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Abstract—Detection lung nodule has always been a challenge
topic in medical diagnosis and requires a lot of manual work.
Recently, the outgrowth of convolutional neural network (CNN)
draws a lot of attention for its strong and robust ability to
address 2D pattern recognition problem. While 3D CNN has
been proposed, challenges remain since 3D input consumes rather
much memory space and computational resources, making it
difficult to be deployed in many situation. We proposed a residual
block based 3D Faster RCNN for lung nodule detection, which
is both easier to train than traditional 3D Faster RCNN and can
provide decent prediction as well.

Index Terms—Pattern Recognition, Medical Diagnosis, 3D
CNN.

I. INTRODUCTION

Lung cancer has been a leading cause of cancer-related
death in human being. Early stage detection of lung cancer
is one of the most important technologies that improve the
patients survival possibility. In the field of radiation medicine,
a visible small massive tissue in lung, i.e. a lung nodule,
is a potential symptom of lung cancer. Traditionally, lung
nodule detection and classification are finished by experienced
radiologists via artificially analysis on CT scans. With the
recent advance in computer-aided-diagnose and popularization
of low-dose lung CT scanning, many image-processing based
or data-driven automatic methods are developed for the time-
consuming task of lung nodule detection and classification.

In this work, we focuses on design a robust automatic
diagnose system whose input is a patient’s lung CT scan
and the output is the annotation of lung nodules including
the location and prediction confidence. As this is a diagnose
system, our goal is to minimizing the false negative rate
without incurring false positive too much. It’s naturally to
think about data-driven method which learn to annotation a
CT scan like an trained radiologist rather than pure image
processing method. In fact, most existing robust systems are
divided into two stages to leverage both techniques. The
system firstly generates the possible module regions and then
is taught to reduce the false positive.

We use LUNA16[1] dataset which is a common public lung
CT scan dataset contains 888 low-does lung CTs with location
and classification annotation for nodules. As 3D nature of
CT data, we build U-net for segmentation and 3D CNN for
classification and achieved effective accuracy result. Further
work is needed to combine the two stage together for a
automatic pipeline.

II. RELATED WORK

Nodule detection Early nodule detection is highly depen-
dent on expertise designed features[2] and techniques such as
morphological computation, pixel threshold. Recently, some
powerful deep convolutional neural networks shows state-of-
art performance on data-driven image processing tasks. Fully
convolutional networks[3] for semantic segmentation can be
used to generate candidate region for the next classification
stage. A more natural representation for neural network is
bounded box which can be generated from faster R-CNN [4]
for object detection and UNet[5]. Due to the 3D nature of
CT scans, some work proposed 3D convolutional networks
to handle this task. Therefore, for nodule detection, there are
pipeline in the form of faster R-CNN followed by 3D CNN
classifier[6] [7], 3D U-net[8] and V-net[9].

Nodule classification Early non-deeplearning methods are
mainly based on human-designed 2D or 3D feature such
as shape and texture[10] [11]. Recently, some deep learning
technique is used in nodule diagnosis. Multi-scale CNN[12]
is used for nodule-level classification while transfer learning
is used for patient-level CT classification[13]. [14] shows that
3D structured CNN perform better on 3D CT data than 2D
CNN.

III. METHOD

In this section, we will discuss the details of our method,
including the preprocessing part, the segmentation part and
the classification part. Most of the preprocessing is done by
using traditional image filter with well-designed parameters.
Section III-A will illustrates details of our proposed filter.
As for the lung nodule detection, our structure combines the
segmentation part and the classification part together by using
modified Faster RCNN model (Fast RCNN + RPN)[15], [16],
of which details will be provided in Section III-B

A. Preprocessing

The original dataset from Tianchi competition consists of
sliced images I of 3D scanned lung model. Value of pixels
in I varies in a wide range, making it difficult to segment the
lung nodule with raw images as inputs. Thus, preprocessing
is necessary for input regularization, which can significantly
boost the robustness of the network.

We first have to extract a lung mask to exclude other tissues
out of the lung itself, since many of which may have very
similar shapes with nodules. Gaussian filter G is adapted to
extract the mask of the lung in frequency domain since it
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Fig. 1: Overview of our proposed residual block based 3D faster RCNN network structure. We use six residual block (yellow)
and two max pooling layer to tranform input(blue) into feature map for RPN block

is comparatively most convenient approach. The definition of
spatial Gaussian kernel G with size 2k + 1× 2k + 1 is:

G(x, y) =
1

2πσ2
e−

(x−k−1)2+(y−k−1)2

2σ2 (1)

where σ is the deviation of the 2D Gaussian distribution, which
controls the smoothness of the output image.

In our case, we set the kernel size k to 3 and the standard
deviation σ to 1. The Gaussian filter produces descent yet
blurred result, which requires further processing. We choose
to binarize the filtered image with binarization filter B. The
definition of a ideal spatial binarization filter B is:

B(x, y) =

{
0 Ix,y < σ
1 Ix,y ≥ σ

(2)

where σ denotes the threshold. Here, we choose threshold σ
to be -600 as Liao et. al.[16] does for LUNA dataset.

