Diff of /code/train-mask.py [000000] .. [ebf7be]

Switch to unified view

a b/code/train-mask.py
1
"""
2
    Purpose: train a machine learning segmenter that can segment out the nodules on a given 2D patient CT scan slice
3
    Note:
4
    - this will train from scratch, with no preloaded weights
5
    - weights are saved to unet.hdf5 in the specified output folder
6
"""
7
8
from __future__ import print_function
9
10
import numpy as np
11
from keras.models import Model
12
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D
13
from keras.optimizers import Adam
14
from keras.optimizers import SGD
15
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
16
from keras import backend as K
17
18
WORKING_PATH = "/home/ubuntu/data/output/"
19
IMG_ROWS = 512
20
IMG_COLS = 512
21
22
SMOOTH = 1.
23
24
K.set_image_dim_ordering('th')  # Theano dimension ordering in this code
25
26
def dice_coef(y_true, y_pred):
27
    y_true_f = K.flatten(y_true)
28
    y_pred_f = K.flatten(y_pred)
29
    intersection = K.sum(y_true_f * y_pred_f)
30
    return (2. * intersection + SMOOTH) / (K.sum(y_true_f) + K.sum(y_pred_f) + SMOOTH)
31
32
def dice_coef_loss(y_true, y_pred):
33
    return -dice_coef(y_true, y_pred)
34
35
def dice_coef_np(y_true,y_pred):
36
    y_true_f = y_true.flatten()
37
    y_pred_f = y_pred.flatten()
38
    intersection = np.sum(y_true_f * y_pred_f)
39
    return (2. * intersection + SMOOTH) / (np.sum(y_true_f) + np.sum(y_pred_f) + SMOOTH)
40
41
def get_unet():
42
    inputs = Input((1,IMG_ROWS, IMG_COLS))
43
    conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
44
    conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
45
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
46
47
    conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
48
    conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
49
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
50
51
    conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
52
    conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
53
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
54
55
    conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
56
    conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
57
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
58
59
    conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
60
    conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
61
62
    up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
63
    conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
64
    conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
65
66
    up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
67
    conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
68
    conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
69
70
    up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
71
    conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
72
    conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
73
74
    up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
75
    conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
76
    conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
77
78
    conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
79
80
    model = Model(input=inputs, output=conv10)
81
82
    model.compile(optimizer=Adam(lr=1.0e-5), loss=dice_coef_loss, metrics=[dice_coef])
83
84
    return model
85
86
87
def train_and_evaluate():
88
    print('-'*30)
89
    print('Loading and preprocessing train data...')
90
    print('-'*30)
91
    imgs_train = np.load(WORKING_PATH+"trainImages.npy").astype(np.float32)
92
    imgs_mask_train = np.load(WORKING_PATH+"trainMasks.npy").astype(np.float32)
93
94
    imgs_test = np.load(WORKING_PATH+"testImages.npy").astype(np.float32)
95
    imgs_mask_test_true = np.load(WORKING_PATH+"testMasks.npy").astype(np.float32)
96
    
97
    mean = np.mean(imgs_train)  # mean for data centering
98
    std = np.std(imgs_train)  # std for data normalization
99
    imgs_train -= mean  # images should already be standardized, but just in case
100
    imgs_train /= std
101
102
    mean_test = np.mean(imgs_test)  # mean for data centering
103
    std_test = np.std(imgs_test)  # std for data normalization
104
    imgs_test -= mean_test  # images should already be standardized, but just in case
105
    imgs_test /= std_test
106
107
    print('-'*30)
108
    print('Creating and compiling model...')
109
    print('-'*30)
110
    model = get_unet()
111
112
    # Saving weights to unet.hdf5 at checkpoints
113
    model_checkpoint = ModelCheckpoint('unet.hdf5', monitor='loss', save_best_only=True)
114
    
115
    print('-'*30)
116
    print('Fitting model...')
117
    print('-'*30)
118
    model.fit(imgs_train, imgs_mask_train, batch_size=2, nb_epoch=20, verbose=1, shuffle=True, callbacks=[model_checkpoint])
119
    print('Fitting ends...')
120
121
    print('start evaluation...')
122
    print('evaluation result is: ', model.eva)
123
    
124
if __name__ == '__main__':
125
    train_and_predict()