[ebf7be]: / code / test-mask.py

Download this file

115 lines (86 with data), 4.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Purpose: train a machine learning segmenter that can segment out the nodules on a given 2D patient CT scan slice
Note:
- this will train from scratch, with no preloaded weights
- weights are saved to unet.hdf5 in the specified output folder
"""
from __future__ import print_function
import numpy as np
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D
from keras.optimizers import Adam
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
import matplotlib.pyplot as plt
WORKING_PATH = "/home/marshallee/Documents/lung/subset0/"
IMG_ROWS = 512
IMG_COLS = 512
SMOOTH = 1.
K.set_image_dim_ordering('th') # Theano dimension ordering in this code
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + SMOOTH) / (K.sum(y_true_f) + K.sum(y_pred_f) + SMOOTH)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def dice_coef_np(y_true,y_pred):
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.sum(y_true_f * y_pred_f)
return (2. * intersection + SMOOTH) / (np.sum(y_true_f) + np.sum(y_pred_f) + SMOOTH)
def get_unet():
"""
U-net architecture
"""
inputs = Input((1,IMG_ROWS, IMG_COLS))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1.0e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model
def test():
imgs_test = np.load(WORKING_PATH+"trainImages.npy").astype(np.float32)
imgs_mask_test_true = np.load(WORKING_PATH+"trainMasks.npy").astype(np.float32)
num = len(imgs_test)
mean_test = np.mean(imgs_test) # mean for data centering
std_test = np.std(imgs_test) # std for data normalization
imgs_test -= mean_test # images should already be standardized, but just in case
imgs_test /= std_test
model = get_unet()
model.load_weights('unet2.hdf5')
predMask = model.predict(imgs_test)
print('pred shape: ', predMask.shape)
fig,ax = plt.subplots(2,2,figsize=[8,8])
ax[0,0].imshow(imgs_test[i][0],cmap='gray')
ax[0,1].imshow(predMask[i][0],cmap='gray')
ax[1,0].imshow(imgs_test[i][0]*predMask[i][0],cmap='gray')
plt.show()
if __name__ == '__main__':
test()