2255 lines (2255 with data), 770.2 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "JvFddRqFekOv"
},
"source": [
"# 1. IMPORT DEPENDENCES"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jTDCdL_jekO0"
},
"outputs": [],
"source": [
"import tensorflow.keras as keras\n",
"from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array\n",
"from tensorflow.keras.models import Sequential\n",
"from keras.utils import np_utils\n",
"from tensorflow.keras.layers import Dense,Activation, Flatten, Dropout, BatchNormalization, Conv2D, MaxPooling2D\n",
"from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\n",
"from tensorflow.keras import regularizers, optimizers\n",
"import tensorflow as tf\n",
"from tensorflow.keras.applications import ResNet50,VGG16,ResNet101, VGG19, DenseNet201, EfficientNetB4, MobileNetV2\n",
"from tensorflow.keras.applications import resnet, vgg16 , vgg19, densenet, efficientnet, mobilenet_v2\n",
"from tensorflow.keras import Model\n",
"from tensorflow.keras.optimizers.legacy import Adam\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import PIL\n",
"import os\n",
"import cv2\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 36
},
"id": "CfV9WwyIekO1",
"outputId": "83fc1f3d-d5f1-47e4-ddfe-7e98e23fc0b5"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'2.12.0'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 2
}
],
"source": [
"tf.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sRs13mJEekO2"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7-R72PfJ9qA4",
"outputId": "db54c14b-8e44-4523-8935-fc4d09453493"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"rm: cannot remove '/root/.kaggle': No such file or directory\n",
"mv: cannot stat './kaggle.json': No such file or directory\n",
"chmod: cannot access '/root/.kaggle/kaggle.json': No such file or directory\n"
]
}
],
"source": [
"!rm -r ~/.kaggle\n",
"!mkdir ~/.kaggle\n",
"!mv ./kaggle.json ~/.kaggle/\n",
"!chmod 600 ~/.kaggle/kaggle.json\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "o8bKr4TQMBDY",
"outputId": "ba40095b-2e4f-4feb-db17-9709264c5166"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OF2q6sb8EGYo",
"outputId": "90d0b20f-c2b3-4e3b-b3f3-439bb8d2c563"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Archive: /content/drive/MyDrive/archive.zip\n",
" inflating: Data/Data/test/adenocarcinoma/000108 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000109 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000109 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000109 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000112 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000113 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000114 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000114.png \n",
" inflating: Data/Data/test/adenocarcinoma/000115 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000115 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000115.png \n",
" inflating: Data/Data/test/adenocarcinoma/000116 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000116 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000116 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000117 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000117 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000117.png \n",
" inflating: Data/Data/test/adenocarcinoma/000118 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000118 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000119 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000119 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000119 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000120.png \n",
" inflating: Data/Data/test/adenocarcinoma/000121 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000121 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000121.png \n",
" inflating: Data/Data/test/adenocarcinoma/000122 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000122.png \n",
" inflating: Data/Data/test/adenocarcinoma/000123 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000123 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000123 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000124 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000124 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000125 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000125 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000125 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000125 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000125 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000126 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000127 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000128 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000129 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000129.png \n",
" inflating: Data/Data/test/adenocarcinoma/000130 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000131 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000132 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000132 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000132 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000132.png \n",
" inflating: Data/Data/test/adenocarcinoma/000133 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000133 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000134 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000134 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000134.png \n",
" inflating: Data/Data/test/adenocarcinoma/000135 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000136 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000136 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000137 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000137 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000137 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000138 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000138 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000139 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000139 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000139 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000139 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000139.png \n",
" inflating: Data/Data/test/adenocarcinoma/000140.png \n",
" inflating: Data/Data/test/adenocarcinoma/000141 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000142.png \n",
" inflating: Data/Data/test/adenocarcinoma/000143 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000143 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000144 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000144 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000145 (9).png \n",
" inflating: Data/Data/test/adenocarcinoma/000146 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000146 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000147.png \n",
" inflating: Data/Data/test/adenocarcinoma/000148 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000148 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000148 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000148.png \n",
" inflating: Data/Data/test/adenocarcinoma/000149 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000149 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000149 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000151 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000153 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000155 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000155.png \n",
" inflating: Data/Data/test/adenocarcinoma/000156 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000157 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000157 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000158 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000158 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000158 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000158 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000158.png \n",
" inflating: Data/Data/test/adenocarcinoma/000160 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000160 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000161 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000161 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000163 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000163 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000164 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000165 (6).png \n",
" inflating: Data/Data/test/adenocarcinoma/000166 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000166 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000166 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000167 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000167 (8).png \n",
" inflating: Data/Data/test/adenocarcinoma/000168 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000171 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000171.png \n",
" inflating: Data/Data/test/adenocarcinoma/000172 (3).png \n",
" inflating: Data/Data/test/adenocarcinoma/000173 (5).png \n",
" inflating: Data/Data/test/adenocarcinoma/000173 (7).png \n",
" inflating: Data/Data/test/adenocarcinoma/000174 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000176 (2).png \n",
" inflating: Data/Data/test/adenocarcinoma/000177 (4).png \n",
" inflating: Data/Data/test/adenocarcinoma/000177.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000108.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000110.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000111 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000111.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000113 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000113.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000114.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000115 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000116.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000118.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000120.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000122.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000123.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000124 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000126.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000127 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000128 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000128.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000130.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000131 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000131.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000132 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000133 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000133.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000136 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000137.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000138 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000141.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000143.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000147 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000148 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000148.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000149.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000150.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000154 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000154.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000155.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000158.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000159 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000159.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000160.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000162.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000163.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000169.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000170.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000171.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000172 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000172.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000173 (2).png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000173.png \n",
" inflating: Data/Data/test/large.cell.carcinoma/000174.png \n",
" inflating: Data/Data/test/normal/10 (2) - Copy.png \n",
" inflating: Data/Data/test/normal/10 (2).png \n",
" inflating: Data/Data/test/normal/10 - Copy (2) - Copy.png \n",
" inflating: Data/Data/test/normal/10 - Copy (2).png \n",
" inflating: Data/Data/test/normal/10 - Copy (3).png \n",
" inflating: Data/Data/test/normal/10 - Copy - Copy.png \n",
" inflating: Data/Data/test/normal/10 - Copy.png \n",
" inflating: Data/Data/test/normal/10.png \n",
" inflating: Data/Data/test/normal/11 (2) - Copy.png \n",
" inflating: Data/Data/test/normal/11 (2).png \n",
" inflating: Data/Data/test/normal/11 - Copy (2) - Copy.png \n",
" inflating: Data/Data/test/normal/11 - Copy (2).png \n",
" inflating: Data/Data/test/normal/11 - Copy (3).png \n",
" inflating: Data/Data/test/normal/11 - Copy - Copy.png \n",
" inflating: Data/Data/test/normal/11 - Copy.png \n",
" inflating: Data/Data/test/normal/11.png \n",
" inflating: Data/Data/test/normal/12 (2) - Copy.png \n",
" inflating: Data/Data/test/normal/12 (2).png \n",
" inflating: Data/Data/test/normal/12 - Copy (2) - Copy.png \n",
" inflating: Data/Data/test/normal/12 - Copy (2).png \n",
" inflating: Data/Data/test/normal/12 - Copy (3).png \n",
" inflating: Data/Data/test/normal/12 - Copy - Copy.png \n",
" inflating: Data/Data/test/normal/12 - Copy.png \n",
" inflating: Data/Data/test/normal/21.png \n",
" inflating: Data/Data/test/normal/22.png \n",
" inflating: Data/Data/test/normal/23.png \n",
" inflating: Data/Data/test/normal/24 - Copy.png \n",
" inflating: Data/Data/test/normal/24.png \n",
" inflating: Data/Data/test/normal/25.png \n",
" inflating: Data/Data/test/normal/6 (2) - Copy.png \n",
" inflating: Data/Data/test/normal/6 (2).png \n",
" inflating: Data/Data/test/normal/6 - Copy (2) - Copy.png \n",
" inflating: Data/Data/test/normal/6 - Copy (2).png \n",
" inflating: Data/Data/test/normal/6 - Copy (3).png \n",
" inflating: Data/Data/test/normal/6 - Copy.png \n",
" inflating: Data/Data/test/normal/6.png \n",
" inflating: Data/Data/test/normal/7 (2) - Copy.png \n",
" inflating: Data/Data/test/normal/7 (2).png \n",
" inflating: Data/Data/test/normal/7 - Copy (2) - Copy.png \n",
" inflating: Data/Data/test/normal/7 - Copy (2).png \n",
" inflating: Data/Data/test/normal/7 - Copy (3).png \n",
" inflating: Data/Data/test/normal/7 - Copy - Copy.png \n",
" inflating: Data/Data/test/normal/7 - Copy.png \n",
" inflating: Data/Data/test/normal/7.png \n",
" inflating: Data/Data/test/normal/8 (2) - Copy.png \n",
" inflating: Data/Data/test/normal/8 (2).png \n",
" inflating: Data/Data/test/normal/8 - Copy (2) - Copy.png \n",
" inflating: Data/Data/test/normal/8 - Copy (2).png \n",
" inflating: Data/Data/test/normal/8 - Copy (3).png \n",
" inflating: Data/Data/test/normal/8 - Copy - Copy.png \n",
" inflating: Data/Data/test/normal/8 - Copy.png \n",
" inflating: Data/Data/test/normal/8.png \n",
" inflating: Data/Data/test/normal/normal - Copy.png \n",
" inflating: Data/Data/test/normal/normal.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000108 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000110 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000111.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000112.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000114 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000114 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000115 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000115 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000116 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000117 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000117 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000117 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000118 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000118 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000119 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000119.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000120 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000120 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000120 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000121 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000121.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000122 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000122.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000124 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000124 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000124.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000125 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000125 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000125.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000126 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000127 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000127 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000127.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000129 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000129 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000130 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000131 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000132 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000133 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000133 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000134 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000135 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000135.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000136 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000136 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000137 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000137.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000139 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000139 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000139 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000141 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000141 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000142 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000142 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000144 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000145 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000146 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000148 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000148 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000149 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000151 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000151.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000153 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000153 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000153.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000154 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000154 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000154 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000155 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000155.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000156 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000157 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000158 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000158 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000159 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000160 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000162 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000162.png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000163 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000163 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000163 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000164 (5).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000166 (4).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000167 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000168 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000169 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000170 (2).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000172 (6).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000174 (3).png \n",
" inflating: Data/Data/test/squamous.cell.carcinoma/000177 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000000 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000005 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000005 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000008 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000009 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000009 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000013 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000013 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000014 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000015 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000015 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000015 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000016 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000017 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000017 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000018 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000019 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000020 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000020 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000020 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000021 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000021 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000021 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000021 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000021 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000022 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000022 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000022 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000022 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000022.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000023 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000023 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000023 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000023 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000024 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000024 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000024 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000024.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000025 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000026 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000026 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000027 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000027 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000029 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000029 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000029 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000030 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000031 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000032 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000033 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000034 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000035 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000035 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000035 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000035 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000036 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000036 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000040 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000040 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000040 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000041 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000041 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000041 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000041 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000042 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000044 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000044 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000046 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000048 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000048.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000049 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000049 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000050 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000050 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000050 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000050 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000051 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000051 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000052 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000054 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000054 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000054 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000054.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000055 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000056 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000057 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000057.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000058 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000058 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000059 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000061.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000063 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000063 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000063 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000065 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000065 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000065 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000066 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000066 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000067 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000067.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000068 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000068 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000068 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000069 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000071 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000072 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000074 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000075 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000077 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000077 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000078 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000079 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000080 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000080 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000081 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000083 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000083 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000084 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000084 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000084 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000084.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000085 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000085 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000085 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000086 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000086 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000087 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000087 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000089 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000090 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000091 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000091 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000091.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000092 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000093 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000093 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000093 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000095 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000095.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000096 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000097 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000097 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000097 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000098 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000098 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000099 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000100 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000101 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000102 (2).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000102 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000102 (7).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000102.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000103 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000104 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000104 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000105 (3).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000105 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000105.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000106 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000106 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000106 (8).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000107 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000118 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000118 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000119 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000119 (4).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000119 (5).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000119 (6).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000121 (10).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000121 (9).png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000121.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000122.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad1.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad10.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad11.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad12.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad13.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad14.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad15.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad16.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad17.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad18.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad19.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad2.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad20.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad21.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad22.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad3.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad4.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad5.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad6.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad7.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad8.png \n",
" inflating: Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/ad9.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000002.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000003 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000003 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000009 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000009 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000010.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000015.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000016 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000016 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000017.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000018 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000019 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000019 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000020 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000020 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000021.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000023 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000024 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000026 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000026.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000027 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000027.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000031 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000031.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000032.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000033 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000033 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000034 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000039 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000039 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000040 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000041 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000041 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000041.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000042 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000043 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000045.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000046.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000047 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000051.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000055 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000055 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000055.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000056 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000056 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000057 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000057 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000057.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000058 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000058 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000059 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000059 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000060.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000062 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000062 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000062 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000062.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000063 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000063.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000065 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000066 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000066.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000068 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000068 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000068.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000069.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000071 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000072 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000073 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000076 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000076 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000077.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000078 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000078 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000080.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000081.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000084 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000084.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000089.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000093 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000093 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000094 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000094 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000094 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000095 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000095 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000095 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000095.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000097 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000097.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000098 (3).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000098 (4).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000104 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000104.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000105 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000105.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000106 (2).png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000106.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000133.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000137.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000143.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000149.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000150.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000154.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000159.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000169.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000172.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000173.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/di1.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/l1.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/l2.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/l3.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/l4.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/l5.png \n",
" inflating: Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/l6.png \n",
" inflating: Data/Data/train/normal/10 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/10 (2).png \n",
" inflating: Data/Data/train/normal/10 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/10 - Copy (2).png \n",
" inflating: Data/Data/train/normal/10 - Copy (3).png \n",
" inflating: Data/Data/train/normal/10 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/10 - Copy.png \n",
" inflating: Data/Data/train/normal/10.png \n",
" inflating: Data/Data/train/normal/11 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/11 (2).png \n",
" inflating: Data/Data/train/normal/11 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/11 - Copy (2).png \n",
" inflating: Data/Data/train/normal/11 - Copy (3).png \n",
" inflating: Data/Data/train/normal/11 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/11 - Copy.png \n",
" inflating: Data/Data/train/normal/11.png \n",
" inflating: Data/Data/train/normal/12 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/12 (2).png \n",
" inflating: Data/Data/train/normal/12 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/12 - Copy (2).png \n",
" inflating: Data/Data/train/normal/12 - Copy (3).png \n",
" inflating: Data/Data/train/normal/12 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/12 - Copy.png \n",
" inflating: Data/Data/train/normal/12.png \n",
" inflating: Data/Data/train/normal/13 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/13 (2).png \n",
" inflating: Data/Data/train/normal/13 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/13 - Copy (2).png \n",
" inflating: Data/Data/train/normal/13 - Copy (3).png \n",
" inflating: Data/Data/train/normal/13 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/13 - Copy.png \n",
" inflating: Data/Data/train/normal/13.png \n",
" inflating: Data/Data/train/normal/16 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/16 (2).png \n",
" inflating: Data/Data/train/normal/16 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/16 - Copy (2).png \n",
" inflating: Data/Data/train/normal/16 - Copy (3).png \n",
" inflating: Data/Data/train/normal/16 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/16 - Copy.png \n",
" inflating: Data/Data/train/normal/16.png \n",
" inflating: Data/Data/train/normal/17 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/17 (2).png \n",
" inflating: Data/Data/train/normal/17 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/17 - Copy (2).png \n",
" inflating: Data/Data/train/normal/17 - Copy (3).png \n",
" inflating: Data/Data/train/normal/17 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/17 - Copy.png \n",
" inflating: Data/Data/train/normal/17.png \n",
" inflating: Data/Data/train/normal/18 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/18 (2).png \n",
" inflating: Data/Data/train/normal/18 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/18 - Copy (2).png \n",
" inflating: Data/Data/train/normal/18 - Copy (3).png \n",
" inflating: Data/Data/train/normal/18 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/18 - Copy.png \n",
" inflating: Data/Data/train/normal/18.png \n",
" inflating: Data/Data/train/normal/19 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/19 (2).png \n",
" inflating: Data/Data/train/normal/19 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/19 - Copy (2).png \n",
" inflating: Data/Data/train/normal/19 - Copy (3).png \n",
" inflating: Data/Data/train/normal/19 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/19 - Copy.png \n",
" inflating: Data/Data/train/normal/19.png \n",
" inflating: Data/Data/train/normal/2 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/2 (2).png \n",
" inflating: Data/Data/train/normal/2 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/2 - Copy (2).png \n",
" inflating: Data/Data/train/normal/2 - Copy (3).png \n",
" inflating: Data/Data/train/normal/2 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/2 - Copy.png \n",
" inflating: Data/Data/train/normal/2.png \n",
" inflating: Data/Data/train/normal/20 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/20 (2).png \n",
" inflating: Data/Data/train/normal/20 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/20 - Copy (2).png \n",
" inflating: Data/Data/train/normal/20 - Copy (3).png \n",
" inflating: Data/Data/train/normal/20 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/20 - Copy.png \n",
" inflating: Data/Data/train/normal/20.png \n",
" inflating: Data/Data/train/normal/21 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/21 - Copy (2).png \n",
" inflating: Data/Data/train/normal/21 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/21 - Copy.png \n",
" inflating: Data/Data/train/normal/3 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/3 (2).png \n",
" inflating: Data/Data/train/normal/3 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/3 - Copy (2).png \n",
" inflating: Data/Data/train/normal/3 - Copy (3).png \n",
" inflating: Data/Data/train/normal/3 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/3 - Copy.png \n",
" inflating: Data/Data/train/normal/3.png \n",
" inflating: Data/Data/train/normal/4 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/4 (2).png \n",
" inflating: Data/Data/train/normal/4 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/4 - Copy (2).png \n",
" inflating: Data/Data/train/normal/4 - Copy (3).png \n",
" inflating: Data/Data/train/normal/4 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/4 - Copy.png \n",
" inflating: Data/Data/train/normal/4.png \n",
" inflating: Data/Data/train/normal/5 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/5 (2).png \n",
" inflating: Data/Data/train/normal/5 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/5 - Copy (2).png \n",
" inflating: Data/Data/train/normal/5 - Copy (3).png \n",
" inflating: Data/Data/train/normal/5 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/5 - Copy.png \n",
" inflating: Data/Data/train/normal/5.png \n",
" inflating: Data/Data/train/normal/6 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/6 (2).png \n",
" inflating: Data/Data/train/normal/6 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/6 - Copy (2).png \n",
" inflating: Data/Data/train/normal/6 - Copy (3).png \n",
" inflating: Data/Data/train/normal/6 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/6 - Copy.png \n",
" inflating: Data/Data/train/normal/6.png \n",
" inflating: Data/Data/train/normal/7 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/7 (2).png \n",
" inflating: Data/Data/train/normal/7 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/7 - Copy (2).png \n",
" inflating: Data/Data/train/normal/7 - Copy (3).png \n",
" inflating: Data/Data/train/normal/7 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/7 - Copy.png \n",
" inflating: Data/Data/train/normal/7.png \n",
" inflating: Data/Data/train/normal/8 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/8 (2).png \n",
" inflating: Data/Data/train/normal/8 - Copy (2) - Copy.png \n",
" inflating: Data/Data/train/normal/8 - Copy (2).png \n",
" inflating: Data/Data/train/normal/8 - Copy (3).png \n",
" inflating: Data/Data/train/normal/8 - Copy - Copy.png \n",
" inflating: Data/Data/train/normal/8 - Copy.png \n",
" inflating: Data/Data/train/normal/8.png \n",
" inflating: Data/Data/train/normal/n6 (2) - Copy.jpg \n",
" inflating: Data/Data/train/normal/n6 (2).jpg \n",
" inflating: Data/Data/train/normal/n6 - Copy.jpg \n",
" inflating: Data/Data/train/normal/n6.jpg \n",
" inflating: Data/Data/train/normal/n7 (2) - Copy.png \n",
" inflating: Data/Data/train/normal/n7 (2).png \n",
" inflating: Data/Data/train/normal/n7 - Copy.png \n",
" inflating: Data/Data/train/normal/n7.png \n",
" inflating: Data/Data/train/normal/n8 (2) - Copy.jpg \n",
" inflating: Data/Data/train/normal/n8 (2).jpg \n",
" inflating: Data/Data/train/normal/n8 - Copy.jpg \n",
" inflating: Data/Data/train/normal/n8.jpg \n",
" inflating: Data/Data/train/normal/n9 (2) - Copy.jpg \n",
" inflating: Data/Data/train/normal/n9 (2).jpg \n",
" inflating: Data/Data/train/normal/n9 - Copy.jpg \n",