Sadly, there is no direct way to fetch perfectly segmented
lung slice for each input image. Thus, for some failure
cases, we have to check them manually and design specific
parameters to get good filtered results.

After filtering, 2D connected components smaller than
30mm2 or with eccentricity larger than 0.99 are discarded
to further reduce noise. Then we calculated all 3D connected
components. 3D connected components with volume larger
than 8.0L or smaller than 0.65L are discarded since they are
highly unlikely to be lungs. For failure cases in this part, we
again check them manually and deleted some useless samples
like void images (images consist of only zero-value pixels). In
total, we have 1616 images for training, validation and testing
after preprocessing.

B. 3D Residual Faster RCNN

Faster RCNN is an end-to-end object detection network
based on Fast RCNN[15], [17]. Unlike Fast RCNN, Faster
RCNN uses Region Proposal Network(RPN) to generate rect-
angle object bounding box instead of using Spatial Pyramid
Pooling(SPP). We adopt original 2D Faster RCNN to 3D lung
nodule detection with 3D convolution neural network.

We first introduce the definition of convolution layer, pool-
ing layer and fully connected layer in 3D space respectively.
3D convolution layers work on fixed-size I×J×K×C inputs,
where the first three dimensions represents the width, height,
depth of voxel V . In our case, shape of the preprocessed voxel
data is determined, I = J = 512, K = 281. The fourth

dimension of the input indicates number of feature maps. The
shape of the convolution filter C(k, k, k, c) is pre determined
as well, which creates c feature maps by convolving the input
with learned filters of shape k × k × k × c. In our case,
we use k = 3 in each convolutional layer. 3D convolution
is also compatible with spatial stride s, which is common in
2D convolution. 3D pooling layers downsample the input with
either max pooling or average pooling. We use max pooling in
our case. Max pooling downsamples the voxel along the spatial
dimensions by replacing each m × m × m non-overlapping
block of voxels with their maximum respectively. 3D fully
connected layer outputs a n × 1 vector which stands for n
output neurons. The value of each element in the vector is a
learned combination of all the outputs from the previous layer,
processed by a nonlinear activation function. We use ReLUs
as activation function.

Then it is natural to extend residual block to 3D space
as well. The key contribution of residual block and residual
learning is to prevent the degradation effect of very deep neural
network. Instead of training the neural network to learn to
predict direct output, residual block aims to predict residual
value F (x) defined as:

ŷ = F (x) + x (3)

where ȳ is target result. Residual block performs well in
a wide range of classification problem and is efficient to
train. Thus we replace traditional VGG structure in faster
RCNN with a series of residual block, which not only make
it capable for us to build deeper neural network but also boost
the convergence speed of RPN network in experiment. In our
network, each residual block contains three 3D convolution
layer, followed by ReLU activation respectively.

Delighted by RPN block used in 2D faster RCNN[15], we
adopt RPN block in our 3D frame work to generate bounding
box for lung nodule in 3D voxels. The bounding box in RPN
block is represented as:

t = (x, y, z, dx, dy, dz) (4)

where x, y, z, dx, dy, dz denotes the coordinates and half
length of the bounding box’s width and height. Each proposed
bounding box also has a predict binary label to denotes
whether volume in the bounding box contains an object, which
is determined by largest IoU of proposed and ground truth
bounding box. RPN is trained with position loss, which is back
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Fig. 2: An illustration of residual block in our model. Three 3D
convolution layers are included in one residual block, which
are followed by ReLU activation.

propagated by gradient calculated in position loss function
Lpos. Usually, Lpos is the L1 loss of t and t̄. Here t̄ is the
bounding box ground truth. Next, the ROIP block transform
voxel volume in the proposed bounding box output from
RPN to feature space representation by 3D convolution and
pooling layer. The last block of our structure is a RCNN block,
function of which is a common binary classifier, which has
been proved to be good enough in experiments .

C. Loss Design

Last but not least, we will discuss the loss design of our
network. Aside from the Lpos loss to tune the RPN block,
we need to design classification loss for RCNN classifier.
According to our experiment, the false positive samples in
proposed bounding box consists of a large part of our dataset
(approximately 70%). Usually decreasing the false positive
ratio is a prior task in medical diagnosis, thus we have to
punish the classification network when it labels false positive
to be true. The classification loss Lcls is defined as:

Lcls = (1−λ)
1

Npos

∑
i

Lpos(pi, p̂i)+λ
1

Nneg

∑
i

Lneg(pi, p̂i)

(5)
where N denotes the total sample number, and Lpos and Lneg

are L1 loss of true negative and false positive predictions
respectively. λ is a hypeparameter to control the degree of
punishment to false positive. In out case, we set λ to 0.7.

