatenate((nodule_train,nodule[0:batch_supply]),axis=0).reshape([batch_size,1,512,512])
yield (lung_train / 255.0, nodule_train / 255.0)
start = batch_supply
flag = 0
while(start + batch_size < len(lung)):
lung_train = lung[start:start+batch_size].reshape([batch_size,1,512,512])
nodule_train = nodule[start:start+batch_size].reshape([batch_size,1,512,512])
yield (lung_train / 255.0, nodule_train / 255.0)
start += batch_size
if(start + batch_size == len(lung)):
lung_train = lung[start:start+batch_size].reshape([batch_size,1,512,512])
nodule_train = nodule[start:start+batch_size].reshape([batch_size,1,512,512])
yield (lung_train / 255.0, nodule_train / 255.0)
flag = 0
start = 0
else:
lung_train = lung[start:]
nodule_train = nodule[start:]
batch_supply = batch_size - (len(lung)-start)
start = 0
flag = 1
def train_generator(batch_size):
model = get_unet()
print('model compileover ...')
model.fit_generator(generator(TRAIN_PATH,batch_size),steps_per_epoch = 4540, epochs = 2, verbose = 1, validation_data=generator(VAL_PATH,batch_size),validation_steps=650)
data_pred = np.load(TEST_PATH+'final_lung_mask_9.npy').reshape([1007,1,512,512])
nodule_true = np.load(TEST_PATH+'final_nodule_mask_9.npy').reshape([1007,1,512,512])
print(model.evaluate(data_pred,nodule_true,batch_size=2,verbose=1))
if __name__ == '__main__':
batch_size = 2
train_generator(batch_size)