" inflating: Data/Data/train/normal/n9.jpg \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000002 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000002 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000003.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000004 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000004 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000004 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000006 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000006.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000007 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000007.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000008 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000009 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000010 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000013 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000015 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000015 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000016 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000017 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000018 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000024 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000024 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000027 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000028 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000028 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000028 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000029 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000030 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000030 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000030 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000032.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000033.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000035 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000035.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000036 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000037 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000038 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000038 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000038 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000041 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000043 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000043.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000044 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000046 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000046 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000046 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000046 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000048 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000048 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000048.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000049 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000050 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000050 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000051 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000052 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000053 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000053.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000054 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000054.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000055 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000055 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000056 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000056 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000057 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000057 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000057 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000057 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000057 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000058 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000058 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000058 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000058.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000060 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000062 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000062 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000063 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000063 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000063.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000064 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000065 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000065 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000066 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000066.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000067 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000067 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000067 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000067 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000068 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000069 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000070 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000070.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000071 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000073 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000074 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000074 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000074 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000075.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000077 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000077 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000077 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000078 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000078 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000078.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000079 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000079 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000079.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000081 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000081 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000081.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000082 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000082 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000083 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000083 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000083 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000083 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000084 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000084 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000084 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000085.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000088.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000089 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000090 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000091 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000091 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000093.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000094 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000094.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000096 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000096.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000099 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000099 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000100 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000101 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000103.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000104 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000104.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000105 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000105 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000106 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000106 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000106 (5).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000106 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000106 (7).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000120 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000120 (4).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000120 (6).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000121 (2).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000121.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000122 (3).png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000122.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/sq1.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/sq2.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/sq3.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/sq4.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/sq5.png \n",
" inflating: Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/sq6.png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000108 (7).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000108 (8).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000109 (3).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000109 (4).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000109 (8).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000110 (7).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000111 (2).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000112 (2).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000112 (9).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000113 (3).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000113.png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000114 (10).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000114.png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000115 (2).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000115 (5).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000115 (9).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000115.png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000116 (3).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000116 (5).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000116 (8).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000116 (9).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000117 (6).png \n",
" inflating: Data/Data/valid/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib/000117.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000108 (2).png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000108.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000109.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000110 (2).png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000110.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000111 (2).png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000111.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000112.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000113 (2).png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000113.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000114.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000115 (3).png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000115.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000116.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000118 (2).png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000120.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000122.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000126.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000128.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000130.png \n",
" inflating: Data/Data/valid/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa/000131.png \n",
" inflating: Data/Data/valid/normal/003828_02_01_174.png \n",
" inflating: Data/Data/valid/normal/004007_01_01_519.png \n",
" inflating: Data/Data/valid/normal/004162_01_01_150.png \n",
" inflating: Data/Data/valid/normal/4 (2).png \n",
" inflating: Data/Data/valid/normal/4 - Copy (2).png \n",
" inflating: Data/Data/valid/normal/5.png \n",
" inflating: Data/Data/valid/normal/6 - Copy (2) - Copy.png \n",
" inflating: Data/Data/valid/normal/6 - Copy (3).png \n",
" inflating: Data/Data/valid/normal/6 - Copy.png \n",
" inflating: Data/Data/valid/normal/7 - Copy (2).png \n",
" inflating: Data/Data/valid/normal/7 - Copy (3).png \n",
" inflating: Data/Data/valid/normal/7.png \n",
" inflating: Data/Data/valid/normal/8 - Copy (3).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000108 (3).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000110 (6).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000111.png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000112.png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000114 (4).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000114 (6).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000115 (2).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000115 (5).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000116 (2).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000117 (4).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000117 (6).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000118 (4).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000118 (5).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000119 (5).png \n",
" inflating: Data/Data/valid/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa/000119.png \n"
]
}
],
"source": [
"!unzip /content/drive/MyDrive/archive.zip -d Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "v-MWOtPhekO3",
"outputId": "dee4b4c6-d4bb-4cbb-8088-69280d9c57f1"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content/Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa\n",
"/content/Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib\n",
"/content/Data/Data/train/normal\n",
"/content/Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa\n"
]
}
],
"source": [
"path = \"/content/Data/Data/train\"\n",
"for files in os.listdir(path):\n",
" print(os.path.join(path,files))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WBvtgICqekO3",
"scrolled": true
},
"outputs": [],
"source": [
"train_path = \"/content/Data/Data/train\"\n",
"valid_path = \"/content/Data/Data/valid\"\n",
"test_path = \"/content/Data/Data/test\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PBvULkxvekO4"
},
"outputs": [],
"source": [
"image_paths = ['/content/Data/Data/train/squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa',\n",
"'/content/Data/Data/train/normal',\n",
"'/content/Data/Data/train/large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa',\n",
"'/content/Data/Data/train/adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib']\n",
"\n",
"def load_images(image_paths = image_paths, n=36):\n",
" # Load the images from disk.\n",
" images = []\n",
" for i in range(len(image_paths)):\n",
" images_ = [cv2.imread(image_paths[i]+'/'+path) for path in os.listdir(image_paths[i])[:int(n/4)]]\n",
" images.append(images_)\n",
" # Convert to a numpy array and return it.\n",
" sample = np.asarray(images)\n",
" return sample\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 369
},
"id": "lqrK89NVekO4",
"outputId": "94a4b1bf-0bb8-43b5-edb6-ff2aea1546fd"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"<ipython-input-8-a7055e1bdca8>:13: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
" sample = np.asarray(images)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 2000x500 with 36 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiEAAAGVCAYAAACYfVL7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz915Mk15ElDp9IrVVladXVWqLRDY1uAhiSY7SZHZuHtTVb2/nz9nXmZbjDEZwfCYICBIEmgEajtSgtM7NSy0rxPdR3vDxuRRYaQOtKNyurFJERN+L69et+XFm9Xq+HAQ1oQAMa0IAGNKABDWhAAxrQgAY0oAENaEADGtCABjSgJ0yu5z2AAQ1oQAMa0IAGNKABDWhAAxrQgAY0oAENaEADGtCABvRq0sAJMaABDWhAAxrQgAY0oAENaEADGtCABjSgAQ1oQAMa0ICeCg2cEAMa0IAGNKABDWhAAxrQgAY0oAENaEADGtCABjSgAQ3oqdDACTGgAQ1oQAMa0IAGNKABDWhAAxrQgAY0oAENaEADGtCAngoNnBADGtCABjSgAQ1oQAMa0IAGNKABDWhAAxrQgAY0oAEN6KnQwAkxoAENaEADGtCABjSgAQ1oQAMa0IAGNKABDWhAAxrQgJ4KDZwQAxrQgAY0oAENaEADGtCABjSgAQ1oQAMa0IAGNKABDeip0MAJMaABDWhAAxrQgAY0oAENaEADGtCABjSgAQ1oQAMa0ICeCnme9wAGNKBnQd1uF2tra4hGo7As63kPZ0AvGfV6PZTLZUxMTMDlerF9twNef7XpZeLFx6UBzx4+etX4eMDDh4NeNb49iAY8/fLSYeJTYMCrrzoN+HlALwsdNl4FBvz6qtLT5uXHckIMmGtAT4Kep2BeW1vD9PT0M73mgF49Wl5extTU1PMexoE04PXDQS8DLz4uDXj28NKrwscDHj5c9Krw7UE04OmXnw4DnwIDXj0sNODnAb0sdFh4FRjw66tOT4uXH8sJMWCuAT1Jeh6CORqNyutYLIZOp4NqtQqXy4VQKCTftdttuN1u9Ho99Ho9cbp1Oh14PB64XC50u110u10AkO8ty0K73UYgEMDx48cxNzcHn8+HTqcDYNcBw//Py5Hncrng8XjQ7XaRz+exsLCAjY0NNBoN9Ho9tNttWJYFr9cr99TpdNDpdNDr9dDtduW59Du/ZVnyx3Po1/zP58hz0SnV6/XgcrnkP7D77C3LkmM5P5yHnZ0dOd7v99uO5bk4Xy6XS+bE7Xaj3W7LZ61W6zufoeajF5Ve1DG63W643W4bj2nSa8OJx8zvnNaS+TvyWLfbdVx3Jp+Sh3mudruNdrstPPMi0Ys6zz+EXqZ78Xq9IptMeUe5BuzyD2UVybIsm9yj3Op2u3Ks3n+0zNU8rGUtieuBx1mWJfJ+Z2cHrVarr+x+nvQyzf1B9CLfh9vthsfjgcfjgWVZ+3iMPGPypbl3k/Q+zd9pXuZ5eG5+Rr7k9c11xHPrPZvHu91uAECz2USn00EwGAQANBoN7OzsyNhcLpfsM7znVquFRqPxRJ/pizzfT4pehHt0uVwIBoM2fZC85HK54PV64ff7EQqF5I/z3uv10Ol00Gw2Ua1WUa1WUalU0Gg00Ol00G634fV6RbfXMhSA/I9EIpiensbU1BRSqZRNz9Rrhv85NgByXK1Ww9bWFlZXV5HJZFCpVGzrzOTjJ0Uvwhw+C3qW90l5qmUkycn2oe0VjUaRSCSQSqUQiUQQCATkHJpPa7Wa/HU6HdnDqY96PB74fD64XC4kEgkMDQ0hHo8jGAzC6/WKrCRPA3v6bKPRQKVSwfb2NvL5PIrFIur1uk3H3dnZQbPZHOgLz5Gexn2adpdlWQiHw0gmk4hEIvB4PLJ3Osm270vkv2aziUKhgHw+j52dHZG95rH80zoDx6n/U38w9wJez8QP9LmeJR0WXgWe771SB+j1evD7/ZiZmcHx48cxOjqKUChk42fN106yW/+1221Uq1Xkcjmsra1hc3MTpVJJ5OXOzs4+Xn1V6WnN72M5IQ7TQhrQ06fnwU8UNuFwGDs7O6jX63C73QiFQjaDmZuY2+2WDY4KHY+hgdxut0Wgud1uTExM4NKlSxgaGkK73baBQQBsgs983Q9M1d9/lwPD6bxO5HK5MDo6ivHxcRQKBdy9exfLy8ti7PPeeB4q2/xtv7Hz+fF/v3vR86FBOu04oPHHY03HBJ8tx+Z2u0VxBiBGKImv6dDgeQjSEVhstVq2azs94xedXpQxut1ueL1eeL1eMbL4bOnwAmBTIAkAaOcR16GpQJC0EkolWiuiGvjieNxutxxPpbjVatmUCjokqbhTmabjyuVy7VOknRxsT4telHl+EvQi3wtBKs0H2qlpfmY6sbTMo2JLIr9rZ6p2iJFHeazH44Hf70cgEIDf77cBDq1WS0CMnZ0d4Ws60AOBgDgjTL59nvQiz/33oRfpPsgrPp9P+IO8AMDGv3QK6/2V8pPHU58xHWjmNSlnNUBHMFiDxuFwGNFoFMFgEKFQCH6/H51OB263G41GA41GA8ViEbVaDfV6He12W5xoHo8HwWBQgIxwOAwAqNfrsn9TJyO/BwIBJBIJVCqVJ8b7L9J8Py163gEzfr8fAEQPsCwLoVAIsVgMo6OjGB0dRSqVEseD6eTVxO/q9fo+UIGyknzq8/kQjUYxMjKCubk5jIyMwOPxyDFO5zU/M4kA9OnTp9FoNLC8vIwHDx5ga2sLOzs78Pl8CAQCaDabjxUQ87h0GPgUePr36XK5EAgEhA+63e4+O8Pc771eL5LJJGZnZzE5OYl4PC42ltZrTfBL34925FKGU8by+H66sX4mlmXB7/cjHA4jnU7j6NGjsCwLrVYLW1tbmJ+fx9raGhqNBnw+H/x+vzhvXySAbcDP359ox2j7N5FIYHx8XEBabZ991/UPwi/MYDIGekYiEcEccrmc7Ouab7UjQttz/KMtaerY1H2pI2idx7Th+F+vq6dFh4VXgedzr5ZlieM1EAjg/PnzOH/+vAQam7xp8qvpMNb4Uq/Xg9frRTAYxMjICM6cOYOdnR0Ui0Wsra1heXkZ29vbqNfraDabIp/1eQF7cJiW4dpmfBnoac2v1XuM3aVUKiEejz+VAQzo8FGxWEQsFnum1yQP+3w+tFotuFwuhMNh2ZQ6nY4tconRJjoClYuQQCYFXyKRwMTEBEZGRgDsGewmmQD893EqfNfnprPC6TpO56Iiu76+juvXryOTyQiQwOdBpZnnMpVd87UJLptRkxTIBIu14WhGo/Hc/Y7V963B61arJQqXCSBqkJjj0EbFQSDd8+Dd70vPW177fD74fD5YliWgPsEnt9uNQCAgSmk0GkU4HBZAlfNJ46dWq6FcLqNcLqNarUp0ll6v2mHBSDHycDQaxejoKCYmJjA0NIRIJCIOJ70uut0uWq0WqtUqisUicrkcstksSqWSRN5SuXW5XLbsG/IaicYngCcKJpj0MvDi49Lz5lmTmFVFcFaDtvzO5/MhGAzajKNut4tGo4FmsymRrZQlPAcdn6YSqqMXNUARi8UwMTGByclJG+CmHb1a1pOPM5kM1tbWkMlkZEza0dxoNF4IZ8SrwscvAg9TvnK/pPwhaOX1eiVaPBKJIBQKIRwOC7jGPXVnZwflchn5fB7b29vY3t7Gzs6ODShziijj55TTlJHhcBhHjhzBkSNHMDw8DL/fb3N4kPS+TnneaDSQz+exurqKtbU1lMtlWR862t3n8wGAOOG4LnXmpN/vFyfHj6VXhW8PomfN05wzZhETRPL7/RgZGcH09DSmp6cRiUSE10ywQTuDTf1a64n8Tkea8zx0POvfM9jFdDzrbDWtB5hgnDkWRhyvra3hm2++webmJlqtluwPtVrtiYC/h4FPgafHq5ZliXxkkBMzYUzdj/zh9/tx5MgRnDp1Cul0WgJWdEaYE5BrZs842W36cydAjceb2b9OYDHXAf/X63UsLCzg4cOHyOfzcm8vUmbEgJ+/H+nALJfLhWg0ivHxcYTDYZGRTs5VUr/PdaDMQeW1+Xs6HMiDDJhpNBpotVriJAsEAmJDahls8rcT6UyfcrlsCyzT+wTPpbOQtAPxSdFh4VXg2esKDEbx+Xw4d+4c3njjDUQiEcfALwA22UpdmDqvmVmu14PGFUwe2dnZQbVaRaFQwPb2tmAU1F0o79vttgSGEV/iex5DHjxoLT5Pelq8PHBCDOiZ0/N0QgB76d18rY1pAtE0ZMLhMIaHh5FKpSRyT0eg0EN/EDDP9/2iBgBnzynJVETNTAF9jHmskxHkNBaC73fu3MGdO3dQrVZt5zA3bf05AQ6fzydpcXxPRUILfP07fZ8U9jqit16v2zzNGmCm8qBJp2my3JLOjtCRw3RS7OzsiIHJKHcAjhFAL4NS8TzkNQ13v99vi1pk1OvQ0BAmJyeRTqcl7VcbUk6Alpkd0Ww2UalUkMvlkMlkkMvlUC6XpbQCr5dKpTAxMYGZmRkMDQ3JejajXsx1ppUUrrFqtYqNjQ0sLS0hm81Kenyv15P0TzpEzJR2Kv/kvydNLwMvPi69KDqG6Xyg4RYMBpFOp8XZHA6HbSU/SFqJpTMgn88jl8tha2tLImd4XpJ28nq9XiQSCczOzmJubg6pVMrmCDZ5WF9Xj4MystlsYmNjQ6JueX23241Wq/Wd2V9Pm14VPn6ePMxMF+6JBFp9Ph9isRhGRkYwOjq6T/5qANXJoUD9qFqtYnl5GfPz89jY2BBZZ+otei243W4MDw/jtddew4kTJyTbwQTjnEAGrcfofaDZbCKTyWB+fh7r6+sol8tot9vw+Xy2oALqEAwWIb/TWfEkHBGvCt8eRM+Kp7XcpaHPIJ8jR47g5MmTGBoacnQ6mK+180nre+RPAgFmqUYnkIt6rM64ddLftUOC49OZaGaWHF/rwIb5+Xl8/vnnKJfL4mCr1Wo/2lF8GPgUeDq8ymx52h5er1cCVpzmJRQK4dSpU7h48SISicQ+UIn7PnVDLds0oEt+JKhKZ7Ipp+mw0wE8wF7WG69vZl2Ya0aPjbrG8vIy7ty5g42NDTmeJaOeZ3nSAT8/PjEYrNfrIRAIYGxsDKlUCsBetpnej0kHOcrMTMd+OqhJWjaaZZT0ecyxaD51+twcM7/TdiNL8TFAoZ/eQ8D4SYHAh4VXgWenK9BZ5ff7MTY2hp/85CcYGxvbB96Tr3QpT+qDOohLB9aQKDc1f3IPYICZ1hu0A1nLUxPfIn8RyygWi8hkMtja2pIyT+RPOrhflFLQAyfEdxCZTW/KGpDU3qcX1dN0WOh5OiEsazed2+wroEsudTodhEIhzM3NYW5uDpFIRDYrvXk5RalQIJnf93NC6O9M0ka6E7/2czjwt+Yx/ZRPE/TNZDL45ptvsL6+boteYHp8KBRCPB5HMplENBpFJBIRj7TpUdb330/J6QdGUPDT20wwr1gsolqt7ss40SV0qOBzI2FEBAFF81kxypPleXREqJYXL4NS8azlNVO3+fwJiI2Pj+PYsWMYGRmBz+c7EPAy+VtnKpBoJOnIm06nI4AY5T9LONAI0/z0OAqzORam25dKJczPz+Phw4cSjUtFvtPpwOv1CihGonH4NDIiXgZefFx63jqGZe1GOxJk4Pt0Oo3jx49jbGwMwWCwbwq35mNdm5bfkfe0LKtUKhJdSL6NRqNIJpMIhUKOZb2c5Ki+Pl+bPEx5mM/ncevWLSwvL6NWq8nvKB+fh170qvDx8+Bht9st+xnryXOPnpiYwPHjx5FOp236jslDgLM8NHUL7qvNZhO5XE6cwJVKRXiZIP/Y2BiOHTuGyclJGZu555vUTz8yx0RerlQquH37Nubn50UeM4KegFmj0ZDMkJ2dHfj9fil9U6vVfpRcflX49iB62jxtWZYEq1CfY5bZ6dOncebMGSmh6uR4MAFZynCzF48mzX8EqRjkoh0DPp9PSn2RzPKh5mv+Xgc3US/6rmhyn8+HSqWCTz75BOvr6xIQRWDih9Jh4FPgyfMq5Sj3eu1MMp0QXq8Xx48fx9tvv41kMin8qvmMDi0GaZE0nzBLlzKOYBgzGckHjAJmabJwOIxqtSq6Zq1W26dvUx9mdqZ2BJOoc1De0xlx69YtZDIZG28zkvdZZ1MO+Pm7iXKVFI1GMT09LYFT2tmk+1Y6OXZ5Pu18IOnAGP05+V4HLfJz8g6devy9luU640yPSevfTtiKHq/5PHhMs9lEqVRCPp+XYEueG4AEKzwJvj4svAo8G/3XsnbLLwWDQbz++ut48803bQFanGfu3yxHyoAx8lU/HVPzGuUos3T4u0AggFarhUqlsi+7xglv06T3BF3JgXpIoVDA2tqa9I2q1Wq2DIrniVsPnBAO5PP5EI/HMTIyguHhYSSTSakPphlNR1gzdSafz6NQKNiajAzo2dDzdEIwgtUEd7iJdrtdpNNpvPbaaxJ5ZSprTmC6JlMQmc4Ift7vN/2on9PjoLHo777rOtrZ0Gq1sLGxgUqlIo4bs/GZVp71NZzOr5XbfgB0P5BYC3jL2o0OKpfLUm6kWCyKck4Fh4CEdrCwBEmvtxvFbjaCpec5GAyKwGdkHsGKl0GpeFby2nQ+sDzN3NwcTp48iWg0Kgqj01wfpPCa3+vzUIl2clzp9arPp4/XQJjpkHZa4xoc83g8aDQa+Pbbb3Hz5k25HiPi3W43isWi7fd0ijDC4UnRy8CLj0vPU8cg6EX+Ig+fOnUKiUTCZqh9F5HXtIIJQHjNLJHQz2HN78hzZhSujuLVEbgkJ/7leDweD7a2tnD9+nWsra2h2WzK/T8PXehV4eNnycOsT05wHdiVx8lkEsePH8fRo0cRCoX2OeoP0hecDPl+78mLWs82+ZaN+zTp6+m1YGakOh2vr8HvPB4PKpUKvvnmGzx69Ai1Ws3WZBgAarUaAoEAANiimd1uN6rV6g/m91eFbw+ip8nTdKABECd+p9PBzMwM3n//fUSjUVtvNZIJVrFus3YQkAe5RnRGQ6FQQCAQQKVSEbC41WqhXq+LHRAKhUR/9Hq9UjaSwAOBATMiUgNZTg4Tgg38nXZeAHul+j777DPcu3dPgjp+jCPiMPAp8GR5lQ4IgpbNZlNKyO3s7CAYDKJUKgEARkZG8N5772FmZsa2H2uHFns4meWWACCRSMhfs9kUB0K73cbExATq9bpkQ5C/WFaPmfqM8u71dhugFwoFFItFW8YPrwtAMho0H2q9WOvJDLJZWFjAzZs3USwWRfb3envNrp9GU3UnGvDzwUR5R5maTCYxNTVls5W0/a7/TBuceqcpz0ybzLTZ+LnO7CG432w2EQqFkEgkEA6HUS6Xsbi4KNdiMKMmUxfRzj3qvqZt1Q9rAfacIwSTC4UCAEg5Hf7+x/L0YeFV4Onrvy6XC5FIBIlEAh9++CGOHDmyr/QSMyoZxMWAdCc9la/5ZzrRiPvoQFzLshCJRJBMJrG2tmbTITgG6hpOOAadWzpDTuu9XCfALi+ur69jfn4eKysrUl6MARPPmgZOiP8/WZaFWCy2r1SBNuAPMmZ06hfr3mYyGWxsbCCXy0njuufpcXrV6Xk6IXhdpjlx4+OmOjw8jLfeegvhcFiiqLUR9DiOiH7gej8HgRM5XUd/rkkrD9/3Wk5RBAAcQS/+d1IGvuv8j3Pdx7k3fSzLJ5XLZSwvL2NlZUWUal32QafkA7tllizLEnBYEwV8IBCQLAxGs9fr9ZdCqXgW0YsaAPN4PAiFQjhx4gROnTola6ef04mvzc/N0gdUCrQTWSufBznTtNKhGwubIJhOrdc1HDkubZjx3AQmMpkMfve736FSqQDYA9JYmkkrsMzQAyDNrX8svQy8+Lj0PHQMRs5ybr1eL44ePYpz585JKQVgf/kj7QgjqK+bnWvFk0Re09mY+rwanGANdF32z5SBJu9z/yI41s/hxf2M8vDBgwe4ceMGyuWyrZTNs4y6eVX4+FnxMOsm0zHu8XgQi8Vw+vRpnDx50lbShtRvb+V3/NOp61rnIf/pfdU870F6h24uafKw1t91+RATpHWSx8Du2vF6vdjc3MRf//pXyeDU8p619lmiiRmTlmWJ/P6+9Krw7UH0tHja7XYjEomg1WrB7/djbm5Oyp5OTEwIH5BMfZEyUvc/0aApsFfiSUfpEhwYHR1FpVIRmc1yXuQJBqQwe2FnZwehUAiFQgGWZdkAXALTJj8zYlMDD+Tddrtty8TRa4d7yhdffIEbN26IjkUA4vvSYeBT4MnxKuvmawcEo2oZlBWJRAAAr732Gi5cuCBlbbSMAvacGZpHqSMkk0kMDw8jHo+jVCqhUCjYQK1er4eRkRHkcjk0Gg2bfgzsBrXEYjFbzXvyRyAQEL7U5Zy0TKfOwJK3pr1K4m9ob929exfXr19HtVoVx0qv15NsjcchJ5vzcWnAz/2JgKvOSBweHpbv+z13EwSlHKS+qLN/KTNNu8jUNxl9rvs6BAIBCRrOZrPw+/1oNptYXl5GMBiUvbxcLssYtE2m6+2bjgrq19q2OsgRwbWo+7ltb2/j0aNHtnMMsiUfj56m/ksdd2ZmBh988AHi8bgtqIvzGAgEEAgERC6aDjInxxsAx88pU3VZJl6Hf7SVms2mZGQ4BSLokk68XrvdRr1e3+coBuylGi3LQrVaxcLCAm7fvo1MJoNmsymN3Z8VHXonhGVZSCQSOHXqFI4dO4ZQKGTzJDlRPwGkBTEZq91uo1KpIJPJYH19HVtbW7Z0mwE9OXqeToh4PI5msymbqAanh4aG8PbbbwuISnJSyJwAIfM7J6D1IOfFQWQa++Z35nXMiAR9re9SAPX4H2fMTsCA+b0ZzXbQtZ3Gr89ljoOCulwu49GjR1heXhZHAwE5puJpByQ3FG08AEC9XodlWWJAEsBotVovhVLxtKMXuT4IJEQiEVy9ehXxeFwMc+C7Sx5p5UE3s9aRWZp/PR4PTp06BZfLhWw2i4WFBVmnmm9CoZA0jO/1eiiVSjZQ1TQGNcBG54EJgGiHCN97vV40m018/PHHtvIJLA3V6/Ukqo1E4IQgxI/ZW14GXnxcepY6Bus8A3tlEoaHh3Hx4kWMj4/blFCTTCXULL1kkrkGtBON4AENd2bpmTLc6fdO19AykXKLDq9+AIPb7UapVMKXX36J1dVVNBoNKWnDyOCnTa8KHz+LSLBwOIxebzdym/12jh07hnPnzsl+ZeorTvu93uMZqaujt7TM08a+dkJoh5qTg5nOWjrUnMalSb+n01mXCTP1F65Rjo/O65s3b+LLL79EtVqVDB/KZN1YttFoIBwOS8r796VXhW8PoqdZZ19npXzwwQd47bXXbHum6XjQ/MRoWc1T3HvNPVqX9qCj1e/3o1QqCU8R2OVv6YCgjuDxeBCJRMR2IICgncl6vLoPmc/nk5KuPI7H6H5n+hy85rVr13Djxg3Rt36II+Iw8Cnw5HiVvGlZluyFLpdLZK7f78fs7CwuXLggpZfMLF0AUi5JyzrKQkaDa32AvAXYAVK/349CoSDyjrzvcrmQSCSQz+dlj6fTrNVq2Ry/TmVDtFxn3Xyt92p5TP6kg2xnZwdffvklbt26hXa7Db/fL/vB0yg9qmnAz/uJ2Q+cJ5/Ph8nJSaRSKZsjH7DrgKbzQctB7q2WZdnKGpfLZdTrdQB7+jDLMWubnPuxLtPs8/mQSqUQiUSwsLCASCQiOk2pVJKSibofow5G4JipA+kejuRr6r6mHeqEXejSZ7zW1tYW1tbWRLeh3P0httph4VXg6em/zPB97bXX8Oabb9pKNfN/IBCQbEjut9xXddb4zs6OOF11oGQgEBCMSAdBUhfQwayUyeFwWAIL6/U63G436vU6yuWy8LHJW7rHg8aiqAdoXdrE1bi+V1dX8dVXX2FtbU3u5WW2014KJwSbPZ05c0ZqNJolcoDvV9LGySDiX7vdRqlUwvr6OtbX16WZ5MAh8WToeTohqAQyVZG8EAqF8M4772BoaMhWIxHoHxliOiLM1/3AfPN7k/pdrx/9UGcGYAf5zXswjbzHAcAOWh9O3+v1aD4T8/n3c/rwMwr8XC6HW7duIZvNyuZDo0JHLGkli6+56TSbTXFE9Ho9UbpeBqXiaclrKpuMXrx8+bItCsxU1A5yfGngS5es0WVleLzL5UI8Hsf09DSmpqZEObx//z42NjZsBtb09DTi8Th8Ph/S6TSCwSCWl5dx48YNMY64d9ABqR2RNNgIgNHJodexBgz422vXruHBgwcCfGknF9P2SZZliRz6oVG4wMvBi49Lz0LHcLlcoqgSWIhGozh37hyOHz++z+llOjp1SQUnuWXKNqfSC5SrVHYZschrMwKXRpheG06gnCb9uWmQ6TJLZoYSHWZ3797FzZs3bZk9z6LMwqvCx0+Th30+HwKBgC3SdWpqCpcuXUIqlXIMyNHRik6Av66hb0YV6kxIAlaU1YwC11FgTnqC1+tFJBKRc/n9fol2ZAkPJ3mvXxNsIB+avGuuCZapevDgAT7//HPk83mRw4w66/V6CIfDYlwGAgFpBvx96FXh24PoSfM0a9nTARGJRPDuu+/i2LFjAnKxBrMJkAWDQfj9fptOoZ0G5CMCRwQSKGMp53SDdOocvIaW7Rwvz8ugAwCSUdNsNlEul1EqlbCxsYF8Pi+O3263i1gshm63i6mpKRw9elT60vn9fikFYmZF8N54/S+//BLffPONAMu6N8Dj0GHgU+DJNfL1+XxSK143MbUsC+l0GpcvX8bExITILifZGgqFRNfQja2DwaDIIW1vENwHYMMZ6vU6RkZGJEOCEe50iiUSCWQyGQGy6LD1+Xy2Png6O4j8TbnPazEQkxHEQH+bj7pUpVLB8vIyqtUqHj58KKVxNYj8pGnAz3vEvQ3Yk3uBQADT09NSDvdx9EUCsNQ5qet6PB4Ui0VbDyid0aXPQ4cXy/JGo1HJBuO+z4yzkydPIpfLYXt7WwIUqBdYliX2tslDTu91E2GdPWHab06YH0k/Q8uyUKvVsLS0JL2mGPX+fcHew8KrwJPXFShjEokE3n//fZw+fXpfCTBdOpH7PQMIqtWqlDEqlUqoVCqo1Wqy52rZzYCeoaEhwRkSiQS8Xq8ERWgnB50WlKPUJc2+PRwn9VSOzXQK87fsdaq/02uNPN7r9TA/P4+//vWv2NraQrVafWmdvy+0E8KyLIyNjeHNN9/E6OhoX+eD+Zt+G6c56SZpQ4abc7PZRD6fx8bGBra2tpDP59FoNAY9JH4EPU8nBDNoGLnBRX3x4kUcPXrUJhyA/QD/d5VmIpnOMX0uzXvfx3nwQ5xu+lgTtHf6/zjrynQYuFyuA9eTkxPBPF+/+zSv9V33S3Cl0Wjg7t27WFxc3NckTp+DBgD/U0lvNBqiwBB4PMzlmPx+P7xerzT1jEaj+F//638hFouhVquhVqvZjncCZTk33My5lnQKI0EBHk8+CIfDGB0dlflJJBICTnHuLGu3zMLW1hb8fj+q1aooAuvr6ygUCmJgaceDTunUYAQASTF34lH+0ci7e/cuvvzyS5RKJQEMA4EAarWaLbOKv6eDq9Fo/KA5eRl48XHpaeoYdCZSaSQQNTc3h9dee00anzr9joARjSjAuY6oBrP0n/6OxozuNUTDS7/nmsjlcjbwjDxK4ILn5jF63Bpc4FjZaM3UXTTgtrW1hc8//xzb29uyrtrt9oENVX8svSp8/DR4WPMugc9QKIRLly7hxIkT++Sl/p0TqE9ngC73RWKUF9eJCTbwvLqMUSQSgd/vl5IhwJ7zg2X6WFPf7XZLXVvTOWKuF/7XIDOjzxkgcFBJKJ/Ph2KxiD/+8Y9YW1uTCGKCvczoazQaEo1P4ONx6VXh24PoSfI0+YEOiJGREfzsZz+TzEAzGwDYA8gikYhEHVLmMvCBAACjAj0ej0Qput1upFIpKaNE+cvAAP6Wer/OUNNggAZtuZfT8bGzs4Pt7W0UCgXh7VAoJPX95+fn0W63kUql8Hd/93c4efIkXC4XqtWqjJuOCK4h0xHy6aef4u7du/LsTJ3iIDoMfAr8eF61rN0yS7rMBcEmn8+Hy5cv49SpU7AsS2xHYD+/6gyIYDCIiYkJbG5uynnNkoyMZKU8Jg+YTYC1vqGvR7nNz3R1B96HjpTv9fYCtrTewN9QRj6OzcWI4Hq9js8//xx37tyxBT48DZ1hwM+7RHmk9c5IJIKZmRlpQK2J/GFWR9Dll9hnlbJwaWkJGxsbIqto65D/zSxFks6cob04PDyMsbEx0Stff/113L17V5zSuozN9va2vDcdKRrD0zqCvjeuE+4PTqR1Dq4DbYt2u12sra0hk8mI3P2+jojDwqvAk9cVgsEgkskkfvazn2F6enpfQCD1CTq2SqUSVlZWsLi4KA4zOlXJr8FgUOZc7++0/8g7yWQSp0+fxvnz5yWblnZgJBKxBcMTb6LzirKcPKV5VzvHnPRfreOaGRM8F491u91oNBr4+uuv8e2336JYLD41mQs8PV72PPEzPiHyer04deoUXn/9dQGMAef0cjKOWZOZxosWVCYwqskEDQhAjI+PY3R0FI1GA/l8Hpubm9ja2kKhUBg4JF4yYo1/lujpdDpIpVKYnZ21bWZ6sQP7yxyRnBQ1p/c8FoANIDLP4+RsoFJJ3tb/AfvGyfPqtHQ99n4OA3PsTiCGkxNElzgyjzc/77f2nBwfBzktnMamj+UcX7x4EbFYDN9++61E5pj3R5lhPhPyBh2RbGx5GIkNqNmc78iRI3jvvffg9/sF1NTRAE4OLSoVLH/FTZt/Zg1w/l6XIKDzMBQKoVgsolqt2nja5/Nhe3tb5pVNHRnZ1u12JQXeLPnA6+l15vF4BKyjnNfgswaj2+02Tp48iZ2dHXz99deoVqsIBALodDoIBALSNFBHA7HBoVnHdEBPhhjRReNb18m9ePGiZL1pB4Q29H0+n9Rz5nckLYM0HzG6RgOkOnjC6/Xamt9pnYW/IRjBVHNGuJkRvtRR9D1wzbDfDXUgl8slvEywywR+O50OhoeH8bOf/QyfffYZVlZWBPhmBPxA13l2ZFkWwuEwgL3I63Q6jatXryKZTO5zbGrS+7WWO+RnrTMzCpDGEQ0Zs1QBz0sQzbIsxONxicgleKt5mnxZKpVswG4/HYP3YoID5Gstz7V+ofdzRpVFIhH87Gc/wxdffIGHDx9Kg2rK3lqthlAohEajIY6ZH1Jzf0DfTcxkIJgzMzODq1evyv7eT6dj0AIjawnYtlotlEol5PN5rK+vY3V1FYVCQRxUsVgMo6OjEiSRy+XQarUQjUYRjUbh9XoxPDyMZDK5by/XDjsN2Jk2qJbXPBf5mzpDtVpFpVJBNptFNpvFP//zP+PNN9/E5cuXJRM7FAqhXq/LWte9JoBdXf6dd96R7HzqDU4O5QH9cCLYpB0QPp8PIyMjuHLlCuLx+L5sLC2ruMcS6KITjIBqoVBANptFJpPB1tYWyuWy9Jyg/st9nbJ3dnYW58+flwwgfqezKbXequU1bRYdoUv+ps7OfYGRwW63G9FoVHQEE0Az9xmCsoFAAGNjY3j48KGscQBPFRQ7rKSzH/i+2+0inU5LA2oTx9Cv9X6ueYilkrrdLrLZLO7duydZsXrezV5p+hpaT+UYmDmZzWZx9+5duN1uJJNJKTGmdVk6RMxy2KZs5m/0eqDOoWUwS+jonj1O+wzL3fE9xzM5OQmXy4WtrS0px9av39qAngyxZHEymcQvfvELjI6Oih5J3mfGmtvtRrFYxM2bN3H79m0pTUfbiTyj9ULt3CXPaYeWZVkoFov49NNP8eDBA7z33nsYHR2VsY2MjCAQCCCbzdoyzcg3mpfIkwDETtNOLu1A5HhCoZDoD6azgkR9xOv14t1338XU1BT+9Kc/YXNzU9oIvCz0QjohotEoLl++jGPHjgGwe271psgNlNFb/YBKzWCMXnFqfKdJv+f1qQyPjY2h2WyiUCg4OiQGm+6LSxRANEQDgQBOnDghm6emfkC502vTefBdTi7TMWE6HagcaMDA6fp8r0sn8LwUxprPCUg5jc3JYXDQPfNZmiCeJvNaprNCf+4kaL/rNcdjAhJch0eOHEE8Hsdf//pXZLNZ2RwIlmgDQj8npt0RlPih0eovO+kyIKFQCOfOncPrr7+ObreLSqUiNXN13XlTKaUxR4eOdhyQJwHsUySZjunxeFCtVqXuIq/B3xIUY7kGpp5b1m55h0wmY2s+TePLjAZjBJcu10WlmAAKDTMdcaP3ljNnzqBer+Pu3buo1+uiKDFajFk1dJq0Wi0Eg0FxkgzoxxNTdAng0/mQTqdx4cIFTExM2PjOyUhjhI2TgxWA8Jw2gjQ/UP4yupBrqNVqIRwOS5kaXf6B2QbdblfKw3AMsVgMS0tLUsKDyq/f70c8Hrf1CmBNXQ1k6f0pHA5LZhcNRvI7nWYffPAB/vCHP2B5eVkA50gkIunCA3q65HK5EIlEZP/2er0YHx/Hhx9+2Dcox3SyA3sl46i70gmrnWS69wJlsga1KMN4Pq1Xs6mkNvT07y3LQjQaFTlt6kc6Ep33TeDAdOZpg87lcklavV6b+njy9jvvvAOv14tbt26h0WhIeR6CI36/X2r4WpZ1aPf6p0WUp9xP5+bm8P777+8LCNF8y70/EAiIvKKxv7W1hfv37+P27duSsRUIBGwGfT6fRy6XszmVu92uAMLhcFhKPZh6P8djgq4m2KuJx2t9m/XO6TTJ5XJoNpv47W9/i6+//hrnzp3D+fPnEYvFEIvFpASQy+VCrVYTMI738OGHH+JXv/qVyH+WwxnQjyc6vJjRy/IcnCMANkc/sN8+ZKCNZVni7Gw0Gsjlcrhx4wZu3bqFUqlky2LUujCJesPc3BzOnj0rOjD3YV16RDuLaY9pxy15WQf/0OlB+5A119vttuih7E+l+UuvBb1WO50OarUaZmZmkE6n8cknn2B9fR1u927PODrLnGziAX0/Ip9y3skTU1NTGBsb62tfk0wZyz2bPGBZFu7cuYP5+Xk5VttTj+PU4FzTjtN8yECyeDwuIKzWw/me/M3r8D/1hUqlglwuh1KpJMFGkUgEsVhMnLm6BDP3eC3r9XMygy1oO/R6PYyPj6Pb7UpGBHGBAS8/WbIsS/o9pVIp/P3f/z1SqZTIXV3SU2cBXLt2Dfl83haoovVNjYvpgDBek8C/nlPK5K2tLfznf/4nTp8+jXPnzsGydqsqJJNJBINBxGIxqRKxvb0tTaN1dQauH/Yn5XU1j5OoI9EuZBa67r2m9Rzez+TkJP7hH/4Bf/jDH/Dw4UOUSqWXxk57oZwQLpcLY2NjeOuttzA8PGxjFhIZTXvCTPDXPJ4TzagvKoxkCgobM9LcNLiAvUhJGnRjY2NoNBooFArIZDIiGJl6SaFJelzBZW7Y5n19n3MNaI/0c/V4PEin0xgdHT3Qc6gXPtC/BwP5TCuVWgBqgEqfm6TLIZg8aG7WjO41hax5fyytYDrcyJv9eMh06OnPtdJrjo33+F38aj5LU7ia53ACWDTIpjcPEu85kUjgo48+wjfffIM7d+7YNidTfuiIZTajPqzrjDXrCZxeunQJJ0+etEWa6OhWEp8t0yUtyxI5y3RvGjtmeqKW1bx+JBIRI8ztdkudZZ7bbOYUDAYRDoelhF6tVrPxmC4HcpCjixGauoSJy+WSFF8NVOi1eunSJbRaLTx48EAMSpfLhVgsJoapBpEJopglrQb0/YgOLxpW3e5uHc/JyUmcOnVKoll0CrkZBcvyAtp5qpU/Gu4EXbXhT54hmOvxeDA6OoqlpSW0222Uy2UByFhahOPgfkG5T/Ain8+jVqtJ7XHW4tdlA3mPFy5cwPDwsJQcZG1m6jxanlKR12n22lB0uVz44IMP8Lvf/Q7Ly8sAII5IlkEb0NMhl8slJcIof8bHx/E3f/M3MpfAflBI/+d5WJ+ZhlI0GpWsBMpC3SC9UqlIMI3f70cikcDIyIhNR+Z1KN+5RwCwBUMQDAuHwyiVSvvG6HLt9hxhVPDOzg6y2SyCwSCOHDmCsbExKZWkIyV15JmuUa3XrAbIXC4X3njjDQDAnTt3UKlUpLwaSzAFAgEpNch1MaAfT3Rech5mZ2fFAdFPp6bTPhAISPmmXq+HfD6PBw8eCOhAfYC6QSQSQaPRsDn/GalNoC2dTmNychKTk5PikHOyHU1wzXSO9dPrdbkdfjY+Pi71+kulEtxuN2q1Gv785z/jxo0bOHbsGN544w2MjIyg2+1KKZV6vW7TSwOBAK5evYr//M//FBuDPQYG9ONIyxmW8Hr33XcxPT0tctjJJjd5VjvcSqUSbty4ga+++grFYhHAnk1G/YDBCbQ5+DmdHwx+6XQ6IvN4Dn19/Znez/W4uSYY9ED8g465mZkZRKNRbG1tiU7a6+1lDZs2oX5PfvX5fPjoo4/wpz/9CcvLy2i32wiFQt87a2fgsNhPdEBxr2Nfkbm5OSnx+V3PTMs603lQKBRw//59bG5u2mQheRKwByHoc1mWJWX1iC/o61D+plIppFIpuQ8T/zCj1HlN/tf4Ankym82iXq+jUChIKb7x8XEJfmi1WpIVwaAgE5PT+J5+VrzfiYkJNJtNAXcZQDbg0SdH1FGHhobwD//wD+IYpd4XCAQkgGR7exuffPIJ5ufnJVCUdjblH7FXYsVaRwX2gstDoRCi0Si2t7dFX2DGQzgcRiwWw+TkJOLxOILBIEqlkuzjurw0dUbytg6ypG6g7Ta9F5jBM7wfZn3o5tVa3yCPst/Qz3/+c4TDYSnP9LT7+T0JemGcEJFIBGfOnMGZM2ckLdJJ2OlJJ5ngpAkw6ONIWpnUKTWmRxTY857pSBeOjyAAHRKshVipVFCtVlGtViX6gDVMWaNMC0KdUsbGUxqUpgKhwTRGeRIUqNfrAlLo9LMB7RE3MhrZc3NztvQ/J+VHL3anzzWZGydf87oasNIGvc7m0YKKQoyKMM9FgJR8y/OQLxnBzevp8ZPvzOiUfvfC61CxZXQueVg7O8x7NtPczOenn6P+Xj8bp+esn5/TOfV73ufly5eRTqfxxRdfCHhBwJL3Rz5guS4auIeNdM3scDiMixcv4uTJk7a5MD3tWu6y9Aewl2GwsbGBhYUFURrJw6YzTW/eNOqGh4cxOTkp0avkbUYJaB7ld4wGDwaDMj6eV8teJwUU2JMFdKCwiSuNTDqa9frhud5++23s7OxgaWlJylgxEp7rm3xJ5ZipvgP6fmRmPnS7uw1Bjxw5guPHjyMej++TofydNqp0LWfNg1p5ZH1yv98vpUEajQbW1tawubkpxjZlNEuJcd5dLhcmJyfx5ptv7nOA8nrLy8v46quvUKlUhP8ITDEqknKXTr0HDx5gYWEBJ06cwKVLlyRlmEoznREmiMxIRe0s0/f60Ucf4Xe/+x3m5+dtDdf5u0H2zpMlgra6XGQ6nRYHhNY7nQBcktu92xBVlwch2BUOh6VebqVSQSaTkRIh29vbtgwfRnsBQCwWw9GjRzEyMiJl8fx+PyYmJrCzs2NrjMc9n3os10mvt1u7d3FxEZlMRppe0qnFtfj1119jbm4Or7/+OsbHx239XLgvc39hZLjTc9A2wOXLl9Fut3H//n3UajW5B/JxOBwWwIJZPwMd+ocT+YdG9djYmJRgoiwE7Nkr1BuYicZ5vX79Oq5du4ZyuSxyivslDXraPyyhWywWJSpxaGgIp06dwvj4uAAZJvXTf3XGLLCne5IPdZaQdkLoNcHsu5WVFQH5LMtCtVrF9evXsbi4iF/84hcYGhqSdcNISK7FdruNsbExXLp0CdeuXZO1oAGWAf0w8vl8UqIwmUzi/fffF7l2ENHWYuYA9Ydbt27hs88+w+bmpjgQyOecX2ayaNsjEAjg8uXLOH78uA1wpc2lnbA6M0xjA9oBYdp2jBr3+/3Sn4eOCACYm5vD9PS09LBgdhh1EZK5//A/9YMrV67g008/xeLiIgCIg/Bxy90N5K6daCeQH+iAOHr0KFKplKNzwPy9fk3eoGxptVpYX1/H1taWzQmgMQinc/KP+imBeR2QGYlEEI1GEQ6HpUyoOS5d9aGfXqPHw4AKrptisSi6f7FYRLlcxsjICEZHRyVziPammb2vnRC8jgnyWtZutsmDBw8kSENXShjQjyOv1wu/3490Oo3/8T/+h9hs/I5lRJnN+Jvf/EaCozTfdDodAep17xJmZem+ZfyeZRN7vR7i8Tjm5uakMXUoFJKAFRNf4HWJw9LRRSLf6GxfE7PVjhPu9ZTh3Eu4v9B5zGBFvT50BtGVK1fg8/nw5ZdfIp/Pv/ClmZ6rE4IA/uzsLM6ePSv16LRSqv9z8zQ3WB5jTorexLWQ1mCZ1+sVxtECsB8gSkNQN5bSoAYN/1QqJeMgg2hG1BkYFNr0BDPiRjO+CdKaRCZmrdt8Po9MJoNsNiu1Jwcb+x5RKFHpNxW2fo4HgjRO82Hyl+Y5wF47nI40Pf86orvX60lNODP9yuR73USMnxFg17ykwQs2MjP50InvtaFFZYNlbZwievU59D0TzDMdcOazMz29/ZQq/Rt+5kQ8V6/Xw8zMDGKxGP7yl79gc3PTFmWpU964MeiU+MNEjNDy+/04efIkTp06tS9y0SRumATrgd35z2QyuHHjBpaXl/cBVQQQANiyHXRJpGKxiGKxiIcPHyIajeKNN97AzMyMLTpWy3TKUUZWkJ8oI8mDlIla6dZR7+Z+QtCZTmId4avXHvnmnXfeEecLo8S0owuARNXQyTFwQjw+0aDw+/2yjiORCI4fP47Tp0+Ls0g75LWRTp4gYEvQi3Opa+MTHNZlFjY3N3Hv3j0sLCygXC4D2GvuqOUWeYZ8R5nM8ej9ptPpoFgsolariQzSDQgp06vVqo2vea937tzB2toaTp8+jTfeeAPpdBqhUAiVSkXuh89Elwqjc4/rh8/T5XLh5z//OT7//HN88803cs1OpyMlxl6WtN8XnWh40CHEef3oo49sgTmUefq95m+WEmGWAgNgaMRUq1Vks1ncv38fi4uLEgmreZd8Ui6XpQRXr9fDnTt3EIvFkEgkcO7cOZvxz/FwLDoil/fT7Xaxvr6Ozz77TJzE1E+4Tnq93bJ9d+/exfLyMsbHx3H69GlMTEwgmUxibGwMhUIBlUpFGiFqgMvJLuDrN998E+12G/Pz86jVavB4PIhGo1K7PxwOy/OPRqOoVCoDR9sPIJYAA3b5YHR0FB988IH0jgLsGca0nQKBgGQ6so74xx9/jI2NDXHGEtDVwUM646HZbGJxcVF4/uTJkzh9+rQ0RwcgZXyp97FMpKlT6ubtlNXUcTRv8zfapqR+wbKvMzMzCIfDKBaLImup85TLZXz++ef42c9+JuXWeD5Th37ttdewsbGBtbU1KctEu3JA35908BdLQU9NTYmuagKhwB5/MEvW6/VKxs/HH3+M69ev2/ou6QAuzmuz2cTQ0JCUlRsaGsLVq1cxMjJi46lms2kLJKM9pnUIkpPdqvUL7t+Ubzs7OxIoSQf07OwsRkdHJYuYNp/OZnCydU2n4nvvvYdGo4GNjQ30ej1ZM7rXxIAej7j/a/thdnZW+pqR+gH45vPWeq3LtVv+bWtra993PKfJT8Ceg58ZZ/ozriev14vR0VHB7Zz0Fdpr5vidxs1jKDvD4TAmJibg9/ulNB/Hvrm5iVKphOnpaUxPT6PT6aBUKtkyI3TwgsZizOsBEOc2M5uJBw5sth9HdMim02n8/d//va1EIishsJxcLpfDxx9/LCVAdTCDLvkI7K6ZSqUiGFkgEBCH2ejoKAqFAsrlsuyvp06dwunTpxGLxaR8KZ2/PB/5FLDjxQD68o/pgKZOwMwGjUv0ertBOvfv30e9XseFCxcwPT0tpSnJ99VqVRyR5HetJ7z11lvo9Xr48ssvUSwWX2gb7bk4IbhhT05O4vjx4xgeHgYAGwgL7E0yjTF6Uc1j+oGQ2pnRT7gdBFya31FgmnXHzLr7msggBMrMaztdwwnEdvLUOo2Ngnl4eBgnT55Eq9VCoVDA2toalpaWJI35sBI3R7fbjdHRUTHm+Z3pNDCjZTVf9DN2zeuZ5yQAykg+c1Onk0pvkKZjjqTBeg0SayBBg6x6XDqDwak2s+kAM1PHtMDt5zTQCrhOg2MEjpn1oQV4P4XKfPZ6DP2cE/x9u92W8kzXrl3DysqKKPgul72/hSmPDguxoR3LgFy8eNE2v06yh8+PUQPAbjbJw4cPce3aNYn4Ip9SfpKX6MziuVhSRjvYdIok1zCwV0eR8k9njukoRiqNBGFdLpcAs1QuOEZdToG/5ee8V5buYd1c09Dzer24cuUKfve732Fra0uaT1IJ4dj1uh0otY9HzIgkBYNBzMzM4OzZswJiMfLJlNdaVhL4IqBFw6nRaEi0ISNzu90uqtUqVldXcfPmTclyoWw01wgBKQBiqCUSCZw+fVrGQdlLcrlcOH78OAqFAtbX12Wd8H5zuZytZF8kEgGw16PC5XKhUCjg888/x/3793H16lWcOXNG+lDUajVpXMb+EVxvAAQc03tOt9vFu+++i8nJSXz22WdSzqfVaklj30Ek7o8jy7Kkfjyp2+3igw8+kLICPE5H9+v9iUBuOBxGNBoFAOGdZrOJBw8eYGlpCevr65J9oNcH+dXkSQ0UAxB5x4xfHc3F82hdmURda2pqCh999BG2t7eRzWZFJ61UKmi1WuJYbDabqFaruHfvHh49eoR4PI6xsTGJVNPOYMp+XdKOz0g761wuF9599124XC48ePBAdBDtiOBaaLfbkhExAHgfn+iAoDwcGhrChx9+KD1OzCATghAejwfxeFxk2BdffIFbt27ZmjPqPh7Mfkun01hbW5MoR+oGqVQKFy9exMTEhOzvXq9XgiS0XkxgVDuotQNCA3bcL/Sa0GRZe0E+wB7w4PP5MDw8jNHRUSwuLooeRMfv2toabt++jYsXL8rnLCVpBve8//77+OUvfykgdSgUGvSV+gFkWbsBYY1GA6FQCGfPnsXJkydtwQgkM5CBmQ8MaGu1Wvj3f/933LlzR47j/s3fEzRjLzDqHFNTU/jwww+RSCQAwMabbrcbzWZTHMrUcc0xfZf9qfmI60mXaCKO8ejRI4yPj2N4eBi5XA6VSkWCL3SPCFM3pm3N5+Z2u/GTn/wEv/71r5HNZiVAk85wExjrdw+HnbTjijbT1NSUlCzXpJ9fPx1B66ecs9XV1X3BM/1+rz+jU0TbY8CeTcbMM036fLr8kjn+g4hrkE7A0dFRBAIBrK+vi5OB6+bRo0cAgPPnzyMajSKfz4uDWI+Z59XBEyaWkEqlUCqVUCgUJFtV6z4D+n7EALB0Oo2/+7u/EwcE5TJ7N1nWbtmt3/72t1hYWHDEiaiLArslQFOplC3zoFqtiqxj9gPn+tSpU7hw4QKSySS63S6i0agEDWrHL9dHv3WmcV59LMfFe6MTjEFczJqk7d9qtaQ3y9mzZ/Hmm29ibGxMcHC/349CoSBZH3rdci2+9dZbaDab+Oabb1Aul19YHfaZOSHcbjei0aiU1RgZGZE0b6fobgpcKm80ls0IVd13QZdS4nEmyKyBLw3YOjkD+N8JdKPhRSVD1zXXvwf2Oz5McEv/70dOAlGTPiefG597Op3GyMgIzpw5g7W1Ndy/fx8bGxuHEjjQvDM8PLwvA8F0/lCAaOBd/zfP28+JRNJ8y01M8ygBHQpH8rNOAdMbv8nLPJ6AghmdwmMJZLFetGVZUtpD16zX96CVRn5ufqYBOY7DVJQJ/jHii2tHr23N7/oc+jp6LnW2iDkf5rwzlfKdd95BIBDA/Py8fKabc/ZzTr3KRL6hs+by5cvynTkvJnhFRwIA1Go1fPnll7h7964tWkEr0zoSRZ+fUT/8zuPxSF3/VColkVmcJ16b8lhHiumIHvKslt1MydRlD/hnrjGWLul2uxgaGsLFixeRSCSwsbEhkfCaN7vd3dqSV65cwSeffIKtrS1Uq1WpHczIXUbHM1pj4IToT1ROdTTs+Pg43njjDaRSKZkzYD9oYMp0GsTa8QtAIm51U9RKpYKHDx/im2++wdramq18EUFen88nka6MfmW9fJZDunTpkg1s1sYg9ZtgMIhLly6h291tjEZANhKJYHZ2FoVCQQAsAJKCrMv89Xo9ZLNZ/PKXv8T169fx7rvvYmZmRuR9qVSSUma8PsFc1iLXz6vZbGJ8fBz/+I//iJs3b+Lbb78VZ3ogEJByKIdFTj5pIsjD6O16vY733nsPk5OTjg2dNWkHcDAYRDweF700m83i22+/xfz8PDKZjMw3AJsuwXOyD5Kpy1AOxuNxHD16FNPT07I2aJzxP8Fbc/3pjMxwOIyZmRlxNBSLRSwsLEj0ItcXS820221ks1nJqotEIpiZmcH58+cxOTlpi1DT6eq8PmDXEd555x00Gg0xaBuNBiKRiJRRJbhIRwQddwM6mFhWgTp1PB7HT37yEyQSCVtTRvIVnUe9Xk/A/fn5efx//9//h0wmI3xDg11HA+/s7ODy5cuo1+tYWVmxOfKTySTeffddxONx4T86IBgRqR3RZm8cDXLovYOOLyf7jvemnwWvw5JfPp8PR44ckR6C5tq4fv06pqamMDQ0JI7nWq1mc9q0221Eo1FcuXIFv/3tb4VPg8HgoJfJ9yDLsiQbwO1249ixY3j99df36Q9OICmzzcjD3W4Xv/zlL3H37l2bzkkdk/pKKBRCIpFAJpMRvWBychI/+9nPBA8xcQnqqNzbKcNNndrp/pzAMvM7BlowyIJlRCcnJyXSvtFoiGOR/GjaunrswF4G6E9+8hP867/+K8rlMiKRCHq9njjNtEwd6A7OpDGIdruNkZERTE5O2mxz03FA0vOh919+1+3ulrcplUqOGIj+jP+17NQ2u3ZwAcDIyIgEyZjj5HnIxyYfPQ5p0LfX2+392O12pQQaP+90Onj48KGAzalUCsViUaLkTZxD34s5DwAwPT0t8py226As0/cn2hyJRAK/+MUvkEwmBUBnJm8kEoHb7cb6+jo+/vhjPHjwQPiEzgnuiSQGF25sbEgQCbAX8KczA/x+P4aGhnDhwgWk02nBm5nNSBvTzIjU9wDY8aZ+2C9f0/Yj/kaHNz9nLzbqOV9//TXW19fx4Ycf4vz58zI+j8eDfD5vCybS69LlcuG9995DpVLBgwcPXthgmqfuhPD5fBgaGsLU1BQmJibEw9QPpAXsjWJMo8ayLIkSd3Ii8L/p4QT2otDJgBSA+lhT8GjqJ5B5HgKY/E4rI7w+74/3SGFpgtz6WTh93s8YdXpNQezxeHDkyBFMT09jfX0d8/Pz2NzcPFQGFgGmWCyGaDRqA22A/VkzejPWmzK/Nxe/OV9OILhWLGms9Xo9cQppENX0vnIuyXMaJNUAqgYaCLTpa/MY1isPBAICDDNFvJ9zANgT6Iwk5Lm1canXlnYS6udEBV078kzwXz9TU+F1mjdN5rj5GZ/hpUuX4Pf7pYmwrhFtgu6HgbgpBgIBvPbaa6LYAfb54HOlARONRsWJValU8Oc//xmrq6vyG6cGTKwNreeDgCfXZTqdxrFjxzA+Pg6/3y88RMPRsixbOT0CFqbzgd+T9BrTtUG1c0Nn7DCiZmFhAbVaDV6vFw8ePMD//t//G1NTU1hbW0OhUJDza56Nx+N477338Pvf/x7b29tS9oPKEkvj8FkMsiGciUAr5V4sFsO5c+dw4sQJ4QlTzmoe4JrWEYyUOxpEtSwLiURCDOZHjx7hz3/+Mx4+fIidnR2bgqodl+z15HK5MDY2hkAggK2tLeFnRuWassXUPxiJ88Ybb4gCGgwGsbm5iXA4jLGxMSlB1Wq1sLy87Aic0EBbXFzE1tYWzp49i0uXLmFoaAjJZBK5XE54nRGWBOiYJqzHRDD84sWLmJqawrVr17C1tSW8ykyLw6JLPCmiUUGgp1KpYG5uDq+99pqjs8rUQyzLEucS9/RsNovr16/j5s2bNgepJsvaLTG2vb0tDhDWoeX+T3nk8/lw4sQJHD9+XJxVGiTj2HT2TK/Xk6gtDbbyHghu0eikQ/f69esCClO+Uy+gvlQul/Htt9/i7t27OHr0KN5++23E43GJjGSEGMdhgnZutxtXr15FtVrF1tYW3G63OB9qtRqq1SqCwaA4hweOiIOJ86TLhsRiMXz44YcYHh62OSC41+tsAsrTmzdv4je/+Q2q1arMO0FLXZqUvXbK5TIWFhZsMjUUCuGtt96SUl3kiUAgYGuIqsEnlkdlIAWz3LVNx8AFTU66qd53WBZSnyuVSmF2dlZKKrAXQDgcRj6fxxdffIGf//zn8kxDoRCazabsIwRd5ubmcPr0ady+fVvuJxAISEbIgOxk6vK6jNXU1BTefPNNW8CZE7Cr9Qet2/7Hf/wHbt++bSuTx+BJr9crjtF0Oo1kMolsNit6wk9/+lPJXDMjzfU1GXjAgAOt95qgMcftZJM6RW1rXb7X60mfK8uyMDo6irW1Ncm46Xa7tvLO5vPRn/V6u5lQ7777Lj755BOUy2Vx/LCc40DXPZg4hzs7O4hGo5iZmXksBwQ/03s0P2OZGzr2nYBT8gSwx5dmcK8p92ifhUIhpFKpfdic+dq073/Is6E9wIDbTqeDjY2Nfc/vwYMH6HQ6OH/+PIaGhqS3A3+vySl4kuR2uzE7O4uHDx/a9O1BNsTjk2VZkuXw05/+FMPDw1JCPBqNSllGBkX95je/wd27d0V/0DJIyz06/s3euxpPoI3GcZw+fRrpdFrkEmDvF+jk4O0335pPqOPytbnG+BkxNwZaAMDo6CiGh4eFj5eXl/HLX/4S9Xod77//PtrttvTQKBQKtgxgfQ2Px4MPP/wQ5XIZGxsbL2S25FNzQvh8PoyMjGBmZgbj4+OIRCI2YMjJ0wjYgV8dIcJIRRNMNaNSnM4HwHZtCnTNGE6GnXleLXA5Niq3NFYajYZEkvcDRvV98lloB4nOZDiITIFuOjz0s+RxFLrT09OYnJxEpVLB+vo6FhYWkMlknlrviBcFzOX9s7miadR/l2PHCeQyBY+TImjyHwEsGtYul0uMe30t/l7zh3k+PRYAEkFIo4mGCa9lphuSV9g8lcRUXfKkzjhyUiD0a+2U0Ru6jgzS42edXQASoesUJWNe7yDHw0Gfc4xutxvnz5+Hy+XC3bt3RbgzPV/XHX7ViXNiWbtNuObm5mwbOGCXpy6XC/F4HMPDw+KVLxQK+PTTT7G1tWUzxAmIEmwg+AvsZcnpZuEs6XDy5EmJdKVzgVEnpiHGetFODmiOXfOtvjfTYAP2GghSltNxyfVw7949/N//+3/xf/7P/5HmqbouKa/Z6ew2l7106RK++OIL1Go11Ot1BAIBhEIh1Ot1W9mUUCgkvSYGtEuUj5Qr09PTePPNN5FIJGzZD9pwMgEh7tmUuwTaTXAqHo9L34Y//OEP+OMf/yhRU4yEpQxlczpG/wK7GXb1el2aglmWhdnZWZw8eVLGyPER9NIlR/h9LBbD5cuXcePGDaysrMj9MzvixIkT6Ha7WFpaEvlNkIxlkqhwNxoNfP3111hdXcWbb76JEydOIBaLIZ/Py9pqNpuo1+sSzQxgX/12jjWRSODnP/857t+/j2+++UaaW/O6A2Dh8Ujvz2x2HovFcPXqVXnmTvJJgwucKwKdi4uL+Mtf/iIgEvd6s3Y0ZSDBXsrhbDYrZcYsy8Lw8DAuXbqEVColMtgsCUKdVRtnkUhEooWd5Ksu10QHwNTUFNrtNm7fvo1KpSL7cCQSkd4WZjnUu3fvIp/P46OPPpISm9zDTf1eO3V8Ph/+5m/+Br/85S/FYK3X6+KIYGYPnw8jzQdyeT8RcKVDlxkQY2NjYmtpPuYfs9pYEuS3v/0tqtWq6J4kM7AG2M0eWlxcRKFQsPEkMxT5O5/PZyvBpPVA7vHkG35PpzLLNuj1APR3Omidl+/pnNF1ricmJlAsFrG8vCxBB7VaDW63GwsLC7h//z7OnDljy3ij3Ura2dnB22+/jWw2i1wuJ6XMTN15QLuk1y338UajgUQigUuXLomjC+hfyYB6qbal//rXv+LmzZu2uvbMTqTe4nK5pPwhe3mEw2FcuXLFxqual7SdxtIyOmiAsl2XHKWMc3IGaJmv+dPJng2FQhLgQHt5fX0d7XZbSopSD/8u/KXdbuPs2bPI5/P4+uuvJRu4VqtJSc2BvtCfaPt7PB7Mzs6K/unkYCLpOdU2Efe9sbEx9Ho9LC8v27Jh9T5uYkfajnf6Tgd1JRIJWzCYxqJ0FrHGCsxxP84+awb9ejweAWaZ0cs+RJZlYWFhAZZl4dy5cxgaGkIulxMHhg6SM5+ruZ4ikQhGR0exvr4uAb6HsbLIDyVmoV+5cgUzMzM2DCwQCAj/NBoNfP7557h165b8lvyjcYCxsTGRa8ViEb1eT/Rqrp1utyt8f+/ePXFAnDx5UmQaiYG5Wiab/K//O+GH2qbrt05JLpdLgiwZoEz+4p5ULpfxX//1X6jX6/jpT38q+z2dfU6l8rrd3T6JH3zwAX71q1+h1+u9cDrsE3dCuFwuDA0N4ejRo5L5oJXJfkqbJj3plrUXlaeBJqdIV/M1z0XvGCNudKMnCl4ysD4WgIAUPMbn84nCDUDem7Wfi8UiyuXyvqbB+hmQqXkt1uNl5K1TzUT+TmdxaAVdX4Obl6mUUpEBdoXpqVOncOzYMWSzWayurmJpaQmFQuGVVGQJXI6MjOwr1aU9hCZf9nt/kAPDBOA1gEt+Ix85nZtCTAszriVGVWmlgd9HIhFbjXIAtvqj/EyXTyDv0xhnmSQAolzTCNflG7RDAthTCjgeClRu8Cw1RQVdg8vaMGUZBt6nVsydDD1NTs/cyYDk+dxuN86ePYtWq4X5+XlxROjIsxdJaD8touERjUZx7tw5G3/r9cF5C4fDmJ2dlQafGxsb+MMf/oBcLgdgj491iSHyvl575BES69dPT09jfHzcJmMJDtAgpNLL0ma6t4QTcR41D+ux6tdatrpcLoyPj0tKIx0mS0tL+Od//mf80z/9E0ZGRuDz+aQRH69HWXz06FE0m018/vnnYvBa1m40cr1eRzAYlMhIgtsD2qsbSsD02LFjuHz5sg3YcTKkAewzcJhFCeyVVKCsdLvdUhO02+3iX//1X/Hll19KqTaW7dCRptzfE4kEyuWy7PkapPX7/Th37tw+xyu/11mdppwJh8N4/fXXEQgE8OjRI5H5Q0NDePToEUZGRnDkyBH5DthrYkj+0hlHmUwGv/71r7G1tYU33ngDfr9fjFBdK9XUKWgkaCPNsiycOnUKY2Nj+Pzzz6V5LMs2HBbn7Q8l7nXMhOKzfe+998TZ2U+Ocb6YEUO+X15exqeffop8Pm+LVtROC13eg6Bxr9fDyMgIms2mRFWR7y9cuCAgLTMuNPBFJwT1VgKnBN9ITnsooyZbrZYYVbOzs6jX63j06BGq1aqAKAQSeE/a2ZvL5fCb3/wGV69exdTUlNyrLj9l6mrMpvroo4/w61//Gn6/H9VqFbVaTZzDzNTg71hGZEB7xHJs3IOj0Sg+/PBDTExM9AUqXS6XZB/QmfT555+jUqlIpryOcGUJmG63K9k1wF5/Esrw6elpTExMCE/TAWD2gKCM93q9Ur4M2B/AwmwYNmAnmcCCCaJpvZF6Pp+Fy7Xby2dsbAzZbBblclkcbZZlIZfL4csvv8TY2JjsRyzdQLmu9agPP/wQ/+///T9Zz+xT9aJFPL4oRDnGdT43N4eJiYl9TWo1Ub4Sf+D3i4uL+OKLL8TmIOBFviZACezOe7VaRT6fR6vVwttvv42RkRGbvaczbbSzjsTyh+bxGg/RALK2U83zmgCxqUMFAgF0u10sLi5iamoK6XQa6+vrAHbXvJm17mQ/85ydTgdXrlyB3+/HtWvXUK/XxVFMp+/AEeFM1KMYzGs6IID9VTr47E251+v1MDw8LA6xTCYjx+ssB/KE3jt1EDBg78XIcXY6HQSDQcEg9Hh4Dcou/k6vp356sBOZPOt2uyVTOZlMirwlr/L94uKi9OfR+ITpeNHPzMQru90uRkdHUa1WJQOea35ABxP11gsXLuDcuXPyzPx+P3w+H0KhEOLxOMrlMtbW1vDxxx+LbNAVE7TeW6vVbJlVnMdYLGaL/mdGV6vVwujoKC5cuIBEIiG2pA42MPFVpz3B1BdITnzgJGf1eYA9W9eyLExOTuLGjRs2zK5er+Pjjz8GAPzsZz+ToBk6sp1KLnU6HUxMTODy5cv405/+JHvfi0JP1AkRCAQwOzuL48ePI5VK2SIDTCED2MF4/Z6vtaDq9XoCRjl5ZPWGqzdvlm+g0baxsWHbPJ0EztDQEIaGhlAul1Gr1STNm93I2dm81+tJA0uCw7wXNmEql8uSxu0EUutr8z8VHQLBOn2ZAKCT48E8LwF3AroUwk7Pjt7EsbExnD59GouLi7h7966k6v9QOsjZ9DzI7XYjFothaGjIttH2iyzQ/Oq0SWlyEkimUquB037HamcBjSVG6jabTZRKJUkl1BG5BBjq9boo2rqJnu41wetoI53j0447GkC8d0Za0VnB56cVWlMR0pFDNDj1a4Iw5G0NlhDc0GnxnBcnI1DPjZNi4+Sso6F74cIFaTzLeXJqUPcqEsEsj8cj8ls7HUiWZYmiMDExgUKhgFQqhVu3buE3v/kNtre3hR/IHwSmdDkurRhTadB1dtl8VDcOJnG+tdFIWcl1oI0yTVxPTgqF03uO1ePxSAqv1+vF3bt35XwLCwv41a9+hf/5P/8nhoaG0O12kcvlBCzQCviZM2dQLBZx/fp1ibRgOQYq8GxgbfL8YSSCVQSMzpw5g0uXLsm6JWnDyXQ8OBnYBD+1oyAej6PZbKJSqeC///u/8ejRI5FH2knKc1EmM4Ia2K2D2+v1kM/nAezy6vHjxxGLxfb9Xju7eKyT/AoEAjh//jwikQhu3bqFarWKtbU1dLu7NZyPHz+OsbExbG1tSa8d3Z9By3KCWF999RUajQbeffddGwBHXcEssce5MOWuBnK//vpr3L9/XxTjQamFg4lgEvf3SqWCc+fOYW5uzvb8zb1Ny2Atox8+fIg//vGPqNfrNvmqjWMGKVCv415L/tANUC3LwtmzZzEyMgKv14tIJGLTJzQf6AxHlqszx9wP4KP+QnkXDAZx4sQJcarUajUUi8V9jg9d6rHX66FQKOB3v/sd/vZv/xYjIyO2wApz/+CYOp0Opqen8c477+DPf/6zlBTTfSEIVlJ/4BoZ0F5EOXWHUCiEDz74AOPj4zYHhMkrDDShY+nBgwdYX18XHYER0qxRr52bfPYExpg1wcaT5H3u2yxTZjqgaAtw7zABX9pi5J1yuey4t/Cc/UAJHTDG9RoKhaQsHrPsmNHhcu2Wabxx4wauXr0qOjufL4EG8m88HseVK1fw8ccfyzoKBAIvFNDwopBlWQJWeb1eJBIJXLx4cZ895qQ7cm/lHBYKBXz++ediV1GWArDNM8veWJYldtv4+DjOnj0r+iGvR3tDB0HyO+7dPC9lOm1FDebyHrSNr3lcB62Zjmp9DgbGrKysCAjOBrDhcNgWVWvaWyYADQBvvfUWYrEY/vSnP0m0cbPZFB1Plyce0B6xDKfTszbnlTzj5IDQ2WCZTEYc6vp8Wk4Rq3DCK8wseRJlu5Mc1CC+xjc4flN+9uMFPV7eK/EQgs9sQN1sNvfps2tra4I5aPxRO0j0czVtCF5/cnJS9iiOYUD9iXvY9PQ03n//fXmurCjjcrmQSqVQr9dRq9Xwq1/9SvqV6ABDBrxwX63VarZeYMS7Zmdn0Wg0sLq6ik6ng1wuJ+c6duwY0um0zKvGDbgO+mE/pp2meUM7Zs1j9bm1vNV4NPWfiYkJCVKibOd9ffzxxwiFQnj33XdRq9UQi8VkH9COCI6h0+ng4sWLePTokfD+i6LDPhEnhGXtRnOePn0aR48eFdBRA5QmCG8aV3rBa+BFb2Cm59UURPo3lmWJgkljZH19HdlsVrzuvBZ7BEQiEUxMTCCRSKBer0tEY61WQyQSkdRwTjCFJ0tpkFgbnQbL0NAQqtXqvjQYcyPRn/G3jP7V9++0MJyAFp6LThKmn9KpoaOBNdOGQiGcO3cOU1NTuHnzJnK5nAj0xyFzHAcZoM+amIqom+f148t+AKATrwGwKQD6e/6Gr7mha+EC7K9Dq50LAFAsFrG5uSlZKjoiXDvnGo0GXC4XRkdHcfbsWQHIgP1KrlmCSRtMuhRaNBq1lffQkT9asNIg5HesLa2b/fA73QNCR2FoucANg+uA64/n0HOkhb+TMcj1bn7Oc/l8Ply8eBGlUgnFYtFWp/9VJsuyxBhIJpM4efLkvnvWcxEIBBCPx4UXNjY28O///u/Y3t62lXTSc6QNH5Zt0MBTp9MRoIcR6aFQyOZEpswC7KWjAoEAxsbGpJcHsJfKrqMmnJRe3r+Tg9FUzH0+H0ZHR9FsNiXCgue4ceMGhoeHcfXqVYk0onLKc3EMb731FgqFAh4+fCilgDRQxtReRqYfViJgQIDr9OnTeP31123fm4aDlkWca2B/+jjlG+c+Fouh3W5jcXER//3f/43t7W0xbiizKEeDwaBE0/DcjUYDgUAA09PTUiu22+1iYmICJ06cEJnIkje6Vj6dGATtnWSO1+vFiRMn4Pf78dVXX4ljLxQKYXl5GSMjI0gkEvD7/Xj06JE8B2ai8vnoiNzbt28jHo/j1KlToiPQeWEqyJSdpkOS37vdbrzxxhsIh8O4fv26lBvj2h6QnVjyihGh7Dvwxhtv2J4/sL+kBhvWUr663W4sLS3h008/FXmh6+nzd+zBMDQ0JNckH7lcLuRyOZv+GQ6HcfLkSdGPdSNAYH/UJXVM0wgz78Ek/la/D4VCOHHiBEKhkDSV1KAq1zzHzvVVLpfx6aef4he/+IVE6AOwZVGYwF+73cb58+dRq9Xw5ZdfSg3+Wq0mwUStVks+Z7P5w066BwQj+D766COMj4/bsqD4rPnsGfFImdRoNHDr1i2ZQ+qo5HHynM5gJ8hOByszJXTkIteJdrKSb6jTagcwYNcR9WfxeFx0bo6zH2nZ6QT8UoaGw2GMjIxIYByvzb/l5WWUy2XEYjG5HnVS7WRut9s4evQoCoUCvvrqK/R6PckwHjiB7aQzwlOpFN577z34fL6+QWHAnjPLDEr65ptvUCwWxTmgs8x4nM/nk0ybbreLTCYDj8eDN998U5qma14B9pyj2lahbchjKGtNAEufR/OhXn9OPXw0T+s65twHCoUCNjY2MDQ0JN+ZjdM5dqdnyGu1222cPn0aqVQKf/7zn7G+vi7OeDaRHWRQ7qeJiQkJygPsz5kyRWe/amcD5Q0DRprNJqLRKK5du7bPZtZONNpqOvtKYxzUX/Q5GNxjOiZMW0vzvD6veW/69yZOY9prHDsrGSQSCeRyOTk/+54Buxl09Xpd+r71wwyA/oAzsOuYTKfT2NzclP1noO86E/W6eDyOjz76SOQXg2XJt91uF6VSCf/xH/+B+/fvi+xgeS06g4G9iiCUtb3eXpDC0NAQCoWC4FYAJPM7GAxidnbWhlVzjGY5Z6f5N3VJfqcdWMDeOtJ6s3Z0kLTjj+/T6TTm5ubw1Vdfybio17fbbfzXf/0XotEoTp8+jXq9LqWJLcvalwnJIL4rV67gX/7lX2QffBGCHH+0E4IK2oULF3DkyBEx2E0jSm+2WkCZBoF5rH5IVAKpeJqkPemxWMyWMri0tITFxUXk83mpwU3hFIvFMD4+jrGxMcle0IAW70mDabx3GkB8T8OQzMBav5FIBD6fD6VSaV9vC/3aCTjVjP5j5omeRHPj0GMgyNvtdpFIJHD16lU0Gg1sbGzg4cOH4sTpZ4RxvOZCMxWc50WBQACTk5OOmTB8bxrZJCqZelPXc+nkaNHn0NEndIJQsJopgXRAUPFlalomkxFHkhZ29MJTUeVmy3r62vDTGQw6gsdMPdMOAkZGEoB1qhVugoC8LpsVM6qdBiKVqm7X3uCa9dj1/ZnRChpgMZUI/bmpbJvKG7C3Uezs7CAej+PEiRP4+uuvpRzFq14Wh+WSvF4vJiYmEA6HHZVdt9sttZUTiQTy+Ty8Xi/+5V/+BblcTgwtGnXaWcs563Z3axTyc0baRCIRzM7OSi1kNqfS2RPkhWg0aquFznvQJcQox8gH5DPek1YIePx3KaCs355KpTA0NIRisSjRl5Zl4fe//z0mJiYwOzuLeDwuCgkNUo7F7Xbjo48+QqVSwebm5j4ZzOa0LNl0WI0yGqdutxtTU1PigDCNHmAvFVrPo2nY6LlkejZrarZaLdy6dQu//e1vbeudIC3Tu7lOtPFE2tnZwa1bt8S57Ha7ce7cOYkKYwp4IpHYV3ah2+2iVqshl8s5OiN4X4zs+fbbb221QkulEkZHR3HkyBFbBHI8Hsf29raUTKORSLD6+vXrGB4elrqi7G2ldRJT0XbSRfjZ2bNnYVkWvvzySzSbTYTDYSk3MqBdcrlcAmTrYIDLly/bmuOZz57vqTvw862tLfz+97+XOeaxvBaJn9Ew5/5L0IuveRwdZWwgaDpqnXQdZmA6lSE1dUHzHNqpAOzK+ampKXQ6Hayvr9saEWo7guclUJLJZPDNN9/g7bffFqOVPbG0zmPKg7feegu9Xg9fffWVOImY6Uw9hg7Iw05er1f2XJZg+uCDDzA2NnZglq8GEDgf9+/fl8ycUCgkztlkMolGo4FKpWIDdxhMBezOPeWlLpNLkExHT5p7sJmto8dpEm3KXC7n6MgyjzUBYQKAHo8H5XIZ9XodPp8PyWQSQ0ND2NzcFN2F+k69Xsf6+jrGxsZs+guBFK1X7Ozs4PLly6jVanjw4IE4xQdOiD2iTVKtVqXfkm6abtp+Gq+gjKTMYdYfZZauUsDABdrJmm+bzSYmJydx/Phxm/3B65s6jGmXE8jTwJYGdtvtti1wRctIymcdmKPtPS379RpmmVM2gtdR57TjdFk/yli99+hAhlarhVQqhb//+7/Ht99+i6+++krGGo1GpWH7gHYpHA5LWTYn8B2wB5ESk9JzoJ1XXq8XKysrtmxdvaeafVGY/aKvQ71Al0rn9zoDw4k0TxLj6HdvTvJV349JxA263S7C4TDy+bzo7Pq5AEA2mxVbVOsFDLzU1A8T6na7GBkZkebA2lE0IDsx4I59cDqdjvRFpGywLAvZbBbXrl3DZ599JraU3+8XTIF2/vDwsPAlMyMYXMZzDQ0N4f79+8IXnOehoSGk02nBkhnMo4Ng9Vw7yWT9mnxLm5+k5a6JBerf63NTzvv9fpw9e1ayy4G9klV0ov3qV79COByWEqTxeBwAxJ7U42FZpnPnzuGrr76SrMrnbZv9aCdELBbDpUuXMDMzs8+5YP5px4Le5PTvzAeijQUCvkylNZU9GiFDQ0OIRCIol8uoVqvIZrNYXl5GoVBApVKR9EmtiJbLZcTjcdTrdWFIbs5MDSYz6QhKc/zAXr1xGnZs1BgIBDA8PCx15A66V6f3Ts/IPMZJMdbHMDqGoPJB19HRHHNzc5ienkY+n8f6+jqWlpaQzWZtBjOVFRM41ILjeQvodDotdRWdSAtDYL/xpMsaUOFkPWPzN07GunZAEJQ1FV2Cnb3erld3e3sbKysr2NrakudNBYMR7DSyeT2Xa7ds2Pz8PKLRKEZHR21lOTjOcDiMeDxuizgn0UlSqVSkBj7nk5HoGuStVCqyaYyNjQlYx3JmdP4xUoI8w0hnnkcDcDyOWRNa2JvzprMltFLdz1jUv+Xz2NnZwezsLBYWFgRY16Dcq0Y0nJgafezYsX3GGI+jU4A1hz0eD/7t3/4Na2tr4qDThpWTA4l8QuCXzRjJmxMTExgfHxeDXc8pAIm+MrMjdDNL8kar1ZLNWysC2ljiuPrJUb1eyGORSATxeByBQEDS+hn99oc//AHpdFpAaK51HV3W7e72Gfr5z3+Of//3f0ehUEAkEpE6rUxPZ9Tti6AoPGvScx+LxQRQNAMBAOxT/KgLaCMd2J9xuLOzI1Gmd+/exa9//WtpMm3KmUKhYDO4adAEg0E0Gg3JmqR8azabOHLkCFKplNzPxMSEKIma5zimcDgMv9+Pzc1NqWNK4JX3CQCzs7PI5/N4+PChLUKbDYXp2KOCzwwlAAJeUd5Wq1XcvHkTV65cEVDBKQPHSefQcpPvO50OTp8+jWaziW+//VaijgalQfaIWYuM2CMoxka0pvGj90HyHfWNTqeDzz//XDJvKc8pV6lra3251WoJiFwul/dFfnFsExMTCIVCB0Y28rXmD72Xa2cb70fzj9Yf+BnvkWvp2LFjqNfr2NrasgVG8H45fu1QuXnzJiYnJzE1NSVymGUZnIxLyow333wTkUgEf/7zn6VPD69HeUQw8bASg0hoh7EHxMjIyD7Qm7zLPZ6AA4GuWq2G27dvyzG9Xg/ZbBbtdhulUkki/LPZLIC9kjTavtDZNzpbx5T7+jO9Hkw90dxrTd2DgUNa/ungIQ1GaP4G9jKP6UxkAJyuLW5Zluz/y8vLeO+992BZljhzqYtxDfCZt9ttvPfee2i325ifnx8AuYosyxLQNBwO4+LFizh27FjfAA/yAu08rduur6/jxo0bUrJNO4rJm16vF6Ojo7b3tNGOHz8u88exmXyonRuaf8LhsGOgJ4/VIKqJq+j70OfW/E6+Nfd2Ov6q1ar0cuF3BAidIoN5LXP/4P289tprGB0dxR//+EcUCgUEAgEpyXqYZaymdDr9WBH25B+dJW4Cp9VqFaVSCQsLC/vmXgdJ6gAun88njoheryclHaPRqOBpWjen4/cgorx3KiHG8Zo2Gt9TP3HCuTh+4nbBYBClUklseJbwAfayIdgXjjysHRkmLzuBxh7PbjPslZUVAPt7HA4I4kg4efIkjh07JrohS15S3rGf7l/+8hepTkF9YWhoCJ1OB9VqVXrmTk1NYWlpyYZNUQbRAaV7RPD15OQkwuEwgL0sMwadmkGPJM0LJum9nu81P+pz9sNnebx2Cg8PD2N8fBz37t0DsLt+df/hYrGIf/u3f8M//dM/we/3IxqNSvlQHeSsx/b222/j/v37EoT3vOXsj3JCRCIRvP7665idnbV5NzVAa3qAaCQwRUYLTgokMpgTE5BZCPKYRkUqlZJ6cKurq8hms1hfX0exWNxXW57CplAo4NGjR6jVavD5fEgkElLDmbXKmPrr9/ulkR6FFuvqk9FYE48lGyjQCXCYnj1z89b3q19rY1Rv8BScfL5Ov9W/0UYUx22Cuvr3eozpdBqpVArT09NYXl6WZpR8VvQ485wE5whmP2/FeHJyEsD+NFG+JmmhwF4kwF79TQ2G0SDTDgryOZ8b58fMnDCNFkaVeTweFAoFbG5uYmFhQfqKUMEkGMa0bI6LCgiBikwmA5fLJfxK/mGaMEt4aCFFXiEgFY1GkUgksLm5iVqtJoKNpaKKxSLm5+exsbGBer0Oj8eDubk5HD16VO6dzjdGj+tmgVphokHJZ8LoY01OxqLTe1PYH3Q8v+d9HzlyBPl8XsCH5823T4sYzUi5x14pmjQvUOY2m008fPgQd+7ckWdJUMLlciGZTKJYLEppMB1xRVnI2o8Ebx89eoTjx48jHA4Lf/B8OntHA1tadprAM6PRaPBr0hvzQQ4q81nwXKlUSpoRA3vZO2tra7h9+zaOHj0qSg33O73uO50Okskk/vZv/xb/+Z//iWq1Kn0gNCjY7XYPHYhrWZbwpd/vx6VLlwQMNA0rbTRpI57f87VpBBOgZ5lGlrLhvm1ZlvQ1oKzl9dvttjjztUOW46CTidGOlmWJXuK0p+sxezweDA8Pi4wleKp/x+bcuVwO5XLZFvFaLpdlTxoeHsbq6ip6vZ5E3vM4Ztl0u7tlP3K5HEZHR+XZ68w0rRjrOdL7l6mTXLhwQfYFAC9UDdLnSYzWpiOAWY2vv/66rVm9qcdp8JS/pcxcX1+Xeeh0OqKH6fkz+YwlQzUoBew5IPx+P2ZnZ8XxRjLXnv5c87OTIa5/o8/DrCSCa2aJSpb6YYYdAy+oC3Gd6B5BrVYLN27cwPj4uOg3JpDjpCvTiRaLxfCHP/wBmUxGjFWufdOxcpiI8oH6fSQSwZUrVzA6Omp7/jxW24UsuQBA5Ob8/DyKxaI8Wx18Uq/XsbKygrGxMVtj6HA4bCtbShCM9hmvy75lNNqdgtdITnuGvg9+Rocvz6VJ6yE6mpg8ze/5utvtipMvGo2iWCzK53Rub29vo9vtSgQk7TaWcGSQhZbPV69eRafTweLi4qEu5wjszSHXcDAYxPnz53Hu3DlbUBOPNV9T3+TeXSgUcPPmTQCQjAfyIfdpyodUKiVBBfl8Hj6fD8FgEGNjYzI+J14D7OXmSAx64Brj2qK9RFmosYB+QJjmFyfbSesyGtgmT87MzNjOxT3N3HO+a17a7TaGh4fxd3/3d/jjH/+IpaUlBINBhEIhAHjuANmLQIlEYp9z6KDnq2Wu3tsBSEAsI8id+IFllizLEp4m7qWrMOg9meeh3WaSOV4G85JnNd5irgl9Dp1l42Snamc29XAGFhOT4XU6nQ7y+TwSiYTYF9RRqb9ofaEfgNztdpFKpbC1tWULAhrQLtGWikQieOedd+T505kJ7AXn0R4pFosS3Ed+K5fLsr/3ej3BZ4gZ6VJ5/F+pVCTAr1arSfbF2NiYyGkdcA7sYQqaL53uSevUHLu5RrXc1ePiPWvSvyUvh8NhpNNpKUna7XZt2bnd7m6Jv48//hj/+I//KOVDqVuYlRSYkfnmm2/i448/FluvX1D2s6D+OVPfQT6fT5ro6Y2TDfOCwaAjyAjspfdxAbvdbhvIS9K/0ZPT6+1Gc+kU60AggEQigUQigWw2i7t37+LBgwe4c+cO1tbWBBAzgWJd6ubOnTuYn5+XiPOdnR3x1CWTSRw5cgTJZBKtVguFQgGFQgH5fB7ZbBabm5vIZDIoFouiFDN6Xm8ErBXOjTsej0t0EO+PpIWxVt61gWZG7etn5/Sa783oZF7DnC/z2gRjGLn39ttv4+LFizhz5gxOnDiBI0eOYHZ2FlNTU1LiamRkRDIQnjdxQyeZCx+ATWiQN/leG+U0hKjMUrBGIhHZiLWQIjhkbm68NqPKYrEYarUaVlZWcO/ePeTz+X2btE5vZfYAsJuZxEhWgsWM1tFrLR6PIx6P73NA8L74x+sGAgGMjo4iGAwK39HZuL6+jocPH6JQKEgt5fX1ddy+fVvKeJXLZSSTSYyMjAiwVq1WxRmp69PpyDk+G/2n581pLehNxUm5NgFJMyKp0+lgcnJSDA8npepVIDpy6Wi5cOGC7dnoNcDmjr1eT3pmsCQM+ZHZTqw1nk6nEY1GZXOmI4PH07nndrslm0fvHWa0otPcmWPV8+1yuaQvkKaDjCOOzZTDpmIRi8UwPDwsEQfMXOp0Orhz544oPASAnaKT2u02RkZG8OGHH4oxS9lDsK3Vask6OyzEaBS3243x8XHMzMzYHBCUe1zfWpaayhSNHS0/mErudrtRLpfx5ZdfIp/Pi7MBsEf76sxJ/Z8ABQ1pKqI7Ozs4fvy47HeMeNVzDzgroTTkWN+TEet6XwaAZDKJubk5uFwulEolW6YNeTgSiWBnZweNRkPq4RKoI/AL7Br69+/fB7AHDnK963EyYkyTft4a3HO5XFL3muvDSZk/TESwXAfOtFotzMzM4OzZs/K53ge1rqajyePxOHq9Hu7cuSPn5m85r+a+RplKuQ/Atn4IoHY6HQwNDSGRSNh0Iac92Pyv5aQJgJg6Kb+ng5W8SUOePOhy7ZbpIOihHQocc6/XE6CR+8b6+jpyuRwCgYDteTrpBZq4///iF7/A7OysNPpmqYnDDDBouy0UCuGNN97A1NTUvuAa/pF/tTyhfdRsNnH37l0Adl4lf3L/K5VKGB4elrlnuRbKOR3oRluKtqjeKyibKaedsmK0DWDyCbDXWJN8S+CVOg97++hrkod5f9R76JBMJpMYHx/H8PCwDUBzu3ebbedyObRaLUSjURsPs2m25mk+x6tXr2JkZORpscFLQ5Zlyb5FEOz111+36Q9O9q7WOaPRqNh0i4uLyGQyCAaD0heNMpnX6/V2I25XVlYQj8cF8OW5otGoo21vkgleEeA1f6MDILWNR5xFB/OYaxSwrz2T9Brm97lcDhsbG6Kncs3qY/S96eepbTZ9fb/fj5/+9Kc4d+6cAN+0Aw476ZJy/N+Pb02biaT5jbKP77V8Ii9QL2AAFQMWNPahx0RZSnvOJFOOHsT3TlgU6buyQfSa5h6i7UZ97l5v16lIXWNoaMiWTaSzn/S9Ot0TsyH47A+TvfZdxL2f5UapR2l8h3ZHp9PB/Py8yC3KsPHxcbjdbtEVdXYZA1Vpd3i9XiSTSbHTtI7Y6/WQTCaRTCbl/Aw013i15iNNJh9TlzCzZjhGE68wdYp+r8mnrLyg8RDL2u31Fw6HxTa9c+cObt++LdlK1PdpO+r76nQ6uHDhgpQipH78vOgHOSHcbjeOHz+OU6dO2QwlNi01Fy9gN1ZpRGjBQAVRg+wkvXE5geQ8dzwex9bWFu7cuYMHDx5gcXERhULBllXBa/N6zFao1WrIZDLIZDLIZrNS2oAAHZszrays2CLC9f9yuYxKpYJKpSIdysPhsPSDMNN8CNyl02mpIe7kUTMVFqYPsekvlV+dQaI3Kf0czfMdtCi00mAqKnyOqVRK0t5HRkYwPDyMoaGhfX+pVEpKUTxPMsu7kEwFCdhLtTM3fYI5OrqJfwR3dJkq/oappul0WjZHDdow46BWq+Hhw4e4f/8+SqUSLMsSZweNL4LuVDYpaHg854xR25FIRKJ/U6kUotGoPAvOLddEu91GpVKR+6DCwawI8uDOzg5KpRIWFxdtEdzdbhflclkyjL7++mt88sknWFlZQTAYFPDW5XKJ06JaraJWq0mUGdPutLKj//S8mSAINxUttJ1IP3ueixQKhTA8PNwX9H7ZybIsqd3t8/kwNTWFqampfSAu5ToVBm72mUxGInA1CEDlrdVqIZ/Py3Mk/4+Pj8ucBYNByQzjOdikypSVJvjl9J6k1weve9BzMN/rfcWUE7xHv9+PsbExjI2NCY9QidnY2BDHIcFzZmJoow7YVeZnZ2dx5coVWzkRAuB0KLIk4GEgAn1+vx8XL1607Zfm3mbOu+YFy7KkxjjJ4/GII3VnZwf37t3D3bt3pW4sic4zXX6REebAnhLMPYIZMWxefuzYMVG0+TsnAFfrL/o+6CShcm46stxuN44cOYKRkREZmxnAwbrg3Kv5uY6m59pbWVmRZmbcNzSoQNDtoIgZPS90grAnBnn6MBPlEB2LjUYDsVgMP/nJTyRIQO9H+llr/Xp4eBjBYFAibAkGUdYQGNWGjC4rYhpY1E90FDlLKJrUby/VwTD62O/iF10ezOPxiCOWBinXWSwWQzwetznGuPcAEGMqEonImu12d3vBxeNxDA0N2fSkfnox12W73UY8HsdPf/pTnDhxQsqtHeZMCOq9lEmnTp2SZ+MEqvK/GVBCGy+bzco+qTMgKKPoMCgWi6jX64jH42JHcTyM/NOOVYJhtLtoa3IMtLt0lLUJOJhZdzzG5XLJ9RqNhgB0zPRmhg7vWfOcCSQweG54eBijo6MYHR2VdagdbAsLC7AsS3RaYE/P0jJV87HXu9uE8jATy8YwiPAnP/kJTpw4YcMYzPnVn3s8HoTDYaRSKbGtWBaDTiBmsqRSKSkjRKJdTnuPmRHcB5z4S49J66LaoaWBUv5O8xT3dO2wMHUlp3Wq9x5zLBrY9Xg8WFhYsAXCAfsDQPRnJvZgjoXv33nnHZw/f172AepBh52c8ArzexOvMMnMnOmHpXU6HZu9wch+Bs/qLEsTuCXPPQ454YRO/GHei2kDOPGxxiT1/kK9gns4+5xox53et3QAqrYvzHF2Oh2RE1rfPuxEWzmdTuPcuXMiD4LB4D5sDdh1cGazWZsdwsAU6gOs3BCJRGxlNjXoTycE555VQKgPsKSzzrrVWTROfEgycQknzNoMmDQxCk0mr5uyknzJNcf75P7PDMmvv/4a29vbqFQqggPz+el1wgyhd999V/Dt58mvPwhhGx4exmuvvbbPINeRGfpBavDAXMQABOgk+KgVQC0cTAOKxgavnclkcOPGDdy/fx8bGxuo1Wq2zdr08vI1jaFeb68G/9LSEgqFgry+c+cOVldXUavVBPzXqUK8TyoebKjGZrehUMgGtmnh1Wq1pF40nQp0MtAxoz3XOqpBR8JTIa7VavvKWen5eJxILieHBYn3a0aJakOXYE84HEYsFpMslReBDgKmtVA0PZnm73SNTR5H3iAIoA1lvXEnk0lxDHg8HikB1mq1cPv2ban3TXCC1ya/8XnTONZGGMEklhJJp9MYGRlBLBaTJpNmiYV2u41sNguPx4ORkRHJ6BgaGoLX6xWHHPmXpT0ymYw0uOK9MWWM/Nhut7GysoLf//73UosynU4jkUjYAOydnR1xSOjSXabhphUmjp9ER412Aun7/C4+0GuZRiHH8CoRm5R7vV7E43G88cYbtrVO+eIUUWhZFu7fvy8bO58R+YhAgNfrRT6fFxDdsiyk02np9/Do0SOUy2Vb9HkkEumrSGunwEFGjd4jqHjqdUr5aSrhTuczwQlNoVBIeJjRmczqYT8RnoPKAsekDb52u43Tp0/j8uXLsp6phOmI5cMA4mqQZXx8HKlUyjGa2jRE9Hf6WPIi5z4cDktUcz6fxzfffINqtSq/HR0dRSKR2GfUERQjEKqdEy7XbgkbphefOHECgUBgny5D0rxl3oPJ31qZNBX3QCCAyclJyXjgOHmeYrGI6elpAMD4+LiUmQH2dCGWvapWq1hfX5ffEuDTz5Zykcf0WxcayD169Kg0VaQyfBiJupHux+Hz+fDRRx8hlUrZ9FFzz+K8er1eDA0NCRjAKHI6u7RsId9RN2cgArMbNDDLzBs6iyxrt6Ef5blTlJdJTvOq+cW8J+qtvV4PsVgMkUjEVnKPxiYpEAggHo/bgFzKTx4PwFZGDACWl5dRr9clk9N0SHNcWtfTzzAYDOLq1as4efKkPNN+z+BVJoIJNPbT6TQuXrzoaEuYIKp2HFDn6Ha7WFhYkPXA+dQ2oO7Bs729LSV1ySd07LIUl2VZKJVKkq1AQIHj1yBEr9cTO02P2bwHLaP53uVyiT3HDE72O9NOFJ6Ha9/MiAB25QL1CO49XA+UE0tLS6Lfm+u8X7SuCSQeNvL5fAiHw+j1ehgeHsbVq1eRTqf3AUamTcFnS2dTLBaTdb+wsCB9OarVKnZ2djA8PIxUKiUOUMpQ6rKrq6vodDqIRCJSuUGXDeEYTP2AfKLt6n4AqMYz+gVNOQU6aDpIh9JynM9le3sbpVJJnL1aHh90Pr2WnOyvbreLN954A8eOHRMbjrbDYaV+jnyTj+kQcLKFgD3eoL2l54w8RxmsbSbOGfEulobTmQZax35cOihK/HHO008n0WPhHsJ9iEE5Ouhja2tLykppwJY4ixl0oO9T6wM+nw+xWEye4YAgAWCXLl2Sfd/MgiB/dzodPHjwQCpqcA/z+XxSDp/7KctssRwhz0MclHLXsnYDeBmMq7MjTF3OCQvQ2DWPIemAcZMHzUAXk5x+Y9qy1JO1w8Gydp3jzM7VgQuZTAa5XM7msCHfa4yGz/rkyZOYnZ3dF4D3rOl7OyGCwSBee+01W3NfKqim4DA3eMBeRkWnyjAFz5wYLRz1ayqUVHCLxSJu3LiBBw8eIJvN2ppH8rdUcKnEaqCek7uzs4N8Po+NjQ1kMhlRVJl6S5BZN8rVXi8C88yyyOfzKBaLGBoaQiwW27f4Op3dRq21Wg1Hjx7F9PS0jI0lp3TZKT5TgvwEJjgGLkQ6I+jQ4JhZE/AgMgERcz74X/85RVBTYLBEFwGQ50mPa0ByAZvGA4mfMZVPZ7qYypV2UJRKJQHuWYooHA5LPfj79+/j1q1bEnXK+abA4zMlH7fbballzhQtHekVCAQkzVCDr3r91et1rK2tSVYQ6/G1Wi1UKhWpT0uHgt40tra2ROnWwAJ/T74FgHw+j9u3b2Nzc1Oik3S9ZY5NX4NkOu80uMf74R/Xn7lBOMkXc841n2hg5lVyQtBpS2DwzTfflDqC2kggz+gMF2C37vzq6qrMuY7O0qAss5/IV3RmsZwBIyh1vXgzAlsrpU5yhseYG7i5Xs3sJfOPv+P59L5gArEmgKBLtIVCIQQCASwvL9siRLlHcg3qc/G+Ll26hKNHjwqww4gjRl0+77TJZ0EE7/1+vzTqJZnPH9gPEpnRJzs7O9LYmym3POfq6ioKhYKct91uy35dKpXQbDbFicF9nRlkXEM0Xlyu3RrmExMTAuDqBsQHRYRzrPo1jRg6g1lTldfn8xgbGxNHGHUiflcqlRAIBDA9PY25uTkpNclmfATxgF2HwdLSkq2/FZ1mTg4UJ+DLCaD1er2YmZl5ZZ25j0s0xuhYdLlc+OijjzA7O+tosGq+pgxmpO3Ozg7W19exvLwsASg6iEf/HoAApalUCuPj40in0wD2Gu0SrGT/nmAwiGQyCZfLJXqjE5mgmPkda9Zr/uc6o+EzOjoKAMhmsxI0pJvuMpKL+o1ZupQ85/F4RGfie7fbjUKhgHv37qHZbCIej4tRC+wBxPo+tA5Huezz+fDOO+9genpaokIPG+m+Cj6fD5cvX96XVazBUg2iapuHe2az2cTS0pJ8xvWhnV7U5bj3c14of81+B71eT3RXHeFoyiqWQWLAjml76v+aFwgKcMwM5AD2AChd6gzYK3npZA9wPHSOM2OH/R5Y6oblmEwHsAYeTdJ7yGEjRsgyOvn999+XsoBO+px+riTyWCQSkV4dd+/etZW+rVQqWFxcxMrKCnK5nARvaXuwXq8jl8vB5/OJ42J7e3sfj5FMUAzYi6ql3cfjTD21n5Oinz1v6rvkGScbn45BOmZDoZA0i6fMNEtFmbqDzpb7Lv3hvffek/502gYZ0H6wVOsIgHM0Ne3ZaDQqcgWw9wTlWmAQlA4+A2DL0GJfJl1S1+VyPXbZTeoHTraWk+3V7zno/+bn1B90Ng1BcP3M2KeSvKafL3UJJ2zTfN/r9aR58vdxxryqRBsimUxKM2rLsvZhxeSxjY0N6TFJZ1CxWJQSQxqP0wGQZvaNy+WSAG6en3/cV50ydwFnLMGJTBmpsY9+FTic7FYnnUMfQxyZOtexY8dgWbtBwFtbW8jlcjbnC2WyDuLROojGHtxuN9555x1x1j0vnv3eV2W9fw2u6EgXJ4OEgs5c3PwO2PMqaeKxWgEjI+rMiEKhINHj+XzeZvRQoHJsNIJ4HkaC6ShVAq70xpFxde16zXRcDJxoDQI3m01ks1msra3ZIlwJ2PKcNNZGRkak5A29dmbDJ/1c6Ywg+KWjyFjqhuWh6IDQYzepn3LA/xqY1HNHclJ0qPi/CD0hgP5gtP5MR02ZPGs6XvgsNdDJZ6TBfq3QNRoNicCNxWJoNptYWVnBV199hXK5vA9UozefaVlmTcdWq4XTp09LFC+NeDaY0uCndlRls1ksLy+j0WgISKqVgHa7jWKxCGAXfGbkOs+zvb1ti/oiiKGdEsBuPfHR0VHUajX89re/xRdffCHAiNk0mM+cIBnHqxVk7ZDT0QvfxddOwl6/53EE6AmYvyolGPi8Wq0W/H4/zp07h4mJiX1rgq/1fZOnlpeXBZwlUMA55xxQbs3MzCAcDsPv9yMajUqZO5fLJVHurKHM6GvTGNIbuxOgqzd8JwOKx2hng7kX6f3LyUDUQITmzV5v14kyNzeH4eFhABBDkxlCGrjQ69AEvCzLEoOZCpMeX6/36mdDcB6GhoaQTqf3yWTu+06y2dQp9G8ZLQLslZ2bn58XXiK/ch/WDiptoDUaDYyPjyMSiUiUJCOsQqEQjh07hpGREYyPj0uJDa43jqmfgqvH22q1pPY/S5ZxD6UjotfrSQ8VrgumGnP95HI5aRLNtHMAElzBSGS3241MJiNl9bjWtaPCNG5NAMVpHXY6HRw5ckScngSADxMRiGWkndfrxfvvv4+jR4/aaukD9gazWi4wW3JrawvxeBx//OMfJWtKgwA6k4h6IAMVlpaW8ODBAwEkCBgwk4v6KZ1e1IHonHAqn8BxAnb+pX6hs3Or1SrK5TJqtRri8TjC4bCUPgUgDXqpu5rZ1VzDWrZrnV2vW92L7dq1awiFQshkMohGo+KMpB7lNH5zDgKBAN555x1Eo9FDCYixFJXb7cb09DQmJydtYJZ+hppvdSNJYFcPDAQCKBaLKBaLIlN5fh04RhCBACid+trZQb4Adh3YGuDluMxAOO7fLpdLdNparWbbP5z0Q5M/qO/TUWbqJQRMnMAIc99n5D6jNQku8DlQb6KuxPPwWehz9ruHw0IEbkKhEC5duiQyBdjfJ8cJcNJlvqiDsVQz55x8SP01l8tJsJIub+F2u0WnYMbO1tbWPj1VX59EvUPbesy40WM29wxTH9LH6ff6NxqTMIORAIiTm46QWq2GtbU1231o+1Lfm8nvTn8k3ovH48GVK1dkXbHnxmEn7sPmZ5pMALTX60kwC4OHtX6rZRjPrQNb+Vk4HEYikRCdRfMh9ToGvR5E1KVZDk/zsrkXmwGG/c7XD/DVVSIYnKhLlFqWJcGU5hrS59S6j16Tmqg7aQzlMBOdVufOnRPbi/oqsBcQEAqFsLOzg5s3b6JUKtmCWbXMYEACsFdxhOek7srnrnVfnq9cLgvOS6dTPxvM5EnT7jF1UI0BmwGz5rlN0hih/ox6baFQQCgUkqDdZDIpAZ78HfWEXC4neoEeH3URLY87nQ5mZ2dx4sQJAM8vQOx7OSFCoRDOnj0rN9PPEwX0j5LizTPVhiUM9EMj6XQXPkhdmokg6IMHD7CwsIBSqWQDlBjJrTdInTGgQSmnaFgujnq9bst+sKzd2uVsIsxyQ8x2YHSkzkAoFApYWFhAJpPZ5ySgkkJleHh4WJR3bgwaeNbPmGNmNFE4HLY5VLTTwywfZSoIJqAA2NNBKdADgYDUiedG5qSkC5Mpw/B5k+kwMZUoviev6e8BezqTWUKMmy83fNa353UJIlKJdblc4jkvl8v461//inK5LLxI/iE/dbtdqR/L8XAOOp0ONjY2UK1WpQxWIBBAoVDA4uKi3DMbQpfLZam/xxrVyWRSIpHN0mhMb2cknNvtlkgyvWHoaAjtfInFYpienka9Xsf29ja+/PJLfPbZZ2i1WpJ6rudEbwIaxNXKEdexLrnCc5i8bPKmE5hiKnMu115t7FdFqSCI43a7MTY2htOnT9tkrGmo6HmhzF1dXRX+JS83m02JOKGRXygUUCgUMDw8jHA4jFAoJFGwExMT4jTl+VmajBlmGkAAYDP69Bj5e038rS5fwM+dQAAer4Ft7Wg1eZIgSKPRgNfrRTabFdnudu+WSWPPDK1gaFCXpI23QCCAK1eu2EpU0CHGzKZXmVhy4siRI/vWKEsekJcIKGq+NeWH/i2fZbfbld5P5GMNVFHu6yxC9oXK5XKIRqM4duwYLl68CADivEgmk5iampLMBGAvW4bl7DhGTSYIwqwLvZ40uETHAz/TZWpocNKw5N6wvb0tzgseR/2Newv7Suk6uAww6Sf/TOVZ3weJ+hFlyGGKEqMOR4OdEU0nTpzYxw9aJmlHJdPP2+3dZvXZbBb3798Xfma6udbrtJ6jjW3WQAaAsbEx+P1+aTrJ5umBQEDKH7HUCMvNmVm0pmwFID2lGBHYbDZRKpWknI7L5UKhUMDy8jKKxSL8fr+UpqTs1wE7zGpk9Dn5Vxt/gUBAnoH5TNmgmroX9Vidms/npOdB83G320UsFsPFixdfCD32WRNlRCAQsGWomeCjrs1MXY3PmKU7/H4/Njc3BdSk7uxUdkWX/CD4w2hs6qNDQ0My98ViEblczhFMMM/LTAbyJqMu6/W6rf60drYAkHVEgJrrkOfVjhQ+I9M5YIIcdPjFYjHpY6SjmyuVCvL5vARwkEzAwTznYSQ6IE6cOIGpqal9oKiTjqDf0+aOxWIol8uIRqO4d++e7JGdTsfWZ4cOsmw2i+npaQQCAVsmNueHmUMrKyuSFaHxCq4bc6y0NSnDtcNMj/0gABew79V6f9BZDjrAksdTZ+dnHDuz+YE9nMDEA5z2I2CPb53AOl4nmUziwoULNpvvsJO2hfiae6OTTctnm0ql0Gw2pQ+gxtZ0vwTKVR3QoHmL5Zl1QIvmKZYgN+ebpB1qpsziuTj/vM9+wLC+9kH6Kb8nbwMQfZxystlsIpPJ2Br7Oj1vfW2n582M1cOYLamJGIDP58PJkydl3nXjcp/Ph3Q6jVAohEajIU5NrfOZzghibpp3dWC4lj1m0B+J/SoPkqGAvaSS6YTga35nZho4kf6dfq2D3PTz63a7tl7Dn376Ke7cuYNisYhGoyG4mi7Vt7a2Js4aLcPNjEx9vXfeeUewl+dB30uqT0xMIJVK2QwAnVqjJ9Xc4PUfNzVuzMxE0OfQE0IAnBu/y7WbjrO9vS3pkDSseLzeSOlwYHMoClitvOkocLfbjfHxcenRoKOwKWQIhkQiEcTjcflLp9NSf5cKNgCJfq/VagLwlstl5PN5KQHBzAmmMGkDlKWiDhJuBMcI0tDgN0FUJ4XVPA8NZqaW+nw+STXVnnM+N01OGwIX6vMmDTaZG4oGpPqlVGmDVaf49Xo9eUbaI6pLhpkKHY9tt9u4desWcrmc8Hav10MkEoFl7Ua/0PlWLBZRKBRkTaRSKSlzValUZC1q4+0Pf/gD/vKXv2B1dVWaWRaLRVvJJwDSx4RRhVqZZRSuFmR0zvH58VnQKUBejMfjmJ6eloa9lmWhVqvhzp07+PbbbyVKSKfQc61pR5dl7aXTaUPCBMLMDUNvMOacmufRZFmW1JX9rhJmLwNp5200GsXFixdta1I/N65xrYSFQiGppU9epjzodDoIh8MYHh62OTWy2SwKhQJ2dnawvLwshvTm5ibW1tZELtDpp8EmDWxwDC6XS0rUcawkrl+v1yvlayKRiE1pMUkbTXwGTsqLuYcRQOn1eqLUuN1ujIyMyHkymQza7bYtG8/MmDPH1O12MTY2hgsXLsDtdkv0qQlcvKrU6XQQCoWkSTrnlL1stPxm1D9BQRM0BPZ42QyUWFxctPUuMX/DPZprhkECrVYLa2trmJiYwPj4uIyp3W4jnU7bolM4JvKX7j3Rb98FduW4/h3HROJaJB8x8IC6TrlcFn2FTmiWYdJ7G9eK1lGYIUVZrCNt+YxMecqxO/EoPxseHj6U4BifMUHW8+fPC4hr8oi5znVULUuyJRIJfPLJJ1JCRjuBTUPI5DVekzrm+Pi4GOATExMyTsos6p00TlhWjxnCeu+kUUMnR6PREDnq9/ulHxX1UmCvNjWDLHQPKO040c+CQTDUrXlfU1NTcj8MwNCBJH/+85+RTCalPjt1Gq0v6fXoJGO73S6OHDkiGW+HiZghlUwmMT4+7ghoaj4DYHNmAkAikZAMl42NDdHtWPKSZbjIU3QyNBoN27ldrt0sytHRUezs7CAUCmFiYkJqRGezWUfg2STyF2V7oVBApVJBuVxGqVSSnoCsUc2SB4VCAblcbl+Nfy3fTL1Ty3Eeo/ULHZHMTB2WSePvdTadft4648IJcD5sxJ5758+fdyzBpOfEfJZ04PM1HbS3b9+W8xMvSCaTOHLkiPRlKhaLMme6freWfewXxswWMyiOYyFRphKUo7NN96Zk1QbiFDr4S5+H19A8ogFjrRtokIp6BcdWq9Xgdu/2yKpUKmJDcK8wdWdTrlLmUj73s83a7TaOHz+OZDIpz/Qwk8ZQzGdqOgT0d5ZlSbAO5Z0+lqVrdLBttVrdF6jLIIhEIoFqtYp6vQ6/3y89Txnow2NN55ZeizpAjKQdVtRtKOedcJh+eKM+hg5CYpUejweNRkPGooM9NKBtnsfUW7X80HIXgGAGh5m4p09PTyMajQov6aDGRCIh9hP5SfMLjyPv8L9+rZ29eg8k/2i7hfrizs4OFhYWHMuMartFkymbtRPvu7Alvjb1gO86L8u3l0oltNttm8xvNBqCBZKfAUjgpw7SBfZku8nD3e5u79NTp07Z9OFnSd/L9XHkyBFZrMAeoEIyJ6DfZxSC9O5rgE8vdjKW9p51u11RBDc2NrC2toZarSa/5abNiBzNVJ1OR8rT6A3S5XLZanDOzs7i9OnTNsOagITX65VMAG66mrn4GaPJisWinJeeLZZLyOVyKJfLUj+/Xq9jdHRUGpXV63XxOFMh13W+TGVFgzM01Oj1dgI8tGKv3/MezMgMk0HJ1Hy2+tz9lP7nTVpwkJyMBO3I4u/08fo7nYbLZ6SvQ5BMzwU3xFqthlwuh6WlJdu5AOwTGgSF6/W6ABbFYlGaBD58+BDxeNxmxFG5uH79OrrdLtLptE0waaFdr9fR6/VsRo1+TlTQ6YVlWSaew1QqGBmRSqVQKpWwsbEh37lcLtRqNXz77bfwer2YnJwUII1GHaO+eH4dIe8EhOm5cTIAnUjLBycQgmCfWX/4ZSOXyyXp5aFQCOfOncPQ0JDNuADsZVRoUPV6PUSjUQFRmZ1DeRSNRsUQSiQSGBsbQ6lUkrlj6mO3u1eOpVgs2niG0bxcRzxe8yHXhsfjQalUkh47GqzlMdyACSAwc0uDZ/2eE6+rFWKn/YzRiQRJXC4Xtre35TyMCkomk7b0T2a26b2UxPs8ffo0lpeXsbm5CZfLZcuI8vl8ksr8qpHH48Ho6KjskZSVZlkPvbfTccV9yDROtBOY+sPq6qo4h8hzwJ7SG4lEUKlU0O12EQ6HBVS1LAuVSgXffvstzpw5I0EKXF/aGNRjdbvdEijBsoR6X+Y+TKWSZeC0LNP3xOCNbrcrpXNo/JHHAIiewddcA9zb4/E4tre3BQzgd5QVzHwzdTT9Wj9jGn3ka+5f6XTaVtJFGxqvKhHIorP2+PHjOHfu3D6Zy9fmnkYnkJZvDx8+xIMHDwDspZxTHpA/ta5MGaP3/J2dHQSDQYyOjiKbzaJcLmN0dFSO53rQGZs03rnnU25zfmkQ8k8DUXREUGcgiEf+1Yapfh5a3vPawF72J/mOejVLLYRCIWxvb9tAj9u3b0s5Fe5BdLpoGc91aM6Pfn4nTpzAvXv3niSrvPDEvXp6enqf057f8z/5Q+/dvd5uJsTW1pbIOcogzitlA20trQsCkECyTqeDiYkJhEIh2VdPnjyJarUq0awsL6aj+0xQlqCH5neuF10CGNjT3XUgGHlGR/fqaHBtP3Ed8flQTus9Tes5vV5PQHAdmWyCYcCenaDH8SLYWs+LmK1DHdXEIPSeS9IgDWVSp7PbmyqfzwvfptNpscupz6bTacRiMbHnqROEQiFpqkrdgFlxDx48QDwetwVymvshdRXKb+ItutQc14ze/7Wuo9eOfgY8Pz/XfKqBML2fd7tdAb6oIxCI5trga40p6Get16B23mmnh54jj8eDEydO4Isvvnil9d7HIS0rzCAGYH+5TP07OrCKxaJNTmgdk/tyMBiUAB2CvcQFCoWCYF/5fF6qgXBeqCc6yUUtu/rJJz3vzDjzer0YHh6Wso39fuNEfCbDw8MSQGdigzzOSXfX56fe2m/v42vazYeZWIL21KlT+5w4lDvJZFJ6OG1ubopDQcsB6gFaPmodjcfpwEHOH/FPJ/5YXl7G1tYWpqam9uFg5mte05RdgD1ghmMhmfaq5hs9Tqd1SzyO/aB0/y2tM/E5aHx4c3PT5rjjOWnjUp7r61+6dAmLi4toNBrPXMZ+LycEo1yBPUPYaYLNRak3GiqzNAS0wWoqagTzaSA3Gg2Uy2Vsb29jY2MDuVwO1WpVAAgy+c7OjkRAaaFtWZY0v9PNHWmYeTwevPbaazh58qSknBH41GlBjE7jxqvrbXEcbIDn9Xqxvb0t0btMC9flc1wulzhVMpkMjh8/LqWq2B+AShIj1TSApxmXpOeH96zJXMg0zrRn2AngdXJomIayFtR6Pl8EMkFq4Lu9ngedi0qgNna0A4LCk/zIhowUKtVqFaurq/vW1dDQEGq1miipVIhTqZREe3HtcNNjSmE4HJbIGPJut7tbRieRSMgz0FGaBA90Srw5b+RrRr+Yxhh5iNk+FNC1Wk0EnCnoS6USbt++jVAohKGhIYmG02CiyddmlI3Jb06R5t+1qZh8TjKbKL2sRADb4/FgfHwcx48ft/GcXhPcwLVC6PP5xKHK56ojWj0eD8rlMur1ujS5plzl+XUdbspJ7gXFYtGW/aCBVNMRoCPTI5GIrC2emxGLnDeWMNKlnnjfB+1VGrwzZUWn00GlUrGVGLGsvT4O5p4UCoXEWU6ns97v9LPnMRcuXMD29rYtYqPb3W2s9qoaY26329Zzitllmj8pH4A9B0QsFpPShuQrArNmWb1sNmvTG3S9Zu5lnFMqdvyM511cXITb7RYjSWc9knfIMzqiMJfLoVarIRKJ2Bxo9XodpVIJrVYLiUTC9kyc9isGZ5AP+BmdBgCkfKSOuNQ1Ur1er9QQ5e9538Cu7KPDm9fgeLRSzKhzjs/r9aJarco673a7iMfjsv6Y1fmqk25Mnk6nceHCBQDOGcNOOhJlIANrdnZ2cO/ePSlHx/nWIA71jUQigXK5bOvdQ9kWDAYxNzeHZDIpWWOURwxe0SU9uefq2spmJKHWJ5yAX+qtXGO8BktBmoERAGzyl8AfdQhej8esra1JmTLt8OVeVqlUcO3aNVy9elWySPh8ddnJfkaoltPj4+NPnFdedKIjanp6WgB0LVNN3qX+p/UtyhZmfZNf6fCk81UDWZQ95AuCCrFYDDMzM6hWq8jn8zh69KgY0ARO6/U6wuGwzJ2W92xITQcEyxpQ9pl2H++Z2QocH21A3oupK2peNR3FWp6Sz1lCmNHzujwI17Zpn/AeTBD3RbG5njUlEglMTU3tCzgxn4nT3Ohgw2aziUgkgtu3b4sOxn2X++rKyopURYjH4/D5fJicnJSyjcwaJq9Y1m4Q2aNHj3D06FEkk0lbkCXHxfOT3xkApns/UX6Rv2n7mPdsEp+DqU9o/tF6Lis0bG9v28pYRiIR0fc9Hg+2t7dF99V6iRPApmWs/s4cb7e7m+V2+/ZtFAqFH8oSLz3pPVZH62sd0+k58zs6XFkGz9RNtXOg1+sJdsWSoMQqtra2EAqFEA6HpZoC5VSxWEQ4HJYxk680j+r7MXEXkzqdDorFIpLJJOLxuPCdSf14R+vhwWBQehBpHYW6PUtVaczNlBVOst2cI2CQscPnFAwGMT09LXujxlzJy5SxLMVEWayxJS3TOH9ad9N4D0t6UkfVgSi8ZigUQq/XEzwsHA7v01lN/Ubrf8CuPko+6seTTnuwiT85YVzALu+XSiWsrq6i2WxKNjEzlfSzYfk/nntxcRHHjx9HIpGw2Qh0VDitk2Qyibm5OdHNniV9LyeErrmqPUD6YZJM0EALCrNJhgk6UnAxNZUbZLlcxvr6umyETBkDYGN0Gm5m2plO8SagQDDV5XLh9OnTOH/+vK00FBs4cpw6SoCf02AjGM1FyFRMj8eDjY0NZLNZ5PN5SamhoU5Ay7IsKZkzPT0twJXunUGmpyJrRsvzGZNoYOnIez4vfTzPzc3MCXg1jQ1toHFcZoSjNu5eBHqcsZgCSB+vo0w0UGY+Fy2E+Kd5DYAomltbW+Kd57nz+bwIbfIZa9dOTExgdHQUy8vLcLlcyOfzWFxcFJ6mE4ANmEj5fF4AMILrHKtu4kMlV3/P+yJIQUNO8wsjeyqVimwE09PT8Pv9WFlZ2Qd6c01ls1ksLCxIbXOCa3z2TgJdC3P+J1Ci5QtBRA3kmmCzaaRoPidQSAH+MhKN1Ha7jXg8jtdee22fUgjYn6VuHsWIvEgkgsXFRfkdASUN1AKwZUzw+jqLS68dAhNabuu503OhI3JYd1M3s+R4dSSWjpDgd07Av5Px4yQn9P6RzWbFUcioSzqldTTjzs6OZIvo+TA3e309Rnum02msra2JfH1edRufFQUCAel5QwUL2JPDnG8dVcN9nOXrGDmiHQQ8ttfrYX19Xc5DOUjAnaAonb7a+CD4AOw6fFdXV4V/mHHQarUkWpfj1scQ7NWBAXQWeDweKcOofwtgnxymHkUdIxQKoVKpyDhZk5/ylNelbOUa1wAIAybojIhEIrL3eDweWc9sNN/r7Zb2MfU5RqdrAI1AhQksmtGfrwqRd1utFmKxGF5//XXJ7gH6N5PU+jIjX6kr9nq7DjTzOPIyeaTb3c2OsSwLW1tbsl60fOl2d+vqDw8PY3V1FYVCAdls1hbJbY6PcrpSqdgi3c2sUb2vakcCS/dRXnKPoWGkwVnLssRZ22w2kcvlxCHLqHRdr5/jZfkerlsNzCwuLkqZOz5f/Rz1HkDjjaT1BA0YHhaiM1iXm6ONRjnAvZUgrqmbMTiMQJjmyaGhITkWgGQcaNCBukKz2cT6+jomJycxMzODYrEIy7Jw7NgxLC4uyryxQbEOZqDTANiVY3TCaX0HwD4dUq8dLdNpuzKLWPO+1qO1/gHYIyO1LlQul6Vk2crKishTzcs6gp1j1mUtOAevaqDCdxFtDs6z0x7K56dlI4PFtEMiFAphZWUFwO4a2N7eFp7UDlI6hsPhMKLRqNhrdGowMAzYne9Wq4WHDx/i9ddfR7Va3VdqmvxP3URnWZrzb+qx2o4hmXxn2nY6qIPrm2uFYPDDhw/FtmRAQbVaFTtTZ1maerWpS5s2mP6cxO+CwSDGx8cPtRMC2JOjpqMJ2I/N6O8Z/MIejjyWdrzWcavVKmq1mlT8oOylg9/v94t9F4lEUCgUEIvFEAwGsb29bcOl+J/j0XQQBqN5pt1uS9No2pumraZ/o4lAbqFQENnL4B9WS6HNWavVMDU1hVgsJvicU+krHXxpPm/+17joYSQ6AiYnJ6UEHfdTrRcwuzyTyWBjY8Nms1Me0eFP/IDHMONKY5DESvm5thU5L5SDzWYTX3zxBZLJJI4ePWrbXwE7D1LX5H7OIGIe54Qh6N87yTielzaQ1hu4P7CXWTAYRCwWE/yF+5rL5UIkEkE0GkW5XJag462tLayvryOdTks/N17D6/Xu2xc5tjNnzuD+/fuC6z0r+t6Iht7EnR6u06bjBBjyPyOidH1m/jHti2lka2trWF9ftzVEonDhWFi2IhaLiUA1x66NHd0sbXx83FYXixOombndbotjgoa6NoC0IgPsCi0y0fLyMsrlshiUGrSnJ6vRaODRo0ficfb7/UgkEhgZGZHyI9oRQWPASanl4uHGxeekDUbT6eAEPjuBdObcm84Rp+NfBDINU8C+GHVkn44MIWmDhJuNkzLF8+pnZxokLpcL5XJZynToDZugkQmWdjodLC4uYnZ2VsrpnD59GteuXbMpmjs7O6hWqxK9yHMycgHYrR+3tLSEVCqFRCIhm6vTRs8xsIwCFWUaby6XC9ls1qY8UyBGIpF9Tdg00MB+ARMTE1Kb2qn/icmT2ssLwAZscEw6EoM1fM17c1o7fO4aaHlZnRA0Dnw+H06cOIFkMmkDXsx1ANjXCeXvyMiIOJMon/WaN6O5+N8sB0KHJ9cN51o363My9Mkv+r60/ORvOO/meJgdYd6vvm/taHa6F95vtVoV0BfYjfqIRqO2Or2UFdo5Tf7js+M616SNhLm5OWxtbYni8CpnQQBAMpmUUkSaT4A9hwPnUEeg6jrFBC+59jWPt1otZDIZkTGNRsOWtagVPMvaLc146dIllEolfPrpp7YoHeogPHZzcxPr6+s4evSoGDfAHn/RGaqdmuQXRuMSwOfv9P5h7jHcT4aHhwUIYJQPZTUjGU2nnHa0jI2NiYN6Y2ND1rN2rmvDilFxjM40ATEAosPxWbGkVqlUkvM4BTq8KkRHlM/nw5EjRzA+Pr4P1Dajq0xZbEbU9Xq75RdNgJTXoUzXfRNyuZytNBfnr9FoSK+pVquFYrEopUrNrE4SwVYAIv9NHUj/Tt+j/p7jBvZqB+sIdtoEPJZ1cemQYIQwnxPHA+zqNKbTmdeuVCooFAqSacTPCSzoqDknYE8/h8NGlmUhnU6LjKR8oXzVmTS6PAdJg7zr6+u2zIFOp4NMJiO2EuU/90cN5nM+aAuGQiEpKTc2NobZ2Vn0ej1xMHAPIXBHkJTrQzuptd6vdQez9K2Wx9QV9N7Ba2leMkFD6in8nHsBdaX79+8D2MuapBwNh8M2XVqfk2uV9izX6mGjsbExRxDFtGNNW0Q356SsLJVKki2o9VgtA5hR4/F4JBOTgQAMAAyHw5IVQVxjeXkZZ86cAQApq0d+Ip8Gg0FbrX0NppkyVa8Pk6h7amzAScflMRp8q9VquH//vqzRSCQifQFKpRIASCk8ZsmbthqAfXLVyV7Wx+v/Y2NjuHv37oHz/qqTBlz18zUxDSeAk/ubzjzUNqDmDeoXxL663a70U41GowiHw6hWq7bg3FAohJGREdFt+zkLHucenWzwYrG4T94dhEkRtNaZv8BeHxTzGuy31e3uZu1mMpl9ujeftQ6AMkFkJ+zrsJHbvVu+mqUbNQajsVI6Fa9fv27LXmUpO+I5lKNut1sCoBjAra8J7Np3DMii0wqAyFbqsH6/HxsbG/j2228xPj5u2+Od5o+yn2uNjhaSKYv15yQneQhgnx0A7Oqx8/PzcLlcSCQSEoBslmNmebxoNGqrGLS0tIQ33nhDHBXEGKkLUc/n+qAdOTY2hu3t7WeKMXwvJ4QGh8yNxNwMSabB6TRBVAYBCMjOqCka1vfv35fGprr7NzdlrSToMgxUCjQIxmtrbxrLezhtgMCeIspmTIxQAPYUEi00dY1pKpw0oHQKPY/nPQGQtOJ8Pg+/349CoYB6vY6pqSkkk0l5XmxQQqXTjPjUiozL5RKllMp+t7uXpqdBO72JmfOt51TPN5+xU7rPi0ROgImTIq+VTb1Zcy7Z6MkEczWvaSVBb/Y8r84m0HxMzzFTzTQoRQOHUYvNZhMPHjwQJYPzffz4cSwvLwt/EKxgM+pSqYTf/OY3yOVyiMfjuHTpEo4fPy7jNTdTbbBzY6hWq3KfGmzWkWeMEKOxST5jvwf+plKpYHFxESMjI6LE6NI5+jp8/i6XS0AtzguwV2tUO3sooHX/GHONm3zB3+oo/5eNCCbu7OwgFovhyJEjooCa69RUQk057/F4pL68BuTJo6YhpOeXYzGvTTnp8ew2Xa9UKggEAhI1TOXDSbHVskevT/PenNa53rv4ex0BZj4Tnp+Rtly3VAoY/cZoRvYUyOVyGBkZkXXh1HzVHCNfdzodcYyzr4WT8fYq0dTUlLzWACcAW+143aiR81er1Wx1xUOhkOgQ3O9LpZJkarFUh8/nkx4mVC6ZpdZsNrGwsIBisYhAICBp25TX77//PqampvDHP/4R8/Pz+PzzzxEOhzE2NmbjRV1rU9fbJTDHUg6mfqR1Lv2ddsRY1m5zamaCtNttCXwgeOv1elGv11GtVsUp3Gw2sbGxIc6PZrMpzVgTiYTIay1HmbWpy/WYgAjHR4CZ49fRnK8y0ehiv5yzZ88eCGqb+pWpU5HXdnZ2xLlp6gSM6qOeOj4+jlarJU4IZlOQisUiSqWSLWCGzup0Oi36BLC3j9frdeEtAtAcg0nUU3g/Jmmnvg6S0WAz9ZVKpSJrm6A0jSk6AuPxOEqlkpxD61r8T2eGLiVmlrEx7ZeDHEWHiTqdDkZGRuRZ6JK6AGzPkQ5hzRcEf1qtFjY3N209RXTmOp37iUQCsVgM29vbMifUGwGgXC5jcXERwC6vLS8vY3JyEidPnsTOzg4SiYRjtKKeRyfQwdzvnYAo/VvyK/dzOmPIhxqg0qUbzP/cC2incW3QUdzpdCTQgX0HTLtFl9LTNuhho1gsts9RqHmAc6cD8Hw+n63SQ6/XExuH+zXtMc6j1hu1vsy50XY/92UCabrBKIO6dNAKbXSWonTa/025ZfJuP/2+n/zSoBpt+WaziaWlJWxtbYk9pgGqWq2GXm+3YkQsFkO5XLYF3GhnsHYE6jHxc9NxpO+ZuMeAsG9/cppn057Qcsa0ZU37Tfdg0nZerVYTJ7POIGOJOt3HjeS0XzrJ237vtU2ned68V/07NvTt9fYayOsgBmAPz+Mapo7MezTXj17P5ji1rjGgvfkdGxuz8RT3SmDXWVAoFNDpdHDz5k3R6fhcQ6GQ2Gp6P02lUpiYmMCdO3ckqJS/4T5J3YT7IeUR9QzOlcfjwaNHj7CysoITJ07Y9JmDdDxdkUE7xjTuoNegJlMHccIc6vU6VldXsbW1JUFzxI21UwXYK69LviaPbm5uyrqNRCJiN1AvaDQaIs81jj43N4dHjx45Bkc+LfreTgj9kJ2ALHPhOilzpuDQICEZlYKAD5KpKTrCkZEnjDrTArDZbIqBokskccNncydOTLPZxPz8POLxOEZHR0Xh1Q4Pnls3ojRBbUatMEoQgER4MdqM3mgq6joCAoBE1dAIYwo67491JGnoMiJdlzzR5UAikYici4xMg9M02PSc6fk0ATySCbB/16bzvMnpfpwAAfIWFSb2JiGfmU4apwWrQQTysXaCdTod8QDrGuYUNP0iHtrttjgXvF6vNFuiwcL6cV6v1xZ5CgDb29uYmZnBwsICcrkcer0eCoUC7t27h2PHjtmeg1Zm+YzofCNIxzHpKEJ9/1pB5rpmRDr5l+DWxsYGisUiUqmUyAE+fy0o6RjQ611fl5uNCeowOpcA5kG8oQ0Vfa6XjQj2uFwuzMzMIBQK7ZsrvZFalr28BmWaz+eTHjYEu7Sz05x7rdSa0VU6IoLPmgZ8tVoVBcKy9mowm1kNTkCevgf9X/9Gf673MBpdpvKg1wGNsnq9Lim+58+flzWwtbWFoaEhKQVgWRaWl5dx+fJlcSjzc23EOhGfUzgcRjgctkWcvco19dPptDxvrRQC+xU4BgHwPRVdrnMtH1hOhL10KI8pizgvBMrJC5ubm9jY2BDgnnttNBpFPB7HsWPHkEqlMDc3h4WFBZTLZSwvL8OyLMlKIM+YZWeAPXmqsw607OEx5v5LXmRUly691+12ceLECYyMjOCrr76yRbibmRHdblccs+wNsLm5KZlxer/qt5/xcw3q8HqU4ZZliZNEG3SvYlQ5yzD5fD4cO3YMkUjEFqwA7I8OdZJdpowmcMXzaBnMuYxEInC73dje3sbw8LCsoVAoJLVlZ2dn0Wq1sLq6KhFUHo9H+nZMTEyI40EDFFxXlMcmsOd0f/oeTT2QRicNR51uD+yBCWzWTp1e7y1er1fKddCRSMcj/zhW9mXTQUDaWWKCHOac6Hk5bNTtdiWD0rRZWLqDJYBarRbi8biNlxm8VavVRN70ej1b/wft7KzX64jH40gkEtK8MhaLSbPGer2OlZUVKfvAUrMEkTTgAdij3jVpnUQ79vSY+HsnXd/UO+nA5jOjPk8ngd77eT3acOxjYVmWZOFTT9a9A9j0U5NeY7SdX9bAmR9Lpl7A//o1bQjKUe2wAvbmRNsK2iE/OTmJcrks5ThZOpnvOec+n89W0YBRqwTgyuUyotGoTY/mHGt8Qcso/d600TSPmnq9GUynf6/tf+7J7OX38OFDuUfuQxsbG2g0GpL1pEsCArAFIDCo1O12SyCkqYObn+l7oYzR83qYyNxvtPwxy23q32iwlXPBP132WAeb8Djd0FfbbgwGoC7HwAT25jNljpMeYH7+OPd90O80nzSbTZTLZQnc1fq11nnNZ0Q9Xeuv+tzm9frZoIC9WsZhpFarJc4fJx0K2H2GtVpN5ou8wWwqZp+Z+lg2m5UAL/2cta2is679fj+GhoYkWLBWq0mPXo/Hg1KphGvXriEWi2FyctJxz9T2GNcKnSY83hwnx67ltZPuYf61221kMhnRbai36gBx03agDquz+BlwxMy1fD4v8l87iXk8rz01NSWBDs+Kh39UgWkaDyY5ASxOiru5WZqGOQXr6uoq1tbWBHjk5s7zMzqKAoQPmnXlKVzJELFYDADEe0QG3trawp/+9Cek02lEo1EB8Nn4lwoCJ5PRqYzq4T20220UCgUx2ujQYBNTKu90ZuhIAA0kUMhRWVldXZVIdKZ49no98Rby+VCJIJjIKDZ9vwQTg8Gg7bl+l4FlKuH6M9Og1vyg/z9v6mcoA3tRecCelzEQCEjErU5l5O9MBdfpGernQj5kdAH5jwa1y+WSustsyKSdbFTqUqkUTp06hZWVFdy/f188m6VSCV999ZWtmRpT2La3t1Eul+FyuTA3N4dud7dZFZ0hulQZx22uU11LWZff4nfa6OJ7jj8ej8Pt3m0USW83n1etVhMAjIqVzjLivXAzING5weO04WeOnxGlmled+IHvdXbVy0iMDohEIpient5nSJvOAGB/BDqBy0wmIzxGXtSbMGUfSR9DOabPqaMluZeUy2UkEgnUajWEQiFbirwes54rrRD2U3r6vdcKthNpBYHO4HK5jFKphGPHjuHo0aPIZrMoFArSayCdTqNQKIjMLxaLwpd6vLqPhJb35lyEw2Fxnmsn5atIkUhE1qrphAX25CvlgH5eBMdMvvR4PFIjnw55gqzAXp1X8q+WE+QNBi4wSoxBAp999hmGh4dRKBRw4cIFzM/PY2FhAeFwWKLJqDfo+yIP81r6ng4irWMQUC0UCqKP7OzsIJ1O47333sPm5qb0xWg0GvvKXOqeVNzT3G43stksjhw5YruudhiYMlg/by1TzTImlNE8/lV0QAAQ3gmHwzh69KijE9vJeCWvkV9MfUrruTwmHA5LNqvP58PExIQ4vUKhEH7yk5+IbkGd7+jRo1hdXcW3336LpaUluN1ujIyMANjVGROJxL5m8Do7zoxy17qPeY+mPHbSLXQWtO7BViwWsbm5KX3UdNZDtVpFvV5HNBrFsWPHZC2w31WhUJB1xsADvW/pcXG+CPiagQ+kF0V/fR7k8XgELOVzAvaiaGmXaEeS5l+WXDTtE+qGOjCBsjWTyWBoaAjRaFTqGk9MTCAQCGBjYwOlUgmRSEQicllmj0FpWgaZc+6kJ/R7/V2kz0dnSD8dlPKd8pPPi7zJsiYsl0b+nZ2dRS6Xk0ax5j1xLnSAyKveP+pxSM+zZdlLLtXrdZFrWjcD7LKWTq1IJCJBho1GQ0BxArHUaX0+nzhLdcCfx+NBOp1GNptFJBIRnGBsbMyW8R4IBERf0bqgabP0s7d5rBmZS5tMg/nkO8AecJXL5XD79m2srq7ask5TqZQtypzYhmk76iw5joPXIV6ir6v1bBNPAGCTOYeNvguvYAYCbTPONZ036XQa9XodW1tbch4dyKfnTc+jGWCr931dDqdQKAgeFQ6HbXiJ0/h/yD6q+YOk+ZuYFvtecE2St0Kh0L5ra35jdYd4PG6rme+ECWjbzLwvPtfDTOyByMAo8g1tIK592tTAXialxnyoE2g8bmdnB/Pz84KBcY9kECMAKbdEO4c8TtyLQSp+vx/NZhP3799HMBjElStXMDExYdv7TZ7V64Ty3gy2ddIbTd7V5+XrdruNfD6PpaUlZLNZBAIB0SXIWyZGbGI1fKZ0FkciEdEJKB90gK+5T0SjUaTTacnCeBb0vTMhgD0jVHsM9TH6TwsyvYBN0g+SD41esrt372J7e1sMFoICwF4aKjd/Kl/a4E+n09jY2LBFSmpwwOVySXRgPp+Xurter1fqjLKOrAY3CGQQHOL1CFSwjp3f78fa2hrK5bIop1yELtdeKSYNuPI8HFev1xNHhM/nQzgcxvDwsCj1uneFfu4aMAH2AEYyHhcrm/n1Myid5suJ9CIxF+OLEJnDchomgKVJR3UwKkUvcn0fVC4Be71AE+DWSgOvq+uBa+WXc8XoWQphzlu3u1vTuVwu48aNG/D5fHjrrbewsbGBTCYjzjuC8z6fD+VyWX67vr6Oc+fO4eTJk7AsC/Pz81hZWZF1wXE6bcCmwDdlAZ8Zhb92ShDgIuDMNUieabfb2NzcxKlTpxAIBMRw1c9RP1/+jtfjMdoINg1LHfmo58Vprgj29VP0X3TS9xaPxxGPxx2Nb23UmGui19uNWKB84GZG4manwTN+DkDkl1bYtNFNfuL/lZUVTE1NibLQz8lt3mO/9/xMe/21w5pOANNYNcFgrlcCY8lkEvF4HO12G2NjY9LLYH19XZxvqVQKzWYTm5ubotzq6AiCJFQctKKheZDRzDQqXlXwFtgzUClPtLOXPOQE1JM3Nf9qmRQMBlEqleR561IZnU5HMiV0pDT3SmZ+uVwuRKNRdDodAUXz+TxcLheuXLmCUqmER48eSSbEO++8I4qwXie8B47RSUk1781UYLWRdffuXSwsLAgIODs7CwBYXl62BWJwHWqHBA1RlqJg9GexWLSBjlp2EvDWQDngXOqQuk6320U4HLbN6Xc5XF5WYjnF0dFRyYIA9pdd0u+1oxawZxES7NH7L7DX0DwUCsHtdqNWq2F1dRWnT5+WLAg6fgBIhHSxWEQ8HsepU6ck+7DdbmNubg69Xk9KHer51Jm7mvrp9E5AEo83f8/1yL9eb7f3xcbGhtSnrdVqYtzqHkSjo6NIpVJ49OgRpqamMD09jXv37tmer+YzExAD9jKPAciexHvSMvsg++VVJwKjvV7PMeIVsEc18z1JG+z8rt1u25raUk9xuVyic5RKJQwNDUkmdyKRwNmzZzE3N4d8Po/h4WFpep/P5zE3N2frJ6L3W2B/RoMTyOBETo4VrSPxWtQZtV6sQT7tjNCgH2VwLBbDo0ePpCwlA8XGx8eRyWRs+5qpB5nR4q9ysMJBpPVZPiM+R73n0gZh9qMGd2ibUHfo9XaD/fgZMQKfzycR5eRh8hvlr8vlwv3790XXZFCPbhpKG5KZE6Ydr++LY+wni514k/KSmTa8X65LbbdnMhncuHEDa2trCIVCSCaT8Hq9mJqakr465C3qDeQ7U//is+NnDDLRspmlIbXz19T99P/DRhpz0s8OgPR+JGlZBOzubYlEAoFAAJubm/K57pdgRkRzL+TnTkCnlncAJMswl8shFAohnU4jFovts7d/COnfm7YR8a9CoSCOQwYMalyAThNTl+Z9BQIBKSXGYAfeo5OzQZ9HPxvLsl7agMUnRZ1Ox1YJxtQbNW7D+dOAN5+nuXdyPy2Xy7LnazuN12i1WmKD12o1yYjQFRt4btreN27cAAC89957GB8ftwWE0X7RGBMD13gdra9rvM7UiQBnpwSDLpaWlnD37l1UKpV9JcPMbCZtQxLXZulVj8cj2aRmI2pgryIQx6Pva2JiQkoyPQv6Xk4IPdHmJugE5plRf+bi15uMqeDz+M3NTSwtLdkalrLGFSOatcKhI8bJoExDZ8M+AOK4sCxLyhTpMXc6HckgYES63+9HJpPBwsICXC4XRkZGJHWdzgbtGSOTNxoNrKysSAoQvcbA7iaxvb1t8xaa0eWkbnevdn4oFMLU1JSUhmAUpOkdNiPrmJnB981mUxwuBCzMeTAFiKkY6fnUxp1WPl4UBYI1sU3eI5nj17WPtSeSzzWRSEiWiS6pYRo1/B1BMAo/emnJc/yOEY4s68ANlRslo7J5H+QnCmACnG63G6VSSRxllmVhY2MDXq8XR48eRSgUwtmzZzE2NmbjH1Nx0PcB7BnnPI48RQOVm3mv1xMgmko/1yLT8rWQLRQKkjoXiURs4Leu/05jT6eNmuN1AjxMmUW+NXme1K9008tAjIhzuXabDukoT2B/GSbTq68VXfIT62bqedDlDzRfkA84BjqvtNKrnaNsdra0tISTJ08KLz2OEus03yTTKDNfmzKN4+M6pzwuFAp49OgRAGBubk7KhtFQnZycRKPRkKw9OqkLhYKkp+usDu4RZuSMeS9UmHT5kleZyDv6GWgAnKSPMQ12YL/xSmWS56MBRrnOPh9cL+12G7lczpbRQwcE9/V0Oo23334bkUgEKysr6PV2QdytrS08evRIZCzXRq1Wk7VGec/SdsyC0/znpGPRAcIxrK+vIxAIIBwOSx+LTz75BHfu3LHJZeoIet83gTUq0d3ubvNpneUJ7GUzmA2pOV4NhHCO+J6ABH//qkaM0UnD/iZO8+hy7ZUgJR/SqNbPzLJ2y282m01EIhHhD93AnLJmenoakUgE29vb4oBiVgCwOxeTk5PSvN3v94v+urGxgampKYkYNEEH09Dm53yv16E+5v/H3nc/N3Yd6X4IJHLOAHOcrDSSZXttyxu8oV7VVu0P74989X57VVvrHDRKliYnzgwzCZLIOZIA3g+or9n3EiNbXmstzehUTXFIABf3ntOnT/fXX3ebQYOX2RW0tdi3JJ/Po1AoSLCNJBv2E3C5XJibm8Pa2hoajQY8Hg/y+Tzu378vMmwOWuqzTYPhPJsIPgDnjdVpa+ksvtdxkIGv/SZ9ztMh15kmZtDGfN6T+Ue7juxvn88nQTTaGrFYTErnWSwWvPXWW9I7gnWTDw8PxYkmu1wHovUwB4O1HtRyOskn1c9nliNtE5s/r2VdA4oMQjCjiUFxArQsoWnuQchrTrJz/1y76VUcZt+ZYLj2vSaRGyb5alwL4Ly0BQDJNtOkEVZnoE3Ma7H8Mu+FGV/EDJiFNTU1JcxVfT/ARVvVvLZmW37S5/h/El54tp+dnYn/XygUJANiamoKq6ursFgsyGazUr7P5/OhVqthMBjA5/Ph9PTUkDnH++H+o39rzsDgszA4bu4xaB6vqr3wp4bZ9ifoSX1KvThpzqj/KF/mILyWC9qjfL+2Q6nnzFU2eA2N57VaLSnH92V+2VcZZiyJNtNwOEStVkOr1TLggeYSVJpMyHvSutvtduPs7AzFYlHsB46X7blJetZisUiG9es8dM9UHYSgDHONiBeYidl2ux1erxf1el18P2IJ9KV1ZjXJkfoa2tbQr5vtWMr6o0ePMBwOcf36dSSTSbkP7gd9TvB+KVfar9dBZb2HOMy2Ub/fx/HxMfb29iQAoYMvOljCoYPI1AWayEi93O/30Ww2DT0jAEilER2E5HolEglDz7+ve/y38tsmgdFcUL/fj/n5eUMKSKlUQrFYfKmTzUGmQKfTwdHRESqVihxAVqtV2Irm++CEmhkKzKLgwpEJH4lEUKvVxNClsOn7orM/NTWFo6Mj/OY3vxGnp1qtivOn2VNa2ZGhViwWRdH3+31hBRIg5mfMARbN2KRBw87pi4uLyGQyGA6HCIfDODk5+VKWIUsxmNeNAm9u0mc2zIGLDqeZ2TQpsGS+xt9ylEolpFKpCwbbJMeD8z8JFBwOh/jggw9w7do1PH/+HHt7e8jn8wbZ1J+joqUyZHNbAmOUASpZt9stUVbOM41Z7aRwvlmOyZwixnp7VNxUztlsFvPz83KdQCBwQUGbgQX+3WxsEphjg1Oyjnkg8B5ZFoXBFLPxApzvNxpNPHjM9VF5KBAk0N/Ba+r9qPe1lkNthOnB9+kmgd+2QUPM6XQiGo3K382ALddTG5iA0VGns+ByuaS8kD4Eydqj8aFTuNl8j+CneV08Ho/shcFggIODA8zNzSEcDl8AwiYBX3z9ZTpG/30SIAic91rQ72OAYDAY9yt5+vQper2eGCnU5zrIsrCwgEQiIan2zMDjtXTaPfevlmfuF/18/Cz38Ks+tN4FjI3DzfrJfLZMOqvoaGvQnXrSfB3q6VAohEqlIvX9GaSgUdzpdHB6eorFxUVpNFmv17GysgKXy4WnT5/i+fPnSCQS4qADMOhmDea1222DnnuZATgajcQ+IIiwsrKCo6Mj1Go1WCzjzDYarNwXuskg5wY43+uaLcPAO+eIZ47O9tR2ycvOd9pTvA/qhlcd0OW5FIvFLqwhHSYGccwBLgAGEMrhcCAQCCCfz0vQk4ClBqX8fj+cTif29/dxdnYmIBfLDBAwKpVK0s/G5XKh0WggGo1iOBzi8PAQkUgELpfLUNaMa2wGt/T/zWerlrNJeps/9T/at8ViEUdHR+KMcW+Q7cU5brfbuH37NiqVijC+yALTck27lvKqe7Xp79f3rc9Dp9NpsAPMwbfXYVAvacfcrJ+1/Um5NOsxDRBpHezxeKQeMkt1EtRlg95kMimlwtg0uFqtSu+IhYUFlEolbG9vI5/PY3l5Wchjk+qim3WW2a+ZBDKZ5RowNpWmLcy9R5njXDDIQF+JP+v1Op49ewYAiMfjKBaLKJVK4s+enJwIGYl7n/fDvUMfmeSjV1nHftkw72mCthxcU53Nzc9pPUEdyCCZ+ezSmT3UPfRbOHjuEuTUFQdGozFBq1qtIpPJSO8ILW/mfWTGJyhTZvtYX0OTHSwWCwKBAIDzvpnMfszlcnjw4AHy+byAVHfu3DHoVZLDAAjGwmfUGcW8T22n6PvSeAxw3kdJX4Pvs1qthkyJ1200m02Ew2GDv69JNPqs0nqJ8kq9wL4NJMKYMwO0TjTrQAagdb81ll1ihjExCrfbjWAweCEw9t8BNHlvZqyvVquhXC7L34CLZFEAkqVE+dL+lvZbNYit58Xsk3GedbCG8/5dEOLcXqCfw6H17mg0kgbJ1AcMGLOEbL/fF9uW+BczgDWm5ff7paS4OXimcU2uIcuOAhB7+OzsDE+fPkWxWMSVK1ewsLAgpZDNmV68rq4yM8nONf/Tg3b88fExjo+P8fTpU9RqNZkv6jwdaNDnvZZ3zgXbA7BEG6vxEN/QYzQaE3+0HczzgdmB/xOB368UhNCHNYfZsdWb0+fzSXmKYDCIGzdu4PDwEDs7O2Ko8RraYGJ0t91uCxuK7+Fi6O8DjIYgMDYKnE4nwuEwWq0W6vW6sKbD4TAajYawrjjMxiKN4HA4jLOzM3zyyScol8sGZeZ2uxGJROB0OuX7ydrWQYNWqyX3OhgMJG2NhgvnkFErGpE6tZdAyunpKYrFIjY2NqSWr9vtht/vl/rQZseRZZf4nHod9aFlNly/7ODQc8+USvPntNP5TTCKWRfRzFqa5JBo45UbX8s7wadKpYK33noLtVoNn376qUHJ6s8S0GED3kqlYghEABBHm0CvNnw1SJlOp+FyuXBycoJOpwOv12tgA+jsDa0Que88Ho+UmaIS0+lZL5MNGjwMmrBhKwC8++67knn0+eefXzDo4/G4GLtkdHCu9LV1CR9zyp0GvvR88VknKftJ66ufc5Jc8jXqnm/j4GHGbCl9EGswDIBklZgNU60rqNPz+bwBkCGTm7qMoMFoNEIsFkOxWASAC41OucYsscEavewNQUODY5KjZQa5Jq2n/v1lOoiBEs4bZbrX62F/f1/SE/1+P4LBoMH5AyD6uVwuo1qtCpA2HA6xtrYmc2W+D+4/sjo0m4NDA2D6jHsVhz7nzee7+Qwx/1/Lh3mdCfDz/Kbe0I35uAZWqxU7OzuG/hA6CKxLOpHQMBgMMD8/j8XFRdhsNhwdHeHo6EhsDN0IkOxup9OJWCwm+5SZQFo36zkhaMGa+clkUpjtv/zlL3FyciK9KEgEYfaDnkOzc8hzRe9xyje/nwar3r/6bNH7QTuK+nUNrr/KMkwbkDYhBwFwOjScH6ZODwbjmvD6MwR5Op0OQqEQgItlb+g4FAoFyZSkTBM8isfjSKVS2Nvbk8+3Wi14PB6Uy2VMT09L1k+/30cqlUIkEhEA11zaxQwqvIyJyfvlT62v9TkzHI5LTB4cHGBrawv1eh3D4XlpBYKxtG/YYJA2dLValUaIDPbStjDLP7M92I+K66LtH64h7XySIV7XoVmHHHqfM1DLEjRm4EHrW5a3068RGGMJD5JYPB4PWq0W+v0+9vb2EA6HYbeP+9kkk0kkk0kcHx9LcIL7YGNjA7lcTgIXmUzGwATWzEUtk1o2+Wxap+nBfaSzPzQYrc8ObX8TWKB8Hx4eolqtolaroVqtIpFISMYwr3N0dCQ1opvNpsGXo92sM4XNNsTrNMx2gSaXaP+e+9rsD/P/Xq9XfDbOa7vdls/QdtY2C+WB8qLJYATtqY/6/b7UAE+n0xeup+/XLJtmLOZldi/fx3I5zAgBxj34aPNvbm5ia2sLdrsdqVQKb775Jra2tvD48WNDpgb3Ogll9Cu0jtX4DKsr6HmkX6h9OsBYFk+vA+0e82uvyygUCkIU4N7WMqmHmWCq/TKPx2PAkjR4CpyT1sw6XpOfWE2EZSC1jdBqtRCLxYSQ9ufgPV9ms3NQXrivqDdZGkxnGgGQzB7qSPqkrB6he2Fwf/Gnrp0/ya80Y1nm95yenn4XhAAkqxEwlik341jMcKXsMeuV653JZJDJZNBsNsW/mZ2dFZkslUpi63EdzRneAC4EC/h9/NxoNCY79Ho9lEol3L59G6VSCZcuXUI8HjdkRFBnUebMGC2Dsma51rJDm7VQKCCbzeLFixdoNBoXiLt8HtoLxCZ4Bmh8bTAYIJFISK80bVfpLD0OXoN2Gf/mcrkk8/UbF4Qwg4B6IfSBZ7VapV6yx+PB4eEharUaXC4Xrl69ilKphEqlcgHs0gvX6XRQq9VQr9cBnNcVY8M/AIaa8hx6ARloiEQiACCGWigUkjJPZOuyTBEVCe+LZQ4ODg6Qy+UMCqfRaKBarcrm4TV0HfxWq4Xj42MMBgPDIc771JtvkrGhAWo+s9U6rpm6u7uLxcVFJBIJDAbjpr8sDaSNFZa/0feuNwS/TxsQZtbByw4JbjwyPMyHov79mxCEKBaLaLfbBpYSMBmQ1kyDSYfOrVu3sLa2hmaziYODA7zxxhv4+OOPDU6IvjbljBFQKlsORjGpHLVRSubB3NwcpqenUa1WkcvlAIyjzmtra3jy5Ik43i6XS4xMshdodAPnoDP3sDYK9XgZoEcZZgmTqakp3L59G4lEAlevXhW2TaPRQCgUQjQalfr4NEqpAGnQcz/r0lHUL1pPmNfMzLibBFRqZ02/ZgZTzN/1bQ5C8L6pA8x7UdfQ17qBP7U+IigaDAZlzinTAAyHOcHUWCwmQMHu7q6UgGH6sM02bojKsiUEOen8UffpNdTPNsl5NL9uNib1dfiT+47BQRpA9XodW1tbODw8lKDZ0tKSyLY+/waDcSmxhw8folAoSKkxAjIWi8VgSLxsnumI8bnZUIvfZwbiX8Wh19bsKJn3uPksM+srvfY2m016OHAtGBiwWM6bVpIEQDuGACWve3Z2Br/fj9XVVQSDQZTLZfj9fpFbGtU2mw1ut1sMus8//xy3b9+G3+/H4uIi/H4/rNZxzyqHwyHl52q1mjTY1bLCYB/PLjo79+7dQ6FQQCqVwmAwwPHxMex2O0KhEEqlkgCztNF0XxG9xxiIYblCPceaXW62G8xrZgYi+I/BG71+r+qgY04HBTgPQtBmJclBz7VOIee8tdttcYzJaKJzQB06GAxQqVRELrSsEvja2dkRHawz1d5++23cuXMHtVoN8Xgc7XYbOzs7KBaLmJubg8vlEhLLJCLSpN85zLp3ko1F0tHOzg6ePn0qDSZJJGIwhfaYLvHH56OMcw5tNhucTqeUPuGeZnYdy0FqNj5B3ElsaABiW72OwQh9Zur/a9mlzPOs434fDodwOp3S/4F9H/hZ3Z+vVqsZ+kMMh0MBcDudDvb390Wm0uk0gLF9U6/XJVjR7XYRDAaxt7eHvb09OBwOvPHGG5idnQVwTtjiM/AezTptkn2hbR8A4ivyc8zaAc7lhfYpy+hRblmqsVQqIZfLCSBcLBYluM1sYAbfWq2Woc8LYCwfBJyXavifqun8TRwaANO6lPYCZdLss+o1J5DJrDXKqJYZAqOUeZ6nOsONtckZgCMgys/RRtRM1UkAFv+ug3/6bDH79HoO+LoOFjCQu7m5iWw2i36/j0AggHg8Ln14kskkHA4HKpWK+EI2m00IDrRFzGVxCWbpeyRGwmfQ/glwnrEyaU0I0L2Og+WGNOGF60s/CZjsD5PU53K55BzUlQMAo8ybbWeLxSLfC4xxBd3Dw+l0wufzwW63G+r0m33yL7MP9E/z4PPyGo1GA41GQ/wrrXvZw6zf7yMYDEovzMFggGazKbYTgVzNLqcdYA5C8HVNyAEuZkNyrur1+msbLNNDk2DNhDJmVLXbbcFP+XdmZY1GI/FDNjc3JXjUbDZRqVSkV+/y8rJkfmsZokzy+maZHI1GKJfLhiy3WCyGXC4n6/jo0SNUq1W8/fbbWF5eBnB+/tN+oT/F14iHkgzE85u2EjAO/ubzedTrdezv72N3d1dISLQ9KXf0Q2lPkcDBn7zm6emplPmv1+sIBoMXMv3N68NsB3MQQr/2PzG+chBC/9QHsE5NBCCptevr6xJ0yGazElVixMds3HJSeUgSINBATqfTEceI30UhpYDZ7XY5KBlJnp6eRiwWQzwex/7+vggu70c3gdaOSK/Xw97e3gWDkwwAMzuQRqDFYkG5XJYySaenpxKdpePFZ+I9a6YOr0lh1HPDTfTixQtDyjH7Q/A6NpvNwCbW820+GPg3XW/sy8ACGjWaTcq/mw0oMuT/1qPVaqFQKGB+ft4gg+bnpCzqAwkwGoO1Wg137tyR+T88PBQGn978WpZcLhf8fj+Ojo4usOwsFos0pOHckhkGjGWGIGmhUDAYwQ8fPpRsG65DKpWSQ5HgJ2v3jkYjFAoFeL1ew7PS6Z4kH8A5Y9GcqQGMmYVWqxWHh4cIBoMIh8PSNLNYLCKfz8s1NSCrgxraqNLGtJnhodfJrJd04Ej/nAS268/pteVndKbUt21okFwfKFpf07kFjJkknAvOJdNr0+m0HIoaoGH5BAbQwuGwlA9xOp1Ip9PodDqSIca9x/fW63Xpv8NUTsqtucTWnzJoOfRam/cwQQGCV7oxb6PRwOnpKba2tlAulw2BqFqtho8++gjNZhOxWAzLy8sIhUI4PT1FtVoV3Uuj1uPxSHCa360dM70nqfc1QMOybQAMwblXdbzsfHrZ37WM83UzsEQgmPUxgXMngo7xYDAQx0azzPx+vwQYdB+nhYUFHB8f48MPP8T3v/99CTSMRiOcnJzg8PBQQH2n04nPP/8cv/vd78R+cTqdKJVKePjwIYbDIeLxOEajETKZDBYWFkTmtOxYrVZhcdPm6Xa7cDgcuHLlCnw+H3Z3d6UHQD6fx3A4lAxJbTTrzDmCy8PhuESlmZGpA9TU0Xx9kg03KdCrHbpXWX4BGGwh/awaaNIl77SDyx5Q+loMFpgBB64HWYH63NTfz4Aq5ZO9D87OzhCJRBAMBvHee+9hY2MD7XYboVAInU5HgKnFxUUps6DLIvI++D36nsyvc+jXGVRrtVo4PDzExsYGGo2GQYfq4B9lT2dt8jr6vKCtre1xznkikRBQhvOpAQcC4DrTT8/n6yC/k4YGvszrz3mjc8410+tG2QkEAshms5LhoPWD7k9ntVoNzUSZTcaAsM48t1gsKJVKwva22WxSBpI2RblcxtzcHIDJWXPa3uE98738u5YBvW/1PmTDYYfDIY2MT09PUavVJIPU5XJJGYp+v496vS6f5bV41vNv2l4xgylk9uqa+5N8mtdpmEH7ST4CfQ89T/rM4+9aV1PWW62WIRigGdbAuS3Nc5MsWwKU3AsejwfBYNAQBDPbOlxzs6ya/TR97/xJuWTQg32uGo0GXrx4IYFpAGL7Hh8fY3d3V84NZhLlcjmxjYvFopRmou4l0ZL3T12q8SKW9NHPpeeZvoV+HqvVKuV7X8cxGIzLwS4vLxvwKcqWnjPAWMkAGJebYVURYjWTgq7689wzDocDwWBQMjSHw3FZUo2b6CASr8dAh9mG/SpD+6L8p8tQsuTlcDhEtVoVrKHdbkvvQmYFs6Stzn7Q3zEYDBAKhWC1WoXco59Rz5X5DOQg3vcy//R1Gma9qv/v8XgMa8VBu4961m63S3buaHRO4q3X66jVaigUCsL41+Q+YqNa/9C/4fn79ttv4/j4GM1mU3QjCbsa1zo8PEQ4HMbS0pI8l65WYLFYJMONdidtTgalNemg1+uhWCwKHsY9yT3N+3O5XGLzULd6PB6k02n0ej14PB7J1gcg9jlLmBKbIbb9sqGxIH126eDM1y3PXykIoQ8NDVy+LPWqXq+jUqlgbm5ODqBcLneBAQ5cZHmS0UXjlwvE7yRLZHp6+kJdeH14875LpZLU9jo8PBQnn46OBuMoYPx8s9kUxcvrcfj9fslwYCCD98/eDTrqCsCQGhOJRFCpVAyHg9U6rnGmy1Bp9iLvsdfr4ejoCKVSCel0GoPBQJq5MMChQSvzofMyI1UHH/SmMq8XAUcCbpMMe+3E6cZ/f6sxGAywv7+PpaWllx7A+v9UOPrgAoyRcNYkZE1LM1uGADs/Z7VaBfynAqUC00wHt9uNUCiEZrMpaVW1Wk2cGzp7DE5oMJkMXip2rqPT6UQoFBJnTyvU4XAorMmXlcHp9Xqo1+sol8uitJmeORgMUC6XcXR0BLfbLdkezEjSgTH9nRos0Cm7OooOnOsc/v9lYIcZbNb/NzNAzAab3hs0yr+tgwczDzHNRKb80mnQAVnz4UN9VCwWkUwmBQTiZyivDocDbrcbgUAAiURCeiKk02lYLOPyMc1mE+vr63jw4AHq9TpKpRLu3LkDn88n98Ssi16vZ2Bwa90yySGZBIJpZ1Kzr3j/zBaanp5GrVbD3t4eSqUS3nnnHQmY8Hyz2+04Pj4WB7TRaKBSqWB+fh6np6cSQNTfzfqKZOloJ0LfF40uLY8Wi0UACl6PZ8erPszr/LK9qh0SM4DEQZtBBxTpMHM+aYiS3cXv8/v9CAQCAnpFIhG0Wi08ePAA29vbYvCVy2U4nU7U63V89NFHmJ6exsLCApxOJ548eYJPPvlE9B8BC4tl3PCRJAcAePToEd566y28+eabog+pE7UepLzwuT/66CNcv34da2treOONN/DRRx9JLywGJfhZv98vc8JzhHogmUzKdc0MO35e22j6uhycR3PAjGcbDf1XddA+NQNEuryjllXqZp692rYYDMYlmtxuN9rtNkaj85IulIlGo2GYT3PQVp+1/F4yoNiAz+fz4Y033hCZGQwGaDQaYneyTOhoNBIAf5IdSVnR9p9+jbaIJg71ej1UKhVUq1Wxxfk5nX1A+52+hFlHmElC/D7Kud1uRyAQQC6XmxjMZS1iAr/akdaO7OsI7mqmnNmWJdBEO5DyTx0AQEAst9uNcDiMQCAg8kxZ1iAk/QruC8oS7VZmA6dSKZHFXC4nJbbY5LzT6cDj8SCZTBqy3em38pk4zOC9lnFNJuKe0gQh2te0XWj35vN5AQdYik+DX9TBWnZ1LxPqY20r6GEGrc3r9LqNLwNXze8zB3YBo1yz6bLW281mU3QBdRllQ/vCmmzDLEsCaR6PB6FQCMFgEKFQyOA/89607E26d/Mz6fcR19CVEQaDcfmSQqEgvYOYDRYIBNDr9WC1WqWEts/ng9PpRK/Xw+7urgQS6Rvx3OC19X2ZfwLn5xJlW88T36f9Yf1cJI+8roO+16RsCP4zzxtlgTJA3WzGafhP25u0g1OplACalGXqep35xu8aDocoFotSTheANFu3Wq1STk/L+suGBkjpN7HqBwk4Z2dniMViCIVCaDQaqNVqYs+ydxrvzVxVgWfNYDDul8V+lfy7lmEy6yuVitgCZh1LItp34xxDBS7ijJFIROxhBmU1BksiIm0AyrSZGMIsF11Kk7Yx9QplR/vd3EPValUCTuFw2JDxrjE8BrJoQ/K61HvsXQGc2/Onp6dotVqCgTG40G638fDhQyk3qfEvq3Vc+iyVSkngWNvDkUgEMzMzyOVyKJVKBlI3S7oeHx+LzW6xWGQeJ/nGGi/kPOnrTQq0fR3jKwUher2eIVWfxpO54YUGYPf39xGJRBAIBNDtdlGtVg1gtHlSyAxlEEIbflpxcqE52TQCtWPSaDQkCsVr5PN5QwSJC8/MCjLKeBhSyQaDQUn5JbgXCASwvr4Op9Mp90OFXyqVsLGxgUKhIPNktVoFFOb3XrlyBV988YU0NOZzEtjgoLDynjkXLMsTi8UkekVHTYPc/NyXGTbmwbnjwaTvhZuP807FrZ1vLcQWiwWVSuWriNvXNvL5PNrttmFugMlBmuFwKO8117rl61arVZx3M2BqZi8xYMYDHDiv+0alohVSpVKR1C6HwyF76eDgwFC2Re9FBujo+PAgDwQCWF5eFhCK8kLlrwNLDEJoQ4VGbaVSkSDXm2++CQDIZrPI5/PidOlnY6CQCp73rPcr75tOprmGH2AEvfQ+10GLlx18vP8/lSqpFbNO+/w2Dj4LDzSdVqudbc4/DTLKuA4E2Ww2dLtdqQFKfaadHuC8wTMDDNwDzIpgLdmbN2/is88+k0wIlhTRDZQ6nY4AT9wjlJtJQxsGdMJokOg9STknAHZwcCBAAbPs9vf3pd/KcDiE1+tFIpFALpcz9G9oNBrY39+H1WqVVFFtrM/OzorRpdMeOe8asDUDv1arFcViUf7GfTMpAPOqDK6hPrOAiwEmZuJEIhHYbDbJstL7nu8/OzsTgFMz9WhjEFiljPj9fmSzWVitVmH/UR+4XC7U63UEAgH4fD54vV4Eg0E8efIEkUgEyWQSa2trKBaL8Pl8ODo6wieffGIAii0WC5aWljA9PY3t7W3D83e7XTx69AgWiwU3btwQVjAAg52lQRAauKlUSvYKm7mZM50sFgsKhYL8nQAfnc5MJiMgs84u1dl6L5NBDYDpOebvPK/M6/OqDZan1Cx+TeSg80pZt1rPU7ppI9Lx5/lNhiqdDQ7aZpqIo+dY22P8yZIEMzMziMfjksE2HA4RjUZFN3q9XkxNTaFQKOCLL74AALzxxhtYWloSh9285vp380+9N80ANgOBLH86HA4FPOO9xONxVCoVQylX7Rxyn9CH0NfX557+qe9tZmZGSlqZs3bNeuV1GwwY6KCZ9rkIwGtgU8u8w+GQxpGBQADRaBSlUsmgn7QNarajWSKA9ipJNgxssFzT6ekpUqkUrNZx1lij0cDKygri8bj0VDg9PUW73ZbgHu9R26Qc+rzRRDjKngY7tN3SbDZRKBSwu7srJQBZaoL2iQ6yaFvLfMYlk8kLIKP2g7Uu4Xz9OSDfqzrMe9Ws/xjQ5PxxHbTepOwNh0OppQ/ggm5lkFMTpuh3A+dg3HA4RCaTwerqKqLRKIBxVi3BYR141WvJZzCDSJQX/X59X+ypqcubdLtdvHjxQvqKUG+enZ2hVquJPeB0OlGr1YQYxHKAzDLSpQAJeDGoYA7cmoO2nBeNG5mfdxJ2oEmgr+M4OztDNpvF2tqaQe+YS7C9zDfQvrQOvPGzgDFLOxKJSMm6brdrIEIBMOAX9Nuo+2mLa3IAAMEgzAQAc1Bk0tCgv81mQyqVksAU97Pf75css0KhIDijlkMGdIlt0feKRCKSiWfGGXQQWJMv+DrlNZfLfSOqfXwThrk/rJ4zh8MhzH3auFx3u90u57SWWR3oZDlFt9sNp9OJXC4neBR18KS+U6x4YLFYcOfOHcH1XC6X+Gf6M/wczwltS/PvJHlSdq3WcSbN559/jqdPnxpwFma7Hx0dGXBE2vAOhwPLy8vweDzY3Nw0BLTZi3Jvb09I9ABEX8/MzKDf7yOXywl51uv1ShCClUs4n3xGs29oHlrff13jKwUhms2mRL61UTTJ0eDk9/t9nJyciHPBQ9c8uLA0yICL6TmaLcAF169p5cHf9YEZDAYxNzeHZ8+eodlsGoxPr9crWQ2MUtG593q9WFhYkMa6wDilKBKJIJFIyD3p9NoHDx4I6M5nMwdU2u027t27d4GhSadTl+vRQRMNEhL0JVDNOaQjqTeBeb757JOMV3PAQ4MKfE7zupjXX68VAGlQ+7cezWYTpVIJqVTqAjMAuOhk8jkn/V1Hadl417wHCCRpRUzWHY1UbbzSoWEjJR6AdNJ1XwWPxyNZEjabTTIQeM9er1fK4CwtLUldXJ2xQdml8UrGhK4BDkD6vOzt7QlATIOjUqnINQke8BnMil07bdrhsljGkVvqADq+WmlqQBnABedAz6XZeNd6xyyn+v/8LJ3kb+vQhlar1TL0czA7vHqO9ef5d0b6A4EA3G43Wq2W1LFnoIbBJpbBI7OAZV8I1AeDQczPz+PmzZuoVCq4fPkyLJYx26Rer4seG41GqNVq0py12+3C6/UiFAoJmKz1iw4wEPDUwAmfSRsMo9EIxWJRshh6vR7i8bhk7AHnRm4mkxE2UqvVwv7+vuw1sn90gM3n8+Hy5csX9j7Pm2g0ikKhgEKhcMGw5TWKxeIFx1M7EK/a4HProe0N/gwEAlhaWoLT6cTKygr+3//7f+JIc1D+R6NxOQ9dt5Z/J/iuwXY62xaLRZrvLS8vw26349mzZ2IgU/93u13Mz8/DarUa6oAPBgMJIhHsd7lcWF1dxdWrV6U+9ObmJnK5HGq1moAHW1tbcLvdWF9fRzgcFrk2B2XcbjcuX74sQY1isYgPP/xQejSRlMDyS7Q7uL/S6TTy+Tx6vR5CoRAWFhak7xaZRjrTdRKwYD4ftdGug0lkAeuGq6+iLI9G47IBOpiv9Y15P5vnTuszAkR6Lfg+2pTMtNR2uA4ea51HGVpeXsb7778v/W0IkpJgQ/ux0Wjg008/FR1VrVZRr9dx9epV+P1+Q2Bskv1kBhcIdAGQINnZ2RlWV1dFv2cyGTidTgkI7+7uYnZ2Vurna5uJz6p9EXPWny7fpJ1fMwDOwBv7xGgQXM/vX1Ja4ts+CERShjRTUNtQ5qx4s+9D1il9LdpX+ozm71qf6jJmo9EI09PTUorB4/HgjTfegMPhQK1Ww7vvvovDw0OcnZ0hEAhgMBj3a9re3hbZZhmGq1evIhaLScP4Sf6QtitY8kk/D/cxQYB2u42TkxMhEEUiEbz55ps4Pj4GABweHko9asqsWQ9whMNhRKNReDwe+W4O+mJmH1zv9ddx6PPIDFxr7IC/a91hPucoa9qfoL6hzaBxBAAGPcFz1uFwIBaLSf8nlgojKYdMa8qavnczAdHsA+n39no9sSE0EEwb4Ec/+hFyuRyePn0qLF0GwhjgZqZGt9sV8huvPzMzI4QdfncgEBAdSzCQ82A+z/gZXfKRg8816e/fgbtAqVRCtVoVnaaxMZ5fL8PWODQGxc/RR6QcsbwMAMkmI+GUpJ14PC6lkEiGIUmX32nWZcQVdJUFfY+T5IQ/zc9A0rAuYUcyB3EIDi2DnDcdMCPGp+9f4wv0C7mnzNnufLaTk5M/vYivySBZW9tkXBP2RXI6nYJVWiznPSqJHwGQqhwOhwOBQACRSASZTAbD4ZjgzpJKxGu1PtdBTq653W6XnpXAWNZmZmbg8/lweHgoOlATIViJhKVwNW5GH6bZbBr8T5fLJfYy+0Jsbm5K8I5+Jt9P8m0kEhFcATjv6eZ2u3FycmIo92632xEMBqVZfDAYRKVSkT7KwWBQdC0zRM34Ds8T2r7a7tH+5tc5vlIQolgsIpPJADBGt7Qhxdf0GI1G4rizxr1mfOqFYCM63UBHH8xkTXHxtYATXKBiJmuRCppMGX3A0pAsFosCOjJSyvtkVGlhYUHSETVTgmVpLJZx0GVnZwe5XE7eQxBaG5BUgrVaTe5XG+y6d4S5jIpmlRMA5j1q4NsM0k0C2rXxyuvr9dVBD/5dB1L0tfT19U/OPRsp/63H6ekpDg4OkMlkJhqqZscKuOh4msFuKhaz001jC4BBXgFIaQCuPxk1lDs67DoKu7u7K01/p6en4fF4xDmyWCxIp9M4ODgQpcxg2/z8PGKxmIDBlGXKDxvjMY2MDhnvu9/vSwCCsj0ajZDNZg2RbDo/rDtO8ETPpw4aaoPaZrMJY54GC/8+yajR8wrAULqHa8Sf2mnQ68d7NgMNAGRtvq2DwNLZ2RkqlYo0gAYm185nBpUGeTjIEgEgzjMzCTTwPxqdNyt3uVwIhUKGdFxm0rF8TSAQQD6fRzabhc/nk3tjkzyrdcxAPzg4kJJ17KuysLBgYDJqwJOOFQB5Jq23uGetVisymYxkMTgcDoTDYZRKJXkP9Xc2m0U4HIbH48H8/DxSqRQ+/PBDHB8fG9h0nLdEIoGFhQVks1l4vV65NxoVzWZTGGQ0lLQMDgYDFAoFWQPqjm+zTP6poUEfjknnTCQSgdVqxf379w3lEjQIMwmQIdjE8ks0LHUmIsHPcDiMSCSCeDyO5eVlMRJDoRCOjo7EMdnc3MTe3h5sNps4ZryX5eVlLC8vi41CnctnWVlZwfLyMvr9vqSTk8HodDolEK2ddg1ucE+Zsx74vNwb7XYbPp8Pi4uLePLkifTvqVQqEuien59HMBjE0dERPB7PRFBZAyw3btzA2dkZ9vb2UK1WDUCNnn8A8l2cm1dZhoHzfgfUlXroOTL/rh0DziEBYDae032jeG2uIYkNZsb2cDgUPWaz2RCNRhEKhS7cx87ODo6PjxGPx5HJZNBut8W5IsHgzp07KJfLeOutt5BIJCaWbtS/v2zQvnE4HFhcXEQqlZI6zgSR19bWcOnSJezv7+Pp06diQ1Ou9T7gucV7oA3DuWPA3OVyGViQnEM2r3S5XIZn4frwnl9mh7zKo9PpoN1uy/nNocFa2nHBYNBwblGnsmcB7VtNcNL6mXaLtht5DWZ0plIpXL16VXrxOBwOrK6uolqt4unTp2g2m5ibmxObpVarYWNjQ5pWs3RGq9XCj370I2mU6XQ6DVlx/G7eU7fbFTtH7696vY6trS14PB7s7+8LUYjkn+XlZUSjUSmnyqwQypIGxvS8LS8vSx9FndVMOSdgrDNV+NnXNQhB2dIEMTMoCUBY07pcLuWYepFz7nQ6hUyjdStJf7rkKa/D36empiQzsd1uS58+lhNjT0F+ny6TSDIW9RmzD3hO8HlI0iEpRp+7brdb8IBsNosHDx7A5/Ph9PQUbrdb9mWj0ZBm3S6XS56z3+9LJvTOzo5cj/Z7JBKRYCKDBVpHmn1izs+k9+mfek1e5ybrHARer169KnPK7F5NLJtkbwAw6BdNjKL+pMwFAgHpo8OedJqVbrfbpYwtr8Xm2brqCAftbQYr+Cxah5qDsNof1zYM+5exrxrvm3tzOByi1WoJoErf1Hxd/t9mGzdZJ+7H3mn63Nfl481ZI3xvsVg0ZKi+7oNVODRRHBjLT6PRgM/nuzBf1DM6q5X9+NiTstfr4d69e5LNqHUd10sTanRpImJs9MP4Hp/PJ5mU7PtHnWuxjEsiHx4ewu/3C7bAsosApELKgwcPUCqVAED6D7fbbQk0t9ttKcPHKhvchzwrWD2Hc+HxeKSnlN4vtAOIT9dqNUQiEZmHaDQKr9drqLzD1zioQ8zBBtoODOR83br3KwUhTk5OcOPGDYOTxPFlQDT/RueeD2b+DCOZo9E4ZVeXZKES0Oxx1hnVNV8Hg4HUJidThoLfbDbx+PFjDIdDUV7aYeZ3acCKHczZ2NrtdhuUJRfKYhkzqwqFAo6OjgzOl15kgtW8vhkc47xZLBZhsevDgwCtNo5p2IRCIXFAtZHysqEdNr2GZvBdX0enJ9EY11FlDcDo6xaLxW9MOSYA0nTRPJ/A5Ei8ec3Nc8Zan/r9el2pQMhG7fV6hpqbGjTSoPz09LQEGGhsAhBnmaAVFSzTsbQRmkwmMTMzA4tlHJyan5+XkjmdTkdq+O/t7Qn7UStaNqI+PDzE1taWIXVYK3juq36/j4WFBayvr+Ojjz5CtVoVdjvvXStGOmBOpxPxeFzYDGYgSxslU1NTCAaDcLlcwj7jMKfzc29qp0wbxlreuW+63S7y+fxfQdL+dkMfWgQJ9eDvfGa32y1MKm2kUgYob1onmJ1pfif1UDAYRK/Xk4wZMq4bjYY0dCa4UCgUkEwmUS6X0Wg0ZJ90Op0LxjXTzK9evYrRaCTGLeWWwWw9F7p2I4EQAsuUkdFohAcPHshenpqaEqeL91Qul7G5uSn3p4MG1IF2ux3RaFRKNxHsJvBWKpXEkdOZHzpjo9FoCKtBr9mrDILpgKzen2ZD6ujoCJlMBn6/XwICfE2f51pmRqORIThFxrPe//rsXV9fx8LCgiEFOxQK4Z133sHy8jLOzsaNfVm7dGdnBzs7OxJo0vqV7Cyn0wmv1ysNHbUjyAAHn0M/P5073gttDv4jey0UCiEcDktAORaLoV6vS2CQBjPnlGfH1NSUPBPLnOjSaGZ7j2zme/fuYWZmRpxA89mpdbE544dG9Ks4aB/pOeP6ARdtCqZVM8Bg3uN0ztLpNHK53IXatdwblEX9ecqZlkHqQS1nzHrIZrO4dOkSMpmMBHnNNuD+/j7q9TquX7+OpaUlKeGlnXdzMEXLhtn2NwddarWalK87PT3F5uamEHb43JxTsxOqs6AJrExNTSEej0sGJ51Rff4TbNCBQjOgST/ldRv9fh/FYlGa6OrB+Zmenkar1ZJ+D3TAgXEQIBqNyjlPe0SXgdT2rZY5ygdrSJPgkk6nJdhHkluxWEQ2m8UPf/hDAVTr9Tqy2Szq9brYQixVUCqVJMMYGIMPDB4SDBkOx9luzE7nfVOPTk9Pw2azYXFxUXrNtVotydJbXl5GoVBAq9WSkh06EE4Z1ufRcDhEOBzGtWvXxN6lHHN+WKOfJSHM5923OYv3vzO63a6sCXCe9W0GOQlGMUPP7INrVrnX6xVgzRzg5/+1jtPlZVm6sVqtotFoSJkbfi+ZqvV6Hbu7u8hms0ilUshkMsjn83j06BEWFhZw5coVAT4JsOkySQCEPMDzfzgc97BgsKFUKmFnZwc2mw2JRAI/+MEP0Ov1cPv2bdlbp6en6PV6oh8ZSKGvyn3NcqMk75iDhpxHM6gL4MKZwPEy7Oi7IMR4NBoNHB0dYXZ2VmxkrRcmgYY8s6jPzGtCmabv5HA4xHZlYEr3oXI6nVKOkZ/VVUv0eU7gmOtJfc3XJ9mJwLnNwkx62gHs0cYSdwzMkVlO/c37MmOVZvniYMa9BsZ1oEHb3NrHBcZn49HR0V97qb/Vg4F2v98vuhaA+BzUp9oX4XtomxHrJchOzJj6XMs8P6c/D5wTf6nHAEjVm5OTE/R6PWxtbQm5gj1AddleYLzvaDcQA9Y+qdvtxtLSEmq1mvjuzJgkVgGMccKVlRWUSiWUSiXRh7Q9STrmXDEYOBqNRNaB80CBzso8OTkRXy6VSsnckIjPawJGLM2cFACc99ZggPrrHF8pCFEul9FsNqVmK/By5pPe9HrjMzqmP6tf52vpdFrKsujDkOACr8VUKuCcCc3FyufzWFlZgc1mw7Nnz8TIpSDr+6BQM/KvGXvValVSKJkeo5Usr5vL5fDkyROpX6jBWSp4OoM0vKlA9XePRiOpe6ufXwNVjF4zbZ4Gko7OTnLwuDaTgHbzmpgj2vy7DnDoDT8JIONnDg8PvxGNqTnq9TpyuRxmZmYuACGapT/J6Zz0nFxD8/s0WA9AwPKzszN4PB74/X5hTdFwHo1GcvAzIqvBIB7sAERpUo7q9bqBJej3+7G8vCwg1ezsLHq9nig2OpexWAx+v19q2rdaLZTLZWHslMtlVCoVdDqdCyAC74tgNUGKSqWCVqslqZP6eWiQ6qbuVLR67ijPGgi0Wq144403kE6nJbr8+PFjAxPEXLKBv+u10ffN//M9hULhW98MjXMHQCLpk56Vf2PJvGq1euG1er2OSCSCUqlkyNp52Tw6HA6EQiGMRiNh1gYCAWSzWcmsIWuL9fczmQyuXLmCYrGI3/zmN5L6y/0AnDt7gUBAavWSLdDr9QxMRj0sFoswXHW23NnZmRzSLpdLjGnuOQZJGJgpFotiWGiwgjLHzzqdTkQiEdTrdSkxpgMM/X4ffr9fAiwabOYep+Gln8FsPL9qo9vtGpodmksd8Gen08Hu7i7S6bQhhVo7wVpncNhs47KMpVLJkP1gt9tFnihTZsYLZWZ6elrqe+ZyOQlos9cP2bK9Xg+tVksCyf1+H3Nzc/je975nAJoJMvEZeKYz+AWcl6Zk4MxisVwwlC0WC8LhMC5fvoxeryf/eO42m03s7e1JeQUGZHgWkdFIMFwHOcxBkenpaTx58sSwz80gDm0InjMM6k4CH161QfnV88e/c3/rtZuamkIoFJIyWtq+Bs4zVGdnZ/HkyRMBDajDtA1DYJcyZg4I0Gk+Pj5GIpEAMLYjWq0WEokEIpEIFhYWcO/ePSlNSvCB9cttNhvK5TI+/vhjnJ2dYX5+Hh6PR2wYM5inz2Rm8mgQj6/X63XcvXtX+pMQbP3ggw+wubmJhw8finNks9kM5APa/nxmDSRyXvmT8s/vnpqaElIKy4XptTSDZ6/bGI1GODg4wNramvgvtN241py/YrEIj8eDer0uZT273a7YnJVKxZANQIBMy6n278jKpoy73W54PB5ZWwZLHQ4HZmdnpdGvzWZDNpvF3bt3cXJyAo/Hg2g0KgxwlpUkCUjbj5QrZpLSb9SgLJ+ZGRKFQgHxeBz/9E//hCtXrkjpL93LAhizO+k3kdlLPa3L1c3MzCCVSmF/fx+BQMAQOCMQwgwT7knuKdpWr+PodDoIBoMGMIdrSx2o7bRkMmnI0qfuYLmkfr8vGefUYZRX6gIGORicov9CJm84HEaz2RSmNXBuJ7NvSCAQwOPHj1Eul7G/v494PI5msymM9OXlZSE0sAwNMQ+XyyWkSz5Du92WoEM0GsXa2hp+8IMfoNPpYGNjA9PT0wiHw3jy5Any+byQZhhA5LlCPyIajcLn88m+SyQSCAQC2N/fh8fjkf0MvLyUDsckvEG/pj9Pf+G7MR5HR0cIhUKCw1FXUgYJKpp9MrvdbqhOQP+Guo9AP8scMfvd6XQKEZJECAYgmAXE4BWJJbwPvd+IQWibxvx+Dg0cM0OBgWASJSuVCmZnZ6U6CXE92vEaoDUTXrTcET8DJoO0vFdtB2tf7vj4+BuFbX0TRqfTQblclqxD4jq0H5kNxr5jJNWaA1s6aGYOBFks46xLliBnX9Z4PI5yuSz2CAd9qsuXL+P09FQCR2wczUFiYKfTEfxsbm7OgK2a95bFYpGs+ZOTE5ydnQnhi/p6NBoTIB48eIBWq2UgoQHnwXI9TyR2jUYj6RXH4Az3GzED4mQ+nw+RSERK65H4rG01/b2UbW17MZBH//frtHm/cmPqo6MjXLp0yWCU65966OACJ4BGqdmpneTkxmIxA1uJk04DgAumyzY5nU4kEgkxLre2tgzOmmZK0dGgEcosDLPjTeeI6T8cXNizszMcHx/j8ePHUuaASo/XZfkn/ZxW67gB0PT0NNLpNAqFAvb29qTRGnCe+UC2MOeAjj3vg6lwumYw51tvGPMG4uD86XTfSe/hPQHn9V/NoL2WBzqKJycn3yjn7ezsTGoNcx056Bhp+TXLspnl1+/3JWVMAw1mwEGDawRMeT0dxKBTQueKDWZYn5TBB80k43tpOFqtVszNzUn/iWAwKE3JtOIZDsflccLhMOr1ujQR3NnZkV4PAMR5o4FOWeT8seQB09x1GREAciCRuaFBGgDSIF7Puc4oAcZyFYvFEAqFcPfuXSwvL2N2dhaPHz+Wa+kAGddoUhaEeX0101o3r/+2Ag+amVyv14UhRsNLl2wDIIc/Uwe1jmdt8larJWWTtF6nEck5j8VicDqdKBQK4kRkMhnMzc1hZ2cHnU5H0iALhQJ6vR4CgQCCwaCAoprZZ7VaEQwGMTMzI86QNlAYwCXD3Lxm/D+DAVzrTqcjDFuCHTrNmNelziNwzX2nM/r4Hup1j8cjpct2dnbEmaXR7nQ6DQEfOgTUw7wvDr1Wr+ooFApS81bPsxkUHI3Gge1Wq4X5+Xk5Y/WepkxqWwEAkskkdnZ2DGc8WVV+vx9+vx+hUEhkTIMN5nOu3+9ja2tLjEo64pQzltsKBoPwer1YW1sTQ1IHWRm85XoHg0EEAgEDUNrpdKSkERm52qkDIEY4+6ho1hkwJpLE43HMzs5K2afBYIBAICD7BxiX3iQYxs/qs4065NKlS9jc3DScd/p1zn2xWEStVpO10Xr6VRy0V/l//iT72cykstnGpY7cbrdkP1HWtKMeCoWQTCZxfHwsc6zPYc497TLqeDIQaSO0Wi18+OGHSKfTqNfrKBQKmJqawvvvv490Oo2TkxPcuXPHcIbw/GcZEz5jvV43lDWbFHTh/dBWoINF+5lBbZY9uX//PkqlEt5//33MzMwgHA4LsNhqtQTgsNlsqFarkkHC+s0EhrWMMVhmni/qmdFoJNnH2m7je/gcryvD/PDw0JCJqwOpVqtVsrFpp5KpTb1AYJyfYzBJv4fXoh6kjuLaTk1NodPp4MWLFwIy+Xw+zM7OynqdnJxgb28PjUZD6ivT1iZYQACVoD/15GAwELBMA7Ak+fh8PgkOM7DAgO3q6ir29/cRi8Xg9Xrx7NkzKaHGmuG0qxKJhJzvzNzvdrsSuGEZJ4KAvA9NZms2m9KfCji3UzVL93UcLD2qKxuYbUGdtWW325FKpXB4eCh+N9msJL9wDczZDxrkpO9FogKD/JcuXcLi4iJKpRI2NjZwenoKn88nJR9/85vfwOv1wufziY5mCVWWnWw2m2g0GmITjEYjkSXaClrXEYziHqzVakIGunnzppRe3NvbkwoPKysrWFxcRK1Ww927d4VtDpyTMZvNJgKBgJTr0z6uGYjlvHCv88w3+1/AxZK4Gkc4PT01lMx63QexiytXrhj2POdXA+58jXXpo9GooWGzzhbgoN0IjOVI98bjtdnrjCV+CVpqH1xff2pqColEwkC20XiY3ld8Xf+krPd6Pezv74s9kcvlMDs7K2e23++XABr3IfW4tsPMOJz5TDfLqJZb7RezEfd3wziIia6srAipiuf66ekpSqWS+EUEuhk41VmGlBMGMrrdrpTUZSnGcrksZyOr4wDGQCdlIBAIIJPJ4Pnz5wYcimcudQ17UfzoRz/C/Py8odSY+SzRssIzgIQCEnuBcyIRAzD8jA5sTCIuUYcDkNLWtH0YqGHZV7vdjoWFBbGTGSScRBjlenDvaR9Xk3W+UUEIl8uFvb09rKysTAR5/pybHQwGwgzRihM4L3ND4DqVSolxpidOv1+zffnZYrEoAC4dkklRVqZf6TRC7XxQ4CwWiwiVVrC8h1arhY2NDRE23gdf509zTfqpqSlcunQJ3W4Xx8fHYmzr59KMYbMjx+sMBgMx1s3AIu/H/OyT1o2peAyC9Ho9YekDxkYm5uc0bxy+32az4fj4GNVq9Uvl4m8xstksGo2GBALMwxxQ4ZgUyKGRxIae5qCa2TCgM8H6i/w7D21GbbmmlGOWR9DOMOedMuPxeNDpdDA3NydMRyov3VBMy1m325Vo9enpKRqNBg4PD+VQ4PvIECMLjgd9t9vFG2+8gampKXz22WdyT2R70Ylj3WcqdR4Odvu4oTHvgXuSQTEN2ASDQRweHsLn8yEWi2F3d9fAvuT+1Ix3PU+T1pVybbfbUSqVpIngt3loR7TVaqFer0vNeg2qmAOzZ2dnki6pdStlPBKJCCuWOpHXYhA4GAwaeiU4nU4xFmhAsPQSme8MJOngA/Wtw+HA2toaZmZmcOnSJfzd3/0dbt26hePjY9GtwHm5OLOTw/vja91uF6VSCQcHBygWiwLeaoaCy+XC/Pw8Go2GsBu00QCc12InGEwdubCwIAweGlEejwc+nw/FYhGpVMqQdcG0ej3MmThal7yqgyQHzXzVz0t5JbGA9TrdbrcEZvk+bWhpPRWNRhEIBATM5HozCEEmJQ07fdaanSXqMAJv7777Lp49eyaOG+vdv/XWW3jrrbcwNTWFnZ0d0bm1Wk3AWM04DIfDhkC3zWYThhfPUpIOzGyhVqtlyDrQRuZoNMLe3p70xaLNEYlE5Pd+vy8sN7Pjpfe5x+PBo0ePhHhhtv24X+x2O168eGEgTfBar+pg0AgwpvVr+1UPMlADgYDYDxrEYSDU5/NhfX1dgrvaBtB2LADJviEDku8fDofw+/2oVqtCMqDdQXv46OhIrq0zF7rdLpxOJ2KxmDxHJpMRAo+ZbUU7lwCwHiwfeefOHQBjQgXLnTkcDun5wx5XNtu4l4XVakUul5PSJiwRxDkBIKALZdDlciESiRh6yul71Y7tycmJQdfSjgDOm92/jqNarSKfzyOVSsnZr7Ox+DeCqS6XS3oVUFZIImMZIcoqsxB1wJlZhsDYfo1EIigUCqhUKqI7p6en8b3vfQ9erxej0TgzLZfL4fDwUPRhOBwWsMHv9+Py5ctYWVnB+vo6Xrx4gYODAwDnQT8GPLjvqCNDoZCAvXxmllGbmppCsVhEq9XC//k//wehUAgHBwfSw4JlJRhoc7lc0mwym81ienoagUAAXq8X3W4X4XAYi4uLaLVahh5VtIXYKHM0Gpeb0j4E7TTO3es2aM8B5zrIXH6NwUifz4ejoyOkUilDwJ/6lEFj+jAkFvB6fC8zCik3lCGrdZwNQRu43+9LVvLJyYnIRa/XE2Z7OByG1+uV+/P7/SiVSobyOyTDTE9PSy9I3rsODDBT8fj4GBsbGxiNRvjggw+QTCYBQJjx169fl/tcXl5GMBjEJ598IiU+NEO3VCohHo9LtpPb7TbYxgR1l5aWJBv46OhICBpm/0v7yWbSDYMbZgzndR8sjzw/Py+EFI1XTSqxkkqlUK/XJYvAHPwFIGRHAAa/iuvW6/WQzWaFZV0ul6ViifbZtC9E30pnGhMcnYS7mO0EygWzfxi8Zs19kpAZINON2fn9tPOB8zKg/G6SbSYBzLwf7Tvq9+zv77+2pIQ/NQ4ODgxyQT3SbrdFF/v9fsEaSWI0V1mgrh2NRtKDJhQKIZ/Po1gsymdXVlYk+G+xnPe4BMZryJKz3W4XuVzOoJNJ5tGyt76+jpmZGSllx+ACiYfarzo9PZU9xVKLrABCn4zvMxPq/H6/lLPVxC2eISRfhEIhzM3NodlsIpvNGmTRbh/3afH7/VhdXcXp6SnK5bJ8lzkAZ5Z1Du4vBvVoj03ap3+t8ZWsFDbvYu1uKijzwTFpUNkRVNUsAnM0l8GBQCAAv98vi67TISmYdG50+QMNOHExGUGbmpoSlkI8Hpda5foA1M4i2brD4RCRSATRaBQej0eAI5ZtKZfLhmi/duDIQNelN3Qkt9lsolgsiqGjGYzaAeS1GaXm9wGQjaQDAXoe9NDKeXp6GplMBsFgEN1uV9jSZNuUy2WD02WOMmr2oz4E9Txsb2/LPX+TBstTXL9+/cJhqwcPY6ZOc+h5HgwGKJVKwgTTBxOvyXnnGlssFmH4sewB5ZXfq4EBygH3D8EDvb5kAKZSKczOzorTzXr/fC+BUf2sfEYCFzwQ+Hw0rnXa92AwkPJjmvVOp54HPh3E4XAoekTLt9VqFWdR72/OszasAUgflEKhIHvbrFg18KMNXf1/PXjt58+fC6Pz2zz0852eniKfzyORSIgBRieGzzkYDODz+QTA9Pl8wsrV4G8gEEAgEDAYoHydemNjY0PWkEyHfD6PTqcjelSDnBaLBbVaDV988YXUnrVYLBJ0Y8BpfX0ds7OzGAwG8Hq9wm4NBoNikJClOOmQpSH9+PFjHB0diVxfvnwZbrcbe3t7ApR4vV5cv34d/X4ft27dwuHhociPTmem7iDjx+v1IhqNXtj3TqdTSvmEw2E8ePBAPkcARsu8WWeamQuv4shms6I7dRCR5wtlV8tOtVpFKBSSrAnKE3CuOxjwbTab6Ha7iMfj2NvbE6CA4M/Ozo4E4J4/f47Lly/D5/OJbjEHJJgRxqDCwcGBGLdTU1N488038dOf/hTXrl3D7Owstre3YbfbpWb4cDiuQ6oDsQxAmIfFYjGwaumgswzDcDhEpVIxlKbTtgZwbifoYLTf7xd7jg1ozXtI/5/B8RcvXhjASD00+6nT6WBra0tee5ld8ioNMkc1g446QztYwDkrsF6vIxAIGAAEPe9TU1Pw+XxYXl7G9vY29vf3ZZ11sF2flRoQyGQykrbOM1t/D5mKW1tbyOVywrploIzBp3g8jsXFRSwuLiKdTkuwmWVr6DhxnzJLwrwvp6enJSDIptNWqxXxeBzf//73JSvu1q1bKBaL8gxXr17F0dHRhZ45tGc4H9xTZ2dnUr6Pqf9cI4K1TMEvlUryrLxfc9DhdQUd+v0+njx5gkwmM3HfU//4/X7RHwy0m4OhBPO5ZhaLRXw5lsChH3R6eopwOCylESnXtBF4TnY6HQn+MrOMNf9dLhcCgQAuXbqEy5cvY319HTabDbFYDMCYydvv99FoNAysa9o2rEWus9X4LBaLBT6fT4KIe3t7AMa+3+LiIkKhEKanp/Ho0SNpOmmxWKSPBUez2RQfdXl5Ga1WSwLiLOPDEg+RSARnZ2fIZrOGYIMmu73KdsKXjXK5DMBIOtJBdQ76una7HY1GA16v11DJwEzWoQ9uzoBg4Ie2LgEzyuPu7i7a7bac1UtLS/j8888xPT2N/f19YbWORiMJhMbjcTnvp6amMDMzI7iI2+2GxWKRfpEcZgCVupAAValUQq/XQ71eh8fjwfHxMf7zP/8Ti4uLuHLlCtxuN46OjpDNZrGwsIAf/vCH+P3vf49CoWDoqxEMBpFKpcRm9/l8QljSGaypVApPnz7FaDTCtWvXcHR0hMPDwwvAGP/Pueaeo+1WrVZfW537ZePo6EiC8GZcjHKp/z49PS0kwHq9bihxNRqNRPdQ5wIXs6+5vpTxSqUiWATfD5wTVqenpyWQRjCVuF6z2USz2RSyxiR7kP4a7284HIqPxd4U3HfMluDza/+B88C9zPnR1Rf0d3KYAxi8jtVqRT6fF13z3bg4crkc6vW6NEjW2BHlgxlguucDYCyRzyCTz+cTf+zw8BDValVIsevr67h8+TKePn0q9oDP54PdbpdqBJlMBqenp3j48KEhY9fhcCAajaJcLouOv3nzJn72s5/B4/EISZk+OqsnEMsjabdYLIoNz0Cyy+VCLBbD0dERisWiwT4lvry+vo5er4dGo4Hj42PpFQScV1egT8CzRJdbJBGehDf23mo2m/B6vYa+DnqP0fbl/7k36APqdfg6iTdfKQjBpmMHBwfCsAaMJWo4tAGgH5yHrcvlMmQGEMRiA9RWqyVOFxm02iGjM8eyFqw3qh3u4XCIdDot5WF4IFut47T2SCQi6TxM4eIBeHp6ilAohPfee0+coWQyKSAAa5ixvjTThLm5OBcejwczMzPI5XLSfITz0ev18Pz5c0NwgRuVxqQ5IqhBEAq0PmzMUTb+NDu9HFevXsWPf/xj7O/v49GjRwDG0fC1tTVhbOqh18As0OYDy2q14vDwECcnJ39Stv4WYzQaYWtrSxwSM3NAA9Vcc8qPvgbfR/AmGAyK486hA20MYrXbbbhcLqn9qRk4BNvINOOBS0eJASeCwARTp6am4Pf7MTc3B4/Hg1AoJArF7EBpp5CMXmYPseYy9ygP7NFoJEazLovW7/exu7sLq9WKVColLGOdpsmadlqu6eR7PB4Eg0HZCzqzgfMHQICCarUq15kE2AHnQBjTl81rP+naJycn2N/fv7Bnvu1jOBzi4OAA165dE1lkQBg4L7lExn6lUoHdPq6Tz3IDPJDsdjtmZmaknADllrqB9Ri5NtwPlAPWZrZYLMIMq9frAhhRXvl5slg9Hg8WFhbQyvtpEAABAABJREFU7/fx8ccfi3PCtQoGgwJcTGqoRJ16cHCAZ8+eGQAANpJiw7VOp4NSqYQvvvgCHo8HAOQ5tNzqIDr3IFn0PNM42BPFbrfjyZMn4vgOh0NDeiblzux4aebdqzoqlYohWMamoVrHMtClz0Iau6x3qwfnlU3G4/E40uk0jo6OBEhjHWRgDLadnJxgamoKq6urBl2hA5oEjhlQBcblpABI2u9PfvITeDweHBwcYG9vD7lcTlgmZ2fjmudM2aUDqVOR9fdxkNX+/PlzpNNpAQK2t7el6avT6ZTyRwAMQTPaTWQaLy8vSxozgXPtmGk7jq8VCgUDWGAGFAjkTU1N4cmTJ4Z70WvyKo+TkxPDfp00X9pm5dmm2YiUc23vut1uLCws4OTkxAAk8CxmjVz93Qy+RSIRkZnR6LzXDkHgXC4noO/a2hq2t7clw5dlyi5fvow33ngD7733HtxuN+7cuSMNfsm0JKGGutMswzqwQjuc8smGhj6fD4PBAMFgUAgOZLjPzMxgNBohn8/LuQKcEwlo6/P8z2Qykg1KZ5c62+fzCauX2What+hyLnTSXtexvb2NWq0mTG36K5Tr09NTaeDI8kW6RB0wDhYwaMy1YCNy2pTAOeDDIFE+n5cMd+pK9gbieQGMs4qoNxl06nQ6WFlZwcLCAlwuFx4/fiy9ngiwTk9PI5lMot1uS71o7ild/nHSsNlsktUcjUYlUED2byQSQSqVEiBCl+jVWQzMUgoGg2i1WpIJRMCcAY9ms4n9/X2xM3ivDPo4HA4hObxuo1arCUBPWSJRwAzaNxoNJBIJ5PN5uFwuKUGk5XA0Gpdpo69lzrplwIuypsvXsu8fMO6hMDMzg/39fUQiEayvr+Po6Aj7+/tic3CPOBwO3Lx5EysrK9IgeH9/HwAMJCLt22h7UxOLWMqEmRa5XA7JZFL8ucPDQ5yenuKf/umfMBwOcfv2bWxsbOCDDz6QMlL0Q6enpwXoIvgViUQkC5U+gsViEZAwFArBarUKmKgD0Xo/aRKZDp6XSiVDwPy7MR6DwQA7Ozu4evWqAPSaQKvJO8PhELVaDbFYDHNzc8jlcuLz6xJiGnzUgDDXhaQCBiqovzUgSvIhgwMk7jqdToRCIfHxSNAlUWWSjcD7IzF2OBxKNiT9Ul0CmhhDu902BBLNupvzxOAIn9FMlJgUgCCWcXBw8MrbsP+d0Ww2cXBwgBs3bghhlv4Ng2KUiePjY8mOoX7VckXc6OnTpxdw1FgshitXriCbzeLw8FD8FBIUq9Uq/H4/hsMhnj59KqQEBop1NqfFYsH6+jr+9V//FYlEAs1mU4JbtHFIssjlckLc7na7hp6UzAYlue3GjRv4wx/+YHg+YGwLHRwcIJPJ4NKlS4hEInj27JkEOdxuNwaDAarVqmQ80k7i3qZMejweZDIZAy5n1rFmfBY4Dyzybzq4Y8b1v47xlYIQBFBqtRrK5bI0MtSbd5LyMoMm3W4XwWBQGN76vY1Gw8BoJBuL0VAqN7Kt+v2+ocadVpg+nw+rq6t4+PChOHEEP1lCSZdY0ixsOifJZFKao2lWOgBhfEciEWk8RaHghrNarXjx4gUASM0xAhgESYHzEjJTU1MC/AHnAqKFToN+mp3Bhm00DrQRpdcEgLBq1tbW0O12sbu7KyUWwuEw8vk8nj9/LvPKYQYPqCg0WM17Oz09xbNnz77RTXvK5TKOjo4wPz8/Ebyi4hkOhwKs0rjVBhNlTzfcqdVqBgdWB+vcbjdCoRCOjo4Qj8dRqVTEQWHaFw9RjuFwaGgYRqYXAJEjn88nAQgaxrrWKPcBFb4GcYHzMkuj0cgQANR7kgAWHUQ+O0G1tbU1vHjxQthbzCDh/uVzaWM+FArB7/dLgMYc2NTKttlsGtL2ObdcC76f19dlKsyBDcosg1CPHz82NLvU1/62DzIT/H6/6BUz+77RaAjrsNvtCpig9dZwOK5pvL+/j3q9bmCUUg4oY6zRSXCTn2epBup2rqUOhg0G47qG7XYbi4uLsFjG9Z7ZIN0cyKIRwECdblDN9+RyOTx+/FiYazQKHj58iGQyiaWlJbhcLty9exfdblcaojWbTUQiEQQCATF4eV3AmOZIgIWD8qUz9dgsip8xB3tp6Oqhg9Ov6jg7O8OLFy8wMzNjyHyg3tXryZ+UOWBc951Oqx5sMlkqlTAzM4N8Po9QKIRisWhIgyWowEaQzCCKxWIi39wLzWYTW1tbhpJc1G2j0QjXr1+X/iqlUgnAOaOF8jIYDBAKhQzBE3Mw3yxjdrsdiUQCpVIJg8EA+XwePp8Px8fHUpZRpzfr4DbnkXZGKpXC3Nyc6HHuIW3P8bsBSDaJfgZ+joCkLtPW7Xbx4MGDC+eYORvgVRyFQgH1el0yaWjv0WbTAUyrdZwJeHJygmQyabApNJuPAarFxUXcvXvXEFxi4MecxUdw+OzsDEdHR/B6vVITfDgcl41iKZlKpQK3241oNIpIJAIAQiLx+/1YWVnBzZs3sbi4iGaziVwuh0qlIvIWi8UwPT0tmb3m/ar/z58kYuzt7YlMEVylTcxz+vT0FDs7O6jX6wiHw5KtpzNCKd9kQwaDQayuriIYDBoavGtG2iQ/AjgHQjisVquh7NvrNprNJu7du4cPPvhAmpea+3gxo4o9FyKRCE5OTsRHoWNOoN1qPa9pPBiMS8vG43EJ2rvdbjSbTbGngfPykJRpktBoSxLYJyg1PT2NRCIBn88n8q6deO7NTqeDaDSK+fl57O7uitOvMz60fGi5pk7NZDIIhUL46KOPsLm5iX6/j0AggGg0KqVrGLTI5XJwOp2GMg2hUEjmg9kQJCq0Wi1sbW0ZSlrQfuB82GzjPimfffbZ/4hMfNNGu91GuVxGKpUyZDVp8pMmDbB5tNmf0HiD3+9HNBrF0dGRzLcGfTnvBGDPzsZNPRcXFzEajTN1iXn0ej3cvHlTmLobGxtSQoaAWDgcxsLCggSLz87OpAyatotoD9I2Mstmt9tFq9WS3ii0F4rFothJvV4Pe3t72NjYQD6fl/JQjx8/lvuhPmXJXF0/nbY9zyJgrINrtRoikQgcDgfu37+Per0uQRY9NOlmEo7EktBmG/m7MZb1nZ0drK2tGQLrxGCAc1kul8uIRqMAxszxWq0mATTgvJyeOYChsQHaf5okoYfGAYhzsL8rm5dTT1Ffs8cg8TNNrOXvvV4PnU5HnjGdTmN6ehrHx8eiK1m6nJghP0sdz/0MnJfn8fv9F4Bavq5tVO2jWSwW7O3tfaNxrb/1oL/x4sUL3LhxQ2w3BiF4jvO8pn/OQK8uCUb7lgQ0XYHH7/djdnYWe3t72N7eFn0fjUYRCoWwubkpPUR5bjL4yhKQxJ2Jp7377rsIhUJCJCZOQpkYjcbknXQ6jXw+L9gxMY9isYijoyO0220cHBzA4/GI/8jgODFbYhI8hxYWFvD2229je3sb/X4fMzMzaLfb2N7eNuh89tLSGAIAIV/qrD+zn8V9rcn6unLPycmJ/P4/gX19pSDEcDiuuzY9PY2joyMpG8Bou1ZeXzba7TbC4bCwj/T1WeuTRmYoFDIwA3ltc+oeFYw2ytrtNp4/fy4OEr8DgGRaMCChAVE6MWzCx1RtHQjhwrFWKBlf5hIyTPPVThI32aTgABW0BvSoUPmPgIcOULBpK6+nUzy1w8vv0gDCgwcPUCqV5DOcnz+lZLVxZwYlbDYbstms1C77po6zszM8e/YMc3NzF0B/wMgCJTNXgzlmJ3s0Om8YRueJfwfO197n80nzuZ2dHSwuLuLs7AzVatXQCFcbFs1mU+rH8XUqdtatm5mZkaiv1WoVEIRKn6yyWCwm6ZC6VjfZsaPRuPb/wcGBPKsONLEmKQ8F7bS/ePFCnDyCr6yHT6PaYjlvqup2uzE/P49UKiWsZD23vDfuKe4DnXbKQTnUKZ5aLjnM4JrNZsP29rYw4F61YbGMM2+2trZw8+ZNOdB4aOu5LZfLhnRZMk24nuFwGIPBALFYzKC/mREDjOeV2TQsw8WzYn9/H4FAQBw2bQxoo5HZZczImJ6eFraqPguo9xmI8Hg8UvZAl6HJ5/N48OABCoUC3G43MpkMer0eisWiAHIEMOgsxeNxYT0cHh4iEAhgenpawBM9v3RC/X6/IejG1+kwUsdwX5nLogGQtE8OnlXagHtVx/b2Nt577z1hvLLfAudr0nlC22R9fV3KK+hAEQMLBNsXFxelH4guIaOBT2YqZjIZWCxjBnQ+n0etVkM+n0e73Uaj0RBgSZewIxMWGANh+izVbEyCFZFIRFjdk+wCPocGacm8jEaj0phXN5um3UDbg/YCz2yv14vZ2VnJNOH7dABNB2p1DV6+xmcgW02zcZ1OJ+7evXshZV07x6/y6HQ6ODw8xNWrV2XPm8uCcH4rlQqWlpbEFmWPE64J9Rudj8uXLyMajQpLmnXnzTpdgxIkICSTSZyenuLevXuGUqcWi0UC1M+fP0cul5OyB8xWvHHjBlKpFLrdrgQNKLO0Xdnjhyn2BKm1LPH/NpsNhULhQlZHsViE2+1GuVxGqVQSJhw/x0AYe8YRoODr/F6r1YrV1VWsr68b9K8+nzingDHooAOG+r5f5yDEaDTC06dPceXKFUQiEZlT2nL0k1gOgOcpm6Gn02m0Wi0sLS1hY2NDGqxTbpk5ySyH6elpOBwOmXPqf/qc/OzW1hYsljErliVsuF60MWjXMiuT19NMWYvFgkqlglgshpmZGSnRAHx5Lxutm9kT6/r165JRNxgM0Ov1EA6HcXh4iGKxiEgkIqxdlnxgNgavqW0D/s4yVLwuCV+aUHfr1q1vZB++/4kxGAxwcHCAmZkZQ+k1nfkLnIMxtVoNfr8fLpdLXqe/zGyubreLZDKJer0uZbNYwpg+FP1y+iXr6+vo9/tCfACAUqkkBBmbzYZ4PI61tTXs7u7KWjscDni9XrTbbcnMcDqdstYs+cRSIyRDms9V7s3Dw0PU63Uh+/h8Pnz22WcIhUKSVeN0OrGxsSHEoGAwaNhzLIvidrvh9/vlOyiPtDW47wi0NZtNFAoFg87XIDNwkcioz0b2btNA23fDOEqlErLZLGZnZ2UOaf/pjEASagKBAGKxGGZnZ7G1tXUh49qMD/EfA/4kY2ofWgO0eq9xTzDLSJ+lAIQIyUwjZlNqNjxwXorWYrEYMu1YApX9ekj88Hg8F3Qn9yXljsFePbTsaQKkZoozgPfd+NNjb28PlUoFgUDgQkkmYCw7tBHo19OvoT2hz2pmtLGMXjgcRrVaxfHxseiXVCqFTCYjWZtWq1UCEfTNzOXSKdOZTAbLy8vi59Cm1ntCZ3FEo1Fsb29jNBpny/E63Ie09V0uF2ZmZvD8+XPRkQCEdMtST7u7u1J6OhgMwuVyoVgswufzSSAGgNjKDHwA5/g5ADkjNAas7W/z37SPuLe3Zwi4mYMYf+3xlfMsBoMBKpWKsE94aGsgGpjcqJiDKbuxWEzSwTnI/tDdxRmt1JkMNEZ19J+va2esXq8bDjYKP41CDc5rRWq32xGNRqXck25grZ+LgQjdnM+sjCkI+v41+MnDgu9n414GKnTKHHBez5+CYrPZMDs7i0AgYABnOSatA+8hn8+jWq0il8shn88jn8+jUCgYao6Z10cfPoxwmgMQ/X5fUp++6eP4+BjHx8eG1FbzZuUgY0ofkpMijpRfDRpy7dlonfslk8kgkUjg8uXL0vSXRpyWF804Z4YD1zoQCGBhYUEaRup92Wg00Ol0DE2p9vb2pIE7jUY2kOR1g8Eg/H6/ASjl/uHzMQXSarVKgzTdH4XyQCaDTt0HxuDq7OwsVldXEQqFxLk0G0BavrhnNbCm14dOgTZ29Jrq3wnO9Ho9PH361BBMfZUG5YeOhma/6IAuQcRarSa6eTAYSOZLv99HMBjE4uIiFhYW4PV6RQZ56NntdmHA5PN5gx6xWCwolUp4+vQpKpWKZGxRZ/NeuQ5sXEUgwww+aKNS/5+NKmnUbm5u4rPPPpNmlnz2TCaDdDqNZDKJYDCIBw8e4KOPPhKgYnt7G41GQ76btcmDwSC8Xq+UDeF5FAgE5HfWK9UGF7+X+5jzy/vnOdHv9wVEByCAg1kfvYqjVqthY2NDgC2C6nRytTxpe4Os2HA4jEwmc6H0QrFYlMbTgUAAqVQKkUhEdIDT6ZSyGxaLxXAm7O/v4/nz57h79y4ePXqEbDaLUqlkMJJZy5P6meQHnRVpPj/5eyQSEaeKhqTZETQHJywWCz777DP8/ve/FzCC1wQgvYn0OaJLWaVSKbjdboOjqueUP+12u9QgZwaP1o8MQGgg2m63o1gs4t69exfsiEnn6qs4hsMhNjc3DUQZ2g8alBmNxkysnZ0dWR+C/+aMEQKQbOBM+5GAutY12j7kWUk9vrOzI83wWDKRGZhcw3K5jIODA2Gjh0IhpNNpYUtR3nRgcDQaM2t9Pp84ZTrbWQ+LxYJ6vY6dnR00m00JCCSTSRweHuIXv/gFHjx4gGq1Kra6vk6n00Gn00E8HheikCYidbtdhEIhfO973xMgRJepIlDjcrkMzC9tf2g7j3YBS669boNz0mq18Mknn8jvujfZaDQSwLLZbKJSqchrzOI9PT1FPB7H/Py81Lfn2UbQSutSApS0JQEY5M7hcKBUKuH4+BjdbhflclnK/WqQnqQwc2Ysz11tE7VaLSwvL8Pn8wlIYAbQ9LxwD9tsNjSbTTx8+BDFYlH2Ju1+p9MpjSsLhYL4jNwj9OOYCcp5oW3D93G/89k0OPPw4UPJvn9dx/7+viG4BEACNdSNXFOLxSKZtbSzAIh95na7xV7w+/0StKdNyjVlYCIUCuHatWsYDoe4e/cuXrx4IX7X9vY2SqWSBB2oH6l3me2iyyrabONmrtTTxCJCoRAWFxclkEViGP+xf+ezZ89wenqK69ev43//7/+NK1euYHFxEVevXjXswWazKftEn9HUlyxVyqwRzcYFztm3fC9LVXKYy+Jqu8TclB6AlGAzZx1/N4xjNBpJYFOTbbVfwb8ze7bX62F9fV1KhWlMymybMVuBMkg9rM9EbW8A5xU8KCfEIGhbEKzlvbIEZDwel8wGXlP36OF9lUolaUDPQCIBWY1D6s9omfZ6vYjFYgZdaw5Y8DN6Hkm++C4g9ueNRqOBFy9eGM5x4Fy3OhwOxONxIWxpOeKZNwkHOz09RSwWg9vtlp5ko9EIHo8Hly9fRrFYRD6fF/JDtVrF97//fczNzRlAe+2PAcDy8rL435qwwvvh50i0YL8Tko7Zk9Jut0tZRQab5+bmAJzLF6/NPcU5KpVKqNVqWFpaQiAQwOHhoRCPNcZBYh5/p93i9XoRiUSkvLm2W8z7lD4b7R8GNDmIsXyd4y+6OlNI9vb2BIAkS1xHjfQw/05GazQavZDOS8XDtBM6PjpgwIgaDTR+XjsqNG51doOOqLI8BidaC7nL5UI4HBbwiYrcHISgkkqlUlLnXAcedCTNLNC6Hii/n8KvU28AYz1wstV5PbfbjVgsJkaIdgrMoC9gPHAqlYo0x9Jgrnm99NDPrkv6aKN+Z2fHIMzfRAOC89Lv97GxsWE4fDTwY97A/GlmbujPAZCGyWZW9HA4lAZoNISj0ShmZ2fx9ttvY3V1VfaFTvElW4qyMj09LTWe0+m0RPbZ+IlAsNfrRTqdht/vF5BLBySq1arUgSPI5HA44PP5JFWcSkpnAOnB2u1a8VGJu1wuYQixpiRBg2QyiTfffBPpdFpKIujoLXDeSJ17UDuRwMU+JZrFZDZAJsm1zWbD8+fPhbGj992X7YNv46hUKtjY2JD103LMwX3d6XQkAs9gA0GEQCCA9fV1pNNpqWuvg8B2u11Yvfw7da9Ob+T36uAwD2T2d/D5fFISQesafb/acdJ9BCwWC46OjvDo0SORLTYNPjk5Qa1Ww/e+9z0EAgEJipB5PxgM0Gg08OzZM3FSCWaz5BMDXgxWs/Y4QTg2kdcHOeXTbJjps61arUoAl+eXOevqVR2j0QiPHz8W48zsCJgNKT0qlQpKpRJ8Ph8SiYTBUWL2CoE0ZgIwsEHZIyOL4MOjR4/w4sULyawhaEnZJoOS3+XxeODxeKSUF5nhBC649rwvzVA8PT0VxpieD+0gUi7z+bzoTDI0R6ORAQygzuUZQt0+NzcnAW8GImjncM4ZiJ6fnxdCh36dOp7PwUwkfvetW7cMZcc49L5/1cfx8TFyuZzBqSX4pMkpBDHL5bI0x/X5fNKsFxjPW7VahcfjQa/Xw09+8hMhymjwgetuDnICY7t7e3tbyCqTdKnWRzxvdYaG2+2W+9ZZN5RNXpMZmAS3OLj+7XYb9+/fRzabFZuX8hQIBKSJtiaycI/RPiYTORwOG2o7833r6+u4evUqKpUKPB6PoaQmWcUsTamfXbN1tT3S7/dRLBa/DlH5xg9tQ21vb2NjY0NAdK4vdYEuoZDNZiWwytr7rVYLN27cQDwev0Asq1QqksnCDDcGN2jjah1FHehyuYR57XA4pFwUfSoAF2qP8xzRWXC0Pfr9vpST1Jl1nAv9/2q1ii+++AK/+tWv8PHHH+Ojjz7Cixcv5LuYnXd4eIhkMinN2nWALhKJYHV11ZAFz9c1YEJSBgCxkRiMyefz+OSTT17pko1/zigWizg5OTHoBA1oUuYot9RbtDVpaw0GAymbtLS0hOXlZQEvSZgkm5q/h8Nh2Gw2PHnyxOCvbW5uYnd3F7VaDZ988gl++ctf4uOPP8bu7q6cm6enp1KHHBgHnWlj0tdmlmyr1UIwGMTS0pKcH4VCAeVyGcViEZubm/joo48ka2xmZkZwApvNJnXISbwguY5YDrEEEosYIA6Hw1JTHTD2yRqNRmLbcK9pnQxMtmd0lpt+z/Pnz8Uu+268fAwGAyFMaV9KA7r0v3K5HICxzpubmxP51T40M4M9Ho/0otQEPdolkwivmvxDf5ylZYl5MWtW+4wkRFIPM7ig9S6f5+zszJART9ml30cCKJ9dP5/L5cLs7Czm5+el9LBmfvMs4Bzy76PRmLzxXRmmPz20zn369Klk3Oq+MBaLBYFAAGtra5LBTn9Y6xTaE8RzpqenpbRhp9MRX4ylIakHSYZkxhh7WWkcmHYy9ZYunWrGsrUO0rai7o9DuSZpx+/3I51OCw7mcDgQCoUAQAhB1OkMrCwtLWF9fR1OpxPPnz+X6iHajud88BmBsayyTNSkhuscZuyapBubzYanT59K9RbgGxiE0M4nI4J0sLjxzWkuLwP+BoOB1CT0+XwCXvJzfPipqSlkMhmJKHHxWfKGoBM/RyXC33mo8mDUB552jrVzzbr2TInRKUR68fkZGiqLi4uiwOjo6Hr4w+FQwDzOJ2Cs9a0BJ94f0zO1A6YdUwLWuiSE3sB6bviMfK1Wq4mRr79Tr7k22M1GgjnlzW4f9wx59OiRoab5NxF00LJ5eHiIo6OjC+C6fjYdfKAcaXaSed5ozDHyqudYl/IAIAe7x+PB4uIirl+/juXlZYTDYZEZM9jF4MXc3Bzi8ThisRji8TiCwaBk73i9XiwuLsLr9eLSpUvyd2YmaJlpNBqGGqpTU1NIpVKioDRoooE0PlulUsHh4aGURqCib7fb8p10GEejMWv8+vXrmJubE1BXMx71GhDco7HOe9DArA5A8P9a7rV+0YBvpVIxGLt6n7xqYzgc4vHjx8I81UEB/bxcp7OzcU3ts7MzqVXO0m3pdBpLS0vweDziGDHwxEa/mgWsWRBWqxXHx8fSvIllxXQAiHuMpZvMTCk+D9eLBi1/Z98J1qOlIc3gG5nq0WgU1WpVSjgxAKNT+XX5PDLyyZggMy0QCCCZTAqzwwy8cR54rmkwTcudzWbDwcGBnFMstUKZNfeKeJUGn7FUKuHhw4fSjE6zUmhrmD9DfV4sFlGtVjEzM4NEIgEAApZls1mDjKXTacTjcWHz9/t9tNttWCzj0jSFQkH2CuWF5AjNMNfBMfYlAYCjoyNx2LRdo+0NYBywZpO8er0uNc7NYzgcN4/e3t7Gzs6OyA6BXoLGrN+ry0my5FgwGMT6+rohYEZHjOeLy+US8sfBwYHYCLwHzrdmK2sw7M6dO9jd3f1SG/DrNm6/CaPX6+HZs2eGc1JnnunBORoMBtIMWtt5AKQ8XqvVQigUkrOzWCwazi+9VvpvZrYiX+f9MfOMg3YsGboEQEkq0LqXf+N6MzBLII3nOzAOFt67d08yZfR+YJ3nQCBgqH3P+9HBbJawbDQaoi8JoAQCAdy8eRMAJAuC8krHlmUHuYc1wYJ7QtsKxWLxtS7HxPUeDAb49NNPJTDJueNg4JP+En9n/fhWqyUABB137e/o8jM6YEbGuJZlEqhcLhfK5bKsJ4MVGsSo1+sGUhrPW11Gh7IcDAYxOzsLn8+HRqMh2eLUczyXSqUSbt++jWfPnhn6X1GuacP3ej0h/2hWI2X16tWrUgKYelzvVwIwOpNTE4TOzs7wu9/97rWWT45+v4+HDx9eIA9STi2W814zOqCZSqVk/jUw73A4EIlEkMlkxE+jDiJRhtmA1WoVGxsbaDQasFjGWWv9fl/6SZDgtb+/j62tLekTRrsQgOwpXXaDekvbjo1GQzAQksi2trbw+9//Hr///e9xdHQk2V8PHjzAs2fP8Omnn+L+/fvS6JpzQt+LskecheeV2+3GwsKCBCG0j8d5pLwDFxtN8zk4uCbM8NDv417d29szvPe78fLR7/extbVlKD+uy79yH7BnCn2rRCIh+pFypuebWQz6LKTs6/2l8bbhcChVFCgHulyZ7vnEz9KHpDwcHx+LT6btZp4FZlCYBDM+N2VNB7mnpqaQTqextrYmLHmeW3yPvh8Oq9WKg4MDscu+G3/eGI1GODo6wv7+vpC99HqyJOHf/d3fCZGEpRO1Lz89PQ2fzyf9FVKpFE5OTiTQTH0+NTUlfYUpd6FQCKenp7h9+zZ2d3cNZecpxwCkfKc+E8zYgg66ETch3sq+kbFYDAsLC7hx4wbeeecdLC4uYnt7GwDw7rvv4l//9V8Ri8XEvmSpaV7L6/VKnwxm+ITDYUMZXAbhNAncYrFgbW1NgnH0YzmPXA/gnPTJDDSSJB4/fmywOf4nMLCv5AWaQepSqYTNzU0xqnREUoNa5p8crPcHjMtnsMcE30uHwufzYXZ2VgSTTg7vR4MTBHN5HQ2C8t6omLXi1d+5srKCtbU1qYVLo1UHCLTCJqNqdnbWUJYJOAejOR/aMOd1dNqw2WimwJGFydIxVLJkJ3BNWF/d7IxOCiyQrWw2FvQ6mRn/WqB1HVLgvL7qo0ePvnVssV6vhwcPHhhSePnMk+aQ80KgVgNbHDQO6bRrxwQYN8Wu1WriDJ2enopicbvdWFxcxKVLlzA7O4t0Oo1wOIxwOIxkMol0Oo25uTmkUikkk0nMzc1JDTkawmRJMRPBarXiypUrst6sU0e2IBk/dAQHgwGSyST8fr9BRimzNKh1OTEtD5oVRwOATlQ4HMZbb72F5eVlCWZNMnQIjMViMZF7M+io36/TrTUAZjZaeH8A8PjxY+lD86oOrbcrlQoePXokcqcZT8C5nmdZJsoKmbkMUNRqNbz55ptSM18Ha3V2BQ9KyozX65U64NVqFc1m8wKbinLAJqoEo1/G4NXGAp+JrF06h3TcNGBcr9fxySefSDBCg4SAERikwUIwhGnpBNtWVlawuLgoKc5mJpiWS23sAOdGAe+RRgtZStxfZgD+VRu6JvO9e/dQKpWkRALnihkxGgzXwcbhcIi9vT3s7++LfqSOIjNXA5JkjtB+YQYA5XRqakpK05ClqFNgNVhJ3UtHq91uS1kODaAy+0EDwJQlNjfL5XJSwmQ4HGegsZTZ/fv3UavVAIzrio5GI7z99tuYmZkRFiJ1ZbPZRKfTEZm9ceMG3n33XQFrGTQhwBwKhZDJZFAsFsUJ1A4j9QiNV+oKAn87Ozv44x//aHDiOLTufpX1rR6sTWsO+gK4cFZxjEYjSe2mPgPG8kZm7LNnzxCPx4XJqueUOhgwsqg1gKWDIXwv2WU6wMRrsLzeycmJZCfooIS2c3gvrPXbbrdRr9elRNdvfvMb3L17VzLGWHoKgLx/bW1NGmkyo1mz1LQsct9qW5YlR8rlMmKxmPQf4D6jvcMGncyS0Ex0DXbbbDYpbfK6Di2n5XIZt27dEj9FZxwAxuwCzutwOESxWITL5UKtVsP8/LxkZDFDkeWYSASgfcgALcEm1oW22WxSCoF6iEEO4ByQslgsItuAkbhCdqsmm/EZ2FS12Wwim81ia2sLu7u72N3dxd27d/Gb3/wGz549kwwKBgWYVdnr9SSj+OzsDJVKRXwlAAgGg7h8+TJSqZTUa9dAmw7yaZBNlxOy2+345JNPBFj+bgA7OztSUlGfO/QjbDab2JUABLxaX1+XklkEQz0eD/L5PN544w2Ew2Epm8dMHO4Bq9WKSqWCer0Op9MJl8uFQCCAnZ0dKYm7vr4uwC/lnffHZrkEoSirlF8CeNR1tMX1d3/88cfY29uTRr/UeQcHB/j5z3+Ow8NDlMtl/PrXv8bR0ZGhJ6buCUi7g/0G6Y8yS486mM/BewyFQgb2OuddYxJ8Lsqx+X0OhwPPnj1Ds9k07NPvxpePVquFFy9eSKANOM/yIcgOQDIunU4nQqGQlAMFzssj6fJlwLkMUl8Sw5pENLHZxr1UqPf5eW2zm+V7OByiUqkIZseSuJQznUHPvxFrGw6Hhiw3rfO5N2w2G5LJJN544w3BAVla0RyA0M9ts43LT37T+5t+U0e328X9+/cNpHHOMc+02dlZvPXWWwDOyxWbdQUB/lgshlwuh0qlYsjEdTgcqNfrIreUFZZFbrVaaLVahox3jRMHg8ELWDAAg5wD57iWxhRI8rJax2XJ2Z/X6XSiVCqh3W7D7/djbW1NypzzWmtra/jggw/g9XpxfHyMjY0NbG5u4smTJxL0Yg9lYg167/A8YzUV2kEaVzHvT+C8nw9l/+7duxdwW23/fl3jK1PR9GE+GAyQzWaxt7cnTgJBHnMdN72o2nnQxj+bQ+nvoKHAcjM0EGlQUmAZRWLZAa38uAAauKBi1kI4Gp2zsxlMYB07fi+jbVRsNJ6pEBcWFuRAJoOMRgMwThOlAZRKpZBOpy8oY947DezBYCANJzX7fjgcIhqNIhaLyfxqRpI58GAeTE9/GSBgVsYcdAR13X0a71tbW3jx4sW30mA4Pj7GixcvRDmZI+2AMRuIMqfrx2kgnP9otGkjjDJSq9WkvAv3kLm0RzqdluaK/Lm2tobV1VUsLy8L0wY4Z1FarVYBFO7fvy9ZDvF4HLOzs1hYWMD777+P5eVlSeNi9JRsrEAgAI/Hg+XlZWEwADDsI943FTsbtGvQgz+p7NLpNN555x2srq6KkuMcmIFlh8OBRCIhNYY1eKLXgrJqzorSzBtzMGlqagr7+/vY2dm5IOOvmrFhBriePXuGer1uKKPBgBodC4KZh4eH8jvlmI1ww+EwVldXpRyTBuqpF8y6hTLBtTo7O5O/kQVBfRqNRhEKhQwGrDkgrI0FygTvwev1SpBEyy1TjYfDIe7cuYODgwMkk0nMzMxMzFzSczccDiVl0eFwwOFwYGVlBcvLy0in07BarVJ7VcuoNq50qRTuq9FoXGpha2tLSkoQgGfw8lVPBdalZer1Oj788EN5jfJJEJEgDHDxfBsMBsjlctjc3EQ4HEYqlRIHu9vtolqtynfF43FpyOtwOBCLxWCxjMt4UUapz7RDZM7OcLvd0mgsGo3C6XRK01yu96SMSs28djgcYgOVy2Xs7+/j/v37+OKLL/DJJ5/g1q1bePz4sehUsngZGNP182nkEyD2+Xy4ceMGfvrTn2I0GpfDCQaDODk5wWg0Ema93+8XEIPDHEjTTYRpIzFY89vf/valcjrJGH7VR7PZxLNnzyTApnUB59NM6LBYxoxFAlQEJW02G3K5HAaDAU5OTuB2u6X/iQbhzUEOc3AfMLJSmdbNUmP8LgbBPB4PUqkUisWigFvarjUDFRp4pm5vNBr4/e9/j1u3bkldZXPGGYNit2/fRrvdxptvvimgn659b3YWdbkHi8WC2dlZXLt2TRrGMhODYO7c3JyUfKIfAWBiHxpgrJdqtRo2NzcN8/a6Dq73xsYGHj58KHW8dZ89ntmUJ/pEDPpwvefm5oQlSXBIl8RxOp1SXhQ47+fHweuw3B5lmDYt2ZV0yLXu0uCT9rtGo3Hpjb29PXi9Xly5cgXz8/MAxtltT548wa1bt/C73/1O+r4wYKsz5AaDAQqFAorFojRf1SQgu92O2dlZrKysiO4FzrMd9X1RF+h5Ho3GxLYnT57g7t27r51u/bLR7XZx+/btC+A3gW9NquJe39raAgDJ/qVckXhgtVrx1ltviS3MkhtnZ2eGDHP6RQ6HA7VaTZjnLF16fHwsJb9oD7LpM9+jfRjaPCzhQfuBuop2gyZX8Ezg+c8yejozhH2t2A+QWfEcxF9SqRQ++OADdLtdyXzW96Hfz2Cjxnm0fWYmKPF1bct1u108ffpU/vZtxBP+VqNWq2Fra0t0rrYHtJ3Acp5+vx+RSETwNQ673X4hG4Drwf1iti0oq8FgUEova3nj/jMTWyl3PBe03OiSarRn+H/dI457T7+X32mz2RCJRHDjxg0J0BwdHUmJKU1w1lk5NpsNhUIBu7u738ngVxhmvGFzcxPHx8eGcx6ANGJuNpv4+7//e0QiEZE5ntskg2ezWameUK/XL+h0XQafOmh6ehrNZtPQt5H7QmPNAARHBc4bO2u5paxSLpgNTz+Q/Zx6vR7a7bYBB2Cw2eVyoV6vSxY6r6cz8GhrApByq+zBprEvfT8OhwOXL18GMLZhq9WqYY/queF8sSLJ1NQUjo+Pcffu3YnEsa/bpviLghAamGm1Wtje3kY2mzVEXjXjVA+tRPi7Lg1C9gonmcyPQCCATCZjYFzra+n74oFN514rNA0eE9CnYnY4HLhy5Yo099WLx8/zUObBTqHh571eL7xer8GxpDFNoeD9Mkihn9Xj8RgMZl06Sjt6AKR0D9nvjUYDpVLJEG02Pz8HM0y4WXTgRx80k0qg0JDXz2K323F8fIx79+59K5pRTxrM4iCT1Ty0UcXfuc7stWA+QBmVZ8qVPrh1ZJh1oLXDQYCTUV6n0ynNcJPJJObn5zE1NSVOGwBhidEYZDmE/f19SSe8evUqotGoBE+azSYODg5QrVbFmHa5XPJdrJ+onR/Kp1Zu3O9MteQcAOdMxUQigbW1NaRSKSl9c3R0ZKgHyev5fD5kMhn0+32USqULEWnzQadBSfN79ft5SDWbTTx48ECiweb3vWpDH161Wk3Ye5xz6lXNOCe7b29vDwcHB8JOqdfrcDgc6Ha7uHTpEpaXlw3NUbU+Zt15NnFi8JZ1m3W9UbO+JQClDQgdDOZ3EGzls/B5p6enpXkfHU46Tj6fD4VCAd1uFycnJ9jc3ITb7TYEATlf3F9khY1GY8b79PQ0UqkUlpaW8Pbbb6PX60nJJ94DcF4WhYAJX9Pgtt1uR6fTweeffw4AkqJJI1wbb6/q0GU0gDGb8fPPP5czUaePcs8DF+sM8x8b3zKTR4MOmkiwsLAgtobOSGMJPF5Xp8HyGoFAQOrm9vt9eDwe6UcBQPQ37QQ6d3SYeIbwHKUtQZZmsVjEnTt38ODBA2GhszcAMJatqakp3LlzB0dHR2KoDgYDQwBiZWUFb731FtxuN8rlMvx+vwCCCwsLyGQyUrdcZ1PqoUFFgr8MdvR6PfzqV7/60pT1Sdd81cdoNK5tzWCUXnPKqZl1SBCTDRspmwymsubtcDjEwsICQqGQ2A28PgEB2jJar5rfw7/5/X7Rf3z/cDhEJBIRdle9Xhcgj8EmfYbobLTRaIRwOIyZmRmcnJxgb29PMh7ZM0uTKKxWKxqNBqrVKh48eIBOp4P19XUsLS2J08bv0yn7AMRWDQaDeOONN+B0OlGpVHB2doaTkxMAY50ai8Xg9/ul7BmBMH1+6ACE1WoVoLfZbMq+e52Htutu3bqFo6MjCUSY+52wrAt19WAwkADvcDjE/Py8AADat6O9SzIEA0q8tiak2Ww20af0P+r1OoAxUSYcDotO1J/VGTwMqnEvcH+yxBNtm/v37+PTTz/F9vY2+v0+vF6vlHukLa97q41Gowus3tPTUyk1fPnyZVy+fFnKneVyOUPZUZvNJucfAzA6s/7g4AC///3vDeUavhvjedjZ2cGzZ88M5V8ASBlNDZbTbrt7966UyqXfls1mEYlEcHh4iNXVVczNzYndQBml/qDPTznTxMzp6Wk8f/4cjUZDZJ1nP+1uZgYxoKX7CmqfUJfnZQ9LzVbX5wwzJoh3WCzjcpOUNe2jck+QXOnz+fD+++8jFouhVCohGAzi+PjYEAjmvXMuzGCWBnD5vNSzZl/R4XBga2sL5XJZ/v6q+mRf1yiXy9jd3QVwnmVN34G+MQOkFsuYPMhABAOxmvhF2ab/pe0UHWBmGTuWMSf+YNbX/J3kRgYQ6Bvp0o4EX3VgW/uCetAWpq3O/eD3+zEzMyN2B8us6iCflmNgfO4Xi0VsbW298n7X1z2azSZu374tOoMyQeyJtud7770nNgOxCPrUOoNCE8MBSJA1mUxKk2u+zgwInY3O3jtcc7fbjVQqJTIbj8clM1Ofpxqfi0QicLvdctYDkOs4HA7xi5hJWalUUKvV8OTJEwwG4/LNPp8Ph4eH+Pjjj4XYCYwDidvb20gmk0KiJIamez3wfAiHw1haWgIwPtuq1arBH9YYLn1Plu+lDVepVOQsNAcNv85h/9NvOR/mg4APViqVsLOzA6fTiUQiIYeMZtXqaJIGDABIM0ayXdi4TAchgHHncnZb15FOGqEUXt4bFQod5Jc5Yfw5OzuLK1euCLhBw5RCT8eEgAK/g4vs8/nQ6/WQSqWQz+cBQIRGMxSoWI+OjgyGab/fRzQalRRxRvK0QUEjgmUkWIpJNyjTjpkOLujNFAqFxIk0G63aQNARYv6dSoFryMjd7du3vxU187RRo+cHGDsu9+/fx49+9CNDyrTZaTdH2nVgTWdSUGa63a7sA3NqF+eVzheNBjo9GljXTFka0WRuE8Bj8IhBBgb4yuWyoRTY1NQU8vm8MBtpFNAZYsAtHo/LPO3t7Ykcm8Fr3pOOIHO/2O12zMzMIJ1OIxAIyL4pFApiOHBuHA6HGDHFYhH1et2gSM0yrWWSQwOR5nXn/N6/fx/FYvG1CEBw6Od79uwZrl69KiwUbYRp5jY/p51fYJzVlUgkMD09jZWVFVQqFTHYtL7XgBoDA3xNM4BpNPIfS/RRF1FvsmFlo9EwlFHweDwCUmgDNBwOIxKJSFkc4LzhGJ394XCcCmwGiilDPDu4fwioeL1erK2t4fr16xgOx/UdNzc3L5xzNKr0WaXllU7sp59+ilKpBLfbLaAadT6bFbJ3was4uM8ZoBoMBvjiiy8QDodx6dIlCfbSQOS5pxl55rOu0+mg3W5LPefj42OZe55vDIru7u5KQEw7byxZoIOu5oBWu90WIgPXj2ULuL4Eqbjf2FBV10UHzgkANpsNs7Oz8Hg82NvbEzCLTc5Y2sPr9RoyyahPR6NxNtDKyooEWqrVqpwhxWJRyj9Uq1Upv6aNUK1jNVDHzBTuuV/+8pfIZrNfur7aNnmdHLtyuYxnz57hrbfeEt1DJ4ABVdqY2t5qt9tIJpPwer3Y398Xx7tarQqzmuVcHj16ZNAzZhsHGOsOnarO10he4GvUd7xXkh7o0FEGqNMJWHU6HdHfLDmWTqcRDAbxxRdfyDW13V6tVsUG0I1jB4OBlAQLh8NYX18X54n7s1gsSpbwaDRml1+9elWaFOfzedHXvGeWWGFfoNFoZAD69D7nnBWLRTx+/FgCw6/bMDOkgXM922w28atf/Qr/8R//Ib3pCLiSIEAAlHNKIIgysLS0hEKhIP4QSzIRbGCPCOpdfS6TpADA8H3US36/H4lEQmxVMhNpbzKozHuhLExNTaFer4s/yrLDkUhEsmoIXOteIn6/X56X5Br6piw/wZ4nKysreOONN1Aul+FyuaQ8JeeWYDMAsem1X1ssFvHzn/9cADWzzfs6D+7lTz/9FOl0Gj6fTzIPdOCfpeAYQNNyQJ3CLEOPx4NisYjZ2Vkpu6RtFgYKRqORZKkdHx+LPTocDqVWty5/A0Bk1u/3Y2FhQexVEs10VpkG2KxWq5BnYrGYZM9q/5XPSx/K7XYLbqDt/nA4LGXE6AMuLCxgcXEROzs7SCaTyGazkmnEeeZ8zc/PC6io7QgOzYDXZw3fQ73P2uTfyfRfNkajkfRrXVhYMARWdRYNy8ORcc4AGMkpwDnwyvNcYxc6iGe3j3vbBAIBwRKYpUN2uG5Irc9jVmNgMJl6ksRObRNxaDY3bWud3URil8fjQTgclu9qNpvCNOde1xgO/1Yqlb4LQPyFw4yrjUYjPH36FG+++SZmZ2elFBAze2OxGM7OznDt2jXcv38fOzs7BrIe9YLFYhH7U5//Ho8HwWBQKmbojCwAQvCl7gfObZrhcIhYLIZoNIpoNCpBuV6vd6Fcvc5eDwaDUjnE5/NJXzaPx4PT01McHx8jGAwCAE5OTuSeGQRggOLg4ADZbFZsdwDIZDJC1AiFQkilUqhWq5LJr31dt9uNd955Bx6PB2dnZ9KXleR02uMAxCbRpLfPP/8cz549M+wvrW+/bnv3KwUhAGM5Gm1csQEju3+TKQhAjL5J7HKOZrMJh8Mhdbx1WhXLZrAmebfblXQzCioPeWYXmB1pbbhqx4v3uLS0hB//+McIBoPiSPn9fjgcDhQKBWEu0NEiU4DPR4H3er1IJBISAQYg1+N3ct7MjN2zszNhfDP13Mws5vt9Ph/m5uaEIaMVqGaj6XXj8Hg8khJqVuy8R+3oaUVC1jLnggb/7du3pfHWN33oDaafn7Kys7ODeDyOS5cuiePC95rnVssU540GI41bHn6UVx1w4Hu17Gp2CBmxZKWTCUN2LgMN3W4Xx8fHCAQColwJtNF56/V6KBaL8Pl8ogh1SS0ywnq9HhqNBkKhkNzL7OwsvF4v0uk0stksCoWCoQGWrq/He2XQJJlMIhQKSfM2suup4HkNZuf4fD7U63VxxiYZs5qtqJvNmY1WHQzRxvvjx4+xubn5UsX7Kg8+b6lUwv379/GDH/xADkft3OsSWpoxQp1ZrVYRj8fR6XTg9/uxvLwsTYH5eXMJjdFoJGA/+0tQzwHn5YmcTidisZg0reY+IstQO4t8jcYJ0zW1vM3NzQkrliCdPie0seLz+aRZoGbjMBDAw93tdmNlZQWrq6uiv/P5vBjvOgDBOaBjZwa6nE4nDg4O8PTpU3FiaUjTMNfG06sahOCzORwO0YW9Xg+//e1v4XQ6sbi4KMFzgkVkyVA/6nOSo1AowOVyIR6Pw+v14vnz57BYzpmqo9EImUxGytwQRG21WuIIaecJgDj/NP4SiQQymYwEbRuNBjwej6EWKTMPtT3AJtQ6CMvXqEdZ+39nZwelUkmMZ9am7na7kgLPwNrU1JQ000wmkxiNxixhBoXz+bzsg3w+L4AK7RPqAS2rTKdmkIS///KXvxSb7MuGZhy/qjI8aQwGAzx48ACrq6tSWgiAOPYEl7rdroHEcHZ2hnK5jJWVFYRCIRQKBbH3uJb9fh/pdBrFYhHb29ui3wlacX/o7zOfeTwXc7kcOp2OnJskONhsNpTLZbjdbjlzdUCXdiuDt3R02I+lUqmIPtZsRQYV3G63gBEk7VitVjSbTZTLZfl8IBCQsoy0sRKJhJwLMzMzkjENwABG0zbQDFvuOV1bWtu3JA3dunVLdM7rGIQgs08PHaQ8OTnBr3/9a/yv//W/YLVaDUxFzi9tXsov7Uer1YpYLIZ0Oi2BNoL4dOotFouQDwg88RznWUG9ytI2zDZYWVmRcnsE8tkPpNVqGTK3e70egsGgBGt5j7VaTa537do11Go1CTrz8xokJhjGz9BWcbvdkq2ztLSES5cuid7t9/sG8hrPMwCGPcz1KJfL+M///E+Uy+ULPtx349zOrVar+P3vf49/+7d/M2RB6sC6ziqg7Gn26PT0NMrlsvRfcrvdiMfj2N/fF6ILM36Ymc7yR5r5HwqFEIvF0Gq1pGwYbV7aMx6PB91uV8haLpcLjUZDsuWBcaCLNcjp/9ntdmQyGSwtLUlmEmt8c99xTkhAs1gsYmO3221pFs9Mu0wmg9nZWdRqNbEt8vm8gbxJHZpIJJDNZqUcsMYNNPFAl2M12wsulwsbGxuGTIvXUd/+NcZoNG4KbLVapZScrm7BvUAsgPqLJcFqtRqazeaFUpHA+dlJuXK73QgEAoJHsQwez1Ld22eSTx4IBNButwUnHI3G5UF1TxfKgfZBaUfRJqcvSfvX5XIhGo1Kaahmsyl9J7Qtr4NhJDdsbW0ZiGLfja82zHu72Wzik08+kZLFDERQT7Hh/fe//33U63XJuOWa0P9l7x5WCwEgDca73a5kZHKNaf9pG0EPljLKZDIShKVv4/f7USwWpccNgx3EALrdLvx+vwQtSAZgGWiWRnK73VK6jxhIIBDA4uIirNZxv55SqSQ4XCKRQKFQQKlUQqPRgNfrhc1mEwIbfUOr1YrLly9jZmZGAhD1el32h+61RttJZ/7mcjl8/PHHhmog5nX7ujHdr5wJocFADRC2223s7e3BZrPh8uXL8Pl8csDSKKPg6M/zeoPBANVqFcB5hgWdFDrQ/X4fN27cQDgcxv/9v/8Xu7u7hgCAZqgD54A/f9fRUk7s1NQULl26hJ/+9Kfi0NGxdjqd8Pl8Aq7rw5Tv8/v9Uu+RrIpQKISZmRlpLqoVKA0gDWyRJawPagYmaGzT2GBQIpFIIBKJGFLrJgHq5uF0OpFMJlGpVC6AZfw/70VvVv5d95CgY3Hnzh1sb29/a40FbSwB44Ps3r17CAQCSCaTF2rIUna0UaedXAACrk5PTwsAf3JyIg6TDprpzxGg5DXoBOuUcdaZYykbMniYcssAhb5X4JzFHQgEZO/wOfjcrJ3Hcgter1eyeGZnZ6UHyd7eHkqlkrzGgMP09LSk5Nrtdni9XgmMUGYAY2CO8xAIBMQ41hkVZlCRwBlBCx20maQwNcBnt9vx4sUL3L9/X+TcvP6v2tDGo9aHg8EAd+7cgcvlwo0bN8Qw0AYeHSOCkTQSB4NxSbv9/X0sLy9LI77V1VU8ePBAev3oSDzXjamIDEQR/NF6xePxSG1+AgFkIJANoEEkLRvBYFCAYzJXFxcXcXBwgFwuJ/NBFhlgbN46yYHi9/f7fQlEzM/PY3Z2VoLm1WpVMmv0GcQzRwcgdPCP2UeffPKJ3BsDkgxA6FTqVxlw4PyTGUXjj2zbf/qnf8Li4qKBzcF55Jzq/jUa9Do4OMDMzAy8Xq84XJFIREre8Dx0u90oFotimDG7jEAFe6nQ2Wo2mwgEApifnxfGlWaIcS9ooJmsL9otPp8PTqdTAKlgMIhKpSIAF4H7xcVFuN1u6ePAEl4EMVwul5BBwuEwMpmMkDioZ3u9nthatLEYHNH3rUsE8bO6XBvtqV/+8pd4/vz5n9Sf3Ku8l2+rvfCXjmKxiA8//BD/+I//aGD968AQ5YN2Hvc/e9YMh0PUajWRMZ1du76+jkqlgmKxaLCtte7Q4C3/xrVgFow+IwgSsJYt9yNLVuryUvp6Gnhj80eSiBhEIKBP21IHhWnTMyOY30kbRz8THcBoNIr19fULOlLbOdoWoE2tQRGSOvie6elp/PGPf8T+/r74BeYSEK/D4PlFfTCJGPL8+XN8+OGH+MlPfiLrRMIM7T5ddpN+IW1HliTK5/OyvmR4t1otCTYBEJYt7ROurQaYeUZnMhkA51kSlLVut4tyuWwo/zccDnF8fIzDw0P0+31kMhkBrwAIuHbjxg28ePFCbAgdtNWMXwIiuhRELBbDwsIC5ufnpUyV0+nE/v6+nPmct9HovJGy9mMLhQL+8z//E7lcDsCra7v+d4aWs+3tbfzhD3/AT3/6UwDnOoG+eafTkTOZAJNm6ANjXZPNZrG0tCR6JxwOC6hDfdFoNCS4WqlURAZ4rdPTU8RiMdG3tEXsdjtSqRRisZgwbFlTv9/vo1wuiw5nBiWxDJ7FiUQC165dk8CwzjoGzoMAbLTNcrv7+/vwer1ot9s4OjpCNBqF3++XUiDEbp4/f27IOuI/ZgfxbOLrXAfOOe067bdxjRjAvn//vmEffzf+8jEajZDNZqUSgSa/agDejAWw3IzP55NeJ7r/I33p6elpeDweuN1ukWMCptTHbrcby8vLqFar2NnZET+LWWqRSASlUgnAWD5Z3s7v96PdbqPRaBjsEjP+qIloOpDgdDoRjUbhcrkksMfzQwcgdHaOzTbuAbG9vf1dAOK/MSadR6PRuCzpo0eP8NZbbxkqsVgs4x544XAY8/PzeO+99/DRRx8JqA+c61fKqMvlQrvdFtIMbYFarSZ2hbkyDs9p+tcAsLKyghs3biAYDIptyqyDUqmEo6MjuUaz2cTZ2RnW19fR7Xal/H2320UqlZLeIVNTUwgEAmKjMNOR/XRILmbZJO1TeTwewXi551qtFsLhsCFzFwDm5uZw5coV6ZFIYi/7B+mMEY3J8Ez57W9/i1KpdCHAqNfvGxWE0MMMbAHjUjbPnz/HcDjElStXpGETX9dscBpkZmc9l8uJwHDiOp2OpLtUq1Wsra3hP/7jP/CrX/0KW1tbhiaIWplqZcfXNKgWCATw7rvv4vr16+h0OnKw00kma0yn1JoDKPPz84aUcgDCcqlWq+KsmUE2OvP68NWgrBlc07VQY7EYlpeXEQwGRdAajYbMGa9jFiy73Y54PC7GgnkwWkhlrAEelrvRwZuzszPcvn0bGxsbrxyrsdls4o9//CN+/OMfizIxK1YNfJoDElw71p6j8mTZAs0CM+8DysNwOJSmaJQjLc+UITrHmoXFwfsiGNFqtUTx8R6pqAeDAer1Orxer6G5HwMRLBcWDoclUsuMJR7q5hRjzg/liQA2n5F/YxScAQgzEKyv1ev1DOXV9F6fBNDyO6xWK54/f47bt28b2J4adHmVRigUEodFg4d69Pt9/OEPf0CpVML3v/99cWYoZzrwwMCarpHfarWQzWYRDAZRKBQQi8UwNzeHZ8+eydyyXI4O7pI1Bpw3E+Ua2e12aUhtDiDZ7XYpC7K/vy9BOGBslKytrcHtdiMYDOLo6EgYkT6fD+vr64YSTjogTIOUQQbg3EgHzo1zPkMymTTUKSd4oQNmk+aQTEzuOZ6Fn376qcF4YoBaA268p1fZMev1enC5XALMaKepUqng5z//Of75n/8Zy8vLaLfbhiw1DZyT1chgLzDWA9vb2wIKkBnjcDhQr9eRSqUQj8dx//59NJtNuFwu6fXAFF+L5Zz1SIPU4XBgbm5OUm95pjMg0O12kUwm4ff7pZ4/wVWXy4XZ2VkBFDweD3K5HJrNpjAmdd+Us7Mz+P1+kc12u20onzcajYSt4/F4DEY3gzrasGdgmkFtzYihfqTMabYYU/Z/8YtfYG9v74JzOGlQ1vldr/rQKeG09TY2NmC1WvGDH/xAyoNwPgiSkknO4L7FYkG1WsXp6SkikYgwZPf390WHse/HlStX8Mknn0gpM8o/nRLaiTq4r/cYdTVwrsNCoZCU79C6R4PSvA5BikgkIoQJymYoFEIikZCmggSDGQzg/ZAIUa/XxUmljaEzFviTAPnS0pLc5ySgQttrZkYoA8PUtZTx58+f486dOxIwYYDldRu0S4PBoKyL2d4aDoe4e/cuIpEIrl+/LvoEOM+OZa172iI8H51OJ4LBIN555x08fvxYgqwEFYCxbPL85bq53W45z/kdJIel02mkUilMTU1JoJayyGxK4DxbhjYGmcDdbhetVgsOhwPxeBybm5sipzz7Wd+fNlO324XX6wVwXtecmX12u136o4RCIcP+293dlYCibhBM0IFzYbfbsbe3h1//+tfCcteggRlAeJ2HPsdGoxEePnyI6elp/PCHPwRwkaTIEhkkSlJGedZSVnd2dqRsTSKRkKwUgkuauc2yMpTxSqWCUqmEVCqF09NTYY7TN7x27Rr8fj9arZaUOdYlqbnnSFykL9VsNkU/vvPOOxiNRnjw4IGU0dF+osViQSKRMPiB7AnQbrdhs43LO6ZSKYxGIyndSJIpdbDFMs5OCgQC6Ha70oNFz7kOBBFPoa7l83BMT09je3tbMlG5Pt+N/94YDofY39+HzWZDMpk0kHV1JRF9jvN1Egt5HWaSM7Cqm54zywsY23os6eR2uwEA8XgclUoFR0dHsFgsWFpawvz8vJzj1GfT09Pw+/1iA5+dnQkmQFvV/AzUsSQQuFwuxGIxCTCzZCMHcRFN3rVarTg+PpaS09+Nv3y87Ezq9Xq4desWZmdnEYlEpJwubcdyuYxAIIDV1VX0ej388Y9/FOIL5Y2+0Gg0Er3H/nlWqxX1el3OSl3ulvqYdjEApFIp/PCHP0QsFjNU1KA9ThKY1mf1eh2np6eG0qA89xcXF7G9vY3RaCREDL4WjUZRq9WkATX1IMljLLPbbrcNlRxoa+ns0uFwiHA4jHfeeQder9egJxlk1ueWDiLyGrdu3fqzyGNf9/jKmRB/6oZbrRaePn2KXq+Hy5cvIxKJCBjAhdSAqwYCqeQ06DQajWThgsEgBoMBKpUKotEo/vEf/xGZTAbPnz9HPp83NESjotJMV9bkJEPm5s2bSCQSwtihYOhmlGQg0onRG4sMbwLL/AzZBbVaDY8fPzY43LyWfm6yMQl0cINoIIubIh6P4+bNm7h27ZohYKCBBf1ZDSQwssbyD/q9wHlqG40oOp0UYA4GIO7duydr/W0bZvbSJLkuFov4+OOP8eMf/1hSVrVRBUwGXHjA8b3dblcOWEb1gfOAmV4nDRrp79Fgq24caQ44mR10XkcHvNrttuF3RlGBsbyz6TANRjpFfP3s7AyxWEwa+2qmNp9FyxCfSwdEaESTBcyMImZ/cOg5oCzqgJAOypgDEJT7qakpNJtNPH78GBsbG4amf/rzr9ogqE/2ttkwoAycnZ3hwYMHKJfL+Jd/+RcBXoFz45TOFRmEmr1ULBYFZKpWq1hdXcVgMMDe3h56vZ6U2qCTx/WgLFG+KM/BYBBzc3NiMLD0HTMo6CiORuPSaZRdlljo9/tIJpPo9XrSgJc6v9/v49GjR4ZMBG3Y6mCN3kMEu1wuF5LJJNbW1uD3++H1ejEcDnF4eHhBlgguMotJO46UVYfDgfv37+Pg4EAcSjKh+X4O7qtvo779c4dm9hHw0fu7Xq/jv/7rv/Czn/0MKysrUjrBrJO1k0udxDOeDtRwOC6FxBJPxWJRGoGR+MCUdM692+1GrVaD1WpFJBKB1+tFPB6XDAiCDi6XC16vV3pbUV+TYcbGmMFgUPbbcDgU1hkzhFhyQTcmZXPcwWCAcDgM4DyYQHnmuUB7A4DoTe4dPT/mc4dD2zwMdBMsIIvmZcHfl62vPste1UFDn3pFN0t89OgRstks1tfXcfPmTXGsmBHBgAF1Beu7stxcLBYTwKhYLErG5dTUFNLpNC5fvoynT59KXW8GMzRhADg/L7muWvexzJfFYpHsIQbvyPpiU1zgPEjLsbq6Ks0IM5mMlMBZXl6W4AmdR6vVKjaJzWaTsgwsywSc62KWbiIoQX2xuLiIubk5sTvMdhqfk74B/Qw+t+53xP12dHSEjz76SHQ/1/N1zITg+nY6HQQCAQEVtT1hsYxrzP/ud7+Dw+HA2tqaIRBBEgGde12SdDQaCZv2nXfewc7ODo6Pj9FsNmXv0C4lQYY2JQOsJL3R/woGgwZfkCBGNBqFz+cTXb6/v49OpwO32435+Xm5PrPFSqUSLl++DLvdjq2tLTQaDfR6PQQCAVy9ehXHx8dSspeAAEk7Ho9HALFoNCqlnhigJnmBe5hBNG3njkYjmYPbt2/js88+MzTD5PwD32VE6GGWzcFggNu3b8NiseCHP/yhQd8xE5Y6Rmei8Lyi/qDtyteJSzBTzG63CwhEe4PAEBuUMtBAuXQ6nXjrrbeQTCaltEi73ZZgLgkRXHfW3ed5TdCXjNmbN2/C4XDg7t27kknDLA2W+WKGULlchtVqlTLTiUQC8XgcwPk5tr+/L3uNe5WVGIrF4gWwTs8/zwzac5pkpuV7OBzizp07hjX5bvx1xmAwkEbVqVTKkP1gDtDzpwZeeZ4y8OtwOODxeKS/Dc9nnqGFQkHq8FerVWSzWak0wuwe7qVKpSJ9U6LRqJToIbk3mUyiVCoJGG3GFbSc8XxgaVIAEjThe3lu6AwIANjf30c2m33tMnS/7mE+k3K5HH7729/i3//930U/MljQ7/dRLBYxNTWFtbU1OfM05qD1BWWApBZ+lya1nJ2dwePxiI1JOYhEIvjBD36ARCIhJZioz2njMVirySn09ex2u5BxiaGFw2EsLCxgd3dX9gSr+RBTi8ViyGazErRl8JrB4EajIX1aSNqkbeX1eoXU9vbbbyMajcq8MotS98YkBqFxh6mpKTx79gyfffbZlxJq/qcIDX8Va1pHUIFxtGtzcxOnp6dIpVJYWFgQIEqDpFrxUaAYeODfqSzK5TLi8biAYHRGrl+/jkQigb29PalHSIHSYDAN1WQyiUuXLmFxcVGAIda51YYwm2QT0CJIpNkyqVQKlUpFHMBqtSrpmfF4HDdu3ECn08Hm5qY0uuZ9AJBmlwRSNFOQjqMGi2OxGG7evIm3335bPk+WOudfK1UNRDACzvQhvW7Aed8AAtwAJEqplTLv6cGDB3j8+PFE4+PbMFgqCIDMt47yUz5PTk7w4Ycf4v333xcGrI6eA8ZyTmagl++h06sDBzRsNSNKM6n1NVgSRGf10HGhccB71unBGpTi6wQj+KwA5Fpmtt/JyQmKxaJkR9CJInssGo1K0z6dWqcDbdpQ0M8GQFIm2bhKHzQcnCc99+Y10PPPPcoI9ebmJjY2NqRMBZ1hMs1f1cHagC6XC36/31ALk4B9p9OR3huHh4f49a9/jX/4h38Q3UcQmPqLoA0PfO6VXC4njVKHwyHW19fhcDiwubl5oWQXnTpt/Fqt41RLNiDVbEIyBxgsppPGxn9k7zKNl85Uo9EQVgQzFtbW1mCxWKSUAnC+N7n/GKSiwaodyZmZGVy6dEmyLSwWCw4ODgxGO3/qchGcMw10ORwObG1t4f79+8Jy6HQ6EnhhRgYHWT2vunPGwBWDTpRbjkajgf/6r//CT3/6U1y7dk1K0WldQEBTn/+T5q/X6+H4+BipVAq1Wg2VSkWMPdaTZSCCjBStC/1+P5xOJ9xut/TusVgswnKvVqvCwGEQIhwOGzJoAAjrljWlCcBaLBaEQiEpL0YjOZFISGDPXGJSG+bco/xu7rmXBW30mUa553WZVXTr1i3cvn1bwMU/9+yn7fCqyy9wXk6Nz+pwOOD1emGxWMTx/uyzz1CpVPDP//zPwnzmOjNdmyUwqftYb5vMWjL0aT/a7Xasrq6i0+kYahpTl+ggBGWDwWWWItFlPyORCObn56VhH0kLgUAAXq8XU1NTF0o7hkIhIRRYrVY0Gg1EIhH0ej1cu3YN2WwWGxsbEhAjA5w+AM8Lj8cjc6mDBbTRua9isRguXbpkaODLwBttCQLmlGfOFZ002kKcg2q1it/+9rfSi4e9NXhmvm6DNewZJNfrBRhranc6HfziF7+AxWIRRqPuKcPgE8sDMCvS7/eLbMViMWxtbSGbzUppPMolAAnCMlgFjG36ZDIpQQZt45K44Pf7hTlOe3J+fl5kbjgcolKpiKx7vV7UajU8evQI7777LuLxOE5OTpDP51Eul2G3j+vmRyIRFAoFFItFDIfjRpcej0d6nFHfA2Obl89fLpcxHA4F2BuNzjNXOVim7w9/+AOePXtmKKemx7fJ//q6h7bFAGMGwRdffIFut4sf//jH0jSX76Ec099gMEITSACInuaZRmCKMsdsLpbdIzjU6XQQjUYl45xr/3d/93dwu91ot9sShKVNGY/HUa1W8e677+Lx48eoVCp499135RpHR0eoVqsChGWzWQQCAWkC++DBAym5EQgEhHmcSqVQKpUk4MyM9FgsZqhWQRua547P58PKygpyuRxyuZzBV9UySGBQ22fms1/7t0+fPpXSJ98BwX/9cXZ2JuBoOp0Wu4E+Me1LM6GAtiTJYE6nU3rtaf3Psp7U6zpYf3R0hFAohEgkgnA4LD7g3t6elDO3Wq0oFAqIRCJCxEomk6jVauLPNRoNg11FuaRdwmCdrjKhSV98Fl1mlAEaLcvfjb/emHRWPX78GLFYDD/5yU9EL5Bsw6DE9PQ01tbWMD09jXv37hlsSk1C0H4U5Zj/LJYxCZhEIK57MpnEe++9h3Q6jUajIfqZBIS5uTkhldlsNjx+/Bj9fh+zs7O4evUq6vU6ZmdnJQvoxYsXCAQCkuU2Go0E+yCBh34Z5dHn80lAO5FI4OTkBNPT04jH46jX63JuAOflJ4mpv//++0gkEuK7EcfSpdBoL+tg2/T0NEqlEn7zm99IabKXjf+pvfCVghCTmBdmprIGsA8PD6X8wOrqqiwODxgz4EilwANYO9LtdhulUkkyK+isn52dCZtwZmYGtVoNxWIRtVpNjEqmqkciEcTjcYRCIVGmBIf4PTo9hik+CwsLqNfr0hQwkUhgfn5ejPF2uw2v14tyuYxarYZwOIx6vY5wOIwf/ehHsNvteP78uQQbKPS69AZBYJ2GqMGqRCKB9fV1zMzMiIFEJ01H8cwb3mq1Ih6Pw2Ybd6HnZuVa6bnXLDI2jdGCyEPl7t27ePjwoYAk38bR7/flcCPQyLRT4BzkPz09xcnJCX7729/i2rVrErzSG3tSEEKzDM1sXgLg/F3vA3OAjnuA96jlg/vEbPjpunmUITp7vA/Kv84eIphLpiwdIh4KU1NTAjaHQiF5H9MwKZfmrIeXsSvIJmYfCG2oMoqr2Yucz0lBHgY+KMP1eh0HBwfY2dmRRpRkJ3FuqENe1cFaxixF4PP5UKlUxMEgoONyucR53t7eRq/Xw7//+7/LoQ2cM5jJhNaBKu6F0WgkbIapqSksLy/D6/Xi6dOnwphmUFMfrjzIQ6EQlpeXJQDCNeV3WywW7OzswGazGYJhvAfW6u/3+zg4OJCyPOx/wx4/LGV3cHAg5b8ISDATTX+3zWaD3++XHhAa+DCXRKD8asasGSQmCLO7u4s//OEPEtAhWDMp6471igmEv8qD80fdTHYIcG53tNtt/OpXv0Kz2cS7774rdeE1+YBnHGWNr3Fwzer1uvTuoaxQbxPkjMfjYm/oYCftCu6H0WicNVStVqW/A8t/UGeXy2UJdNE+4T6lzPL+CB5HIhGDraJLPdDZ5z99nzR4aUxr/cvXda1fPV/c+zSgt7e38cknn+D4+NhgP/y5NgBZkK/6oF2pgzehUEj0Jckr9Xodm5ub8Hq9eP/99yXbkutBZ99isUh2DPU2yS/UM7pEAst6MBuNupPv0zaDztbQgQxgnFl248YNpNNpkbNisSiyzgC3x+ORM5ZN+5rNptQVL5VKAv4Oh0P8y7/8C4BxDwENKHDQhuCzcy9SL9JBHQ7HKelvvvkmAoGAPIN56DR7AoO0ibSNy0ynSqWCX/7yl1K6imcCbfVX2Wb4ssGAJ3s8sHY+dYAuk9But/GLX/wCo9G4VwnnjTqQc805ZSmGubk5dDodhEIh/MM//AOeP3+O3d1dqQ3OrDRtm5BBm0gkRA6oA2kT0sZg4E4DHSyNenZ2JiAXgTQAks1Rr9dx48YNJBIJBINBeV8ul0OlUoHX60U6nQYAuUdtFzNYzUbDBHfdbrfsZZYZ5fkyNTWFra0t/OEPf0A+n79w9k8i7Xw3LgIoZvvs4cOHaDab+Id/+Af4/X5DJjjPRZ6NDofDACJRZxFopV5iY16W1SRxjDJAH4rXd7vdWFhYwKVLlwx192kzcJ/t7e0JOcLj8aDf72N7e1uauS4sLEhJME1ePDk5QTQaxc9+9jPk83ns7++jWCxKySWbzYZoNCogLpnt9KGoI3WPLavVinA4jFwuh0KhYMB89JwTANMZx5qUpv3hqakpdLtdyYLQPt534687GIiwWCxIpVJia2t/hzKk/Wt+lnKqiZTAOV6iz1JzALBarcq5zVJjzDbT+FutVhP92uv1JHhRr9cNcq5tVY05aDKnHvwbsTL6U1tbW1Ka7Lvx1x/mICX9lY8++ggejwfvvfee+N8s36V17+rqKnw+H+7evYuDgwPRObR3SZbSgQbtx2sZn5qawuLiIq5cuYJYLCZlEbXeDAQCSKfT2NrawvHxMWKxGNLpNHK5HOLxOPb29lCr1eD1eqVCAzGLUCiEVquFdDotMs9y0CSy0f+jrd9utxEMBhEOhyUY4na7Ua1WpfE2e2OFQiG8//770mi+Wq1KuUqNw5l1LwAJUv/617/G8fHxn7V2fy7B7L8zLKM/4xvq9ToCgcAFwE8PLWj6bx6PB6FQCIPBALOzs1hfX4fH4zE4afwcmQW6rqIZyCSbBYBkRNAh0gwG/l0bdHRkyEYMBoMiBEx78Xg84uTTgGWEa3NzE3a7HcvLy8JUZJpPu91Gs9mUmmZ+vx+FQkHm7cMPP8SjR48kEEF2BXAevaMxw+fg/bBEBMs/sCTJaDRCuVwWtpaefzqdiUQCU1NTODk5mViiYhKATudMGxg8lO7fv4/79+9fSAfWMvCnRq1WkzX8nxqUYfOgs6vlV8uKPrhogK2srEg5Ag2Y63kFLmYz8B/rw+sorl43ftasvHkv5j2m/8/fub+4H/is5uCWLjtm3i+aLQCcR2Mpq0wr5zOx0ZAGAs3zoO+VEWAGKjmHOhAzaR70IGhCg7lcLuPg4ADHx8eGLAftWNCB+EvYNn8L2f2qg7KeTqclog4AgUAA5XIZFsuYEdVsNqVJns1mk4aQVqsVb7/9Nn74wx/KYa4NNx1Eo9FKw5LAqC75VSgU8Pz5cykdwj1HMJ4lbaLRqMgjnTAaGJpFwGG1WoU1WSqVhFFJY1izXgAIGEGWcqfTQaVSQa1WQ7lcFuOA38EmUcvLywiHw1IqgU6ZDuhqPcq/ce9peeZzPX36FB9//LGAOgDkHGJAtN1uS2AHwIWstG+DLP65w6yfCc7wvNYZfFq3WK1WrKys4Cc/+Qmi0aiBFWIO5tBI1Q4SB+eZ804wSutCPVjD3OPxiK0BjGWmUqmIw2UOxpJdS9DOZrNJxpI5eEsgjfYCyRZWq1XqnFIfk0VP1qG2f3R2I4fO/qOBroPElPPRaNzY8Pbt29jZ2bmQcaLn78uG2WnV41WRY8rwzMyMZO+yWWin05FA1PT0tPRGaDQasFqtiEajWFpawqVLlwQUo+zTcSdgrkuAclDf6NJb7XYbm5ubAuLS+eM1pqenJSjEAAXB5VAohDfffBMLCwsSDGGDbJttXHqPgeBqtYpGoyGlcBica7VaODk5kb0zMzMjcu1yufCb3/wG9+7dM5Q7od0VDAZlDjhvDDAzsy2RSGB1dRXhcFgyqCnL2o7W+pw6gfuEg2fawcEBPvzwQ3HsNGBGth6v/6rI7ZeNSXbzJDIJ/TYCCRxutxt///d/LxlrGqSiHiZgSWd9dXVVgs6zs7MoFArY29sT0gj1sibj+Hw+8dt4j7R3yWi32+1C2GKpDpYH4Z7TAWg+I1m+LGmTTCYl65PkgHq9jlKphEajIfaK9lvNpC8S2KjPzdl8BFM+/fRT3L1715BxzvFN9rf+FuNlPh4wmY0LjIP7P/zhD7G6ugoAhl5z/BzxDrOvQTBWB5u0f3F2diZnPNf+9PRUACey0VlmjJiBxWKRvk75fF6CT5lMRuyXo6MjCcjNzMxgcXERh4eHyOfzGAwGUnJHExbC4bBUbKDO1rXy9bPyObiv9SD2QcKMJn3Qj9TkNvMaUGfQznC5XPjoo4/wxz/+8QIuNGl8J8///WG3j3vrpdNpQwaE9mu0nc0xSf+8DKg0rz3xQAYU8vm8fA/Pb343e40w442A8+npKer1usgtfUxeRwcgNBue8qYxt0qlgu3t7QsZ53/N8brIKmCU15dhP2Z8zOv14mc/+xlu3rxp8Fd0iS+e1fV6HQ8fPsTz589Fv+pgk+4XRaxHj2g0ivX1daTTaTgcDkQiESwuLooeJOFtYWEBg8FAcE76/fSxaJcmEgnMzc1JcMFqHZdaoq3O8tRffPEFqtUqKpWKBJZHo5Ho0G63K/0vR6ORlKCsVqviJ05PT2NhYQHf+973EAqFBHt+8uSJVH7QtpSuOkR8bjQa4Ze//KXo2T8VYDCv4dcly18pCAGcb3QNQpkfRhupwJiB7Pf70e12pUEoGzrTMNXKjWCRORChr09jQEe6dBqOTjXjZ2gEWCwWBINB+Hw+EXymlzGgQFDA6/VK2Q0axrq0lM/nk/q9NKTb7TY8Ho8AcF6vF16vF/fv38e9e/ekLwAdGip+Oloulws+n08cPdY0Z2mSUCgkQqrBPipaAGIsO51OHBwcGEqM6PngoIKmMazfR0Pj0aNHuH37tqE2318SJfsmBSGAc3Bq0jADSATf/X4/wuEwwuEwAoGAAGaUO8oHr2++pjZqdYkMPXQA4GVAPgCDvOt9oN83aY/yuZmO+6cMCXMQAzjvO6AZmzpSrQ1R/l//nYrTfG8vM0RpGPPfYDBArVaTVPhKpWIor/AyZuRfymb8NhgVlPVUKiX6YTgcStCMKYJszsjgGhnnDDAmk0mkUilcuXIFgUBAHAvKjtbBBDQBCHOMzghBn0qlIkxavsfhcMje4b5gcEyvIR098z4ZDofIZDJoNpsC5vI6wHmwi0Fls9NEkIJsRxo3rJtL5iS/V2cfUUb5mj6LdOCGr/MZP/vsMwHfdCNErhUAKX3BzzMgoce3QRb/3DFJPxMQpaGm51mD5aPRmIX49ttv4/r16/B6vQZDDDCCiVpfad2sDVf9OQ24ARD2t3bOCeBWq1WUSiVDsE6zzPkdXq8X4XAY2WxWgApN7NBZNFrfut1uqflJmaWs8foaVNDPp7MjzJk5fB/PhF6vh729PTx8+BD7+/uG0kt6fv5SG0CPV0WOKcMMInq9XuTzeSlF1Gw2AZyzP1lSiyW7qMv+7d/+TfQnAAnuElBigMg899Q3rC/b7/fRarVwcHAgqeE8n2l76Hr9dArn5ubw9ttvSwYtmarZbFZ0OVm0DDroYB3PlJOTE8nCo95cWlpCpVJBp9NBIpHAwcEBbt26ha2tLYM80jfQWZk8b4LBIDKZDObn5+Hz+Qz9LCjfZia8TlGnzU8Am4Sge/fu4Y9//CPa7baw8egEOhwOCRKzh8erIrdfNibpZQbnOecsNcRsRA2mU1a///3v47333pP10c4xZY/2gtvtxsrKigC9bBJdKpUMvhk/bw4SU59pFjqvr+0W3r+2LyiD+pwfjUaGEiO6DjrlR9tWJAtoBqYGdwliMJNEE3eAcYD75OQEv/vd77C/v3/BFjafR+Zh1guvg5wCf34QQs8Pg8KLi4v43ve+JzpZByi1LFPmaBMyMMxMCQ10Ug5pS/p8PrhcLgwGAyEtauIjyx0Oh0N4PB6USiXk83m5rt/vFyyiUCgYiIB+vx9LS0tot9vodDrw+/04ODhAt9uVMmf8R1YtiVg8ExiAIzGHWASfhXPG+zfbtdqv0/axttnMxEan04nNzU38/Oc/N9i/Xza+k+e/zrDZbJifn0cmkzGQGHhWUnfpChnAxabDHNoe5+fNJDKbzYZ4PH6hvLnGOfS90E5mc2u+1ul0pAS0OSgNnJcH1ERPfR/Hx8fY39//0pr4f43xusgqcFFeX+YbmGXG5/Phgw8+wHvvvQcAYrexXxjtVeIMJycnUqqx2WyKnFFH6XPc5XIhkUhgaWkJmUzGUHYzEAggkUjIee31ehGLxdDtdqWnWjAYRDweF1u6WCwaMuBIhmFAJBwOw2odl7Bj6Tr20Hv8+DEAGPbE6empZDiT1MAMepI0uWfeeecdAOOeGslkEtvb2yiVSgDOe7XqwJy2saxWK/7whz/gww8/FPvMbEfodTETOIFvSBBCg/+8+S8zhPT73G43vF6vRJxisZj0c+AE6sNJO/i6dA1gbNisGVST3qMnWDNT2QSMwQcqNjMLm4KmjV0ajtwsLpdLyjXohqvhcFgYBz6fD8FgENVqFZubmzg4OEClUhE2AR1N1m9ncEOz5sleY0RYM7T4zBbLuL5iNBqF3W6XxsFm8EC/nweGbjCs595ut+Pp06f44osvJtYRmwRyf9n4pgUhgJcHIiY9Fw9Trpnb7UYgEJB6h7o0AOVNK0ZelwYcjTgNBpkDbxrMNAcfNNtav19fZ9K68/8EQs0MYW0wasasOQVOGxF6T+pgBIF/fZ+T7st8f3rOqaiHwyGazSaOj4+RzWZRq9VEdrUeMRtLBBT+kgwIjm+DUUFZj8fjErmn0+T3+zEajQw17il7bDZGfcgRDAZx+fJlpNNpKRtAoInrrw1XArL8ZwZ+zLqb+o2ABHAxEGXOvNNryAZ5LHFAXQ0YA1/8G+VcO/58nznTQh/UZkcWMJ5FOvBNI4J7ezAYoFqt4t69e9jY+P/s/WeQpedZJo5fJ+d8OsfpnunJ2aOcZcmSxzIWxhhsr01YoFioWqr2wy7Lh91aKKj9wP6WhTULGANlgo2MHLAQWLZlW5IVRiONJmhyp+mcTs59zvl/6P91933ePj2akWZGmp73qurq7hPe9NzP/Vx3fM4IcbZYLBIMt9lsYohp4446mfdFonEzyOKVYj39bOyNr2VI60g+71gshu3bt2Pr1q1SaquzZjg+1GM6I5fH0S2NKAOUcepKttXg2NZqNSSTSdnkkc5T6kltkFPOdHsc6lBmEtORrO/NGITjM+E16AolHfwwtpHSAWAd/GOrqFOnTuH8+fPSq1fr6GY8Yj1D9Eo5wUaRY2OyTjwel4STUCjUsCcRjQP2i+U4lUoldHZ24tChQ7LpHANR1Kd83ka5BVa5IJ3z5HWTk5OYnJyUylk6nJhlxnZke/fuxZYtW2C1WmWDyFwuh9nZ2YZ75fnY755OWs6RbDYrbUd1UlFHRwei0SguXbqE+fl5eDweRKNRzM/P44033sDY2JgYhbw38mCv14u2tjZ0dnYiHA4LL9eJQ1rXa2e0rgzlGFSrKy2AstksLl68iPPnz0s7AM6JfD4Pl8slY0PbJJ/Pbxi5vRzW08sej0fGlBmIdN7qynTqAJvNhm3btuHee++Vnt+6ulJXqVDnsL0SkwPK5bJsCs0xNPJecngduAXWOqV4HsoZ26Xl8/kGpxv1v+Y1wGplOLkTdTiPq/kNwXWFz4ztTYx2wIkTJ/CTn/xEnBEaWrfyPvV75GNcC9Lp9C0hp8D6ssrnrTloM9vD5/Nh9+7d2LdvHwKBgPBWvq/BNZ46lo4yOo58Pl+DTUW5KBaLovOZWHjhwgWk02kEAgEEg0HUajXJztWJMvV6HUNDQ7BarRgeHm5wqtZqK50TYrEY4vE4isWi7B9Sr9fFWRaLxVCv15FIJFCtrrSMIqcplUqYn5/H1NSUBA+NfhVeD+0o47rT7DkZ/UScu0yQ/Ld/+7c1+35dDre6PBPkELQ9rtT/omGz2dDV1YXe3l4Aqx0fdFcO6jbjudeDtu90IpUOZDHIpzkroeWa5+J8o0wy2YZzlJxa++607qbur9frGBsbw8zMzBXL23vBrSKrwKq86jnfbJ3iuBD1+koV+qFDh3Dvvfc2JOAwEME1kseuVCpIpVJIpVINfgdgJVGLSdzkEJVKRewzchWbbWXPs46ODlQqFanqXVhYELmKRqPYtWsXZmdnUalUMDw83LDmWywWaetULpclQcFiWUlaLxQK0k3HYrFgenpaWkDrdo/1el1a4QGNyd9utxtbtmyBxWJBLpeTVtJLS0vyLDTn0s+e/P7FF1/Eiy++KHxDr3/kRNpnw+vXVa0fiCAEFYBWMnxgGvrm9M0yw79Wq0kG1o4dO7Br1y5p+8Hv0QjXxogWQv7ozG8tHPo6mt0iF0I654yf1YuubuPBc1FwOKAejwexWAzlchmFQqEhW4gZcDQ62a6EbRsY0NDOCC3kmhDzmRsdvySwLONkf1NuQryeU4BCrK+Br9MxcfHiRbz88stCitcb7yvFBzEIAaz2ajdGCIlmBgGhg0iRSAR9fX1oa2sTB4OxL7zxOMY5Y3yfY6/lstn8Mzpved1Gx7xxHHX7Gx0Q0Y4rfk4v8rxm7TDT89IYnTUuPtoo0AYWP0ejitm5s7OzEgFmaf16mWLGgMqVlPq+E24GUkFZj8fjsthRDgE0OGN19qmWDa3nLRYL/H4/+vr60NfXh3A4LLpOy4XO5qYu4f4pzWRE6zKima7T18dja0QiETG46QjT2RE6c9LouCZI5PXzMV4T9ax2YBgXcsqz1WpFLpcTo25ubk5kluejjLIaiURZ96PmsXVJqNPpFAL2QZfFK8V6+lk7yOkAupxOobz6fD709fVh9+7d6O/vR61Wa3DY6wAUx0AbRPV6XTIEdRCAuojfpc7UPTiNTniuscDqPKEBRcLHzG/dEo9yoZ8F0NgCTcsw5V1nJmpnn+ZO/BzJZz6fx5EjR3Dy5Elpf9OMLxjnTrOAg1HHvxM2ihxrIwxYMYa8Xi8ymYxs1kxwjeXz0RnVdHSzCi0QCDRshKqDtcBqMELrR4fDgXg8LmPtcDhQKBSkvQd7ILvdboRCIfT29kobqUwmI47ZRCKBiYkJyf7ivelsLotlpb1fJBKR/diMQWZWlAUCAfT29qJUKmFmZkb6p0ejUXR0dKBQKGBxcRELCwuydtlsNtlXIxgMyhy22VZ6OuuWTzpJSgeG9XPnnHvppZdw4cIF5HI5eb7AyuZ+zI7PZrNSNQis7o+Sy+U2jNxeDpfjzdR9wGqSh67+Ig/URnIkEsEDDzyAoaEhCTZpg1kHI7gROIPJpVJJZIIybgzYE9oJRZ2n24vy2igb7I3PzaY1L9ItSvQ80zxZ6z8em6+Ro+p9/+iQ5vGYmf7iiy/irbfeWtf5rfUtr43JaTyWDgjdKhU7wOU5BNtn8dnoxBijHcWqgh07dqCjowMWi6VBP/A5Uwdpm5Gy43K54Pf7ZbNTVr3Q75HP56USWVcZUk55HO3bqNfr6O7uhtvtliCEDqxpPwm/w3lHeeEeVqyGYOCNwSo+Fzr/CJ5L+1u0jawrfvSz1P4boLEK9ezZs/jxj38sjsQrxa0uzxpc27UvSCdDXQksFgva2tqwadMmsZ20TtX6Rn/HyPeMgSbtI9A2FOWS198swKG5hT6HPj5/c+3X8qiT4vh/sVjE8PAwEonEuwrYrAc9/4xJO7eKrAKr8trS0iLrt3Ev0sv5ZJ1OJ7Zt24aHH34YLS0tYn8xCUX7hIBVvd7V1SX7Q1IfUxbsdru0/mKnBK3znU6nJN0sLS1hfn5+jW2zZ88eSRo8ffp0w/Vz7eY1VKtVTE5OSlsnp9Mp3SUASEBkenoai4uLDcFcPb8oT1brSnVFMBiUxLaJiQlpxcc13th1wWJZSUYvFot4/vnncfToUWkfaEwM0oFy6o58Pt/ggwA+IEEIvXEvSZUmdcBaBaIVFBWO3++X3su5XE56XdFpD6xWQ9AhpDOYjErPmF2t39dCb1RSfJ2Dra/Z6MzVxhedAMZ7pJHF66XAacLMa+S9kGxks1kZeD4DXoMeIhJzvYk1yT976NGJxezw9Ygsx7BQKDSQCI6V0+nE5OQkXnzxxTUbsOq/mzkiLocPahACWBnfcDgscqd/iGbPUwfB2Ou1paUFbW1taG1tlfvVJeDv9KyMz9MYYTaOhZ53OmBhDEIYs1OMY6izCLWzTV+HvkZ9bB140JlmzRYffV36nqjYOUe5ybTeoE2f3/jM9G/ea7N2Nu8GNwOp0EEI9s7U+84AjfpQ63Tj3zrQRJ0WCAQwNDSETZs2SZa61lk6O5Ln4MJnhB6T9Ujneo5myhXboc3NzYnO1kTaeDzjsXlMIxHQz0g7MjSpYrYbjf1cLodMJoOJiQlMTU1JthnL3rlm8h5IlmlMlEolaffB9hEkN8xK8Pl8yGazN4UsXineqV0e+YDeg4HPU0M7nUjEhoaGcO+990pLSJ05ZtQfOhhLBxqPqw006nmSU36G12q8HpJG3VaHxqPeGFo7OrjOc+3ROlRnXhrlnNdDB4M2UDkXOR8tFgsuXLgga7xeF5oZl8Z5tB63uBWdCpThcDgsRge5Lsu5NYyyx9f0+HZ1deG2225DR0eHyDtlTLeoAxqTdICVLLKuri5xftXrdcm+paxyveax2bPZarVidnYWFy5ckCAyZUbrTGBVP4fDYaTTaam807JMOXW5XIhEIiiVSlIOT2MqnU4jm82KTmQff8qt5hYejwfLy8sYGRkR45P3YzTIADRcf7FYxI9//GOcOHGiIRjJeWashPD5fMjlcmII03m+UeT2cngn3qwDYs3Wcj5H3V7OarXitttuw759+wA0JhXw83rstQ2jgwM0mrUeNOonzid9jHq9vsbOYmux+fl50em081ipwXPqIC/ljtAOY2C1+oHyV6/XJfjAa2FSwfPPP4/z58832J36WDoIzntu5hjmM+X93QpyCly5rOq9Heg4ZNBGP0eXy4X29nbs27cPAwMDIkdar/F5M4Cm9Y5OKNTJK5Qdnt94vGa2G8c4HA7D5XJhcXFRXmcVrT6fPo62rXhMXV0LQJIVeP+6HRnPo+1WnaDGa9fXu57uLZfLmJqawsWLFzE+Po5CoSBJmlcKU54boW12/TdlQP+sx8ssFgui0Sg2bdokLcM0VzR+ttn/+tiaJzez+fUG7MYODM14UbPXOdfoD9AcmHqR15BKpTA8PLyGg10N9HqmfSPAapKjscvCrSKrwKq8er3ehmo86g/d7ni9ZFBW5jz00EMYGhqSZ8okX111xn0dBgYG4PF4JHOfazYTwNm2HlhNENBzRHe50UErfj4SiWDLli0ol8vCGY26j9Xx9XpdgqpW68refR0dHejt7ZWqhEKhgFQqhfHxcSwtLa2pGtV83ufzSVebdDqNRCIhHSyo+7UvkeuO3W7HzMwMnn/+eYyMjMBqtTYEczg/eM/aV7Neu/LrJctrvUKX+/D/n0hSCPRiph3m2vGkwc+zRJ3OmZGREZRKJdx1110IhUJCGJk5oo0ro8IzOi+NjgX+TUNfZ3obnU7G4/L72gmwnrOKZCaVSkkrJd5DJpNBPB6XTch0P2c6J9xutzj0GEGk44mTiufVGcV02JKcpNNpWCyWNcKpnwWvy5h5qUm20+nE0tISjhw50pDBdzlcCyfv+41qdWWjMG7ImEwmG3q8UjaNsq4XfWa3pFIpTExMSHQ4Ho9Lf0MGpbTjqZnhrJVSM6eZ8XvNxkBnyfDzGkYiqTNs+LrOXNDOaX2M9ciOJtXG7/CH84KEpFwuY3JyEiMjI5iZmZGqB+O1GokulSzJAufkRpDNqwWrseh41X1cjXLbTJ9yoeP/tdpKyxluqDQ1NYXe3l4MDAxIP1vtpNcEVp8PaHRgGZ22+vzG69E6jEHUubk5uFwuyZrl2kR9b4TxGRhJgD6HXqj5OU2c5+fnMT4+jqmpKQkiF4tFKbsPBAJiZLH3L4nC8vKyOLd0uwe2AGGfaepqAA3OvVsF9Xq9oT2hz+eTPUYY1NHQuqZUKuHkyZNIJBJ49NFH0dbWJsEcrasolxxrthvRlZJca3lNJHbG7BoADWu0doqySpLZipVKpaEEVs9Frdv038ZzGPWrdthqJwewWv5OZ+zLL7+MEydONA3sGp0X+jX+bQRlm87aWxGxWKyBBxidjkY9Q45pXCMrlQrGx8eRzWZx++23Y3BwsKEVZ6lUEqckP6+dtNTRmzZtQmtrqzh82Dec+tntdqOjo0OqOGggTU5ONug7I4/gfVitq5vIx2IxSVjhdegWYcwUA4ClpSVMT09LSfzQ0BDcbre03WHCAc/LeVIoFDAzM4O5uTkJruiEKN6XXtuy2awYpG+//TZGR0fXBN31c2fmMt/zer2o1WqSsGNiBXTYN1uX+Hyp57QD59SpU6jVati5c6dUntCWpN1DO4TBCOpZbddwnrE1jp5TWj9pfs7vEeSb7A/NYCz1O0FZol7V8qV1NtcU2g3U9wyc83o4ryYmJvDDH/4Q09PTa3Qqk8GM7ap0FaoR+lmaWIVOGNBV/xwLv98PoNE+ph7ctGkT7rrrLrS0tIjdrGWA46H36uFYGVvbGKsIeB1ar+jWUeSBy8vLSCQS4odhEIrZwvo42slmXGv4mrZndbtGJuABjW1KdaCvmXOZx9cJbOTidAJPT08jkUiIncAN1028e2i9Zgxqadtaj7uxg0C9Xsfi4iKKxSL6+/sRjUYb/BzU3cDaBDXjdRi5Kq9DJ3NyveC16GQ3Hotoxp2a3TffIxegr29mZgbj4+NrMrvfCcaAg+YKPI++jlvRx9AMXO+1b5iJBXTU0042VnRXq1VcunQJ3/zmN3HXXXfhtttuk6Q86jmORbVaRSKRwPj4OFpaWqQV0vLyyj5rTIihL4vyT30MrHY9aJYUzHGdn5/HwMBAw5pq5MJsD8X75TxMp9PIZDKYnJxEPB5HX1+ftF3SiTNaxniNDodD2lFOTU01+CG0n0X7vmw2G3K5HI4fP46TJ08inU5Li7/l5WVp8aefuZ5f77Vd+bvBVVVCtLS0iHObkSMuxsaJqAfZqEQokOyLyQWwo6MDt912G6LRqAw4M2L0MZsFIuSGDOcidM8snp+fMypTXreRdGql3sxhoN/3+XwAgFwuJ5OH0Tufzyfv6+w2Xg/PSaOJ75PY8li8jmg0Crvdjkwm0+AA0A4aTcJZ0qyz1DVJcTqdyOVyePHFFzEyMrKmnN04DsSVKuEPciUEYbfb8eijj2JwcBAjIyMYHR3F0tISKpWKbMRXLBbF8aidCMZsKDpmuDkZ+3ZGIhH4fD5xSOk5ZFzUmhn/xDst2OtlIxjnkXE8jffT7L31Pqfnhv4c39fte7goFAoFcUxMTk6K7Dc7J/9nr2g6DYGVUmeLZWWjX/bNu1a4GTIbKOvcmL5er4szlQ5y3QrBOFZGx0wz5xOJbTAYREdHB9rb2+H3+9HZ2dmwQFL2jWSOP5qo1Ov1hmoJXpcx40STVgCSZaHXFr5urJwjOdA/+nzG82gjjg4BEvaRkRFMTk5idnYWhUIBgUBASA0zN1KplDgLW1paxKnCIMTY2BicTieKxaIcm04RPjuOAZ0WDF7fDLJ4pbiS/rfsX2y1WhuCA8wI4RoPrA00AUA0GsX999+PoaEh+byWB70O2mwrez3pknReR7OgrtbZxv8BNBBhXj8rFtmGp1mlkL4X/q1JtHGtASDGveZHumWPw+HA1NQUfvSjH8lmw/yc8XxGXqLf57Ogc5jnIHe5UjK7UeSYMtzR0QG73Y6lpSUxljhOlCdmRxPNDCD+tlhW9o3Zvn07hoaGZHNSvaePDvgaHbVOpxOxWAy9vb2y2bTe00evvUtLS9J3X8u5lj+r1SoBX8o5AxnpdBrz8/Oi47TupG5sFjQDVtvOBYNBCUbQEc2KXbYY5RrGOcbzAZCAQz6fl7L3XC4nbVBtNpv0/TUGqWnkaYckq4mYfOVwOMx2TAoWy0o7Wm4eqtf/ZjyQcDgciMViGBoawtDQkCSgGau3dea61nvGpBftGNPBL64Rmn8SlHHaWFo+2RrN6MBl4ANAA6/RjhRjJrC2xTTPefvtt/Hyyy8jmUzKewx+MPCg2w82e/b6b/I6jVtBToErt/GMbcT0uGjnOceW7Yrdbjduv/127N27d40TiDJGjmisUjP6MDTvJZfRVQY6iUDb9GzHyRZQmsNqXq25j+bzPC7lkXyC59Tzq5n9pu9Bzzk9RyuVCrLZrLQ3WVhYwNLSkrR5BBo3t75amPK8PqivjJyQ0PyV8mN0BNvtdrS2tqK7u1sCYEZZ0oEmfSy+B6y1p7RNSFtGByLIYYzcwKiz+brmOXoO8jnUajWMjY1hdnb2irmoMeFCry/NnmczX43GrSKrQGMlhIbRt6BtBgDSZtFYIeHxeLB792489NBDiEQiksxD3apl2dhK1+iLAhpbIOvXtfzwu1qX5fN5bN26FW63G+Pj4w0yx+NqGTX623jfABrsJPJYAGvsTJ0cR93M1kvGwCCfYyKRwOjoKM6fP4+ZmZmGTjhGG89o0zJwdLl58oFoxxQOh8Xw4IUzEwloNMaBRicWB0YbJMBax2I8Hsdtt92G1tZWeSDGTXPXUwZXsmjyh6RAO7S0gtWEk8RUZ0HyOWiDXJ9LG5h6wedkcTqdCIfDsgGWfm50QrE8XTumK5VKg8PC4/HA7/fL57jJKZ1YBHuQMotZPyM9NnRyvfLKK7Kx1bXGzRCEAFYUxu233467774bHo8H6XQao6OjUkbF8dTKqlgsNq1C0U4xBiS4gQ430WHLM93jkd9tRg6bKdtmxr0GFRqhx9/4PaPxpb+z3lzT/2ujkERXz5tyuSyBgpmZGeknzVJN4zXwt9vtln7bfPbMKG5tbUV7ezvOnz9/XeT3ZiAVeg8fOjiZTaeNI2bq0rjRmSrrEVigkYBS5timacuWLejq6pLWfTqjSwedtI5tFuQ0OtV4Xk14eT2M8PN/3m+zucDWI9op0SyjUetxPccXFxdlY7NkMolcLicy5na74fF45Hj5fF50u8PhQCQSER1eq9Xg9/tFj1DmGWSms53kRDv8WN1zM8jileJK9TMdQ1qf6vZCwGomI7NxNGnzer14+OGHsX37dsko0WNPWaRcMGvFqAuNsmXUodoo068RnHu8fjpESc6bJUbo8zYj2AzGGLMa9U+hUMCZM2dw9OhR2RfAeH1ab2snB+eC3j+Dz4zPmddwNc6FjSLHlGGWlGez2YaN3YBGA0Wvxc0MfcqQdoC3t7ejvb1dnLdAY+sV7UDjeGiZZsCec0ZnVhl1IrDWgOT1UV/plmTa4Wrct0Jz7vUMesoQnXJ63moHBnUgAJkrxWIRc3NzGB0dxdTUFIrFYsM8slgsEniIRqMolUrI5XKiN6hX9PrAambOAc4hBg83itxeDlfDm+12u1T76UoUPj9t5BqN9kAggM2bN2Pnzp1oaWkBgKZZeUbng5Y7yjudt3qjR6B5FRLllQE9yiW5B/mT0cZjUIxJbdohR2jbUV+3w+FAOp3Ga6+9hlOnTklVEqsfmeC3XlYir0U7yi2WlX1KmmWW3wpyClydrPJZr5cBq+VEV5tVq1X09/fjzjvvlIpMHXDSziO9/lIuqJdpwxv5JrCWY1SrVXFAcb8I7rFj1NNahrXuM64ruVxuzV4Uev1p5jg0HoMyW6vVkEqlMDk5iZmZGczPzyOTyTRU6+jvsSLoajiChinPl4exGgdYP0FUy2e9vrrXHbDiW+rq6pKWicaKcX5fdx/QMPrPtE1PHxjBNULbmDyG8V70d5rxdrvdjnw+j+Hh4TUc1wgdENGBjGaZ4vo7vLZ38i/cKrIKrMprLBZbd+yNoM3DBDwGJGgj2+12bNq0CY899hj6+vokqZvf4/rOcW/GW41zoJlMGQMA3EeTNlNPTw9cLpfsP0Ydz+8204/G8xl9DcYECn6X/JP3w6CxXlt474VCAZcuXcLZs2dx6dIlSdxdz1+nr09fD/3Hl8MHIggBrG7AqxdxnZHU7Mfo6DQa8UBjlkk0GsX+/fsbNsqhQ8ZI9DTWe/DNnAaEscULf4yfoSNJG4ZAY2naekqLhh4FixFgYHUjPU1itDLUbYCYPUdD02KxSCkzd2YPh8MNhJ+OXmbs68VDT6R6vS6byL766qs4ffr0mvK1Zs7nd4ObJQhBRKNRbN68GZs3b0Z3dzf8fj8KhQKmpqYwPj6O+fl5If/McF5aWhLDRsMYANCLoMvlEgc7g0vBYFA2NjM6f3hsTQ4on7rKRZ/PKKPrKU6jDOuIrCYKWnkas2kov5VKRQwktqBJpVLSq087hTX0/1x0uNkblbLP50N7ezu6u7vR0dGBcrmM73//+zh+/Pg1kVUjbgZSQVnXJdpGWaMO1/3vOVaaCDQzRpo5QnnsYDCIWCyGSCQiZb26dZ+WVX2sZqSBxp/WyZQv3ZpB35/+W8snv69bFRhJusViachUoPMrk8lgZmYGExMTmJ2dRS6Xa8ii1/ffzAmhKzJ4XU6nE4FAAOl0usF5ojPKADSsAfyhHr8ZZPFKcTX6mRmihNFw1kaFDrjRYeD1enHw4EHs2rULPp9PZFOTQ/7WMqH5hzbsm3ELo1zz8wyOcG4Zj8XP6uBTMwcX0LhZpHFe0RHH+V0ul3H27Fm89dZbWFxcXNO/VieG6HvRgRHKO7/bzHmjOcaVYqPIsd47zeVyIRqNSusjbYxxXIG1ziO9vmr9onm02+1GJBLBjh07pAw9EAg06AaeQ2dYae7B8eZ1aCe/MVNYg8dgkoveEJf7D+k5o3mxsTWfPr426HU2vNEZYbVaxR5wu90olUo4f/48zpw5g/n5ecmu1YFJGrf6e+x7zVZ45XIZXq9XnL/k2pyzvHcd1Nkocns5XC1vDgQC2LdvHxYWFjAzMyOtkiKRiAR5GJzTOoTj6/f7sWnTJmzduhWdnZ1rNhM2rtlG3a/1KFuNGR1t2gHBYALQ6LQl9HeMyWnGKk6jDajnMdf8SqWCs2fP4tixY0gkEg2ZjLriwahDOZ+ZvOR2uyUZgTbeelmMt4KcAlcvq9w0Wo+pDqgTWgbIm+PxOPbv34+Ojg6RTSMP4DEpN/qYDJA1SziwWFb3I6Eu0g4yypPe34fQgW0jr9DXRQ67Xva6lnV9Xp3BnEwmpUsAW/nw+Ea+wuPr+fZuYcrz5WGxWCRIRV2i/QLrORt1soq2rVjdGQqF5DhGJ71RZxqvR6/zmp8YA2X8jPHz/BtoTIwxciOr1Yr5+XmMjY2tK2fGZLh3ei6aS/GcxgTs9XCryCrQ2DEnEAjA6/XKXmg6sNDMbuAz1nvrsJVptVpFe3s7HnvsMQwMDAgH08k55KyUA31sLSNGn5i+HmMyIj9frVYRi8Uk0ZhrP21CXou275vJhZ4Hmkvy3nleXWWn5xp9hBaLBYlEAufOncPp06elEwPvl9A6mH/rvTrIxxYWFtbsrdgMH5ggBEGB0T26gNUJqpUE0FgZoI18Da0MfD4fhoaGsGPHDoTDYQCNm90YHaDEesJmfN/4t37feJ1cVBmBAxqVptEhwvf1dZBI6AwhbWQZr4OvUxiZ4aidKxTKUqkEt9uNYDAIr9eLTCaDdDrd0JPYaNwaz+lwOFCpVHD06FGcPHmyaf+89Z7p1eJmC0IAEOM1HA6jra0Nvb296O3tRSwWA4CGTJBkMolMJiMZVuwhqpWbEUZnL0HSx4wsth+ikqdRovdOYaS0mZO32dg3C4wYncJsPUUZrtVqyOVykgnODEZuiK7b/pBMGzd+a+b4Ms4r7Sy321c3/G5paUFXV5eU8GezWbz99ts4cuQIEonEuxvkK8DNQCqaBSGA5vNXL066WoKbyDFwRP1jXGT1oqrHzeFwwO12IxaLyQbt0WhUWplxITfOC+P8aOaQM+pvvqfv753WAKOzgnIGQNrgzc/PY3Z2VgIPmqganRn6nMZzWa1WmbP6fugwpKFpJB/Nrl0HUW4GWbxSXK1+1tkzxHprEx1A1Fts3cUWNZs2bUI8Hpc+tboaqF5vbJMANBolmngadapOVDA6OOjkJPnUHEJnfOtjG/X5eo5lzVWKxSImJiZw7tw5TExMiEOcMqQNQa2TqQOMQQ7ev/F566qSq8VGkWPKcFtbm4ydz+eTtqOFQkGMGKPBbXyN49eMF1DmyEeYsdjf3y/6VQeKtI7XY63bzQFoCEjz80Zuq+Va61cGsI3n1L911prWmVoXaydVM/2q5/L8/Dxef/11nD9/vqHyV+t+zbU5b1mpQQckn2UgEEAikcDc3Jych+NgdARyz6+NILeXw7vhzQMDA3jyySfh8/lw4cIFnDlzBhMTE8jn83A4HAgEAvB4PCiVSkin0w3JOhwrcof+/n7h2WzzwDXTmGXZzJlg1Jta3i5XZaBtTX1dGutxeR6HPIjZlOPj4zh9+jQWFhZknhhbV+nvA5DEG1Yv6QqMUCiEWq2GiYmJNRVXGreCnALvTlZdLhe6urpk41K/3w+LZaX1ESvb9Rqr9Qgrf7ds2SIt8nQgGGheRa71PWXE6D/hbx2Q0ms7/9ebv/K6jL4HYNXGMyaN6s/yfSO/13wgn89jYmIC58+fx9TUVEOLJX0szhsGgu12u+wn915hyvM7w2KxoKWlBZFIRPa11MEw2nOaAxjtLqN97vf7EY/HEQqFJBAFrE1k1LJMXkAnp7az1kto1JxCVxpoW1Ofi9eZy+UwMTEh+lV/RgceeIzLBR4ot7pzAO/lavrm3yqyCqzK60/91E9hfHxcqlB0QCyfzyObzTboIELrI/Iv6sZqtYpgMIhDhw5h586dEtA3Vn0b9Z/Rn2Rsi2f0J9Au04kPPDb9UMbrbVbtqN83+kqARt8y7UNjK0peP3V8uVzGzMwMTp8+jYsXL8qm1vrY+hmyYo68iRzB4XAgGAwinU5jcnLyiruFfOCCEMDKjevMUb0oahgJHP83LrjGTCO73Y5oNIrBwUEMDAwgHA43ZFsbDRRgbXa2MWLKv7UDaj1nKLC6gRUJoBYkkohmynG96zAenzBGzzghuGDo4/KaSUy1M4P9wrVQc4JoAdV/c7O/119/HWfPnl1TpnmtcTMGIQhNqpiR2NHRge7ubrS3t8t9JZNJqZSgs75QKDREhIHmJeIaWs6Ncgs0tsig4uG+IwwQ0rmglaRxXI3Xo51lzIzn4mvMFjIaUc2u1/h/Mznk63a7HX6/H+FwGMFgEJFIRJzZNLxyuRxmZ2dx8eJFzM3NIZlMYmlpaV1Sca1wM5AKynpfX1/D5kwA1uivZgskCYDb7ZY9Jer1laxBZu4bsw1IbjWx5HEtlpUMsmAwiJaWFrS3tyMej4uMUoca1wKjvBizDZoFv/W9GA0iXVHA96lnM5kMFhYWMD09LZkFOguNa8B6AQJjMJkBM70JPQ1anpP79mhDcz2nBr+jye/NIItXinejn1kVpdvJNMsi1WDASWeJ+f1+9PT0rHF2aXlsps80NP8wBgf0OrqewWd8rdl81aC8aecu5SmdTmNhYQHFYhFTU1NIpVKwWFaCXtyrQc9fi2V1vw1ee7OMXD2veG6LxSLB9neLjSLHuieubn1HvsCgMI0n/tCwbZbdRxjXSOo1Osndbjf8fj/a29uxadMmtLW1yXjq+aGhjwlAeLwOVhidCvxNbkAZMWZGUlcCjbJqdG7wM5r7N3Mq64qcXC6Ht99+G8PDw5Jtr59Hs2sm9DPr7e2VvSey2awEYKamplCpVOD1elEoFBqcGDy2uSfE5eHz+aR/fnt7O5aXlyUYOjY2hmQyCZvNBq/X25Cw0oy/MWAUjUZlP7VYLCZ7hxiDvUa9bczyJowOgmbctNk8NH6/GR9h0HFxcRGTk5PilGHSRbP71DxDV98xIcTlcqGtrQ2Dg4Po7+/H6dOn8b3vfQ+5XO6yY3EryCnw7mV1YGAADz74INLpNM6dO4fZ2VnU63WpNCiXy7IXDbCWN3u9XnR0dGBgYABdXV0SCKbTslkAq9m63szeNvolmvFiOsL05432lb7u9WwAfk9XkTFosbS0hNHRUYyOjiKZTDasJZrzOp1O4fVc06xWK+bm5t5RTq8UpjxfGSwWC9rb27Ft2zYAKz3juT8S9SJ9RtonoWHUb3TG+nw+uN3uBi7NYDKD9EyA1dyGtn1LSwui0agE+pv5CI0cWoO6tl5faXs7Ozsr7Rb1tWrZNyZdGMHvsP07uZnFsrLnkc/nw8LCggQsrwS3iqwCq/L6f//v/4XH48HMzAzOnTsnexRUKhXxK9RqNekW0iwIT2gfJeVuYGAAO3fuFI4LNPLHZkk+lHfdkYDH5+d0ZQI/z+MxqdL4Hf5PeeX3jTp3PX8Y/9a+DdpzbDPNFtCjo6OYnZ1dk1ROkDdwz2Em1bFix+/3o7+/HwMDA5icnMQ3vvGNq9qs/X0NQqRSKalGaHoQi6XByUloA0xnpwBrgwPGlhPaWWS1WqUkrLe3Fy0tLdIP3hjMWM+xtp7yofPeuNjz2Dq6po0i47G0sPMz+vrWczJpJ6xRGRtL+DXB0I5COrSYgaEDEPp+eL98tjTqEokEXn/9dYyNjV1xhPe9IJlMXpOAwNXgWgUhgNXgG8eXhM3tdiMajaK1tRUdHR1oa2sTh1Y+n0c6ncbS0hISiQSWlpaQSqWQzWabtrdoRhz5t86GuZJrNR6P/zd7T8vbeoRYy7j+v9l5+Np6ThXKscfjQTgcRjQalQyOWCwGt9uNarWKVCqFubk5zMzMYHp6GtlsFrlcTvbguN7BB+JmIBWU9YMHD2LPnj24cOECJicnpU/res54YO24aT3j8/lgt9uRyWSknNtoEGnDn2OsZZef50aWwWAQwWAQgUAAfr9fqnv0eqK/q51edBh5vV6Ew2GpCNPOVAYS6FilUaSNK27Gymof7XAyOsto8PF/Yxaay+WSzEWd/U5HC527zYw4/b9ee+x2u+zno3EzyOKV4t3qZ6/Xi/7+/oasRfIOtiBcLzBBmaYji0SN+8pEo1EhnsCqk0vzBa6neq026mujntXzopnji2jm9Nd8h87/VCqF6elpzM3NoVqtIpPJSDY85wRLiXWmOqvqrNaVjYZ1kMwILd/kHDQAdTbku8FGkeNmFWg6G9rj8TTsMWLkwPV6fc3eXUZ50OsmoR3vVqtVssjb29ulAo3BUADCN3RbOh5fO0KNMqyvU8uJTnBp5tRaD+txaGPiBO8xm81iZGQEp0+flkCO7mWrr187WZrZCeTnlGNyt1KphIWFBdTrddk8Xid6MNmD/G0jyO3l8F55s8/nQ1tbG/r6+jAwMICenh74fD5kMhmMj49jZGQEMzMzUmlInWbMztN6lOPhcrkQCAQQjUYRiUQQiUQQCATgdruFQzSzS5vpWr7O3+vJvdG+ot7M5XLIZrPIZDJIJBLIZDKyObp2TFC+jXzYmHkLrGTpt7S0SLVeS0sLLBYLZmZm8Pzzz+P48eNXZK/dCnIKvDdZjcfj+MhHPoJdu3ahUqlgbGwM586dw+TkpNjV1DnNMqE5nm63G/F4HJ2dnWhra0MkEpGgNLC2C4RuQ2u0u5rZfTrQ2sx3oNcVbZ8ZfQdAYwImv8fWualUCvPz85icnJRWS8a9JIHVfWC008tisSAQCKCrqwulUgkvvvgi0un0uxqXZjDl+ergcrnQ3t6O1tZWBINBWCwrQfREIoF0Ot3AC41Vr0Qz+10nxPIzxkBwM78bj+X1ehGLxYSf6C4h/BzPpecFOVI2m0UqlZJuDMZ1vlnykIa223TyEOcx9+qMRCKoVCo4deoUksnkVT37W0VWgVV53blzJ7Zu3YqtW7fK/pCZTAZjY2O4cOECJiYmkE6nJcEDgCTiNNtPzvi/zWaDx+NBPB5He3s7urq60NraKtzbWPGr/QbGHyOX1udqJr/NfMo6MV5/RvNQzamNVe9cUwqFAtLpNFKpFBYWFrCwsIDFxcU1++sYz2G32yVhl8ny3Ds4Ho+jv78fg4ODaG9vR6VSwde//nX86Ec/uqIWTBrvaxBiYmICPT091/zkJm5NXLp0Cd3d3Tf0nO8USHs3oOFgVExUOm63G6FQCNFoVBwCVJQAROkwQ2FhYUFIAR2m62UnEEbDm+9rBQg0lj5eLlCw3jGNr68XlNPf0+cjYXE6nfB6vfJc4vE4otGoZLXRsZVIJGSTs0QiIb1vdbma3ujwRuH9CKBdLbSsf/jDH8aDDz6IVCqF06dPY2RkpKEnMxdP7axdb0mw2Wzw+Xxi6NMBymNpEqgDCMZFWRteQOPmz9ppp40jXbKoj0+ns3aaaScbv0MHkibbtVpNsl5qtRoKhUIDMdHnMLaj4bkYfAwGg7KZNK+B7Ve0c9dI5I1zVfe3dDqdCIfDSKVSmJiYWDMeN4MsXinei37u7+/HRz7yEaTTaZw5cwbT09OwWCxCSFnpwlZEBMfC6XRKVYXeFNdqtcLv98seJ4FAoCGbnS3mdLs83XJGQ4+91unNCDdlXfeFZpIBq+my2WzDT6lUEt3qdDrFacC/s9msOKjpkKYDjQS32XzVmTUWi6Vhk7Rr1V5ho8gxZdjYp1uDRgidqCzx1roRWK10zGQy0gZRw7inBNAYDNDnYpCWBn8kEoHP52vYz4HyxmM2yyjnMXWAmfeik250laQOtDSrItPBGn0sXZ22uLiIVColgWIGZbnPA49vDDgwwUjPNy3nvA6Px4NYLIZabWWD1Wq1Khmaes7qKtBSqbRh5PZyuFa8ma0evV6vGMa9vb3o6OiAy+XC/Pw8RkZGMD09jXQ6jUwm05A0ATRvtWvktUx60+0ldQ9kXbmueasOCPNc/NF8gr/1/g3NMjD1MfR8IYzVPRbLSrVod3c3urq60NHRIUGHxcVFXLp0STIh5+bmrqry7FaQU+C9y6rVakU8Hsfg4CCGhobQ19cHt9uNxcVFXLx4UfY+oBzoxD8Aa34zmEp+GAqFEAwG4ff7EQgEhG9QVnWFmJYjY1CB3KSZrGk5MwZjdUIMOQUduel0Gul0Gtlsdt0AuAYrff1+v8gx2xT39/fD4XDg5Zdfxve///1rwhE0THl+dyD/8/v9iEQiiEajsidaJpPB4uIilpaWGqq1mum1ZtAyZ9R1zf7Xv3VQWVeQErwOvTm7Ti4jrsCVKZyF6wDXFo/Hg0AggFAohHA4LPvdplIpzMzMYHZ29l35Gm4VWQUa5ZV7mkYiEfT09GBwcBA9PT3SvpzrPdc0BpIAyPiu1zGE4NpP24v6KBwOIxwOIxQKSdty7qmq9xPUAYhmfgq+zt9GjkkYfWf6e5ovssUfkxU0zyGfpVzTT2G0yXgO3rff75ckUbYI7OrqwqZNmyQAVC6XMTk5ibfffhsvvfQS5ufn39X4Xi9ZvqIgRK1Ww9TUVENPaxMmrhZc7Do7O9dUnlxvmIE0E9cC70cA7WphyvqtgZtBFq8UpszeutgocmzK8K2FjSK3l4Mp0zc/bgU5BUxZvVVgyrOJmwW3iqwCprxudFwvWb6iIIQJEzc7zECaifeC9zOAdrUwZX1j42aSxSuFKbO3HjaaHJsyfGtgo8nt5WDK9M2LW0lOAVNWNzpMeTZxs+BWk1XAlNeNiusty2YQwoQJEyZMmDBhwoQJEyZMmDBhwoQJEyZMmDBxXXBrhOhMmDBhwoQJEyZMmDBhwoQJEyZMmDBhwoQJEzccZhDChAkTJkyYMGHChAkTJkyYMGHChAkTJkyYMHFdYAYhTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRPXBWYQwoQJEyZMmDBhwoQJEyZMmDBhwoQJEyZMmDBxXWAGIUyYMGHChAkTJkyYMGHChAkTJkyYMGHChAkT1wVmEMKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwcV1gBiFMmDBhwoQJEyZMmDBhwoQJEyZMmDBhwoQJE9cFZhDChAkTJkyYMGHChAkTJkyYMGHChAkTJkyYMHFdYAYhTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRPXBWYQwoQJEyZMmDBhwoQJEyZMmDBhwoQJEyZMmDBxXWAGIUyYMGHChAkTJkyYMGHChAkTJkyYMGHChAkT1wVmEMKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwcV1gvx4HrdVqmJqaQiAQgMViuR6nMPEBQL1eRyaTQWdnJ6zWjRPPMuV342Ojyu7lYMr1zYWNLKOmLJowYiPJuynfGwsbSTbXgymzGx83uxybMmrCiJtdpt8JpszfPNjostgMpnzeGrhesn1dghBTU1Po6em5Hoc28QHEpUuX0N3d/X5fxjWDKb+3Djaa7F4OplzfnNiIMmrKoon1sBHk3ZTvjYmNIJvrwZTZWwc3qxybMmpiPdysMv1OMGX+5sNGlcVmMOXz1sK1lu3rEoQIBAJX/NlgMIh4PA67ffVSdDTNZrOhtbUV+/fvx8GDB9HR0YF6vY5yuYxqtQpgJUJjsVhgs9kArETmLBYLLBYL6vW6vM9j8wcA7HY7rFZrw2drtRpqtRqq1Srq9fqa6+Jn+X+tVgMAWK3Whs/r713umngP9XpdIkw8Dr/H4xSLRczMzOCtt97C22+/jWQyieXl5TXHWQ98j9dRKpUwNzeHYrG47nfeCVcz3jcDPij3Y7FY4HK5YLVakc/n35drcDgcsNvtsFgsKJVKMuc2Cj4oY30jwHs9fPgw7Ha76ALqLYfDge7ubjzxxBPYtWsXLBYLyuUyyuVyg07Uuow6V+tNAHC73SiXy7BYLKhWq/Kb39W6msfVcLvdcLvdAIClpSWMjo7iwoULGB8fx9LSEkqlEiqVCtxud8O1UP/Z7XYEg0F0d3dj06ZNGBwcRCwWg9PpRLVaRaVSkR9eU71eh81mg8Vigd1ub9CrXCd4zVrHcp1wOBxrnoPD4YDH44HL5YLNZkM+n8fo6Ch+8IMfYGxsDNVqFaVSCcvLy2t08/LyMp555pkNKaO8p8cffxxOpxPAqhxyveOz1OuzcR3l2lqr1WTs+F0Nl8uFaDSKTZs2YWhoCD09PQiHw3Jsyma9Xm+QxeXlZVitVpFX8pRSqYRkMompqSmMjo5ifHwcc3NzKJVKAND0OjRfoCxZrVZUq9U1XMblcsFisaBSqTTIBs+vf3s8HsRiMbS2tiIejyMcDiMUCsHn88HtdsPpdMr18/yVSgX5fB6FQgGLi4tIJBKYm5vD7OwsEokEstksqtWqfE/zFl43n3uz8dDn4+ua4/B/3j9///M///OGkHfeA+c9710/PwBr5FvLi9YH/F+/b7PZRM9YLBZ4PB4MDAzgnnvuwa5du+D1ekV3l8tlAEClUmm4BqfTCZ/PB6vVCofDAYvFIvJG/c/ro64kJ9DzhOuJw+GQ8QSAcrmMQqEAl8sl64DFYoHP54PD4UCtVkOxWES1WkWhUJB7odxTLhwOB6xWK6xWK7xeLyqVCi5cuICXX34Zx48fRzqdXsOp+Xz0a1qmKadWq1WeD3UIz61ltlAobAjZXA8flHszee/1xwdlrK8WvO6+vj7s3r1b5q/JG0zecLPK9Dvhg3Zf5Aw+nw9Op1PW5fV8X5fzR60n78bvGD9HTpPNZpHP51Euly97nhuND9qYXU98UO7V5A03Btd6vK9LEOJKS3L8fj/a2tpkYdQLksViQSgUwo4dO/Dggw9iaGhIDIHl5eUGww5AUyKhj0VCYLfbYbPZ5PMulwtOp1NIRLVaxfLyMiqVCkqlUsOxSDaMRqHRsNSLpr4G4zVqZxV/a+hjk4D4fD60tbVh+/btGB8fx6uvvoqzZ88ikUiIkaifwXrgddntdrS1tWF6eloMsavFRivB+iDcD2XT4XCII6CZjFxPOJ3OhuDgRlSoH4SxvlHQgVc61el4D4VC+NjHPob77rsPbrcbuVxO5C4QCDQEaPk9GgE0TowGD40GGoraqQOs6kD+TWjdaLFY0NLSgp6eHjz00EMAgHw+j8XFRSwsLCCVSiGfz4uDy+v1oqWlBR0dHYhGo3A6nSiXy6hUKvKbQQq73Y5AIIBqtSpOMmDVUcXPaSOJ96adW1rXc43Q81WvC7FYDO3t7bjtttswMzODYrGIs2fP4pVXXsHo6GjD/RudkBsJRlnk/3xuxns2OhW0E7fZekxn5cDAAHbv3o2hoSF0dXXBZrOJY3Z5eVnW+GZBOY455wgdDgDg9Xrh8/nQ09ODe+65BwCQTCYxNjaG06dP48KFC5idnZVAllHWeUxtXPPcDoejwYFKYmu32+F0OhEOh9Hd3Y2+vj709fUhFovB7XavSaDQwTWeR99bJBIRxzN1fb1eRzabxdjYGN5++20MDw9jenpakhSWl5fFWdCME/H4xmcIQJ4hr0MH6ozJFjc7jPegnw+wKs86iAs0Os61o4bPXOsXHi8UCuHgwYN45JFH0N/fLw59rcdCoRCWl