IV. IMPLEMENTATION

The experiment was conducted on Ubuntu 16.04.3 LTS with
4 processors, Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.3GHz
and 64GB total memory space. Our model is trained on Tesla
K80 with 12GB Memory. Except for our 3D residual faster
RCNN structure, we implemented U-net as baseline of the
segmentation part The Unet framework of uses python 2.7,
Kares as the frontend with tensorflow 1.4.0rc0 with Cuda 9.0
as the backend.

As for 3D residual faster RCNN, we choose to use Intel
Extended Caffe since the convolution layer, max pooling layer
and fully connection layer in caffe is self-adaptive to the shape
of input. Some other common libraries used include numpy
1.13.1, SimpleITK 1.1.0, pandas 0.19.2, sklearn 0.18.2.

The training process of U-net is done in 3 hours on Nvidia
Tesla K80 graphic card.

V. EXPERIMENTAL RESULTS

The experiment was conducted with LUNA16 dataset. The
dataset includes 888 CT scans in total. CT images are stored
in MetaImage (mhd/raw) format. Each .mhd file is stored
with a separate .raw binary file for the pixeldata. Addi-
tionally, 2 csv files are included in the dataset. The file,
annotations.csv, contains one finding per line. Each line holds
the SeriesInstanceUID of the scan, the x, y, and z position
of each finding in world coordinates; and the corresponding
diameter in mm. The annotation file contains 1186 nodules.
Meanwhile, the file, candidates.csv, contains nodule candidate
per line. Each line holds the scan name, the x, y, and z
position of each candidate in world coordinates, and the
corresponding class (1 represents true positive and 0 represents
false positive). For more details about the dataset, please view
https://luna16.grand-challenge.org/

Within the preprocessing parts [12], skimage.morphology is
implemented to extract the lung area. As different organ tissues
react differently to the radioactivation, the HU value in the CT
images can be used to extract and eliminate the tissue we want
or not. (HU value 604 corresponds to lung [18]) Still, other
morphology implementation is used like closing and erosion.
Selems used in the function is decided through experiments.
The result of preprocessing is shown in Fig. 3

Fig. 3: Comparison between original data and processed data

To implement 3dcnn, vowel should be extracted from the
preprocessed ct images. The position (center) of vowel is
indicated by candidates.csv. The size of vowel is finally
decided as [26,40,40], since with smaller vowel size, too many
vowels are invalid bacause they do not contain any tissues
(a cubic with all 0s), while with bigger vowel size, the time
consumed in training and the pressure given to the hardware
is considerable.

There exist 2 methods of extracting vowel, without and
with nodule mask. Nodule masks can be generated from
annotations.csv. With the first implementation(without nodule
mask), the quantity of the extracted vowel is massive and
what’s worst is that the extracted vowel contains other tissue,

https://luna16.grand-challenge.org/
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Fig. 4: 3dcnn network structure

like small vessels as is shown in Fig. 5. After visualizing the
preprocessed lung structure, it is apparent that without the help
of the nodule mask, hardly can we extract the pure nodule in
lung (see Fig. 6).

Fig. 5: vowel extracted without nodule mask

Meanwhile, with nodule masks, the lung nodule and vowel
extracted performs better, which contains only the nodule (see
Fig. 7). However, to implement this method, model used to
generate potential nodule mask for new CT image is needed.
We implemented U-net to generate the nodule mask. The
evaluation of our model on training set is 0.60, that on
validation set is 0.58 and that on test set is 0.266. The result
is fair enough compared with evaluation value 0.3 given in the

Fig. 6: lung after preprocessing without nodule mask

tutorial. The result shows in Fig.8

Fig. 7: The left image is the visualization of the entire lung
with nodule mask. The right image is the one of the vowels
extracted

Fig. 8: The left image is original nodule mask. The right image
is predicted one

The final step is to train our 3dcnn model with vowels
as input and a probability of being true positive as output.
Consider the paucity of positive samples, data augmentation
is implemented. With every vowel with positive class, by
mirroring, shifting and transpose, we can conduct more vowels
from one. The structure of our model is shown in Fig. 4, and
our final accuracy one the test set is 0.8125.
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VI. CONCLUSION AND FUTURE WORK

We proposed 3D version of faster RCNN to solve lung
nodule segmentation and classification problem. As a multi-
task network, faster RCNN provides an end-to-end solution to
medical treatment in simultaneous segmentation and classifi-
cation cases.

For comparison, we also implemented and tested a tradi-
tional approach, U-NET for segmentation and 3D CNN for
classification. Both of these two methods achieved a descent
accuracy in our test set. Considering model efficiency, we
affirm that our 3D faster RCNN model is a better choice.

There certainly exists space for conducting future research.
First, our research is strongly restricted by computational
resources. We only have one PC equipped with E5-2686 v4
CPU and Tesla K80 GPU devices. For researchers interested in
lung nodule analysis with comparative abundant computational
resources, other very deep structures, cascade structures and
multi-network structures can be choices for better test scores.
Second, we didn’t focus on the tuning of hyperparameters thus
we didn’t use optimal settings for our network. For some hard
cases, hard mining can further increase the robustness of our
network.
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