5fhcDgQCATg9Xrhcrng8XjgdrvFEV+v1zE9PS1jtLy8jGg0Cp/Ph1KphEKhILKQy+VQKpUkiGCz2RAIBDAwMIBqtYpMJgOr1YpkMimyUi6X0dXV1WCsUV7z+TxKpRLy+Tzq9bo4GcjJyd0BwOfz4cCBAzh06BCmp6fx/e9/Hy+88AKSyaQ8czqoyP8553TwAVgJzNjtdnm2em5y/dLBno2KD8K9mbz3xuCDMNbvBrzutrY2DA8PY/v27TK/Td5g8oaNiA/CfTkcDvj9fvj9frjd7gbe0ozrXM52aRZgWy8IoX2C+jN2ux0OhwM+n08SGbLZLDKZTEPw7f3CB2HMbhQ+CPdq8oYbh2s93tclCHEl8Hq9aG1tbQhA8Oa8Xi82b96Mu+++G/v27UMwGBQDhdDKSfen4sJJ48HpdMLpdDYYPVpxxuNxuN1u5PN5UV50WDHbSxss5XJZMleN101SoIMOJA3MOuPfXPBpYDE716hAeWydIbC8vAyLxYJNmzahr68PY2NjeOutt3D27FnMzs6iVCq9YzBCCxLHYmZmpiH718T7Byo0ysX7oVA5lzSJNnHzQwdG7XY7YrEYfvEXfxG7d+9GuVwWp5HWETpgSnngjzaGjMYDsEJgl5eXG7JLmTGrP6uzu7ThuLy8jGw2K0aK3W5HPB5He3t7Q2CX5+Z8yWazcu0OhwMAGhxffM9iWcn41YEHfc3U5TwX50SlUpEMXX6OhhGfC++R5y2XyxJE7+jogMPhwODgIIaGhvAnf/InWFpaknu5FaDXYz5/AOJ0BBoz4rTDwZiEwL89Hg/uvvtuPProo+jo6JDnziw+yiHHiAa8DvzYbDYZU31e/u10OkXWWJXpcDiwfft27N27FwAwNzeHixcv4syZM7h06RKWlpZQqVTknnitRv7CsXe5XAgEAlLN093djdbWVvj9fnEakzPkcrmGxAKu43R06+xvHVDkc+Zx+P3BwcGG+zhz5gxOnz6NkydPioNbZ4M2c/TyfBxnfk5DO2k2Imk3JtbowIJ+JtpxBTQ6yYDGKlvNk++880584hOfQEtLC8rlMnK5nIw5xzMYDCIQCMDj8cBms4kjjHOmUCg08OXW1lbMz8+LngoEAqLnvF6v/Ha73Xj55ZflnNVqFV6vV/Qdz+d2uzE6OipOA1a4UbcvLy/D6XQiGAxKVVm1WoXH44Hf75fPZTIZCZQsLy+jUCjA4XAgHo/jV3/1V3H48GH88z//M374wx/KfNCyqB2V+jkzAGFcR/g/n6OJ6w+T95q4ErS3t+P8+fNIJBJoaWkxeYPJG0xcB7CiPBQKwel0rgkG6CACeUyzwAQ/Y/yOEeuts83Oqf1uXq8XXq8XkUgEyWQS6XRa5oyJjQ+TN9y8eF+CEA6HA+3t7WKMAKvO/Hg8joceegj3338/IpEIKpUKstlsgyGgFR6hjTtG/t1utxhPGjrqzrIdGkI6+k9HFI9Jx1mlUpEMXJ0F4XK54Pf7pdS8VCqhVCrJostMLhIXkhCdhVCpVFAsFlGpVMQgaxYl5uJss9mwadMmDAwMYHp6Gq+99hpOnz4tJZ7Gck3j30QgEMDy8jLm5ubMCfQ+wmJZyeamM1YHlK7mGO8lE4CBOx2Qu5HgvHu/sxk2KqgP7XY7Nm/ejM9//vPo7e2VFkfGNhSUQePrxuCDdtJrB44O6FIfGTNL6QjSTiK2TjJm/+rgrc6uamawUO/y+mj0kaDyXHpNsFhWytm10chr1EYa70k/GxpnvA5mienn6nA4UCwW5Vg2mw1btmzBZz7zGTz99NOYnJy8foP/AUO1Wm0aGKIs8dnys7rUH2h0zjocDuzYsQNPPPEEtm/fLtwBaMw05zgbkwtoYBsz/3SAhGPLY1A++FqtVkM+n4fVakUkEsFdd92Fhx56COVyGUtLSxgfH8f4+DhmZmaQSqUku5LX4vV60dbWht7eXgwMDKCtrQ1ut1uyL8vlsnAWyrvL5RKHMZ+JTnbQyRG8Rhr8nG866Fer1RrmfCgUwkMPPYQHH3wQIyMjOHr0KMrlMi5cuIBLly6hVCo1jJ/R+UPwNc1pqA+MHG2j4HKcFWjM1ie0o4bH0PrS5XJh165d+NSnPoWBgQFks1nhjHzf4XAgFosBgLSBs9vtKJVKUvlAY43zjzqY11sqlRAOhyVQAEA4bLlcxvDwMPL5PGKxGHK5nFRaLC8vo1gsIp/PIxKJiGFWLpeF0+s1nrqYyUBLS0tS8k1HGB1r5NS6dVOpVMLS0hI8Hg++8IUv4P7778ff/M3f4MyZMzJnjc5HvY5pnmF0WPJvE9cXJu81ee/VoFqtoq+vDxcvXkQ0GhUdafIGkzeYeO9wOBwIBoMIBoNrgg/rjRGwNrDwTgGJZq/rz19OFza7HqfTiZaWFoRCIaRSKTMYscFh8oZGv8TNiBsehLDZbGhra4PL5Wq8ELsdAwMDOHz4MPbu3QuHw9HQ600vhsDafoFUQB6PR1qNcDFlCw6jo4xBCDqIWLpI8PP8m9dvsVjEaV+pVCRbLBAIiJGmSyL14s5FVzuudETXbrfD7XaL0UYDUDvd9PVpdHV14fDhw9i1axdOnDiB06dPY35+vsFga2Zw8bVwOIxyuYxEImES4fcBVqtVHAR0AlxOodrtdkSjUXR2dqKrqwstLS3w+/0i/+VyGbOzs9J/dH5+/h0VJHvsc97c6AXc7XbD7/cjlUqZ5OE6gfrq8ccfx6OPPgqXy9UQENX6SDvTgVWnsXZGGQPEdPYb28/xdR5HZ2BRV7pcLnHc01HGa+P16OtiWbguf9eGkj62LtHUxguvBYBUTNBBp/U0547RMaXJMHW11vXGtYvHpNOQ13bHHXdg8+bNeOqpp/Dyyy/fEvJvHAegse+rUf8ZA02UE7fbjcOHD+OjH/0oHA6HGB/8HBMI+DePzQoYHovH0z1m+XlCy77mHrw23gv1Z7FYRK1Wg9frxd69e3Ho0KE11ZBadinfbE3DykvNW/gsjD2n+TqfHz+rMw2Nc0XLsw4eajnNZrNwOBzo7e3F4OAgarUa0uk0XnrpJTz99NPiUNBtEzhOtVqtIZhnDDhxfmxEh4J21hiDs3QA6WDDesEKYGWutLW14ZOf/CRuu+021Ot1ZDIZ+Z7X6xX+a2zZ4ff7kcvlJLkFgOwFweu0Wq3I5XKScGOxWJDL5RCNRsWRb7VaUSwWZR+xe++9F6FQCNPT05iamhJ5phODgdl8Pg+n0wmXy4VUKoV4PN4w78jFJyYmAACLi4uwWq1YWlpCoVCA2+1GMBiUHu1+v1/aTml+XCwW0dHRgf/6X/8rvvOd7+A73/mOZPtq55oOWhvnkx4DzpVm42Hi2sDkvSbvvVrQke9wOJBKpaRlKGDyBpM3mHi3YGte3XJL2zf6txGXC0Q0+/9ywYxm59UJAtp+aha8YjAiHA4jmUwilUrd1I5aE2vxbnhDJBJBV1cXurq6EI/HxWerecPk5CTGxsauiDdwDwqTN7x73NAghMWyss8DywIJp9OJAwcO4PDhw+jt7UW9XpfMKn6PA210ogOQkm+v1wubzYZSqYSZmRlMTk5ienpaMgC8Xi9isRja2toQj8dlYx0uaOwNqw0z4wKoF12SDPbV1aWL2smmMwp43frHSJqoZI0ZXOVyWTLeSC70c6nXV7Jst2zZgs7OTgwMDOCtt97CyMgIlpaW1gR09HPka7FYTHrxmrhxoDOWY04CaoTdbkd3dzcOHDiAoaEhtLW1wel0StWL7gNttVqxadMmkdNEIoE33ngDr776Kubn5xvmEuWZDmCW7N5I2O12hEIhlMvlhmx1E9cWra2t+LVf+zXs2LEDxWJR9AL1R7MN7YzONOotoHGDVBoR2hCj0aOdW9p40HpSy6TVapVsLb3Q85wMmjBgoIO9+nzAaqUdr1sbXADknhn85fl0IIKfZ8m9Nip15hjvidepjVpgNejBuU5nZLVaRTgcxi//8i9jYGAA//AP/3BNx/2DCKMRqceFxi7lTScQ6OqUYDCIn/7pn8b9998v3EHrQYvF0pChp3mEHhfKjf6bssXx0caOy+WSBAdjKykSZB2UqtVqKBQKyOfzTe+bcmS8Jp6LAUCtF/Wc0VyD7+l70W0LOHd0dZDO1uQ6wO9w/pBoezweRKNRPPDAAxgbG8Prr7+OUqkkukA/f76mDcdmBujVZjDdDNA6juNEbqeTWJr1+dbfs9vtOHDgAH7xF38RwWBQggV+v19aIFG3cp+G2dlZjI6O4vz581hYWJD2RdFoFD09PdizZw8GBgbg9/vF2caKCerRubk5ydC1WCzI5/NIJBLYsmULurq6YLFYpBfznj17MD8/j2KxiEgkIhUYiUQCbW1t4ryr1WqYnp6W+cPABgDZdPonP/kJnnvuOSQSCZmvDJp0dnZi165dGBwcxNatWxGLxVCrrbTfy+VyqNVqcLlc+Kmf+ils3boVX/rSl3Dp0qU1WbRcl7TO1nNCz2szKef6wOS9Ju99N+Dc7e7uxvDwMHbt2iVrrMkbTN5g4urh9XoRj8fh9XrlORt1pTGA8E5YLzDxTgGN9b5fr9dx+PBh+P1+/P3f//263+HnGYwIBAKYm5tDoVAw1/INgivlDV1dXTh48KDwBu4b8V55A/0L7zdvKJVKa/T7zQRL/TrMyHQ6jVAo1Hgiy0pvWuNG1D6fD3fccQeeeOIJRCIRMcyMTnmgcbHRTjOfzweXy4VSqYRz587h6NGjGB4eluindgi5XC643W6EQiG0traio6MDsVgMXq9XMiu4cR/7jOmqBt1eg4LPDF69MZQmGcZIvQ488F61447f4Y++X2aWFYtFFAqFNZkBfF4kRQsLCzh37hzOnTuH4eFhCUbwmPytF51yuYzJycmGPTguh1QqhWAweEWfvRnQTH6vJ+hs5ThQQWq43W7s2LED999/P3p6emScSB61A0NnllgsFslOqdfrknnz5ptv4oc//CGmpqaEPOp51kyhUfEGAgG0trYiFAohFAqJAyOTySCVSmFpaQnJZHLdhaEZbDYbIpEIAAjhvhFkYaPJ7uVAuT569Cj27NkjZd3sL6sNLWbMWq1WyVai4ULDQBsy2nDRupLQOobn4WKvAwX8bXTEaRiJqy5zN353PRh1n870MmZc8XWdScN5xQACgwk6oGu1rvYMpi7VvSsBSLDEZrOhUCigXC7L5m8/+clP8OCDD25IGaUsPvHEE3C73WsSDIDG5AOOrdGo37FjBz75yU9iy5YtDVmEWgfqvT2A1ew+vS8JP6uNXx5DB7iMbbyA1fVWB960w9MYhNLOTqMxrYN8nFN0qugMQT2PCJ5Xt/nSvEAbkDqLzJj9bcwu47lYclyr1STpguT3hRdewLe//W3Mz8/LOfT4Eca2GHym1DPf/va3N4S8U76ZYa2fNbDK14x6gwEKPneLxQKPx4OPf/zjeOKJJ8SR73K5EA6HG+SnVCrh4sWLePPNN3HmzBlMT09LwgrBfcmo94PBIDo6OtDV1QWXy9Ww9rtcLtlE1eVyIRKJyMbS27ZtQ7FYxPT0NGZmZiRjt6OjA8FgEHNzc6jX60gmk0gmkzIPtDxRN5Kf8DpfeOEF/OhHP0KlUoHP50OlUpE2UvV6XYIpDocDbW1teOyxx3D33XdLBXG9XofL5UImk0E6nUahUMBf/MVf4NixYw3z2SibWub1/ObvYrG4IWRzPZi81+S9H3QYeUO1WsWlS5dQLpcxODgIwOQNJm/YWLjeetlutyMcDkvigBHN7CljIMj4njGhTH+n2XfXW3ub2YG/9mu/BqfTiT/+4z9u+v56wZJqtYpUKoVEInHdHbYbVRab4f3gDU6nE8BqENbIG1wuF3bu3Pm+8gYAwhva2toa9la5FryB/P9G8gbg2sv2DauEcLlcaG1tbVBy7Bn4yCOPSEsQ7fQBVp1aenC4QHo8Htlgb2pqCt/73vfw1ltvSRY/nWFchJlpwJZDo6OjYgzxutxuN2KxGDo6OtDW1oZYLAafzyeb+XGDP5assd+53W6Xvou69yLLdbQRZgwsGO9ZTyhOOD4HGk8OhwNOpxOZTEYyHXTmLo/V2tqK1tZWDA0N4eTJkzh79ixGR0eRTCbXlKdRobtcLsTjcUxPT5tZBtcZNptNFCplU4+/zWbDrl278MQTTyAej4tTgcTTuEGZw+GQjSZ19jqdvcx637dvHw4dOoQ333wTzz33HFKpFAA0jeg6nU709PRg//792LZtG2KxmGRyUrZrtVqD07lQKGBiYgLnz5/HyZMnMTc3t245pNvtloqkQqGAYrFoZitcR/T39yOTyaBYLDYED7SznVkCOjjKfXOMBJOOdcoyj8Njaeeb1mPaIGoWqNUEsxnhNTr2rgZGwqvJiXYQ8rM0Po0ZQAzWsM85r53Gq67c0IEdXa3BZ+B0OlGpVGQD1t27d1/1fd2M0AF2AA1Gtn7Wemzcbjc+8pGP4PDhww16jQRRt16gY9d4DKOxqzMetaNSj5fH45FjapnmdWvjh5xDOzfK5XKDkQ6sbnyrWxzQQafPr7+jHR2cpzqZgU5dTbQp00zG0PPcmDnKah+C98Lro1zzeA8//DA2bdqEv//7v8fZs2dFB3Ac+D3thOf7PNdG5Bpa1wFrZR2AZKvqxBQ6hmKxGH75l38ZBw4cQKFQgM/nk82daVgVCgWcO3cOr7zyCi5cuIB0Oi3jQm7q8/mQTqflGujcX1hYwOLiIk6dOiXnpWNH72/DrC+bzYbNmzfjnnvuQWtrawO/vnTpEt5++23Zi416UWcf6z11eB2UA5fLhWKxiIsXL6JUKsHj8QjfYYZ4X18fpqenZV4lEgl84xvfwIsvvogPfehDuO+++xAOh1GtVsXgSyQS+K3f+i089dRTePbZZxvmCscIWK2u05xGrwsmrh1M3mvy3vcKPquuri4cP34chUIBfr+/4T3+bfIGkzeYWAuv14vW1la4XK517a1mQYP1AhDG9zSP59/G3zrgZfxtPG69Xsfw8DB++qd/uiGZ63LQ63s0GoXX65UKTxM3F8gbaLM34w07d+7EE088gZaWlgbeYLPZpH0Tcb14A6s2rydvqNfryOfzNz1vuCGVEBaLBV1dXbLZnMViQTQaxeOPP4577rlHIkNAYwukZgshhYktkKrVKo4dO4Znn30Ws7OzDU4zQmcc6AVZO8C4AOtMXpJdv9+PaDSK3t5ebN68Gfv370dbWxsASJYwcenSJWQyGTH+tJNPV0XoAIR2fgFoWID5vPRirO+vUCggm802OP30RLJYVjfqLhaLGB4expkzZ3Dq1CmMjY01CLp+NrVaDbOzs0gmk+843hst6nujIrtWqxU+n0+UU7FYbFCokUgEP/MzP4MDBw5IsEkTTmB1AaejwGazoVgsNsiwJq96k2A6VgHg9OnTOH78OIaHhyXTsKurC7t378bQ0BAikYhscMY5SBgdhpRj7bidnJzET37yExw7dqxh8fd4PNJGLZ/PS//mG4WNJruXA+V6fHxcdBH7dJPYc3yB1fHkIk49woWfgWC3292wuPN9Ot51VhTld70ggFHvEfr1q0GzbJxmv2nc6Owu4/vaoajvoV5f6UdJXclMZh341iXmvB9NjPRxGKyoVqvo7+/fkDJKWfzEJz4hDldtlACrBrNup2C1WuH3+/GpT30KDz/8sGyAS8Obx6FhzWMxC0YfH1jdDFQHxXguZo3ze9o5wbGj88L4PsFxNZJcnoOOWuPc0DzBaBAaj6u5E4CmjgVyA6fTKYFBXo9ue8nf3EuFJJyVTdrxoSt4ACAYDCKTyeCrX/0qXn31VZFjHWTkvRlf59r0z//8zxtC3nUlBJ1BmtsCaJBpLfP8XCAQwH/6T/8JmzdvRq1WQ2tra0MlbjabxcTEBF544QWcOnUK5XIZoVAICwsLoncjkYgYa4VCQeTc5XKhUCiI88Hr9SKTycg1WCwrrUgcDoe8x9Z9Ho8Hhw8fxp133olqtSp7NiwvL0uVsebSlKtyuSyJOpR53dauVqshHA6jVCrhueeewxtvvCHtUHg8n8+HXC4nvNzpdCKXyyGTyaBSqaCnpwc/8zM/g3379okMs5KiXC7je9/7Hv7+7/9eqoi1ntd6ndBrVKFQ2BCyuR5M3mvy3g861uMNyWQSIyMj2LlzpwRATd5g8oaNgOuhl61WK4LBIGKx2JpKdKP9o8d3PR3VTNbWe13bfkbo9dZ4TUR7ezu++MUv4g//8A/x8ssvNwQOjccwnkvbtIuLi0gmk9dF725UWWyGDzJvoI7V+gJobPf7bnjD22+/jRMnTjTwhs7OTuzZs+eG8YZcLndDKyCIay3b1z0IYbFYpOSbDz8YDOKJJ57AfffdJ4SBwkSFYcxA4m+HwwGPxwOHw4FMJoMXX3wRP/7xjyX7S3+WA09ioCst6FDTvQa5APPcQGPmLsvN77jjDjzyyCPSi5YCm8vlMDs727D48vvGtkxaaWpyowMlzSLEzJDQWRqlUgnZbFYyFLTy1c4/GsRzc3M4efIkXnvtNZlExusAVgjYxMTEO7Zl2mgK90YoVYvFsmZTHa1QBwYG8Au/8AsIBAKiJOnEpIwCaDDOKGd0KrBqh4qtWCzKniLsG728vCzn9vv9sFhWyrvsdrs4Koybm5FUsqSWzuh8Pt9QNkuizXnldDqRSqXw3HPP4ejRo1heXkY0GoXVurIhJoNpNxIbTXYvB8r1uXPnZCFjezpG8+kEt1qtkn2q9YLOZopEImsyEgGITKXTaYyMjGB8fByJRELawJFMkAQHg0G0tLQgEomIAUcYjSsj1iOzhK4K428aOZRNfW+8P7byYHs+p9MJt9stTkBemyY3hUIBiURCSJJxPwo63TiHOZ91AIfGXT6fRzabxdatWzekjOq2CsyIJYyOWWC1tYDP58MjjzyCJ598EsViEZlMRtZmOjJpONMQ5mscX6AxAaFarUrbHBJRfs64gbAORBmre5o5E64XtEzrtZ5GOp0MxmviM+Uc1pyBz43PGlhxTOhe1TwenxOPlcvlYLVaZaO373//+/jHf/zHBiey5ll8jnqMK5UKvvWtb20Iead8ezyeNUa51lmUJWB1LG02G7Zt24YPf/jDOHHiBLZt24YHH3xQ9HS9Xsfc3BxefvllHD16FIlEQp4rx7FSqSAej2NpaUl651N3Uea1PgoEAsLDyfdoXEUiEczOzsLhcKCjowN33XUX9uzZIzza5XLB6XTC7/ejpaUFwWBQ7sPj8aBcLiOZTGJpaQmzs7Ow2+3CK7RjrlgsShUFqzS++tWvIplMIp/Pw+v1oru7G5OTk+jr60MikUB7ezumpqYwPz+PWCyGRCIBp9OJhx56CE8++aTsP0dd4XQ68eKLL+Iv/uIvkM1m13Bezn3OI82hzXZM7x0m7zV573vB5XjDxMQECoUCBgcHRb+avKERJm+4+XCt9bLNttICLhaLNQ0wNHPo8/X1foyyy7mjx+m9VKzoZF0AOHToEH77t38bzzzzDP7pn/4JqVRqjZ13uaAK5TaRSGBxcfGKKiquBhtVFpvhRvIGjuON5A1MnjHyBu5Rdq15A3m4y+Vq4A2VSgXRaFQCEDeaN/A+brp2TG63Gy0tLSIEwWAQDz30EO699165qWaOIJ0ZZrFYJGOXg3Tq1Ck8//zzuHDhgjiVADSQv2q1Cq/XK8KkFzQqSJZ66x6DWomRoDC6v7S0hIsXL6K9vR1tbW0i0MzK4N4QzAjQTqpmEWJOFK2wtWLXn9NCms/n4XA4xOADIBOAhirB4+bzeTidTnR0dCAcDiMWi+GVV17B8ePHkclk1jjznE4n2traMDU1tW5pkImrg8Wy0qKLQalqtdrQC85isWD//v34zGc+I85IALIBZSqVEqdoPp+X+RMKhRAOh6Vc1mazIRgMIhAIiAyWy2Wk02nMzc3JPiZzc3NybdyAksYhswVJLil7DGrp9mLM3CyVSkJqje0OKpUK3G43PvWpT+Hee+/Fs88+i+HhYTHGbqRCNRLZWwlc+LTRYLFYZOwAyBhSB3Esq9WVzegoaxr1eh3T09M4efIkzp07h/HxcclIoE6jPqU+oZOKPccjkQhaW1uxbds2tLS0AICci/Mln88jk8kgl8uJc623t1eCyhxXY89xZutSbnU5ealUwvT0NN5++21MTU0hm81KIMDtdsPj8aCtrQ27d+/GwMAAWlpaGoxgEhmn0yl9yJlBRvKhM8lIdEjWuV4Q7EV5K4Cyweej2yJo48Zut+OOO+7Axz72MVQqFdFXfMYAZLw5tjprT8u9bsPAah62GqMDgSBRpc7muGmjXScrGHmGMZHgSrGePtSJCnpu8vyUac1ljCScbUDK5TJyuZyQZGN/aJJo/SyBVR3Ce2dmaCqVQjgcxqOPPopCoYCnn366wZGj+QydOTrTfSNiPQPf6ACg7N955534hV/4BdjtduzZswenT5/GU089hb1796K7uxujo6P49re/jZmZGVitVsTjcSSTSbS1tWF+fl6SStLptDxfJu9ks1mZX1of0Sm3bds2nD17Vipna7UalpaWEAwG8dhjj2H37t1SEk+HUkdHB6LRKILBIOLxuBhJRDgcRnt7e0OyzOzsLGZmZlAqlTA7OyvVdMBqH12/349f+qVfwle+8hVpDTo8PCz8h9+l7Hg8HiwuLgIAnnvuOeTzeXz605+WFi2BQAC5XA733HMPIpEI/viP/xhzc3MN85TPQ/MxJkqZePcwea/Je681jLyhq6sLJ0+eRDqdln02AJM36NdN3nBrw+l0orW1VdbEywUfuM4HAgFEo1HEYjFEo1HZM5X+ON3OnDqQAd9cLicZ29lsVtrO6Yp7JsO5XC54PB5JatBVn4VCAblcDul0Gul0Gm+//TZ+53d+B7/5m7+Jj370ozhy5AguXbqE4eFhjI+PY3FxsaFNjl7T9f1Go1E4nU7Mz89f8R6oJm4cyBu0X9jIG/bt24fPfvazTXlDMplEOBx+17whk8lIAo7L5cLs7Kxcm64sJm/QSd9Xyxt4T3z/g8QbGMhnG6priesahLBYLJLdCqwEJO644w48/PDDaxxGRse7du77fD45RqlUwtGjR/Gd73wHi4uLsshrJz4NKGDVaVYul0VRklDwOwyG0PGjiQaP6XK5sHXrVuzatQs9PT3wer0yQWiMabIBrG35QRijsRRCDU1OgMZeiKzqOHfuHCqVCjZv3oxIJAK73S7GnzYw9TVQ+Xu9Xuzbtw9+vx8OhwNHjhxpiKzxGpmxnEgkbni2zkYE5QRY7Sen58Add9yBT33qU5I1zmzCUCiEbDYrcyKVSqFarSISiUh0NJ/PY3FxEaVSCVbrSrlle3u7GG92ux3xeFwW8507d2Lr1q2YmpoShwDnCckdnQ0ApG2P1+sV+eQG7XQGl8tlWcyZKeN2u6WnKYl9Z2cn/sN/+A/4wQ9+gG9961s33DAKBALXRaHeDNCOcN06SC+CAGQB1TqEm5nqagUAyGazeP755/H9738f+XxenOrLy8sIBoPyXZJKZiv4/X64XC7Mz89jYWEByWQSk5OTOHbsmJDIUCiElpYWyQTOZDJYXl6Gx+MRUvDJT34S3d3dEoRmZi3vx2q1Ip/Py30yGMHFP5fL4Rvf+AYWFxcbjMdgMIh8Po9EIiEVZDabDd3d3di9ezf6+vrQ398vpN5utyMajaJcLiOVSjUEv/k8qUd1aTmNOZ1BdCvoW67F2vjn6xwryuO+ffvwyU9+Eg6HQza71WsukwjoCGJ5a6lUkvUeQEOf+UgksqYfrs5mnJ+fx/T0NBYWFkSebDYb/H4/gsEgwuGw/O3xeNa0EGiWaXY1oOzwudApYqziobzq1jPkJnyWwOq6zs9TBywtLcmc1J/n/zpz3hig1A7GYrGIXC4Hm82Gw4cPY2FhAc8//7zIvSbhRifCRkx00M/bmIiiP8N18qMf/SiefPJJeS79/f148MEHMTY2hj/8wz/EyMiIcDEec25uDj6fD6FQCNu2bcOxY8cwNzeHUqkEp9MpBlgul4PD4UA0GpWes9rYt9vtuHTpkjgguE/b9u3b8dBDD8nm1dwfjUZcIBCAz+drCErTMUfuAECcdhaLBfF4HDt37kSxWJRg9dzcnFQ0x+NxJBIJdHZ24qd+6qfw5S9/GYVCAU6nEx6PBwsLC9Jiihx+dnZWWrvW63X8+Mc/xrlz5/Dkk09i3759sFpXKvAKhQK2bduG3/md38H//t//GyMjIwAa28DxGdAYvFUCwtcLJu81ee+1RDPeQH05OTmJcDhs8gaTN5hQYAIq9ych9JhRf27atAmDg4Po6elBa2srAoFAw5532iY0+rv065r76GojHYzjXG4m//q4tNvy+bzYif/0T/+EUCiEjo4OdHV14cEHH0QsFhOHMzE1NYVz585heHi46b0Xi0UsLS2tm2xw5swZXLhw4SqfuIn3CsoHsKJ/m/GGn/mZnxGOZuQN1FXvxBssFgtCodAa3hCLxZDJZJDJZLBjx441vIHr/7vhDTabTXQusOoP+KDyBqPP51rhugYh6MAmod+5cycefPBB+P3+hkioVlZUCuxFy6ioxbJSLvvWW2/hm9/8JlKplDjSdKRdlwlqB5rVahUjiQMfCoUQCARQKBQahJtlhDxvKBTCgw8+iJ07d0qklmU7dHDpiL0xsmxU0uuVrungi/6McUGv1WpCgJ599ln09PTg0UcfxaZNm2QDQm5uqo9LUJF7PB4MDQ0JCXjllVcaDGX+DofD0nPXxLsHZZDjaFSot912Gz796U9LuZfL5UIoFILP50MikZBgXCKRgMPhQH9/P4CV0r/XXnsNb775Jubn56WPqcViQWtrKwYGBrBv3z7s3r1bNqR0u90oFAqYn5+Hz+fDHXfcgUKhIMYUjahMJoNEIoFCoYDW1la43W4pYQZWDfdSqYR8Pi9teJLJZEO2jdvtFkVNZby8vIx7770Xra2t+MpXvnJF+49cK7D/9a0I6lQSPxoHzYKelUpFFnL2I9RZTfV6HWfPnsWzzz6L8fFxCfoCq3pjeXlZslC3bNmC6elpIQiVSkUyawBgy5YtGBsbEwOK5JXEs1KpoKWlRRwK8Xgcd955J/r7+xsy17gmUJdqY0hnnvEel5eX0dbWJvpyfn5eSEs4HMb09DTi8bi08Lh06RIuXLgAp9OJlpYW3H777Th48KBkAjudTnF85PN5Wav4rOmwoJGr1wbO31shCEFjRLcA4NoNrBpGra2t+NSnPgW/3y9yQPnV7Q1I3ngcBqT4N/WR1+tFOBxu2BwMWNFjY2NjOH/+PM6ePStVMdRzutLSYrGIAyEYDKKnpwfxeBxtbW3YvHkz3G43bDZbg75kBnChUJDNf+mQoBNEywqzK0loKTe65Jf9bUdGRjA1NdXQ69bn8yEajWLTpk1SXWR0nrhcLrS2tiKTyUgiAue8zu6kE0M7A8iROE68h2w2i1AohJ/92Z+V7DQ9JpR5Y7uKjQbNBfUzNzqXotEofvZnfxb3338/isUiIpEI+vv7EYvFkEwm8frrryOVSmFmZkaMsVAohF27duHEiRNIJBKYn59HR0cHfumXfgmvvvoqXnzxRRkf8o3du3djx44d+NrXvgan0wmfzyf6hmXnnC+RSAQf+chHsH37dhSLRbhcLsTjcXi9XsRiMYTDYQkqGHurG6vkjOA8qlQq2LJliwSCL168iPHxcZw/f16yFDdv3ozPfvazePrpp2V+cE7qgIGu1tMBmr/6q7/CRz/6UTz66KNwOBxobW3F0tIS4vE4/st/+S/4oz/6I7z99tsAVp13Wi8zWE5noomrg8l7Td57rbEebwgGg9KeraOjw+QNJm8wgZWxulwAwuVyoa+vD/v27cP27dvR3t4uwT0+c+MeIM18S3y/me2i7TEjF+Lx9DGNlUH0yTmdTkQiEWzatEl4w9jYGI4dO4ann34aiURCWgXzu11dXRgaGsKTTz552eekncIax44dw+///u9vmCqymwFWq1X2/X0/eQP3OisWi9eNNzAxwMgbdADm/eQN6XQaPp/vuhz7uu4J0dvbK5tRd3R04DOf+Qx27dqFarUqE52KSTthHA6HbDpHwlAsFvHqq6/imWeewfz8fIOhwMWdA0zlRaLASKvf75deWhaLRTZbYpTearVKL0Kn04lwOIyBgQHcfffdsrG21+tt2MBER/WbZUtd7vFyQdb3ro9n/C7vk4KaSCTwV3/1VxgfH0dHRwcOHz6Mu+66C1arFdlsFnNzcw2bt+iSUD4fOv+++c1v4n/9r/+F3t7ehuvmb2YqN8NG6393vTaComHOsl692A0NDeFXf/VXGwzoYDAoY+ZwOOB2uzE3NyeGud1uxz/8wz/g5ZdfxqVLl0RuSaj1om6z2dDa2ore3l60tLQgEAjggQceQCwWa9gHoFgsSgCQgbbh4WH09vbKGNP5DKxkEHCe0hFgsViQy+VEZrhIeDweUdh0QACQFjZf/OIXG8rdbgQ2muxeDpTrkZERhEIhMQwIXRqos4900BWAENJkMokXXngBL7zwQkMrnWKxKAHoQCCAcrmMxcVFhEIhWK1WzMzMoFAoiC5Np9Po7e3Ftm3bcPHiRYyNjcHpdMLr9aJaraKvr0/ke+vWrbJfw+7du3H77bfD5/OhXq9LxiQXbk16deaw1m0sHS4Wi1hcXMSbb76JRCKBixcvwmJZ6UO5efNmXLx4EaFQSIynqakpOR6dDqFQCDt37pSgCJ/X8vIy0uk0yuWyvFYsFmWto36mHDJAn0wmMTg4uCFllLL48Y9/XFpT0Rg1ZgE6HA584QtfwMMPP4xUKiXtZrRsAqt7kegsK+2gJD9gqxe9XtdqNWlzc/78+YaglcfjkcASZUZX8jAjkOs29SedAu3t7YhGo9ILf2FhARbLSvuzxcVF7N69Gx/+8IcloUInT2gjm3Kme+lTTr7+9a83VIa6XC7Ru3wmdCLv2rULW7duRWdnJ8LhcMNzqFQq8ozJc7g28N74rFmiTGOVwULtjAgGg3j99dfxxS9+EcVisaEKiOB9l0qlDdPbmfJNx43mucy2BVa4wMDAAD7/+c9j8+bNoke2bdsmz+ipp57CU089hdnZWdEZwWAQ586dw/79+zEyMgKbbaXPs822ssdMNBrFiRMnJDBLp82HPvQhFAoFHDt2TKoVqO9ZPu7z+bBt2zbcfffdEmhwu93o7OxEd3c3vF6vVJWRoxgDh8ZEHM1ldYZisVhENpsVg8pmsyGdTovBSX5eq9Xwwgsv4OWXXxZnL+e/vgeW4zM7HVhtDfKxj30Mn/70p7Fjxw5MTU1hZGREsvK/9KUv4cUXX5R5r3kYsCKj2Wx2Q8jmejB5r8l7P+i4Et5QLBZx+vRpHDp0CL/wC79g8gaTN9zUeK96mRUQ9PUYA0kDAwO45557sG/fPrhcLll79ZrO72n7ia9R1nTVkNG3pT9vRLMgBP9vloxlrLjgb4vFgnw+j5MnT+L111/HyMhIg+wYfzdDsVjE9PT0e0442Kiy2AzvB2/YsmULfu3Xfu2KecPg4CAcDscV8wa73Y6WlpYG3nD//fcjHo/LtbyfvCGVSuFP//RPbzhvAK69bF/XSggu8i6XC3fddRe2bt0qmafrVQXQ+cSFjG2bjh07Ji2YCGOpn16EeWwaVi0tLahWq5ifnwewoviKxaI44oxVDPF4HHfddRf27dsn5IOb3PH7OhACNLZZMjpS9LEp7Fo49SbWRhiPRwOWZXOjo6OYmJjAP/zDP6BareK+++5DNBqFx+NZk5Ghj8UoMsvkrVYrOjs7pf8uYbFYEA6HxZFm4urAgFe5XJaIqjEL8rOf/WzDM+/s7ITNZsP8/Dyi0SgcDgcSiQTcbjf27t2LiYkJ/M//+T9x/vz5BuKsiSZLioHVfv0cW6vViqefflqcDfv370c8HpcNcyqVCrxeLyYmJlCtVpFMJiU6y9537OdPp6nP5xM5CgaD8Pl88Hg8GBsbExIajUaxtLQkRIck3+fz4dd//dffN8V6K4Hzn84d9m7VBh3LAhnF1xlZ2WwWr7/+On7wgx9gaWkJwMom1XQY2e12yUCw2+3o7OxEOp1GOBzG2bNnpV9vR0cHpqamAABLS0u4dOkSXC6XyGdvb6/onC1btiAajeKtt95CoVDA3XffjTvvvBM2m01aK3HNoDHDe9UkmXNDE91qdWXvIK/XC7/fj9HRUXF0lUolqZibnJxENBpFd3c3BgcHpZWI3W5HOBxGIpHA0aNHcfz4cfT39+OBBx7Ali1bZL8LVkVwXeJv6mS9ISLw3jZyu1mgDf9mBo/FYsHg4CDuvPNO2VwUWN0zQ5M56lTdyok/NLCpo4DVdTiXy+GFF17Aj370I2lnaLGstCKk4yAYDCKXy4lMFgoFcfBGIhFks1l4vV50dXVhenoaFosF2WwWLpcLi4uLSCQSwldYKry8vIyhoSHcddddksHI6wUaN8nl/ejXdEsxv9/fEBwslUpob2+XMmSW+M7OzmJqagrf/e53EYlEsG/fPtx2223o7u6Gw+GAw+FAPB6XfVfonAawJnlEG6R8FnR48PpLpRL27t2LPXv24NVXX5XXtWzrsdtoMCaV6GCE0+nEgQMH8LnPfQ7xeBz1eh2xWAyDg4M4d+4c+vr68K//+q/427/9W2SzWWlnZ7PZ0N/fj1QqhXPnzsmmzWw1UqvVMD4+Dqt1ZcPPZDIpTp/XXnutofWB1kd0EP3Kr/wK2trahB+3tLSgvb0dnZ2d4qTQ7RmAtf2kNfT/dBrpzNhUKiVBCO6rQ71us9mkWvnAgQN46623MDc3JzpD8xvu3WO322XPNBqapVIJzzzzjDj37HY7duzYgdOnT6NWq+HXf/3XEQqF8C//8i8NmbuUzfXaNJhYHybvNXnv9cLleANbxFmtVpM3bADe8MorryCTySAQCDSsMxuZN1wrOBwOdHZ2NlQFACuy3tHRgQcffBB33XUXvF6vVNloOTL6rfg65w/XSe7ZqhO7tONY2zVaBoy+Me3noszy+/oY/J7mVbVaDR6PB3fccQcOHDiAt99+Gy+99BJGR0clyLWevPAYbrcbHR0dmJycNH1d7xM0b3C5XE15w+c+97l3zRuoT6n3dLIbkwNrtdoHmjf4/f4Nwxuu+54QdGwzysoIIwdel6parSuby9EI4e7jZ8+exT//8z9jaWlJFAkDD+xRa1QYdJZFIhEMDg7C5XJJPziei+fhYsYImsvlQk9PD7Zu3Qqfzyc9b5m1yu+vF2AwBhKaBSC0Qtb9KZs9Q/7meTVB6urqgsPhQKFQQDKZxD/+4z+iVqvhwx/+MPx+v2QR6w1i9bkByK7vXq8XBw4cwE9+8hMsLi42XLPD4UAoFMLCwoK58F8FuLBxsdaVKcBK8OmTn/wkvF6vyEY0GoXX68XS0hI8Hg8qlYqUGG7duhXf+c538Jd/+ZdIp9MiWzrjm//zPAzE8XroSKhWqzh27BiOHz+Ojo4OfO5zn0M4HJaWMufPn0cqlWrYY2Vubg6ZTEYyZMrlMk6ePInXXnsNLpcLW7ZswaOPPorNmzcjFoth69atyOVyWFpakj584XBYsnlIMtiy51d+5VfwxS9+UZzbJq49aIjQoUXiyFYcdEpxgaRDP5/P48yZM/jRj37U4ARgRldbW1tDi6VyuYx8Po/JyUm0tLTIvjWpVAr5fL6h1LBcLmNiYkLkIRAIYNu2bfjud7+LtrY2+Hw+vPXWW4hEIvj5n/95tLS0yPUz8MFWTNrI1H0Mde9gTYTZQopZWHxGr7zyChYXF6WFg8ViQSKRQCgUQigUamgFaLFYJGBTKBRw9OhRnDlzBv39/bjrrrtw4MAB2X8nlUqJwcvqCKNBzDHY6KBe5NgAq05qru+PP/44vF6vrEkMmvF7zKzmeBvXVmaHMzMRWHWGjo6O4jvf+Q4uXbok7TrK5bJUCdKJQJJZrValHz2dwsPDw+jr68PQ0BBOnDiB+fl5RCIRWK1WOcbo6CjC4TB6e3sxNjaGUCiE2267DYODgyJflAXqb2M2I9dr6nrqe5fLhQMHDuD06dOYmJgQQzKXyyEUCknrBjpGFhcXRQ6ff/55vPLKK9i6dSsOHTqE7du3S0DO5XIhk8lItg+rnLTTenl5GaFQqCGDCID0aM3lcgiHw3jsscdw7NixhhaROtjGYNxGQ7PEFGAlQeeBBx7Az/3czyEYDMLlciEYDKKlpQUzMzNobW3Fyy+/jC996UtIJpNilJHrHTlyBF6vV9ohlctlZLNZAJBj1eurlQGs9uI+EMAqDw4EAlK9tnfvXrS0tDQEX2OxGFpaWlAsFqVVCOeRznzUHLZZIIKveb1e5HI52RzY7XZLD3fu8xAMBqXql+tJKpVCIpGQ3uHc/6FcLmN5eVna3+VyObkOGomsgv7Wt76F9vZ2fPzjH0epVMLu3btx8uRJLC8v4xd/8RcRCoXw1FNPoVwuiz6+FYLB1xom7zV57/XE5XgDAGzbtk2c4dzE0+QNNx9vePTRR/Hcc8/h1KlTOHjwoHBujsVG5Q3XAna7Ha2trRKAAFZkIBqN4o477sD999+Pzs5O2Y8DaN4anWBATu+DyvELBAIIBALSepZ7jOj9UIAVXxPXAmOCGH8oxwxu0TZi8Gx5eVnWfD32OmBht9uxd+9ebN++HWfPnsUbb7yBc+fOIZ1ONw1e6Xt1u91oa2vD9PS0ud/IDYaRN7AqgLDZbJflDV6v9x15A8/TjDdQF2newI45V8MbWHWneQMT6jVv2Lx5Mz7ykY9IkuXWrVtlr4or5Q3/9//+XyQSiRs8UtcO193L4Xa7sXv3brS2tkokx6jcKATs4cXsJ4/Hg/n5eTzzzDNSis7KBzp/WN7S0tKCSqUimbNUji6XCzt27JAMWm5MRzJKYkLQ6PH7/XC73aJcm2XY8rc2MLVy038bM2+10aYjusZjaiOPv/Vx2aOXGW3z8/P42te+BpvNhgcffBButxt9fX0YGxtb00eXEUFgpd2S1+vF7bffjkwmg1deeaWhJK1er0uPd7M37pWBCpXZHjrLgNi9ezd2794t1UEejwd+v18+b7PZkEwm0dfXh82bN+OLX/yi9EYGVmWMY0knMOcZ5VgH8LgIMwrc2dmJn/u5n0NfX5/0pwuHwwiHw/B4PJIhwSAez8nA1qZNm3D06FGMjo5iZGQE3/ve97B9+3Z86lOfwl133YXNmzfjwoULopBttpWNfev1OhKJhMwFOj7+3b/7d/jzP/9zUeQmri20/qQO0qSQpJLGGABMT0/jxRdfxJEjRyTL0G63w+PxiHHCYCWwUi45NTUlRsjCwgLa29vhcDiQyWQkCMxj0DlWrVbR3t6Oe++9FzMzM+jq6pLKix07duDw4cNCNJxOZ4M+pHON18bNsQE03KvOBtJrAJ9JNBrF8vIyfD4fjh071hCgoJG2adMmLCwsCMFnJhDJA48/MjKCc+fO4ciRI/jkJz+Jrq4uBINBZDIZuT5NhvT13SrQQQcADUbpwMAA9uzZI4YLyZwmY8x+1RWN1HF01Ors73K5jJmZGXz/+9/Hm2++KU4En88nm/kyW2V+fh7bt2/HxYsX0dLSggsXLiASiaBer6O9vV0yZebn5xGLxUT+HQ4H2traZLPUgwcPYnl5GSdPnkQ4HMYDDzyAnp4eAJDNyym/OgOM8qEzx7WMMEvT6/UiGo3i5MmTOHr0KLLZLIrFIoaGhjA7O4uxsTF0dXWhra0NoVBIsixZoXPy5EmcPXsWHR0duOeee7Bnzx74/X5pQcZWZ5RZXcGjS4aBVecAx6dcLmNwcBA7d+7EsWPH1sg371VntG4U6HviM/L5fPjIRz6CT3/601KF6vF40NXVhampKQQCARw5cgR/8id/goWFhYZ9eCgrdPYUCgXRX16vV3rNZjIZeDyehsQTGnTc04EcgwZWV1cXPv/5zyObzcLtdiMUCiEajSIWi0kLKb0mrHefwGpLVGC1ny0DzxbLyp47NPA9Hg9aW1uF91cqFSwuLkoAhfO5ra0N+/fvx/T0tLzOxKBqtYqZmRlZV6xWKwqFguh3ch2bzYa/+Zu/wfbt26XCeffu3ZItefjwYQDAP/7jP8r1bUS5vJ4wea/Je28ELscbtmzZgs9//vMAYPKGm5Q3XLx4EV/96leRy+Wwd+9eqZLW469/m1iFxWJBLBZDMBiUddhut2NwcBBPPvkkdu7ciWq1ilwuJ3pIB+HIGRgMcDqd4hwGGpMKAEiSFrCaZKDXZ9qBPCcrfOx2O/x+v/j7mCxBmWG1BQNXXOvpp+MeDpzjRh+a0+nEnj17pOrxyJEjuHjxItLpdEOAwWh7+f1+tLS0YHZ21kxCuEG4Et6wZ8+ed+QNiUTimvIGysV75Q3ZbLYpb/j+97/fwBsGBwdRr6/sZ0b9eTne8PnPfx5/9md/dtP6Za9rEMJqtaKlpQVDQ0Nwu93ivOJDJJhFyoyDYDAojqYf/ehHOHv2rBAETQoYFKCxwexYtgGx2Vb2gahUKpLBH4lERMnRKGGGDLCiqOPxOPr7+xEOh2VXcAqjMWDA628GYzBBV3DwOzTKmmWO6d/6mVLZWiwrPXlDoRDm5uYkmJNKpfDUU0+hpaVFFu+enh6Mj48jk8nI+XQW78mTJ7F79250d3fjnnvuwdTUFC5cuNAwEe12O4LBoJAHE+uDizcX3mYK1e1247HHHkMul4Pdbpe2LT6fTzaCTCaTaG1txZ49e/DlL38Z//RP/ySLNzNhqGCNJIJEk44KZplQTvr7+7F//37cdtttCIfD0uaB1TW6r3Iul8PMzAyy2axk3/B4drsdd999N77+9a8LUTh+/DjOnTuH3bt347Of/Sxuv/12WfjL5TKmp6fR19cnThNNUPv6+nD48GE8/fTTJgG4DmAwGGhc+OksYoYSx+PChQv42te+hunpaVitVkQiEaRSKSEAi4uL0jLD4/Hg0qVLCAQCop9LpZIEcnXFWqVSkX6zHo9HMgf37duHo0ePyubQbFvy+OOPw+12SwCC2TE6+0tn/ACra4QOgPMz1KPUwfw856HdbscjjzzSkF0bDAYxPz+P2dlZMTrZDoVZPnTgWa2rm2kdP34cExMT+MIXvoCdO3eiVquJY4K9jdlnkoH2W6UcWK+H3MCRBsRtt90mPTA1aEDo8TW2euEmduQM9Xod8/PzOHLkCF544QXZRJSErl6vo6OjQ0q3rdaVvZUWFxfhdDrR1dWF4eFhaaugs/eWl5dx7tw5kbF4PI6+vj68/PLLaG9vR7lcxvnz53HXXXfhtttuk9YOwOqaTl3ndDob9p3iZ3QShHas8R4ZCASAo0ePolwuw+/3S+/zubk5qeLRGbculwt2ux2lUglnzpzBxYsX0d3djYMHD+Luu++Wqp9kMtm0gkcbc1z3ON+sVityuRyi0SjuvvtunDp1qiFJRM/TjcgpdLIJnV6PPvoofu7nfk56yDqdTnR2duLMmTMIhUK4dOlSQwAiHo9jcXFR2iUR7CcOQIwpyk65XEYul0OhUJDsReoWh8OBX/qlX8If/MEfwO12Y3l5GR0dHfjCF74Al8slGVuVSgX5fF7ko729HUAj310vCUe3KeU8dLvdGB8fx/z8vGzM6vV6GzY9Jc9n9hkdU5xrQ0ND+Ld/+zd5ll6vF3a7HYlEQtYwq9Uqcu9wOMRZ4ff74fF4MDMzg//zf/4P/viP/xhTU1PweDzo7OzE5OQkAOATn/gE8vk8vvWtb21ImbyeMHmvyXtvFN6JN/T29pq84SbkDeVyGa+88gq++c1v4ld/9VfxyCOP4C//8i9vKd7wXhEMBqWqhjbNbbfdhk984hNobW1taJW0nv9J781aKpUwPz+P+fl5WVd5DrZPZ/tEBvKMTlzODbfbLT63YDCIYDAo3+N6z6oIHRgk6LdjpRLtQK43uoqR9+90OrF//34MDg7i7bffxmuvvYbR0VGpktLH5rWGQiGUSiUkEglTxq4zNG9YLwDhcrneNW+w2WwSILjevMFiWWmpdz15g06o7Ovrw8c+9rGbljdc1yCEzWZDe3s7Ojo6GhZLbcRYrVZpqcQWTCzFPnHiBP71X/8VxWJRlBS/r1sj1et1lEolMcrsdrssaOl0GiMjI6hUKpItRqFjL+9kMimK2uVyYevWrbKpNo2+ZqXm6/3P17Ti0pk4VMya5BihM3iN59CZs3zOfD405paWlvC1r30NXV1daG1tlcguM3m1M46lPj09PbDb7di8eTMOHTqEubm5NSQuGAwilUpJQMnEWlChMlpPR6QRO3fuRGtrq2Q+kQTrTMB4PI6BgQG8+eab+MpXviLHWV5eliogZgkAqxmINND5OUZxgZUo/5133oknnngCkUgEDodDsmLoWAZWjEXKaqVSQVdXF0qlEhYWFjA5OQmbzYZsNotKpYKOjg50d3fj4sWLci8WiwVnzpzB7/3e7+Gzn/0sPv7xj+PYsWOSyZDNZmXjtXq9LiS+XC7jgQcewIULF3Ds2LHrPVy3HOj01jJJGWUFBMfk1KlT+MpXviKOdp/PB4tlpe9tOByWSH2tVsOePXtw9uxZuN1upNNp9PT0IJfLiWO+Xq8jlUqJUTQ3Nyc9EDdv3oxAIICWlhbkcjkkk0l4PB6Ew2F0d3fjox/9qBguOrNLVzDockpgbSk60BjcJbng/7q83263y4bXgUAAu3fvxvHjx+H1eqUi7MCBA5icnJTP5HI5dHR0yCamJBEtLS3IZDJIpVL4q7/6K/zKr/wKNm/e3OBMoZOQraV0VttGBx21DCwBK2MXCASwf/9+KcPmeFOXGYNPlA2u5R6PR55jpVLB22+/jeeffx6jo6PCR+LxOBYWFgCscpFsNovt27fj3LlzIk8sd+Umkfws9SwdwAAk6//SpUvo7OzE8PAwqtUqHn30URw6dKihDQQNQd0SQlfxGJ0Jes2nrGiDLRaLYdu2bQgGgzh9+rSsBcBqJj77UTOjt729HZcuXZINNG22ld6q3/jGN/Daa6/hk5/8JHbu3IlwOIxUKtXw3PU80oan7rvK7LadO3ciHo9L2zWuAxtZzjUntNlsuOeee/CpT31K9j6r1Wpob2/H4uIi4vE4HA4H/vt//+/CZZkRTmcXjSNdeUb9x/ErlUpiTDE4QceZx+OBz+fDfffdh7/+67/G1NQUfD4fPve5z6GtrU2CELOzszKudO6xrZHmrNrJoA02o/MBWMmWzOfz8Pl8SCaTCIVCiEQiMk/r9ToWFxeRTqcRCASkxYmWrV27diEYDCKdTkuQhc+B59ZBC2YL8/qz2SwcDgcuXLiAv/u7v8Phw4eRy+Vkzzc+85//+Z/H1NQUjhw5YvYev0KYvNfkvTcSJm/YOLyhWq1iaWkJ3/nOd3DixAnEYjH85//8n7Fp0yaUy+Vbjje8F/h8PrS2tsqz9fv9ePjhh/H4449L9aSeL8b1m4lprPB57bXX8MYbb+DSpUsNlRO0hdrb29Hd3Y2WlhYJSLDKkP4oyjlllXOAwUPOQ80bdcCQ8sfPaHuNOoCOZAYj2BqK8lWtruyBcvvtt2NgYAAnTpzAiRMnMD4+LsEIzhNeAzciZqtLE9ceRt7AajIjyBuY8X81vIEt5W4UbwiHw+jq6kK5XMb8/Pw78gb6ZNbjDbVaTXgDA8pG3nD+/Hm89dZb13ewrgOuaxDC6XSivb0dfr9fBEtHXbnQs/c4o6vVahX5fB7/9m//JsYYM6e0ctLlhro0kfsblEol5HI5jI6OSs9brbyoqHVZZjgcRn9/P1paWoQcNMv00n83iyRr4xNY3UhLByCMgQZ9XOMx9fmplKmYi8WiLCbcAK5arWJ4eBjPPPMMPvvZz8JisSASiYgxy4WoXq8jm81iYmICv/zLvwxghajs3LkTJ06cwOnTpxuqNzhG3ODbxFqQ3LEXpu5pR1itq5umUR4Y9KKMejweBAIBXLx4EX/4h38o7Qm4cDNTMBQKSa9Di2WlpIyylk6nhYgDK2Xwn/jEJ7Bjxw709vaKU4OZ3Do7hoqRvT3pBAkEAtLHmqQgmUxi//79mJiYkAxHEt6FhQX8yZ/8CcbHx/H4449L6bLL5ZISOu7/Qqd2pVLBpz71KVy8eBGZTOaqnn+z+WhiFZRNAA1ZyzQ6qJtOnTqFv/qrv5IgcK1WQ3d3NyYmJpDL5dDV1YWlpSXUajUsLCzIpnl0wm/btg2zs7PSiqNcLovBQtJJQyyZTOK+++6TfScoO8FgEB/+8IcbqtF0xg2wGpgFVvUsN0kD1rbFa6ZXCRpKlO16vS4OVDohHA4Huru7cfbsWTz00EN4/fXXsW3bNni9XmzZsgXPP/88FhYWGggys3ay2Sz++q//Gr/xG7+BaDQKn8+HfD4vz5/BFF7LRgfXYjqrdWZjZ2cnotGoGD5cowFICS3Q2Ee0UChIdjmPXy6X8b3vfQ/f//73JYsrGo1K73327WZ7r7m5OVSrVWm1VSwW4ff7RVeS2FJfspInk8kgl8th+/bt+OEPfygOT5/Ph8OHD2P37t0NWYm8X+0w4Nqhnw9lWn9WB+G0TLvdbmnvMDAwgDNnzqBUKiEYDKJSqeDcuXNS6cie1eFwWPrssxw5l8vBarViYmICf/Znf4Ynn3wSDzzwAPx+v/RW1RU8vFZtSHJeslo1HA5j69atmJmZEUOWc/lWwM6dO/G5z32uYRNHrtUTExPYsWMH/vRP/xSnTp2SZ8csXcoNnTD79u1DpVLB8ePHRWfUajUpTaeupdOBBlK5XMa5c+fwpS99CalUCrVaDR/5yEfwyCOPoF6vy8bOxWJR5Le9vR3ZbFZ4p+atlE2tq5plVRaLRUxNTcn/8Xhc9vrRiTnRaBTRaFQ2xU4mk7KHDp1Rd911F/71X/9VHAU+nw+VSkWqz/bu3YtMJoMf//jHost1yT2wMn+efvppPPTQQwiFQhgeHsamTZuE67jdbnzhC1/AxMQEJiYmTD5xBTB5r8l7bxRM3nDz8wZm14+MjOBb3/qWONN++7d/W/YIMnnD1cFut6OtrU3su3A4jCeeeAL33nuv6Bf6fbRcAI1t0V0uF0ZGRvDss8/i7NmzkuHNwCnbKmWzWYyPj+PIkSMNe66EQiF0dHSgo6MDsVgMkUgE8XgcLS0tssaToywvLyORSEjSBAMK1PM6aKWr+LWjmAE4zgXu7coN1nnNnIMtLS348Ic/jB07duCNN97AiRMnZF8UzW9sNpvsh2XuD3F9YOQNzQIQmjfwO1fKG7hOcM0Oh8M3lDds2rQJwWBQguXvlTcwQdLIG372Z38Ww8PDNx1vuK5eDp/PJwNnrALgD0sfKQzM3Hr11Vdx/PjxBsc9F1YqQiokRm1ZrhsMBhs2sSkUCtL+YmxsTBbiZDKJmZkZKdWx2+3o7u5GR0eHCIUx6KCvvVlgQi/2BAWP7zP4YswUeydBaHYelqLxmTCrg1HFn/zkJ3j55ZdlAfH7/RKt5jHm5uZQqVTEmGM/4R07dkiUT5/X6/XeEg6ydwtGc9czxABICwCOVyQSkT53LN1i66uvf/3ruHTpEoDGiho6AVh+SALB1gf5fL5BoXLh3b9/P7Zs2QK32w23242WlpY1mxLr7ANjb/1isYh4PI4tW7YI2fF6vTh06BB27Nghc4kZBDQUvvGNb+Bv//ZvJRiWz+dlIx/OQS3XkUgEDz/88FU9ey5GvC4Ta0HHOEsfKT8kA1arFbOzs/jbv/1bWVD9fj+y2azsg8A9HNLpNNxut3zGZrMhk8lgYWEBJ06cwIc+9CFMT09jbm4Oly5dQjgcBrBayt3R0YFt27ahs7MTsVhM2mP4fD7Y7XY89NBD8Hq9AFZ1Kq+da4euHCBhNZZaarnSOpjH1VlAmkyT3MbjcWzatEmcgnNzcxKcefzxx5HNZjE8PCzPkCXnXM90xl0ymcRXv/pVCdiwdZU2DkmmNzo4TsZMLJvNhh07doi+4bhwLI0b42lnODMZqYO++c1v4tlnn0WlUkEsFkM8HkehUEBXV5fISqVSQWdnp4xdsVhEd3e3GMu8tkwmIwH8hYUFuFwujI2NoVqtIhAIYN++fZicnJRz9fT04PDhw9i7d2+Dw7ZWqzUkIgBoCPZr+dRyzWelP8fnxc9xnfd4PNi+fTu6u7tRqVTQ3t6Ozs5OJJNJbNu2TbLVLJaV7NHu7m54PB7ZUJCl9pVKBU8//TReeuklCabVajXk8/kGvkFjgOsSX+MaVavVsHv3bpHrW0XGAaC1tRW/+Iu/KOXjHPu2tjZMTk4iEong1KlT+Jd/+RfRF0zMCYfDsm8E58vJkycxPDws7eBomHi9XgQCgQadyOAC50k0GsXf/M3f4Pz588hms+jt7YXb7UY8HkcgEJAWIu3t7VLhxc1US6WS7C1h3GS8WW9mAEilUhgdHRUuYLVaEYvFZL3QPFoHbskRfD4fHA6HtGtlJhvny3333YdKpSJt8tLpNB5++GHhSjrrjb8tFgvS6TT+3//7f5K4k0wmpVKa7ad+9md/VpKkTFweJu81ee+Ngskbbk7eUCgU8Ld/+7f40pe+hD/4gz/A//pf/wsvvfQSfuVXfgW/+7u/i0cffVT2MTB5w9XBYllJNHW5XABWAhA//dM/jfvuu0/sD53gRBngj8vlQigUgs1mw09+8hN8+ctfxqlTpxqCXmx3SMcn/6euY/LC9PQ0jh07hmeffRZf//rX8Xd/93d4+umnceLECVitK+0SGdBlxSP1O9d2ZqeT+7ASn/LHfbFoS2rfW71el4RZ3aKMc4HPore3F48//jg+/vGPY//+/VLpr+cXA3T6NRPXDlfKG7q6uhp4A/kn5XA93qD5KHnGu+UNHo9nDW9gwGE93lAqlRCPxzE0NHRZ3lAqlW5J3nBdmXV7e7sIjjG7nwYHHdp2u10Wrmw2i2eeeUbKqWq1GpLJpJBVtlFiVm06nRbDggsUz2m1WsWwoiLmMRgVZlYaCTKPrTMNCB2RbRZNJvg6r1+/zuNpQdXPxXi89ZQfDSn2CDOWsdntdqTTaXzrW9/C2bNnJVOOTj5mPs/OzsLlcjWQqaWlJYlmU0B57263WxyDJppDL/jNQMcCF0gaRqVSSVpgsW3AkSNHGgimkVT6/X7J4mHmDdsUUAZtNhseeOABcTiwZNFms4mCW15eRjablWgrA35auVK+yuWykNVgMIjW1lZ0dXXhzjvvRCgUktYHuj9+vV7HSy+9hDfeeAPxeFzKydLpNJxOJ6LRqDhka7WVVmr33Xcf2traruiZM0BGcm2iObRuokOJ857OpW9/+9tIJpNCaJeXl+F2uzE9PQ2/349wOCyLLQ2M9vZ22QzVZrMhlUpJ6XahUEChUEBfX5/08aZz//Dhw+JkWl5exvT0NCYnJ3Hfffehvb1dyKl20PM+GIxgwJg6vxn5ALBm/vAYJKkAhFzojBqbzYbBwUF4vd41mb0zMzM4c+aMHG95eVk2t9bOjVAoJIT5woULePbZZ+WauCkbdQHbM90K0EalnruDg4OiR7mOMmOGz5XPk1lTzGRk4sM3v/lN/PCHPwSw6nzs6elBMpmU50vn6szMjMgZdd7g4KBs4sv++MyerNVqIrP5fB4HDhxApVLB5OQkvF4v0uk0du7cie3btzcEuox8QDsFKL8EZdr4uv6+8TlyA07K+oc+9CF4PB6Mjo4ilUohkUggHA7j4MGD2L9/v+wDZbVasbCwINmMDMZxvXjqqadw+vTphkwc3Vta9/S1Wq3Cq/hTqVQwMDAgG3Rqp/NG1dkWy0oV76c//Wl0dnZK0BQAOjo6kEqlkEqlEAwG8Rd/8RfI5XIAIJUAdJyFw2Hs2LFD5kMqlZKWSXyGTzzxBGZmZiQ4Wi6X0dHRIdfS1dUlLRZ4XYcOHUIgEMDv//7v46mnnsLY2BiKxSK8Xi96e3vR2dmJYDAoSTzMVCsUCsKlgdXqOo495Tyfz8sm1OTULS0tYuzzGfE3v0f5Y0ZyKpWSarrZ2VkAK86BPXv24Nd//delf3oul8OPf/xjLC8vw+fzyTWy6oIGI6/n9ddfx5EjR0T2o9EoAEiriDvvvBO33377jRGWDQCT95q890bB5A03H2/w+/0YHBzE1q1b8fnPfx6/93u/h//4H/+jzE+TN7x7+P1+RKNRWCwre9cdPnwYd955Z0MAF2hsLQ5AqrwCgQAWFhbwj//4j3j66aexuLjY4LdjhTkTXJlcq2WTgTIGEmhjJpNJnD17Ft/97nfx4osvYmRkBJcuXcL09DSmpqZgtVplfwheC+eo3W6X9Zj6nnaZx+OBx+MRm0lnozOxlsEOnXjLZ8Iku4MHD+LJJ5/E/fffj0gkIs+G8ywcDiMYDN7A0by18F54A9vpvxNvANCUNzgcjnV5Q19fXwNvsFqta3gDubrmDUyIp/4ib2DLu2a8IZfLNfAGADeENwB4X3XodfVy9PT0IBAINJRr68VTKwafzyffO3bsGEZHRxt6u/K7wMoeBplMpoFcsOwyk8nILuQ8D/+nU4kLmcvlkh5b7Hkei8XgdrvXDEqzQIAxGGEElbR2hukItJ4c+hw6Y0Ef13iOWq2G+fl5WRyMGWU8x/T0NL773e8ik8mIw4uT0Gq14s0330RfXx8cDgdKpZJEnOfn5+H1ehv20eAzNVZImLg6cDNGynChUBAHJsuvSqUSvve978mm6ZQnI4Fsb2/H1q1bxQijYqSx5XK5sG/fPtxxxx3o6OjAzMyM9OZfWFhAPp9Ha2srgNXSOEaltUOAzgc6BYrForTlCYfDaGtrw7333outW7fKglIoFFAsFkXWq9Uq/uVf/kX6S5NAkGzTUUtyY7fbrzi6y5YTzKAx0RxWq1U2UQZW9AWro2w2G44cOYI333xT5jqrAA4dOoShoSH09vZi165dkr3A6P3Zs2exdetW0UXZbBbZbFYCGX6/H/X6yiZhxWIRhUJBqtE2b96Mqakp2cR627ZtOHjwoMieDhAYSYW+L/7W+m89PQusZs3osnUSEa4/nEN8Di6XC+VyGW1tbQiHw/i3f/s3JBIJeL1eBINBRKNRZLPZhgD65s2bRdZ5Py+88AIuXrwopZbMCCJ5vxWyGnWgXhvZzFTVjk4SVa75dH7rPqJ0NADAK6+8gueff16cDm63GzMzM5IF4/V6MTc3J+/plgKpVAqvv/46duzYgfn5eSwuLuLixYuIRqOSsGC32zEwMIDbb78dra2tsnFjW1sbSqUSBgcH8aEPfaghQMZr18YUiTWv29ivlz/Nstg096DcU2Z5nr6+Psnk4tpw6tQpPPDAAwiHwzhz5owQeTqHuaEvgwsMOHzta19DMpkUhwIA0dM6o1JzBV5jPp+XHsK8Z91epVkZ9s0Om82GO++8E3feeafwz+XlZbhcLmlr2dHRgVdeeQWnTp2SMa7X60gkEkilUpifn0cmk8FDDz2E/v5+cTJEo1FJLKFTxu/3o7u7WzbZGxoagsPhQGtrK/79v//3ImNdXV1wu934xCc+gc985jP4b//tvyEcDuMv//Iv8fu///s4efKkyBOvtb29vYEX68o5YO2+aaVSCRMTE1hYWJAWqww2MwHGWDWhM5xtNhuCwSDa2trE6aDtiFwuh0Qigeeeew5zc3Oyf0StVsMf/uEfolKpSIk/eS+5LTfmtFqt+OpXvyoZ+cvLywgEAuJEs9vt+PjHP454PH6dJeXWgMl7Td57LWDyhpuTN3i9Xtx777247bbbMDg4KDrd5A3vDXa7HbFYTNatD3/4w7jvvvskeMpnqddoh8OBUCiEWCwGr9eLkZER/PVf/zVefvnlhgoHPTeAVfnSgSt+jkm9nJ86YHzo0CE89thjiMVi4lAFVuYs94DSfMLo7+KxOO76nozV6y6XC8PDwzhy5AiWl5cRCoWEdxh5Cu3Ynp4ePPHEE3jkkUcQiUTW+NO4Z5eJGw8jbyCnI29gQELzhma6oRlvYHJNM97Q3t6O2dlZ4Q3z8/NXxBsYkC4UCqhUKsIb8vn8FfMGBsqMvIHP4VrxBs6B9wvXNQjR3d0tgwGsZp7SoNALELOWSqUSXnzxxYY9JEgctENJR3YtlpUyMWb1UhAoDHqA+Hk6qVh5wWgnM2qaBQp0UKBZEMGYqaMNLGPWgv7c5Zxk+jX9PYtlpYyUZUcM4tDJpxfyUqmEN954A2NjY8jn8w0l7w6HA+VyGeFwWAzkfD6PtrY2eDweyeoxBkPYrsrEuwOzCynXiUQCk5OTklUTiURw7tw5nDlzBsDqJmxA46bnNpsNo6OjmJmZgdPpFGXS0tIi8m61WvGZz3wGAwMDMs7T09NIJBLS3xOAlDcyoKdbatTrdXEap9NpAJBWMl6vV9pMBINBbNmyRZQ0Fwot49PT03jhhRckK1S3T3O73eju7obX6xVn9Yc+9CEEAoF1nyUXDhJu9tA20RxcGKlbPR6PtDYqlUp4/vnnYbOt9FxkxtalS5dw7NgxpNNpXLhwAaFQqCEIXCwWceHCBWnhwWMmk0n09vbC4XAgl8vh3LlzWFpaanACcQ+JU6dOYfPmzcjn89i7d6/oHa33gFUDlAYO39Ml6zSAjO/xfx2k5jGN2ZYMkFNvO51OdHd3Y+vWrYjH47j//vvx5ptvSoUe51M0GhUyzhJ/zidmITNT+bvf/a44y5jNQ5LNebmRoddxjpHFYpFsqHK5LMYpg0L688xOpS6lTExPT+OZZ56RjG8G110uF+bm5tDe3i4GNrNWWAmpnRKTk5MAgHK5jEwmg/7+fmkpBqzozIMHD0qALZ1OS9XhI488IoYZsOoEAFbljYE/o4PNSKCZ0WicC/yuDtJpA5EbDW/ZskUSMBKJhPT0feuttySTh9loWu/TEUyutrCwgK9//etS5UP9YLFYxCnDe9B9+KmX7XY7+vv7GziKdo5sNLS3t+OnfuqnZG3juLW2tmJ6ehqFQgGBQABf+cpXpIKV8z8QCKCvr0+c5v/n//wf2UiaJejUK7VaDU899RTq9bq0isvlcnjmmWdQLpeRTCbx5S9/WfQPgxdDQ0PCN376p38a//N//k/85m/+Jn7wgx/g//v//j9MTEw0yEIgEBDuaJRTo2E/NzeHpaUlad1BvqBbolCugcaAMJ0gdrtd9oXjfOcmkp2dnZiensaXv/xlCbo4nU60tLSIc5vZlDMzM1haWkKlUsHHPvYxtLa2or+/Hw6HA+fPn8cPf/hDxONxZLNZhEIhKbe32WwYGBjA/fff/z5Iz8aDyXtN3nstYPIGkzdsZN5wtQiHw9KeZf/+/XjwwQfF9wU0BqaYrBCNRuH3+2G1WjEyMoKvfe1rmJycXJNUy/Y1XIM5N7xer4w393JlNSL3ULDbV1rufuITn8AjjzyCgYEBtLa2NlQnaH+bMUCmXwNWOQJlVVfE6B8GY5555hl885vfRDqdlrnbLLmrUqkgl8shGAzi4Ycfxr333ivJc7wWp9OJUCh0XcfRRHMYecPS0lIDbwiFQmt4QzPfwbvhDXa7XXgDWzYBl+cNDEBwTzPg8ryB1Qvr8YYf//jHwhtCodB74g0sAPig8IbrGoRoa2sThaEzTYHGzVF1BH5kZATnzp2TB6QXJB0FJyhousydYNSSi5x2RpGE6GxgHRjha82isVcCY5aGccHUx3mnYIbRWON1lUolTE1NyUJSr9eFGNDRxh3cU6kUjhw5Ihk9VNRWq1U2BOKxmTmyf/9+2TFeK3o+W7Ml07tHLBYTmaDRTcdwNBpFoVDACy+8IA7OZpkMzIgEIEqvWCxi165d2LFjh8hBf38/7rrrLgwODqK7uxudnZ3o6OhAb28vNm/ejPb2diEmur8dnQAMTKXTadjtdunTSILPucpgYktLC1pbWyWopR3F/P3cc89JGzDKX6FQECcJs4sow0NDQ02fIw0xbg5XKpXMzJh3AI0EZlOxCqJer+O1117D9PQ0rFYrMpkM8vk8FhYWsLi4iFwuh9nZWSwtLSEcDmP79u3o6OiQjcyWl5eRSqXQ0dGBHTt2oKenB+Pj44jH47KJne77yJ6OPT09mJqakgxhv98vewkxkMz1gXOBwW0aT1xDdIacnjc6AK3llusHZZOf0+sTs8+q1SpisRgWFxfR3d2NmZkZDA8PIxqNIhQKyWZ67NHOPpO9vb2Yn5/HxMSElD7TYB0bG8Pw8LDody3Lt0IQgrpM8wOrdaXnp26XQJ1EBwLXP5JIGkY0Zp955hkkEglZF7ds2YL+/n586EMfgtfrxT333CMJC6VSCZVKBRMTE/D7/YhEIrIuLi0tIR6Pi37MZDLSF79UKsmc6OnpwaVLl+D1etHe3o577rkHHR0d4jDQOpu/eU8Edbt2OjT7jJE7GHkKKyM5b9xuN/r7+9HS0iJyfPfdd+O73/0uLl26JMHAzs5O4VsOhwPpdBrd3d0yv+msOXXqFN58803ZwJdtNPXeMrp/u3Gcu7q64PF45PqNmXYbCQ8//DBaW1sbnO/Mnp2ZmUFHRwe++93vYmpqCk6nUzawo/5ob28HsGIks/UmjR1glbeWSiUAkIxwj8eDSCQiGYYWy0q1MdvlJZNJhEIhWac5Pna7HYODg/jt3/5tPPbYY/jjP/5j/P3f/z1SqZToYq4bwGommNa76XRaAhDk00zy0ckr5KC8Dw3Ob56PTsJ0Oi2Vd7Ozs5KdTvmxWq2y4Taz5VgZ4nQ6UalU8OMf/xg2mw0LCwtSRfL1r39dvss5xs1qq9Uq7rvvvussKbcGTN5r8t5rAZM3mLxhI/OGqwFbs3AsPvKRj0iAE1htL0sbw+fzwe/3S0XQxYsX8Xd/93di9+l2WFo+dHtI414+6XRaAn8ck2AwiNtvvx0/93M/h+3bt6OlpQWhUEj4zeXGr5msch7r1mrN/Gm8546ODsTjcbz66qv4y7/8S0xMTKClpQW9vb1SuaP9a6zW9Hq9eOihh3DgwAFp00ZEIpE1r5m4/ngn3lAsFm8Yb2hra3tH3lAoFK6KN7DKphlvAIDvfe97a3gDqzd4LTcrb7iuGjwYDDY40LXC0O0yuNhaLBa89dZb0j4JWF08ueADjdFRKqZmrY+MWbIAGpxZfI3RNZIUoJHc6PMQfE+fj+fidfD6jSVg64ETp1kET//NiTg1NSXlkHNzc6jValLuyc9ws7d6vY6jR49ifn5e/icxOHr0KO699165r3p9pY9ZIBDAwYMH10TVOH5mS6Z3B4tlZUNKm80m1Tt0ora2tiIajaJSqeD8+fMNQTed3Q1Anr/Vam0g1sePH8drr70mfZE3bdoEu32lj3coFMLg4CA2bdokmdfsn8iAnCbwmUwGc3NzyOVyKJfL4pDlfKEs0IHCvUW2bt3a4PDlws3PZ7NZvPTSS2hpaZFqHIvFIshYtfgAAQAASURBVD2kSVRYNr1t27amz5EtEz4IEd2bBVwsbTZbQ2uMfD6PV155pSGbZHl5GcFgELFYrMFZn0gk0NrailgshkgkIpkKo6Oj6Orqwt69e3HXXXchlUrB7/eLQc9xDQQC0qO8VqthdnYWU1NTWFxchMvlQiwWk+vVelPrRZ35Qnnk56n7WdKu1wat49cLNJNckMhwPWD7vsXFRbz11ltYWlrC7OystAJkj1F9nSznp8OtWCxKJkKxWMRrr70m18sqQX2vGxl6DPQ4hEKhhteMAaN8Pi/60Ol0isFrs9kwMjKCU6dOwel0ihN2cnISR44cwbFjx5DJZKS3M1uv0ACZnp7G0NAQPB4PAoEAkskk2traJMtkYmJCDC4SwEgkgomJCczPzyMWi6FcLmPXrl0NHEFDGz68N525QznWIH8w8qn1yDZljXzH5XKhr68PAwMDOHToEJxOJ2ZnZ0WXz83NobW1FZlMRjaGpLOZZJ3OCQD4wQ9+ID2gmbxBnsSkBZ24QB63vLyMtra2BtLMjNSNKO+33347qtVqQ+lzPB6XSim73S4VDHwG8XgcTqcThUIBb7zxhvSTZfYhs2C5Tw9lgK2OmPWts0odDge2bNkiiT2lUknaMRiTXoAVedu7dy9+93d/F9FoFL//+7+PiYkJMbbYNk7LssViQSaTwdLSEubn5xsyrWw2m2RraqcZodccBhzm5uYwOzvbkDjDLHZeLzcL7OrqEh6i51WxWJR9MmgnZDIZmWOLi4uoVCqYnZ3FD3/4Q7S1tUkwnDyam32beG8wea/Je68VTN5g8oaNzBuuBsFgUFpoHTp0CH19faITjWs6eQSTz+bn5/G1r30N09PT4vfhmBkDBYVCAR6PB/39/cItgNUkLVY2sHXtzp07cf/996O9vR2RSEQcsTpYZrxGoHkbJo4zEyGMc1x/l/JD2a1WqxgZGcGf//mf48KFCwgGgxgYGJA5zO/xOgqFAiKRCB577DEMDAw0BPDs9pX9aN/Jl2fi2oG8wW63S8CScnm1vIEydDW8YfPmzQ28gb7oa8kbtm3bti5vsFqtyOVyePHFFxt4A7Dis5mbm1vDG7Zu3dr0OXJfDXYd+iDozusahKADSE9wLnQ6Q4pOl1QqhZMnT66pmgDQoID4v/6MjowbFzH9Y3RcAZBesJrYUJD1gq/PpwmCLg3VREE7uIxKcz2lqxeMZoqWzrRisYiLFy+iXC4jm82iUqlIqWKxWBTBp7FIx9nY2JhM5LNnz+L3fu/3sGvXLtxxxx1NF4YtW7agp6dHHJX6upmVYOLqYLfb0dbWhmw2KwtcuVyWzMSuri6k02mUSiUZOyquarUqG9zQMM7n87KxDo/f0tIi73HTLxr4jMCSzOkgHhV9LpdDLpdDMpmU+UilycoikhnKBuWPJES3COO+IvzfYrHgyJEjcDqd6O3tlSz6paUlZDIZzM/Po1pd2fR0eXkZmzZtWuO0YPZ9tVpt6L9r4vKwWCxSKqurx8bHx7GwsCBBCj5Xm82G3bt3w+12o1AoYHp6Gt/5znewuLiIrq4uzM3NIZvNiiO+paUFr7/+OgYGBuDz+bC4uIhAIIA9e/bgkUceadhQym63I5/PSwbK0tJSwx40evEGVjdQoixw/Kn/9U+zNiH8zfVEE1yjkacziDwej2zGWywWUS6XJfOtVCqJ081iscizsFqt6OjoQGtrKw4ePIj77ruvYa4xy5e9dQmujwxMbGQY11OOeSAQkHWZY86WYdphSZLHTQ0rlQp+8IMfCElLJpPIZDJi+HKspqencfvtt2NgYABtbW3SW/PChQvo6urCvn37sGfPHsk6aWtrQyaTQSaTESJJOeno6MD09DSy2Sz8fr8E5jQfYQYMdSmABl6iWxtqw9p4LuNnNbfi6zrpgWXCTqdTKiJLpRKeffZZVCoV2SSY+5zwmiuVCjo6OpBMJjE9PQ273Y5IJCKOgvn5ebz99tuiy0nQ6RzQ98Lr5jrHLDwmTADYsLJusVgaNmGu1WoIhUIYHx9HNBrFd7/7XUxPT0tgoVgsYnFxUTKqlpeXxXFAR4Pmp5wj1GOssOrr65NrsNlsyOVyePPNNyWQQR37TtVWTqcTjz32GH71V38Vf/RHf4TR0VEpPycom1wbEokEstksCoUCrFYrQqEQOjs74fP5GvSyUefqDONCoQBgpVqOx8nn8xgfH0c2m0VHRwe2b98uXLarqwt79uyRjDleo56D1BX6Oepg8/PPPy/7pjHQwvnarIWDiauDyXtN3nutYPIGkzcAG5c3XCkcDoc4xdva2rBv3z4J/ht9by6XS9q28DvPPPMMLl26JDqSOrFSqSAcDiMajYqes1hWqhm7u7sb7DT6mHRyQa1WQywWg8/nQyQSER8fz0M08/Npn5vmBZy72n+mP298zWKxoKOjQ+bByMgI/uzP/gwXL16Ey+VCf3+/2HT8HjlUuVxGX18fHn74YWm/xutkNYeJGwPyhkwmI2PPFvJXyhu2b9+OQCAgAf8r4Q3aZ9yMN9CH8m55AznolfAGAHj99dffkTeQGzB4RlgsFqkE/qAlLlz3WjZjxJALq1ZYNLhOnz6N8fHxhrIrEkQOHjfm0BFPHZDg/zwusFpGRmXEjZOYcUVDhu1HLjdAWsHpc1Dp6yoI3bPucsdqpnj1efRrPNfi4iKGh4elvQkdi+z3zigcjVtGyGZmZlAqlTA2Nobf+I3fgNVqxW/91m81KGOtcNmzzLg5NZ/rrQYas+8FsVgMsVhMnAckVtx8x+Px4F//9V9FZvlDuXY4HMjn8+ju7pYedfX6Svb2hz/8YXR3d+Oee+7Bk08+iQcffFACfjyGDg6yfIu97Zihwmohq3W1fUQwGEQoFEIwGGzY18XhcEhLML/fL5+Jx+Miu+l0WrKPaPhns1l89atfRXt7O9ra2hoClCSa7H3H3nwcA77Pcvb3u6TsZgIXT+oG4q233hI9k8vlJOMwkUhgeHgYBw4cAACJpL/44os4ePAgOjo6GrKe2tvbUalUMDo6iscffxz5fF6yBPft24fdu3cDgJRUulwu7Nq1C319fdi5cycOHjzY0OscaKxm05kpWpbpdKKBSeONcqwzcLR+52s8n/6ezsbiXLVarUgmk/D5fKjX69i+fTv27t2LSCSCzs5OIRY7d+7EPffcg2Qyibm5ORQKBfT19aGlpQWBQED0dj6fx9mzZxvG6FYpNeezNQbd+Ww5Djqzm61nqNPoaAKAyclJjIyMrDHkY7GY7NVhsVgwMzODxcVFdHR0oFaryfq2uLgoPeEfeeQRyXTkdXZ1dUn/+c7OToTDYaTTaczPz+PSpUuYnp5GNBpdE6CnbjUmFej3KZOa/wCNmTb6M4SRI+hAnXa6sDJ1enoa5XIZS0tLmJubQ6lUQjablXN5PB4xWhcXFxEOh1EsFjE3Nyd9h6vVKl577TVxYnPeAatzVXMuXk+xWBQyz4yfjSznfI40zNlHmW0zv/GNb4iBQDk36jo6sWgcU4apm8rlshhcDFxMTEwIb4hEIujr65PNm9va2hCLxVCr1aSqwAhjK4++vj584QtfwB/90R/h1VdflWvlNVQqFczPz2N+fh7pdFr4RFtbG/r6+hAOh9fIbzP9zoQar9crupTzvFarYXh4WDLRLly4IAbVD3/4Qxw/flxafXg8HpFBq9UqbUnp3E2n01JhwUzoY8eO4bnnnhMdQ9klz7iVYfJek/d+kGDyhtX3Td5wa4JBAeqWoaEhdHZ2rqmIoW0UCASkdZPD4cBLL72E119/HfX6ahcQ/tRqNSQSCQCQ9i2cLwsLC1ItwLnC4D7P1dPTg82bN8u5uA4bHaOXuzdWx2g50AEIDaM9x/sIh8Nwu93inJ6cnMRf//VfY2lpCW63G729vSKb+jg8z4EDB3DHHXc07A9ht9vNvSGuENeKN8Tj8Qbe4Ha71/AGAOvyhlwud9W8gVxgPd7A418Nb+BcZRvQK+UNAJDNZvG1r32tKW9gZeTNyBuuqxbXix+wGo1hlImLDrP5X3vtNdnEQy+IfLAsIQkEAjLoLAPTCzXPxd/80T0WSQi1Y589d5uVNep70qSHSonRMX1+o9NLO7SM10low0mfRxMrbkg9MTEhm5oyQgxAJiudjex3CQBLS0uYmZnB//gf/wOBQABf/vKXsWPHDllgtJLn+fv7+6W/pfGZ3kqw2VY22+JGi+8WW7ZsaThmrVaTvputra04f/48jh07JgpUyz83hszlcujs7MT27dsBNG623tfXh29/+9tIpVLo6urC8PCwkGjKFRd4zoO5uTkpVWaUn4ste0uT0FOWgUa55m8adi6XS3rl64VIBwPZI7e1tRUtLS2iDzKZDNLptBBrrcBJ1Gu12gdOod4MoB7WOpMbS1utVtk8iRF5ABgbG0OlUkFPTw/sdjv27NmDHTt2YG5uDj//8z+PgwcPwuPxyJ4+O3bswPHjx9HT0yN7PCwsLMDj8WDnzp0AgPvvvx+7d++WliCUg/b2dhlT6jZdlaDlj/djvD+jsaWNNaPxpSvvtAEGNAaSrVYrlpaWkEqlxMD70Ic+hM985jPo7e0VJ9revXv/f+z9d5Dc53Emjj8TdnLYmdnZjA1YAIscCSIQTGISKZFKtCzJpm3ZZ7vOV3U+h7oqn+/qfK67r8uXXHWynO5snVQKJ4kKFpMEgiRAEjmnxeY8uzs7OeeZ3x/ze3rfGQDMoChgugoFYHZ25vP5vP32+3T30934+Mc/jmKxiIMHD+LSpUvSI3J6elqYz+3t7QIcJiYmalpI6XS6O6LSTE368P907umA82xlBQrLbNlmRg0QXrlypaZkl+QCo9GIDRs2SFB3YWEBzz//PFpaWmCz2eD3+wWYkjkeCoWwc+dOzM/Po62tDVu3bsWTTz6JlpYWafPCnpo2mw3d3d3QarVobm6uISXUn/eq7lGP6FgzgEoCRj0W4O/ShqrsLbU1g7q3Vdu5vLwMj8dT0yKhVCrB4XBIi5R8Po/Vq1dj586d2L9/Px588EG0t7fL8EEGJ6anp+H3++XeCMDVNa0fssZWN4VCAYlEooahejvacSZTuZZ2ux2ZTAYejwenT5+Gz+dDsViUFqTFYhEWiwV6vb6makENoqvVXjxvgZVgA0vNWRJeKBSwvLwMk8kkgxn1ej1SqZQwdAFct07qa7lcDj09PfjTP/1T9Pf3i55R70KhkLTS0+v16OrqwpYtW9Da2ip7mH+r7GU6drlcTsrbyQhjgIvvS6VSGBsbkySv1+tFe3u7nAflclmeJ+0nh1UzCEkfolwuw2QySVUeW6SMjIzg/PnzEkAk5r2T5581cG8D937UpIEbGrjhdsYN70Rop3ge9vb2QqfT1bQVV5PwaiLC7/fjxz/+MTKZjBAguEY6nU5iWiQF0A/z+/2YmZmRwCcDpW1tbTJA3GQyYePGjejp6RHCcL3+Am/dbpbXoxJ6bxQTu1Gcj0I9oj2g/RweHsYLL7yAQqEgPfnVNpH8Xurl3r170dnZWRP/alRDvL18ULhhzZo1NaTDG+GGixcvin15N7iBBJsPAjfodDo4nU643e6b4gZ+9zvFDbzOcrk6B+PgwYPSAk/FDclkEvF4XHSXJAkVN1QqFWlL+lGSDy2VzGC9mqWioUkmk1heXsb09LS8lw4ZmQ1kufLwdLvd8jP189XvASCgg0wx9aBVKyw4KZ3D7tRqjZoHVmcIKTz8+R03CuirUh8UA1ZaTqnPjK8TLJRK1aGCFy9elMF5vFc1oMb/k6FMJ295eRn//b//d8Tjcfzn//yf4fV6ZfPS8KrOV7lchsvlQk9PT43RfasD5HYUBhDo0L5Xo6rVarFz504xaASR7ANtt9vx3HPPSfCA38UedbwWGiQ6+UC1lOz111/H8PAwfud3fgeHDx/Gt771LVy9ehXAysHOvqSVSqWmlQwZAQxA2Gw26cEJrAwS5n3w81iNo+5TvV4Ph8MBrVYLr9crwehisSiMeY1Gg3A4jAsXLkiPSrX8U2VJsn+r6tSpJXUNeefCUkXV1nD4NPXabrfDbrfLYdfR0YFgMIht27bB4XAgFovhZz/7Gb773e/i5ZdfxuOPP4677roLGo0GQ0NDcLlc8Hg8uHDhAvbs2QOXy4XZ2VlEo1H09vbC4/EgkUigtbVVAEM+n4fD4ajpHVrP5FKTBSpbuB6Mqq+rdrW+TFm1dzdKQFDH+brP50Mul4PRaITdbscTTzyBZDKJK1euCGuOZevJZBL3338/7r//fmzevBlutxs7d+7EmjVrJKjIoYgzMzNIp9M19/B+GSS/CFLPPCKTj6w3FSyqwUu2H1QrRvL5PK5evSpnYiaTERDq8/kwOzuL7du3i+NUqVQrfj75yU+ipaVFbG4oFMKaNWvw5ptvYu/evXC73ejo6IDX60V3dzf27NkjLEmu45o1a6DX63HXXXdhy5YtglXUc6KewKCes/x3PW6oT6ZxL9QHKFTHTq3+IRuGdr1cLiMWi0Gv12NwcBCf//znpWUYS9Tvu+8+DA4O4rXXXsPhw4cxOjoq19ba2io4oFAoYGRkpOZM4LNnQo37h/uO62u1WpFOp6Ui4Ha143wmdGJsNhtKpRKam5tx+PBhSTbQWSfJhCzTRCKBTCaDRCKBWCyGfD4vvexpB1UWNZmrxLZms1neyz2VTqcRDAZRKBQwNzcn1RDqecAghLovi8UinE4nPB6PnL1MDiwsLEhrmO7ubmH+1mNKBjh47SrOZLVuNptFOp1GLBYTbMrqXQ6BXVxcRCKRQDKZhEajkcpftZ8uB2Yy+KLRaGQWBpNBqVRKgikAMD4+DpPJhGQyKf36C4XCR85x+7CkgXsbuPejKA3c0MANtzNueCfC9lRAtWMFiVDqOmo0mpp5DTabTfwTzoFgsFQleen1+hoiGisISabK5XLw+XwAqjri9/vFprvdbqxevVrsoKpj9ckCdf3Uf6stmOrJvG8l9XuHtltNVhUKBRw+fBhnzpwBAAkaq/Et6nwmk4HNZsPWrVuF7AFAnk9DbizEDU1NTe8bN+zates63MDZCMQNrI59O9zg9XprcMORI0c+MNxgt9ths9lETz4I3KDOaCFuOH/+/DvCDRycTfmo4oZbXgkB1Jb3qe2JGFQneyCZTMqCqL1byVhiprZYLErvRBoYdUgyM0fq38BKhQAz6vVVB+l0GtPT0wiHw6Ik9QEw3pca7KdR5QFan/FVnwfvWQ161RviGwED/p3L5bC0tISpqSl5D1kVdPBUpgPL8/mc/H4/Tp48iWeeeaZm6Jla4lhv8PV6PQYGBqS38UdRkW+l0KDq9XoUCoX3xUJyuVxYvXo1CoWCGKDOzk5ZtyNHjuD48eMAalsWsG8mmdNkD87MzABYOXxzuRzm5+fx/e9/X/Rzfn4ehw8fFsYKdZdg3Wazwev1SuAhn89Dq9WKcWVmmYCev8tAAfWev8v3mEwmxONxzMzMYG5uTvo8szc0dfSNN97A5ORkTW++eufBZDLB4XDI93xUDeoviqgBJwBYWFgQPWtpacHAwIAEyBjYMpvNyGazOHDggATME4kEzp8/j2effRb3338/nnzySUQiEWi1Wul73tzcjHXr1qG/vx8XLlyAyWTCAw88IHMQ/H4/isWiMADUBC1QW9WmJlwZzFJFZdCoYJz/Vm0zgYHKmFHtc73zx/Ohqak60HXv3r3Q6/U4ceIEEokENm3ahHg8jmPHjiGTycDn8+Hll1/GwYMH8fLLL+ONN97A8ePH4fP5JLgYi8Wg1WoRi8UE1PNe75R2d6rDxGdORiPXGVg5V+kkGwyGmgrAUCgEv98Pjabaw5M9OQ0GA8rl6tB0vt7b24vBwUGcPn0ai4uLeOaZZ7Bp0ybkcjmcPHlSnKjh4WHs2LEDJpMJ8/PzyOfzWLNmDQBg27Zt2LFjB5xOJ2KxGNLpNNra2iT4qibM+Dd1j9hElXrHjL/D1+oBrfo+4ioGbdXKIX7/xMQEtNpqb/0tW7bgC1/4ApxOpwTI2Ff/2rVruHDhAux2O3bs2IHW1lYJNudyOQmiVCqVmgoeYgeWBqtJPnXt6NjSOVCDK7eb0HmnbWUP7OnpaZw9e1aePVuFACt6brVaa5iJQFUPyPTP5XJy5sfjcaRSKUlY5PN56HS6mkHWxIoqO1BltlKfmBCuDx7k83mk02k544HqWRwOh6V9UVdXFzo6OgSrqM4/P0tl+VJ3s9ksfD4flpaWcO3aNUxNTcl5w5lBo6OjCIfD0sqD16gGFInjyXJkcoeJBV4zsQh1UavVSiCR96Lu4TsRazRwbwP3fpSlgRsg98fnwf83cMPtLVqtVqogdDod+vv74fF4xLYBK/uDrbZtNhvK5TLm5uZw+PBhsbFkUAOQNjEM6vLziRmIKYgH+D2lUkmqWbq6ukSfea0UNaam+m7qv+mD8XWV+KuexTf7ffW1UChUEwvk/kqlUvje976H2dlZCWYTb/Gz2OYylUqhublZ2uVQnE7nHal770SIG5i4uhW4AcA7wg3qHITZ2dma8+Kd4gYAUmFUjxuIEd4KN5TL5Q8UN0xMTNw2uOFDmQlBY8i+WKoxqVSq5akcZKc6WRpNdcgny6pVhyaRSIiSA6hhktUnBPgeshhYRkNFoRNTKpWwvLwMv98vmS/1WutZuTdKUqilcOr71PerhpW/pz4v9dnUJzySySQmJiaQSqVktgWDZup1ErCrrwHV4d+FQqGm1Ye6Pupr6n11dXXB5XLVBOXuBNHpqj2Vqafqgf1eZNu2baID7EXM8t9UKiUOt2owmIRzuVwwm80yt0R1qAjiuN6zs7PCgCgUCvjRj36E0dFRJBIJALUta5h8MhqNWF5eRigUkr55bE+m6r66P+s/K5vNCujkNbIKSWUiEBhoNBosLCxIxY7FYrnusCfoJID9KA3V+UUUte8tZWFhQfQpEolgcXER7e3tKJVKmJ6exsjICMbHx3H69GlEo1H86q/+Kr74xS/i6aefxqOPPgqHw4GjR49i+/btePLJJ1Eul9Hb24uhoSEcPHgQsVgM69evx5UrVzA3N4fBwUG0trYKe62trU0GmqrOGLASaCDYvREQ5f2oeqr+fr3dVhlW9cKzgNV45XJ1yGkoFEI8HkdfXx9+4zd+Ay0tLSgUChgYGMDWrVtx1113wel0yrBCJmrYK1errfZvj0QiAoC0Wq0EvUZHR+Ua7hQbq7IV1cSR2WyuCZYCK+wkPhuWxlJmZmZQLBZhMplkHXQ6HTZt2iQDI00mE/bv349SqYTjx49jbGwMP/rRj3D8+HE8+eST2Lp1K2KxGJaXl1GpVHtzdnR0YHBwEBaLBVNTU/B6vdi+fbsMXoxEIkKQIA4Bbuwc1xMPGABQ9VP9XVWPb1QVxPfU63v9dyaTSWHwmEwmbN++HeVyGa+88go0Gg02b96MkZERHDx4EPl8HuvWrYPRaMTc3BxGR0dhMBjQ29srQz7ZG3Vubg7xeFyuhzhCxS6Vysr8AO4rtp4gSeJ2DfRy36s94Q0GA44cOSJ9X1Xdp8PEtWQSgT9nFRZnf6kEFJ7Zer0euVwOoVBIenczAcJAj9VqhdlsxsLCAoLBYA2mUZmpQJWVmMlkJDHKnvhkRfr9frH3rKylfeP9qEL7ynsqFotIpVJYXFyUJIfBYEAwGBTsnkqlcOrUKej1eumDTTGZTKKT6XS6JpAHVIMJS0tLMJvN8Hg8guUYUAkEAhKkYUJHr9cjm83WOJZ3kjRwbwP3fpSlgRsauOF2xg1vJyTnAlU7NjAwUBO/YfLAZDJJ8NZsNqNUKuHNN9+UCsH6uFEymZTnzmfOyge+l2Th+vZ1JAW0trbCYrHUkBvq/Zn6uBaFCQhVz2+kr2qMrD6Oxt8tFArw+XyShOHv8brm5+dx6NAh5HI5wRBs80UfMZ/Pw+PxIBqNChbjd5FQ0pAV0el0cLvdHxhu2Lp1KwC8L9yQyWRqcAOAd40b1IqeetzAquIb4Qbi2/p47zvBDbzWG+GGbDZ72+CGW0q15KanE0Ylqj8QmZkk0GdAiQuRy+Xg9XploBwV0GQywWq1CluKxpaLx89jD0g6TgDEQPN7CAIymQyWl5eleqDeoaln1KoZWqPRWDMouv6AVEHGjZSi3oiq4IoZxbm5ORkmxB6QzEirjF7eI581A4+RSASVSgVut/u67zYYDMKUq0+gOJ1OdHR0YGZmRr7vdhf2tGMQgH2b38/n7d+/X4KO6XRa+nkyK8rDj8kxtV1DJBJBJpMRAFoqlaR/HQC0t7djYWEB+XwebrcbyWRSDthz587hypUrNf3+2cKAybNEIoFAIIB0Oi1JKjIl1XkqNKL8HBVsFAoFRKNRxGIxZDKZmhJpGu5KpYJIJCJ7lexGzntxOBwIBoNijFlm19raikuXLn2kDeovgjAZy3Url8tSCaG265ibm0Nvby8efvhhSVzabDa0tbUJOGtubkY0GsX69etFV7dt24ZMJoOOjg788Ic/FMfssccew9atW3HhwgU8+eSTuOeee6DRaKTE2m63IxgMyjAx4Ppy3XrQWp9oVXWUtr0epKqVePUJZjWRQXYD92YoFMKqVavwyCOPwGKx4MSJE+JE7tmzRwZMOxwOWCwWJBIJuXeCX9r0paUlWCwWAShkd/LzbgTQb0dhYIfPG6iuC1mIasCyfm1VYAesJNLooPb390sf+XQ6DaPRCJ/Ph76+PuzevVsCjel0GpcvX0a5XMYnPvEJ2O12BAIBGAwGJBIJRKNRdHV1Yfv27Th8+DB6e3uxZ88evPbaaxJMsFqtwma/0bqp134jR0plKdazIVWGC22v+jc/Tw281DtyMzMzSKVS6OjowJNPPgm32y0VSJs3b4bX68Xrr78Og8GAhYUFzM3NwWg0ClOHgZPW1lZEIhHBWxqNBtPT0zV4gu0wCZ6JX/gMyIoEVjDKjRiet4OoeJF/crkczpw5Iw5VJpPB2rVrEY/HEYlE0NbWJj1nVVYvmXpcW6fTKfMf9uzZg5MnTwomjkQiMJvNElDTaDRyzrK6DagG6Nnv22w2SwUF9Y74m3PX2JaHv59KpVAul2G1WtHS0lJzr1xPnv18HsTpvLdYLAaDwQCn04lQKAS32w2j0SifbbFYMDY2hsXFRRQKBaTTaWQyGcHvbAOlDppVB3zTjnd2dsLr9WJ5eVnwbktLCxYXF2uwdjweR2dnpzhwdGrvFGng3gbu/ahLAzc0cMPtjBveTtgujP/u6ekBsNKSRY250f5oNBpEo1GcPHlS7CCAGluo7ieV2KUG7/k3KyXUM8JiscjZUa/PN9M5NZ6mJm3VhG/9+1Spj7Hx9zk71W63Ix6PSys2trcplUo4ffo0Pvaxj8mQbaPRWBO0JSFiw4YNuHTpUs01scqEMcU7XYgb1CTB+8UN99xzj6wX288TNzDwTx/6w8QNTM69HW5Q48as0nunuIGJLhU3FIvF2w433PJ+DzQ06pwGGhIeoOVyWZIQKrvBZrNJqfr8/LwYNzVrRMNJhhZLsVWg0dTUhGw2K5lfAHKApVKpGgNbKBSwsLCARCIhzppqlNW/61m3VD6W9arZV8qNMsJ8/WbZYvYHjkQiOH/+vPTKZdKDB3V9CSM/g4pMpTeZTOju7q75Xj4PljHVB/+amprQ3d0tAONOCJBZLBaYTCYZGPd+DCoA6a8fj8drejlqtdVWABx4S9YBWQwAZGg6D9FSqYTBwUFkMhkpTZ+enhaDywOApZTxeBznzp1DT0+PlMnqdDoxXAQRHo8HXV1dcLvdNYEIHuzUE+5fgh0C+EQigdnZWcTjcSwvL6NUKknbHYvFglgsBrfbXZOVTiQS6O7ulqQjB3Gqw+QKhQJsNttH3qD+IghtBSWfzyMWi8meZlBHo9HA6/Uil8thbm4OiUQCLS0t0Ol0+OEPfwitVosHH3wQ/f39eP3117GwsIAtW7ZAq9Wiv78f/f39+PznP4/Tp09jaGgIU1NT2L9/P1566SUMDw9j69atci50dHRgfn4e8/PzGBgYEHsNrLBhVCeqPghQnximqA4Vhb/Pcs16Ue06GbO5XA5OpxOPP/44zGYzDh8+jFAoBJPJhB07dkCr1eIb3/gGEomEOJVdXV3o7OxELBarscdutxvxeFyCZhqNBoFAAMvLy9KDVE3U387CtVJbt9CmaDQaOX8ZdCAQY0m4ehYzmMB1u3jxItxuN3p7ezE9PS2B20qlgt7eXuzcuVOCYBzslclk8OlPf1ps1/PPP4+XXnoJmzZtwq5du9DU1IRTp07hgQcewLZt2wAAXq9XdDeVStWwGut1s96xu9kzUbHRjQK76rPj/fPnKqseqAYWlpaW0N7eLoGEyclJGAwGaQ1RKlWHTLa0tEgAh7pPYZWUzWaTdcjn85iYmMCOHTtq9p/aC1Z12lih6XK5as4R1fm9nYQVBQy+63Q6zM3NYXZ2VnqJVyoVaaXAIaDU8Ww2C5vNJue5RlMl7BgMBqTTacF2fr8fRqMRnZ2dmJ6eFizX3NyMcDgsSQnqBMkmx48fR39/v+wTFe/y7KfOUpcrlUpNib1erxe9UasbbsSErG/9RKdRp6sO9XM4HNDpdAgEAlKpsLy8jJdffln0kc+ElWV07PL5vAzGtlgsMuCXQ6aZXOB1ZrNZzM/PC27n808kEvJ5KhnpTpEG7m3g3o+6NHDDjZ9JAzfc/qLRaESP6TvVEwCAlZa1lUpF2Nujo6Oio1x3xtLUgKn6Xfw/95i694AVIhiHAqufoxLd1IQaP1fFA4w7aTQrrWjVe+Hf9Yk59VrVeBrnRgFVH1ed/cRzPRAI4Pz587jnnnvkefHsUZnoq1atwsaNGxEMBmuuw263IxwO31H44GbC+Ya0i+8XN3i93utwg8fjkXMxGo2KLXm3uIFJ0FuBG/gHuB438DPeK27QaDS3HW645ZUQNDRkV6lGjQ+oVKoO61B/jwtNhhT7ZxNksD8tjQEzXlxotSSTv6PRaOBwOBCNRmVAIF9XM7Fzc3M4ffo0HnvssZr2Ubw29XAkUK0HqCo7QTXcN8ri8rvrnws3GJMQIyMjGB4elqEk2WxWHCV+L3ug3SggBwDLy8vo6uqC0+m8ztADqCnRoxHhPXd0dAjD9xdBud+vUC/fb0aXMjg4KAcdgTH7trH0b/v27aKvNDKsgmEwlIZ2bGzsOrYL9UhdO77n5ZdfRk9PD6xWK/r6+gQQqtfU3d0Nk8kkgWgANYPc1ENeBTkMapBBv7i4iFAoJHuiVCohkUhAo9EgGAzW7JlCoQC/348NGzZI6a/L5ZJyZX4nn1VD3p/UDzyOxWKIRCKSoOzt7ZVgzvT0NBYXF1EsFmEwGLB9+3aMjIxIy4/XXnsNgUAA9913H06fPg2fz4dYLIYLFy6gq6sLjz32GB588EGsWrUKly9fRktLC/bs2YMjR45gcHBQ2LfBYBBtbW2YmprCPffcI/uBwaH6RK5q32hryXYAVgCwaovppKklmSp4VAP/3Hf8HL1ej97eXpTLZbz66quYn59HT08Pdu7cCbfbjYMHD8LtdqO1tVX2Lc8kt9uNYDCIeDwOs9lcA94JeMj8DQQCAh4+CJvzURf1nARQ0+6FLBeeSXSsgZWkEnUhn88jHA4LMWFpaQmVSnWA5N69e/H4448jFovJMPSxsTH8+Mc/lhZaPp8P0WgUa9euFUDrcDjwyCOP4JVXXsHly5exevVqPPbYYzhy5AhisRg2bdok2Ibtdrh+vG71Wnm/KhPxRskmFSepTpx6njO4ogLeevYjX0ulUnA4HNi/fz/sdjtOnDiBsbExrF27Fv39/QiFQjh06BASiQTi8Tg8Hg/8fr9cBxn3DNyWy2Xo9XrYbDapzlQTesRgvNf6QFGlUpFkpspAvx1FxZVA9dmMjIxIoJv6m0gkcM899+C5556T9/HMz+fzcLlciEajKJVK6OrqQjabFaYX+45bLBaZz2C1WsVRY8CMdpT6WigUMDQ0hGPHjkkf9M7OTgArQQE1OMcKOjXYUSgU4HQ6BU+roga4+H/qg/q3WgXG6/B4PEin09BoNBgdHZVZPMTjnCFEHaXjlc/nsWHDBly9elXumUM7fT4fTp48KUGcQqEg+5TXwcQGP5PM/dtVP28kDdzbwL0fdWnghgZuuJ1xw1uJwWAQ5rXZbMbatWvlbFbtk2q/DAYD8vk8Tp06JSRdNZGjztxRiaz1RALGmYBa3VKTGSRWqHp4s8QXv69+j9b7e/X6qV6TqgP83nw+j9HRUWlbqQaIVfvf1NSEkZERbN++Xe7PaDRKTI12WKfTYfv27bh8+TJSqZTsP1abNKohIPv8g0hAAMD69etvGW4AVjrSvF/cwJZPKm5QYw/83LfDDcFg8F3jBibFfpFxwy1NQvBhUIFulMHnQ6cDoNfrxQmgYlUqFWHgq8wGlpOpjpJqRJlRZVCeZeUc0EODxOvg9eZyOZw9exZ33303bDabGCfV6PE1ghdm//mdqrNW/zxUw63+n/8mk4w9dePxOIaHh3HixAlks1m55vqp8zycefioU9UZoAsEAnj88cfR2toKrVYrPQDVz1APJN6HVquFy+WC3W6XFiO3u3Ao0QfRfkqj0WDjxo2yJgTNdHyKxSK8Xq+UhxmNRimzIrOaB3U9ExxY0aF6p0x9LRqN4oc//CGam5uRSqWwbt06NDc3o1KpSKsd6olWq5Wec/X6CawA5FKp2q4hm81icXERBw8eRDAYxPDwsCQD64PFfB78u1Ao4MqVK7j77rsRCoUku7uwsCA6yIB0Qz4YUffv9PS0BLNMJhNmZ2eRzWbhcDhkmCdQ1T+fz4eRkRE5KHO5HC5duoTFxUXs27cPAwMDOHnypCQ5Wa7e39+Pjo4OlMtlrFq1CmvWrEEgEIDT6UQikZAZFGrVWiqVqml9oAJaggb+rD6JqyYbWB5Km1vv0FGX6bxSN7lH+b5sNotXX30V0WgUvb29SKfTaG5uxtmzZ3H06NGaAbBqRR5Z0Pz+yclJef5k3hBA+Xw+9Pf31yS7b2fhM2EgEKgOx1MZcfWJIp5vqk0i8yWfz0ufTA7uSqfT+OEPf4h8Pg+z2YzPfOYzOH/+PKamprCwsIC7774bW7ZswUsvvYSxsTHRuW3btmHXrl344he/iOPHj+PYsWN4/PHHsXbtWhw9ehSf+tSnBGxS30dHR7F69WppPcJ1Vh1p1fmrxwkqvqi/d37OjXCI+j7iINXZ3LlzJ0wmE44fP46pqSns3r0bJpMJzc3N+P73v49QKASgClxtNpuUmUejUcTjcWg0Gtx1111YWloSNhD7CgeDQaRSKTidTtln3FM8A4hBuHc5uE7FercjpiA7EKgmeycnJ2XWAR0Lg8GA2dlZlEolbNu2DSdOnJDnRhzGNkmlUrWNi91uh9lsRjKZrAkolctltLS0yLlLWxWPx9HT04NwOCzfzSD8qVOncPfdd0vQmc4SnTNev4ojVaJKc3OzYAcmAvgdql7SWQRWsKpGU60CA6rMLw6IZHvASCSCF198seb8J9an3nNQ4NTUFEwmE6LRqJS1a7Va/P7v/z56e3vxL//lv6zB+CzrZzCSe4vDLNkyKJlMIhwOfzgK8xGQBu5t4N6PujRwQwM33M644a2ElYNA1VZ3dXXVrKuahKCUSiXMz8/j4sWL1+kUUNUfm82GZDJZYzvr40v8m/aLGEYlXpEccTO7VR+bU/WZiaj6+1GlPq5WHzurVCoIh8O4du0aMpmM9PnnecZkIZ9LKBSS2bMkOjD+phKV29vb0dvbi8XFxZrzwGQyNZIQqGLdZDIplVTvR26GGxjwf6+4QdUVNa6r4gbaoGg0ih/84AdvixuYsHo73EAbdjPcwDjFnYYbPpR2TPVtkFQDwp+zjxWztuzLxrJzq9VaU3LCITFkrjCjTodCLV2kw0OD53A4kEgkarKe9QGsUCiES5cuobOzU/rLqorAvwkmaIRY9kYHkokONSvG7+FnUNnobPIeadSvXr2Ko0ePIhQKyXNk1hmAZPwAoLm5GTpdtX8ay6N4bQsLCygWi2hra5PBhPwOikajkZZS9UEwq9UKp9N53b3crvJBlKJTDAYDOjs7awKjDodDHPVsNou2tjY8//zzspbBYLBmIKTKDlGTYCqLQM3GNjc3Y3l5uYb1MDMzg9dff10MJsuM2TuSIJS6rQIEJtrU13mwLy4u4uWXX5aEWSQSAVBbhlkvKmiemJjA5ORkDUCiM8znZbfb70jQ+UGLerhVKhWMj48DAIxGI5LJJFKplDBLW1pa4PP55ACfmZmBwWAQpgEDT8vLy3j11VfR1dUFm82GsbExbN26FeVyGUeOHIHD4cBdd90lg0G3bdsm5ZTNzc3wer0SvL98+TLuuece0UOycKnrKoOrXheoa6pzxYOZQQbuBdUxq6+O4B++v1Qq4dy5c1haWoJGUy3D3bFjB1KpFF555RUkk0lJopdKJbjdbsRiMSnx5D5mMNFisSCdTsNiscBoNAp7cnR0FPv377/lOvBREibtgSqQrR+0ReHasPenKnNzc7IGTqdTgr9LS0vCJCmXy7Db7bh8+TLm5+dFj19//XWEQiEcOHAAyWQSb775JrRaLS5cuIBYLIYHH3wQDz/8MMbGxhAOh7F161b4/X5EIhFYLBYEg0Fcu3YN7e3tMmxRxTNqEFd1/tVEmOpQq3+IXSjq3lXZYdRlNThhNpuh0WiE9X7o0CHZ25VKBRs3bsSLL76ISqU6TBAA/H4//H5/TbCGeOrChQtS3cOSYgYTmVCsvx/uPT4Hgn2r1QqbzYZIJHJbsxrpDBgMBiwtLSEejwvrX+0vq9Vqsbi4CJ/PJ8lfFXPS4dfr9fjkJz+JYrGIF154QfAmbRVQ22oUgFRa9fT0YMuWLTh58iTC4TDa29ulCi6ZTNa09VQdM+oR14kYgdi8vb0dAASzkyW2tLQk+1RtPafqBSt9dTodrFartDdIpVLQ6XS4dOkSxsfHBXOoThp1x2q14oEHHhC8xCGDJB39wz/8A5qbm6Xqjvqcy+XgcDhgMBgQCoWkLRPb5/EMVJMnd4I0cG8D9/4iSAM3NHDD7YobbiZMFlAf3G63nL8UtQqiUqlItfXQ0JC0euEakPzL59vc3CxVK/RdVD9J1UU1aaCuezAYRDqdhsvlum4/3iixwaC1mnBS36smKOrt4I0SEKyC8Pl8suep6/ybwe1isSizSsxmsyRVOBtCTQg2NTVh/fr1uHjxorDUgWryMxqN3lF6eCP5oCoggJvjBnaeeTvcQGLfjXADdQVYsYUqblBt0ezs7HvGDUxOqCTJBm64Xm55EkI1LDcK5DMJwQOlWCzWVCcA1YM5kUhg9erV8Hg8iMViWF5ehtPpRDKZlCwmM2M8tOhUMMnB9kUMsKu9B00mkzDDKMeOHcPmzZuFmaouplqqRbaYOoyEwSi15Fu9ZxU80+Cz8oEbLZPJYGpqCsePH0cikZD3UbGtVivi8XgNuPJ4PEgmkzAajQAg5ZCFQgFzc3Nob28XxggBh9oKS81E169ZU1OTlMDfCa1CPsh75LBadfiMw+GQrGq5XMbw8DBmZmZqKoPUgIBqQDUajQQNVONEKRQKEthUE3GVSgWHDh1CPp/HunXrkEwmhV3ChBQBO/clgwrU40KhAKPRKCyidDqNY8eOYWZmBnNzc5ibm6vZW9wj9aLqlsfjQTAYhMfjgUZTHfJut9vlegqFAjwej1xHQ96f0P7kcjnMzs6iUqkOCGW5NNuu8fDWarVobm5GPB4Xu0pAxyqpdDqNiYkJaDQaJJNJXL58GXv27EEikUCxWMSJEyfQ3d2NDRs2wGKxoKOjAxpNlWGydu1aTE5OAgAmJiawf/9+ObzJtKm3n/yZujeo5/U2lvfA4J/6Hp49DHjwDweoFgoFXL58GSMjIwJSuaeOHDkCnU6Hvr4+JBIJKYkku9dqtQKAJBzK5TIcDofsec434n1NTk4iFovBYrF8qPrw8xI1oESmldfrBbDCAqTdIhlArTTkGo6OjkKjqbYACIfDMnPD4XDIYDqtVotYLFbDimJl5cjICKamprBp0yZs2rQJPp8PdrsdJpMJBw8eRE9PDzZu3CjO3V133YVYLIaOjg40NTXBarVCq9VKb08OUGTZPNtEqPa7PuDL53Gj4JoaQFBfo87yZ6qzper32bNn4fP50N3dje7ubgwMDODKlSs4dOgQisWi4AUCV4JZ1cnL5XI1gz/dbrc4X9PT01izZk3NWaTVaiUQoe5XtnbjIGKVNXy7CckkqVRKkhF0dHgmso0I+xeXSiXs27cP4XAYy8vLEjigY1MqlfBHf/RH0Gg0OH78uCQ7iUdpb1nRajAY8LGPfQxXrlyRc1mv18uz12g0ePPNN7Fhwwb5fjpybLunlqvTCUsmkxJcyufzSKVSsg+MRqO0r2NvXuopiTtshcLWfzabDfPz81KlUCqVcPbsWQBVPEM2HPdsU1OTEGieffZZeT5Go1GSCcTR4XAYu3btgtPpxOHDh6HVamGz2eQaVEeRwQd1+K3NZvvQdObnLQ3c28C9H3Vp4IYGbridccPNhMkhSltbm3T24PNTkwI8E7PZrMw+YayIZKhKpSIkB6fTKTEr/oz2VrW5XBdiDH5eqVTC7OwsFhcX0dHRITpXn1BQ44AqLlDfD6y0cLxRAgKo1XO+N5FI4PLlyzVkA7WCTSVTUGfZTkyNddHmq4m6np4eGWLM6zYajQ37jA8HN5AU83a4QU3Uvh/cUC6X3zFuoI17P7gBWGmFejMpl8s3xQ1sHfqLhBtu6UQfPlRWAtzosGB23Gw2S3811VCpxjWZTGJ+fl6MRzqdxqpVq+BwOJDL5WoGTNntdjnQ4/F4TR83dQgJg/9cSNWABwIBvPDCCwgEAjc83BnUUo0cg/h0tKj86XQamUxGmF9s4ZTL5ZBOp+UaeQBEIhFMTEzg5MmT4oTyepnFVbPRLpcLAwMD8tyZyeX3TU5OIplMoq+vrybRwJL1+uwz70cVnU4Hh8NRA+Ya8s7EZrNJ/0+r1SplfwSnACQpxOfK5JZ6cPKgVoOs9fuKa1cul9HZ2QmDwYDe3t4aQHrs2DEcPHgQfr9fPp9Gk7rBQHOlUmWol8tlxONxxONxLC0tYXh4GPl8HhcvXsSZM2cwOzuLoaGhmp6Q/BuA7As1iMvv6OzshMlkqgEBFotFDhygCnQJehvy3kXd7z6fD4FAQJwYMnfJhmKZNYMzBG9ms7kmeM7DtVKpMlFoZ8fGxqT/67lz5/CDH/wAX//616VnN9tg9PT0YP369Whra4PdbpfrUJksaksmAg5VbpToVm1ZfbKC7+F5oiaUVSDCAJjFYoFWq4XZbMbS0hL++Z//GT6fD9lsFktLSzCbzXC5XNKehEOx2P+dyd5QKAS/3y9BSYIWNZjH/Xa7C+0aRaPRoK+vr6a3pRpoAFacFf6cCXYASKVSElQwm81IJBJiQxjsTaVSAhqZJKJdnp6extDQEIaHh6VENpVKYWpqCseOHcPS0hLK5TK8Xi9WrVol1+v1elEqVQcwDg0NSeBDDSDU3yv1+kZnrXrv6rMiPlGZuWorA9pyNUhz6dIljIyMIJ1OIxwOo7u7G4VCAceOHYPH40Fzc7Ps/Wg0Ki0fXS6XsDK1Wi0sFosMYKtUKuKIlUolcfpUfMRrUsv4ufd0Oh3a2trkWrn2t5tQD8jQKpfL0i4IgDBDE4mEvLenpwe//Mu/jL/6q7/C3/3d3+F//a//hf/4H/8jfu/3fg8ejwcvvvgihoaGcN9992F0dFSG19ntdgAQfMFEhN/vRywWw6OPPopIJIJoNCrYk/jv2rVrmJycFIIOMbLa8pQkHtp7n88Hr9crdpat68gSI3Y3m801+Ji6USwW4XK54HQ6YTQaMTs7K4ywUqmEo0ePYmxsrKb9BO0C9Q6ABA/VpEM0GhUWrdFolCQwq3/L5TJCoZDYWdXJ5Z4izmWFW0PevTRwbwP33gpp4IYGbridccPNhElSoGrv2tvba0ijWm21PRCr96hH6nwoPkvGvVwulzzLZDJZY5dVe0s9ZPubSqUiVRP0ZdiSZ25uTvxDYCWwquozP1et2lH1QI0Dqj4dRQ0yEwsUCgXMzMxgdnZWPpvCc6X+HOFMQjWexbikev1Atfd+d3d3jQ+trklDPhi5GW4gwQT46OEGNfH3drjh7NmzN8QN/D5ghazDzycOfSvcQKIj8IuDG275TIj6jJMqBGQmkwler1cMIw0FhYoUCAQkeWCz2ZDNZhEOh7F+/XrptcvWTwxwsS1SvUFhhpeBfQBifAlkdDodLl68iEqlgqeeegqrVq26joHA/l4MZvFwZIUHS9TVA0EFqkwqUHHy+TwikQjGx8dx5coVLC4uSi9ElvcYDAa0trZicXFRnD0Gypj1CofDaGpqgslkgs/nw/T0NLZs2SIJG9W5YkmcuknpgKkZbAASiANwQxDUkBsLgZ5Go5G2AzRgxWIRqVQK/f39mJiYqMnGUqeAasa93sFR+ypqNBq43W5EIhFZs2QyiXw+Ly0GeODn83n86Ec/QiaTwZe+9CVs3LhRdIJluASH1GWWz+p0Ovh8PjQ1NWFiYgKvvPIK5ufnMTk5WVNaqV4n9w0/h/1BC4UCmpqa0Nvbi97eXgQCAQlmsGUY2eJkWJJt05D3Jqym4r+5xs3NzUin0wCApaUlZLNZTExMoKurC+l0uqbUj2XYtF2syGISlZ/JodZkqaXTaSwvL+N73/sedu7ciU984hOicz09PcJIczgcNcncekCqJqlVEKH+nzZLZX3RTqvnCwNO3Gs8G4aGhuByufDTn/4UJpMJ/f39aGpqwoULF4RxY7FYZJZGLBZDOp2W72dAj8+C5yCHyEWj0Zpy0WKxCLPZLAmgO8G+quvJc1Mtw60XVSe4pgsLC/D7/WLv9Ho9mpub4XA4EI/H4XK5JAhAHSWbjmtiNpsRDodRqVRkMHgymcTQ0BCsVitGR0eh1+tx/vx5rFu3Dvfddx9cLpew/LZt24YrV66gu7tbWH5qCxreH7BCYLiRDvN6bpRgU4MEqtPF96szsYxGo9hXv98Pp9MJu90Oi8WCUCiE8+fPI5PJyOwXzmBRATyfB7EFcY7b7UY+n68pQ45GoxJIJzjmWcM15r3RWWhpaanpuXs7ivr8aGM4cBlYCRB1dnbKcGmLxYKvfvWrCAaDoutNTU1Yu3at2Kaf/exn+NKXvoTOzk7MzMzIIGEGB9TAeaVSwYkTJzA6OlpTPdDe3g6r1Yr5+XmkUimcPXsWDz/8MJxOJ7LZLDKZjFQLAFUdtNvtSKVSWFhYgM1mQ0tLi9wDq7fU4Bb/zwoGYhAmZGOxGFKplHwGkyenTp3C//2//1fw7MaNGzEyMiL3w2Q330+soiasuWdKpRJMJhOOHDkCr9crLUrVio9kMnmdXVGxvOo/NOSdSwP3NnDvrZAGbmjghtsZN9xMSJQFqjawra2tJuGv0+mkRaOa0CmVVgbdqvYum83CaDTCYrEgHo+jWCxKVUupVG17ztk9ajUC11aj0Yg/Qx0ql6uzA9kSXA2i1ifJeP6yklONNanrW5+kUted8a90Oo1QKIQ333wT0WgUVqtV/FE1icFrVFtIJRKJ64LUJPJSX4kv+vv7ce7cOcFRfAaNuRAfnLwVbigUCu8IN1Av3w1uSCQSHwhuoD7cCDe8+uqrmJuba+CG/798KO2YKHQ0VMNiMBjgcDiwevXqmvkMalsN9g9ksEhlw4bDYbjdbuzevRvz8/MyZJVOjl6vr5mNoAaqyNBipYbFYpEKBV4LAFy5cgXBYBAPPPAABgcH5fdoOPk9PCRprAl6+Pm8Z6AKAjhghYYxnU5jdnYWly9fxtzcnBzuDJoxwdLa2irMY7YXsdvtGBwcRCAQwPDwMDQajWy2ZDKJzs5OdHd3Q6PRyNBUfh43tnoA8NrVw54Aqb5dVkPeXjweD8rlslT78HkzaGk0GtHa2orx8XHRfzL5mBCiTnMtrFYrPvWpT+HIkSNSBcSqGZPJhNbWVkxPTwtIZyBk7969OH78OHK5HA4dOoSxsTF8+tOfxn333Qev1yvghNdFgBOLxWQoE4cJv/nmm5icnITP5xOjTX1VgQMP/XpgBFTtQjablVJovl+n08Fut4tDqZZrNuS9ixoQvxEDJZPJCJPJZrNhy5YtGBwchM/nw8zMDOx2u1SHmc1mWCyWmjWnPens7ITNZpMDkf236ZiUy2WcPn0aBw4cAFDV65aWFuklqoJWCnWRoiZ3+f/6pAX1TLVtKuBV752/e+7cOZw5cwaZTAbJZBImkwmpVArhcFieDUvmk8mkMBCY8ObZoV4LWRsOhwMdHR0YGhqquR69Xg+n0wmHwwEA0if4dhbVySaIam1tFfujJryZHAcgZAQA4jzRkeUgycXFRWSzWdhsNjgcDmQyGXE2jEYjvF4vcrkcMpmMlOLq9fqafvy0ay0tLcjlclhaWkIymcTIyAgOHDiAPXv2AKgm5++66y5pLWMwGCSoWp9Aq99zamCk3vGizSNmUd+nvkcNAgCQfrivvPIKWltbkUgksLS0JAGCdDotAWQOoeWZwzlbajsa7qNEIlETsOX9MEirtu2pv3/VPpRKJXR0dNScA7ejqA4vZygQlzE5WqlUsH37dvj9fpkBpjIWgeo6Ly8vIx6P4/7778e//tf/GktLS/jN3/xNRKNRTE1N4eTJk6IHajsLYu5IJCIVxx6PB2azGXNzcxKIOnr0KI4cOYKPfexjgpcXFxdht9slQU2dYMsRMrrV4L+6nmrQolAoSKKing3J2QvlchkXLlzAt771LSQSCem3HA6HpWKBg2RbW1vhcrlkGCGxdDqdFszNveNwOBCNRsVpo16z37/aLor+htVqlef/QQxbvBOlgXsbuPdWSAM3NHDD7YwbbiYq+9lsNsugXL7G+JiqLwCkJVM9adVqtYot5owItv4mgZe6pcbfaIfpG7GVJG337OwsLl26hPvuu6+milBNkql+GYPDahCWP7uRqEQBdvuIxWK4dOkSpqenpX0i56sygM1npQaYNZpq5SeTN8CKHjLArNr1zs5OmM1mIewBtRUXDXn/ciPcAKAGN7S1tdXgBjVRVC6XpRJHxQ1PPfUUXn/99dsCNyQSidsCN3woSQg1EEThw2GCwOv1yrBOoLqprVYrenp64HA4MDc3B7/fLw+b5e1abbWfYjKZrMmmk9lLoKEyn3hdTU1NUlHBg5Jtm4CVkqxisQifz4cf//jH6OrqQldXFzo7O6X1BnvnUfGpQCrzC1jJ5LNCQ62SCIVCuHLlCiYnJ7G8vFyTnOCBotFUy4+cTidGR0cFiHk8HuzcuRMGgwHj4+PI5XKw2Wzyu9u2bav5vFQqhUwmA6vVesMgnwrwVKOtMhPuRBbCexWdTod9+/ahXC7LgESz2SwOcKlUQm9vLxYXF3H27FlxiHO5nIAxdf8QSDgcDnzxi1+Ey+XC3//938vP+LlWq1UMGRmSHLpGHS2VSpicnMRf//VfY3p6Gvfffz+6urqQy+Vgt9vhcrkQCoWQTCaxtLSEqakp+Hw+DA8PY3l5GeFwuIb9rRpWGk7uIb1eX8NeVGfBBINBbNmyBeVyuYZRwD2tDs5syPsTdc8TeDH5ylLnUqkkNm5kZESqGbZu3YorV65Ao6myYm02G5xOJxYXFxEMBmGxWMQGAtUAPVvRZbNZzM7OQqtdqVRbs2YNDhw4ICCZg+8JeFUWl5okVW256nTy/lQbVu+oEaiodp7vKxQKuHr1Kk6fPo1cLifnilarRTKZhNPphNVqRSwWAwBh2tCWt7S0IJ1OS8s8Jh8IsIvFIkKhEMrlav/VdDotIL5SqcBisdxRrT+4Jkx4dXR0wGAw1LCv1TVnqxfV8QJWkj1k2MZiMbEXiUQCe/bswcTEBILBIICq8+/z+VAul4WtRb00Go3IZrMwmUxobm6WihaXy4W+vj6YzWZpsTg3N4e1a9fKNezZs0eSVCrhQj3DgdqElwo+6/VcTa7x52owQmWf8T1nzpzBhQsXYDAYMDk5ifb29prACfcL29cYjUZJPHI2FoPKdAR4nnR1dWFkZOQ6DOB2u+F0OmtsNK9J3as8G4rFIjweT80+/Kj3Ln0vUi6Xa+bnAKhhBgLV+37++edresqqCQqLxSLOtE6nw/nz5/HMM88glUqhtbUVgUAA+/fvx9NPP43FxUVcu3YNgUBA9Jb6zLPWYrEgFovJDCAyYTOZDL797W/DZrNhx44dUt1Ah1t14t1ut5TFM+BPvVd1OBaLIZvNwm63i75WKtVWfbFYTOZN0L6OjY3hG9/4BqLRqDAkbTYbwuEwACASiQhbNxaLyfwLkmpMJhO2bt2KkZERNDU1iTNGvwGAzDsCVpilrBDRaFZalPIcJKGnIe9OGri3gXtvlTRwQwM33M644WaiVuRZLBZpC8Y1Vtsw1ZOs1LMQWIn1qEFe6jAAYV6rxC76igzSk4BWT1rN5XI4fvw4du/eLXuPwv3Gikj+fn2b75v9TZ0olUqSgEgmk7h48SKOHj0q+sj7oD6xpQ/1hdgIqOqQ2+1GuVxGMpmU71Cr9vj9bH3JxBzf15APRm6GG9TONb29vVhYWKjBDTxj1aQqUIsbvvSlL8Htdv9ccEMgEJAWoG+FG9Sh2jfDDaFQ6LbBDR9aEoLGi4tJ4YFrt9uFWcpFYP/W8fFxSSbQEJIV5fF4kM/ncfToUfl5pVIRIMDkg7rIvCa2GFGz7bxWh8MhJTb83VQqhfHxcSwsLKCnpwfd3d2SkFAH15H5y8SEOv+BDh/La8hiGxkZkXYePBxU8MH+fUCVwUGWls1mw7Zt22AymXDy5EkEAgE0NTXVZAz5Ofxc9ilraWkB8PZ9+NSgJQ8N9bBoyFuLy+XCqlWrAEB0WqfTiYGh437w4EEkk0kAK+BTp9PB6XQik8kgHo8LgNRoNPD7/fiVX/kVCQ5wvVnmPjw8DKAKVtj3X6vVYn5+XhgN3BvJZBLLy8tShUOQ4ff7YTabcfToUQSDQaRSKWSzWWEjAisHNbAyCJ3XpNPp0NzcLC0XGFSuVCoC0rVaLRYWFqDXV4dl8lDhe1S2ZaMtwgcj3NtkqPJQDIVCwk5kopOB9tHRUbhcLiQSCWi1Wsnum81m6anLoBEATE9Po1AowO12S7L53nvvxejoKOLxOHp6evCJT3xCKst8Ph/Gx8fR29uLrq4u+TzVcSSw5p6pt11q9l9lVvI9/B2VhcvXisUi5ubm8MYbb6BQKEiCpVQqiV3NZrPCNOBnMGDodruvYwzRqQSqZx0dN7avam5uhtVqlZJni8VynfNwO4vqHGezWfT398v6qI4PzzCur/psiCdYheLxeCQouWrVKrS1tUn57pYtWwQQct6J0+lEPp/H9PS0gE+9Xo+Ojg54PB7EYjHk83k4HA4sLS1Jwiwej2NiYgJ9fX3irNE+qY6/6kirZ2x9Iq3+XoEVB0rdAyrrSk2gcY+eP39egrzsh+/z+cRppc1noiyTyUCv18NutyMajUKjqbYGM5lMAmRLpepw5UgkIqx4tdSXw9qI8wDIWaQGCVQGvNvtFqbZLwJYfi/CVkDZbFbOelbakozC1nMsAWcbT+4BOtNkZ2UyGUnmVioV+P1+jI6O4r/9t/+GgYEBLC0t4W//9m/x3e9+V2wMex7zDPV6vdBqtZiYmBByCwBMTk7iq1/9Kp588kns2rVLkgR2ux0dHR3w+/3SvoGz3AAI5laDW8TeVqtVSuPL5TKWl5fh9/sl+E/nbnp6Gl//+tcxPz8vCQQG97Ta6kBTVgfbbDZJbqtBO7YJIRmJZxeTKBaLRQb/8ll7PB6x/6VSCW1tbdi1axdmZ2dlno/JZPr5KNAvsDRwbwP33ipp4IYGbridccONhLaAa6qeqwAkkK++X32dsSe9Xi+kKc5K8nq9EqNikl6jqc5IiUQisp6cf8BOHiTxMkDKgKlGo8Hi4iLOnTuHj33sYzX7TtVdrinJcGzXxfOhXqj/+XxeYlHZbBaXLl3CG2+8gVgsJokWNZibzWbR3t4uLHKDwSDYhvuEQ+KJDXi/xBe8bs7+49wJ4oiGfDDydriB63Ez3OB2u98VbmB7p5vhhrm5ubfEDcTiKm44duwYAoHAe8INLpfrbXEDK9beCjewkueDEJJzbkXLsVuahFAPCG5iGoV64QASKhMDU1NTU9dVMLDlUalUQigUkgy5yngFgEAgUPMdNHoGgwEulwsOhwOpVEqGKnGBdTodBgcHMTQ0VPPdAOTwm5+flwGjGo1G+vVScTjEj0wBNREQi8WQTCYRCoUwOzuLUCgkWWoeFrw/Ahsaymw2K7MgtFot7HY7IpEIRkdHhaFBJh0HU3PD8bDPZrMIhULo7+8XtpfKGlETR/UBsXg8fkeWQb4f6erqkgORLb+AFVCo0WgwNjaGoaGhmmfNRBkZ44888ghef/11AQU6na6mBHj//v34d//u3+Hv//7v8aMf/Uic/EceeQR+v1+M6cLCgjj51NdyudrLc3FxERcvXoTX68WJEycQDodhsVgk8KompsgkeOihh1CpVPDGG29IWRrf09/fjy996Uv4yle+gnA4LIEB7lXuN6/Xi6GhIbS1tcmhw8NG7YP5QQRmNZrqwGWy2e80UcGd0+mEy+VCJBIRcGcwGDA2NlbD6AMgQXjaFoJgJiWampoEhLa1tUnJI5OemzdvxgMPPIBHHnlEksy8Fq1Wi66uLunHaDabZY6E6kjRxqpAgq8DtfMu1P3FfaUyWlQbp9VqMTMzg5deeklsdSqVwtatW2EwGLC0tIRcLifDCXkdDMK53W6sX78e58+fF+ZyOp1GZ2cnWlpacPnyZXi9XqRSKQEzBP6zs7PCGmtubr6VS/+RE/WcKxaL4pgTeHE9b5QYVx1utX1HsViUIMHS0hImJiakAlHtK0qbxwGU6XRaGC3lchkzMzOYnJyUYZWFQgEejwdzc3NIp9Nob2/Hxz/+cVgsFmQyGem539vbK3M9CCKpk/WBAb5WL6qOU6g3vH81qVYqleDz+fDqq68ik8lIv2Yyu1itSZxE5hvxWGdnp7SWoGNLVh3XqVgsIhAIyAwUt9stxAq22alfV/5bo9EICOf3MrhBIsiNnM5fdOEaEQdyTVQ8y97JPOvI9Of5TL2nTuh0OnFeQqEQbDYbfD4f/vAP/xBPP/00Pv/5z+MP/uAPMDQ0hEwmI8woo9GIWCwmBJTNmzdjYmJCAgDcE36/H3/913+N3bt3Y8eOHfB4PHC5XFhcXES5XEZ3d7f0jVaTwAAEmxMH8LM1mmq17/T0NOLxuCRkbTYbmpqaMDc3h29+85uYm5uTPc8Bm08//TR27NiBP/mTP4HBYEBXVxd+/dd/HWvXrsX/+T//BwcPHoRGoxGiztjYmFSWMTjAM4yJZmLkYrGIeDwuQTSdTofe3l7E43G43W5xcu+EhPAHLQ3c28C9t0oauKGBG25n3HAzURNJZrNZYmlq7OpGv8Mhv2ryjjrAVogOh0PWyWq1IhwOS4stMsVZ9V0qlUT3iUcqlYokmrhXXnnlFaxevRp9fX3X6TAJAiRrMT7IBAfPY/6M+5WErUql2mp8ZmYGx44dkwAp9cVutyObzcJisQijnudGMpkU+6G2JWfCV42bqd/PxITT6ax5lsQ5KgO/Ie9N3g43AMDo6Ojb4oaHH34Yb7zxxrvGDY8++iiWlpYwOzuLpqamDww3ANW2T7cCNzD+ouIGFZ+/H2Eykgm6D1o+lL4P3LwqcOAGVjOhzIrTceAi8GHycORnMoDOA7v+UK5XAiq11+uVgJDq6PFzi8Uirly5gnK5DI/HA6vVing8jlwuJwkB9qArFotYt26d9HTk95DtxQQHM7e5XA6RSEQybQBqSm2YxVUPcf7NZ8d75lCsxcVFccAYHGNWl1UYqjEvFAqIRCIAVlpEUdQkUb0SVyoVydA15J1LV1cXANQEc7kfyCooFAo1AUiV/UKmSiQSwUMPPYTl5WUcOXLkOpb4wsICgsEgzGaz6FM+n8dPf/pT5HK5mr6j3D9qm4HR0VHs3r0bFosFzz//vJQg0/Bwn+l0OrS2tiIYDMoAMzI5VSEraHh4WJJ8vG+VvdHa2oqenh4JDKhtHwiGGPh+v0awqalJyn/vZOFa2mw2aRvApAKTlbTR+XweLpdLAusEaJVKRVrosWLM6XTC7XbD4XAgmUwiGo2KXTtz5gy2bNkiVQ78bO4Ls9mMjRs3CoikfVfBR70DRX2sd0ZUQFhvQ/k6y2wBYGhoCAcPHhTGRbFYhNPpxNWrVxGLxWoCa/yslpYWYWx1dHRIL3cAUprOskgG3aLRKAwGA9atWyc9yrkGyWRSbAD3ye0uaoLcYrGgq6tLHAw1eVSfUFJ1gsN82cqRDgaZr2Q68vcI6srlakssvp/PO5fLCZOxXK4OII/H49izZw8ef/xx2Qcej0ec9KamJnR0dGB8fBwajQZ9fX2w2+3XlcSqQWXeu8pyVHW2/hmolZ5AbVsfn8+HF154QZ5RLpfD3r17MTc3h8uXLyORSIjt5L0yWbZjxw6Z8dLc3IxEIgGj0Yg1a9bg6tWr0iKMeInD2JlkpFNWv668Tt6Lim1oE1gOf7sKsSzbYzLoFYvFxGEoFosyGJUtPtRgEZMXwErrI579HL6YyWTg9/vxF3/xF3j99dfxL/7Fv8BDDz2E559/XjCtivXi8Tj++Z//Wa6J+4JnbiKRwKFDh3D27FkMDg7i0Ucfhc1mE5vGteS5AUCCdUwwEy+XSiVMTEwIoYj3ycDWzMwMvve978ngaQaxyuWytGltbW0FAKxbtw7/3//3/6GjowNHjx7FyZMnxRbwzGJSnPfLfcJ5EvQ5eM8M/PK13t5e2d/lcllaTjTk3UkD9zZw762SBm5o4IY7XdRqAepEfQyMgXyXywWXy4WFhQVJGPBZFotFTE9PA4Cc/evWrYPFYpHqMABCalVbzdEWq9hG9ccCgQC+/vWv4+mnn8b69etlLcvlcs1MVK4ziW71MTkAUvVANnokEsG1a9dw4cIFLC8vC3Zi3I56y+QiUMUonP/A+2fHE+4JVklQD9V4GP+22Ww1/2/IByddXV0SEwZujBuKxeIHihvYmSafz+Oll15637iB1/JB4Ab1z88TN9wqIs4tTUKoh6TKSKAjUm9A6XxoNJoaQ0R2vtlslgARfw9Y6QmuBm2Y4WXwnWwAOmucL8HvYLaYJTosgTebzdi/fz8qlQrefPNNZDIZGdBXqVQko88sKg8CvV6P06dPIxAIXOfAECSrFSFWqxVGoxHBYFDe39TUBLfbjUKhIOVxquHjFHQ+TzVpwBI0GnYO1+GzYTKBwEpdH5WNoG4AFeSpz78hby3Nzc1iLMrlspT2EwzyIG5tbRU9ZUsGlT2wvLyMF154Ab/7u7+LbDaL8+fPC4tSr9djYmICv/M7vwOgWtLKVgIdHR3QaKrMbjIECULU/RWJRDA9PY2ZmRn4/X4AtQPPKCx7N5vN2LFjB86dOyd9GFlSSf05duyYvEYQqeoNGeE7duyQ9j9qMo2VSywV5b58L8KgO+/rThaVPcC1KhaLNT0zaT84hJQ6pYJQAj+73Q6LxYJwOIx4PI7e3l6sXr0awWAQHo8HV65cQTQaxdDQkDiMtLUApIQ7FArJoEG1VJZCG8/AAK/7RnpKoZ6rzhr1zO/344UXXoDP54PT6cTg4CBmZmYQDoeRz+eRSCSkBRVbq6xevRpbtmzBmjVrMD09jTfeeEPa6bEclEkIDjW02+1ob29HR0eHlK+z/VJXVxfm5uZQqVSkRR6v+04QBmP7+vqkp+aNHNB6JhV1gE49q1RUHKGuudPpRDabrSlL50BKBlbNZjM6OzvlM5aXlyUIfO3aNezbtw+dnZ3weDwolUrI5XISqHC5XNi+fbsQG250XqoEDDVxVp9E42v1ZzL3Kp1HrbbaUufFF19EqVQSFprZbMaZM2eEyKEOdzUYDDKQsK+vD5lMRp4dr0uv10s5s8lkQjweR7lcRm9vL/R6Paanp8UmZDKZmuSZug+5D9Tr5n3pdNWWK9T921HfSapRySDEalqtFp2dnZienpYBfGSgEkMS99JxNhqN8szK5WrP3Gw2i0ceeQR79uzBSy+9hJ/+9Ke4fPkyenp64PP5ahIGamUb20TZbDb8zu/8Do4fP45Tp05JBQLff/78eczMzODjH/84du7ciXK5OpSUbTVYkUviS6FQQCAQQDKZlLM7m80KK5jYVavVYnh4GK+++iomJyfleTHB3NTUhMnJSfz4xz/GunXrkM1mEQwG8b3vfQ9zc3N47bXXEIlEJHFeT2rifimXy2hvb0c4HJbr4V4BVqo3dLpqu6b29naxD0yqNLDuu5cG7m3g3lspDdzQwA23K264kTDppopqU1RfSdUdk8kEp9OJ7u5uDA8PC67Q6/Vwu92Ix+Oy/nyW8/Pz2L17N1paWoSIxZ9ZLJaaJEFTUxMcDod08+DaUv+Wlpbwta99DXv27MH69eul2oZBVNpJCs8H6jsTFpxLUiwWMTU1hbNnz2J2dlYGENNmOp1OIXqUSiW0trZiw4YN8Pv9CIVCoq/czzqdToh0rEjnM2SiQv03CcCM9dHeqM+vIe9dnE6nVJ69U9zA4dDqHng3uIEdHT4quIE4Wd1nxMUfJm7g3GCtVitz1D5oueWVEPXgC4AExGlQaKyobGplg5oppcOjvoeMBcrAwABKpZIwC5hF43tUw6YyaZubm1EqldDe3o49e/bg7NmzGB0dRTgcxsmTJ9He3g6z2YxMJiO/SwOWSqWEcUVpa2vDunXrsLy8LMZTNZBLS0vC1NJoNBK4s9lsAlwLhQKsViscDgdGRkZQLpevO4Tq2ydxmAmvh6xlMumorBzow3I7/kzNpteDOGai1WfZkLcWAmX2ylR74TIwodFUh4dHIhExeGomHlgBol6vF1evXsWZM2fk0P+3//bf4q677sLv//7vY35+Hg8//DCefPJJ/MEf/AF6enrw93//91hcXEQ0GsV/+S//RdgrKuuExmx6elpYEbx+ADLEnYc1e3rOz88L8PijP/ojLC8v4ytf+YpkpAHU7GE1qcVDhYk0t9t93ffy9yqVivSYfrfCwA/7RJdKJcTj8Xf9ObeTqMlKlu+xfRwdKdqzRCIhvUJpY+hIaLVatLe3Y3l5GblcTsDY/Pw8yuWytHxrbW1FNBpFX1+fgDlgJQlSKlX7LL788sv4/Oc/LwEJHqYAJNikOl5qAlVlHwArTCp1H9EOsnR/ZmYGMzMz8l3z8/OYmJgQRpvJZMJv/MZv4MqVKwgGg9i2bZuAlEqlgq6uLjz88MO4ePGiOFgbN27EwsKCVMB5vV4MDAxI+f3p06cxPz+PXC6Hnp4eGcJJxhLX506wryqRYMeOHeKAq+CLf1O36pPglUpFHHiyZXiG5nI50VW3241AIIB0Ol3j2BsMBmHppdNpTExMoLOzE6tWrYLRaITD4cDk5CSi0ShOnz6NT3/602LTuFc4mDGfz0s5O4POFO6p+mAUf6YCaP5dD0LVvyORCF5++WVMTk7CarVi8+bNmJ2dRTgcFsZNS0uLzDMxGAwYHBzEli1b4PV68dOf/hShUAgTExNSPanRaKT/8/T0NPR6Pdra2uDxeNDa2opcLidB887OTiwtLQFAje1WHeH6AAnxl0osuZ0DvNRJJlXVKtVKpYJgMChJSXX4NO0iZ5sxYNXS0oL7778f3/jGNwAAc3NzAKrOC+3kmjVrMDMzI7MV2LqJONBkMknfb+q+x+PB/fffj7a2Nly6dAmFQkESzBqNBtFoFM899xyuXr2Kz3zmM+jo6JBERKlUgt/vRzwel/skuYWzyxhE0Ol0CAaDKJfLuHbtGl5//XXE43E88cQTuHz5Mvx+vwT89uzZg6tXryIYDOIf/uEfUCxWhwR+85vfRCqVQiqVwsMPP4yFhQVMT09LssdqtaK3txfXrl0TffP7/VIdV6lUpLqBQy2pp1arFTabTao4iLffjzN3J0oD9zZw762UBm5o4IbbGTfcSG6UqFGD3mpiSiVpscVjW1tbzef09vaiqalJ2loBEAa41WrFtWvXkMlkhDDQ1tYm5Cx+jxqbU+NDDIYyyBqLxfDKK6/gzJkzGBgYwOrVq9HT0wOXyyVtXph8ZnyQ5AX6arlcDsFgEFevXsXExARisVgNM51kATUwbbFYZLbVlStXrqvmUds6pVKpmtmuqj9Z74vxGlU7dCdUrn8YQkLiW+GG7du3C24AUBPHpLwVbti9e3cNbvjkJz/5kcENtO1q/JX6xbOpXC6/I9zwXiofiRuMRqPY3UQiccuqKD+USgi1VBBYKetqamqqGQLDknUaMpfLBYPBIGUsakJDzZSyhxuwkg3loa1mO5kBVQNsZB5w8HU+n0ckEpFWSyaTCcvLywgEAjUZVzUIlkqlJHNPo2WxWHDPPfcgGo1ibGwM2WwWiUQC5XIZ27Ztg9/vR6VSgdlslgFXdI7YwoQBPpYt857pbKksAQIoggaCTmClLRWVmIY+nU5Lz1sAAn64ZvWbmoyJRmn6uxPVGWPJogoomFxigJT6qTLwuIempqYwMzMj7ysWizhy5AgWFxeRSCRgs9kwOjqKr3zlKygUCnA6nfjmN7+JU6dOIR6PIxgMiq6pYI8Bit7eXiwsLEhyjuwWr9eL3/7t38aVK1fw3HPPCSAMhUL4i7/4C3znO9/ByMgIZmdn0d3dDQDo7OxENBrFzMwMUqkUrFar7Cd+p1arRSQSEfDD8jHqKA0f3/demAYaTbWnHffvna7D6r5mBRhQ7aHJEkGHwyFzIjh0L5/Po6enB8ViEdFoFJlMBjMzMwIIotGosKm0Wi3C4TDa29sxPj6O1tZWdHV1SWkfmTBcTwZ8PvGJT0iJLO02g/Rq4ldNqqoHL1B7eKtVENxTqt7ffffdaGlpwblz5yQYtW7dOgQCAbS0tGBwcBBerxf79u2T5EksFsOZM2eQy+Wk5cS6deuwZ88eSdi4XC7odNU+qocPH8Ybb7whPXbb2tokIUGHjQlqu90ua3OngFoGrNasWSNOhXpGM4h7s9JSMsTZKoY2i59BXVLtLR0UoEoY8Pv9NaQEtlHcunUrNJpqi5dAIIDu7u7rAh0kNQQCAZw6dQpPPfWU6CkDy7xHlampgs163azXad4TsHJOj46O4vLlywIWJycnMT8/L3u3p6cHv/zLv4yXXnoJTqcT27Ztg8fjked2//33C7khnU5LKzQy46xWK9auXYvOzk7kcjmcPXsWMzMzyGaz6Orqkh7BLNnldap7j8+If9SS6EqlytJTGY+3o1CvyBJlKT+HOqoOBnWdfZrZBo94b2pqSmwGmWKVSgXj4+OYnZ2F2WxGc3OzJAdI7mEigTYpGo1KcCEajeIv//IvEYlExOZw/Vh9zCqNa9euYXl5Gb//+78Ph8OBUCgk1Rm9vb1IJBIyc0yj0UiQDwCmp6dx/PhxXLt2TZwyrVYLl8uF6elpLC4uolSqDp2uVCo4c+aMBAKHh4eFcRmJRGCxWLBp0yY0NTUhFAph69atWLVqFcbHxzE9PY3R0VE5X1gVzN9PJBLweDyYn5+X4doaTZUI1NbWJoEZ+gyc59GQdycN3NvAvbdSGrihgRtuJ31+J6IGw9maSH2Nz0cl8vJ1p9NZw+QPBAI1TG9WyABANBoVe8GYUzqdls9TExxutxvlcnXWKfFMU1MT1q5di/HxcbkWxspGR0cRCAQQCoWwb98+2a/s7MGEBNc8kUggmUxibm4O09PT0h6X98XPp48YiUTk7PZ6vTIzlUPRc7mcJBT5vmQyiUgkgtbWVvleNampxvsYlL3TkmAfhtSTF26GG9S4AID3hBvi8TisVitGRkYwNTX1c8cNXV1diEQiN8QN1HHigWw2+45ww3vRUY1GI5VNGo1GSPa3Sm75YGo1CaEelMzSqP3WXC6XvF+v1yOdTouzwt+lUaQz5XA4oNVq4ff7kc/nMTMzIz2+6oNPQG2vcDpwLM1SS8mZIWXiQA1m8TNp+MjKYtkr+5I2NTXB6/VieHhYMldtbW1wuVzS8qlcLmPdunWYnZ0VFhiwouTz8/Py2UxuqEO0qfS8P4/HA5vNhlAoVFMSB6z0E6YDG4/H5b7p5PJ71Hvm3+l0umF834WQ6aKyVQieANSsH4DrDr/656yCDbWS57XXXsOrr74Kk8mEP/7jP0YgEMCzzz4LrVaL8+fP4+rVq2KkVJYNAS/31Z49e7Bjxw7odDr87Gc/q2Gss/Tsj//4jzEyMoKRkRF0dHTAYDDg61//Oi5fvoyjR4/K3mXZ75NPPgmTyYRvfetbAjBo0Klj6XQafr9fhl0SDBGI8z7D4fC71j2tVguHwyH3yhLNO1lUm8AqMFZHcb2Xl5fh8XiQzWaRTqfR0tKCUCiEfD6P/v5+mfswMjKCmZkZbN68WfSMwbVoNIqpqSmsWbMG58+fR19fH3w+nwTaydR1uVwwmUzi3HEfTE1NYX5+Hu3t7bh06RJCoRBKpepcH7fbjc2bN8vAM1VUwMh9pzo39f8fHBzEmjVrkMlkMD4+Liy4NWvWCLvLYDAgEAjg4sWLwqihjb506RKCwSAefvhhLC0tYWhoCGazWcqON27ciHQ6jRMnTiASiSAUCqG1tRV2u10CE+VyWZ4Dr/FOKO3lWdra2iqDYFXcoDoo6lqqjrba4sZqtUoyyW63IxgMQqOpMg/T6TRcLhfcbrf0Ol5eXobBYJBenJVKBQ6HQ+xvKBRCIpGAXq/Hhg0b4PV6BbfUg2CTyYQHH3xQHDoOA6SdJ5FA7XFaf8aqjo/qvKntJdQEmt1ux4ULF8S29/b2IhaLwePxYO/evWhtbcVTTz0licTZ2Vlcu3ZN9q/b7canP/1p5PN5YWQC1STk8PAwzp8/j3PnzqFUKqGrq0vKlmdmZuQZuFyumgGTqoNIvMHWFAzsqPZHDarcbkIcWSgUMDAwgEAgALvdjkqlUtPig2xdMv5YOZZIJKRv+MzMjOgbe6GHw2EJjjU1NaGpqQnhcFjO9FKpBLvdDofDgdWrV2N4eBjRaFSCCgxEFYtFuN1uOJ1OrFu3Dn6/H9PT0zK7oVAowG63Ix6PY3l5GS+99BJ+8zd/U5i8mUwG+Xxe2nWQxcagVDabxQ9+8APMz88L69dutyOdTku1MPdcOp2WyuRAIABgJXFO8k53dzcWFhZw6NAhDA4O4pOf/CR++Zd/GZOTk/i93/s9BINBCfYyoaPX65FIJFAoFLCwsCC2hwEJjUaDrq6umh7obNHARH1D3l4auLeBe2+1NHBDAzfczrjhZqImlzgQnex9/ox2jUJ7wzY3qo3h75BkQD+QZ6e6Jmoyj61kW1tbZTapqm+FQgFTU1PSLi2Xy0krpFwuh6WlJeh0Ouzbt090IJFIYGxsDIuLi5KISKfTiMVi0ueevhi/i3aA30tSMd+3tLSE6elp2ZcajQYWiwW5XK4m6cI5qSTb0U7w8+v9SMYlG/LBST1uAPC2uIHybnHDK6+8ArPZLLjhBz/4QQ1u4B65EW7gGb9nzx7s3LnzHeOGzs5ONDU1vWfcwEpq4gaSmW6GG0Kh0LvGDUxA8DM+DNxwy9sx8WDlTWk0K71uWQ7NrHhLS4swc5nVpEKyyoCL7HA4MDAwAKfTifn5eelTx5JTKiB/j99HA0SlVbPFPMi5qOoCqhuDRhBY6dOn1Wqllzm/z+Fw4K677sLk5CSuXbsmzAyyAqjQc3NzyGazaGlpQTabRSQSkXKvcDgsrZXYeopl+nSw0uk09Hq9ACUqIt9P8EKw0NTUBKPRiHg8LiykTCZTw7hQS9t4P4lEoqYktSFvLQwK1GcR1TJtAFKGG4lEahw3VdTX2beOBzkzlvv27QNQBWiJREIYfnSm1Woalmmz/P2hhx7Cv/k3/wYtLS147LHH0N3djW984xuS8MpkMjh48CCcTieWl5eFcfDII4/g6tWrklCj7pBp8f3vfx8aTbWELBqNXrengCoDf3FxUSqYCCai0aj0rWai8d0IHQoaeg6Sa0htGzcO4FQHMrPfa3NzM1KplDgGRqMR8/PzqFSqw+h27tyJeDwOu92Orq4uzM7OIhaLweVyobm5WZiw99xzDzo7O5FOpxGNRmGz2YRdxUQosMJsOXbsGF577TVks1k8/vjjCIfD0nLDZrNhZGQEZ86ckaF/9YkIfpaqb/V7SgUurMzYvn27HOz8TJ1Oh8XFRQmiAZCBewy2aTTV0sxNmzZhZGQE2WwWLpcLs7Oz0Ol02LlzJwYGBjA2NibBtd7eXuh0OjkLuru75Xzj2XS7C9eor69PnIz6e1fPMPVcVpPrDocDCwsL4ugXCgWEw2E0NzcLo8tgMMDv98Pj8aCrq0uY0mNjY9ixYwfa29ulZ6hWq0UwGMTc3Bw2bNiAS5cuoVyutnXxer0AgMXFRTl32XcXgJy/Fy5cAABpRRAOh6HTVfsZd3V1Ydu2bTLUF0ANvrlR4qz+dY2m2s5k06ZNSKVSGB4eBlC1p319fbBYLNJWZ2ZmBufPn5ceuqtWrYJOp8P58+fR1taGe+65Bz/5yU8AAK2trTJ4sre3F0NDQwiHw7Kv+/v7xRaXy9XhwQzSEhuo7H5WvObzecFLfA/t0O2KJxhEMhgMaGtrQ3NzM9atW4fjx4/XtDXg8+LzSKfTeOKJJ/DGG28gnU5jamqqZigkHXSeZ2rbILfbjXA4LO91OBzQ6/WYm5vDpk2bcPbsWezYsQNPPfUUmpubceTIEbz88ssoFouw2+3YsmULtm7dilKphFdeeQUaTbWKIhaLyayIYrEobCzOFwuFQujo6EA8HofRaJQzIJVKYWJiQlpHsc0TK8kWFxeRz+cxMDCAUChUE8wgw4wzHuiUAVU9X7NmDdxuN/7u7/4OIyMjSCQS8Pv9Naw5m81WMyyQJCZ+Dvtil0olbNq0CZlMBna7XbDRnZIQ/qCkgXsbuPdWSwM3NHDD7Ywb3kq4lqlUCslkEh6Pp+acon4zaAqsMMyZvGFAk8+T52H9+ajX62G1WsUfpG1nqyQm86mDdrsdTU1NWL16Nebm5hCJRGC327Fx40ZcuHABkUhEfMJ0Ol3D8LbZbAiHwzhz5ox0FmFyhNdbLpclzra0tCR60tXVhaWlpZq2iaVSSVpDGY3GmtZrfB5q4o77XW21pD4XldymJnAa8sHI2+EGSj1uuFE8UsUNrExYWlqSmKlOp8P+/fsBQAjZKm7grF8VN6g6pOKGRx999DrckE6nr8MN4XBYcIMag36nuIH6R9zA+MHNcAMJju9U6nEDMfGtllteCQFAAudqqSPZ99lsFqlUCi6XC16vVwY+qW2BgJVDioY1m81iamrqOmPK7+Himc1mWCwWmVy+du1ahEIhaa/ENiAEAoFAQIyiaqDVrCnvAahmkDs6OmSwtMpI0Ol08Hq9WL16tZT7jI+Pw+FwyOdUKhUp+WHpNwCppuAUeDpS7OXb2dmJ9vZ2FItFTExMIBgMCmipN9rAShUEmRZqNpgJIlaP8HuBFZaSRqNBIBCoyQA3jPCNRWWtUMcBCNsvmUwKG5yD9Dwej/TYvJHDws8EgF/7tV9DNBrFj370oxqDPTY2hhMnTqBUKqG/vx+RSETabanDFxlwptx111340z/9U7S2toru/8qv/AqGhoZw6tQp0QG/34+/+Zu/EVBYKpXE0HIYDvduX18fbDYbhoeHkc/nZQgk74V7q1KpYGBgoIb9o9FUB6KR7enz+aDX67G4uPiO14BJQTVoc7s5Yu9VVFYUUG0fwNesVityuRzMZrPoW1tbm2Tr2T+0qakJS0tLSCQSWLt2LXK5HNavXy8VaRaLBRs3bsT27dsBQNqDcGYNbSSTC4ODg+js7EQwGEQmk5Eejw6HA1euXMF9990n7aIYCIvFYjh27Bh27doFt9st16vaX/5bFfVcUVlDLGdkiT6wsm+6u7vxhS98AV/72tdgMpkQDAah1+vh8/nkWc7Pz2PXrl3YsGGD9NHljA2n04n29nY0NzcjHo9jfHwcPp8PHo8HkUgE6XRa1kFdpztBNBoNBgYGas5O3rt6NqmtXYDadVYTaWTUsE2ixWKRNjgEoVNTUyiXy9i0aRMOHDiAeDyOjRs34uLFi0gkEnA6nejp6QEAxONx3HfffXA4HMJyZIBVo9GIPaRNy2QyeOmll3DhwgWYTCY8+uijGB8fRzweh8vlgs/nw8WLF3HixAl86UtfQnt7u5y7PGspqp1URT0nyPLes2dPTQKNz2Z4eBgvvPACEokEDAYDkskkcrkcOjo60NTUhGg0Cr1eD7vdLi3YIpEIzp8/j7vvvhurV69GOp0Wtlh3dzcMBoO0rOnu7pY9wOvnWpJQopIbuOZkzKmJwNtNGGThoL2FhQXce++9+Pa3vy3OArGk2vKnUqkII1Bti0DsnM/nYbPZ4PV6EQ6HkclkZP7D448/jv7+fly9ehVXr16VXt9tbW1Ip9Po6enBn/3Zn2FgYABAtRLs9OnTWF5exuTkJL761a+K/edA6Hg8Dq1WK0HXc+fOwW6344knnsA3v/lNDA8PI5vNYuPGjXC5XLj//vulEkKn06GlpUUq4Vh2DlQdSrYBmZycxKZNm7Bjxw688cYbNU6UzWbD3r17cfbsWSwtLUlvXavVCp/Ph1KphEOHDknbJTXgTWYj8T4Z1MvLy9JGhMScdevWiQ6rPXXrZ7E15Hpp4N4G7v0wpYEbGrgBuD1xw82E98zzKRQKobe3F8DK2rIKhpiAdpiscrZVoi/CVueqfVL9osHBQYyOjkpsiqRY6gljTcBK4J+ENq1Wi8nJSfh8PqRSqRriBXvl087q9XocOHAAgUAAo6OjUv3S398v7dI4KNfpdEplfrlcnT24vLwMjUYjusP4F20/44/8Ga+PgedMJiOVkrwX9f74u6VSdX5hg5jwwYh6xqu4gUmq94sbnnnmGcEN1OlKpYLR0VEcP378OtxAW6jGgT9o3MBr+yBwA88OnU73nnGDRqO5Djd8WPp9S5G1mpElGwyAlOMxIxuLxdDc3CwHNEtA1ABSPVNWLSfjIB0yFFpaWtDT0wO32w232y3ggU4dFYCArb29HQcOHECpVMK5c+cwOzuLSqUiPfdYUq8mQpgh3rlzJ7Zu3XpdAEy9Zp1OJ4Etvo/BPvUwjcfjokxMfFitVmzYsAG7d+/GmTNncPLkSUkmBINBRCIRBINByd7x2ph04Gczq8f2Kw6HQ4a+ajQaaWvFe1SdOG6gubk5ef+dykJ4O1GTOQwWsNcyARmZfWo29NixY1KWzQw8SxdpaHj4kwVe71xw+GJ/fz9+7/d+D9/5zncwOjoqAQQVqPN7vF4vvvzlL0tfRybwvF6v6BwNMq9VTSKazWb8+3//7/Gzn/0ML7/8snw2SzGz2azsI/4On1OlUoHBYMDGjRuFlUDAEIvFYLfbZYA6A77vdA3MZrNkrlOplPTFbUgt4NdoNNIHm/aUSUoCrYGBAQFwnM/D95ZKJczOzqK1tRWrVq3CJz/5SVgsFqmqCofDAIDm5uYaBo3NZsO1a9cwNDQEg8GAHTt2IJ1O49SpU9iyZQsefPBBFAoFvP7668hmsxgdHRVHjKwCna468HRqagotLS019oh2bGpqSmZTtLS0COtQBaMMUnDvMomrJjI4uCydTtcErZqbmxEIBMTunj59Ghs2bIDH48Ho6KjoL3tcdnR0yNmVTCZrqug4X+JOElbXtLe3i32irWEinuBKZR+pAQegmkijI8N9b7FYoNfrpWzVYrFImwR+z4ULF9DR0YHOzk643W50dXVhamoKdrsdvb29OHDgAICVcnXaZNozv9+Pubk56ZvM1jL8fL1ej4mJCTzyyCM4f/68MF7i8TgWFhZw7NgxfOpTn6phn9WXmtcHF9TnxDOALXNYmUMni1U4lUoFzz//PJxOp/T4nJ2dFXs8PDyMffv2YXJyEps3b5bzqbW1VYYEJxIJjI6Owufzwev1iqPb2dkp16eeLfXMPBWPcH8Rl3DP3Y5CW0FW56pVq+B2u2t6vXKd+YxyuRyuXbsmyViz2SwBdnXP0K6wtRNQdd4+97nP4bOf/Sz+5//8n/irv/orZDIZaLVaPPHEE7BarRgbG0NbWxuKxSKee+45mcfAfceKXJZ963Q6DAwM4PLlyzLT7dSpU7j77rvxhS98QQIM1AutVouuri50dnbK9fX19eGv//qvce7cOSG/MFjh9XqRz+fx6KOP4rd/+7fx7W9/G3/5l38JvV4Pt9uNf/Wv/hWeeuopvPTSS/jzP/9zcTLZ47lSWRngy33Bn9H3oDPJwEImk5HZPA6HAxaLBZ2dncJqDgaDgsMbAYe3lgbubeDeD1MauKGBG2533FAvfC5MiOfzedEh1U5RJxjfoU5YrVapKGTgUiWk8bOdTqdUJaRSKVy5cgUajUaIZGqgl4H+SqUiyQy9Xo8rV66IzSdxgcF+lUjBGVJ2u10qKfr7+zE1NQWttjovqrW1FZOTk8jlclizZg0CgQDm5ubke5uamjAxMYFcLiczUdWW5ayUIsl5eXlZnhewMri+UqlIWyliIdpl6h/jguowbz67BkZ496LiBu7rd4Ibjh49eh1uYHWkmkTTarWCG+orKupxw7e//W2MjY3V4AYVP1QqFbS2tuLLX/6yJK/fDW4olUpoamrCn/7pn+LgwYM3xA1swfR2uEFtScYY+geFG5LJZE3S5VbLLU1CkOFVLpelzzYNKBkKalbRarXC4/FgZmamJhtOIEXlYk9Fi8UCu90uw/PYt7a9vR1bt24VQzo3NyfDnlmKazAYcPfdd8PlckGj0WBwcFDKJMvlslRGACsl9XRGyIx96KGHsGrVKlEWtfyNkkgksLCwIAxgKolWWy19YWDLaDTCZDKJAtKYNjU1YXZ2FiaTSQytyWRCJBKRVk1qRlo9rHU6nbDj1M3U1tYmjA9uEjKY+LuqM0cHb3FxsYZxcacwdd+pMJvINaFOhkIh6S3KACxLsHiQsyczWXxcL7XMlkbt5MmTNawHrglf+9znPoe1a9di7969aG5uxqFDh2TtCUqamppgNpvx+c9/XgZWqQeuVquF0+msCVbv3r1b2kKQnZnJZHDq1CksLS0JgDcajWLQ6IgBta3LeFh0d3ejp6dH2phR9wqFAoxGI3w+HyqVCiYmJpBIJN52Deh4sD1bY6jkjYXPmsNPm5ubZageS/GAqu1OJBJob2/H3XffLfpcKpXQ0dEBu92OZDKJaDSKxcVFSYrGYjFkMhlYrVb09vbigQceQCqVwokTJ9Dd3Q2v14upqSlhwtpsNmGhnDx5Eg8++CDWrl2L119/HVqtVhwyr9eLa9euie1h9ZjqhAIQUBmPx3H48GG4XC4JinV2dqJcrs5gYGJE7bvL58PvHR8fx9jYGLxerziVRqMRZrNZnpnBYEBzc7Owax0OB1paWjA+Po5IJCKBvbm5OXi9XthsNjnXGGR0uVzyf/Xv21nIauI5zPNVBXEqSK1vO8C/Ozo6BBBSrw0Gg7CZN23aJK0Lyb6isLVNT08PPB4P7r77brEffr8f5XJ1npPNZpP+93a7HVevXsX4+LgMt02lUjh16hT27duHJ554Qgbi5XI5rF69GsViEel0WhgqWq0W4+PjksDimcv7CwQCGBkZQUtLC7q6uiQ4ovZEVRNoahBBo9FIK45UKiWD48n2bG5uRjabxfLysswRAICdO3fC5/MhGAxKkqxcLqOrqwtNTU0SNI5Go9BqqyX0HR0dcs2qkHyh1WprGLkMNAAQsEtG2u0qrECtVKpzxrZv345Dhw7VzCJjAJZ7IJlMSpsQl8uFQCAg+s9ydLZIYHCgWCzixRdfhNfrhcvlwsc+9jG43W787d/+LaanpxEKhTAxMYGhoSH09vaiWCxiaWlJHG+LxSJ7iraQrEO2W5qfn5ekSjqdRnt7O6xWqwQVkskk7r33XvT399cEQO699144nU78yZ/8CSYnJ2XgNbEr25kwYEBMcM899+D48eOYmZnBxYsXBb8waMt9z2BiuVyGxWKRWWoAatizlUpFfrZr1y5MTk4imUwKDolEIpI4ASC4qCE3lgbubeDeD1sauKGBG/gsbmfcoEp9oLtcLmNubg7pdFpsKxPuXEee0Wy1aLfbZcaMGjuizbXZbOjp6UEul5MkpjoLglijUCjA4XBIlRt1iXZZjYWp8SJ1VitJuRzAWy5XB2bv3r0bly9fxvT0NDQajSQcmpqahCzh9XoRCoWkNSRntDD5YjQaYbfbUSgUEIvFYLFYpJsIzwSj0QgA182Moq/GlmdqNxCNRoNYLCYdQaiPd1Iy7IOSetxAP/xmuIEt6Pms63EDY5lA7bxf4gZ+p3oGlEolPP3001i7di327dsHl8sluAGA4AaDwQCTyYRf+qVfgtPpFPv5XnDD6dOnb4obGP8F3ho3EKe/X9yg1VbnDFut1p8bbrilSQg6GQCkRIuMWvWhp9NpaVvBEkO1XAVATWWE2WyuKXkMBoPIZrPCOOUg1YmJCbz55pvSO2779u1wOBy4fPky2tvbsWXLFly7dg2JRAI+nw/nz5+Xw59D88i4ACCKp9NVB+rs3LlTGCcEKlarVQBBNpvF+fPnMTU1JffAqgpWJHg8HiwtLWHNmjXQaDS4ePGiZPwIhkKhEObm5lAqlaSncGtrK8bHxzE0NCQgTGX40jizrFSr1V5XBkkDylYBQO0MDx4eWq1WnFD19+6Uw/+dCg9SgidmMdlDv1gsIplMSq98JohKpRKcTie8Xq+ABLKtmPxSD/hcLgen0ylDwmkECRR37NiB//pf/yvefPNNMWIAJNMKVNf0c5/7HB5++GExckxEMVl27do1MYh6vR5TU1NwOp3o7e3FyZMnpVzuu9/9rtwrE43ZbBYOhwMejwfj4+MSIKGOEvx89rOflZYPQBUQRKNR2O12ZDIZRCIR2Gw2nDlz5m2DsgS3aoCkvr9gQ2rBPJO5nZ2d0upIp9Ohra1Nqh7a2tpQqVTw+uuvY9WqVRgfH8eqVavQ1NSEkydPIh6PCwv2nnvuwdmzZ5FIJGCz2XDvvfdi69atSCQS+MlPfoKxsTE888wzOH/+PHw+H3Q6HR588EHkcjlks1n4/X7kcjlMTU1hw4YN2LRpEwAgHA7DbDZj+/btyGazkujQ6/Xo6OiosV8EKuVytWx+aGgIExMT0Gq1GBoagtFoxKpVq9DX14dCoYC+vj4JBuTz+Zp/Hzt2DNeuXQMATE5OSj9z9h0nE5ltPYDqmeTz+aRSgjpvs9mQTqcxNjYGt9stw/oqlQp6e3thNpsBoAYw3e5CIMrkDu0Y/yb4pB28EYg0GAwy6JstA5qamgSEJZNJJJNJ9Pb24pFHHoHf70cikUBLSwtcLhfy+TwWFxfx5ptvYv369Th9+rTYIYfDgVWrVuGhhx5CMpnEkSNH0N3djfb2dhkU3NHRAZPJJGzJN998E48++ij6+/sxOTkJALh06RJ27tyJc+fO1bBjqKf1gJbP5uzZs2hqakJnZyfa2trQ3d0NAJIQI66ig6c66RcvXsTw8DBisVhN72mHwyH9hNlOgbbypZdewsaNG5HJZDA7OyussuXlZZlpQFZ9pVJtl8b2kjdLnvHsYgUV7T9BuUqQuF1FXeNwOIzdu3fj4MGDcDgcci4y2M+Sc65nf38/pqenYbVaZf4C7QawklD2eDzSK/lv/uZvYDKZ8MMf/hBf/vKX0dTUhG9+85vSJz2fz2NiYqJmvhkZXYODg3jzzTclEBQIBGAwGLCwsACHwyE4Yv369bDZbDXnhsfjQU9PD/r6+mqCg0BVnzds2IAnnngCf/d3fwcAco/EHd/4xjdw7tw5SVADwLe+9S10d3cjnU4LG5mVDrx24pRyuToDYvXq1bh69aq8RrzEZDuH0F66dAlerxeZTAZut1tYYWSK3gmJ4PcrDdzbwL0ftjRwQwM33Am4oV7UZ1SpVFs2+v1+aflFoiwTrhzwnEqlYLVa4fV6MTMzI8+sns3PGSHUCxJ+nU4nrFYr2trakMvlMD8/j5aWFqnM0Wq1aGlpweDgIObn57GwsFATmFf3HgBpV9vW1laDQXQ6nbRmX15eFjvIikT6WKzGpP67XC5s2rQJCwsLmJycREtLC7q7uxGLxWRvz8zMXEcSBlYCsWazWVpVqS15VfKCRqORjio3W5eGvDNRbbeKG+bm5j4Q3EB9IymwHjcA1XN7+/btb4sbNBrNh4obALxn3GC1Wt8xbrDb7TAajRKD/3nghluahIhEInA6nZJAYCskJhgYvCkUCggEAli1ahW6u7thNpvFyACQkkpmLJ1OJ+LxuAz8YPkrFa5QKGBxcREXL16UoXcbNmzA3r17MT09jWKxiM7OTpw5c0YYBTzMXC4XYrEY4vE4rFYrksmkMG3V93R1dUlCwWw2S2k52QnFYhF+vx/Hjx9HNpuVNlM0eF6vF729vfB4PIjH48J+4H14PB60t7cjFAoJI85kMkn1x6ZNm9DW1oZAICD98giiyI7gJmE2DwBcLhd6e3trSvf4Pm5QlrdTNBoNZmdnJZvXMLi1QgecB2J9H9ZgMIhoNAqdrjo4jwNtmXgjIHY4HFi/fj2OHTsmQ9LUcizqqVarlXJDriE/J5fL4c/+7M8wMTFRw3bo6+uD0WjE6OioGLO7775bfv/q1avSsz6ZTGJoaAjHjh0Tg53P5xEMBqUEmjrFawIg+5Zsz3g8LkxIAFKFxGsyGo3Yv3+/BDp4vc3NzTCZTPD5fFK1NDIy8pZrwCAvW1aQedOQ60WtGuD6rlu3DpcuXZKf5fN5bNy4EeFwGIFAAEA1qXrx4kVhMV26dAnxeFyAL23V2rVrYTAYcNddd6G9vR2Tk5P4wQ9+gFAoBJPJJIOVWPb30ksvoaWlBQcOHEB7ezuSyST8fj+2bt2KL37xi7h06RJOnz4tZehAVdcIkru6umpAosqS1Gg0OHDgAMbHx7G8vCwsBp/PB42mOkx6aGgIn/3sZ4U5wWRzqVTCPffcg2AwKAP1GLwCqqDdbrejUqkIw0ZNtLM8lDrMoBbn8agJdnUo9Z1UacbzlI6walPIiONrwEowt94Zs9vtaG1tRSqVEr3o6OiQ6saOjg74fD5pL+P3+7F3714Zfs7gZkdHBzKZDAKBAJqamrBt2zbs2rULsVgMzz//PMbHx9Hb24vLly9jbm4ORqMR69evRzwel975kUgES0tL2LFjB8LhMOLxOCwWC9rb29Hd3V3DPu/o6BCSA58HAGH67Nu3Dz/96U+h1+sxPT2NkydPore3F11dXcjlcli7di2cTqcwvZnIYtXRwsICgKrTxiQYHSgybdLpNEwmEyqVajn6sWPHavqWEtyPj4/D6XTWDCMeHByU61fJCcRLLA3mz/mHjDVWY96u5ew86+iQt7W1YXl5Gbt27ZLAgcPhkEqqWCwmAzuj0aiw8jQajbQ1IMuUOJPVEiwjp/3L5/OYnp5GT0+PkGVisZgMfQRWWLG0QUtLSxgdHZX2HHq9Xmbw9Pb2yiyGvr4+3HfffUgmkxLUYnJk7dq1goXUIBGx5o4dO0RnWltbpbczq/COHj0qrZJcLpfgb7YNASCtH6jDTNywRd/Q0JCcAUw8GAwGwRmVSkWYdbFYDOl0WuZFWCwWqTqhDtPmN2RFGri3gXt/XtLADQ3ccDvjhhsJ71f1C+LxOCYmJjA4OCjPjUl0xtry+TxisRgcDge6urqkpR2rwFk1QTEYDJLUjMfjcDgc2LVrF1avXo1kMonx8XHxd8rl6oDxdevWobm5GXfffTcuXrwoBDGuN89r4p17770XW7Zskdge/TYAMgSb/lM6nRb9jMfjErxmdQQrSG02m+CQeDyOM2fOiM/Faif6ZYw90j60trZKa0YSj6mLaoVeuVzGzMyMvEabUx8za8jNRcUNatyUouKGeDz+vnAD15wYjmfwu8UNn/nMZ7Bnz54PBDfwXt8KN5BY8W5xA7syvBvcUP/sPmy5pch6cnKypkwwl8tJQB2ADODSaDRYXl6Wkmi32y3OEUsFmWm12+1YXl7GwsKCsLpY0s5Kg2AwiCNHjmBqakoyTBs2bJASqvvuuw9erxctLS2SbQsGg1i1ahXuueceybyxNFNl2bpcLnz84x+Hx+OR0mKPxyOHLANSBBShUEgMGQBxJmdmZhCJRLB9+3Y8+uij8Hq9cjCwLG779u349V//dfzSL/0S+vv7YTKZEI1GceXKFbzxxhtYWFhAIpGQBAUHaAErJeRmsxkmk0mM5po1a+DxeGrWgGCAWT11TgWdv6mpqetmWDSMLuQAp/7VG1SgGry9du2aBA8ikYgELNXsrMFgwM6dO2Xt+DlkAdRXuqgMRgLDjo4OjI6Oys8Jvj0ej7C3+/v78Uu/9EvYunUr1q5dK+zHRCKBkydP4syZM3j11VexuLgoxokAaGFhAd/+9rfFcBEQuVwuGWZJR4iMI14jgBpd6+rqgtvtRjQaFXai3W5Hc3MzIpGItEUYHh6WQZY3E4fDgaamJhkmx0xxQ24s1BmuS29vb01mP5PJYHp6GvPz89LLfM2aNdi8eTM2btyI2dlZYQPQDgNVAPHxj38cTzzxBBwOB4aGhvDP//zPiEQi0Ov1MpdhaWkJmUwGsVgM586dQzweR6VSwerVqzEzMyMBtJMnT+Lo0aOYnJyUajMysUqlEtrb26UEHoAwD1XnkwCTLTiMRiNmZmYwOTmJ+fl5XLlyRZIM6oAsVkA888wz2L17t9h4tpOw2WxwOBziMPGMAyAOMveh0+nEPffcI+XpZCoxYdHf3y/XeyeV9VYqFWE6qRV9DKaqw7fUZDkdVn6GTqfD2rVrpfqP7JSNGzfCZDJhYWEBpVIJiUQCMzMzGBwcxPLysrSPoTNx8eJF7Ny5E/fddx9+8zd/E/v378fc3By+/vWvY3h4GDqdDm63W85en8+Hb3/72zh+/LgMHzebzQiHw3A6nXj88cfh8XgQCARw9uxZvP766xJcAIC+vj45O4Drh5Bt2bIFTqdT2G42mw0+nw8+nw9nz57Fc889J84dsNLf1maz4eMf/zi8Xq8AWwagS6WStLHkfZMkwkpTAnc+z2w2K6+T9FAul9HT01MTZOYfNUjINSI7SU0U8rtv1yCvalPj8Tg0Go049hs3bkQymUQoFMLy8jKuXLmCdDqN+fl5waparRZLS0vQ6/VShUUnmmc+A+elUgmBQEAwXDabxZ//+Z/jP/2n/4R/+qd/kranDocDO3bsqGnDYbFYsHXrVgwODkrwolKptiFtbW1FqVSC3++HXq/Hk08+if/wH/4DHnroIezZswcDAwNCBlJZtXT+gdqEanNzM9ra2qDX6xEKhZDL5ZBIJGqCug6HAxqNBt3d3Xj00UcFY9HBY6Cxs7OzZs+whQRL6OkTMJnS3Nws19Xc3Iyenh4kk0nodNVh1WxtkUgkhPjEZ96QFWng3gbu/XlKAzc0cMPtjBtuJrQvlFKpJEkB2h36IDqdriZ4Xy6X0dnZKWcjbSXXSq/Xo7+/X2ZFhUIhxONxJJNJOBwORKNRvPjii8IY7+vrQ7lcxq5du+B0OrG8vIypqSmcPHlS7Dt1g/pFEsKjjz4Kl8uFSqUibc4YzD9z5oy0/maFvE6nw6pVq9Da2ipzVHg+A9X+/s899xzGx8fR2tqKffv2YcuWLTWVQ9SvXC4nbc2Jo3p6empiZ2qLNjXmlUqlsLCwULPf6HM24mFvLypuYDVWPW7gPDSuAVvpvxfcAKy002eyqx43jIyM1CTJboQbPv/5z2PLli0fCG4gMeb94AYO0VZxQzQahdlsxrVr194RbqBPwbksPy+5pZUQw8PD2L9/f03JNQM2bFtkMBikHIQHZk9PjwzVoFFleR8zsPw8tb0RA0wtLS2IRqPifHR1dSEajWJsbAybNm3CzMwMtm3bho6ODly+fBnxeFxKhzs6OhCLxaT0i9krHrL3338/tm/fLuVpDFoBkBkUyWQSZrMZXq8XVqsViUSihs1FBeMkdoPBIAGqw4cPy+ZkAE2r1SISieDixYtIJpOIx+OYmZnB6tWr0dnZiaWlJdmUFotFEgw04ARhFosF69evFwMAQEru+azVIUIAhCm2tLR0W/cYfS/CbCV18UYGFagalAsXLmDfvn3IZDLIZrPI5/MwmUyYn58XMFWpVNDZ2SlMHNVo0ngx+KoazFKphHQ6DQCSlFLBdrFYxOXLl+Wav/SlL2HNmjXSL5EGqL29HSaTCUtLSxJk5ncz2UcG5u/+7u/i//2//yd6zQwv+0GPjo5KYBdATXsDXte+fftgNBoRiURQKBTgdrvhcrkQDocleWc2m/Hcc8+97QGfTqdhsVhkmFFDbi4qmOdh3draKkATqNoCgkOHw4HW1lY0Nzejq6sLHR0dKBaLmJ6eRjAYxPz8vAxMYou68+fPY2hoCEtLSxKgKpVKWLNmjQxR1el00ku8ubkZV69eRaVS7QGu0Whw6dIlAbw2m02qHwqFgrSK2rlzZ41Tyfvj/3mf7Ltos9mk/2cwGESxWO3VPjw8jM7OTglyFYtFHD9+HNFoFE899RQeffRRtLS0SCBwcXER6XQanZ2dmJiYwOjoqLTv6+npwbZt23DhwgVMT08DAGKxGK5cuYK2tjY4HA74fD5hCDkcDimXp+29kxheKj5QnUoVkLE6hcEGippI6+vrk59Rf4eHh4XlbDKZcODAASSTSVgsFly4cEHsK7ByFq5duxYulwuJRAJHjx7FhQsXhJXu8XhgNBqxvLwMoBpom5qawtq1a5FOpzEwMICLFy9iy5YtOHPmDC5evIi5uTk5l1W2pkajwcDAQE0Crf78MJlMaGlpkV7LbrdbnE72Zfb7/TXD5YvFIl599VUMDAzg137t1/D666/j7NmzMjsLwHUzBnK5HDQaDVatWlUTLNDr9di5cyei0SiWlpaE8MDrZPKMrCOuB5+pGoRWg4e8VtU5vB2F5A/iyVWrViGTycBms+Ghhx7C2bNnUSqVxHEipuU6MRDEQC+FbUPcbjfC4bC0xmC7zr6+Phw6dAgLCwt49tlnodPpsGPHDly9ehVGoxF//Md/jP/yX/6LBG7Z4u5Tn/oUxsbG4HQ60dXVhaGhISmPN5lM+KM/+iMcOHBAgvoMYqxduxaLi4uCM1UdVyWfz2NhYQGZTEbIMXxGTMg2NTXB4XBgbGwMmzdvxm/91m/hO9/5Dr7xjW8Ic4v6Q5zU0dGB1atXS2Xx5OSk4A1eCx1ZBkSKxSKGh4dRqVTQ0tKCgYEBAFX9jMfjEpjRaDTXtV+4k6WBexu496MgDdzQwA23K264mahz5Cjz8/Pw+XyiE+w4YjKZJL7G+R6dnZ1wOp2IRCKoVCqS1GIsLhgMIh6P11RZptNpTE9Pw+/3w+fzwePxYP/+/TIjKpVKYXR0VGxwb2+vJK9YXcB1dLvd2LBhg5ytHNjOJEk4HMbx48dlfdk5pK2tDdu3b4fNZsOpU6eEhNzR0YG1a9ciGAzKMGsmXzZs2CABZpUhz1gZ7bzNZsO6detEzwwGgyQXGIfj75JYrCYd+L6GvLUQN9COqc9WlXrcQBLkrcANTCSrSdB3gxvMZjMWFxcxOzsrOOGtcANjBEyavFfcUCwW4fF4anADk8S/aLjhliYh5ubmMDs7i8HBwZobzWQycrhrtVoZAsd2HQMDAzh//ry0JuKisV8bM5Xc/Kox4KDoWCwmiutwOHDx4kUYDAZcuHAB8/Pz2LBhg3w+D85wOCx9EnnIMlhWKpWwdu1a7N69WwY7q1lnJinIGjMajXC5XBgcHMTp06drBikB1UPW7XZjenoaq1evhl6vR2trKwYGBjA5OYl4PI4TJ04IS43lhwBqmBnNzc0y0JXvBSDBNrV3Xl9fH7q7u2UDcPg1hU6CyjDQarVYXl5GOByWzdqQ6nqz8oVZzrdiME9OTtYYvnA4jNbWVng8HszNzclAJI/Hg8997nP46le/WsNWACAVP/XBVmCl8oXtYjgInXsnk8lIv8Vt27ahUCjA7/fXDGdi6a3H45HP5/5Q23CRfaE696VSSYDExMRETSm0CpLVw2HTpk3Sd9XhcEiWNxQKIZvNwmKx4MyZM5iZmXnb9SgUCjVsyobcXFSwT3BoNpslAUvdIfvEbDbD7/cjFoshEAjg6tWrMJlMaG1txaZNm7B7927pqenz+TA8PIxLly4JEGYpd1tbG/r7++F0OtHS0iLDxMhIYDD/6aefht1ux8WLF4XFsGbNGszOzqK5uVl0raWlBWvXrhVbVu/M8A9ZAk1NTYhEIjLPguWdNpsNs7OzSKVSMmytVCrhoYceQi6Xg9VqhU6nw549e6Rssr29HQCk56PRaMTZs2cBAAsLCwiFQti7dy9MJhPGxsYkADYxMQGLxSL9LXU6HXp6eqQ/rsoOuxNEDR5w/RiU5M/pjNS32eLPmUjr7OyE2WwWkMhSbjox7Gnc09ODrq4ubNq0CZFIBIuLi4jFYujq6sLmzZuh1Wpx6NAhTE5OSrKL1zE4OCh4gfNDCoUCnE4nTp8+jebmZjz22GNwOBx44YUXMDc3J72nOYiSQ0v7+/vR0tIC4HomowoiK5Vqy0e3242WlhYYjUbEYjF5DpcvX5YkVqFQQDKZxOzsLBYWFvDJT34Sjz76KNauXQuPx4NoNCpAWKvV4ty5c7h27Zpgh82bN6NQKOD06dOy906dOgW3243m5maEQiHZH62trbIPuC68bj6jG601z41UKiW45nYNKNC+MhDAKoalpSXs3r1beh+XSiVxyFmdSmeGrHwyXzkzDKgGX4k/HnnkEbS1tWHNmjVYWlqCzWZDU1MT0uk0otEohoeHpYpMTcYy4XnlyhVs3boV69atE1ustj34rd/6LTz55JPigBMnE6e0tLRI64d8Po+2traa8vJCoYDZ2VmcOHFCCD7pdFp6l+t0OkSjUUxPT8PlcqFYLCKRSCAajQp7zul0IhgMChZla47Vq1dj37592LFjB37wgx/g6tWr0Gq1Ui7PNWA1sdFoFMdNp9Nh+/btaG9vRzQaxeTkpLQb4dnSkKo0cG8D934UpIEbGrjhdsYNNxPGrIAVO5hIJHD58mVJojO4ycoDi8UiyX/OBwkGg9DpdEJSZesltc0Q7btOp8Pc3ByWl5eFGT47Owun04menh6sXbsWkUgEfr8fs7Oz2LFjh1wrO52QnPDkk09icHAQDocDVqsVGk110HM0GpXZqqykIfbgIOj77rsPW7duFV9vfn4eFosF27dvR1tbG9544w2cOXMGfr8fx44dw5o1a4RsYLPZhDCh9uPPZDLo6+uD1+tFOp0WfAZAyBmq7ZiZmRFynpogu5Oq19+L3Ag3vNWZ9UHgBpISboQbmGRLJBJviRuam5uxbds25PN5LC8vX4cbrFar4AbKW+EG4u163FBf1XYz3MAKPOKGWCx2HW6YnZ192/X4KOGGW5qEiMViGBoawrp162pAJNkGAMQRMpvN0rOWsxI4UFpVLL1ej/b2dmi1WkSjUTnoTSYTXC4XWlpacO3aNQmmNzc3Y3l5WYYsLS8vw2QyYW5uDsePH0cwGJSFpmIAK9PVKTabDffffz86OzulB66aDWW2rampCa2trQgGg9BqtVLJAECGqLAa4vz585iZmcHHPvYxOBwO+P1+rF+/HktLS5ienkYkEsGhQ4ckkEfjbDAYoNFoEA6HEYvFRKkrlYq0OGG5OpkUWq0WGzdulAEtTJrws8rlsoAcYAUclEolYZXxdcqdEii7kdDgcXjNO8k8Xrp0CXv27EE6nUY6nUYsFpNhUQwsWK1WfPrTn8YPfvADGe4E1IK1+udeD+JoBNVDkoC8tbUVXq8X4XAYWq0W8XgcbrcbNpsNmUxGSsZ4Pep30UDr9Xq8+uqrkmXWarXi6Gs0GszPz9e8X2W38Pq7urpgNptx6tQpScgVi0UEAoGajPaPf/zjd2woPwoG9RdFVGDFQMvAwACGhoYAVAGa0WhENBrF/Pw8zGYz7Ha7tORgWz2NRgOPx4Nf/dVfxdDQEF577TUJ9oTDYfmcXC6H9vZ2tLa2wmazwWazYXl5ucZROnr0KKLRKJ599lk888wzEqhiFcP8/DxMJhMCgQC0Wi0OHDgAp9N5XYs4VQ+0Wi1OnjyJTCaDlpYW+Hw+eL1efOYzn8GpU6fg8/lkFpHf75dqu+npaaxatQpWqxVLS0t47bXXkEgk4HK5pKIhEolIcGP//v1YvXo1rly5gtnZWcRiMRw+fBhbt27Fnj17MDs7i9nZWWFasLqvUqlg+/btNWXmd5JdrVRWZhCxmhGo7eGsBhPqy1WBFTtjt9vR1taG2dlZ6R3sdrvh8XgQCoWwuLiIzs5OzM7OSoC3paUF7e3tWL9+PVwuF6ampjAzM4PLly9L4JLJq9bWVnR3d8PpdKKzsxPz8/PSDqe9vR1DQ0O4cuUKnnzySVgsFjmbKZwzRULF3r1733Ktychm+TdJGm1tbZibm5OgLFt6WCwWYSN+8pOfFOIH9x6rckgAaWlpkb6j7CH6s5/9DOvWrcPevXsxMjIiVZYcBG+xWIRJvmbNGin35/WqwSFWYHI91QpWna463J3nx+2q99zvvHcmY6empuByubBv3z5873vfk/OODFCDwSCOcTabFRvodDqxsLAgbTbpGKXTabzyyisSFGZ/czK1gSoGqVQqSCaTePHFF68jlhQKBXz3u9+FTledq2A0GmUO25YtW/DEE08I7mWrUpV1TnajTqfDlStXkM1m0dnZKazbxcVFnDx5Eq+88gra2trg9/vF7v3Zn/0ZYrEY/umf/gl6vR533XUXDh8+jEOHDuGNN96QuURsYcdWCmTl3nvvvYhEIvjDP/xDabvHRAJbLyUSCezatQunTp1CKpWS/aLVatHX14e5uTkUCgVhB1ssFrEzjXZMVWng3gbu/ShIAzc0cMPtjBtuJqzSVhPjpVIJQ0NDuP/++6XdIJPzdrtdKgMYwFy3bh2GhoZk/9TH4yqVipB79Xo9Vq1ahUgkgmw2C7vdLpXubW1tSCQS2L59u7ToCoVCOH/+vNgyVsoAwK5du3D33XdLAo0xK7auXV5elj7/p06dkj2r1WphtVpr4oO0136/HydPnsT27dvleolxZmdnBWcUi0U4HA4UCgUhgGWzWRlMTBthMpnEfqjnAv3kmZkZeU2Nkf282eQfdXkvuOHixYvYu3cv0um0rP3NcMOzzz6LxcXFG+IGoDZWSXxQTza4EW5oa2tDa2srIpGI4AaXy/WB4waVbP9WuOH06dPS2q9YLAqBiffyox/96BcON9zSJEShUMC1a9fwwAMPCLOJD1gtX6JDQcPZ3NyMjRs3wu/3w2QyCeOJjJZisSgHrFq10NzcXFMWQ/YUA2dklHV2dmJhYUFK0alw9a2dAEj5o9frxfr162G1WmsUlqCHRqxUKklwP5VKSbaJPfYqlYoM1tFoqsO1yE6LRqO4fPkywuGw9Fon81ZtCcUDiD0XWfHA8jZmGoGVvpderxc7d+6EzWZDJBIRdoVanqSWE9Ggh8NhjI2N1WQV1c17p4lGoxEHnyVl7/QAeu2116TVTD6fl9Jr9jdcXFxEKBSC1WrFo48+iq997Ws1v8+1YTZVdcxYvaKWg1EfqQOlUgm9vb1SeQRAGCkqi4gMCu4L6jwPD7IamJhSS9qAmyeqzGazlJg98MADAlBaW1ulxQ0P9JaWFnz729+W4ENDPlhRdYXB7/Xr1+PVV19FMpmUhCcrIpigYICL/b8TiYS0KTp9+rTY2Y6ODhncpw6U4gClubk5YZ54vV4AQDQaFX3VaDSwWq1YXFyUJDOZBwzUrV69Wt7LqjcAsj8A4NSpU3jzzTfhdrtlWOHExARWrVqFhx9+GE1NTTKU8Kc//SmMRiM+/elP45VXXsFrr72GdevWoampCefPn0dTU5Mw0nw+nyS4f/azn6GtrQ2PPPII7rrrLszOzgqT6NKlS6hUKujr68Pq1aulzSBQ3SdWqxVr1qwBALEjdxK7S6PRCMOOZzltFc8Y1QFV7Z76jPi816xZI7OozGYzyuUypqenodPp0NHRgWAwiHw+L8x0sk0/85nPIJfL4Y033kA0GkVraytmZ2fFUdHr9dKihraRA/PYljEQCCAUCuGVV17B448/Lr1s29raZC+wvL2trQ2bNm0S3ECcUQ+E33zzTcTjcXR3d2NxcRFNTU34xCc+gcnJSczOzsLr9aKrq0tYjel0GleuXEFfXx/a2tpw+PBhXLt2DW1tbRJ0aG5uRjgchtfrxY4dO/DUU0/B7/fjwoULuHbtGqamppBKpdDW1oaWlhaMjo6K7SdW0Wg02Lp1qzhhKojmPXBNGaBW17KpqQlLS0s1uqAGIm4XUR3pbDaLyclJYQ5aLBY8/PDD+MlPfiIt6nje0lFxuVzI5XLo6+vD2NiYtJCjw9Xe3i7MR6PRKPO+TCaTMPZ4NhuNRjgcDqTTaXz961+XdSNWJjOQFbIGgwF2ux3xeFxYukxY1w9FZXKAbNfVq1fj4MGDaG5ulhYex48fx6VLl1AulzE0NCRzzNauXYtTp07h0KFDGB8fh8PhEBZiuVyWal32eWeQwGazyXyNYDAIj8cjcy54X2pAUqerDki+//77ce7cOUlWdHd3o7W1VTAvGaLqsM47vd1CA/c2cO9HSRq4oYEbKLcjbriZqMl+CoPxIyMj2L9/vzD9s9ms+FFGoxHZbBbRaBSrV6+WJBTbcAFAS0sLdDqdkBNMJhPa29uh0WjkNbvdjpmZGeRyOYTDYbS3t+Pll1/G0NCQ6CFJrtRHViQ+9NBDwhrneUoCrdlshsvlEh0HIC3/crkcUqkUXnzxRSSTSXg8HpTLZennHwgEMDk5iXw+X9OuKhQKiR4B1Q4srBxlDK6jowODg4NSFcWq92KxKK3feV/BYBA+n++62BfXpCHXC/cscQPjCu9EDh8+jAMHDkj8961ww2OPPXbLcIPRaJQzn7iBWB14Z7hBrbS7GW6oJ1rcDDewwvh2wQ231HpXKhUEAgGMjIzUBK75p1AoSL8vvX5lSHUul8OGDRvkEGZJFAP1HBalOlEEB4FAQCoSWEGglv4YDAYph6eDyGQFDSeTEeqAkc7OTrhcrpqSLv4ekxAq64KD9VjSTUNFh8psNmPr1q144IEHAFRbeLBknpl+i8UiQTcygmmA2SeSn6VuNCYiAIgTt3fvXhkGRfaxmvGtnwXBDTU7OyusBq7pRyWD9mELHXlmKN+NIwZU1/jcuXNwOBwol6tDmEKhEAKBAOx2O7q7u1EoFBCJRPC5z30OLS0tNWW2/P6WlhbYbLaaeR7UXa5PPp/HPffcA7fbXQO8N2zYILrBlmI8ZHO5nOjuqlWroNFUe/jF43FkMhnReQ7BLJfL1xlUimpQ1WvUarXo6upCf38/EokEPB4PDAaDVAhxL4+OjuLIkSN3TDD2wxauj6ozHR0d0q6NNsZkMsFut2Nubk50QKutDvtjOe7+/ftlcDRLGIPBoDhZzc3NWLNmDTZs2IB8Po+f/OQniMViACAAFFixw3a7HblcDh0dHdLrfHFxER6PR1rPdXZ2SmsmVtLxusniCQQCeP7556UlCXudu1wuXL16Ff/7f/9vjI+Pw+12IxAIYHl5GcFgEMvLy3jooYdQqVSr1a5evSrO0PLyMsxms/ybCZvp6Wl8//vfF3DCBA3Zn1evXkUoFEJLS4vYcwBYs2aNDGgjS0I9U253KZfLMoNJJRSojrV6rqlB1frnU6lUsG3bNtEFnmuFQgEej0dKUHO5HAqFAux2OywWCzweD9asWSNzPZqampBMJtHR0SHsQ65JU1MTrl69ivHxcSEJ0I4SXNvtdjQ1NaG9vV3uj2xDgttVq1bV9PtX7SXX/vTp0zh8+LDom9VqRTwel36l+/fvx/bt22GxWHDixAm89tprMmj32WefxfPPP4+ZmRnEYjGpBCVbzWKxIBKJ4Kc//SleeOEF2Gw2RKNRKUkOh8M4c+YMxsfH0d3djfb2dmnho9Fo4Ha7pa+zegaqrLH66h51vejsvlOH5BdVVCxG/JrP59HR0YFQKIQtW7bIEFQ669u3b8fGjRvR1dWFbdu24ctf/jKsVqtgZo1GA5vNBofDIWczcaXT6URbW5tUUFCvTCaTsGmJbZ1Op2AIrVaLQqEgyWUmdDm7YePGjXL+82c3ErPZDJvNBrfbjZ6eHgSDQYyMjOAf//Ef8corryAQCEi1MUvifT4f/vEf/xGLi4swGo34gz/4AzzzzDPweDxIpVLSMoJ7mtiDAYFMJoOXX34Z3/nOd5BKpSSQYDAYJAAZCoWQz+dx9uxZnDx5EpOTkwgEAigWi9i1axdKpZIEaxgY49887+5UaeDeBu79qEkDNzRww50otHFAbaIzn8/j4sWL8jPqB3vqa7Va6YphNBqxYcMGaLXVGap2u13ICwsLC7KWPP9YPaPOZWUw2Wq14tq1a9JqEqiuK3EKr7Ojo0PWXWWrc23z+by0TGIlEOcyEY9wdgs7rFy+fFnOgng8LoRfxhFZcc7qJrZxJ7nOYDDg7rvvRmdnp/ihxBmpVKpGx7RaLUZGRq4b+MskSaMd0/WiEhf4nN7NvlVxA4P6oVAIy8vLNbghGo3W4AYAb4kb1DPiveIGrVYr6263298WN/A8Ult5qaLacRU/vFPcMDIygiNHjrzvNft5yC1PQmQyGVy6dOmGfT0JSNPptDxM9kp0uVzYuHGjKACDQOwTRgeDTp7BYEAymZT3AtVF5DT1bDYLrVYr7Ck6QrwOKqZa0QCsZNO6urqkwqC+nxmVhddC467VVoeccnCbTqcTIMuZDpFIBNPT0xgaGsLExERNFlvtSUsWGIe40oCzioHAJJ/Py3v5vLu6unDvvfdKNpwtUgjA2bqKz4D3xEqWRCIh93oj1s+dIDSoHMaYzWbfNRAql8t49tlnxbEHqln0SCSCUCgEs9mMrq4uDA8Pw+Px4Omnn5ZMrsFggMvlQmtrKzKZDMxmMx577DHZV0wqAStrMz4+jnA4LM6c0WjE5s2bhckOQA51ZmuBKuOwv79f2JsqW5KJOADXDWtU9Ue9DrIkCdQ/9alPyfwUliynUilhHpTLZXzta1+749mHt0pUJgftBBPB+/fvF7tB+5pIJIRBQhvDcm/22xwdHZUAfiqVQn9/P7q6uvDkk0/iE5/4BDZv3oy2tjacPXsWi4uLAACr1SpDmcnmJfuW37lq1So52MPhsADNPXv2SIsSsizY2o/6SnBMlgOBQzabxfDwMDo6OrBhwwYkEglcuHBBGFsvvPACAOC+++6D2+1GKpWSvcGSZp4BPA+4V2ZnZ/HII4/IAG2gqv9WqxXpdBrBYFDa3pXLZSkFVlm79Wt0OwvPIO59spAIFlVHBVjpAX4jZmOpVB1Q29XVVfNzt9uNRCIhQUfaVDoeGzduFH0BAIvFAovFIoN/N2zYgAcffBAHDhxAOp3GSy+9VDM7yul0imOj1WplWFh7ezt0Oh2SySRisZicvzqdDjt37pTScKvVKmXwhUJB+uofPHhQWuKMjY0J4+XatWs4dOiQzMgi4zCVSuHq1at46KGHYDKZsLi4KMwY9jQlyzsYDCISiSCfz2N8fBynT5/Gjh07YLFY5LM0mmq/XuISAmsA2LRpkwTGuY5qwIDrRiIGXwMgZw9LnPm+29GR4z5mUlev1yMUCgmZxO/34wtf+IK8P5FI4OTJkzh27BgmJibw0ksv4R//8R+RyWTw+OOP4wtf+AJ+//d/H5/97Gexfft2OVczmQwGBwcxMzOD6elp6XXLVlDsXUvyChm0JK+Qmcuq2mw2K07jqlWr0NbWJr/3dvfLIB5L530+n7TYIYYeGBgQexePx+UM0ul0ePnll/E//sf/kCCg3++XQJzNZpN9AqzgMn5uLpeTNkr1gw/JGkulUnC5XNBqtejs7MTGjRtlTg+TMGTKkTx0p7ZjauDeBu79KEoDNzRww+2MG95K+FyA2njM1NQUfD6f+BMAJPDJlo4WiwWFQgE7duyQ1kpMVIRCoZpkHnWZbGx1PhWT9vF4XFo5Ua+ZAGCVAwD09PRItxNWHah/6MOZzWaJSbEag3Z8YGAAiUQCFy9ehN/vl8QD5zjQvttsNrl3tTqI5zhxR1dXF+6//35J3hE3sPU5dZO25sqVKzW2mXrJNpcNWRFWF7DiRG31/k5FxQ08o2+EG65du1aDGxgLaG5uviFu4Jn/XnCDVqu9DjcYDIZ3jBtUPVFxg3oeEc8ydnG744ZbTrUsl8sYGxvDwsJCTa8/YIVVn8vlpMe4mo3ctm0b1q5dKwpN4EmHjoqRz+eRSqUQjUZrQIja8w5Y6TXI6eL8f6lUqllAtdSNzg7ZqnROVGYFADG8/FOfLeP30wCWy2VEo1EEAgFUKhWEw2FEIhEEAgH5TCZoWMZTKpUQi8VQqVTg9XprgBYZwUy2sC+7zWbDAw88IGX7hUIBFosFWm11+joNrpqdBqqgbX5+HqOjo9exnnh9d8rhT0eMrBW1CuXdSjgcxle+8hVhyDALy6Au22TNzc3hmWeewbp16ySjq5Yy0pmm0MBR78rlslSwcE80NzdLWxtWw6gMCR7klUoFmzdvFmbC/4+99wyy6z7Pw5/be9m7vS+wWFQSIAmCYgHBToqkbLnIRZI9tlM8cZLJTJIvmUy+JB/yIRknM/nbEzu2x7GtxI5lybbs2DIpixIpVpAEARK9be+7t7e97f9h87x472/PXSxIgASW55nB7GLvuae+5/09b9cGIeXZzMag4tZKludDQuJwOHD06FGMjo4iFAohkUggk8lIv0m3241QKITf/d3f3VBya+PmQz8zyvS+ffuwc+fOJh1KZzuzyhgw7u/vx9NPP42//du/RbFYxNDQEEKhEDo6OjAyMoJQKIQPPvgA3/ve9/CDH/wA+Xwei4uL4tyhkRUOhyWzsFQqIRaL4dy5c7hw4QISiQT6+vqkF2qlUsHAwAAOHjwo7ZU0WWTGjjZiGJjt6OgQQnHXXXfhsccew/Hjx2VgKtveLS8v4+///u9x6NAhPPXUU+jo6JA1qFwuIxqNCsHS2WilUgkfffQRrl69ihdeeAE9PT0IhUIIBoMAIMSEBKitrQ07d+4EgCbSy3fo81BxRuJG45WOG1671rWNRkP0MP8PXGuZWC6X4fF4cOzYsaY1nD1FuV43Gg0JclWrVQwMDOD999+H1+tFOp3G/Pw8otEonnzySTz11FMYHBzE6uoq8vk8Tpw4Ifti0sTw8LA4pvx+P4LBIK5cuYJ8Pi8OzmQyKXpuZGQEw8PD0ieZz538wO12Y3l5Wcraq9Wq9M1NpVJIp9N44IEHEIvFUCqVcPr0aekP+tprr6FUKuG5555rCqAxoYGl/Ly/XIeob48cOSLrhcfjQTQaRaPRkNY1zAg/ePAgAIhhp4Nn5EgAhKvpthl8hszQ0+eyHcFEF/6+tLQEj8eD3t5epNNpPPzwwzLYNBAIoL29HYODg2hvb5fMw0uXLuE73/kO/vAP/xC/8Ru/gbfffhu/+qu/itHRUami+PDDDyXYSm5LeSyXy1heXpZetNVqFcvLy2K0kwtGo1F0d3dLIHptbQ333Xef6GwrZ7xe98mnyTO1U4/nxgGanA0EQCp9PR4P3nvvPZw9e1YyKIeHhyWIS+cIHW/UqXwfQ6GQ2AG6qowOQgaH2cb0hRdeQDweF5nkTwauKbtan3xeYPNem/ferrB5g80btjtvaAUd1NH6J5PJ4MSJE9L2ijJbq9XEackWYfF4HA899JA4PHXQgtWA5XIZqVRKqnCYcMVkCiZUANeqGrXvS9uWnZ2dYivpJF/tz+NazkA3gwtMUDtz5gzS6TRmZmak7ToTx2jrVSoVpNNptLW1CVfhvvies1rz6aefRmdnpwz1dTqdTc5d3l+n04krV67g6tWrG5zIrHiycQ3kDfQb3GzeUKlUNvCG6enpDbyBs0c+CW9gUIy8gVxS8wYATbyBfJG8wap6yeQN/N2KN+zatWtT3vA7v/M7WFhY+NjP67PGLdfeXLjff//99QMa1RBUShQSPmyWxx49ehTRaPTaCf+/BY2lhlwcqexo9DAriopPO424DbAeddLlfzo6q6sa4vG4HJ+Cy89IAihgjE7phZT7ZLCF94YRWr4U7GvHbRil5YtcrVYxPz+PUqmEaDQqpInnz3tJZ9wDDzyABx98EE6nU4w4Zp1xsIoZxeWL8O6772J5eVn2rZ8pAAmObHeQ4DK75JP2/7t8+TJ+4zd+Q8iCVtYrKytwu93S5uVrX/saurq6pDxxeXlZyMGrr74qz0ITMe630WgIeWs0GjIkklk1AHD+/HlcuXIFExMTaDQaYqxFIhHs2bNHrj8ajUpUO5/PizODMkzwPeB7pf9211134Ytf/KIYBfPz8+L4ZT/GP/iDP8Dp06eb7pfev41PDqv3nSTN7/fj6NGjsohyUaaRdODAATz22GN45JFHsGfPHiwvL2NiYgJXr15FZ2cnjhw5gl27duFHP/oRXn/9dUxOTiKZTIpDjS00SProVKJO4mybq1evolQq4cKFCyLPDDz/+I//uDivrMD1gGSBRgsHXQcCAczNzeGjjz7C0tKSDHNtNBpSaj89PY10Oo1yuYzHH38cX/7ylxGLxRAOhyUDr729HUNDQzh8+LBk4i0vL2N8fBxXrlzBM888g0OHDuHuu+/G6OiolFIWCgVUq1Xs27cPoVCoKbNUB7U/D0Fetj/gOsO1UgeVtI7juqyzGXVZLQNpIyMjsg9mHzKDMBaLobe3F/fddx+efvppXL58GW+99RYGBgbQ3d2NRx55BIODgzhx4gT+6q/+SrLSvV4vVlZW5DxKpRIymQwajYZkk2UyGcTjcZw/fx6XL1+G0+mUNjjAui59/vnnZdaV/gdAyDv/0XAKhULw+/0YHBzEvn370N7ejtdffx2lUgnJZBK5XA6hUAjJZBI/+tGPsHfvXjz77LM4duyYVE6Sq7jdboTDYXH8FgoFzM/P46WXXkIikcDzzz+PkZER9Pb2IhgMylB6GqPMGiXPMjN6dFUPDU7tAGI7MlYDWDnytguoF6iHACCfz2NyclJkwO/34ytf+Qqi0ajIlMvlQiqVAoCmSjW2oJudncUf/dEfIZPJiINHZwCT1zHo6nK5JMigs/s7OzvF6cB2DNlsVrjy7t27cejQIbmWVg4f/eyYAMM2CpQxOkPOnz+PXC6HbDaLZDIpssnEGL7jANDe3g6fzyfJN3QoxONxabtA7sTKOGB9Deju7hZ5pC2g20Q89NBDGB0dlX3STtByTbn/PASETdi81+a9tyts3mDzhu3MGzbD2tqape+lVqvh1KlTUimi1yzOFKGNBwD33nsvdu3a1SRD7NTBe8rWtpQpvmsMCFHe6APTTljKjMfjQXt7e9O7SRmijw1o9mHRX8aACz9je3aeD/1reh+5XK6pHTDvDf95PB7xizHxjcdiu0fui+//G2+8IV1VCAZq7tQM9FsFysLN5A3/3//3/23KG9gu72tf+xo6OztviDcwYefj8gYObN+9ezcAyBwg8oZcLie+7a3wBl4neUO9Xt+UN5w5c6bpft1pvOFTCSHX63V88MEHWFxcbCKKVGg0LiqVCnK5nBhmtVoN/f39OHLkiGQmAZDBeYy6cogzFy+ddcasA6/XKyVeBJ1PVI5UoHzAFJB4PN4UCNGKltuYZaA6S4HCzYiYjn4VCgUpfdQKGYAYjyxDD4fDcr9WVlYkq4LXy2vhNXZ2duLZZ5+VhSWXy4mBylkZ+n7wBfF4PJidnW0qP9Nkgb/ryOJ2Bltq3Wgv3M1w7tw5/OZv/qZkP7LnHbN7yuUyZmZm8Oijj+Kf/JN/gu7ubonS6wwD4Fo2AeVOL9oMhLlcLtx1113S+iAYDOLSpUtyPuVyGWfPnpX3rtFo4LHHHkMoFEIoFEIkEpEFXve5BiDEke8fcG0gOuX5rrvuwi/+4i/K+6Tb2jgc66XP3/jGN/D2229vyDYgWbFxc6DfYZ0NQHk6ePAghoaGmjJH9u7di0OHDqFWq+HixYv40Y9+JIOqg8Egdu/ejc7OTjgcDrz99ttIJpOIRCISLNixYwfee+89pNPpJqfagw8+iB07dmBiYgKHDh2C2+3GyZMnZfZDPp+XGTmVSgV79+7F2NiYXEcr+P1+9Pb2igFVrVYRiUQArJOa3t5eXLx4ET09PZiamkK5XMbevXsxODgoQ6RWV1cxOTmJb37zm3j77bfx4IMPCmEYHh5GV1cXMpkMBgcH8eCDDyIcDovhePLkSUxPT+O9997D+++/j5mZGaytrcn74/V6cffddwOABIf5znIt+jwYVy7X+pBTBqeAa6RQZ1NpA4XQhI6GCAeUHzt2TFoOhkIhtLW1YWxsDAcOHMCDDz6I3t5eFAoFzM7OYnp6Wsjigw8+iHK5jFdeeQWTk5PCS7q6upBMJjExMSHGstPpRCwWw+DgIDwej2QoXr58GalUCpVKBVevXhWeUqvV8Mgjj0j1Syv5ZSmx5jwk2bOzs5iamsKZM2fgdDqlPD4ajSIejyMWi8l8qR/84AeoVCo4evQoBgcHxXDzer3o6+vD/fffj4cffliyfYLBIL7//e9LtU8wGBRnb6FQEP7EEuVyubzB2OUawGvjWqR5CZ9tR0dH0/O808jzVkCDgcYw+8WeP38ejUYDO3bsgMvlQl9fHw4fPizZgGxNRJmvVtcHNZM/lkolnDhxoikblE4COvJ1u4pSqYRHH31U3ika15lMRpz5nKPGPrsulwvPP/889u7di0wmI+XnJpjtxUSZUCgkhlcsFsPo6Ch6enrkXero6MDq6qpUt/G9ZwCanIHtVY8dO4axsTEZnJnJZJDL5Zq+73A4kM/nZWaFw7Fe8Uzd7/f7haeUSiXcdddd+NKXvtSUYcttuA4y65ZOs88bbN5r897bFTZv2AibN3w+wDXeCouLi3j//fc3dB2hPmQCFFvsPfbYY2hra2vyg1FvUv5YcUjHMv1J/I4OUADXOA8TAihjuqqFgSk+Yz5bABIk4VrNbYrFIlZXV5vsV75LTE6Ox+PSZiqXy0lXFeBakkYikcALL7wAv98vQQdWguoEYWDdJzcxMYGzZ882yav2gX0eExQ2A/nCjc6A2Aw3wht+7dd+bQNvANCSNzBhx4o30F+xFd7w+OOPiw+AVRHkDbrqS7eBsuINjUbjc8UbPpUgRKOxPsTz+PHjTVFLKgVuw3LXYrEoxojT6cR9992HPXv2NA2N48JGIQKwQbHR8GO5tjbAeGxtBGnHDwXT4XDIhHRWPnAeBSOhLN9yOBxNQRan0ymOL0buyuWynCvL2bgtj08l3t3dLUNaWX7T19cnZUZ68BWNV12h8fjjj2N4eBgARCHQsWfOteB189zff/99aRVlOi2Bay2wPi+4GRFdjUajgQsXLuC//bf/JhmKtVpN5qMsLi4im81iZWUFO3fuxJe//GUhx3wWoVAITqcTu3fvRigUaipx1IGxWq2G0dFRPPDAA1hZWZHAGI/F66Jc8Pd9+/bh6aefhsvlQjKZlGHCvB86iqsdLZpQOJ1O3HvvvfilX/oleL1eKQVOp9PSOiwSieB//I//gTfffHODQmUJ3J2kVG936OwhLSs01vx+P5566ikpT83lcpidncXVq1dx6dIlzM3NSXZYW1sbjh07hmq1itdffx0XL15EPB6XDH8GMcPhsGS98hiPP/44Dh48iFOnTuHll19GT08P4vE40uk0uru7EY/HpZckHV0HDx60bAlCaOLd09PT1H4jmUxicnISnZ2dkvE7MDCAM2fOwO124/7770dnZ6f0WE8mk+jo6IDP58PVq1cxPj6OgwcPolKpYG5uToIHb775JtbW1hAMBtHR0SEBlmw2i2g02pSZTMK+e/duDA8PC6nQWXx8Jze7zu0CBubPnDkja40eJElSCDSvUXo90rJM/XXXXXehv79fZisVi0UEg0EsLy/jtddekxlMwPpw8AcffBCdnZ2YmJjA0tKSZIW1tbWhUlkfhM75SHxXBgcH8TM/8zPI5XJ47bXXcP/996Ner+PChQuIRCJNLUe4fh8+fPi67QOczvX+0BySxnLxtbU1LC8vo6enB5cvX8bo6KgYR4899hi6urokkYNG4fHjx/Hqq6/ivvvug8fjQVdXl8j42bNnpd1Zd3c3PB4PisUipqampMJpenpaAoCNRgPRaBQHDx4U7mM+B5bqa46lM8mZGQdA1jPNCbcb9PWFw2HJ9s5kMjh16hRisZjcE7bCYCZfKpWS9m3aWUaul06nsbKygmq1imAwiIGBAdHJgUBAKgHoHOrr65MeynRClEolaZFXKpWET7tcLhw5cgRPPvmkOH34HpZKJWSzWalOSCaTSKVSSCaTTRwpHo/jvvvuwyOPPIIvfelLku1VqVTQ39+P3t7eJi5PXsIEH1ay3XvvvfjSl76E5557DtFotClQwL7ohM6SzOfziMfj2L17NzKZjFSWRCIRvPDCC9JCArjmjNQDBcn5tbH4eYPNe23eezvC5g0bYfOGzw8YRDL9MtVqFT/4wQ8wPz8vlT8EdZ6e4dDb24sXX3wRHR0dTQmz1J/8nTyEgQEmJDQaDVnXdeIDeYTT6cT9998vOjsQCMjzYxIBKyto7/T29sqaW6vV5NispuR6z/1HIhFp45TNZhGJRNDR0SFreDgclsqcWCyGF154AYODg5KEwZaXpsOcgc4f/OAHkhzNa6bDmokSNppBf+fNxCfhDY1G41PhDU899ZTwBs4d5v0wqx424w2//Mu/fF3e8MYbb2xIVLwTecMtH0xNVKtVvPbaazh//rxESM0bSEOnWCxKVlSjsd4i49lnn8XevXub+oDrhYlBBt1KiRle+XxeqhvoaKNiY8kYv8cIGZVMd3c3HnjgATFGqNjYS4/Xoc9HG1McaE2lSuFjhu7y8nJT9pYmT8ViUa63VlufB5FKpeD3+5FIJKS/XywWQyQSQSgUkgGDR44cwSOPPAKXy4VKpSLDpFgBoYMvBIMXFy5cwLvvvrthCI8mbh9nQJ2NjZicnMR//s//GefPn5dezCRuHAKWTCaxc+dO/Mqv/ApGR0dFsTJYt7KyIgqKC6QmBZFIBC+++CLq9ToGBgYQCoUQi8Vw3333SdZ3OBzG/fffj66uLvT390sf/SeeeAK7d+9umjXC94+ywKwMvkM8j0QigV/91V/FP//n/1yis5yDwmuMx+P4gz/4A7z11lsbMgq4iDQaDbvk8SbCrEZj8JOkq9FoYP/+/Th8+DA8Hg/C4TA8Hg9yuZxsx2yVcrmMH/3oR7h06ZJkPc3OzgpB9Hg86OnpkYyRWCwm2bbHjx9HoVDAxYsX4ff7cfz4cTz00ENCdDnbgQGIWCyGXbt2Adg8+4mfRSIRKd3mmjA8PIxGo4GFhQUMDQ0hm81iYmICxWIRqVRKsmhCoRCAdYcHA9pvv/02Tp48iXA4DIfDgVwuh0AgIGW6nOvDwLXH40F3d7cQHraFikajeOyxx+Dz+aTaRBvEACSovd1BXTUzMyPyxSwu3gM6XvkcuOYTmsDpINfzzz/flL3NgWZs+xUOh+H3+xEIBPDRRx/h+PHjmJ+fx+rqqmSjZ7NZcewWi0VxErjdbnR2dmJtbQ3Hjx/HxMQEarUaxsbGUCgUZPAt+0BXq1V0d3eju7u75b3QThJW8nCtzmazKBQKGBsbw/nz5xEMBuHz+XDx4kV4PB709/dLVg6TORKJhJTxvvHGGxgcHMTS0hKmp6fR1taGcrmMixcvSmuIRqOBrq4u1Go1dHV1yVrEvtv1el0CdTprnf/oTNDZjMw009tR9+iqn+0q79SnemhiIpFAIBDA/Pw8pqenJdvJ7Xbj537u5yTowMw+Gt5erxfhcFjWUvLXaDQq7WLIeZntSgd/Op3Gn/7pn4qRxdal2gHg9Xole2znzp34+te/jmg0ikplfUA0E2pYXQwAU1NTANZlt62tDR6PB06nU7ZPp9MIhUJ48skn8cgjjwBYd6AAwNLSUtPaw3Ph2uLxeLC0tIRAIID/9b/+F/7kT/5Eyu9Zfbd//36pBqbe4P10Op2Ynp7GwsKC8Hy3240XX3wRvb296OzslJYNDPrkcjlpI0A7gcEZGzcPNu+1ee8ngc0brsHmDZ8/3VytVhGLxRCLxcROAtb9NHNzc3jppZcANCf66gQnOtUbjfWBzwzw01biP2DdXoxEIjKXVbfZaTQaaG9vRygUkvVV+5X6+vpw5MgRqZLkc6T/iD412qSVSgWDg4OSxOZyuYQPJZNJrK6uio+LsrOwsCCch+3K0+l0k5Oa13Xs2DEcPXoUAGTAr07K5T2hP++tt97Chx9+2OT/crvdSCQSCIfDtn7+lEHecO7cOUmy+TR5QzAY/MS8ga3UPilvMP23dypvuKXhEjNKy4GfLEE3ndh6YWGWP8up4/E4nnjiCWkHonvB8cZTybF3ITOi6OTPZDKi+DicJpfLiZFhlvh5PB7cd999ImQsY2OQQpeK6UgalWy9Xkd/fz+i0SgWFhbketgvt1AoSMkYh+bxHB2O9XJylmrSWCOpYN8ynW3AwMfIyAh+4id+Qu5BKpWSzA6zhB24FsDx+XxIJpN45ZVXmgZk63I2LgDsxWnjkyOZTOK3fuu38OSTT+IrX/mKZAUC6+WVdIiOjY3h137t1/DSSy/h9ddfl7LWZDIpC6gudXS73RgYGMCxY8ektNzj8eDSpUtIJBIAgOHhYezcuRMul0tklBniAJBOp/Hkk09iZGQEFy9elAU+EAhgbW1N3gXgmhwlEgk89dRTePrpp7F3714Z5JbL5aScEgBisRj+7M/+bENEVy8IzJyxSx5vLqirqG95/wuFgrQL+uIXv4irV6+KzqGRVq+vDy9LJBJIpVLIZrNN5Y1EtVpFNBrFvn37cP78eameojOOMxIcDofMUwCA3bt3S5YJB5LW63UZIrpVuN1uDA0NYXJyUqrJOA/C4XBgaGgIH374IWKxGBqNBqanp/Hcc8+hu7tb3oVIJIJEIoG5uTnU63UsLS3JoMuFhQUZwEp9vLKyApfLhXw+j8HBQXGo8V43Gg08+OCD2LlzJyqVipAXnYUBQHpRbnfw2SeTSUxPTyMej0uQS+sXnRxA/QBcq17U63+hUEAkEsHY2BgeeughvPrqq2I4kRAyo9rpdOLcuXOS7cpgEfVoLBZDNBrF6uqqlGtz0O+lS5dw8OBBWY/ff/99PPHEExKICoVC8Pl8Qn4ff/zxJoNxs3sCAP39/Th+/LgQ7Y6ODly5cgWFQgF33XUXJicnhYNcvXoV3d3dkpTQaDQQi8WEZ12+fFnWgGKxiImJCblXPp8PU1NTcLlcMvR3YGAAbW1tSKfT4kjv7e2Vlj5mNpzOXuRz4bPS7SECgUATX7Mqcd9OSKVSEoRkQgj7ZDscDpw4cQIulws9PT24cOECRkZG8MILL+Av//IvAUA4W3d3NxKJBNrb28VxWavV0N3dLdl4lUoFnZ2dSKfTUhZ++vRpCXK2tbVJeTh5ck9PD8bHx4Wvrq2tobOzEy+88ALGxsaQz+cl+MHnnE6ncfbsWTk3JuP09vZi//79AK7NGcpkMpibm8PQ0BB+5Vd+BcvLyzh9+rQM565Wq7j77rsxPj4uCTg0DFml8Qd/8AcoFouS+MMZGxMTE+jr60MqlZIMS6fTidXVVYyNjYljktnEjUYDTzzxhPQu7+jowAcffIArV66Ik6Sjo0P0DNtXuFwuvPzyy5+NAG1j2LzX5r0fFzZvsL4ngM0bPg+o19cH6R48eBD9/f3I5XLiXK3Vanj77bexe/duaROmAxGsLKeDv9FoYM+ePSiXy/j7v/97SRLgM6HNp+c15fN5aYvucrmauoHw+QaDQRw7dgwej6epFTqTtQBIoi5n8hQKBSQSCYyNjeH999+X89UBX/rvWPnUaDS3S+T7ruXF7XbjoYcewpe+9CV4PB6kUilkMhlp5WMGILxeLy5cuIC/+7u/Ex9iOBxGR0cHgsEgcrkcPvjgg89theRniWQyid/+7d8W3lCtVj8Wb9BJ6+Tng4ODm/KGoaEh8V+TN2QyGfT398PhcCCVSt0wb2hvb8eTTz65Jd7wzW9+syVv0N157iTecEuDEBy0p/tenT59Gq+88gqee+45URDaIU5ywcwuZp3W63V0dHTgqaeeQrFYxPj4uJAIvYBxeB9LC3XP10qlIoZMOBxGrVaTaD2PzQfpdDoxOjqKu+66S6K27H9IZxMzAYD1jFlG5li6s7a2hng8jrGxMTG6uH9GanlfuA+32y0LsdvtlgVE3yOSVN4/Xj8DED/zMz8jLZvYS4wDfXSbKb0w0bj7/ve/jzNnzjQJcSAQQGdnpwwXWl5eloXKxs3B2toaXnrpJaRSKXzta1+TElcShvb2dgDrLQ6+8pWv4NChQ3jjjTdw4cIFyQTiu+B2uzEyMoKjR49iz549WFtbw1133SWkjv1HnU4nDhw4gEgkgkwmA7fbjTNnziAWi0nE98CBA1hbW0MsFsNTTz0lGS7Ly8u4ePEiZmdnhdCGw2E899xzuP/++yXLqNFoSJku+/xzYNp3vvMdvPTSS02yxmAYsy7MOS42bh4YOCVJI5krFArweDzo6OjAc889h29961synIlOJ2aisFcsDa18Pi/7ZMVXf38/3nzzTSkDZhuj+++/H1NTU5ifn5fIPZ1kc3NziMViWFlZAbDu4Dp06NANGxxjY2N4/fXX4XQ6ZaYOCYjb7cbMzIysNdS1Dz/8MKamphCPx/HRRx/h6NGjePXVV6VqrVqt4p577sGZM2ekNPT8+fPo6+vD9PS06HgGLXTJ7tDQEB577DG5Rwxqm0azzm7bzuC7X61WcerUKezfvx8Oh0OMEvIDruXaUACuGRyUYTovmVH99NNP49KlS1heXha5Y4ZUe3t7UwYudS7nTXGdfuCBB3Dq1CnRX5SdPXv2yHBHVrkAEAOJWZH1+nobsYMHD97QvRkbG5MBwdTt7G0eCoVw5swZRKNRlMtlLC0t4eGHH8bExARWV1dRrVbR1taGnTt34ty5c2Issu/9/Pw8IpGIOF6Y6MBAIQezA9f4wfPPPy+ZkJRPyjqTQvQz0vyOWW28RwCkX6s2ALcbfuu3fgv/5t/8G3i9XjHaAUiroVQqhffeew9HjhyBy+XC4uIi7rvvPhQKBbz88ssolUro6OhAJpPB6uoqTp8+LfwPWA9yMAOQPY5dLhceeeQRlMtl4clutxujo6PSQ5fPZHx8vKl8OxQK4atf/SqeffZZqZx1udaHZK+traG9vR3pdBrpdFqC0XyGqVRKDELOvNCtTHfu3In/+B//I/7dv/t3+Oijj+Q6+M5xnee9KhQKiMfjGB8fl2oH3aKO929gYADJZFKqfOkgpMxzwOwzzzyDX/u1XwMAzM3NIRqNYmZmBoVCAeFwGG1tbU2JN3RsfO9738Nf/MVffCry8nmDzXvXYfPeG4PNG1rD5g3bH41GA7OzswgGgzIvlK2x6OT/y7/8S3R2dsq6DzQP5OXz0IOqY7EYvv/972Nubk5aZNF3BkCet14nl5eXZT/xeBw7duxAKBSSQeQA0NHRIcEJyjafId8dvieNRgNHjx7FzMxMU5UDA4z04+nKGb433C9tK3YuefTRR/FTP/VTkni8srKCbDbblOhF/eDz+TA+Po4/+7M/A7Deds3pXG/VuLKygqmpKRSLRSwsLNzKR2xjE9xM3uDxeD4xbwiFQjJrrFKpfGa84U4LQAC3OAgxMDAAh8OBbDaL1dVVycZ/+eWXsXv3boyOjjZNo9dOF73os42Sw+FAR0cHnn/+ebz22mtSEcGFigZePp+XSgo6dLgNj1EsFqUfNxdBKvNyuYxYLIajR4+Ksci+csB6BIs9+bgA5nI5xONxBAIBETw67O655x6cPn1aevxqQkRDjNUYJA8sxdTnx5JzOquoiBmwGBgYwNe+9jWMjY3B4XCgUCg0VUEwuMP7y2AL21G9+uqreOONNyRbLxqNIhqNwufzYW1tTaazz8/Pfy6ydD9tBAIBXLx4Eb/5m7+Jn/3Zn0V/f7/I0fz8vPS4r9frGB0dxeHDh9HX14fJyUlcvHgRtVpNhlcODg4iGo2iWq2iv78f1WoVXV1dCAQCOHnypGQPvvPOO9KnmoZ+NpvFzp07kUgkUK1W0dnZKVk5tVoN8Xgc7e3tUnbGTIXDhw9jaGhIzmFpaQlnz56VoWwARL5/7/d+DydPntygMNlijEG/O02h3gnQQU1WfLG/KLN12Qv3vvvuw+zsLH74wx+KwcbqBGbwNhrrPV85BM/r9UpruO7ubpRKJbS1tUllGrNW+/v78corr0jGVCAQQCaTETnk8NJGo4Hnn39ehlxvFQ6HA/39/dJ6gWXIfX19SCQS4hxzOBzo7u5GNpvF6dOn0dHRgZGREXzwwQdiRD744IP4/ve/j0wmg3q9jkuXLuGBBx7A5OQkFhYWkMlkcPDgQeTzeayurkomV7lclgyIaDSKH//xH5d+ltVqtekc9Nqgq1O2M3S15OnTp5HL5cS41cSM5JKZW/q7en3kWsZMrVgshh//8R/HN77xDam8DAQCiEaj8Hq9SKVSEvhhlSCdAbFYDG1tbTIXhO8K35/BwUGcO3dOkhECgQCSySTa2towMzMjM1FoBOne9VtBe3s7gsEgstksAoEAcrmctF6Mx+MoFovCG/L5PObm5rBr1y5Uq1V88MEHmJubw7Fjx1Cv13H58mUUi0VkMhk8+OCDYnguLCygv79fhgUzeMg+uXQWPPzwwzhw4AAAiNxqh7BuTQlc69mtyT7vH3U652GR42xHXX/x4kX87u/+Lv7pP/2nkl3v9/ulyoqzHd577z0UCgXEYjHUajU89NBDqFQq+P73v9/U35ltmaLRKJaXl1GpVHD33XcjnU4Lb3U6nTh16hSuXr0q2adOpxMTExNS2UBnGfsiV6tV9PX14Sd+4ifwEz/xE6hUKlhZWcHw8DCWlpawsLCAgwcPipMqEAgIh+acs56eHnlnBwcHcebMGczNzWFgYAD5fF7etf/0n/4Tfv3Xfx2vv/46PB6PBEJ4X1iVQR3K95I6kZUc/CyXy8n3KF9sp0QH4gsvvIB/8S/+BZaWlrC4uIjDhw9jZWUFyWQSkUhEdI4+ns/nw/Hjx/Gnf/qnKBQKn6UYbWvYvNfmvTcKmze0hs0bPh9gJRA7WGQyGXi9XnR0dKCnpwfLy8v43//7f+MXfuEXsGPHDllXgWvvBtdU9pI/dOgQBgcH8Xd/93c4c+aMBHx0y3Lz3jMRIRaLYceOHTh69ChisRiA9VmAbMHL73FeytramgT9WEFBZ3JHRwe+/OUv46//+q+xtLTUVLVBPalbsVNGWPXIdzMcDuOFF17AM888A7/fj0KhgKWlJZkFwftBneHxeDA1NYWXX35Z7M3FxcUNydSrq6vCe2x8NvikvIFrrc0bPlvc0iDElStXEIlE0NbWht27dyOXy2FpaQnJZBLf+MY38Iu/+IvYtWuX9AunU4xOGCKfz0sggi02fuzHfgxvvfUWTp06JQPngGvBCyoiZsgUi8WmigcaFQxeRCIRjIyMYGRkBKFQCPF4XIhDJBJBZ2enkAHtrKOyAyCGHQMrNPIGBwfx7LPP4qWXXkImkxFlxqAGF13uQys7HktfH4MH/Mzj8WDPnj34uZ/7ORlEXSqVsLq6ilwuJ1UZ/B4XeBpyLpcLP/rRj0Tx9vb2wuPxIJvNYn5+fsP1rK6ufi4cZJ8WSF5Z+js1NYX/8l/+C37+538ejzzyCJLJJEqlkmRis299qVRCLpfDwYMHZXDZ7OysEFwa421tbejr60O1WsX58+dRr9eRSCTEMbu8vIxIJCIZiNVqFYuLi6hUKhgZGcHU1BSCwSAqlYq0ZaCDlX2i/X4/8vk8Tp48KQQnmUxiYWFB+t5Ho1GcOHEC3/zmN2VIsQazIUns70SFeieAz0cHaakvGdgkQfR4PHjmmWcwMzMjCzczUejASSQSCAaDUpJLMjkzM4N4PC5DS6knS6USxsbGkMvlkEqlRB9xgPTVq1ebCGZXVxf27NkD4Jr+07KjM9y4DdHV1YX9+/fjxIkT8r3FxUWk02l4vV6k02nEYjF0d3fj7Nmz8Hq9eOaZZ5DL5ZpKKvv6+nDXXXfhnXfekQzcDz74QKrc6vW69CuPRCJCNJjJ4HK58GM/9mPYuXMnAEh2LtcqnaFkZu19HsAMkI8++ggPPfQQAIjR0Gg0mgby0tGgq0ZorFYqFckk5GDGPXv24Omnn8Zf/uVfCidgZSCduiMjIzKEtF6vo7OzUwaCMWsxFAohl8tJ2a7f78fk5GSTnlpcXJSsQ2az7tmzB7t37256nq3WT71NJBLBPffcg9dee60piaJUKkn1UDweR29vLy5cuICPPvoIw8PDYqylUin86Ec/wtGjRzE/Py/JEydPnsTevXtFN6+urmJwcFCqR0OhENLptJDoPXv24Nlnn20qq6e8mi3YyBMYZOM2zEwjxysWi5idnZX/631uJzidTrzxxhtIJBL45V/+ZQnEske5vn7+jRW6TzzxBJxOJ374wx+K8V0qlRCPx8VR5ff7MT8/L4kvzPKjccJWGXwe1N+6etjpdGLPnj34xV/8Rdx7773w+XzI5/Po7e3FpUuXcP78eYyOjkolbDAYRH9/Py5duiTX6fV6MTw8LNcTj8dx4MABvPnmm5icnER7ezv6+vpw8eJFRKNR/Nt/+2/xN3/zN/j93/994QKsfM7lcsInmCTDQPHi4iICgQC8Xq9wWgZ5NX/g9UYiEXzlK1/BP/gH/0Cyju+//354vV4cP34coVBIKpAbjWsVzG63G++//z5+67d+C5lM5nOliz8t2Lx3HTbv/fiwecM6bN7w+QSDV3RWFgoFTE1Nwefzob29HW1tbfjud7+Lp59+GmNjY02OStpcDESw2mVgYAC/9Eu/hFOnTuG1117D3Nyc2Hbah8S1ORaL4Z577sHhw4dltlU0GoXb7ZYZEgz2Aevv58DAgLxzDERFIhE4HA6xz3p7e/HVr34V77zzDi5evCg8gI5cJu1S33MtYWJuf38/vvrVr+LgwYNwuVzIZrNYXl5GOp3eUE1DP9r4+DjefPNNzM/PY3l52VIf12o1qfax8emDATPOlvwseYPX60WlUrmlvOFP//RPxU+iQVvhTucNtzQIwcFIjBp1dHRIMGJmZgb/5//8H3z1q1/FyMiIKDmrSC3/xqoEt9uNvr4+vPjiixgeHsbf//3fY2lpqfnC/p/C0pFyKhtWFNDxFo1G0dXVhYMHD2J4eFgW0VAoJL11qdgYDe7q6sLS0pJkmXFYlcPhENLB6FStVsOhQ4dQrVbx6quvSuYWlbjuhcrekVy06ZBiuQ3Pm4u41+vFAw88gJ/8yZ9EV1cXHI71Qa7Ly8vI5XIydIcCrJ1bNILffPNNnDhxQnoLLi8vS7BEZ00DkP7wNm4eOLOEw8QYof+jP/ojzM3N4Sd+4ifg8XiQz+exsLAgg3HYsoDZYJT5trY26UPNMsfV1VXMzs5K9J7ZOw6HA+3t7XC73XIM7mNhYUEcAgCaypyp/HQP29nZWXFurKysSNuHcDiMQqGA3/7t38apU6c2lJkzC4Lvqq6OsnHzwedOnaYrIhhEYPVUJBJBOBzGz/7sz+IP//APMTs7K1VmJJksU2W5dzAYlGFKlFESXofDgUQigfvuuw8XL16E0+lEPB5HNpuF1+vF0tKSkEPK6jPPPCMBWw3KiJZFszzb6XTi7rvvxgcffCDtRarVKhKJhOjUcDiMq1evwu12S8Ues93uvfdenDp1Cu+99x6eeuopdHZ2YmZmRoIZhUIB+/btk/LPlZUVWafYhsnpdOL555/HvffeKwZvpVJBIBDY0GIEuGZomjOTtiN4rXz3f/jDH+LQoUNSYqrbVDGrkS0CmJUFXGstxvZWXq9XMkx8Ph8eeeQRLC8v44033pBkAVah1Ovr80foKGhvbxcSywwy3cYGAPbv34+ZmRmRcWaE8x8JrcvlwmOPPSbPWMsnr4sZf7rNDrc9dOgQ3nzzzaa1IRqNotFYnw8VjUYxOzsLAJiZmcH999+P2dlZ7Nq1SxIQLl68iEOHDuGHP/whgPU1/K233sLdd9+NwcFBOBwOTE5OSmk/HSq1Wg2Dg4P46Z/+aRmsydJ5AE2VpXyWusReJ1MwGYTbr6ysYGFhoen53akkejOwDcd3v/tdeL1efPWrX5VAAI3mUCiEVColhjHXQmBd93V2duJv/uZvkE6n0Wg0sLS0BJ/PB7/fL8YOAEkgofwx6HDXXXfh3LlzUgXBz6lj7733Xnz5y1/GF77wBWSzWRSLRQwPD+ONN97A9PQ0qtUqpqam8P777+Pee++Fy+VCKBRCV1cXJiYmpNKNsj8xMSEVbfxbMpmEy+VCb28vxsfHUa1W8eKLL+LIkSP4/d//ffzgBz+Qln+6Iow2AHkH9SXfBwZs2LqU7yIdfl//+tfxpS99CfPz80ilUmIEvv3222JcMgCxtrYmgZ1Tp07hN37jN5DJZKQ/uo2bC5v32rz348LmDTZv4LVuR96wVaytrWFlZQU9PT1Nfy+VSpiZmcHi4iKi0Si+973vIZvNYt++fdKyjPeNQSbquVqths7OThw9ehT33Xcf5ubmMDk5icnJSWSzWQn+DA4OYteuXejr60NbWxuq1SpmZ2dl7Wf1Q7FYRDableA+q3I4a4Jtydiukq3SaZu9+OKLUr2zsLCAs2fPYmFhQZKXKSe12vrMwv7+fjzwwAP4whe+gM7OTtRqNSwvL2NlZQW5XK6pHRTnHxaLRbz77rv4wQ9+gNnZ2abEYI1GoyGzN2x8NiBvYGsu8uY//MM/FN7gdrtRKBQ+MW/QiS7kDR0dHRK04oD36/EGtp3jMev1+k3hDUx2vJN5wy0NQgDXFphCoYDp6WksLi4iHo9jz549qNVq+PM//3M8++yzMntBD5jhw+I+Go2GZNy6XC4kEgkcPXoUO3bswFtvvYUTJ07IUA+SRWZBcOEm6XA41odM7d+/H/fcc48MZwoEAjIMWvfB0+WfDsd6/7u+vj7JaCUxAdZfku7ubskWZiDg3nvvRU9PD958801cuXJFKhEopFwAfD6fRHgpxIx0k7gAkJLRRx99VErHCoWCCDQVv34OdDgy++iDDz7A1atXkc/nsbi42BTx1s8BuBYBtqsgbh50Fl6pVGoaIrW2tobvfve7mJiYwK/8yq8gkUhIW4NMJoNgMChtZXw+H4BrpFr3buQMFTqBs9ksnE4ngsEgAoEADh48iNXVVXz00UdCWB0OhzhSSQp0ZQ4NMgbhGESjE5fDnKLRKF577TX81V/9VVPFEkESAEBIqC1ftxb5fF5agfBe67JntrWgTAYCAXR1deHrX/86/viP/1j6aDudTsmSoe50OBwy+Nnr9UqJItuP7N27F4lEAtlsFul0Gnv37sX4+LgMFmSbO57bwYMHce+99wJozvbSOooLORdiZtbQcNu9ezc6OjqwuLgIADKAj0OsAoEAZmdnUa1WUSwW8c4776C7uxuXL1/G8PAwwuEw5ufnMTk5iX379okjkO8W25W0t7c3Od5IOJ566ikcPXpU1iHO3DArIPQ1APhcBHv57JhZdfHiRRw/fhxHjx6VfpecJcIKHfbpZEaMbiXGoD4TDejs9Xq9ePHFF1Gr1fDOO++gXq9LZiBLw51OJ9ra2pp600YikSaHR39/P3bv3o329nYsLCxgbGxMMh6DwSDm5+eloqhWq+GBBx5oquIh6NDQrSOYYMFtG4311g09PT2YmZkRkhyJRJDNZhEKhRCNRnH16lXU63VMTk7iww8/hNvtxvz8PEZGRvD6668jl8th586dGBsbw/j4uBig4+PjCAaDcDgciEQiyOfzyOfzck97e3vx8z//8+jq6gIA4V06M1FXJtGRwEHy7JutHT3E+fPnpTpVV6huN9BBtLa2hr/4i79ArVbDL/3SL4lRw5kFlF3ySXJUn8+H++67Dzt27MCf//mf48yZM6JX6ETlvWbVGTOBAchzZQsmZmTVajXEYjG8+OKLePbZZ3Ho0CHJturq6sL8/Dymp6cBrM/jYT9wzjajE4DtPXw+H95+++2mIdPRaBSJREIqZ5PJJPbv349QKCSVdQDwr/7Vv8KXv/xl/P7v/z7Onj0rdoB2/vM96e7ulkBNKpWS/r56NkVbWxsefPBB/NRP/RT27t0rmW49PT3o7e3Fe++9h3q9jlgsJhyJOjscDmNychK//du/jXQ6LTbInWzk3Y6wea/Nez8JbN5g84btzBtuBJlMBu3t7aKLdICGQYpUKoVLly5hbGwMjz76KPbs2SOVlVzbyuWyJM5WKhV0dnYiFothbGwMu3bt2uAXos3IZ5dMJuV9WF1dRbFY3NDZo1KpIJlMSpViOp2W+aI6SZhrA4NsbAOs29pks9kmH5fP50N3dzd27dqFWCzWZJ+l02nk83l5f8itXC4Xzp07h5deegkXL16Ufv0mKK88f1tXfzbQvKFcLjcFgyqVCv72b//2tuINADbwBq43wDXeQBuAvOE73/mOZbWNyRtayeudhFsahNDlTjq7dWFhAaurq2hvb0c8Hsd7770Hp9OJHTt2yBRxHYwAID1hWSnAKGh7eztGR0cxMDCAhx56CJcuXcLly5exsLCAdDotrUPYGzYej2NgYAAjIyPYvXs3BgcH4Xa7kclkZFg0HXQAZGEtFApSzh0IBBAOh5tKyYB1BxKNSPbtZW9aTmbfsWMHent7sbi4KOXzU1NTmJyclAoJEiAaohQ2LrzxeBz79u3DsWPHcNddd4khygheoVCQwAeApuALh/WkUim8++67OHnyJKampiQKpwWaypp/y2QyQuxsfDI4HOttDfic2YrGRL1ex+nTp/Ef/sN/wBe/+EU88cQTcDgcIjt0ADPSy2AbnRy6XJVypf/GWSh+vx8nT54UQ2pyclK20/2oOSOEcs8yt0Kh0KR4Y7EYpqen8Tu/8zu4cOGCZbaKzkCibrjTFeqdAOojGif8G2XC6/WKLtC9O1ke+53vfEfKYyuVimS8OJ1OySiMRCLo7u6Gz+dDOBzGAw88IAbGO++8g127dmFxcREdHR2in1OplPRwLJVK6O3txZe//GUhDBqmrgKaWzVpwyQSieCJJ56QQWPAelZXIpFAd3e36GiS6mAwKINg6dRiptHs7CxGRkYQi8WkBJPvwsrKigRc6PB79tln8dhjj4mBQOcg5Z7ge6uJ/uclw4vcgPL2V3/1VxgbG0NPTw8CgYBkjuuEAt5ntrrivdLVhZQBtlcIBoP48R//cbhcLrz77ruyT3IEZsEwa6+npwc9PT3w+XzYuXMnwuEw4vG4DCSfmZlBV1eXDPhbXV2VYxeLRfT39+OFF15o4gj6moFr7XB05reujAkEAnjsscfwJ3/yJ1Jlubq6ikAgIPMDeC+oQycmJjA9PY2xsTHcfffdqFQqOHfuHCKRCPbt24fx8XHJ9ORASd4vvgt9fX34yle+gr6+PgCQ3qlM0CB0tim5il53yJ+YcexwrJfT06HDzHazgmk7gddWrVbx13/916jVavj6178uGXnklGwPR8dUKBQSGXe73fjH//gf46OPPsIrr7yCZDKJpaUlhEIhyQYbHx+XLCwet1Ao4MqVKwCuVcB1d3fj4MGDOHLkCI4dO4YdO3ZIsMTv92N5eRmnTp2C0+lET0+PJLTE43FcuHABu3btQjAYlAAEdTb5O3kAqxOcTifK5TLm5uZw7tw5HDhwALFYDJcvX5bK2ocffhhHjhzBK6+8gm9961u4dOkS8vm8BMQ9Ho+0K9GcmFmdpVIJiUQC99xzD/bv34+HHnqoKcA9OjqKtbU1vPLKK7I/GnDUAw6HA1NTU/j1X/91zM/PNyXtfJ5bftxM2LzX5r03CzZvsHnDduYNWwVbY3V3d1veD3KPTCaD999/H+fPn8euXbvwyCOPYN++fQiHwxKMoKOUdhSdqtSz1J+UmWKxiGKxKJVm5AIMgPBc9FrKpGTKhnme3E7Pd+ExGST0er3ShioQCDQNdeexU6kUVldXJVBBWeP3l5eX8cMf/hBvvvkmstlsk67WgRweG1i38exZEJ8+tsobGo3GBt4ArAdCbwVvKBaLWFtb2zJv4Aw2kzdEo9Hr8gb6lfkObRfecEuDEFwotSKiMlpbW8Pc3BwWFhYwNTWFhYUF7N27F/feey96e3vFuNAGAoWEJdMkGR0dHYjFYhgdHcXOnTulDRSjsVwkQ6EQOjs7ZYAVH2Y2m8XS0pIIqN/vRywWE0FnZhbPg8ZRW1ubZAzncjlkMhmJBLNchr/rCK/H40E4HJYX4ODBgzIwb3V1FSsrK9I2RGc+sILk0KFDGB0dFYNzbW0NyWQSqVRKgiUUYp6zx+NBIBBAPp/Hhx9+iLfeeqtp8JAV+Ox475eWluyMsJsEtmKhoX49h2Mmk8E3v/lNvPLKK3j88cfxyCOPIBqNChEoFApSeqsXTmb3UBYpc8FgUDIWTpw40dQ6jAqORI8BsEKhIMOv6GRgNme5XBaiOT4+jr/7u7/D6dOnm0gGoVuJ0ZDQQ6Js3FrQKcTMF92bnHICXNPf1Glutxu9vb34+te/ju9+97s4fvy46Aav1yuOKS6wmUwGExMToqsZ6GRf12q1ivn5eSGQXGBrtfU5EL/wC78g2VRmthOzC8xghM6Q4v8bjQaOHDmCM2fO4Ny5cxJopgOM74LH40EikUBXVxfef/996b0+Pj6OWCyGYDCIrq4uKR3u7u6WSjcGz5m5G4vF8Pzzz+P++++XAAQzKzQp0YY0wVLkz8P7QKMCuOYIWFhYwLe+9S38w3/4D6UlIgNCOkucxo9eX/mZ7v9Mw4rta7785S+jp6cHL7/8smSmMOuqs7NThq673W6ZHRIOhzE3NyfOX1ZKzs7OSvtFvjcsZ//a174mbbqs5JdrKa/L3I6yy5ZgZ86ckWxtykuxWASw3lqRlTi1Wg3BYBDpdBqLi4sYHR1Fd3c38vk8/H4/xsbGpKUBuQUTFpxOJ3bu3Imf/MmfRF9fnzgI2NtXZyVqJwIdIZRbGrS8Vt3S8sKFC7h8+XITL9T3YDuBMklUq1W89NJLWFtbwz/4B/9A7huHiIZCIelPXywWpQ0d28M99NBDePTRR/HRRx+JTJArsvc2s05peLMv7vDwMPbv34+xsTGEw2FpG3f+/HmUSiVMTU1hbm5OKgS6urpQqVRkpkShUBCdeeDAAZl3xh7nxWJRqsvIh/leMuB95swZpFIp9Pf3Y2BgANFoVN6FSqWC559/HgcOHMAHH3yAlZUVzM3NYXZ2FjMzM8hkMuK4YCZlOBzGzp07sX//fgwODgJYDzoPDQ3h/PnzctxisYgPP/xQjE86QgCI7p+YmMBv/uZvYnJyckOmrh2EuDmwea/Ne28GbN5g84btzBtuFKurqwiHw9JukDDvDf1Xp06dwsWLFzE0NISHHnoIBw8eFJ8XW4RRN5bLZeRyOXHw66Ri2i7az6fXSp0Qpn/nzAi2Ude+QV2hpO0inbHOY/J95RqwtrYmM0oY6KBNRjlMpVJ46aWX8M4774hPS8uUed94zcVi0bKqzcath9/vl3ZbtxNvoCzeCG+gvHL9uVHeAGBb8QZH4xaEUjKZDGKxGHbt2iUtOkxHEdAcHQXWDa2+vj7cf//9uPfee9HZ2SkvPxcnRtNJPJipEI/HEYvFmoZHm9BKkNGvTCYj8xv0+dBQ0YEUfq4zhtvb26XnrRYKXe7JCK957abziQsye9NqZez3+9HW1oaOjg4EAgHZPp/PY2lpCYVCQZQuz4OCz4FDk5OTeO211/Dee+81tVXaTAETqVQKU1NTlgGLdDqNaDTaUh7uNFB+bxWYHU4ZZM/8rYKZLffddx8ef/xxGQjJBVf3nKYDWQeUaJhTtnRGJlt+kVyzAomLPhUiSaPf70cgEEChUMCHH36IV199FRMTExsqmTRcLpc4QBiQ/Kx6Lm832d0MlOvz58+jra1NovW6jRHn2vAfZZQEgPq1UCjgzTffxBtvvIFUKgWfzycVauVyGdFoFIVCQWbqLCwsoLu7WzJ9/X6/tDTg4gysO+o5UGxgYGBDUAFo1lfsuU79rAMq5vZLS0v47//9vyOVSkkQmm39OFz64MGDSKfTmJ6elhZODsd69dnS0hL8fj9GR0fl78yyoTHkcDjQ29uLL33pSxgbG5O1ggRZZ0GawXlmV5IMZTIZ7N69e1vKKGXxp3/6p8UA1jzB7XbjySefxM///M/D5/OhUChI/01ux+xGOiMcDkdTMIskkll6TAigDvzggw/wve99D4uLi3A6nVLqS+LIY/X09GBqagodHR0yb4lBJwAynIzHYgBteHhYzkuD16gTDMhtdA9ove3i4iL++3//70in09Kq0el0oqOjQ7K2Dx48iEwmg4WFBRkSWa1WEY1GZYgkq3xYLcl3nO/3Pffcgy9+8Yuy/jUaDSHVuvJTO2hZLcUkEb2W1OvrM2ai0ai8L7/xG7+Bjz76SL7P615bW8M3v/nNbSHvlG9W1VLH8rm6XC4cPnwY//gf/2Mx/guFArxer+hG6oRQKARg3RB75JFHZFgoW44sLCzg0qVLWF5exoULF+BwODAyMiLPpK+vT1pwAJAkGBpSutqA/cAdDock4/Dd4f78fj+czmsDntmeJB6P46233kK1WhX5oY5NpVKSCJRMJjEwMIBcLofOzk4MDAxIqTuz01566SVkMhkAkHWK7wv5CFunJhIJeRdDoRB2794tCUyhUAhnz54VZ0MoFJKsW55fIBDAiRMn8Fu/9VtYWFhockRqJ1c+n98WstkKNu+1ee/tDps32LxhO/MGK2xVLzPRQLfZBayHmevglc/nQ29vLx566CHcf//9knzFpCnOrmL7IupCvg9mhYt+HxlgYoUEsP6O9vf3w+VyYWZmRnQgnyvfOepp8z1goIRDqPV16hkruiLT6/Uin8/j/fffx2uvvYapqSnR1WYiG/9mBvjGx8e3HITYrrJohdudNwDr89I24w26NepmvIEBhM8rbwBuvmzf0kqI1dVV9Pf3y8O0itzoaHapVMKVK1cwMzODt956C/fccw8OHz4sCosZX1RUDFBwP8xIZQkMHUA6cssMs2Kx2BQJo+Lmubb6Xe+vWq3KJHb9dwAbjE59LoQ2dPgZe995vV4pNWPpqO6DWSqVkEwmJYhCR6F2hrFUNJVK4cSJE3jllVfEgDWvzwqa9CwuLt7wi29jI2hsU5l8HIXaaKxX3rz66qt488030d7ejpGREezZswfDw8Po7OyUyC3JBADJwvF4PLKAc8HXUVYG/Pie0QHAxZyO6HK5jMuXL+P111/HmTNnpD/zZqBzYztGdO8U0LllZnuwvI9Dl0g4dcsLGh3BYBBPPPEE9uzZgzfffBMXLlyQZ8lMXsoMy9RZlcb+3dq5xUX72LFjeOaZZ2SRswom6HOmTDNwbJV1Q3R0dOBrX/savvGNb0j/c6fTiWw2C5drfZDp/Py8VDqsrq429RBmBufy8jJWV1cRDAbl3BkoPnz4MB599FEkEgk5Pt9BnSGk2wTwc/YT5lr1eag6Y+YgyRpwbR195ZVX4HA48JM/+ZOIRCJwOp1Ip9OybtKY5/aa7Lndblkzqb+YHcWg/H333YfBwUG89dZbOHXqlMg3Wz5mMhlEIhHRa0wOoDHPQbiag9x///148cUXkUgk5Nz4mQkSWt2CwASvrbOzEz/3cz+Hb3zjG9ISUd+PgYEBLC0tSeUmSTIzjwGIQyafz8s1kFi3t7fjiSeewKFDh5qSHHTJM0k3s+v5jpN76GQLnV3K/tG1Wg0vv/wyzpw5I8+LJf7UA9sNfKbUpTqL9YMPPsB//a//Fb/wC7+AnTt3Ali/59lsVlowUS/H43HJzHU4HJiZmUEwGER3dzcOHz6MvXv3Sjb/O++8I6XghUIB7e3tYrQz6Et9U6vVpBKNwVYGkxOJhMg9+TYdEcViEVeuXMHY2Biy2Sz8fj8uXbokFXF8tnRAcZZbKpVCV1cXarUa2trasLq6ilwuJ4OtA4EAcrkc4vE4otGoDH0ll/F4POjo6MDly5elNQ+36+/vR39/PzKZDKLRKFKpFE6ePIlGoyEZtQBkP+Q2f/3Xf41vf/vbyGQywk0ov+a8IRsfDzbvtXnvzYTNG2zesJ15w8cBqw/7+/ub7q2Wcyusra1hYmICc3NzeOONN3Dw4EE88MAD6OnpEccsk1z5frCjh1WLLTNwQNuJnIPJDk6ns8lmpP9K+wtpowHN/jU9w0U7kukE1oHFXC6H999/H6+++iomJyfFztXvltW9IW/p7u7G3NycJEXY+PRwM3gDgJvKG8gNqB9N3kBZ3ow3nD59WjpDbIbPA2+4pZUQLpcLQ0NDiEQimzq7m05IKQOPx4POzk4cOHAAhw8fxtDQEPx+v0TQqaxYTh0IBKTVhRm11UEI7fjX56SDAfyMSlB/RqXIFh3Ly8tNDiR9LTTedCaG1TVr5asrPKjQSZTYCqpUKklZKTMJ+H2WnbEH4LvvvourV6+KAFsFWXi9ZvS30WhgeXkZc3NzLZ/fdov63orILpUJS8JYFnazwWz2aDSKjo4OdHZ2oqenB+3t7Whra4PX65X+0+w5TZlmJJeOD5LccrmMxcVFJJNJLC4uYnFxEXNzc5ifn0cmk9mygc57QHnWQ7E+K2w32d0MuhIiFouJMcN3ncYXdZ4uo2aWCUkmnyOwTmJnZ2dx+vRpnDt3TmYjMEhAfaszgml4NBrrQ0V3796No0ePYnR0dENWF7cHrunorbTHsPp+o9HA9PQ0vv3tb2NychIAJJOB7UyYKZzP5+U+1Ot1rK6uorOzU4ZRkVh7PB7s378fDz/8MIaHhyXDDrg2y0ifh9atnH/Ed02XOGezWezZs2dbyihl8Wd/9meb+lzqjDlg/Rnu3r0bP//zP4/BwUHk83lpo0K9xTUWQJNRTh7ABAM6Clhey+0qlQrm5uZw+vRpnDlzBsvLy7KeMmCm+yfz/HRG4tDQEI4dO4a77767aUgkoeWX+m8zWGVBNhoNXL58Gd/61rcwPz/fRFCZ6UU5KZfLouvZJrKtrU16mHKbWCyGw4cP4wtf+IJUnvJ4OjuHzgGCBiXfcy235Fpsp8A5AS+//DK+/e1vSy9sDgDVx/uzP/uzbSHvuhJC9zbW2VWUg3g8jq985St4/PHHsba2hnK5LPqVzpZarYZcLofe3l4cOnQI2WwW5XIZS0tL6O3tlTYEvb29SKfT+NGPfoR6fX1mGnmxnqvGQAQH6TLYyiAzA7HknUDz+9ZoNBAMBtHf34+2tjakUilcvXpVrp/XSecSHXrMVKfjQSe6sL0o5cPr9aJcLiOTycDn8zUl4xSLRang6OzsREdHR9M1TU1Nyf1jxnuhUJBrDAQCWF1dxZ/8yZ/g+PHjTaX1DCqbtgHnxt3pstkKNu+1ee/tDps32LxhO/MGK9yIXg6FQnjxxRfR3t6O6elpLCwsiG9KQ78nGnwPYrEY+vv7ceDAAdx9993o6OiQ5DK9P+2f4nMkn9DZ4truo13IzzQ34jloOdIZ5doRrOWG7xMTH9bW1jA9PY233noL58+fx/LysvgMN/ND8t3o7OzE8PAwfD4fFhYW8O1vfxu5XG5LzwC4c/Xrx8Gt4g0+nw+xWOy24Q3hcFhkcCu8YXV1FUtLS1hYWMD8/Dzm5+eRTqe3HEQweYNus/9Z4mbL9i0NQgDrSnFkZKTJ4NC4nkIA1gUlkUhg//79uOeee7Bnzx4ZyKcd6y6XS6oHqAi1sqUiY+mNPgdddm1GYnUAQQshB68mk0lpb2Q69E3yoJW+STZ0L0Sr7zArgwsBo93chtUTpVIJ58+fx2uvvYazZ882ZVyYDrHN7rvDsd7XjAOpWmG7KdybrVS1MmGUdCtR0JsJOo41kaACpmHGDAc6DHK5nGTAUMl+XFA+dVCQLSc+S2w32d0MlOtz585JZqgZJCDh09kkusKA2QLMLtUGBh1lU1NTOHfuHGZnZ6XNkdaLDBizL/j+/fvR1dXVtC8zE6xV8HargQpzfyyHfPPNN7GwsCCklo4uOsVogAKQbGL+PxKJYHR0FIcOHcLw8LBkbhHMzOF95PFZoqxb5+msCj2kcNeuXdtSRimLP/dzPycGO++NmUnlcDjQ1taGRx99FI8//jiCwSCSyeSGtZnPjzqGMk0Z1okEzGbRvYopv+Pj4zh//nyT/PJ7fC98Ph86OzvR19eHgwcPYmhoqCn4dD35tQr2A1uT3XQ6jePHj+Pdd9+V+1Cv1+U+mn2ttWOkXC7D5XIhHo9j3759OHjwIPr6+jb0bGalFJ8Fj6FbKOjzpfOA8ttoNBAOh+Hz+ZBKpfDd734Xr7zyiuxHVz/x+kqlEr71rW9tC3mnfMfjcQDNXI86l6AsHjt2DD/zMz+DRCKBfD4vepOGNVs2dXZ2Yv/+/Whvb8fq6qokikSjUYTDYZkHceXKFczPzzdlDDMAAUAGLJI31+t1WfuBa7qK50BdRp3IqocjR47gvffek3ZyXC+4jc5a1ANiydGZzaqDsHQQmkFcBiqcTieCwSCGh4extLTU1BaKstdorFdH0+lFDpTP5/H222/je9/7HmZmZpoqPUydwmM1Gg2kUqltIZutYPNem/fe7rB5g80btjNvsMKN6GWHw4HR0VH8s3/2z1AoFLCysoKLFy9iaWlJkshaBSD0PviPCVk9PT3Yt28f9u7di+7ubrF1tKxoPamPYb6TZgDDDCbofXB704/H77Oyk0kG8/PzOHPmDM6cOSNV7Xr/VvvWTuWRkRHs3r1b2u5GIhH8+3//73H8+PEb0tnbVRatcCt4AysP2C76duYN5Da3ijcQtwNvAO7AIITT6URXVxe6u7stHUb8XSsnUznqAEI4HMbBgwdx//33Y8eOHYhGo6jVapLtBFwr1dQlY2bE1nTyW2Wr0ojRpZkkOz6fDwMDA/B4PJIpQ6WojTcaP3REmaWTVI66VE339NOKnlmzjERzAWfmxtraGi5duoS3334bp06dQjabbar6sLr3Wsnre8JzPX/+fNP8CCtsN4V7s5Wqz+cTh22pVLqhiPrNAFst+Hy+piqiTwtUqHRG0Dl7O2C7ye5moFxfuXIF7e3tUhJLncXMFTN7iXqB5dbUGbVaTaolTJ1N4pDJZFCpVCSTKhAIIB6PyxBWq1JyK+hzMvWXPicd/AWsjTK9j0KhgKtXr+LEiRMYHx+XgVV0yGnS7vP5EIlE0NHRgdHRUYyNjaG9vV0MWH2uujJOV5iUSiUJJOvADjOS+X23241SqYTh4eFtKaM6o5HBHoJGpn7mNDa6u7tx7NgxHDlyBC6XC/l8XvSbThoArsmtmSVFeacjlD3u9fFJKldWVuSZFYtFmc0UDocRj8ebAnStYPIa8/+a+5gGl9U23C6dTuP8+fM4efIkZmZmJCGDjgVyEGB9IGw4HEZ3dzf27NmDnTt3Ih6Py70jKPu893TCMENfZ8U7HA6RW5635lxLS0s4ffo03n//fUxOTm4wgjXPaTTWh7ttl4xGXQmh+Sthyin/39/fj2eeeQYPPfSQ6FuulX6/X7hrsVjEnj170NvbK/1itRMtk8lIEIJcRjv3dTs+s9UnwXeSOr5YLMozI/dsNBro6+vD5cuX4ff7USgUmnqtVyoV4cWUJx6Tma3cDrj2ntPhR+7NFqpsecKqBr/fL8EPh2O9hUepVJIWKJx10Wisz5A4ffo0/uf//J+YnZ0VHc1j6bWQ58/7Bqxzhe0gm61g896bC5v33nzYvMHmDduZN1jhRvWy0+nEgw8+iOeeew5DQ0NIJBJIpVK4dOkSLl26hMXFReTz+aYOGho6CKFtFGBdp7e3t6O7uxs9PT3o7e1FR0eHzGPVbbJMOTQDEjowC2BDspoZhCDvYFvKTCbTVJ22sLCA1dVVFIvFJjvQDEDooEMgEEBXVxd27dqFvXv3orOzE7lcDvPz87h48SJeffVVnDp16oYdyttVFq1wK3gDK85s3lCTTgm3C+64IASw3u7i0KFDUl6tHePaYdRqUTZL2VmuNzw8jMOHD+PAgQNIJBLSw4tZ+zSUqBS50FHIdMCAi6eO4Otz43YMdnAotc/nk2Gr2hmle4Az0q/Pn9erCYYuWWO2GP/xHPk5r4XllFNTU9KjUpcKm+Rks8fNXpDxeBx9fX24cuUKfvjDH16XOG83hXurIrtut/tTV6iM6LL1ju7V+WnA6XQKOWk0GjJk/nbBdpPdzUC5/tf/+l/jhRdewD333LPBIWUadTrzhM5xzkjg3xhcsApG3Ch08MBKV+lqMcI8pklqrYabWe03m81ieXkZqVQKs7OzMoAvEAhIeSazgNhf3dyv2VOSVRUkxlq389xZlszzDYfD8Pv9OHnyJB588MFtKaOUxZ/5mZ9BMBjcsP7pNZ9GJ9djl8uF4eFhPP300zhw4IDcT515B6Bpe72Wc8get9dZLltp87UZrORXG1NmxuZmssv9XE9219bWkEwmMT8/j1Qqhbm5OZRKJbhcLoTDYSQSCXR0dKCnp0dk1zQIGTgjD+J9YCYZ/7WSW2B9+JvH48GFCxfw7rvvSt9Tknid/WhyEYfDsa0yGinfbW1tGwxtrWt1v2OdgdvV1YWHH34YX/ziFyUbjIkhdGDRwdPT04Pu7m64XC7JxioUCqjVauLs0ck3rJQwW4Xq94XGD99FVsBxoHW9vj5kL5lM4sqVK+ju7sbAwACy2axszyA1r5XXz765en3R7VE4swG4VjVCPV6v16XXOoPEPp9PWkgxYUbrDwaCXn31VfzxH/8xkslkU0Bms3eRgZZ6vW4HIW4QNu+1ee/Nhs0bbN6wnXmDFT6OXnY6nejr68Pw8DBisRh6e3uxY8cOjIyMoLOzEwCwtLSES5cu4erVq1hcXEQul2sKJlkF5nRgnr4sJsGydz59bDr5SoP7IZfRFfhmMhd5iB44zXbkDG5p26lVohoDDm1tbRgcHMSePXswNDQkbXcnJydx8eJFjI+PY3V1Ffl8HnNzc5idnd2QxLsVbFdZtILNG24eNG+o1+u3RetGE3fUYGqiWq1ieXkZL7zwApxOJ2ZmZjA3NycOfXNhAzZWSujfq9UqstksTp8+jcuXLyORSGBgYAAHDhzAnj170N7eLiVaugehWSqoFSoVGJWn7hdploRTOc7OzjYFGNimRGfAasKiFbd27gEQRaoDNHoBZnYBnV9ra2tYXFzEe++9h9OnT0t0m+diKmHz//p3j8eDtrY2jI6OIhgMolKpYHp6Gm+++eZtk7lzJ6PRaEim3qcJBpUoL5+2QuViQoWuq5VsfHaYm5vDH/7hH+LVV1/F008/jYMsvrZmAAEAAElEQVQHDwKADH0y++tqYseyV+oxZqqSLAJoypLaqsybWV6tsFnlhNZxVpUQ5jb6eCw1Z/uUVpllVtBkGbg2NI3OB86Q0IFv7lcHpmnocYjW//2//3fTe7EdQCNFOyS1M0CvgUS9XsfExAR+7/d+D7t27cLTTz+N/fv3Swsr7pfg8+O+2RbA4WiuTmRLGN3D/+PIr/kd/S7w3Wr1ff6uDapW23G/Xq8X3d3d6O7ulm30PWzlIOF2NOTo3CZfoeGnHcD6u9q48/l8yGQyeOWVV/Dqq68im83KfnlPrK5JO3q3WhV1J6FVZh+dXMA1xxP/X61WMTMzg7/4i7/AG2+8gQcffBAPP/wwent7Ua/XpTTd7/cjEokglUohmUyK417rLp1NpQetcl3mP8qB2+2W6t96vY5AICABVPJufqdQKMDlcmFgYED2HQwGm/iwlkP+PRAIyKBW8ku+j9y3DuCyyoNORRpobPdULpexuroq56wDGX6/H+fOncN3vvMdfPTRR6KHtU7QnJ3Pg+dsVgXa2Dps3mvz3lsFmzc0f5+/27zBBrAu6/Pz8/B6vdKm6MSJE/B6vYhGo+jp6cHAwAB27NiBL3zhCwiFQiiXy1heXsb09DQmJyexuLiITCYjNoyuVNCJaeVyWXxrVnKmORB/mvbhVt8XHsPchw5ksN1vW1sb+vv7MTQ0JLOrAGB1dRXj4+N4+eWXMT09jeXlZQkSc9+ZTAbz8/O23v4M8FnzBofD8ZkEIDRvYCWvVSLmdsMtCUKYN67RaGBychKnTp3Ck08+CQDo6enB+Pg4FhcXm15+KyeRVWYAlUOtVkOhUMDs7Cw++OADCUjs3r0bo6OjSCQS4hRrNBqSAaazJ6yOxf+bkVWt/LgNAx46a8J0YpnXpZWbbofC7blfKlcA0vP24sWLOH/+PCYmJiSry7x/+l6Z18fjOZ1ODA4OYmhoCPV6HeFwGLt370YwGMTLL78sg7yuh+32otyq6/m07xMDZIyoftrwer3SR59BuNsN2012NwOvlRmu58+fx+XLl9Hf34+jR4/i7rvvlpYa2mnOLFgaDwA26EUGI7RBYma2aGwWdG517vo7ent9LtyOulgbd610/cchO43GtYGFzB5jhpfOzOHxdZYv/891KRgMwuv1YmpqCu+88w5OnTqFVColWSDbUUa1LJpGKrBRvrQcaeP0o48+wvnz5zE0NITHHnsM+/btE0dquVxuygjkvujE5GfMMmTrFhq3Wt5NbEV+rQwmQjs3rdZpnTHfah23Oo+tgA5cOgp0RSh/6ncIQEu59Xg8mJiYwFtvvYXTp08jlUo1GaRWnEi/k5rP6VkEdzpM55DO4tSOb+080zzQ4VhvuTQ1NYXZ2Vm89NJLuPfee/Hcc8+hv79fMgLp+GFlLB07dHyWy2VpGRqLxZqG5/FZsPdsvV6XgANb9ZVKJeG3pVIJXq9Xkmio9/i82WecfdOLxSIikUhTZqXX68Xq6iocDodULOtgALMbGVCJRCIolUooFotipLHiOZ/PS6YYBx/X63Vpd3L27Fm8+uqreP/995HL5ZqGoWqHIY9tvkt8D3RC0naQzVawee/Ngc17bx1s3mDzBn0t2403WIHX5fV4gRt4bg4AS4tLcLnW/UgOAKViCZlMFtPTM3j33ffgdDrh83kRjcbQ1dWFgf5+dHV14e6774bXsx7gT6XXkxxWV5NYXl5GOp1GqVjEGttkcX3fynU0Gmj8v3MDNibEAmj6XH53OJq+43A4AAfg8azPpYrH42hPJNDe0YH2RAKxeHx9TlSxiKWlJXz04UeYm5vDysoKCsUiKmtrqKvz0ahWq+v3zemC03tjAa51Pvb5cB4T24k3UF99FrzB4/E0zZ28XWXoZp/XLWnHND09jcHBwZu9Wxu3KaampjAwMPBZn8ZNgy2/nx9sN9ndDLZc35nYjjJqy6KNVtgO8m7L9/bEdpDNVrBl9vODO1WObRm10Qp3qkxfD7bM33nYrrJoBVs+P1+42bJ9S4IQ9Xods7Oz0ovVxvZEo9FANptFX1/ftipZt+V3+2O7yu5msOX6zsJ2llFbFm2Y2E7ybsv39sJ2ks1WsGV2++NOl2NbRm2YuNNl+nqwZf7OwXaXRSvY8vn5wK2S7VsShLBhw4YNGzZs2LBhw4YNGzZs2LBhw4YNGzZs2Ph8hOps2LBhw4YNGzZs2LBhw4YNGzZs2LBhw4YNG5867CCEDRs2bNiwYcOGDRs2bNiwYcOGDRs2bNiwYeOWwA5C2LBhw4YNGzZs2LBhw4YNGzZs2LBhw4YNGzZuCewghA0bNmzYsGHDhg0bNmzYsGHDhg0bNmzYsGHjlsAOQtiwYcOGDRs2bNiwYcOGDRs2bNiwYcOGDRs2bgnsIIQNGzZs2LBhw4YNGzZs2LBhw4YNGzZs2LBh45bADkLYsGHDhg0bNmzYsGHDhg0bNmzYsGHDhg0bNm4J7CCEDRs2bNiwYcOGDRs2bNiwYcOGDRs2bNiwYeOWwA5C2LBhw4YNGzZs2LBhw4YNGzZs2LBhw4YNGzZuCewghA0bNmzYsGHDhg0bNmzYsGHDhg0bNmzYsGHjlsAOQtiwYcOGDRs2bNiwYcOGDRs2bNiwYcOGDRs2bgnsIIQNGzZs2LBhw4YNGzZs2LBhw4YNGzZs2LBh45bADkLYsGHDhg0bNmzYsGHDhg0bNmzYsGHDhg0bNm4J3J/1Cdiw8WmiXq9jdnYWkUgEDofjsz4dG7cxGo0Gstks+vr64HTa8VobNmzYsNEMm1N8PnEn8gNbVm20wu0sz7bc2tgKbkcZtmXXxlZxO8qvDRu3EnYQwsbnCrOzsxgcHPysT8PGHYSpqSkMDAx81qdhw4YNGzZuM9ic4vONO4kf2LJq43q4HeXZllsbN4LbSYZt2bVxo7id5NeGjVuJLQUh7EiujZuB2yHKG4lEPpPjEg6HA06nEw6HA41Go+l9ajQacDqdTT/17263G06nEx6PB06nEy6XCy6XS/bJ7RuNBmq1Gur1OqrVKiqVCqrVKhqNBur1uuU56d+5Tb1eh9PphNfrRSgUQiwWQzQahcfj2bDdxwXvBQBUq1UUi0VkMhnkcjmUSqWma2k0Gtfdn8/ng8PhwNra2ic6L43PWmZs2LBhw8btiVu1PrhcLvh8PllvS6USKpUKHA4HPB4P3G43XC4XGo0GqtUq1tbWUKvVAEDWSr1mWnEO/t2Ew+GQv3MfJmcjB9G/ax5CXgIAtVoNtVpNPuO2wDX+wPPjd3ltPAduTx5DfuJ2r5sx1WpV+AS5RK1Wg8PhgNfrhd/vF26wtrYmx+H9JJcqlUpYW1vb8nO6k/jBnXSutwMoT5RH/k65JC/l//m5+U7xvTS3bwXz+1vhvjcLt6OMfJrn5HK5LPWrtp/4fPSzNp+ZaZNxG+pBYF0unE4n6vW66EStV/mder2+4ac+hpZTgrKmz50/3W63/KQ+1rYm96Xl1ZR5ni/3oW21Wq0m65bb7Zbr5memrWvaa7z/Ho8Ha2trKBaLN/QMbycZ/jTOxe12yzOtVqtN99LlcskaqeVPy63H44HH40EgEEAgEEAoFBLuQb+D5g+tdJjmDJVKBeVyGfl8Hvl8HsViEZVKBZVKRb7r9XoRDAaRSCQQj8fh9XpFTrSe/aSw2pf2xZRKJSwvL2NlZQWlUkm4BDmG0+lErVaTd4nnDuCGuMJWcTvJrw0btxJbCkLYkVwbNxOfZZT30w6ikcxpA5oE02oxd7lcYjD7fD4EAgH4fD54vd6moMNm12IuuLVaTRb/UqmEcrmMcrksf69Wq6hWq0JOXC4XgsEg4vE4otEoQqGQEEZNSk2DyyQprUhEK0Lg8Xjg9XoRj8fRaDRQLBaRTCaRTCZRqVSEwG4WkKhWq0J+bxbswKsNGzZs2LDCzV4fPB4P/H4/XC6XrNl0UgUCAXHq0JlOp8P1DHbteKDxrR1eXJdpfNOpxO/S8a+vu1qtytqtAwUEv89kBgDihOBnpoNXO9SsnFv8Dp0jDHDwe3SuxWIxVCoVFAoFuVcMNgSDQTk/8h/e+0AgAJfL1RTU2Qx3Ej+43c9VO7uAZpnVsmsm35gBK25LZ5aWG/6dMJ2w3E47XSlj/J4Z3NP7MpN6+JPOLJ6z/g5/6uPzp+lY5j/K7M3G7Sgjt/KcKE8+n0/kgPYS7zEDEnT2+nw+uN1usdO8Xq84zWl/6KCFdsiWSiUUCgVxdhI6MEGnPPWby+VCtVqV86POps1G/Ver1ZoCC9SFVslvPOdwOAyfzyfXQjsMWJe3crmMUqmEXC6HYrGIcrks6w71J4/faDTg8/mavks9qpPntO3YaDQQDocBQALA/Mc1LxwOo1AobDmx7HaS4Vt1Ljp4ziQE6jvKK2VCB60oxx6PB5FIBLFYDJFIBH6/vylwZuo6K5td/27qRPov2tra5O86CKXXcO1boJ/DhJVvQetbqwSLrSIYDGLHjh0YGhrC6uoqZmdnkcvlmjgFr6lSqcg76vF4EAwGxZ9ys3A7ya8NG7cSWwpCfFZRORonVKYkX3zx4/E42traEIlEZNGkgmu1WJkEELimXM0sl82MOm1saSczv6eVqnlNejszO+1GIr+bRYpNhczzKxQKmJ+fx9LSkmSD3YpI7mbY7lFeLQ/amCAp5DNzuVzw+/0IBAIIBoMIBoPw+/1CGgE0EQEtU9fLEjDlyuPxwOfzIRwOb1jgtGHD73o8HsvPeC5WhpZ5vVafm1lB5rXoz5iR0dvbi3Q6jcXFRclu1Bk+Jm5WBYQNGzZs2LDxaUBXPlSrVakEJCegAc81UGfUbrZPZvbqrFQzM9bMsiXfpuNIJ1Fo/mImJGh+Qr5DJxX37/V6JeMyHA7LP3IgXisAOY9CoYCVlRWsrKwgmUyiUChIlSfPBWiuqqhUKnA6nRuCEcC6U5CJHT6fTxwI5BQ6e5c82cbNB51i5JuUKdP5bvJEPif+5DPS/JEw92UGyhhM0xnfpkON/6yqIXTwzoqbm8EROp7N67QK9JnXw3MwM59bZSbbaA0dNKAsMQNa20uRSASJRAKxWAyxWEwCELqK28qHYGXfa91bLBaxtLSE8fFxTE9Po1AoAEBTdZcOEBOmvAHXqta1HDB4wbXC4/Ggra0NAwMD6OvrQ1tbmwS79X50cI/g/5m4ViqVkMlkkE6nkUqlsLq6ilwuJwEHHpv7X1tbk+9ZQQeCvF4vCoWC7Cefz8Pv9yMcDiObzdpyjmuyW6vVUC6X5fkzKAFAkhP4f7fbjWAwiLa2NrS1tSEYDDb51XSQH7CWOVPvaVg5zq32Rx1KWb1eMNX0KVj5FrayZrTaL3DNz+F0OtHV1YWuri4sLS1hYWFBuj/MzMwgl8vB6/UK92BChdfr3XLSgg0bNq7B0diCRs9kMojFYrf+ZP6fUtALPAkjS7ba29sRjUbh9XqbMqRaRUWtMmm2msVi9flWrmGzwIPez/X2t5XAxI1Gf3lPc7kcJicnsbKyIuTrVmXWmEin04hGo5/KsUzcKlnWmSZAc5ks/89gQyQSQTAYhM/n29BiwDQmzAXflF2rzzeTh1afW2VcmZ+bx78eWr0HVmTGalt9rrxP6XQac3NzKBQKG95/fo/ZHzcLn6W82q3wbNwMNBqffSs8Gza2Iz4pp2DlA9tSsOUSHTh0NNLZcL3kA1ZT6oxCMwNRr6umI1Q7ysxsSM1R+HmjsZ796vP55DjkknQsBQIBdHR0YGBgAN3d3QiFQk1ZkDx3j8eDcrls6cSj3qpUKkilUpiZmcH09DSSyaRk5tIJQ6e01+sV54LD4UA+nxfHAfdJJzh5A3kb74u+91b4LPnBjeLTsuWsoB35dJgBaJIZM6jFwBa/z5/aCas5NPenf26Vs5rvhH53eAxmifv9fnFg66xjgu8Fs+l11RIzlnWLJv1eb9XOpLNaOxJbJebcCG5Heb6ZcstAr9PpFD1FeYxGo2hvb8fAwAASiYQ4as0AlVUiFYCWfyfMYAV19NraGqampnD27FlMT0+jXC7Ld6wCaua+rYJQfDfa29uxZ88e7Nq1S+4hA8N6v1bvUqt9a/8M9WY2m8Xi4iJmZmawtLQk7Xf4HjLYS33aSk4ZiM7n800VTKFQSALS18PtJMM3U3a5VtHu1e2CdFBSJ+/GYjEkEgkkEgnxm5nBTsIMNlj9vJmw2p9uSWZlq1gFeXW12lYCsq2CE7xG8hbdMvLSpUuYmppqqq7TPMfr9TZVT30S3E7ya8PGrcRnHoTQi7HuLej1epFIJNDV1YVYLIZAIACguTTWauHXaPV3fezrbdtqwTc/b7VfDXPhNs9V/zMd0ptFc03irr/TKsjC4y8vL+Pq1avSb1j367tV2E5BCP0sdQaJ0+mEz+dDJBJBPB5HOByWjBvTuG8V/NqMJPB37mOz7ICt4pNu32pRvx5avcdW7xXv78rKCmZnZ2XBN0n1zcRnKa/T09N2KzwbNw32wDMbNm4uPi6nYDsPt9stWaIOh0OcMGxNsZWKBzrfvV5vkzNdO9TJsQOBACKRCMLhMEKhEPx+vwQ8tIODVQClUgnpdBrpdBrFYlGcqDS4uS6TO7JS2ePxoLOzEzt37kR7eztCoRAAyHeA5srk6/3UXJzXU6vVsLCwgPPnz4vzjhUQ5Fs8v7W1NeFrvA5Ct8ohn9MzLpgBbPUs7iSHwacdhKDM6VYwdP6a7Y20bUT+a8VrTRtH/665uM4Ot+KUJt/Ubch01U4wGEQ0GkU4HJZWXXp/Vs5f85z1Z2zNUygUpF+6bqmm78v1oN9rvoOsDvq4uB3l+ZPKLYO6rHCi3eD1ehGJRDAwMIDe3l709/db9n9vFQiwctQSWqZNHWaV5MVgViqVwtmzZ3H+/HlkMpmPZY/7/X4MDQ3hwIEDGBwclGs2g136nTKr3fT7yvfJ6tz1PeH7WyqVsLS0hKmpKczOzoqM12o1eL1eOR+2GjT3xaA2v8e/RyKRLc3suZ1k+GboXAbo+Ry4hrIiikmkXMP9fj86OzvR2dmJQCDQlIRg7he4ftWA3t7Ub3rdNBMagOYECP1d/V4wiGIGHqzO13yXTOjqS/oJb+Qd0u+ErhQ6d+4crl69Ki2ZOK9Et5xkoO2Tdhe5neTXho1bic80CEHyxN63LpcL8Xgc/f396OzslCE1VqTMXECB5lJsjc2yEqy25U+tTK0WaDMrzWpfOltFZ8pvphhNgk0lrjNmNiPTrfZnFZBgFsaVK1ewsLCARqNxy8vKtkMQwqqHsdfrRTQalTkKHJJsZuubC/71AgvXIw7m7+Z2nwTaQDMDWFaEQwfQbjSQtpVr5/bUGbOzs1hcXBQD8mZkgpn4LOU1nU4jHo9/Jse2sf2QSqU+s0xYGza2I26UU+jZDpVKBcViUYIPXNfK5fKW2hQEAgHJKCfPoCHvcKxnj7a3t6O7u1tal2pHaqv1Wa/t2ulWr9clqzuZTEq2altbG8LhsAQG2LKE/cG1Q46OE67j+thW7Sd133GTRzFjEgBWVlZw9uxZTE5OSlINj1UqlZpmSNC20E4ufa06k1Q7S6wSde4kh8GnEYTQzjHyX53RbAYG9Pf4OdvhUI5YcWBlSwHNyWnMtGYmNt8ls9LCtLMoS4FAQFrvhEKhJhm1CpBZJdG04vgmn2401tuR5PN5JJNJ5HK5pmDXVgKQwLoznVVEW/1OK9yO8vxJ5JYtfgCIozYYDKK9vR27d+9Gd3c3/H7/Bkepfl7a/2D6HVo5Sq1sfbPy3fyerrgplUq4fPkyzp49i8XFxesmCNJ/MjY2hn379slsPZ2xbXV+Vvs074GewaLvk9brZkcKvk/lchmTk5O4dOkSVldXN8znqdVqUtmuwRkVnGMIXGspxHe7FW4nGf6kOldXjfGadfCBra/cbjei0Sj6+/sRj8dF91oFSgmroMJm/gaejw4aWMm5lV+AcqhbNnJbPY9Ff88Ev2fle7Dajm2TzGD3VoItTqdTkjocjvUqyvPnz2NxcVGqHsjh9Prm9/ubWkV+HNxO8mvDxq3EZxKEoMOWSiQcDqOnpwfd3d0Ih8OSZWWW07YidVoZ6b+ZjnpNWvX3uVhq443bWC3YpsNVn6veP0t3zQCGFa4XSNDH02TbijBZ7dP8XJ8Hr3lpaQlXrlwRA+5WtWe6k4MQ2ojiIhwOh0V2zdJdYPOKlK0EIjaTZasgmF6kTWcCv6PPz2qB5ve2kp2wGbQzwQyiXe++XC8QQXKcyWQwNTWFfD7flGV3s3Any+vthFb66U5Cq4yfzbLEbifY5NaGjZuLrepo8t5AIIBqtSptJVg1wKqD661dbO3o8Xia1lTqpGg0iuHhYQwPD6OtrU0ccCZv1dxXOxSseLK5jpufAWhyfpL/MhFDO5jNe9IqecjkCDz22tqapbOVunllZQWnTp3C9PS0BA1YZV2v1+Hz+ZpmP9AJZrYn0c4WHTBhtQWPfSfp1FvBJ3RwSfNfZutqmWJ1gtvthtfrlYG4nIdGe8mqUpw/WznJ9P9N7qidUZVKRdqe6ZkibJVK21Sv69yXlX3Wip9bObxaBSjIKSqVCjKZjAQk9PyzzbiF1+uVXvqb2Zlbwe0ozx9HbhkEZaIdK8+Gh4exf/9+RKNRcVQC1s5W6ifTuU4ZM1vcbebgtPp7q+RGbX85HA6kUinMzc1hcXER2WxW1gmPx4NwOIxEIoH+/n709PQ0ZWi38nuY52Vlh2poe4vyaF6HXg9MWeV1sGptbm5OAglsjVUul5vaUAHX3kuHwyHbsx2abtdk4naS4U+icxl8pe7iWq3nbrjdbsRiMQwODiIWi8nzsdKTW3G+t/JFUR5ZkWG1vanrtByYFUba78YqpUajgWQyCeDaPBRgo29PH0Nv0+ozs5KxlS7nfgg9M4Z/n5iYwPj4OID19YxJDvo+MMnh4/rQbif5tWHjVuJTD0JQiblcLnR3d6O/v1+ct1bDwfQirR3AWwkwWEEvpq0CD61II4+ljwtgQyCCBpjf79+016fpjDWvVX+vVfsmXRZvdW6trklvw8/dbjcKhQIuXbqEVCol+73ZjrU71anLZ0AjKhKJoLe3F6FQyPIZtyJzrZzt14PVttq414az/myz/ZGwWBFWvqubnYOVTF/PUGs0Gk0VTlsxLPWxzM+oE5aWljA3Nyc9tW9Wa7E7VV4/bfC9YOYZf1o5uLT+spIF/Y/lrXT+fJIAk9b/2mi0crCRJOtBqnSU6HWD36Nzo1gsIp/PS8uP2ynYYpNbGzZuLraio+lMASCDpTkrgdUQW9FrbA9DZzz1UL1eR1dXFw4cOIDh4WGZhaAdW/ydLRuomzXv1DA5Y6sgAddf3V7D5/NJ+yXt6DUDF9yPmSyht7Hi36x6pDNZ3zvq5ZmZGbz33ntYXV2Vc6CDjveyVqs1ZewWi8UN181MVA6L5TXRYXYn6dSbySd0gAbABocTZcPj8cgQcrb/0klopuPSdBK1sl1Mh34rrsv3wwyImDBlzgqb8dLNsJmjzuS1vHeFQgHLy8tIp9NNg7hbJbyR835Se+12lOcblVu2hON77/P5MDw8jAMHDiCRSDS1tKH+s6p2MG1xraP4eaPREJ1KvmrKktXzN/WdlUOV22pfhd6n9olopye/p30bm/khTNBhrMHz4Tno7G/+1PdS+z5Mv8vKygrOnDkjrZrW1tZkzWKA2Xyefr8fAFAoFMQ2zefzlud/O8nwx9G5+p1mSyHOh2Lwwel0IhKJYGRkBPF4XGTa3M9mvqCtbMtzYbDoevrOXNsbjfX26u3t7fKOrK2tSVBD+wMajQYymQyA1vOnzKQLYGOnBgbLzPeK70irBF6r95Q8SVfjLC4u4tKlS7I/VqFRhzidTvj9fpkDdKO4neTXho1bCff1N/nkoBIjae3p6cHQ0JA46fXCeT2n/1YUaivnL4+vI7l6PzTWrMgA/85FmNkVHo8H8XhcIq0s4aKhmM1mJdqfSqUsyTD3ay7q5vlZOa+5GDFaTuW62WJjdV+BdQXt9/tx4MABTExMYGZmRq7TbD31eYJ27tOo6u3tRXt7OwBs2Sm6WQDies+L25jnYhpVVo4Ckzhr4qq3ISHQizllW/c9pKzS6aqPZXXO5mc6w5CGlVkqb5671bURJGnd3d2Ix+OYnp5GKpWCx+O5JUE0G+twONYzPsLhMCKRiDgYTGPJhJVM6n2aRJA/q9UqisUiVlZWkEwmN2RNbQY6ATmfhYEE7UDR5cLUrTpobl4Pf6dzinOL+FmlUkE+n8fq6irS6fQn7hN6p6Fet4eq27g5aDTu3MHqdMgXi0WUSiW4XC5EIhHU63VkMpkt8Qdm8ZKPkYfUajV0dXXh3nvvRX9/v3BVOtj02s6WLdRXmwUETEeZ/owIBoOIxWLI5XIol8sIBoPo6+uTtk8AkM1mMT8/L+c+Pz8v67Xel9VQYqDZuWCeB7O/a7UayuWyZP9y/8wMPnnyJM6ePYtCoYBCoYBQKCTfoVOM3D0cDqNWq0kwglxHO9H4PADc0Bq0XaBnPFB2uebTGRsKhWTuCIeua0eSbrFrtTa0kkH9eStuaBWw4v+3YsNw35sdX+9/M9yozaQdbMFgEMPDwygUCpifn0cqlRJHrclrP2kLpu0Ch2O9BZ3TuT6XwOPxIJFI4ODBg9i5cycACA+jHOvhstom0vJp5aDVv+vWOIR22OvvaNnVOq9VII06nQFT8/v6J9CcLGcmNhK6Ml2fr/7cvGb9PunKB30dOjDCd15/n/o5Fovh0UcfRTqdxoULF3D16lWZfxEOh2XuA/fPqqVAICDtmKhnCoXCtrLxdHCX1Q8A5J1nQGZwcBA9PT0A0JRwp9fQG9EJVtuSN2invtW2Vu+K9lMwwVX7qLgN5Zqttrgeaw5gfo/3h+fBFnwM0JAbUBb1OZEHmd0+rGxRPoNGoyHntba2ho6ODng8Hpw/f17kmq3DqDtYfWW+ZzZs2LiGW14JQYVQr9eRSCSwc+dORKPRJqc7YO2stHJGWi22+u9WjksabDr4YOXw5PYm+dSZ5fwOF0qWumtF53A4RIl6PB4Ui0UpHywWi02BCKuAgdnX1zQENQkw7xMzw6zmVbQi1ea9IKlaWlrCxYsXJcJ7s7J676TMchqezEKIRqMYGhqCz+fb1KixIgA34ojTz4oyrHsUm9u2ctjr75kkke0S2K5AG2s0dEKhUFOlj3ZcaNKez+dF5lsZhJs5NABYVvRYbW/1XX6H9yeTyWBmZgbFYrGp0kOD59rKGUPcSfJ6q+FwrPfvjMfjiMfjCIVCTYTwk+gH/TysDC0tn7lcDnNzc+LEaxUAC4VCiMfjiMViMvDVCq3ItdW6Y/5f681W17+2tobl5WUsLS2hVCptfiNuIT5NWbaHqtu42bgdB6u30tEOh0P6WtMAp+OEFVNbMU59Ph+CwaA4vGnsRiIRPPDAAxgdHQXQnJlKDseKB93aQJ8f0LyeklsCaOKgGtTzzDbmtgzw6nYh5AnMdjV7QnPfXKPJARgQ1r3IdbWnVWWdbtVE5wK3nZ6exjvvvIOlpSWUy2UJ6jDzls4JZuQ6HA5pD0KdzqA0nZf1eh35fP6Oylr8pLYceTCfK4NBnKEQDAY3tDOycnRa2V16m82csZvxS9OO24xzt3Iq689MJ7J5nvq4JofYjAttZnea2/FfJpPB7OwscrkcXC6XJO/cbNyO8rwVuXU6nVKVTof1jh07cPjwYYTDYUmmo2PV4XBI4NJs/Qw0y5B2ZuoMbdpRtJFMGeRz4v9b2Rum09iUBV1ZZLUPrZu0bjTlVV8X302te812NVZyqc/DbOVr/q71NY+j98nzTqVSOHHiBMbHx5v0fi6X23B8zoopFAoSVKedR9xOMnwj7RopT3w+/Duflc/nQ2dnJ4aHh2UIstUz0PvUOmozG0VvT79dq+pFs0qB3+E/7R8gF/H5fPKcdEIwf2c1opmYQec/5bNYLDYFNNg+XK/7Ho8HkUgEXV1dUoHB69P3QHOO6z0XXfHJ88pkMrh48SIKhYJspzkDE9j037aC20l+bdi4lbilQQin0ynO2uHhYYyMjABoHTDYjDRu5gyyIpAkADr4YOVg4qKoj0FDiQstHbRUuG63W7KpdIYsFwoqOipYlp5Z9Z7Vi4hpXGnCw/NzONZ7WG42FIiGlXboagLfinCboPK8dOkSlpeX0Whcy4D/JLhTnLo6AOFwONDZ2Ym+vr4tOVxb3WMr+baSSxI9q5kM/E6r86BhqFspMVPClCW2zWFGkEkQucCbx9Q/A4EAHA4HSqWS9Ok0HQcaWt71PdGOBNM5Y0VyN7v/JECLi4sy1K1VqbpVsI/HqdVqd4y83ko4nU5Eo1F0dHQgHo9LFUsr2W2lk63A98yquofHoJ40s/8KhQJKpRJWVlaQyWTkc5fLhb6+PnR3d29oKWY6svRxmHG2WdBBX4+pfzdbn2j0LiwsiEx+2vg0Zfl2HKrOyh0OHWUP8q0YCKbeux5MXbm2tobV1VUsLy/fcAa12+1GIBBAKBSS7GKuDRq6tZm5frXiUJudP7cvFotIJpNIJpOfaRDtdhysbqWjOSuKRnOtVkMgEBBDfCvP3+l0ygDrtbU1SRhoNBq4++67cd9998l8A/0d3QbPquKRILdkULlQKAgH4PbAxhYkel/klV6vF4lEAqurq4hGoxIMaDQaTVW6pp7UFWhmBcLs7CxmZ2clwNHZ2YlQKASHwyEDi4Fr/ca1c61QKDQZ/m63G7lcDsePH8fk5GQT73a5XCgWiwDWq9nIQagbdFYugxW0CQqFwh3lMPi4rUF4r+kgZACqu7sbkUhEghPEx+HHVjp1q04zc79btXFaHVvzA51Z3mo/Wp61LagDbtc7D6vr0X/neayurmJ2dhalUkl4+3aZgdYK15NbBiD4XkciEdx1113Yv39/k+Obg8cdDodkNZt2uykPvPf6GQPXnPGUfTNApistzPeBxzAr7LX8mjKjuTAA8QNoXW/qaPO7Vvu2csqaM3esZNKqjZV5XaaDmoEas/0v37ULFy7g1KlTSKfTYhOYAQbgWiCCjmlzRsTtJMNb1bnmeq2rx+iwHx4eRk9Pj6W8tbKLt6pDuS8mLpjbtGqZy2NrvxsDYvpaAoGABP/YYlcnHvI9YrICbXb+nsvlkE6nZTaIWUnX6tojkQj6+vrQ1dUlvg7NQxiIs2rfrHkO5VrboS6XC8lkEhcvXmyy58jvHI71RJQbnbF6O8mvDRu3EresHZMu49q7dy86Ojqu69xpRSittjX/bpIGZjq1In9Wzkid7Q1AlIYesEYCzjIyKk8z01w7jovFolwbAxcej0cCEvyOWb3ABVv37dWEiApUE1Ruw350NJ70dZnOlFaLFAdfHThwADMzMzKMh4GQ7VxipssIvV4vBgYGEIvFmhZhK9nS99N0QLaSXyvjy6zcsYJ5DD4vv9/fRA64OJrvCJ+jLps1z1H3nNbH1PsArpX3xmIxlEolyVTQlRtadlvdDzpR9NBA8x5cj1TxfBwOB3p6eqRFUzabFbKh92Xu2+o+fF7hdDoRi8XQ09Mjg/xMAkq0MuBafa6dpNqA0vKhs2l0MILfj0QiiEajiEajmJiYQDqdBgD09vZK6xar+Q+aVBI8HtucaNJtnpuVgaiv1/w//+bxeDA4OIhEIoGpqSmk0+ltK2tbcdR/GuDgvvb2dkQiEQlK6fVWV3XdCLQcWekl/a4weSEajTYNZmy1jjqd6z1/6XzlkE3ul8fXx2xV6WO1JllxLav96vesr68Pq6urWFxclCGonyZuF5naDF6vF6FQSNqxNRoNCUDkcrktGaPcB7OdWf0QjUbx+OOPo7+/f8NgXQ75NQc68ifXe8oc+/RbVd1uVZ9Rf5IPdnV1yWyFcrksAQO2VKAOZ/UlnYGZTAZra2tIJpPSvm56ehrLy8sAIK0aOjo60N/fj+HhYQkw6+oN8mVeF4MalUoFoVAIjz/+OM6ePYt3331XWno0GuuBGLbHYoUoz5OzgDgomO1c7gRZ/KRwOBxyjxuNhsxH6u3tRSwWE7vFDF6ZvLeVbrQKGuhtrRy35vmZTiJgY5W8/mdVJa5/J++3SqCx4jb6vMygH4/HYJt5TeZ92exe0ZmeSCQQj8exuLiIhYUFqZzf7jZZKzgc650JqFfb2tpw5MgRDA4Oin2tg/JmaxdgY0KUKb/6vurPzHXSdFpS12qZ0ollZsskq/0S5LKUhVqtJslmXF+YSa6TEK2S2LS/Qcu00+mU6j1W67UKcOmODVa2qJXNqPm8vkbKNn1FJ06cwPT0tLT5Y4CcoKOaQ6up3zcbVn07Q99H3lfd6s7r9WLv3r2IxWIb5hlcz49j6hQrO43H0a1n+V2gObjK9VQnNmoOrLsvMAGX/1jFoFt863ewUqkgmUwinU4jm81KpZI+F+1H4P8Jq3Unm83iwoULmJmZQW9vL3p7e9HR0QG32y0VmjphWHd8MHW8tj35Hra1tWFkZATj4+NNVZXkZgzc222ZbNjYiFtSCcGobTwex+7duxEMBjdE1Vs5FjdTpptBf5f94KwcYpqM6r5zwLWMaC52ptKgYUMDrlAoyMBSRn+56FORFQoFLC0tidJkT2CPxyMOM2ZLMHusWCwilUpJT0v23o1Go2I4MkNOR5St7imzGrRi5WfmPTGhn4nb7UY2m8W5c+eQzWal7Mwk9FvB7Z5ZrgMQ8Xgc/f39GwY9tnLgbGWxv96xSQRaGSNWvzMAwVkkDJ6Y5I3nxXOiLOpZItx3o9GQgAazCrnwOp1OGfxGhwJln9tqh7+VjGnD0bxeyq6ZLd7KQLX63LzW1dVVzM3NoVQqNRE5bQxoY4QVRbe7vN4KOJ3r/bF7e3sRj8dbOjFbOQ+sdI3+DjNlWhn1/H8wGBTdqPeh30UaZNlsFktLS/B6veju7m6a6UAD1CTV2qlr9U5fb4D69dBqe5731NQUFhYWPjVn7qcpy591FQ+H4XV1dcm8DtOIaAUrGTedTVwjTPnW3+cxzQobylWxWJR+3/p8XC4XBgcH0dXV1SS3pvFlVpuZGbj6elpVl5nvndU25jErlQoWFhYwPz//qVb03I4ZYlrO6bBmJj4AcepwUP1mcDgcso9isSgyVigUMDIygieeeEJ0IvUXqxkZXDPXR813q9WqZDkuLy9LMMnlciGRSEivY+0wo77mms7PmJzgcrkQi8UQDoel13Imk0GlUpF5GKlUCvPz81heXsbExARSqRRCoZB8Nj4+jnw+L+8JZZj6WXPqRmM9aDAwMIC7774bQ0NDkmGp2wU1Go0NjrRGYz0QvLCwgO9///tYXFyUlpNMLGJrhWAwKAMnaVesra2hVCo1vQe3o0y2wo3oZN1+iRyto6MDPT09G3qEE5txYWIrescKpu7VgTO9Pyvod0HLmHm+ZlKEFScw92vF91vpUh5bH78Vj93s3mj543vF/ev2P8SNOL9uR3nerOVdKBQCAKmAePjhh9HX19eU4Mf3no5Gfhe4tqa24nf6+fK+mz3prapeqL+om1t1LtDHNCtpACAUConTlHLD3xuNhiQz1Go1JBIJqQzm53x39Vw/sxrdvF6+X/Qv0Olv2gBmxYOZnc796fum75d+B7idx+PB2toajh8/jitXrqBcLjfZsi7X+kwlnpff75dz83q9yGazt5UMX0/ntgrkUGbpR7Oy028Erew24FrSsPl3XSVQLBaRz+eRz+dl1qnJWRnAb2trk3WVwVG2TmJLSr63PDen04lLly5hfn5eztPUv5R76mrtXzDfL75/WjZZ0b9z507s2rVL2nqRm7ESw8rXo32Tpt/M7XZjZmYGU1NTIq+8b5T7er2+Za78WcpvvW7P8rPxydFobG2O302vhKAS6u7uxq5du8TZYkVGzQCAlUN7MxJoKgeXyyVD0Ph3s8ySBFAv5jw2neraYaANfZYG0rDhPnk8BhGsFthsNotMJiNDlBwOhwxXNcmped3ZbBbLy8vw+/0IhUJIJBJIJBJSCs0MiFKptEF56gF6VkrdXPSsQOMzFArh3nvvxdWrVzE1NdXUC/PTcqLdavA5e71edHZ2ore3F4B1ySl/13/T90H/zYqUmb/rfsN63yY02eNPDnSq1+sSgGM2jM4GIlFjpl8gEJBr1saXHhbPLMxyuSwBB1ZQMDjD9ymVSiGbzUqVD/WB3+9v6hVsOs60rBJ0HlsNvzbffbM0VW/P47W3tyMYDGJqagrZbLZJD5CgmEGRzwP4HP1+v2RUhcNhhMNhubdWxsVm+pg/zffDzLax0veUp46ODvk7g1u68ksHBwAgEolIqb1+lqazVr+TzISlQWNFzvleWc0WaSVz+vNWhq3b7cbIyAjcbjdmZ2ftLJmbBI/Hg/b2dvT09MDv9wPYaNCYutmKn+j/aweEbnGkYTrXuB1wrc0BdQ4DZGydw3JzHquvrw+9vb0iJ1qWtf43g7dcO0xnrnltmrfoc98MmkO5XC709/dLBRLP/fOMcDgMp9PZ1NM4EAhI1ev1DFDdKiSTycDn8wFYr6Q9dOgQHn74YeHTACQDluu9XgP1MGXy22KxiIWFBUxOTmJ8fFza15mOV5fLhVAohP7+fgwNDSEej8PpdCKZTErQgtfW2dmJsbEx4RMOh0OCJ8C6A2ZpaQlTU1N4/fXXMTs729SqQL93ZhsHZvpWKhVxerNKrVQq4fLly5ibm8Pw8DAOHjyI3t5eaf9KTkrOQd5NvtrV1YUvf/nL+OEPf4hLly4hEAigWCzKTIO1tTXk83lpg8bgBJ+nVYuQ7QRyL/Iiv9+P/v5+xOPxpjW3le7czCG/1eCDll8zScRqW8IqKKA/p8MNQNOwX8qK7o3P49OBDaDJVtvMaW11jjqwwzZkrfahuYoVarUa3G43hoaG0NXVhdnZWUlsM8/fXDe2C/Qzi0QiOHLkCPr6+pqqqDUHtGo3ZyYbtpIlbSNpR77+HnkGK9LNVohW67Fps1P30cYKBoPI5/NIJpPyPbMNNPUdA8j8O/k2sN5Z4erVq5icnEQqlZJEo2AwKMmN4XBYZhDx/HWVhTlDw/SvbPa+8zx5jgAs2xJym4ceegjBYBCnT5+Wigi2B2blg9frRS6XQyAQsExau91h2q+UK+rc3t5emav2cdYbLetWfgvqNqsK2np9vd3g4uIiVldXpS2hVaWAw+GQYD2wnuCgr4ff4U+Xy4X9+/cjHA7L8bQupn1nvhdM5tA+Nt4r7sP8acpkMpnEyZMnMT8/jwMHDiCRSCASiaBaraJQKIiesKos0zpDo1aroa+vD2tra5ibm2uaa0IdbxXYvh0xOztrz/KzcdNwvTl+Ny0I4XA4JOK/c+dO9PX1CdHSi5TpCNC/t/rMVJxa8fEn+9iZi6F2gjGjlp9T8WYyGek1p4fRaQLs8/kwPz+PfD4vxCAajW4oATSVDIMNzPQCmisuNstO1NdQrVaRy+WQz+exvLyMYDCItrY27Nq1C319fQgGg1KdYC7EdGKwl7POpjSdhJs9Dz7LXbt2IRKJ4MKFCyiXy9L66U4sg9TQxgZ7CLYyNKy+y0V2M6OsFVhWu9k2fAY6UMW2DWYGlF78NallZgvbG7BlATNdTMeuvjY60ugcSaVSctxCoYBMJiP7MgOPdJiwlJzGmJY/05EGXJNdq6HoWi+Yv5t/43vm9/sxOjqK6elpJJPJpl6Nmlhv9bnfqaC+bmtrQ1tbm1Rz6QCYaZhtxWnQSp8wG0RnjpvvCWWgXq/D7/cjkUhgYWEB1WpVgstsAUMiawZ7+Q6ZBjiAJuevXjt4blbtv7RM0tlntmnSRqY2Ik0d2uoecdD98vKyOLe2m7PgVoFyQKM/Go2KPJuOWVOGrYJFrZzx5As6a838rumEiEQiyOVyGxxc2rm2traGYDCInp4eTE1NoVarobOzU0gbr007HnjuDodDjC9WQ+osMbN1g84QN6/R6pr1302dynOIRqPYvXs3rl69Kk6SzzM0F2TgPZ/PNw1KNp1PwLrTNxwOC/+MRCLSyuPRRx/FPffc0+QcZYUBZVEb+Nwfj7GysoIzZ87g0qVLSKVS4tSnrmc1RaPREB5QLBaxtLSEDz/8UOSOxycoZ5FIBO3t7eju7kZ/fz86OjpQrVYxPT2N+fl5LCwsYHV1Vb7P/dHRADQb9w6HQ1pw8LrobNDrk9vtRrlcxvnz5zE7O4uxsTE88MAD2LlzJ9LptARLWCGq501wTXnmmWcQDodx5swZybZlhibvRS6Xk2QKOlroEPss56PcCpCr8Z673W5EIhEMDw9LwonVd6z0ymZ8oNWx6ayxatNo7mezAIBpI+rz8Hg8kmWqnVT6ONrZxneMCUJcawA0zR6x4v0a5lpEW0MnN2z1npkOdI/Hgx07diCXy2Fubk7avumWwa0caHcq2HK5XC4jEAjg4MGDGB4e3jAImteunYG6KsDUaRr8v048oB1kPieeD9tQ0waz4ov691agrisWi9JaWvskdNIaHbEMzlL/cfuuri5MTU3h3XffleQ0fW94XyjfwWAQg4OD2LlzJ7q6uuD1ehEMBmUGEZN2dGJbo9GQNUu/C9qeMwMmugJA63auUUeOHIHP58MHH3yAfD4Pv98vAeFqtSqtWDOZDAKBwB2nj82gKgOLXq8XO3bsQGdnp6VfxZSfVrZZq+0or1ZzxQCgVCphcXER8/PzyGazshbo/enEYbPKhYmKpiywmsOcWUkZ6OzsRC6XQy6XEzuNrea4D3Yh0TZ9IpHA4uKi6HO9X8qYvs5qtYqZmRmsrq5iz549GB0dFc6ezWbl+jTnsrrPpo9haGhI5kTpgJtpI9zOiEQiN21fWt8BED4Rj8cRDoebZo98kvtiJhta8QaguSrdlE0molM+2UZUw8qm3+ya9Zqjz+nTkgHtA2GVTzabRTabRbFYlK4gtxLXk6eb0o6JyiUcDmP37t1oa2trmTFqLsStnDRWxJDf19vSOWSWouv96wxEKjW3241isYjZ2dmm/sZUbFr4qLCBa6TV6/Wiq6tLSpP1NWqSl8vlcOnSJVFsPGdGfU3wnDVptHKmcptwOIwdO3ZgdHRUeghrgqBRrVYlm1jv17yvVs9Dgy9UNpvFmTNnkMvl4HK5thyIuB3b21CGXa5rA221gdxKLk15s9qv3of5HZIAKweT3h8ViHaKMmuFDijtiOL+KSM0lCh3HLpIQkgjn9vocyc4BFj3OlxbW5Mej+ZCzWvgvvk3ZlC2t7dLQMPqePr/DJ58EuWtCYnT6cTCwgJmZ2ebyLMVbkd5/bho1R8faDaSzWfYSh9TxqwWfR0gMKsfrPS6dnz09vaiWq1iaWlJvh8KhSR7l983HaymE4QOXP6dA01ZNcb+4eyla+r9zbCZ04HXw+CfDpRY7Z/GLQN6+XxeyoRLpdJNIy3boR0TdVo0GrUc0tyKV3wcUL61wWy1X33MUCiEeDzeFECjAUdHKPmRbnFAQhgKheRa6PzkcchDqK9Y9cEAMLMnrd4xBox1MKLVvdnMqDVBY5RGHYda3grcTm0WCCs5Jx+mk5K6iJn6dGRVq1XRbaVSSaoT+RyffPJJ7Nmzp8nhw32bc0zMgMTy8jI++ugjnD9/HtlstmkbOpp5fHI6Gs46EKoddkDzYFYa2NxmdHQUo6OjeO+997CystLEV3QLEa2TdXsUbRuwlUm5XJaAMwBxhutkAX7W29uLr3/96zh48CDm5+exuLgo96der0s2p3bOulwuvP32202tRoPBoMyQIjjThVmSLpdrWw2mJh9loIhtDbu6ugBsTBrT61kr/WoVBGi1veYJVsY/tzF1kOkYo4zrpBJuV6+vVwpHIpEmHakzdQFIW1x+zv2SN+uqoUqlIpW1/JvJ+ymvmufra2mVxb0Vp5W+Dt63lZUVzM3NiV3A5+lwOJqGMVvt+3aUZyu55RwIj8eD0dFRPPjggwCa12LaF9qJaXIwnSipuSU/1450k1vQYUy55efU8Vr2qPNpp9EuYjUkHXLUe+QD9DXwczqSMpkMMpkMFhcXkUwmZQDu0tJS00weJj7QRuf5sW0M74++B7x2JuQdOHAAg4ODcj+5VvAcqUd1QI5yqSszzMQm07dhtnljUOSDDz7AyZMnpX9/NpuV9YeOY2C9IwCTSm8XGW6lc7VNTDlkN49du3YhkUg08Sj9nuufJpfbyu8cZm7FEXO5HKanp7G0tCTvBp+NbvGl130+ZybW6GdP+WCil8vlwtjYmNwTff6NRgOZTAaTk5PyTB0Oh8idy+WSNtD0RUSjUdRqNctqXMoTz59+P+2HA9Z5w9133414PC7PjO9oK/vNag2kfj179qy0SdMD6reaYHan+hwYDGVwUFfpUrZ1ggxgnQCtYa6l5nrfqjLd/C7BZ6qrELkdZ7FqjgdgQ8WilSxo0Ga0skVNP67V983zt9rGysbbDOa9Y9AlnU5jeXlZknb0+d0MXE+WP3ElBBVEMBjEvn37ZHCO/lwvSNrIsFKQrRy5prBwATKHT5tOAZI7LvZUkuPj4xLlNY/JxUE7HbSDTDtEraJbPN9qtYrV1dWmjAR9D/R1mdkZuhytlROwVqshnU7j9OnTyGQy2LFjB9ra2qSknFl5+hgkN9cjtuYzMv9eq9UQCoVwzz334MyZM1heXhaD8U6siOBC0dHRIRUQGq0UZSvZMz8jtPJslYVgyjCdk1rpcvZDKpVCMplENpsVxyoVPlvsZDIZANccAcFgUAwRXSJoyop+/sViEcvLy8jlck0kQ78fWm71u8PrIYnJ5/My94QtPfS90ddOUKmbw7Cu92xMgqD1TE9PD9xuNyYnJ+W9vhNl93qgLHCwbDgcbnLemxUpJsHl3/VPs62SFXQGq2l8m+AzpYPZ4/E0ObFICoLBIHK5XFNZryY5VkSZ5+Lz+RAIBOT73CYSiQhh5D5NB99mBKfV37gft9stjq9W8s3fPR4PYrGYkMBqtYpsNovFxUXJSPo8wuFwSPUf1zjTaLZarzSs1jJTb+j/ax3diuyZ70V7eztCoRAWFhakvRf1peYqeh2gXHBuBeVZvzfkO3Qq6Aq3UCiEYrEog3O1rjM5Bg0AszJCcxNg4yBCq/vK/fPdGxkZQX9/P0qlErLZrOh5GovX4xzbBaz6oyPI6XRKdr3WMZVKRdZozmUIh8PI5/MIBoN49tlnMTAwIHyN3wuFQhKM0u8A7286ncbJkycl+MDnq3WeljG2OKrVavK71fprrueUXb4jnCEUCoVkP3TcUv9RJ5KraJnT+pq/m9dOzp/P50W29blNT0/jG9/4Bv7lv/yX6O3tRSAQwNTUVJPDz7y+RqOBL3zhC3C5XDh9+jRyuRxKpRLC4XBT0JuODraXZGXzdoDD4ZBnRhkbHBxEJBKx5ESmo5Y/rQxl83um7Uc9SAe/+T1TT2sdxWfDGXnUiXToa8cnt9WBJFMWqPPp4Ob8D8oPe3sD16qNgsGg2Ht0MPMa9L3R8m7eByZLmHryevaw+Sx4bkwymZ2dRTKZRK1WQ7lcFieL2VKHP+8UHc2AisPhQCwWw6FDh5q4AKHvKe+bfg466GD1XX6mOaV24FIPNxoNaYmczWaRSqUkMYD99NnSVicINhrXWjd1dnbi/vvvh9vtxvT0dFO1NgMVxWJR2t2SV9DRCwDxeBzd3d0IhUJYWloS/akr6KjLGIjmtZvJC5zNMDU1henpafT29uLQoUMYGBiQDG/OZsjn801yD1h3B9B2ZSu/i77/dBjefffdKJfLOHv2LOr1usxMolzz3li1d7qdoWWSlQk7duxAe3v7Bj+ahsntrHxkVt/lem9WITCgn0qlpL2m3h/tY30sbWvR16bfmWAwCODabBSuLUNDQxuCwBqxWAyDg4O4cuWKtHZkcqXT6ZREHnIOs5WpeZ8I7UMhHyKHmZ2dRTablWBbIBBoWl9arXHm/ec7tmvXLpw/f17mQnBt2s4Ih8MYGBhALBazTFjhPdQt8azktpWtRZBDWiUrmPu83t/07+SxlDPqSu2HIwegbtJJMPo6aLtpjqn9YuY7qe0sM1Br3r+tvOetOIT21zkcDhmd0NXVJVVktdp6u9NcLod0On1TkyCt8ImDEDQK9u3bh2g0KopIK0nz5vBvm91Uk6xp0KlG54A2qPSiSqXJ4IPDsd4a6eLFi1hZWWk6jt63PhctnJrYer1eaSvTSpk6HA5ZFPXiy6iuvm4Kvz6mVpI6QGGSrWq1Ku2ehoaG0Nvbi0QiIdUKeqHgy2GWwVs9K/P5WP3u9Xpx11134dy5c5ifn4fX622qtrgTwEUpFAqhr69vA0Fq9XLz/1b3ScP83Ofzbeq81aByooFGYzGbzWJ1dRWpVEr6TVs9P91ChK0T2OuTfzfbEZnXWqvVkMlkkM1mxbGm5cUqe0gv4NyXrv6p1+tIJpMolUro7e1FV1eXDBE2yzi1YtYteMz7az4Pfqb3oxeVRqOB9vZ2AMD4+LhEru8k2d0MnGvS0dEhQzYbjUZTRQkNEqKVHjAJqR5iZhJigu8VYb5TenHX20ciEdTrzbNmGo31THFWb+ggMGWZBgvJrg6EuVwuRKNReVeoW7lmcSiqli+SDfOe6HNvRZz0vSGh0QFaKzJrpUfcbjfa29uRSCSwtLSE6enp6w633S7QQdO+vj4ZkK7n1WhsZphZEURz7ee7r7Om9LptRZyp4zweDzo7OxGJRHD16tWm1ouUAa7zTIrgedAhy33ze5rokmfpii3z3TEDtJvJmK4c1cFoq/uqM4da6V1daRoIBJoGgdNIXFlZQTqd3paBXoLZXqw6dTrXKxbr9brIRCgUkrWQbYJ4v7LZLKLRKF588UV0dnY26UCH41oGI6EdaPV6HVevXsWbb74pPZkBWOpgOiFZVREMBmVGmVVmMH+nPJP3am5B4zMYDGJkZAQzMzPinKAMa/5AnagTcHi+mifwGKwi0Zm1mr/w3Z6bm8Pv/M7v4B/9o3+Evr4+VKtVzM7OyvPx+XxN9gGfxZEjR1Cv1/Hhhx9KohGDQnQWaodIKBSSHvx3MrSTiQ744eFhCdgA1naC1fq/GXfQ2+rfdcsK/T39HRM6aMY5HTpxi3rHdILoPvI6kcHMYq9Wq4hEIpLpzeder9eFS/H+sILJ6XTKjBZdccPr0QFnvQbx3DZrPXq9+2p1bz0eD4aHhxEOhzE3NycV8vq4phzcKY4y6o5AIIB9+/ZJYg3QOihm+hnM7GatL3UQnrpHVzsQtVoNxWIRU1NTmJiYQDKZlOS/Vpn/PKaW12KxiNXVVUxMTMDhcAgn4Dqt/QBm8hr/pm2qvXv3bmhBp6ti+N7QR6BbsPFeUVdSv7KybGBgAHfddReGhoZk3aJzmPvX91TvVzuA9XPhO2H+n8/A4XDgnnvuQTablaQxBrdLpZIEvu+UIIR+T/U6Ojw8jO7u7g0tUqxsp1b7NKHvJwMQ+rlwLVxaWsLExISsyZoraP2uHfg8LuWR8sxqczqcqav7+/vF5javi/tyOBxIJBKoVCq4cuVK070wz0UnWOr3XvNpXQFUrVYRCASadCxtvlwuh5MnT6JWq6G/v1+uSb8TVvfc/HutVkM4HMbQ0JAMVreaN2gFJlreSXA4HOjo6MDOnTuFR2yWGGbaXWbiAT+36rCgdWgrmPpc/059YnIY7S8w12V+Rr+CDkLw3eE//Y7o62bwmt+h7cb962A25dTKX2VeD383qy91ktlmNjF/J2/n/yORiCRjJ5NJzM7O3rK5f58oCEEHwe7du6UCwnRKmoRTYyuCpIWFwQcrwdQZgyz5orLlQ5mbm8OlS5dkroNWMlYZONp5YDq3+vv7pdeVqYh4vizfXl5eBnCNSLCEVJcE6QAHt9XKnsYWSYGOLvOeLy4uSjZArVaTjFFd1mZmqWtBtDIqrJ6V/jvPY//+/Wg0GlhaWpJAxJ1CaEnqBgYGNgSDgNZOVq0grNDqe62MMoIyQhml85j7WlhYwNLSUtMATG0AaieBVkZut1uCU/q8tQFmOqQpWzS0tNI2lZjOzmQwkuRWn4t2ipRKJUxNTaFaraKnpwder1dIgu7Rz3ti3j8TVjpFOwKtDBFmnXDY+idt+/RZw+lcH8I9NDQkg7+0UW4GhzRMQ9b8m84Cs5LdzaD3S33Kv1MXc7YP963Ple9EOByW/vPm+VJfU950gLFYLDaVHPIcWN1jrllW65iV0WreO6ttHA5HU4DWSpdYgaTJ5XJJOfzU1JRkgW038D5xdgzbLXENNktoNzPOrJwLdFZZPTtuq8lvq2cNXFuraVxFIpGmIc1az1HWfD7fBiNDcxGeC49N/akz5nXFGt8RGlLAtcGO+r6YP02CvJmDS2d/Xq/lohVv83q9EkijE2G7DrIOhUJoNBriDGEFBAMQrOBpNBrSVoC9vNfW1tDe3o4XX3xR1iTqND4j3ZoLuKYf1tbWcPr0abz55psolUqyPQc76yxx6h+u4alUCul0WtZZl8slpejMmuYxzTWcziyXy9VU+dHb2yszURqNBsLhsAyUJMfi71rP6/Pm7CpeIzOy+B4Xi0VxMJjv0OXLl/E7v/M7+LVf+zVpV0bdz+CidkLy9y984QuoVCo4e/Zs03Pid2kwVqvVbVEJoTkah3Dv2LEDXq+3KbjDn1b2kVW2Yyv+pGWXjkTTYLfiFfoYlE0mJJg2FZ2tWk8C64PU29raJHOaz107EXiOfGcSiQSSySQajYbIZDablVkEDDaWy2XpU6+d1lxPrLI2+a6ZDg+2WG0V8N3sWep7CKzr7s7OTgQCAUxPT0sGPe1TLft3CufVbYs6OjqwY8eODcEyrp1m1qoZ7Nd2E/UP9SOfI/UbAGmhV6vVkM1mMTExgcuXLyOZTDZ9j8+az566TD9r6rpgMCiyVCqVRCZoU2m+yM/IIUznmdvtRjweR1tbG4D1oDbXIr43TqdTAlJ0CNNeJ2+gHHNbABJcv3r1qszgOXbsGDo7O+X6yuWyBG01R9F6Vjuvrd51s5qZ/g63243Dhw8jlUohlUpJ28J6vY5isSjr6Z0ix/od9Xq96OnpwcDAwAZ+pe/T9fSk+XfNfZm4C1xbx6n3FhYWJMFJr8d8juZxTQcxn63eRr+LPp8P/f396O7ubukH1NfocDjQ3t6OZDLZVBHP/WoZ4rny+Dp5iO8Qr4vJBfw/r4XfLxaLOH36NAAgkUgAgASVreSqlY+nXq+jq6sLhUIBs7OzGwKSVuC53s5BCK5Rer5jJBLBzp07xUYztzftqM18Dtw/7bRWMLmGab+Y58Cfpu0EXLN/KAvARj+s1q/cxgzGmUmPmuOSP9CXx/ljreRKByVMTmUm/fL8TW5FWTffnVbPxErvOJ1OdHd3o62tDZcvXxZf9s3Exw5C0BAYHBxER0dH04tjRrQB66iU6eTRBEDDyrDV/6eziS86BZj74pC8S5cubcgE0f3adMkYgA2ZDwwidHV1oa+vbwN51udLoe3q6kImkxGnGY9HQ8tKMdXrdWnhpO+VzgzQ91afYy6Xw4ULF7C2toaRkRG0tbXB5/OhWCzKfTZLkDeDXois/q6f4759+1CpVJBOp8WQvd1BOYnH4zLgmbByJFo5uYhWStEEZc1UHPrZ6jYgPE6lUsHi4iIWFxeblJeWg82i9qFQCNFoVI7r9/tloDnLWjnQjtegF3i9+JMUulzX+oDqgBiPzywd3aucDgM9W2Jubk5kPJFICDFniZjOdDfv+WbkQN8LrYT1NvV6Hd3d3SgWi1hZWbnticBmYLlrf3+/GCtWGVn6J7BR1q3uX6s+oluBvtfakUWZ0O8CM4Pb29uRy+UkqEqjMplMijzoZ0+9qh0TAOR7q6urco9IKEg8dQWcNvwoX9wX9bd5bSZaOQRIiFvdo1Z/p7HQ2dkpmZyzs7Oi17cDWBra3d0tzlrKi9mTE2itf02jjca1HoJmQhNSvQ/zWNqYpp5mdVmhUBBnpenkANYDrvF4XAJIPEfdFoHbU+9WKhWpLEilUk1VE8C6fmXQQXMF8hyToG7V2WT1jtNBtlnLxVaOBf6to6MDgUAA4+Pj8m5vF1BmWVXFAARbIoXDYTidTpTLZXGYeDweaWXR0dGBL33pS2hra5P1h8+PvFY72tnGY2VlBcePH8eJEyckAUdnXPn9/g3tQ+m01UFp7dBi5Q2DXsyaLRQK4pwrFosiDxwS2tPTA6fTiVgshpGREZw4cUKCrzooTPnRvch5vcC1odCsGnU4HDK3jZmKS0tLsp3m89zm6tWr+N3f/V189atflbk/5C3cjlyM32k0Gnj44YdRKBRw9epV0dkM5vD+87zu9GAanY40/Hfs2CGJTqahyp8mj2r1zgMbA/P8XTsxTPtO/67Xcf49FArJu8Xvl0olGQBPrkBnPm3LeDwuM1q4X20jEjxH7RDhXBK+r5zXlMvlmobRaycZ389QKIRwOCyD5K2yjDWn4PtlVlJY3eNWelbfU+qinTt3Sq91JvmYFaN3Aqhz/H4/xsbGxOFCu4Lc0kyu0veE4P3itpR7n88ngSS2+uIzn5+fx4ULFzA3N9dkn+iWNdr/QN3NLGddtUM7Wcs9eXY+n5egBNuD+Xw+qeKhjGu+3NXVhc7OTiQSCXR3dyORSEjwlwHiSqUijvyFhYUmu458gwERfa/0GlKtVnH27FnMzs7i6aefxsGDBxGNRrGysgKn0ynvor7HreSX++Q94f/J/bSfIR6P46677sLx48extraGQCAgx+L9uVOGU2s90d7ejuHh4Q2BUxOm/+t6OoF+KHYDoTxyO9res7OzYqPzc8qm9ufx+3xeuu893xtyCvoFfD4fBgcH0dnZaclDzbWBx3C5XOjv70e5XJZZTdo5bNq0pq/Cyj7UfgqrtQ1Yn3154cIFHDhwAMFgUJKf9byTzfyaWucMDQ2hWCxKlelmgYit+uQ+C/DZhsNhqfajzmxvbxdbxcpGs7pXhLn2aB56vfNpdZzNjqm5p5Y5HlfLj/a/6UQg7lcnLugkePNY+r3yeDySJNTX1wev14u5ubmWFeKa73P/VglyVnYd/Ry6O5F5X62eid4fr9Hr9WLHjh0oFotNyTemrf1x8LGCEBTIzs5O9Pf3b3io5sM1Xy5TcfLBA82Lt7lPRna0wa2PoYkH91etVjE5OYnLly+jWq2K8cHv6xYGNMq4uDOjRiu3RCKBkZERyyF72tmkDUAuLswK4z9mG9HBook3ial2WjUajQ39JPX3+DtnXlSrVYyNjSEajTY5VvVib557K6HUz07/Xf/f7XZj3759OHnypBD921WpEpQHtvowoRXb9dDKYNPEAYAs0FQSeuGlsqNy5r9qtYqFhQXMz89bzmTQ2Tf8PxdykjO2PGIwQlcVaZLKQIR2TuiKGu6TDu5IJCKOFy7W+r7pffH6dfkYACkH5Tsai8XkfaTMm/Jk9bys7r/5mdXf6/U6+vv7kc/n5T5cL3PhdoPD4UBfX5/oZP2OW23b6v/mYk6yeb2WCabxy220/uc5mdmBlEHOQCiVSpLVpR0RlDFmW9GhQb3Hll4k2PzJjON6fb2fLB0tnLPAa3G73Rva5ZnZ57pVniYEulJO3x9NkCnTZt/o6+mXRqMhbXxCoRBisRii0SguXbok7+WdjLa2NoyOjkogmDrDKilhq+C91SXo/LvGZgaJyVu0HtIJBdXq+kBxyoUOYun3xOl0Ns0l4WdckynPvHY6kIrFojgTzHWf94vnqjkQda0Z0NbX2Or/re4VM8P05610sXn/arUaIpEI9uzZg3K5jPn5eczPz2+Lqh5m59Np73K5JADBLKhisShDqBlMrFar6O7uxgsvvIB4PN6Uga4Dotpgi0QiEqx46aWX8P777zdlXdFRVCwWEY/HRV65nvOdIA/R+gsA+vr6xFnJeULM6PX7/QiHw+KYZxbq3r17EY/HxYk2MjKCy5cvi/7ku6ArHHWPfb5LWt+vra018QvqQQayaQxzPSCogy9evIjf/d3fxQMPPIDh4WHRA/xn2gNMmnj88celhRhtDvIdh8PRxHHuVDDbjo7bwcFB6bFtotU6pXWYafyb7z7tGbN1gJUDSq/bPEeXyyW8FVi37XT7G14T7UBzLU4mk5bcWf80HV2c88De/kwcozFeLBYtW6c0Gg2pjshkMvD7/UgkEmhvb28KhmtHuWk3mwM8rfS1lS1tngt/Msg0OTkpcyJ0QtSdAL6/TqdTepDz2esAI9Bc7WomPOp7px1ItHVYkR2Px+F2uzEzM4MTJ07g0qVLEvx0uVwS4NX+AO04ok7j51ynGYjgvCTt4CqVSlLx5na7EY1GEQqFZD4EcK0axOFwYHR0FAMDA2hvb0csFpNK8nK5jJGRkSb/iD6PbDaLqakpXLx4UeQBWK8YcjgcKBaLTdUyvB7qyEajgdXVVXz729/G/Pw8jh07hvb2dnlGnFG1mY+E0FUqrZxl1P2jo6OYnp7G5OSkvOe12npbNL/ff7NE7ZaD73g8HseOHTuafD/EZr408703dTPXfN3bXt9z+omWlpZkW+BaFQz3wWel/XR0qA8MDCCXy8nsJM4voZwGg0H09/ejq6tLjqv5sRkENX1ZnE109erVpsRcqwAD74PZzYLvI6+L+3A6myt89UyLTCaDmZkZyfDXgYjNdKz5nBwOB3bu3InTp0+LL6OVPUN9dbvB6VxvWxyLxWSwNLmkmVCq9arJB/jTSr61jJmJidezka34h/6OaadzbQbQxImBje3P9f41mLBKrs85ltyW1+JwOMR/RR5Zr9elCiIajaKzsxNtbW2Ynp6WGVTmvdTX2koH8P/abta25Fb2a/IygnZAT08PJicnmzgLt/+4+FhBCDqlBgYGmhwshLnQmIJonrRJAq0ujN+lAcIHrjMg+B3+q9frUi6plbvuf2oSFRpYpVJJDG1+j2VHXOg2M+L1dYTDYezcuRNXr15FOp1uWgyo+J1OJ9ra2qSXL1s3eL3ephJ6HoeGpP477wOzIycmJuB0OrFnz56m7CYdDdTPYDMnhRWRMFGv1xEIBLBr1y6cOXNGWtvcrqDxFQ6HpZ9xq/uiX06gOYPDvGd6seaz0oEf7SDSSlJXR3Cf3G5lZQWLi4tyP3lcXRpGpcN3Qp9jV1cX/H4/otEo2traNkRutcOK7SG045Vl7Mz8CwQCaDTWHb+6DF072TT0PdFGgb53lUpFyr0OHDgAr9crZfOblUPq58G/6b+bC4OVAqdhMDAwgCtXrtyRQYhgMIje3t6m3u2tjEvzvmn51hkuwMbsf/M+m8/RJBNajijnJhnU58o+r1bZB3ROUH9rg489mnV1AM+RLfhICtjCg4aZJlHMVtA6lvdU31vTqWJmKJjONe5fO1GsngVhdV+1PopEIhgbG8PFixfv6EBENBrFnj17mgbYmrCSU/2Zhv6MhHmz72xFr2g51qS1UqmgUCjIO8Le1JQTndmnW4CY16ZnNOjKThre5hwXyhwdwalUagOB1O+W1s9WpL0VrGSSWZ9mBudWvq+diuFwGKOjowiHwxgfH7/jqyL4nOjAomHONbFcLouOYjl2tVpFf38/XnjhBUQikQ3GnB5kTV7Y39+PaDSKRqOBl19+GW+99ZY4E3UrCxog1HVc33WlmA6mAus6hr3EGSABgEwmI1WU/f39SKfTkpHscDiwY8cOjI2Nyb1gFTCTUtbW1sQZwioM7UwIBALifOM9oqGWTCZF53Fdmp+fF6cEr1sH7iijDocDc3NzeOmll/Dwww/j7rvvlvtr9R7SHvB4PHjyySfxV3/1V6KT6HCknrodHQZbhV5/K5UKurq60NHR0VIXWvH+rdgEet3TDmKrbfT+mBzGNdbr9SIcDovDaHFxEQsLCxKAIH8LBAIyc0VX35pOCatrMXUzHZupVEqSFeiMIkfRzgbt+OI91vqbmfQ9PT0ytFVvT2i9utX7a/VM9P81/xoaGkK9Xhf9ZFWhdLtCt5fr7e0Vh6fm+MFgUJKqrCooNbfX67vH45GZIYlEQmTt7bffxo9+9COsrq6KzaXXVWaZ83lTR2meqiu2aP+EQiFpYUTfA/UxnwMDsEtLS5Jgw/Wkq6sLO3bsQE9PD8LhsLxjTqdTqnt11S+r2fi+xONxdHV1YWhoCKdPn8bFixextraGXC4nPIbrSD6fF/3La+DxarUaXnvtNWQyGTz33HOIRCIig3qANvmIdoq18gNZ6Wb9/A4cOICFhQUJPDBIfSdVBns8HpmfpIPxrfSqvj+mQ7HV/mlr8B2hnK6trWFychKLi4tNOkLr6Hq9LglZ5Bc6QBEMBkU2eO5sVwas+wiGhoaQSCSanp9+9zSvb2UHxWIx9PX1YWJiYkM7VtN21D4W6nrNc+g01r4/HRgk/3Y4HFhYWEBHRwfa2trkvTdnNlyP9zJRYnR0FBcuXACATXnu7cYpHA4HotEoEolEUwWElj/dOcN8JnrdsfIHax+Y6cTnemvCfCes/JT6/DkDVXNdzYkBNA1r52et3q1qdX0G79zcHADIDK2Ojo4N6zHPn109stksent7pRItm81KUuGOHTtw8eJFWY9bXZ8V9DvEa9JVu+Z8LBOaM+iEIb19rVaT1qb0D9Ifv9m5XQ83HIRwONarIBKJBKLRaEuHgekUNJ0IptOLMMtiCf1dZmzp/rhWC9fs7KwMttEtiwjdK/f/5+7PeiPLsutwfEUEGYx5YAyckjkPVZVVXd2tqaHJtmTIkB9s2IZh+AMYhj+RXww/+MmADMG2GnBbMiTZUrfaaKm6umvKrMysZDI5MxhzMDhF3P9D/Nbmups3WFUt2xX5PwBBMoZ7zz1nn73Xnilgi8ViKOKA18zlcrh//35IwKownabM857ZbBb37t3D5uamgRkfOcm6vLlczg46X1PgzIPPA8w5qBGbwOfVq1coFArW74DRIl81S+E6YRdlyByPx6jValhaWsLe3t5MG3NpFLp165YpFtcpYRyetvUz1zHIaQJXeymoAOVPr9fD/v6+Kfw8M4x2V8cD/9aI2cXFRRSLReRyOYvsUQFAo6yCA79v8/PzxjwPDg5M8GjkJSPFfBouGT+j20mb/L6mR47HYzQaDbx48QJvvfUWgEuHh4/49b91Db3RXCPOpu3veDw2gdtsNt+ITB6OWCyGWq0WigLR96KG0iD3SQ2tajCYprSrws2hBi3lTVGRBQTi5HU0/pNGvXDUskhqeGLkAqNx9CypEzCdTlttW5bUCIIAm5ubZnziYGO1RCJh0ej6TDxnVA69E5EKvgItriOVSeXjul9RtKp8gwpuOp3G3bt38fnnn79RChhHIpGwCOUo/qtr4TGE/5z/rDogPKCaxgemDd1rb8inw4wBDFTczs/PQ6U/gAlNcZ+0di1luvJm0vNgMDADBXB5ZhiZ1el0IuvT++AQlRdcKx8Fqzwhah84KDt/EaOVRvonEgksLy8jlUpZv643dQyHQ6MDNeCzobLuMzChj5s3b+If/sN/aCUwVGlT+cnXb9++jWw2i+PjY3z44Yf44z/+Y8OxypOIBU5PT5HP55HNZvHq1Svjj0C4NCj5HGnYp9aT9u/fv2+9dQaDARKJBB4/foxvf/vbZqRQnPn48WMEQYBPP/00FJCiQRh0yDDTuVarYWVlBc1mE59++qnNlZ+lQY+vqeFA+SOdy7FYDL1eDz/60Y9QLpdx48YNwyFRRg3y7XK5jO9973v4i7/4CzNSqEHjTcEGUUNldCIxqa2vpWGmGYQ8r5jGL6bpftN+q8PW6zLJZBL5fB5BEKDValltYtKoYj42x02lUojH48Ynubf8rf0Cz8/PQxnxKkeGwyF6vZ41+GXUp3foKk+LWg/gspzq6ekpbty4Yc+kg8+u2OHrjCgdQ+fDdbp16xaeP3+OILg0lk/DibM0qGcwYEjxgPICxaMeF/Dz6thNpVJW9rBcLmM4HKLRaOAHP/gBnj17FuLF3CNmBNLxwXszwpV8lrSlGYqJRALHx8eGF2jwnZubCzm32u227SOj2peXl3Hnzh2srq6iVCqFruuzW4h9GcHM17heDPTiOfn0009DVQzOz88tAI3GW85f+/YlEgn89Kc/xXA4xD/9p//UHIG8n5aR5Hnn3xxRvETPk9pdarUa6vU6Njc3Q8GXbwpPpqy9efOmrZUOr5t5fUs/4/9W/kYjIXUqrtP+/j52dnZMrhEbxmIxc5ASV/Bv5U2kw3a7HXKaci4LCwu4efMmyuWy6UZ63nxAlw7FPHzmSqWCwWCAvb290PNy3fTMK36mfSOZTOLhw4fY3983XXF/f/9KL0A956enp9jZ2bHgC64r1+qrDtoVbt68iZcvX4Yw2KyPTCZjvWXpbI0aXr4qn+U+8pyOx5elRbWihtobvLNSz4Ef0848s8iI23h/0rI6n9SWTKP9tAzB4+Nj7O3tWZA6e0zVajWjOb8WfJZms4lYbJK9Njc3Z1ngzWbTsqIajUbICcH1nfbc3l7g9ygej5uMoQNMr8fsTsVTev70fvPz81heXjZHBPvA/W168XxtJwSZydLSUuh1JRDPQPUzQDgdyxPWtEXw1/H3U8MP0+A3NjZCKeaesBVEsm7d3t7elabKpVIJDx48QD6fN0LWeakRikBEDQ8cmUzG0ruYoktBTmYJTIianl9GWSqhcW3IaPksPvIHmHj1nj9/jnw+j1KpZAdQ6/Tq+kbtR9T6X0dw4/EYt27dsmZdsxjhyIO6vLyMYrFoRngPVKcpYDquA1Kkh6hr6zw8PZNGz87OcHR0FKo1rg4C0nYymTQQq5k92WwW9XodiUTCShwpU2c6sJ5NRk8Q1PKz8/PzqNVquLi4QLPZDEVWauQn6Z7zpDGQTgoFDBRKCkzH4zF2dnbMwxwEgRmOdT2nGcq4RqrMRQHUqP9jsRiWlpbQ6/UsSuJNGBRgUeD+q9Kyfk6Vi6jBNeaIWkvSh/JZ/T7rJSeTSRwdHeHp06c4OztDqVSy2vFKq2o0oDJK+iLdcb+8N5+KGRUqgmFGv/X7fRwcHCCXy6FcLqNUKoXKIbAUBOu36yAPpWzU+5MGuR66VkqjUfJT1zKKL/Mnk8ng5s2beP78+cxHMvqRz+eRy+WmOiCuG57vUtFSuuN7+tsPXUsAV77H17wjTWUmDVntdtuUNM9/9GxqdhFpUYGcAmDN7mEUjzrMVAkkLWlZEu+8JW2qDInCXF7p9Wuv/SH8567DB17OBUGAYrGI+/fv48mTJzOJF77KCILADArEcuytQCMOFZZut4t79+7hH/yDf2DRvcrngEuDJMH/rVu3rNnzF198gf/0n/5TKH2b8lYjsGOxmNXMVryoBioaIoMgMMVte3s7FCCQyWTw6NEjvHr1Cvv7+/b9Bw8e4P333zdFJgiCUDnDVCqF999/H0tLS/joo4+s95PSufJPOtVu3LiBd999F7u7uyFDHHk/nbhqCFMZodflM3e7XfzkJz+xRr2KJbh/uubn5+e4f/8+NjY28PLlS0unVyPfm2L08oNK//n5ufVDUx4ybXgM4eXaNGWZ8poOWv++GpxU32H5UBrwv/jiC+vtFIVBzs7O0O12DWuyLBr5YjabtR4+vMdoNEK327XyY4pDPX2RLijnaczQs+sj7SmPqHuy0TUNkLquej6jgkmisIB/j/e8jifT+U9HhA+EmNXBs7ewsIBKpXKFHhlsos/j14H7wXVaWFhAJpOxeuf9fh97e3v4oz/6I6tMwGszEpp2BfJ035ScMtrjBX/G2u22OQlYJpcZ72y8zlJzlUoFd+7cwfr6esi4S9zLKHTqapwzcQBwVT/lM4zHYzx+/BjD4RAvXrwI9Z24f/8+FhYW0G63DYeoQZnPODc3h6dPn+IP/uAP8M/+2T9DoVAIGRGpwwJXm7pG8RV+TvmDBr09fPjQ7DULCwuh68/yoAOrVquhUqmEnK86vN6muIAj6nvkUTzXxIIMTOh0OhZ0RbsRrzMajSy4gE5+jXQm5ltaWrJqIZlMJpRRAEzKOVYqFaTT6VBfJ+U1zBDT6ysf47OSDuv1Onq9nvWlUplBmuDZVz2Mv1k6j3hC8RBwiZ3paIjFYmg2m+j3+yiVSjYf9mG5jgf7/RiPLxtV7+7u/kIO5v/XI5FIoFQqIZPJmFNfadHbQH0Qnqdf1TfIS6nDkKeS5vQeijE87fv15mvJZBJra2tG37wu7V2UxXpN/e2rieh8SLd6T5baJ1/Ta/Hc0U7R6XTwySefWKn8brdr2KVUKqHb7UY60vX5+Jq+/mV4VNefcy0UCgCATqcDIFzW3a8tr8+SmCcnJ+h2u6H5/yLjF3JCLCwsoFgsRk5Sx3UgQAU7X/MLyAVRRshrUeCqMZMLe3Ex6QNxfHxsG+8BgBp5CSQPDw9xfHwciprO5/NWq5rRBBoFwPRfrfNJwzujcpTZLCws4M6dO9jY2DCjrR4mNY4pGKYgiXKg0BBMzxzXgO93u13s7OyYE4VMWiPJPMPQvSPT0Nr+/uDrb2ASvb66uoqNjY0QKJ+VwfTUpaWlK9HI/pBPM2L5NePw//vIOWVuGkHl7zMejy1tiwoZ36fAVcbHSEyeFXot6aDwzjOCCFWoSFtUmnxJsiAIUK1Wjb4TiQSGwyGq1SoymYyVSNA10uZV3pmizc70OywnViqVUCgUEI/HzXDg1zjK2OiNC37fPG9SJr6wsIByufxGlVwoFApIpVKhs0zh54G80peeSzXcKzi9roSC/q+8xEcKcnCvtab4q1ev8PTpUzOo9ft99Ho93Lt3z4wFvAezaMi3mflzfn5utUnZU4TPrtkTOj9GQLRaLavHOBgMcHR0hFwuh0qlgnK5bI4zGjH6/b4ZOdTBTSeErrMqWspjNBpoGi3quvo11MGoXZbze1NGLBZDuVyOfP26/3V9dL25vtdl8ABhI5vKMqXh68CYzkkxDOfjv6fOCB9NpGeRAJd0DVyVFUordBgnk0krSaCGEJ5/4hxNVde/NUpIjRXkDwrWPW9nhI06vv1eXTd4//F4Uhbx5s2bePHixczhha8yuG9aGi2dTtueUsk6OTnB/fv38Xu/93uhLEYO5VHj8dgiVfP5PE5PT9FqtfAHf/AH6PV6xtNIryxFQoWAZWM0sIYRtTS+sR445f3r16+tzjlLj5bLZRwcHKDRaBh2XFpawnvvvYdUKhXihaRl7uvc3Bxu3LiBdDqNTz/9FBsbG6GGrlw7DmKe27dvo1gsmkFM14g12Zlloo5e4nlvzIrFYtja2sLu7i7eeustpNNpjEYjy0hWwxrnNB6P8cu//Ms4ODhAt9sNGdwoi97EQdrKZDK4desWUqlUqJTGdTInSiZ5+Q9c8kLdm9PT0xAmAS75MXkV7xePx5HP53F2doatrS28fv3aMqU0wlCNrMClwYkYn4E5DC7wWJw63cLCAprNphlaqVirzqN/q6GC51WDNzTwxRtcu90utra2cOPGDXMARRlvlBf49dZ98XTu6Vj3i9dNp9NYW1vD69evQ8FDszyYwcqMVpVNqv/reuigPCaPII/j9U5PT/H8+XN8//vfN/4KhANzMpkMut0ums0mCoVCqBkycaIaloPgsgcaaUaD0sbjSbYja4OzN16r1TL6vH//Pu7fv496vW49HrWkHfGFymLOe5oxjesTBJMgr3w+j3feeQe9Xg9bW1vGEz/55BOryKA6JLEW7RV85i+++MIcEcyqS6fTAGBlnXhvyrcoLMx1U1yhQUbLy8uoVCrY2dl5Y5zCxAj5fB6rq6vX2hSUfhRvTrPBRBkq1QlGm9Lm5ib6/X6IZystkmYUt1Cex2IxC2bc39+315jZwbKLtVoN2WwW2Ww2xJOUVjk/liOLmrfSWjabRa1Wi6xJD4T1K79eFxcX2N7etr89LufntdwYMMEZ29vbIXsncXdUVHnUOdNnWF9fNzxzXX+IWRh0jLKMWxStkp5VdvM9/ZtnWfVfvkfewb2IMr5zRMk7/q9rfe/ePQBAq9XC3Nyc8Wy1Z/G7xAvMhuAc6Gj2c/BzoywFLmmQAR6qT+o56fV6+Oijj7C2toZyuWy64dnZGRYXF61/Fb+jAe7+rOsaR82R2EttjXNzc1hfX8doNMLW1pbNmeuifEaDO3kP4n21S3/dDCGOr+WEoKJTrVav1NHmUMapi+A/A0wM8iRAXwtaFQotdaFgQBkjFzYen6RZ7e/vh4iSDEevT+VboxIoVIFJCaX79++jUCggl8tZDTx+P51OI5/PhyJ3uE7qGGCzQr7PyNVnz55ZPT2NDCAjJLjhBivo4MFn3Us1uCro4D339vawsrKCfD5/ufn/X9QoCUyjdnkfDhLndYSu9xyPx1heXsbu7i4uLi5mUlljCroH618VzFxnnPKvKfPk/pHxktkorc7NzaHf76PVaoWAl1fadY9VoMZiMSwuLpoHn4oYz8j5+bkZbKcplVp+QMs9BEGA5eVlbG9vW1S5Gj9VOYzH4+YljsUua5j7tYm6//HxMV6/fo23337bDGv0YvuybV7JmjY8b5r2+UqlgqOjozciKpcGIf+aRltHrTFpUQ2SNFxGpVv7a3m6Bq4aKv1gndIgCLC/v4+NjQ00Go0QbY9GI7TbbXz22WeoVqu4efNm6Jr+uRi98+rVK/PKM7KadEjaOT4+tpJ6VJA++eQTi95lBtvp6Sna7TZyuRyq1ao1/OP8yXfZcJZAh81mtYeJAmIAkZEUlF++rIP+rXsYtcb1ej3UYHDWhwYzAFejBTmmnWdVbPgZlWX+Gt5Q4/m3Kkl+Hp7HUD4zA4wGSkbe8mzxXuSlnk9ppkK328XFxYXhDHVwEeAlEgksLi6acYznnIYMzlnlhJ5nfz3N2FQACuAKHruOr/qooq/CY/V97mGtVkOz2cTR0dHUe83qoDGF60ZH0OnpqSnoiUQC6+vr+L3f+70Q9gAu+QB/qBikUinMzc2h3W5jMBjgP//n/4ytrS2Tx4woY7Ygy4NR3pIWiUkBWAZLuVxGtVrFq1evAFwGsLAfmTaB3t7etvcTiQS++93volwuW2Q5n4FOYc6FGL1areL9999HoVCwIBzSpJ5FBjY0Gg3LeFDFlPSugRca8UYszfOmQTxnZ2f47LPP8Cu/8iuWPfj8+XMrB6UKHzChy8XFRTx8+BA/+9nPLJqfxrNZxLVfZcRiMaTTaTx8+BCZTMYMQdPO8Ve5ng4q26qckjZIi6RRNVLxnkEQmENta2sLGxsbodry/J5GHRK/cM+z2az1FykWi1ab3PMm1TNZC59nVRsA855aO1yNaf7+GjGrRkDyX0bB00HH51EeEoWxrht8Fuqp05y5nGOpVEKv13ujghcAGIbTNfFOROBqMB33UXkceedoNMJHH32E//7f/7sZU8fjsfFVBiXRSBWPxzEYDMweMhgMQoYj4FJnoy1Aez/5QSMUa5JTl7t37x4eP36MpaUlm7MvXaJ7ThzD7Ewg7ASLGpQzxWIRjx49MkwzGo2shAivrb+jSurMzc3h1atX+MEPfoDf//3ft+wR8gM1BNKeQ5sJ6ZLX0bPgx/z8PNbW1qxEj9qkZnWQFlZWViy46esM8hhguuFRB9eVdfHb7bZlMuqa89oAzN52enoawqAcqVTKMn6BS7sDja61Wg2ZTCZkL9P58Hzw8/Pz86F78dnUBsUzx2AIzXrhNbSktvJPPqvqBqoLKP1q7wy+fnR0hH6/HyrFTvuN3z8vW/Q6PIO3b9/GkydP7IzO6tAMCCA6OEwDnfx7UfYxDcg7OTmxUomalTvNyRZ1Pd078qK7d++iUCjg888/x8LCAkqlEtrttvEzZpHr2SHOJWamvkQ5weehA6pcLiMej1vA0draWsjGrE5gdXIFQWA2s4uLCwv44XqrbqY6bT6fRzqdRqPRMNuC6n5cG35Pz53aGLnOiUTCgj01IF2HBsJxX3QfqO/yvtof4uuMr+WE4APUajUjFGVg04xPnpg4orzfUZELrAGpjEQBqBreB4MBtra2QqWJ+HkAoTJE6vXV6C0SIiOxFhcXrYkUGSMbInli1sNHsLCwsIB+vx8yaGazWayurlrUnyo9JPp8Po9er2frx+jhvb29KwffP4t3GPT7fWxtbeH27dtWE08VgSiw6gWBrpN+Rh0gugbsps6GQtMA8Tcx5ufnLV1UxzTjFPDlEcr+OlHrqt/TMjKqXDHFttVqhZQYMnwaTL0SpQrZ3NwcKpVKqNkPDQIArGZ1sVgMPWOUMqnPw59sNotSqYS9vb3Qd300rBq3CVZUWdBSILy21vQ/OjrC0dER6vW6nQ0aG/gs3ll2nQL9ZcYwfmZhYcHK78zyiMUm5aNyuVzIiaX7zs9xeEHvjd/+PPPskgf79VX+G+WcoLGV0QL9fh/b29tWHxm42lg9CCb1mGlsu3Hjhs2fgo8CfTyelO86Ojqy+x0eHiKVSlm/AQKLVquFdDqNSqWCk5MT/PCHP7Ra6SpLgmASBdnpdNDtdpHL5bC0tIRarQbgsgHa+fl5qHFXNpvFwcGBRd1ErYWeET3zGuXggR+v4yOGdE8ZteKbws/ioFGSij4QjkrVZ1TF1K+Bz5DknkzDElG/+TfXPsoxq3NJJBLG/4bDIZ49e2YGpUqlgmq1esVI4s8ZcNkX5Pz8HDs7O9ja2sJoNEI2m8WDBw8sS4S4hPwvl8tZ9DaVhPPzc2xtbWE4HCKVSqFarVqqP/l1PD7JQGKzy+FwGDIyq3EwKqvBr4kazDw49U5iXcMvG0tLS1bK8U0aVKaByTOnUikMh0Mz5s/Pz6NcLuN3f/d3Q1Gx/jwrLWYyGVNuDg8P8cEHH+Czzz4LyTkqJZqN4s/V3NwchsMh8vm81XE9OTnB/v4+7ty5Y2UW6GAALh0VLIfDa8diMTx+/BgrKysWCay0of0W4vG4lSoJggC5XA5vv/22OZs+/vhjK/8AXOoYBwcH1idDA394/hXr0GCiWTkLCwuoVqtmGJyfnzeHxe7urvGJcrmMW7du4dWrV6FyaCoLzs/P8d577+Hly5dot9s2l6gMwTdlJJNJ3Llzx/Qh/9zXnVWv86mi7Y0FaqhRvkunkPIGvS51J/JFKu4eK+qP4kr2LeTrzALXZ1AnFefKtaGMWVxcxHA4NBxIutHr8J4eY1Hxj8ViZnzmHCjjjo6OLGNZHdgq56bpGno/n4HJrCvfNyNKv1leXrZguFnPhiAvZR8xXRsfROf3g7wtCIJQJgV540cffYQ///M/D+npWn6tUCgYLyEv5PvZbNbuT3rgffXeWqufvYOU12iGLx3W3/72t1Gv1zE3NxfKOAOinUxqLONcrtOFuFZ0cJTLZaytrRlfoDOOPdH086xlnslkMBgMLOP+/PwcT58+xY0bNywYiDoAnXw8yypXNNhU5+7tGdQnV1dX8cknn1hG/ywbdbmvxWLRop+BLw9mjNLJVU9T3UCvx/VltmwsFguVYfK6hfIHDdAl/6JcHY/Hhj/13ty/xcVFKw2twz+nlrvldWgQ9dfl36lUCpVKJWQXIb/TEkn6fLy3Xp+NdaNsYJ7OLi4usL+/b6XzlKer7NO9mobrgIkDdXl52TLQ1JE9SzTMoDo/6ID1sniavuQH900rFJAPAOFSxtwXtRV5DMhrsbRkrVazagZLS0toNps4ODgwYzwDTdT2zGtrNq/PmKFsYaPxWGzSs4dBDko/yre8Q4EBOooBGKxLmU1nGue8vLyMf/2v/zW63S7+6I/+CD/96U+tlJIO8kztH0t7MLPnAFjZU35Hf0eNKNsv/2blkOPj4yutDL7K+NqZEIVCAdls9gpA8kTomWiUd0trGPL6/jokChIPCV89jHwtCALs7e1ZVCLvS+GeTqeRyWRCaVDKPHm/IAhw48YNLC4uolwuo1AohIiUyh5TwYHphy4ej1skW7/fDzHKarWKVquFw8PDEBDu9XpYX1/HvXv3rAEbiWhxcRH7+/sGMvnsqnBG7QGV2MXFRQPnZKRqRIgS+Px+lMFHhYQ3NgRBgHq9ju3t7ZlLXaeS4w+VPsM0YKBC3j+7V+K8IUo9nQSaKsjUmdbpdEKZDbFYzA4591sjbkjr8XjcatpTWR6Px0Z7jOrh3kcp0+pRVQeCgt5yuYxmsxmqBxm1ZpwT14ERC6Q/GtXUIM11Pj09RbPZtOehAFFjte6N8ho/ogSl50n6mcXFRezu7l65ziyNcrmMlZUV+59AN4qOo5RWjeDzzhwFoRqlxOsovenQ88/Ps27o3t6elVXwvEZ5kM5jf38f4/EYS0tLodrV/H1+fo6jo6MrClmj0cD6+rrxa+7t9vY2PvnkE+zu7lr0uO670inBSLfbtTPJBuAKnO7cuYO7d+8iHo/j9evX6Pf7ODw8NEOzj8zRNHNGTGskrtKl5yG+/qruKcuXzPrI5/Oo1+uh5/IK9jRFjHTFNfXRXDQUkV981TGNF+hPMpm0ZpKtVgsffPABDg8PbU93dnbQbrextrZmdaY9LyLvJWBsNpvY2Ngw5ePs7AwvXrzAe++9ZzQIXGIVNjQ9PT3FnTt30O128Sd/8ifmxIjFYjg8PMT6+jqWlpYQBIFF7Ohz0KDDkj2JRMKcvKyfq0qd8hLKEP5PXBS1pn5tvcKr6zwejy3r9E2gYx2JRMIi9BhZSz5BQ9Xf/bt/14xfpE2PJ3gtjXgdj8fY39/HBx98YMq07o2WH1LezTXl3qgRPR6fNPKlMuxxHV9j/VeOO3fu4OHDh1ailEO/Tx7GudOIy+stLS1hNBrhwYMHePr0aQhb0InIvlOkPfYToJIFIGSwIM4PgsAiipkxpNFjg8EAH330EX7rt34LzWYT9XodjUbDnCUalUm6TKfTePz4MX70ox9Zqao3JeMsarDWsz+z03S46xRLj3mB8B55POazefU6pFmWTyBW0HvwnKghhMYbvseeUkEQhOQAeS4z77VkguIVGh4WFhasZBHPNmktah0YWESMT9plqUl1FvD5WeKM+EaD3fy6cqgOzPPGe+p3fSCE32uuT7VatTJUszzocIwyjqle5OWKvsY69Ty/Z2dnePr0Kf7sz/4sZKBV53wsFjMeyPU6ODiwUnc0gqZSKaRSqVBPKGYZsJ/YysoKNjY2kE6nsbi4aI4o0gMj5IvFIr71rW9heXk5sql0lP7p/6b88BHeHvMCMCPVwsICVldXcXh4aHMjzdMWkU6nrUa/Ok94X2DCA/7mb/4G9XrdApDi8bjxHV5TdQ8NxNFz7vU80nexWEQ2m8Xx8fEVh+qsDdpwlpaWrugE/vmm6dJRz6bGQX2ffJElbU9OTnBwcGDz4B4oluA1aDPg/5Sj+Xw+VPbb2zoKhYJVB4l6Dj2XwGWFBu5zlJNN+VksNmlSzbOn9KF2A782/G4URuWzeh2Yzzgej3F0dIT19XVz5gBXyw1yDYh9omwi5FGrq6totVpm4+GzzxLtMjtPB59vmgzna56eo97XM6D2Wm/LVBuYv47yeAbedjodJJNJC0KhDYdOYNrbyLdph9MgAK22w89ro3YGQiaTSZMZUc8fBIEFIxHHaFYor6dngPck/ZyenmJjYwN37tzB2tqa2d8bjQb29/ftnHN9yI95dsjXFef4M6975WmWuIZ7EfWZTCaDYrGIXq/3tZ1o0/PzIgYZQJRxxAs/HVEMUt+jsGeqDBeVxMBDysVQZsLX6Emix0sHF+709BRHR0ehRSLx6HcKhQKWlpbMYE/GqOAkaqG9Yq3PPDc3afhXKBTs8MzNzWFtbc2IH7hU5l+/fm0RH5xjq9XCxsZGyKNFgULC8g2yFaQfHx+bU0MdOOph5Bx8JHXUfk4z2HCMx2MDWrMWNTYthYy/pz27/5y+RgBHIOqvocwSmNAjI7nJCMmIO52OCXsKLl1fRuNqlFcmk7E5aOo5XyOdkOHRy+oByHg8NtDKKHJm/XjFb3FxMZSRoLRBMB619lQi6JGlAYAGEwqj8XjSyE+bU9Ix4o3t+tvvI5932lDgy//VwDKLo1Ao4ObNmyHFxA8PXKOMDMpvARg/0v2m4weAGcH9OdE90MgBgrgnT55YCTqvfFBp81Fb5LeNRiNUmgwIO96ieJKCUgU7/X4fr169sv4lPnpO09o1Mmc8HuPg4AAvXrywLA6+9jd/8zcYjUb4+3//7+Of//N/jn/0j/4R7t69a0BO+SOfXeUJ7897eV6kz0X+H8WnisVipIFkVkYsNonKv3nzpskwPrd3QETtpe6RKjpcE5VlWsvyy+bk1xy4mmbOIAbK55/85Cc4OjoKKcsAcHx8jC+++ALPnj1Ds9kMNV2jASQWm/RpiMIkwMRYTCM8ZXsqlbJmYMViETdu3MBoNMKf/dmf4dmzZyE+zAaTH3/8Mba2ttDr9TAaTUqAbG1t4dmzZ3j69Cna7Taq1Srq9TqKxSKq1SqWl5eRyWSuyHP9X+WRl/marUo+zf2hPNEyO7r+PM+5XO5L923WBnEV5a2W9FhYWMB3v/tdLC4uRkaNa4Q0+TFlJOnwww8/RKvVss/5oQqGYmYaw7zMpOKrgUA6Fxqbcrmcff/evXv4pV/6JWQymalNhjmorGq5KDZ/zWazWFtbw+LiIh48eGB8MRaLmeOO2cO8JpsKMpNXcQiVNb0O5QP5gGYt/+Vf/qVleTCLQnkI14Lj4uIC9+/fRz6fD5W4elNHuVz+0vlHYQX932N+jwXUsaR0rjJX70H9jw687e1tq0Wv11dsAVziSb7GTEflK4oth8Phlag9lReqGwETbFKv10MNVuPxuJVkUKPraDRCqVS6kh2k6+J/Li4u0Gg0TIGPx+NWqpj8IGofdB20dCZfn2Yw0HXhHEulkhmKZ3noc3FEPZtfM/5Ql9Hz22q18OMf/9iMTKoreF4yGk1Kf3a7XdRqNaytrSGfz6NcLiMWm2Q4MNNM8Y2WNQWAx48f4+bNm7hx4wYKhYLt4fHxsZVjunv3LtbX15HJZELfnaa3cvgzGZXdGCXbNbAtn89bySB1dJH+FxcXcevWLcO3p6enOD8/N6cMDWCHh4f46U9/CuAyo5qyjTxCjZqcM/GglpWNsi8lEglb+y/T27/pMTc3h1wuh2KxONWBfZ3x1uu4UXoWB+Uug00SiYSVxlajvZabU7zmbXvAZSldLeup86XzSg2i/H6UDqpnNR6Ph/C71zuV9tnPinP0gXG0cxAnKP/jWaZtg2dLbWK6HpwDcbcfXg8jTat9Mornx+NxrK6uGm2TX81S+Wd1uHDPiLcUuyuO9Xqr32vPqwGEggTVoO4zIoCrza0pc2kP437ncjl0u128ePEiZAOjjWw0mvQC63a76PV6httVH2FQFu10uq+KP8nndajtmp/T7Aja3jqdjgXMKQZVuqBc/o//8T+i0WiE7NF+D3SfWO6YNklWUfElnz0emCZP/fooXcRiMcuK/rrja2dCMO1kGvCcNqYJB0+swCUj0WhRGhy01jY3n59rNBrmbWINcN7DG6I8wKaAjMfjWFlZMYWcCo5Gp7LWomYj+E2JUt5jsZildPV6Pav/vLy8jK2tLQCXXr9Wq4W9vT0Ui0Uz0GraYj6ft8iceDxu9Rzj8bhFZpJYCXRphGBtSvWUecJUoe+fIcrQO23vg2BSI5Bzuo5G/l+OKO+/7qE/iNPmTWYRtSZao1AFJu/vMwtoLBgOh9ZHQcG0AgdGfmmT3lwuZ83SMpmMGbyURn0ENUs7aWQuacHXY6aA0FSxarVqvRN8JEG1WkWpVMKLFy9CGUCaggwgdC7pNVZjAteDBgDOiQ67KEGowEXPftR+6x5T+NCIM6sjmUxifX3dFCognJbrQf11507XjcYcCjmm4TJ9UMGZrpkOvs4eDL1ez5pC6V5TKFMgM+VbeRCV8ouLC+zu7mI8ntR6ZnM+rfncaDSM/ubm5rC8vGzPQNA6Hk9SiVU2UNFh/x2CFqVlLZ12enqKw8ND9Ho9VKtVlMtl7O/v47/+1/+KSqWC3/zN38Q//sf/GA8ePMCPfvQjfPzxx6YAUDkYDAZX+APp2oPmqN8E2nQWch9nPYqcjVCz2WyIJr/srKlhgc/Lc6rXUMeTRr346yt/8TTsDWjpdNr4Trfbxe7uLvb3963Jqpb10IjUk5MT7OzsWGk35aM0GnEP9Tl5f8U6BKdnZ2fY2NjAwsIC2u02Go0Gut2u0ac+F3FEp9NBNpvF0tISVlZWrNbr0dERdnZ2EAQBfvmXf9mcj6xB+tlnn1npRyCMyygv+ExaQk8ViSgDCRVdOrt1D/n5QqEQGVAyy4OReel02qJ1z8/PkUgksLa2hnv37hmtqONRA2u4plqPdW5uzvrnqFGGtEHcqpiCShUHDT3ekEVaBGBZMPqder1uPPLRo0d49OiRGWP1/HD4/1WO8Ic0n06nLavg9PQUW1tb5qgjDuFvxaucN89bOp1Gr9czHDQaTfpkHB8fhzCUfnd/fx8//vGP8b3vfS9UAoUlm7xSHQSToIS7d+/i448/BoBI5fNNGdcpi54nenzA1/zn9X8Ofx3+ptGVa80fOlsbjQYODg6u6JlRCr1illhskgVBXMSzNhgMrIQIcGk84uB3iZXVgA/ASvGQJ8Xj8VB2Dz/LACIf2cjv+Gfhb2IKNnOloVYjQ3kPXTN9Xddbf1+3l8qDisWilWiY1aH8k0OfTdfFP/v8/PwVR0sQBPjwww/RbrdDhh3SJvkLy9eSl9Hozr6QpVIJZ2dnhrso1zhXNaQ3m02L2r24uEAul8NgMAiVlCuVSlhfX7esR28w4tyjdB///Pwe+WeUkRi4DCCg8Y09BQ8ODkL3TiQmPXs+//zzEHal/qpOvHg8js8//xz37t2zRszj8dhko6/Tz+sTV2lQUhTPicVi5oSgMXJWMUMikTDnaNTZ1aH76l/3DkZ9j79p0M9ms/ZZRoSTz+oZUj5AOvA2C80Y0Ehx3ufmzZvWc1QDu6YNj/+jMvjJ7xRrJBIJ5HI5K1WucyQdBEGAW7duWQ8MdQiSRmkzIeb1egLxEt/rdruoVquhM0U+reVvvD4e9dyj0QiLi4vWl5BrNktDA4d59lXH4uscnhaJQdmPhPt0fn5+JWNJjfXMMvWZ2DoPfofzVGN9IpHA1tYWjo6OLKhB7ZnUnemIODk5wcnJiRnreV/NINLzoLxc+Rav7wNp+Tp53unpaagU9cXFBVZWVkI2LZ0ndb+/+qu/ssDJL774AhcXF6GG2KQf3jOVSqFcLlu2Gu0onp9Oo9uovSXujqJxNjL/uraHr90TQo1eOjlOSF+LApD6uvdyUnknk+XGclOj7sXvHh8fW1kjbqRnZLyuP0R8n30CCoWCNZvi9ci0aZDj30qQUQzXPzsAa7jW6/UQBJOSRaw9zrlcXFzg8PDQIiU6nY4RGR0OdEKQ6Pr9vkWaUXEDYGm2sVjMojhYQ16ZC6/DfZhGlFFKit9rpYFCoWCNGWel3h0PumcgQHRkiR+kXVUygEvhS6BHJqWHV41FXHNlBKxjzLl4YMVUMh8d0mg0TLCqV5IMl/usz0VjlzbHJgP22SJqWCIDTSQmJWA8UB2Px9jb28Ph4aE5TtTLz/Jcfm1pVNb6zOfn52i1WpbdocY8dXyokdwLUJ5fH/EQRcezBgb8iMViqNfrFqGqr0fR6nXv6f6yHiFrfzJ7SpV5INxcTOmJcxmNRuj3+2g2m+j3+0bL3B96/kmT/C4dDjwTGoF+enqKwWCAnZ0dJBIJ69dzenqKRqOB5eVlFAoFq3NfKBRQq9VC/I3nks/keZ03dFAZpczQ+cbjk1rnOzs7OD4+RrVaxfb2Nv79v//3+Pjjj/Gbv/mbeOedd3D37l38/Oc/x1/91V/h+fPn1vCPhlyVed6h7ffNv6elH3RelUrFyl3N0kin07h165ZF/gFXndjeiOKVbI8BSFNqpKShk9/nGuv+qhM66vxzPxiVPRgM0G63sbOzg263G2lU4msEjkEQmNMqak/5o4YRzomOMwWzvPb5+TlevHhhShgjgclPmWnAWvvj8aQczsuXL9FsNnH37l2LkDk9PbWGw//iX/wL3Llzxwwu3/rWt/Cnf/qnePHiRaicA889a8bG43FrLq/8WdfXyx1VeoFwmm8QBMjn89bY9U0Z4/HYsJ0qFMlkEt/+9revgHrlS/xb5VcsNun3AwAff/yx4T0qRDTiA7hCB4pPiWNZBor4g68rzS0uLlrTyWq1irfffhvNZhPf/e53cffuXQAIOXB1XCd7GJFJuUz5v7KygpOTE6ysrKDRaODi4rKxNs8iv0OD4PLysmWEaD8J4g7ehw3BFVNQRl1cXODly5dYWVkxRzvp0Qf86Fm9c+cOfv7zn5s8eFNHFC/1epvHRvpZ/R0lO3XN/H35Gc2o5HVYLndvby+EMRWv82wQRyg2SaVSKBQK9j+fazgcGsZVh7DOn3REmUInMLE6+0Ook0GNK0A4Q4x6o5aJ0nvS2MI5UjcrlUoWKa60ybVU2RMlF/2+eb2NOi3nxNfL5TI2Nze/lHa+yUGaUHnO/bluqJGK6zc3N4ft7W08f/48ZFxTeUt8Rb7Ia5GWyGuJ6YDLvpO8B+mVRigAODg4QLPZNMcY94WlOSuVCkqlks2Hz3gdz51GA2oI82dSsRbnxgBOlpNsNBpXgmPIq33QB/EGP8u1+Pjjj1Gv1+39RCKBTCZjAWcqG4IgsHWNeibPq9gAedYDx+bn51EqlUL4BwjvgT/P3tbCQQymmVv8vGaRzM9PGqI3m020Wq0r2FqxsRop1aFEuqbzYWFhwbISY7GJsfPOnTuhngmKPa6TNcBl8/ZptK18iv+Xy+VQGXPFMUEQhCpSqAOCn6GTa39//4qtkNfwsoWZaurAVj5+XWnDqEF8x+vOWrUQr7NEDU+3HDT+k5+pHOV5pR4OXO6f8nWlCQ260fuSx5J/n56eotVqGT8mjWtwGEvJnpycmK2NAb3s5VcqlSxQTvkvf6hjce5qR1Dsrc9EnWx3d9eyahKJBHq9HtLptJ1XxTr8TCIxKUP413/911dsVLoWHOQB/X4/hGs0cNd/f9re839en88ZJUvYq+nr2B6+FtXzwaImrYxVDUlRD6WRUXyPm0zlxNe41d8KOsjw2u12qLyGB5m8rr7PH3pWabhnys7JyYkRhkZGcg3IOHxqDO8ZdTj5Pz3UvV4P8/PzqNfrGAwG9tyj0ciism7duoWXL19aBHmtVjMGyYPGg8U5MaJeGQA/1+l0rC4h15DzJ/H4Q89n8949FRT6jPoao2xmKTo3qgwRMJ3Z6qD3W9dIlREFjFxbpv3zvp6R8LPn5+chI5dGtOvhBy73yCvD8Xg8lK7oo3soNPncKjypWE1bB4IcXvv8/NwiqHgtrgEZO4UEBQGfPUrB7Xa7IUWWo9PpoN1uo1KpGHPX/eK8NWLCAxc+F+vl8XUP+PzfszbYdFOHNwJwXCdglP643kzB5P5FOWQITEln+lkC3k6nY+usBlTdE3U+K1/nd3hmjo+PzcAWBJOox83NTcsG6/V6SCaTWFtbM6MdBS6vRXpjVgbvpZkeXDsqY1qqhMYErhUdJGdnZzg8PMTp6anV+fyf//N/4oMPPsC3vvUt/P7v/z7ef/993L59Gz/84Q/xh3/4h2i1WuaU5bX9OkcZF/i6Dn5XZWOlUsHh4aEZLWdhxONxa2Trz643Ingjio6oc09ZSIOvKlEKcgGEyhX6OfjMNNZmbrVa2N3dRbvdDvU18ooPB/kjHRB0+tMIQmWZmT8EvFqjdHV1FZlMJmRMo3xnGjHvqwoM70vFimvL8kC9Xg9PnjxBpVKx4IB4fNII+Pvf/z7+zb/5N/i1X/s1Oz+//du/jf/wH/4DfvjDH9p5psEgm83anPSMq/yIkiNRWNAHPczPz6NSqViG6JswOO/hcIhMJmPRVWtra6jValfkNHkoDeQALMgnkUhgeXnZlHz2vCEeHQ6HtgeKG5PJpOFgOjoZ0UqHk5ZjpCGBgT7ka/Pz87h//z5u3bqFmzdvolKphAxImqFwndykrPfl1ijDY7GY1e6tVCrY2dm54uTgGlGZXFhYwPr6Ok5OTkKOuEQigZWVFQRBgGazabTNTGLqHDSe9Xo9nJycWD1xyh6fXca/R6MRyuUy0um0lR35/5cRZfzimGYI80YiNeJG8WnFysSk2pOBhrOjoyMrv0ldyAdJqb5CgxIjjVWekja8Yu+fweuXqrDzM+l0GrVazbKUOQ8+vzog+BpxQxAE5gwj/WnmJ5/r6OgItVrNSksw+43yLUq/nLY3UVjQ74Xi7Kg+C7M2OFctVcuha+B1K80UJM86PT3Fhx9+GMp6iMVitk9qj4jH46EgF96b9yTPpbODfIbyd3l5GTdv3sRPf/pT9Pt9jEYjdDodzM1N+kWwlFEQTIzqlUolFFWuQYVRw59XpX/F3pTTXgfg2hCXMgiCfX+Y5UfjIhCuluDxO88nMzt2d3dxdHSE5eVluyczmbXMnupn/qxO00kpV4iDZpUvM2jD8xwgOtBTAxT5GnDVAeH1XaVjyuudnR3jO8offQCW0oraDhjYRMzBQAUNLGImLTFi1DPqoL2Dcl2H52l8Nr6Wz+dRLBbRbDZDn+Fg3XzKdcoHdS4qzfp5RkXmD4dDjEYjK1WqNgyVR2qj0b31Yzweo1wuh4KNZnV43R2IPo98dl33KJtMLpdDMpk0W5dmnHDd9QxEyW39HLFEr9ez88+9ZTPzubk5vHz5Et1uF+1226ozkB56vZ6Vf2QjcvKoYrFojgcG6Kos5/y1F4M6YFj+sdfrod/vG6Ydj8cWQA8Aq6ur1uNGcT1wWTKM66U0qGtL3ECMze8Q33vdehq+i8Lynj/4c0PM/XUCdL6WE4IP6Q8g3+NErwNFNOCSUUYBVq0XGGVM5HVo3ByPx2g2m8bMyKSZ8qNz40Hn9QlQbty4gd3dXat7xw2jkk2FjmCQBig+j87tuoOqhyefz1uUIiP/NIqA7927dw9zc3PY2NjA8fGxGd/UwKKCTY2symzVOaGGOTJaLcmkqcBcU3+PKEKLUmKASa3ynZ2da+nr/+Xg/Kc51Tj8e1QeFLzrnvN1H5FxfHxsNKQgFrgEFUEQoN/v4/j4OKR46T308Gu0AZ0MQRAYmCVjPD8/x/e+9z189NFHISbEOfgzokLaKz1e4QRgoJsldagg6HzJcHltNa7x+hpJBMCUN4LfVqt1JT2ZDI+CQBmgMldVuhgtGgV0PYOdxUHjoX+2aYJE/9bn0jXUfdXPaSkWXS/yPfLUVCplzZj7/X5o7zRKSeuJaiq2pwm9PwU6lX/yfp4VCvLt7W3cv3/fMoBIb6y53O/3cXR0ZHOgfCHdKa9Mp9MWha30q/ybZxCAGU2Y3nt0dIT/9b/+Fz744AMsLS1ZiYlGoxFqcKjX8jL1q4woucumXLMU1VgsFlGpVOx/r+hMU1T88MCIZ56NlX2JK35HlZwoY4zyJ2DCewhUDw8PQ9mE5OE+/Z90wgg/npmTkxO8ePHCSlnS6cCG6qlUCo8ePTKDaCqVwuLiohl7FxYWQv0BmBWpkT6aOaYGEM5ZMxBPT0+xt7eHbreLxcVFVCoVLCwsYHd3F//23/5b/Mt/+S/x27/921Yy4l/9q3+F9957Dz/84Q+xsbEBYNLYdjAYYHt7O6TM8bxH8c9pe6vGNt2TWq2Go6OjNyYbglkQdPjwfL///vshGgFge8oycDRiDYdDpNNplEolLC4u4uXLl7h586ZlGpJnsXQQjZjj8fhKc9AgCIzGyuUyvvOd76BUKuHVq1dot9vm8CLtU1FZXFzEYDCwmveFQiEUDUnaU+Mdh1daSIc+qxK45PssH1mr1bC3t2c0wPfVYZvL5SwDjUE2sVgMq6urFlX4+vVrw/ZU3IhZdW6tVsscJFxDfpZnT3FeEAQh59jX5dWzNjwO5GtROpxXVD0GVPxFR05UcAz3gUYbGlaJZc/OzkxGqs5I/YTGGjXm5fN5K23LLAfOTQMd+Jx6NrnvwCXG0WAz3peyIZfLGQ2qjkRczaAM8gHVSXkPri/nobybGXeLi4tGbz5rlL9VN9CsVGIpfxb1u6pjvolDdQzFTh4fkE65JtqT8bPPPsPm5mZo/ebm5pDJZEKYlPYKVi5QnEC6YqYXe9ypIYpGrSCYlCamjsZIYZZ34jOVSiVrQArAbBl63+t0E8WRqvcw89EbtwGYnYMygRGth4eHlsFBPkl+TN5LYxzLSenZOzs7M0Prq1evsLS0ZPqc2nKojzEDG0DIQanD063qJV7vnqXBKOtpepvuyTSbBDGmryihuhxxIYNogiAwIyc/o3o1v6+R2972Q2zDrKBer4dms2nlaJm9RQwBIMTbvJMBQChLeNq+6b6qbp9IJKwxuj4Df8rlMhYXF9FsNu3ZWKIRuOSdqs9p0Brnp3ujQTjAJQ/ifHwgzVcZrL7Ca/E6szC4J55WOaY9K/mC79+lMufs7AyZTAbn5+cWXE1bnFZc0O/omdD/+R06AbhfdPCyfDM/xxK2LOGofFWde3RQ5PN55HI5w+xqa+MPsQLPiLenxOOTUr6tViskr4IgMJ58fn6O27dvY3193XTZ0Whkpfr43FwPnlO1efO51UnB6hbU0bgOum96/rzs8DzJ24v4OcXSX2d8LSeEF+5+sjph/d8LQl0gvbYKTx5GjbpWAMDI2NFoUpqGhMzF1CZ1ZIDe4ANcMiMKXt6HBArAACcwAR1kRloHWT2/er9pijgVs0KhYM9dq9WwublpBB0EAdrtNo6OjpBIJFCr1ezwsT46CYNglVkkui9qIIjFJqUlGKWnhKvGQjXoKsDl9QhofGqPfkY9w7lcbqYAAg+mr/3uh3+2qPRCP5R5ksl5o5AyVDUmkTkqnSoNK+BShsf7MruG9eqBCUDO5XK2v9wbVWKURqggka4U3Ot6aDoa69D7aACdG4ERn5VDnWFR6aW8FhtVEpCoUkZARUbojQee4bL0UJRQnbb3szBisVgIzHpAC3x5GqgO0r83gHtQr9fUtacgTCaT6Pf76Pf71vshSvFm1AcNQmwUSCO+GoSOj49Djl8VwL1ez+aj2WCDwcAUP8670+ng9evXoQhbfkejuPlesVg0IyuvodlCnCcdi7x3r9fD9vY27t69a/c4PT21+o1BEFi0EEGFyiTdR//3lw2//4uLizg4OAgB5W9qxGKTtGMt/6Jnl2s47Xmn8VvugyrVBKNcV6VV/V7U/3TaMsK61+uZQ9h/j/xSZSTfJ3bg9ZgGT0Nzu902J0S73UYsFsPNmzcti0fPNueliqUanj0PUH7rI75UeQ+CSXQODdlLS0vI5XLY39/Hv/t3/w5ffPEF3n77baytreHOnTv4nd/5Hbz//vt4/vy51e7/wQ9+YP0maIBRPODn5HGipwN9D5gY6ldWVvDy5cuvxdO+qcG90Yjie/fuoVqthuRdMpk0rMmhe5VITEocnpycoFgsotfr4eDgwIy2KmNpvAUu15T/03Bwfn6Ozz//HOfn57h16xbu3r2Lg4MDvHz50sp+EmMsLi5eycpRbMuhRn7O35+P0WhS6tE3ONS9JybJZDLIZrOGK7V8I7NC5ufncfv2bXM4k8YrlQqCIMDLly/NscD11HvxPCquPz8/N8exlrDTshSeJ5fLZXzxxRdIpVIzG3X7VYY/f9edT76m/JqfId0yKpC6hOpZqsASDxNfqu7X7/cty4u8nTSs8l9rSjcaDaRSKSwtLWFxcdHon/Sn2T6xWMwwJIMV6NxQhxkjCdWwxGC0TCZjhoFEImE9TMbjMZaWljAeT4LH0um0Ofuod2kpD6VFjaxsNBpYXV21taFTk7JGXwMue7d5nZxGZT0HfE9/c29nxfj1VQaNQMo31eHjDe2JxKTaQbVaRbfbRSaTwaeffmp7Sl0gHo8brWlZR+3PpAYrLUHEOXEdWVOcztKNjQ0sLi5aWQ7gsrSunqNMJmPloFW/Jz/W8WU2Bv2fhi3viGBpEgDmCCDPTqVS1rMiFps4gYfDodGux67kvaRzGqe73S6azSYePnyIWq0WCsSj7OFa8JrKe72Oos/NxrL6zLM4crmc/R2FQXXforCwt1NE7b06PMkvqJPx86QjdbYmk0kL8GMjXtWP6JRqNBqoVCpIp9P49NNPUa/XUS6XjV4U95JGfLYDZQXPnNpUPB5UPEseyfNVLBaRz+fRarUMC5Cv37hxA9lsFoeHhyGDsa6T0pbaH/gcnh+qjKOtTc+RD0jy14nS06mraXmzWeHDXi/max4X6DpSNvksQX5OHZenp6fIZrPGT1QXVkzgDeY6B11/lXPMYKCe9fLlS3Q6HTx//tz4he8bTB1fr5PL5XDr1i3jZ6RtT0/8TiqVMhux9vpgqUUGUhIjqfwZj8f48MMP0el0UK1WbQ507un1FEtpZijXlxhLK774veBr+h0Oj/v82fQ6Kl8nNvw642s5ITRaUBVbP/wE+Rl6kTh44EhU3htDYUiC1VQdRhCMRpPmIgRkGs3CA1Gr1ayuoR4O3mc8HqPRaFjZD16Lz5BMJvHw4UM8efLEQArnSoJkxKJv2MjhhQz/pif04uIClUoF29vboSigs7MzvHz5Erdv30atVkOv18OLFy9C6ah0WkRFLetceE+mgpZKJQM43B+NolHQo4edxKZRP/pcypRIK2yQPCtDmZy+5vdIn0cPmRcm04SnCqKoaB0yDgp/beDM9WOaGjMOWF5AmaICitPTU7x+/RqZTMZKevzFX/yFpRKrgFTFRpmYOrI008evEbM7WMJM13ZhYQGrq6toNBpmzODz8BmU8fPaPt1ZHYuMFOXaKGNV55nypyhl29fDnkYjszbi8Um6d5QA0PPt10YH983Tpb7vhRXXVCOYyCtYu73T6VxxWmpkCUtz8XXN4AEminipVEIikQiVc/JGIHWc0giUzWaxuroaisghvWxubprDQNeLEV1e0RkOh6H0feVxwCSiSfkvQWkQTMqAMJJNnY8qu3gONErX850ve03n63kRAEshnQUnBBXZKMWK//vXlP/qa/w8aZh0SN6jEWLTnMvq1FXAz1J4rVbL+iL4gALum4Jt3ot85eJi0mySYBRAKEODxjHy7fF40j8nl8uFSlRyrjQ0M5pGo0B5zlTR4ZlQpzL5hkaCcT0bjQaGwyFWVlYsCv4HP/gB/vRP/xTFYhHf+c538M4776BcLiMIAusv8cUXX6DdbuPk5MRSl306ddRQfBiljOugM22WSjlOG4z8Yt3kWCycBQFM6CCdTodAPxVs0lsikQhlRPzoRz8yo5UqTRp1pAZWng3SKff62bNn2N3dxfvvv4/79+/jzp072NnZwSeffGJp6NVqFffv38eDBw9Qr9evBJ945YVlREifnIuWYtSSTV654bPncjl0Oh3LMiDmoWOnWq3i137t18wBwHvV63XMz8/j888/x8nJSYiu1UCp6+UbyxaLRZTLZXz++ef2nFRi4/G4nVUOKrbXNXd+E4bHtrpHfF33TGWXf1/lpI8EVD1PjTWUj6oEs5yC4mIaTj0mV16RTCZRr9cNG3K+ahxW3EIsTLzJ+VDnJM2qPsTPsKY18dDp6SkymQy63a6dI62vzzIe3mHO6xE7ADDsc3R0hNXVVQvw0Ex1Pht/oqKMSecqr6ZhQa/PvAnDz5u04g1WlH1zc3O4ceOGVS9gJLc6Lbi+vIY6Ojz9cKgxlfOgPp5MJq80L2cJJk/HOn8G5qiexpJI6nTm8/l10d/+TBMzsyQU6Yoyg0Gi/GFlCAChDCauGZ11w+HQvqONosfjsWGEs7Mzc0Tkcjkr6aPrp9G9um7kJco7+F673TZj3iwP2kuuG16n89g/Cut7+4TSEwBzrnuaIx1xD7vdruGTYrFoOt3p6ak52w4PD5FIJFAqlbC8vBzS+3l/LQNOW5k6jVU3V6NlFEbgUCeEBmuwPB513kqlgvX1dRSLRbMz8Jo8t+TtGjWvaxLFRzhv0pnSotdr/P38Pun+jsdj5PN5yxrxdsNvevg5Ux7qvqks1oAY1c9Ux9ZrER9q1oniNg7Sk+I5fx5UX9RSb51OB4eHh6Fm0NzLIAgMD+p9eIYWFxcti4K4T+/Fz+lasVzd3Nwc2u22lYBmHzMAoaBKtZvRDl2v17G0tBTK7NS14RzUEaHrovpglA5NGaU802dYeZzlz+80XvZ1scTXsgozelyNkvrbT0KJhIyO73sC89dilHoikQiVHmLEP4XjcDg0z74aJnnd0Whkwk49WGoMY/QJU3oZxZLP5zE3N4f33nsPd+/exfPnzy1ahcyeDIuvsyEOlbJpa8R1iMUmzhZGrVUqFcty4PcuLi7w/PlzpNNptFotKz2hh4WOBZ8Ow2elsZpModlsYm1tzfZFU9pUaExjivwcPcJR4E8HAc2sDO6b/q+/vRE2itlMAwnKDPRa/lCrYqwgmMZhMnIyGO47wQwBMBCOWB+PJ1HkT58+xfLysinL2mSX31EGx6hfzZrwzMzPn/TLKEaNUA+CSfpxOp3Gy5cvzQNN5ktjOumSzxxFdxT4g8EApVIpxIwVwPJcTFt/nZsqv36/PfOelcEzB0yPkPeKjX+PIEqzc6Ku598j8NI9Im3t7u5iMBiE+JYKRO6fV4gVCGrmhJY3IB0StNBRTHoplUpYX18PZYgQtA4GA4tA92eU50nPBMFJq9UK8UT+ZsQPzy7PG2np7OwMBwcHKJfLyGQyV9aYQ43g3liu9K8y1IN0BRtRo1Ao4ODg4GuDgv/TgwZq5Y0cnmfq6xxRvJnva9SK0hH3hZ9RkEy6omxl5s5wOLRm6qQtHx1CxxUNVnQac894rhg5qHPyfJ50p1ExXkbGYpM+Jq1Wy1KJ1UFMEM1zqKUk8/k8jo6OjJaYQaEgknTLtPbxeGx1m8/OzrC/v4/vf//7+MEPfmBBHzT2DodDi55jBqZGu+n+RvFg5blRUWfcr3q9/kY4Ic7OzqyZ3fn5Od5//32USqVQeQJ1QJBGVRkhDXU6HXS7XRwfH1spJjWu8uyr0gRcng2uZyaTsWsOBgP0+3385Cc/QavVwr1797C2toZKpYKDgwPs7e0hn89bA1FGMGqEnp5V/qZBn6/xmWjQUCOeH5QrLEeaz+fN2E1nL3WOlZUVOyuaXfHixQvDEMS65MXKo3kvGoXT6TQePnyIVquFYrFohpd4PG6Rn7ymZkMRtzBi/00cUTzYYya/z1paQT+jNOhlLHkTg8gYeKL8WzOBGSlIXAhM9E6Wg1FjBveTc2IUIs8W95Cl8TjIb3gNxbg0iihGVhkcBBPnM5vCB0FgZWjS6bTxKY2Y1MwR5Xn8X3EoMJELe3t7lhkHXMotvYYve+exgmKq60rbvIlDnZ5AeD11jYmXU6kU8vk8njx5Yo5dyivlu+Q3iu/0Hj5gxxuFgEtDHQDrH6Png3K2Vqvh5OTE5HI6ncb5+Tnq9foVvYR8j7YOr+cr/fg562d4Ji8uLjAcDi1YIplMGk7jump2kGYqEM8Xi0WTzcwKmp+fR7vdNp6tRr/RaNLzJJ1Om0GPpRaJWTTwJ2pf1djGtT46OjKHyqxEkUeNqKw6/s0xDS9F4WH9DoAQL6T8C4LAMKquo54TRm2TvofDIbLZrGWEJxIJ6z0FwN4vlUoh+Xp+PmlmXi6XsbGxgVwuh1gsZnZDvxYarPZlg+eR2IJ4o1AooFqtot1uWwCFZm0wM1UD2qhzet3Ll7jifXnGiXVIZ94xTMMuA4+i9lUH94RBnD7Y4ZsePvNKZa86YJRGfa9aDtVniQMAmB3X93EgTfF/r4fpZ3l9xR7UR1hOV0tvanlF4FI2am8O6mV0WFH30cxIP/hspFUAplN2Op1Qtgd5udfhY7GYBcD1+30LDNPPKBbnOnj77XVBYLTb0L5O2cG5q83C4znu/zQ+G4Uxvmx8LScEBcU0j64nSP2Mb0KtjDNyYv8fsWjvARIa08dIIDR+RSnYBLYUkGQ83mBJgpibm7PIbTKVn/3sZ9jc3LSmkFoPUQEtDQyj0QipVMrSMfVg6VrpmjG1m1kbsdgkBbRWq+E73/kOPv30U+zu7hqB8KDo8/J1MmsSezabNWMLv8OmJ6x3qQSogkz3SA8/r+8jhjn4fTV0zFKkggoj4KrTwQ9vgPWKiX9dDZNqUCHDIB0rMAEunWJ8TQUanQtR+6PrzXs0Gg20220UCgWry8n5kjYAWMmYZrOJIAhQLBbx4MGDKx5qXSd9birt2WzWlEg6smgE0/rNNNQRzHBoaRwP0ni+qFCqsYs/CsxVIY7aW2XW+t51YG8WhkYI+hHFX/R51Birive04ddSr0+vOY1bFLLksYwYUbqpVCrWDFR5F/dTS9fQ0MQoKwWf5LcLCwuo1+u4detWiLfwmvPz8xZdrtkhel+NsNHzzDlr5CLPKkvoqNKjn2PvCS0LoQKc9+A1vZDX96cpHHompg2WfvqmgS2VAs8ndUS9pu8pr/GvAdHZFXpOVA7xs4y4zWQyODo6wvHxsQFAva7un2aqaYQZQWw2mzU+ys+xVFfU3IIgsOgtTddnFsXx8TFevHgRitRRJwvlGOVJLpdDNptFo9HAYDAIRQ7y3gTV/B7fGw6H2N7eDjnQiLNYuok0SwDLsiAKSjU92O/JNHr2dKy8h03htKb/LA6u6dzcpBbtt771LeNVjG5VPqURuB4rsUa4GoJU4SqVSjg7OzMsyj1WRTgIJo5WOj7UULO1tYVms4nFxUWsrKygXq9jbW3NMlbphGIGk3dAqAKqhiHNylVjbtTec/A8ZLNZLC8vm+J1fHyMZ8+eGU3SSLi5uWn3UOfZeDy2KDRmCzEzhYpXv983Xp1MJlEqlbCzs4N+v2/z1ZISlEPE9UEwiYijk+ZNHip3PN7ye6XGSS8n/TVVXpI3aGkZ8hzuu/LjKIcBdRLOlc4GleNR5bNu3LiB27dv47/8l/8SisTldRUfRskf3oPGMtLY3Nwc0uk0er2eGSZ6vZ6VmfFOFjUmE1MrDlBjC19jVkW5XLZsU2axAbA18cYXfT7dBwCR/HPas8/6UFnJwTVUwwrXKJVKWZBes9nEX//1X5sNQEt9+bIgvG4UXgHCARH8TT1EZbZmB+l3fvVXfxX7+/vo9XpYWFhAt9tFuVwOXY98fX5+HsPhEP1+34K+vDNG56bX4KDOnkhMyorlcjlzomk/BjocyF+5nuSNq6uruHnzJlqtltV3H48v66jzb/JLBi7s7u4ikUig2Wxapi7nMhwOr5TO8fqLPhdtP1qCb5YxwrQADf7N90jHfh+j9lU/7/VfYg8NWiFtawWFKL7OBrrpdBo3b940+iUfymQyFsjD9+hk+t3f/V1UKhXs7+8bRlZ8Qn76dRwQ/K1BOtQx6/U6SqUSVlZWLECg1WrhyZMnVnZcA9c0wCjq2ePxuEW/a0AScNnbU7P6OTdihCgbyTR9jvuXy+WsX8CsDGaKqt1AdTAg2h6hdlV+BrikScpV2gmUH3JM47fepjPts4PBwBpNU25GfYd0SR5N3SWRSBhu1qoj+lyqO0UZ/Xn2iBOUt6oji3ZIdbacnp6aM/f09NT6sqmMUeygGDwKq+naMYhfA3aU53jnnO4/359mU7vOSTNtfG0nhEa/8cY6CX1gDgo9vq6HkQ/vowm4WBoFy++QiXEjNBp8GpDwi6ZGdL7GjWu1WqZ0ExBQqac3OCp6lc9CL9z5+bkpLF+2MfQIMouChpt+v49er3cF3OoB8MqhRtTzcHnHCRVYrfnPw8eUVV1TVRwUuAOX9UyjDGLKgGfJCQHAHE9AmLlFgQQfZRAFCDzT9coH6UCdatwzAKHanMrsPT1rVB6/n8vlUCwW0el0rA4uaZERAfV6/UpZFGbZsHFVEATmhLt//77dnwAnChgRnOTzeRwcHKBYLCKdTmN/fx8bGxsh54cqXDSSKCPl5zzI5xrQCK1OTa6xj6yYxig5uKc+I8bv5ywPL+y5dlGGQBW8/rUvU0SV/sivqfj3ej1zMmmmg0YFJBKTmttaaovXymazdj0qEQTIdGz4ZwYmEfa3b9+2SAp1chFcsAmwb+abyWRCEUD8HoWo8jqC0kwmY/XTee6i1ozOFKbZ+nXUZ9B1Vdnk9yMKxPp9VDkAXPKcb9oJcV0GXBSO8IProSUyvurZ1H3Vc61KkdYlpwGW9/Xz9PPid2joyOfzVgec9/JKCM/n3Nwc8vk87ty5g3w+b8/J8gvxeBwHBwch45MaWphGrEZslp1Uepq2Jt4BxlT6/f19lEolwwlqTOZnFdDyrHtDNT8fpXxxHvpcUd8DLnsozLKBAQg7FX71V3/VHDmMxPXlKLkmDFrxgTQAQjyVe5bJZEIZOdwbOoXUCMfGf2qgoFyYn59Hs9m0Buzr6+sIgsAiYjOZDABYho6XnbFYzAxHmqFMORylD0zb49FoZM2p+Qx0Ch4cHFhE8ebmJl6/fn2lzIL2p9JIPZ7P09NTdLtdpFKpUIPKwWBg5VBVIWaUtJ41ns9CoWBRy2/qmKa/RelL3vCg14jS/zweUcOPv77SKku28H3SNvdRZXKhUEC73bbPnp2dodPphKLIt7e3cXR0FDojKlu9AYH7ztIyfEadI79PxxSfkUFe9+7dw+vXr0NlEImBaNTo9XohucBragAOcTv5sBoW+D3i8ij90ssddaR4/eZNwLk6YrGYNXjmUF2fdKKOriCYZKzk83l8//vfN4cEEG5a7iN4eT+uldoqdCie5V5yP/UMxeNxqyTx8OFD/Pqv/zqazSY+++wzM/gtLy9HlicZjy8jUIm5Gaijspz3JV2QbvhdGlKJi2ij0OcYDod4/fo1Dg8PLciTZcgymQzS6TSePn0aKoOklSbUVqPl0BqNBvb29qyMTyqVskzlhYUFe8Zp2Mvjlf39fcummPXh+aPHhMoT9Yyq7NV18ZmQyqOJQ5S3KB2Tz3odmDyFOkO328WTJ0+wuLhoDdvpKKZ9jvMkpmAlD5Y7I69SXBDFc74MO+o9FEcvLi4imUyGgqOTyaSVN2cQstK8jqggtOFwaKX5aEvh65yX8gSu5TR5qPwoCgvTpjqNv3wTYzgcolgsAgjLdK7jNJnDv719S/UD70AHwoF8/C73WvfH23v0HgDMecret3QAMLCG11AeBcBK/6tD7/j4GIPBANls1oLK+aOGf0+zzN4kRufz87rkiZqhqPJ/PB6HqtEwwMzjMJVvfE5/ZvRcaXPtKPrkvvhsCO6P2u+isiF8sMdXGV+7MfVgMDBFXcHcNAALXHpt+J7/vDIbf0h1oVTx5UKogUPnRKIjE/SbwsEmfGTY7XbblBY2CFlZWbGIbZ2jGr0SiUkt/rOzM/MQU1Ei8VwH2GOxiWHs+PjY6iUWi0U0Gg389Kc/NSMbCY3lG9QRAYSzRXgYNKVeHQbqzY3aP3VAeKHhAaBf56jPzRrYVSeEPqenX74fxXj1/aj3fGov10qVMio/3W73SoQUh6drHXQ2JJNJFItFa7iogJoe/fX19VAZJDY+12sFwSSSQJvmUMBHAXQ+F6NmCTgYvcpUXdKgnlPSM9fJXz+TyRjtA+EeA7w/+ZHfN3/GdB31eVVx0OvO4qBCrw3VPR8GLkGoj5TydK7ALIp+o4CGru/5+bk5SWnw0Wtp1DYVc9IAz1Q+n7dorL29vRBoUH6vRuJUKoXV1VWrlctrcV7KB0ulErrdbgjMqDNZ1yKVShmA4LVozGM0O88vn0WNBFyH4XBoUV66/lFr7OnTgzPOQQ0IOncv3zi8E+qbGt746nmuvuYH932afLluKD+IWgcqJu12G4PBIARQyZ9Vjnq+q+eHDdbowOX3M5mM0VMsFgv1DGAj1XQ6bYo0AWo8Hre+Hvl8Hr1ez+hXgSDr1iv/0lRx5c+qkJK3z8/Ph/qbxGITQ8Hy8jIKhYIFVKjS5Z1kxAk8F97QFbW/ujeerqP2jk1eZ3mQTvP5PB49emQ0QEORDj4vy8ww44t4VvkGzzlfOzs7s5r25JPkmcR0mUzGIrCYlUCZvLCwYA1aee0vvvgCx8fHSCaT+KVf+iVr1gxcGjs0iIQ0xBKmfIYo54NX0IBop2kul7NMBuCyhxz5687ODp4+fWolb7immrnARtM0GKihGJg4HXjdhYUFbG1tmeFa+wP5wAvWbKbRjuv3pg6/L/qa36coo0MURo468yqXvVKrBnTSl2Iavk59TM/MeDy2kkjct83NTaTTaSsDwprmpAGdO3VH9jShck6cotle3uigZ0FxzGAwMPpQ44M+m0ZlqpGaGExleqfTCRl51RkyDev6oXuhuMvv3Zs0UqkUVlZWrjyL55fJZNJeZ5Ryq9XC06dPQ8Y+zfgGorMbuO7cA+pFvkSY0odmdisOH41GKJVKZlwuFot46623Qs4EOsNo6CU9kZ/zJwiCUBNUXkNtBZwfsxtI7x4zMzJ5NBqZXqhR9Bp0dHR0ZMZZPqvyCNU9aRMBJmf3Jz/5Cf7JP/kn6Pf7yOfz5oSgo45YSM+PrjHnHYvF8Pr160gcPKtj2jz9OSXP8n1UfSCnOi0Vn6rBlThE+XAsFi51y/OgvFId8CxrWygUcHx8HHL80/ZA+t/d3UWn07HvE1/6LAiVM57vRw1+XnEvgxf8uubzebz11luW9cnzz3mQ9ytvV7pi2TE1SBNfaOS60qbiYZURQRDYvaYN7SPwTQeNcVCv9vjN80bFDdS5dS+iaD2Kv+q1uO7pdBqj0SjkaFTbq3e+Un4fHx9befGo80OekcvlLDuWdibO1++zBqXQPkZsyFLQlOHECsy+Ud2M+iTnopiLZ5+vUw60220LUtd1VHuB2jL0mvydSqVQrVZDwZ5cT90rj0N0qK0p6pxq64SvOr52p2CmV6kCoQzFA1W/KHydv3UBVMgqc1JPO8EFB409fnAxyXCAS6Li+7xfuVy2zAf1TF1cXGB/fx/j8dg8wb7GLQHyZ599ZoRSr9dx48YNMxSenJxYVJk+v86Vhy6VSiGTyeDg4ACJRALf+ta3sLu7e6WJqXqgeQ0g3IyPjJaf84YYNVbwmbxy4g2dfu+U8eqIYrjXMeFvYjBd1j+LDg8OgGjwrrSt66hgjOunihf3i6W+dJ31zOj+KLMBYDS2u7trNaB9tgQwOSs7OztYX183Yy4b6TG9l4CSzoN0Om0OOp/NxKFghYBea+rncjkrhUBDidagJI15RZBASj2u0zziUUqZKmxRTFmv4Z9pVqIR/OCaMKrOD6WXaQ4Ifi6VSplDikJYlQ4d/pyTFlnTlq9RiHLdvUDzAmw8HmN/fx+j0cj4OoU9+b2CWM771q1bWFxcvHIWyPP1vCwtLWF/f99SxWmwUuMeG6MGwSTSdX5+Ho1Gw0ADhTZBFgGCAgmlU5ZR4Xei6C7KqOPXXp+N66Xy900Y1xmq+BqV9ajhFS/loZ7v+vtG8XU68cjrdnd3rVYx95XXSyaTKBQK2N/fBwBTvogveB/FIWq89HyEz0knRC6Xu1LyjtgDmDRmvnHjBr744gvLNmLEDmsqM3KdjjbP23hfXSddGw1MoAK2t7dnEZLeAaZyx9/LZ1foPkTNKQpzRO3nm9AEmM/y9ttvW31ZxZ9+DUajSX8NGsuoMGWzWRQKBbRaLWtmR/6iPCaRSFhEPpUMOo3ogCAG1Uwx9mjKZDLIZDJ2/+fPnyOVSuHRo0dWxlPlqH/OePyydwIQxoC6rwyCIY/Xs8trc51030ejkcmGVquFTz/91Op/a4QiebnW9OXaq4OmWq2i2WyawWZ5edlKIGSz2dB6qTJG4wnfi8ViePToETY2NmYWJ3zV4fU2L6tiscteJf57Ovz51b+9A4PXUtkJTKJuNZqa11CcztdYqohO1ERi0mz4+fPnVlaMPNLzOmL5vb09bG9vmxHtzp07KJfLZohVowPnrUEVDATj3MbjMb744gsUi0XUajWLCCaG8UYDHVHybzgcWt1+3Q81jnE+UXqZ/+0DRK7bz1keS0tLKJVKIV7Ic+j3iut6cXFhzUlZ0pbyHwjbKlR3UwMS912dG3pP5QX6nq4959ztdkNlmJgFQZqjXs7zoEER3phLnYl0q84ODXYjLbKnHj8ThUkHg4FFfftMEeIB6pDEKt4pxHMWBEGoEsPTp0/R6/WQyWRC0fxcJw0q83SsZ+T8/Nxw2TSsN0sj6pz6M6q8wVcQ8deiE5504O02vD7tCjwLGhTBEpt6XlS+6x4QR4xGI3S7XVSr1dB73DMty8seJpqhGbUGpN9Y7LLvnj5rlH2JcsnPmWuSSqVw8+ZN7O3tme1PsYUGOKiDWa9D7MJ70SisuMfvH8+pp1ktw6fPwXMVFWD6TQ4tPXudfNB1oGOW34mSd6QB8jAtsax0PD8/b0HitAOpHNRzQlzJ8nDs+6X7TZ7FDPLxeByif39tzV7kHuVyORweHoZwCvFHpVIxvKJyWXmyYn3VyYjlWc5ccffZ2Zn1c9MySt7GRz6gQ3lOoVAAAAtG8g4TOie0WoU/r16v9TyXwZ1fZ/xCTggSy3URbNP+96CXr+lnPWNWj61GPdFDpjW7eJAp9Pi5XC6HUqlkGQ5caDaQzOfzZnwluKTy2Gw27W9GEFBgAsAHH3yARqNhc+90Ojg9PcVbb71lRJlMJs3IFqV087BqWhnTx5PJJJaXl3F6eoqDg4NIpZAEqMTO6DpVEj2oIjGr4Zqf9czD750SJ5lHlAdNCXmWhpYz0FJXwNXocv/c00BP1HNPAxv8TUGn3km+f50iR8YBXDbCGwwGoX2mYs7v9vt9HB4eYnl52ej+0aNH1oSd3z05ObkiTPS5op55bm7OomdVYDx69Ajz8/PY2dmxGqN6PY0wInAhTari5Zmh7kWUoXLaOdPhgZbfu1kb4/Flc26OKDpUEBS1XwsLC6bcUukpFototVqhqAO/fsAlb2AJAq2pq3VwgUsl57oIPL7nSzX550skJhlgNBZo+qTfP849Fps42PL5vKURe2MZhTIAa0qtBji91ng8NucNa9FyvhoVx/PMZ1PHetTaRs3dKy0emHyZ4UAdfN/k8M4YHXxOlT36rMDVnkQEh7rGUbhCr8+ha5JIJKx2KB1wHjQznVf7fzD6KpFIhMAueacq/j5AYjweI5vNWjkCVVR4poitNIiCz64GVr7GCHbWXtb69RwLCwsoFArWb4pro5GFGhHXbrfR7/eRy+VsLro3qjwqD+V+RfFbD1698urpQ/+e5qCapUG+eu/ePaMBylSv4Kjx5uTkxLIyY7EYlpaWMBqNsLS0ZOvrMQTXnNiBRnk976QbnwXLKDG+1u/3sbCwgFQqZQ2qU6nUFR6oI8qQquvA35QRbOgIwBRGpekoXnt4eIjt7W3UajUzNtGorE4BbXzJexLbNJtNozE6IKhT3L17F+fn52g2m+h2u5ibmwtlfKoMBRAyJN69exfVatWahr9pw+sPQDSuVYe+nlGPlfl9lWnMJqFRUTGcGveBSbnbw8NDuz+v6Y3Eyr9PT09x584dM4qxjvLJyQnK5XIom0cDDhKJBA4PD/HixQu7/unpKV68eIFvf/vbUzEPX6fzK5VK2Vlm8+0guCzXtbOzY9fxtK38TPdCqwycn59jMBiESqiqcYN7w897ORn1m3rCdbx2lkcsFsO9e/dMXqk+BYR1VOU5lImUj+TVGqFPHhIVuEOeofiOtEgngOLQWCxmjgXFOOrgDIJJ1PjKyoqdB9XheT/KCuIQflafm8Ypf37838S6Kke0nDWj3tWukkwmTR+MxS4zkxW38W/OSctHK60CEwfM8+fP8Ru/8RvodrvWZ4CfVecGz4bKQO4LI545vgwPz8Lw+JKD68ZnJJ+aZn+h7AcueYZ+XumA+hzpk/q1/yxfo45DuxtwiZuJFXZ2dpDL5UxvUoxIHKKBLeoo8XoPM30Up6hs0M97nsVn1qx/zjUen2TZ0waifFANw4q9ptkB6CCJx+MWOML3ve7hsbDKHq+PKbZIJpMhev6mB3Uizw+97Ce98m/dA34GCGNG76SJ4uHsoUab6Pn5eah6CedDGyYzx4+Ojux6in9J2ywfyiwd8jh1CpCWSI88NycnJ+j1eqHPxmIxw9OLi4shjM99VczC7+na8BxoYAa/Q4zPZ2cgPM+xXsf/rXTJZ+eceE2eUz4fz4Zinut0O+4XnT9fd3xtze74+DgUVRU1PKPxzgovTJQ5qacduAQEVBDUq8hFJAMGLjcMuEy7ouOA82BncAIZeopZ+oBzUGMpQa4SUTwex/7+vpWzUYa1ubmJTqdjSkuUwyZKEGUyGeTzeUs13t7eRjabxTvvvBNKeVfDBJnt2tqaHVgyXu15oaBNh0ZgkCnoYdC91ufwIJ2/PeCe9rzf9CANRR02/zvquaOYsX9v2lrwNTW+q4JH5knmSoUnCAIrB8AI2Pn5eVQqFRQKBSSTSaNhMtB8Ph+6b6fTsYjCUqmEcrlstMUzQwUuCsz6Z1BhUq1WrWnZ2toaCoWCRdayrwpwKYT03NNppkYJFeAK1HkNb9xR+r5uvl9FAZtVwxcj9qMAPnCVpyptcp+KxaI5rQaDAU5PT5HNZrG2tnbFSB/FpwqFAgqFQkgJpoJCoU4jVhS/0Ovzmvxfv0PeTaW8UqmgVquZECUA4vNqqroq5ZVKxYAHzxobNwMTI4jeu9/vh2qxK7Clk40gPer5RqOROexZpsyvqdJrFIhVMMP/eQai+mT49fWR09/U8P2IOHTdVInha1H8NplMmvKTSCTMSe+H8gGeEQ7O4+zszBwQCqKVDmi4UMUwkUhYE2rOrVqtRqaFM0qHz5hIJFCr1VCv10N9AHTOHgAmk0mk02nLNNO14nVPTk5wcnKCbDZr91Q+x/rLvK5mdHonQxBMnCfdbtdK+02Tf3qNaZhOn0npHcBUbORpZFZ5sY54PI6lpSVr0kl+qPvJ52fWK2W48pdsNmslD+jA90YYxXQ+uAS4lI1UuIhnGVUVBIHR/q/+6q/iu9/9Lmq1GmKxGJrNpuENj2P4d9SPnh9GodPhwe9RkaSBSSPgdK9HoxE2NzexuLhoa5dIJFAsFi2S1xs4+NxcF/Z/UEMgMVG5XEa1Wg014vZKmcoP7hlxSyqVwvvvv/9/k5z+rw5vXPCKK0eUYTsKD/AaamRVOeX1Rb332dmZZUF4vMz/1elEg9PZ2VlI9wIus4v29/fRbDZNPvOHivjGxsaVEhnU75SPTcP8jF6Pxyel4lZWVozn7uzsYHNz0/itN9ToWVVd12MWGgY00CEevyx7GsVP/fA6iTr//OemXWOWRjabxY0bN0xe6dkHrmZK6/prBCwAi8ClwVwNoNwnpT/uiUbBkp6AS0MsbQrn5+colUrI5/NmaCXvSyQSVzIhiVt1P/kMtGNoM+ooQxGfgU4JYgHaBbSXHrGkL5dNQxvXZTAYIJVK4caNGyiXy8jn8xZVS3vLeDzpGcHXeX2eMTqLuUavXr3C5uYmEokE1tbWrPY811qxUNRQ/ZhD7UCzPqKwEYAQL4iyF0ThKcpzb4/g0KAY5YfqvFQdjrJvbm4OuVwOi4uLqNVqKBQKRh/tdhs7OztXyh0Clw4/lbf6jIo5iQe03Bj1Ln2OaTqkrol38pHfsYm92hRVb1b5kM/nsbi4GCpTrpkjmuFBR53HxuTpfBbFKbxm1DOosXoWBksdRtlMdHidR3Vy7yxVGw51evJ0LVlKHYtGcepQeg/uM2Wiz3ZQWvKOLXWQeVqgjsmejpTxDNjRwDeeGTr32UNC6Y9ZQOrQ4NBzQdtXEARXZAx1iVKpZOuk11IcMA2r8fPk69rDTR0TnBevC4Ttn7r+vE88HrdKQl93fO1MCAJGNk/SSXFCfqiS4pUZP677jHrMyCxpECJx02BApkSBHwRByMDJzWV002AwwO3bt/HgwQO8ePHC6n/zXsPhEMfHx0in0xahwLT38XhsIIEOjPPzc3Q6HUt3jzKC+OfmRtP7R8BzcHCAubk5i+pinTQVAKPRCLVazRwjnJdfS/VO6sHTBtVKxLpe+p4yAz3IUVE2HLNS646DUXpa6kEFsT4DhYqCPn1OVRL8/vo142ukCT38pG8FV/S8U/mlcq1Oo3q9jrm5ORweHqJWq1mGD2mJwoBC8/DwEKenp5ifn0ehUDCDMeege60ARYc+p0YF8fVCoWCgmWl6vG42mzXFU6+3sLAQygjx7/M5+Fw8734vgKuMVOesr3G9PY+aZhj7pgcbLjHSCphuRND/vUBiCSI6ljudDtbX15HP59FqtSLPu/LO+fl5VKtV7O/vm3NWo5f0TADh1G8FWywJxWvo/qnDmxGH7NvAa3tDqApn0lKlUkGv18PBwYFdX2uCkh9G0boKYI32oSGagEajkcgvstks0um0Kb96xnR/WO9Rm9Nz/t5YpOcgirb5TL5O7Dc16IyZJu/5W51JUUoHlXB9NjW4T2tcPE05G4/HhgnU2Ul5qt/xxizWgydI1/JzUc/IPUyn05bFoym1/JyuE7+TSqWsTAiduGoo1cAMzmttbQ0HBwd2fnjGdT40yvjoFv6vZ9nLhC/jqbqH+h3OV0G8B7d6Df7MAh1/2YjH41heXrb/FV9x+HNPZ4TyGOJHpmgTmykfjFIStByROlv172w2i2QyiVKphKWlJdy9exfr6+tmtB8MBuh0OhgOh+aI8IY+va8fPEvEVhoNTx5POvfOc+JZ4shisYjNzU1sbW1hZWXFGhczQi4Wi11xIPLe8Xgc/X4flUrFdATKn1hs4pRm2StmM9BQCFzKJD4rv6elyx4+fIg/+ZM/+cWI5RseURGO+pvDYyv/Ga8XALjCl/ieBpgpLVN512spDuff1Hu4n5lMBvv7+6HvUKc7Pz+3ptSVSiWE2/v9vjXn5dninqohQ6/p9Tfqeyybs729bU4UDW7iGlC+MxPYG/6Y3ceSkWooZ+YF7+15oufLUfral+3zmzLq9boZ9YHpgS3e8MS18DYL7QOl16PhVKss0HCjNgb2rCPfpVwlHTUaDdy6dQuJRALNZtOqLVxcXCCXyyGbzV4xpnMeXq6qvuc/578LIHTOovR3xZKUE8fHx+h0OjZXRgpns1kzXrFMmOII4mCuDeeqBmiu/Wg0wt7eHsrlMlZXV7G1tYVSqWSOdwZ6aGaFfzaPG/jaLAcrKJ+ahnk4VL77M6u/p8ll79TQ95V3ROETOuWZpZJKpVCpVFCtVrG8vGy2MfLGqLl4fsW5KOa7uLgI6XGcFzOYvMH2ur8TicsG6Jw3g5aLxSJOT0+NlyruVl5LfqBrojyDRmQG/fDZNFhT8Rm/q+Vz9H5+L2eNJ/M8M6gGmB7Yqb+Hw6Hh1iibF+0t5Kcsy1Yul82hxgBB2rFo89KMFJ6l8/NzCwCjDYlYlvf1diTyJZWlvE8+nzd5zeD3QqEQClhUOye/VywWDV/TgUPaoHFeyzFpGTDavfi3lm+kfYCfIZbWPdFnUd1LHSvFYtFKSZ2fn5sOSqcG+/N4R8K0PfeypdPp/EJ62td2QozHY7RaLayuroa8iFHCjZPViU4bUUrrNOMBmQGFuTcQ8bv6P5UQCkYSuW5WOp3G4uIitra2TBlSBY6GJDIWKvXFYhHLy8tYXFxEKpXCaDQpE0XjtoIhD7Q982IEEQ2M4/EYR0dH1lg4l8shnU6bsYHPOBwO8eTJE+TzeWQyGWs6qJH2yhQIpD141X3QffFMctre6PB0MGtOiCCYOKa0tA1fjwL13nuqQEEZwXUAwzMIMk39PBkUcLm/3EuCg263a17MIAgs8or0SbDc7/cNNPDzBAO9Xs/uozUbo+Y9LYuGc9N0YaWVbDaLeDyOWq2GRGJSgzWdTqNer2N3dxd7e3sGaFUR5ZnRKNwgCCzCh4YIGjW+TIBHgb9f5DOzMKhgr6+vA7jeAaxDQWK73cbKygqWl5cRj8ctI4KlDKKawPrzf3FxgXw+b83Q1cmgxvQgCAzIMDqBBi7+zegSAhUKMzZioiKey+WsxBwFtUayEkgySlEdE6zt78GHZrdFgcIoYxQN2JyrP6+x2MRoog5Gv468biKRwK1bt2x+nU7HnGyNRiMSFHheHaWgUKn7pgeBjQelOtQg6Z015K2UieQXpEE2d97f3w+tR5SSqoNgjDSysLBgCoQaOfRaUU4KPqOX67FYLOToAiY9HrTGujfI6TooqMzlcsb3gXAEzdzcHCqVCg4ODgz40omoGEedLero0kgtDTrwAQXTsIBfI7/WuifEQfqcvrSYXk/nMusjkZjUhfVKpj5/1DoRj3Id6ADIZrPY3d0N9Vpi1BcxnRrWyYtisRgePnyIWq2GRqOBarVqcpMYlf0+yI8594cPH+LZs2f42c9+hgcPHmBtbc0UFU/f/oeKpWYUECezbBnnQfrxyi2Dbp4+fYqXL19iOByiUqlgNBqFMK83ItCoR0xAw/bFxYUZCvndi4sLrKysYGlpCcViEY1Gw66hTVTV8ejLoExzqr4pw5c1iBqel/nf/AwQNkj5aGTlGVEGRSrsHGoEUgcry8MxS9Hjbc6FvHE0mvQSicfjqFQqdp3xeIyVlRUsLi6aI+Hs7MxqLis9R+m4HAxC4L3ZBDuRSFjEIpuo5/N5M14pj9X1II3qUDw/TQdTvj1t6B6oTqvXehPomXhVg7Y4PH0qVqNBqVQqmUwkNtPPcrDEnRoTKbd5TRqUiD+BCU2USiUrz0yH8r1793Dv3j08e/YMBwcHGA6H+OlPf4p4PI5yuWyRtmoc88/ncaPXUfmaGpij8KxeQz87HA5xeHiIra0tC7is1+soFot2lk5OTqzBKctbHxwcoN1uh+QR15DD45BWq4V6vY5ut2v9Ibyc1KFyhnvMHoLK232G8CyOKH6i/09zHAGXe05dyutLXjfw31V+Nu3e8fhlBsvJyYmV5yqXyyiVSqjX61aOVEsg8R76w3txvryXD/yh/YDfY1bvl/EklRPx+CRL/enTp8bfGUXP6Hh9fo8jaOOLMujytzqnyb+9vUgNu/6MRu0lR1Swxzc5giAwHVvXLUr+8/OqG2vANq/BjIWLiwukUikUCgUMBgN0u12zexLva5UbzYxQPkFaJV9KJBLWu5f31nmpvq7ykHuZz+dRLpdDugqvT7szy1bzO2xMzftlMhmUSiXs7u4iFouFyn2R5hlMRx7JwAnicaUrZrBRVyVeoQOPn/E6K/eGfYr7/b7ZThTX6v5RB75Oxng9mrpIp9P5hejsazshAFgDRGUAUd696wa/owDKH9CohyVDUyACILS5fF0jxjRSlR4+Mhsywd3dXQRBYHWTKeS63a4RBQ8EmVixWLSoqlQqFdooKjVREZ66Bh5M0tjGkimNRgMnJyfm7Mjn89ja2sLh4WHIyMbyEnRk6L0UKPF+PAhA2Mh8HaPRoZ/T/Zu2b95w802PIAjM0+oNMBzKgL0DgvSgRpzrDqt/TRkzG0rTO0rQy+tzfzRinzRNps+6nYxMj7oXEE7P5DmiIUKdVqqEa+StVzwZ9eifV0Hn/Pw8FhcXQ+l5pVIJzWYzlCLNucZiMfP66nvz8/NmYPYp6VHAjnOO2hdP7/o9Xa9ZHEdHR1ZL1s8f+HLHxNnZGV6/fm0ecpaToZOINY49COO1adxhRGLUGurfw+HQHEvarycIArRaLeO1Wj6E6evAZS39arVq1+O587XQmdnmFW96/jVFXAd5KT8LINRs2At5foeKpvLAeDyOQqFghjgvq3QQ+DQaDQyHQxQKBTNaHB4ehj6r9/XDnwE6H7/pQbnEvQOu0ud1sp9nUfmePufFxQVqtRra7faVfiZRiq0aLkk7dEb57ATOlfTieYcazDzNKz8nD2TZAc6N2MCXBvSYSqNmlKYJkAmKyV9Zo1SfX0En50cQr/PnGvOMeQO0PqOOWOyy/JCeSZ23n5OWWNHr+Hv43hqzOIjbgEuHS5TyyaHvUYEajUZoNpsWvffy5Usrj0gFOZVKmcOeNMDf3LvDw0NkMhk8fPgQy8vLoXuNRiP0+328fv0ar1+/Rq1WM+P/22+/jdu3b6PX6+GTTz6xcgbx+GU2TSIxKYtEB7HKIPI6nqHj42M8ffoUrVYLnU4H8fgkazOdTlvtfJZX2t/fx9OnT/H555+bU+/hw4fIZDJ4+fKlOQeoGCt+5RnmOeJ8KD9YU5jr8M4775ixoFAooNvt2hnnevL5NAhCse6s4dmvM6JK6nrcD4RrfXsajsK36kCNwiC6fvyMGqD8Omvw1mg0KXNDp9LZ2RkWFxcxGAxC/EajJWnwpLGXcrlYLJpTiWeKfQEV83INvPNEIxuJg3iu5ubm8ODBA7TbbfR6PcMx1Ms0i5E05x2Kuga6B7q23lnj6dPLpShepJ+bZbzLUavVruhpOn+eafJGDmZEvfvuu/jjP/5jo3/KHwChc60BWXoPzUylU0lpNRaLWXAX13t/fx8LCwt47733cOvWLezt7aHdbmNpaQkLCwsYDAZG18z0uk6HnCZL9Ld+P+pvf62LiwtzQBweHmI4HKJer2N9fR25XA67u7tWJpCOZBq16OzlOlIG0KFHLM91ZcBRq9UyfU6b4AIIrb/iPuX3LFNJnDsLATdfNr6KnqY8NOr7HtNyvVVP06wzLbflA33IR3ht8hvyTo3kPjo6MucUy9WUy+UQJvf7xsw13ocBAnQKAJNM6a2tLZyenmJhYSHk4GJjYI89/VoSSwLAW2+9BQDWI2hvb89KGOu6KQ9V3E86YuAcHccAQk4I5bXThgbCqXPcn0nlH7M0qEcDV2W3jijZwnJVdOaSDxBb5XI5K+2lgXa8FvVw1dU9r+Ygf6HcJ67kHPgZ7oUGpAOwknXEpVpG6+TkBJ1OB7lczgJgKfOJH9SewRJ2vG4+nw/1IiKtkd74PwOBtSwl70c7ITGbxwusnKM/sVjMnuf4+Bi9Xg9BEIRK9XK+8XjczrffV/839Vm+lkgkrujeX2f8Qk4IRjVx4b3HPcqAoP9z8lHGwWkCU6/JeypYCILLKGlN8WKa+fr6OtrttjXfUNB6cXGBdDptaemVSgVzc3NYWloyZY5GMF+OKZ1OA4iueaoeVT+Ukekz0hiioJnlPNbW1sxDfPPmTczPz2Nvbw8A7Hs8YDxkHqhSOJERkOD1EHsANE0A+Gfwv/VZvaFhVgaZrAoLHV6ZUqbj9zsqGilK8PF1GqaCILAIRTpFAFxhzLwOR1T9tvF4bKnmpAF6n2lAoHFMGWpUNAKfSZVwBUG8H5mrN1Z5OtLa7WS6VCoYDcdUZoJa0if3KJ1OWwozr6Pr4unR75PfG51r1BrP6hgOh+h0OhYlGkVbPiLRDwKs09NTNJtN1Ot1VCoVnJ+fm9Fr2nlgGTOWJUqlUvZ58mRVTMifeIa0KTxwWdYGQCj6IpPJGD0/fPgQhULBjKMUrvTuKw0EQWApnL1ezwzAvu6hGrR13zXqgq+rE0/Xw9+XoIA9M9jrhJ/REQQBcrlcqEwDGzzRyfxlIDyK356enhoQ+qZHEEwcTdVq9cpzRCnGwFVDNCNjyuWyZXlRzg8GA1SrVZTLZaNB5VN6zXg8btGrWpLE82Pum14PuAqCGTniHWHquOb1tP48aT+TydgZ1LOiDaH5fZ4rriGVTyp3Oi/em8/GdVZHGiPNmPWk60Xe4JUI/Rzvw2sXCgWsra1hNBqh0WiYvKGDPAojKo+OkhnKb2Z9aP+P6xRUfVbFxlzjXq+HhYUFi5hNJpOWnUbnEK/LkgPMPONaHh4eotVqoVar4YMPPsDe3l6IDwHAxsaGRQqypEa73cbv/M7vIJfL4YMPPsCTJ0+s2d/Pf/5zy8Z955138J3vfMecLkofNDDEYjGTU7u7u2g2m7i4uMDLly8BXNb5z2az1py03W4bf56fn8fjx4/x/PnzK0EfVBpZZoE8QnE/jRI8XzwzqVQKb7/9Nlqtlj0/zxZl5tnZmdG9l6PEKJ6/vEmDdKAKPv/XoZhYdQngMuNBjQb8X6/n10nPuxoEOIgj6VBKpVLWnJwBL+l0GpVKxQyYlJPkmSw5xr58zWbTMoyYWUT5rOfUB9+Qj3oniTouNLKeRvDBYGAGaw1giMViIfqhXCA28oE+XHPNytBxHbbV95VPT9ubL8OLszDYpDvq7GmFAzoSOUqlEnZ2drC2toalpSXjfVxzftbTkUZKa3lLynHF2oxW5dCsqc3NTfR6Pdy5cwerq6v43ve+BwDY3t62/nzNZtOMrt74BlzdQ4+RvLzx73snk2KaTqeDnZ0dbG9vm6ztdDp48uSJyfROp4PT01Ps7OxgMBhYIBLPK6+fz+fN4EXa1bUi3R0cHODu3buoVqt49uxZ5LMp5vA4OJFIXCmnN+s82etpylP4vv72w+sjnk9wzM/Pm05FvVtpQO+jeIS0TPuB7huDdtrtNmKxGMrlcsh24O9FPZ5ZZkdHRxbQm8/nLVvs5cuXFmwVi016UvGcMgLer5kGF3KQ12azWQyHQ7RaLbx+/dpsPHwOXTd1tOg+0I5Im4gGB/m1V/sR/5+25/5M6rguU/ybGnTwawkgXTMOLxs5WAILuORfzPxi6TcffKV6Dr9HLMl7cXg9R/WyXC5nGQK0P9ApRt7O+y0sLKBSqVjGZBBclqinTY0lQplJTPrWwAL20ePr7KXz8uVLs2Mo5iGeHQ6HhgV0bVnOX4M0fQlyPgNte/w+ZRL7stEmwgBHOmhisZhlO12ns3B4Z28QTAL3f9GgnF/ICcG6hlTAORFOlj/eqKuMxEeWeEdFFGji91nLXutuqred5T0ymUxIGaJh/+zsDAcHB1euvb+/b8r38fGxNeiLxWL2vJqazjnEYrFQ5AMQLimhz63388yfaxsEgZWYAGAp/hqdlcvl8ODBAxQKBXQ6HRPE6kXzAk7nRCWOJUXorebeaXQbD6tec9q+6Wd0fXlgZ20Mh0OLuJ9m6NPn8g4IZQQ09qtAiwKKvBb/5/2z2Wyk4ZDXmpubC9VtI80o2GUpGkZLeuHIuRNA5nI5y8LgXitjU8Cn73NOBCZcF50zcFVY+/crlQpSqRQODg7QarWQSqUshV1BBuekNfd0PXW9PSCPAn38n0LVj2kgcFbGeDzGwcGBpQ5GPUMUGJq2F+fn59jZ2UE8PildkM/nQwYh/a4ay2KxmBkJ2F9C+X4UqFanGHm1GpB0jqSt27dvY3V11eaTy+WwtLSEo6Mj7O3thcrykTffuHEDsVjMyjcUCgUsLS2ZEYzryGfSCAVm+6lxQtdAo7zU4MxBYwdp1af9K2BLJCa9jI6OjiwizF/P71dUOQLdp263O7VHwjcxut2u9ba5ji71/PpzzObLhUIBi4uLOD4+Rr/fRxBMHBH5fB7NZtOU6Gm0TrBWr9fRbrfNCO8xC/fY15HV/SuXyzg6OgopIior+dpoNDKjPxU68meNtAqCwGri0lnCyF5+Xx13atADwjJe//cYhI4Lj1P0OQmK8/n8lV4lfm3n5uZw9+5dzM/PY3Nz07LyKGO2t7enRipGAV+lBxoeZ32ozPSBORxK0/q60vvFxYX19QIma1uv1/Hy5UvE43FTColtfdYa5zEcDvHhhx+i0Wig3+/btZk+DlyWxSKvyGazODw8xPb2tgW+JBIJfPLJJ3ZOer0eBoMB6vW6RR3y2Uj/NAbOzc3h1q1b1ktOI8yIV6icEd8Qvzx8+BD37t3D5uamNXg9OjoyjKOBLdQFgmCSDr+6umrlyzQg4+LiAuVy2c4t09qpxHEevqyH4gsGcLzJgwbVKKzOoTyD8kudNUp302jZG4misIHHccp/+B323OH32cNqd3cXZ2dnWFpaAjCp18x9vLi4MCME6a/X69keUwfSofJZ6ZTzUQzs65azVK5ihEQiYaV0Y7GY9X04PDy0eySTScM5PqKcdKZyRdfO63i61vq6PpN/3mn7P4vDlxRW/UsNOKQBj89isRhKpZJ9Vktf8IffA6Idb15/4CAtaKSoZrLT6ckgR2DCb3d2dkyno1O3WCyiWCyG+Izqn/qa/vZrw7+jzif579HREba2trC9vW2lQGkH6fV6iMfj2N7eNhsIeS1tEWofCILAMBnf4z01MzCRmJSMZNkWDTbz+ow3HOt+ECPpZ2d1MCsaiMbtHKobRNmMoobq+fF43BxiiUTC6uXrdbWKgPIcxZHkdfoe+RgD1vhZNhBmmV3K1cFggIODgyv6SK/XQ7/fx+LiouEK0tBgMMDGxgaCIMDNmzcRBEEoCjxKf1A+wOwm6q+aeeCxsZ59NVhzXdQ5CSBUkk2vx/OkQUZROG/anvP5Z0lnAya21l6vZ8GOpIFpmWLe7qX0BEyemdVaKN9Y0ovOeg0sUSytzpAoTK00QDpUfsLPsGw5cFlZI5vNWnak3pd2V2Zetttt1Ot1u+Z4PLYgceJb4m/SUT6fx8OHD/HixQtzIKjtWp+RtMqeJgxyoLNXy4/rXBmsRDzPdWEgGZ0ZmUwG/X7fAoJU5/VOau6XDm8vi8ViFjz0i45f2AnR7/ctffA6Qcj/ox5GwRzHddfiwzPCDsAVsEGhx3T2brcbahy1uLgYikQkwxqNRtjY2MBbb72Fer2OTqeDvb09i7ygAsfrUElRRs7/FcjyWaPWwB+e8Xhs3eJ5iBjVQ4WLf/PZV1ZWQpE3auzSe3iBRucKGYqvhef3Qo0VquzqQeePF2hUnGcxfZ20zAjwaYYrfT5dS+5tNpvF+++/j06ng263axHXe3t7oTIAHFwn0iyVZyoi+jneM5vNhgScZxx8L5lM4ubNm4jH49bM3DsRSPOsa0sBqEYCGgzpdFTB6iOFVChNExJRwphREQQudC54AM3nKpfLFuXoDc9ck0QigVqthlQqhUajYaUWvHLsDXYeuM8yoAUmht12u208TYcHavqaf2a+FwQBDg8PUSwWMT8/H3II6TW4ltz7ubk5VKtVixhQPkGBqiWQ6HSjIdTzK6Zhss/E+vo6Hjx4YNcvFAoAJpFajIhstVqhaNelpSW71tLSEvb29jAej3Hz5k00Gg30ej07Fz76UcFuLBYL1WPkc2k2h48ATSaTqFQqZizRlH1dQ+BSeTg4OLBUyKi90+F5QNT7bMo5K4NGo3q9bq95gKqvAVcNJEEQoNlsotPpIJvNolKpoFAoWM+kYrGIQqEQyuqLup4qxktLS9jd3bXsTo1QYeRMLDYxHvX7fSQSCWSzWYv0Yy1kXjuTyQC42iMCmEQIkp4oEzVoQNdAI1M4p2w2a0DdA2s9l1H81n+O66ARtv46NPyqsgZcdQ4DMGf2y5cvzSiYSqWQTCaxu7tr3/N74nm9zpXfiWqWNovDy6Ko8+7lojcW8n8NtJmfn0e1WkUymbTat6QdDTrg9cibLi4u8Pr1a8RiMWt6z7XVbArSEaOmfvzjH9scU6kUHj16ZMoiabHb7WJjYwMPHz4Mlfji4LWz2SzefvttVKtVVKtVPH/+HPv7+1dKH4zHY2QyGbz//vu4ceMGarUacrkc5ufn8Tu/8zs4Pj7G3t6elYRKpVJoNpumlGqGDw0idKh4+lpcXLSMYsoj4NKYxvR3f34Vs2mftzdxkD6mGff8c5OudHg+E0Xneh0vq0j3dArwjHNtiT31Nx1cQTDJruM9iAkYSHZ+fm6BZ1qahM6J8/NztFot5PN5w9DE8p5e+F2lNY+9+R01WsXjk5KjnBt11YODA4sAHY/HGAwGhrVVJ2AkI69P+oy6r8e209bbvx51Zmd5qIFFX6NTge/5oBY1kJKXafAU11sNsqpn8AzQZqCBX9wbX8qLMp6ZN/Pz83jnnXdw9+7dEJasVCrY3d3F9vY24vG42Ryq1SoePXpkc1BHKX+m6Vr6vw7OmYbj3d1dK8F0dHSEk5MTW0fKHgY4+kAMNmxlSUhifNUVNfNeg43owHz27JnpAcpflM71TPrz6Z3Fs4R5/WAZIuCrnTuP8T0ejhqk04WFBTNMsmyh6g2kaZY21vKdXhcjX+Iezs/P49GjR5YtT2fHyckJGo2GVRxhFLzq6RwnJyfI5XLWI21ubs6CmrvdLprNpmW5E89QLkyTVxykHT2vanD1+gZ5gsoINXxrYKZ3QijPVRmguo3StbeR6WuzyH+ZobW4uBiSh54OvX0RmB5MPh6Pza5AOwDvpfvjbTUcKif1Hj74i/SkFRj4OfJjlhbTObK8NIO89BxeXFyg1+uFSoKfn5+j2WzaszE4SOm1VCrh8ePHlhGsvJTrxznS9sIKEwxm5LPrOvCezBKhDZFYnzya3282mzg4OAjZJDlXPqPXSTw9+HO3v7//t3Ke/UJOiPF4kr7HJlFRxjwFoXqIKez1QUhQKnSilFVek8oXF5mRtcClUafVaoWMyrw/m9sBCHn0OMd8Pm/eJwBm2Jqfn0e32zXi0MOjz6Hz4EbSG6sC028kBQPBRtTB8qn+HKwZzMhkHmYyTGY88Duj0cgiyfQZ/fN4o4bfC+9siBIKvC4Vw1kbpOVarRaKJgCiHWGe2ZKmmRK+srJi37tx4wbOzs6wt7cXeaAVFACwzB1tukenRBCEGzeTHvQ6SivZbBa1Wg3Hx8ch55Q+y8nJCbrdLtLptEUYkXHSMUH6ZUkNVdg4dz0LUTTgFVUONbxks1kDtHTg0HnIs1gsFq3kyvz8vGWN6LWDYGKsu3PnDra3t3Hjxg0MBgO8evXqypyAS8Hn6ZzAeJbHxcWkj4168DnI27h20xSTKHDIyEEadL3A8t8lH67VahYtwPcVdBHcqfFTnXg0sDGdkSUTGGGtjbMJkMfjsQnZzc1NnJ+fY3FxEblczko5ECSfnZ0hn8/j0aNH+NnPfhaKrAQuQb+nhcXFRYuw55lkVAZL4mhG3NLSkjVFU6WNQ//W2ro6pq2zGkGiBiPMZqUfBEcQTBwIviTTNOAd9Xx8jZkqjNCpVqs4ODjA6emp1Xf3NYZ1sBk6I2ULhYIpwdxH78QgryEfBi4jl0iLPDd8Jo3ALhQKqNVq1oMlFrtMgeX54lCwr2cmmUyaY1DPoo/eoXKuzmwv1xTY671pmGR6Mul8mqOI/zOLb2FhAel0Gp1Ox4A55zvtu4r3ouih2WxO3ctZGsR5WoN5mlGIxlR+R/mZl62j0Qj5fB71eh3b29shjMDvr6ysYDAYYDAYIJ1OYzAYGF2QjtjgjjyPOFMdW+RZbJS9s7ODYrGI27dvY2lpCScnJ+j3+zg9PcXNmzet7w2xtu4n/2ep00qlgkePHmF/f994HuV8q9VCJpPB22+/jXK5HIqSI88oFAr4/PPPLYpdDcoakX5ycoKXL19axJtilFhs4nh8/vy5ZRgTt3sjg2IFpdEox+GbNs7Pz82hP+3s8XUGBXjDC4OivJHJG7KiDDa6tjTMqXEnKvNJaYrR1twv9hZTHMQ91x4R7J3Hc0F612dVvsgffoeDkbn8HOfH/9VArPyAjhbVd32AEK9DOueIcnrpmuhcvA7t8e40g9GsDz9HOpk0C0KNWlyzbrdrPT9Ir6rPkZfwmqRv0gxwmZGo2d/8Hr9LPcyfFwC4e/cu3n33XSvvTDmdy+Wwvr6O7e1ty5TodDr2PrOAcrlcqJ638inFrnrPKEMenQZ7e3t48uSJZeDy8zSWaxaRBntyDvPz89aIe2FhAa1WC+1220oKU56Qr3JvRqOR9Rmio1B1V+CS9jV40fNjXkvHLNoYOE5PT62WvNdZOdQR4M9kFH+O+jsIAmvEzoBWYgK9Lx2guVzO8JvyTgZeqX5EOqDRkb8Z4X16emrVJfQ88awkk0nrd8oG18TDHNVqFTdv3jSbFeUtHXqU/VH8SrE3nYXZbNboiM43PT9q/A6CwCLGPW2q44+GZt9fUDH7NDw7bcwq/2UWu2YQeOeK11GV/6hewqH8wZ/ZqLXjdSizfRAI31d7rsoGDVCkjqKYkddiABuzDvisem6Oj48tCyyZTFrAH5+JQRWkf+LYIAjw4MEDHB0dYXNz07C72u9IY4pF1b6m+MbzDuqoag9iKVIA5pTxdg6vJ/jrcnDt9Xsss/a3Gb+QEyIIglAJA77mBaASpAIEvxBq2IwC/54px2KXPQwoCLWJoir1JDwyGG40QZ86RarVKk5PT3F0dGRCP5FImFGM0Vg0NjPqURV0zompnmRQytD84eL/BKj+IOvn/Dpo1BBTE1kHlXPz3uNEYtJskJ8hyIhimDyw/X7/SpmLKM95FOPlGs4qk+33+5FRB34oUIoCDh999BFyuZw1F6vX61b/1e8b/2YjYNbWz2azV6LDyYTUqMRo/06nY6UvNN3z+fPnBgSUIeq82WwKmDR8SyQm5b5o6CcIYUNIeq95dhiF+VWiOzwtRwkmMmD2AfBnmH0zCCKinonr1Ww20Wq1DOx6I7039vgzyeiQWR/dbhcHBwdYWVkJGac9LU8DRFG8ejAYYG5uztau0WhcyQTwaxmLTRwRy8vLSCQS6HQ6dn0CAnVG633p8OFr5GepVAo3b9605n1MV2fZLkbQADAapZGXUUD9fh/tdtvSyFnahHUaaShWhc7zXkbTko7U4QcgpJAuLS3ZGvj1jQJVNERG0aF+Xw0iug9+n+mYmsXSd71eD71eD8ViMaSIAVdT7nVEGXkoVw8ODjA3N4dyuYzBYIBisWgRWlFRcbFYzBrgUTFmDWPSh4JiNQxzrX22Ieevykg8ftnPJJVK4Z133jFnL8u9sD49nSacXywWswyf0WiEg4MDCypgI8YohVSVI8oUnuVpTgQCZJ/pVi6XQxG8VDajzgiNLnR8sHa75/lR++qNYsqnuFfkJbM+mEpOsE95rAobMep7772HpaUlbG1thephk0/yN7NJxuMxVldXsbOzE3J0aAkYGutbrVZIyQYuy3xSuaHTjYExVKhpZGKviXK5jIODA8sCyuVyqNfrqNfrWF1dvYLrdO+AMP+an59HvV5HuVzGkydPLKihVqvh7bffRrfbxevXr5FIJKzMoF6LDgs6uRRj0zGjtYtHo5Fh+vF4kklcKBRQKBQsektrr6sCyPvyWqR71SW+joFh1gaV6VKpFHot6pmilH1+9vz8HPl8PlRCwV9D5aXSOV/z+pIO7o3yHOpSSuPk35TnxLJ0xhNTaFkpBipoEJzyNw3gYFYcjd1RAVtfhrH4u1wuYzweo9FomOHA80A6gtUgofKFf3PO0/irGhn0xw+99iwPxZAcugbe0MXBxpnxeDxUZpSfowwDLuVdLBYzXYORr+qUV2OX6nkazMZ5FotF/Mqv/IplfbPE4BdffIGNjQ2cnJzgxo0bGI8n/SN2dnaQTCbR6/XQ7XYt2GZtbQ0rKyuhufrn9furdEUHBEtjZrNZNJtNK03GbAXaAzKZjPUBUHlPXHR4eGhBHel02pyS6sijsVv1MJYD1Ll7nEcjoc+CVEOoL188y06IwWBgmE6Hp139fxqG0vei9OkgCCxAlw2k1Tmk9oThcGiBXCx33G63TbYrr6Yt4dmzZ5bFQHsc9TMaq9V5RLzrn4lBh/51YhPycuq2dCYQv0cNtYvNz8+bM4O95KJ0UA3UYOkdPi/XkwZs/qa+RRrnWuk8/N76s6l7Pos6GwCzibK8MXAZrOR1MuBqUKjnhfw7CiP6oXhBr0WdjPdTexp1EdIO6Zr7o84kXgu4LFHJ+yomUbs1aZ0BPZopByCEzzVghuPWrVvIZDLY2tpCv98P9Y4inS4sLFi/Fc3MocxRTKRz5vVU3wAm52lxcRH5fB6dTsfKUk7TY6PsEKR15U07Ozt/6yz1X7iwKcsceQWXg0BvPB4bOFVQp5Ei3/72t3F6emoKxsXFBTY2Nq6keHgApWBNvfwe0JGQtOwT+y2QYJaXl7G+vo6NjQ1sbGxYBFaxWMSzZ8/sGUajEXZ3dxEEgTVG473T6TRWV1eRSqWwv79vQIGRE8fHx8bEuA6co6ZzegbJ30oA/J+KVCaTweLiYqj8BxVZGlP5HTYnIVjQerp+rdfX17G0tIRut4uXL19aUyLdCzUK8X+lg1gsNjNNUqMGswXIuL7q8IB3OByawtvr9azpKN+PYrJ0QnC/8vk8ut1uKJ2YQlg9slRiaNQgQE4kEiEj1fz8vNWB4/c4HzI0jeyt1+tXyl9wbdisl9c5OztDLpcLCdooAOXpyjM5PicbY9I4SJAxGo1QKBRQLpftGX0jWN2P0WhSf5Wlm/b29iKNZ1H7wXWIx+MzF00eNcbjMXZ2dpDL5ayZLXApNBRAcnjQ6vnq4eEh3nrrLZyenlpd2m63a44ADr/viUQCxWLRmkI1m00MBgOTA1T0SDss00QDK3AJbpLJJGq1GorFIk5OTozPsX44nQqkF9afJ4ikMZC0AkwcFZQpKysrVnddAQSfiWdSm16qzALCqYnz8/OoVCpYXl4ORcF92TkoFApoNBpX9sYPXieqfiv/jsfjVn91Fsf5+Tn29/etIaieX32mKEOOV1LVoHJ0dITl5WWLxiqVSqFmXP77QRCg1+uZspTP51EsFtHpdEIgl5+lbCRdMrKEWIU0RcUPgCkylUoFb731FgqFAg4PD1EoFAyTALAGquPx2BxxuVwOKysrZpy7uLjAzs4OUqkUVlZWzIgSxUc5F2Ig//zeQBIEl02fufacE4ExMZzfD454fFLCpt1uY2dn5wpfnsZn9T2vuPC6jHB+E8ZoNGneSbmje6B0vbi4iGq1ip///Od4//330e12sbOzY9fhvlA5uXHjBtrtNvb29gwLEPOyRFOr1UI2mw2VIuOeM8tMFQxV/HXNs9ksbt26haOjI5yento12RSbDr/z83O8fv0amUwG2WwW9+7dQ6VSCfE9lS+6FnQ68x5bW1uoVCp47733cHR0hOfPn+Px48ehAJsguMxAoqGM+JpR6VT6dA7Hx8dG34lEAtVq1ZoKdjodzM3N2TnmddRoy+t4Bdv//SaObreLtbW1qYYSNVhx8DUq5IlEAu+//z4uLi6s78vCwgIODw8tWyGKdwOwuscsr6W8ixGsxKcet/G61O2IMThfGkP9PYlD8vk8qtUqAFjQD0s0AAhFtlPu8tx5w/80o6E30Cgd1et1JBIJbG9vh4LmNIONRgiNCufQ+zCantifuFV5AL+jDnU/9zeh5B0DPnzkqQ7SB/UI7h+DCZkFqdkPStOKBVlhgLoO7RjMEmAWBPeIc6L+lkqlUCwW8fjxY3NAMMDpiy++wI9+9CPs7e0hHo+jWCxiZ2cHrVbL9uzVq1d2v5OTE3zwwQcol8u4deuWBegQJ3jdytsS6CyhAw6YBJ/l83k8f/7cgiEoVy4uLiwAwGNerpNGl1Ne0WhGXU0NYVy/er0eWmfPX3kfYhAfYMXPeKw7y460acEj+ptry7/5nsdQKlO9jheLxaysFoNpS6USDg4OQrSqlTcAWFAt+zWos52ykWek0+lgOBxicXHRvtPr9Qz7qOEYgNEV7Vz5fB6VSiV0Rv2z6bqwfDjfo6zQ3hZ+XeksSCQSpoeq3suhBmnie7Un8r10Oo10Om319QGEbCe6F1GY12MtTwuzhnOVJhuNBqrVqjUJZwD3tB4n+pzErJphpQZ84GovOz8H8nnlreRButakDcWEim24P5w/ZYPuM8+SDzZRLMryYF6n4vf4rLTNETucnp7i+PjYmnMzWJY2W/J6ZjApntV56VnQIAo6Fz2e40+pVEI2m8Unn3xispTrG4UJVH56x/3e3p6VxPzbjF/YCcGmRax97ScPhMsT+Q3mZ0mUjx8/RqPRQKfTwerqKs7OzvD8+fMrwFgXh4yOpWO8F0eJk8o0GSRLuhA0V6tVbG1t4dWrV3ZdNeJxs0mse3t7aDQayGQyKJVKuH//PtbX160RaaVSCdWaVcOuGo45T6bNTJu/Pq8CamByOAqFAjKZDBqNhtUUI/Dya0dDIffRg2WdY6lUwhdffIFEIoF33nkH//t//+8racNcdxUcHhDNshOCTetqtVro4HkDD9fEr6eCBC1rsLu7G2mQVBoejyd17smwstmsGVi531HnSGm5XC5bsx/SBxkm69NHRTVwvxhVns1mLULHD6bQMhLBR2bpOvF3FDBQ+tW1IHhlNE0sFrNSD0EQmOCngGGfB72v8hhGAm9ubppxT52g15W04Zq/CU4IYHKGNzc38eDBA+NppC/SBHA1NdsrxhzD4RC7u7vWNCwWi1mJI4JPKh8cdAYz8ob1+dnrgPdUAUl+GARhR3EQBAZSCTwowKlA8cwSRLO51MXFhTVBOz4+Rj6ft4gy8nBGJiwtLVnZHq5RPB633iQ8K+TV5JWaWTQej5FKpVCtVrGysmIRF+os4PB8kYYDLeGjn/M8SEGbH4lEAt1uF7u7uzOtiLXbbTPUel6o++CHl4XKQyg7mQHDyC8AoabPOqg4U8Gq1WoAYFGHyWQSc3NzoUwCBaFKDwSZwKUTjZEn7777LorFIprNJobDodES+RwAM+w2Gg0EwcQJwYxOTVe+uLjA0tIS+v0+Xr9+HVLUvcFBs3uAiXGZ5W+ASx6og8+Sz+dDfVx8loZ+PggCM8xFOSD0c1F7GuX01/U9ODiYyqdnbYzHY+zv71vNb6/EUMnodruW1fLs2TM8evQIjUbD8B+xJw2jhUIB8/PzVs6LCv1wOLS94d7TmE7HLssjkH41sooygHvAvX/33Xfx4x//GO12G0+fPrUa/DSIplIpbG1tmQOvXC4jk8mYgu6j1oBLeuT9f+3Xfg3vvfce9vf38fHHH2NrawuJRALr6+v4yU9+guFwiL/39/5eaO2WlpawtraGFy9eAIBFo2mUJssGsHyO9u1Jp9OW8alYRM+R10+i+M40ufmmDTZM9kq0P+OKcb1CDABHR0dYWlqyBo0PHz5EOp3GRx99ZNfQdfPGLTYjp8GTfHEwGFwJmvE6hu4RsxxpsG00GiHeQ9pjsJvydZZCVZxPh14QTAzaGmE4TR5FraEfpL1KpYLhcIhOp2O4VnE/9VoGRGhwHcfFxQVWVlZw48YNHBwcYG1tDa9fv7bAG79W5EH6DLxfFO6ftaERuPzh/6QN5TW+1Aqdus+fP7/irAXCdK20Ph6PjW/Tiar6GXkq+Ql5ayaTwb1793Djxo0Q3zk/P8fe3h4WFhbw7rvvmqOYwTMMFKTTgDrR6ekp9vb20O/3DeMw4ldLznkDFF/ToFE6637pl34JS0tL+PTTT7GxsWHl9oDLTAvVGUmjdMzpWlOeaNS7ZpNSj6QDMIq38H5Knz5IJR6Po9VqvTFZksAEW3KNrjO6Tntd/1aZ5Wk4CCYOewYQsIxnqVRCo9Ew3YQOeNqL2PtD+WkQBNYjiXSuZWSAifG83W5bxQsNvNTAX86bZ9GXVNQ9Jz1r9gGfkxmn7FVJ57Hao/r9PgaDAVKpFJaWlmz+1DVZlo3YnfflemlmPnBZMrpYLNp51OAd2jJZ2pUBUX4PVd/xr88i/+WaDodDHB4e4saNG/betCBH/R6AkNxhac90Oo2NjQ3Tefi5LxvUx9WBpnoO+S+rgyj9AbAKHmp7oMwn/VFP8/MhL6PtwjusdV/phODn2dsknU7bGYnFYqjVaqjX6+bE5TWnlXT1GCBKrvNzuiZ89nQ6jdu3b+Ps7AxPnjwJ4WCvi+u11O4Qj0/aGjDo5G87fmEnBKONGdGhi+MNCioAvcAPggA///nP0Wg0rH53Mpm0RiieIevCcgHZOVzLWujnvdENgCn4BF8vXryw2l5kWK1Wy4AwAaqCmlgshn6/bzUdCS60fii/SwOJAms1MJNpeeGrzFOfWwmFyipTbEqlkpWC4IHj2hP8qldRjbNemHW7XfT7fUvFUqJV50MUkAAuU1tn2QkxHo+t6z2FogdH3HtGd/jnVHrn+hHIqTKgg//r55g6pk1qvSFD15xNKSn4eA7U0MtyHsog9WwWCgUT9r7klj4fgQMNH9lsNpJmrgNR131O11prP2rkJ4CQYU6vyeulUikMBoNQLXE1uExTZjni8XjIwPMmjE6ng1evXuHu3bsho4IqCZ6GogbfY3Q+BagCXnWg+rqG6jBj6Y3BYIBWq4VWq2UAkhEL5CUUonSG1et1i9aam5uzVHoaOo6Pj0P3pAzSshBBEKDT6ViqMY39pP9yuYxWq2XGGNIbjQ+UBZ7v6Ws0bN28edPqqEfxZyAcaU7D4t7eXqQh1kcCRTkgVI4eHx9jY2Nj5qJp/GC5KDYEVUOSOsyAq0B22iAtMdU0FouZgs6MCGID5T+6xul0GsvLy8hkMmi1WqGgAV13Pw9mUxwfH4cczqurq3jrrbcM09CAQecZo2EYHclrUU6Tltn7QstEPXz4EGdnZzg8PDT692tGg3QQXGb1aPNTAFYWSnl+Op22NHvfD4bX9bycDgsqbioPlOd4WTbNEcyztbe390bx4CAIrK43/6dTQJ/z9PQUL168wHe/+138+Mc/xmAwQLlctt5RehbUcPrOO++gVqvh1atXhjHVAK98nnsCXOJD8i1vJGL941gsZoEzpVLJoht5He7Xq1ev7L6MMPz8888xHA7xK7/yKwAQwoi8H6MSOT/S2vLyMv7yL/8SOzs7lob+s5/9DO+++y7W1tbsXslkEnfv3rXoMa4zsbw69RgwpM648/NzZLPZUGQxlVRGWnLf5uYmvX0YQMSgB6XtWS798VXGyckJjo+PkclkIrMG+D9/ezzM9549e4ZXr14Zr2m1WqHI7Ch8RV7MPj6FQsHK4Ho9jrKXf2sZTtITo1S5Z7xOlAKvgQYALOqQWIaDJb5YKlXXQ/nbl2FfHfqZubk5rKysIB6P2zljtiadlNRtefb8WgbBxGl9cHBg2b+K7/kZ/z0/n3g8btnSszy8TuVLVWh5La9P0+C4srKCcrmMo6Mjw40asU+jPvV78gPgct9LpRJOT0+tzFCUDsxAB5YK4xwo32/duoW3334bmUwGe3t72NnZQa1Wu5LlyDr67K3DcnnM8uX9/b7rfLlW6qzg+8lkEuvr61Y7f2trC8BllDed0IPB4Eo5LHUwkBbpOGHfH5/Jv7S0hHw+b+sQhS/UMKiv675vbW3NPN7VMRwOzTmgPAMI62RfFsjB3+QL+l2ec2bukJ8xiIFOG9o5hsOhGfDVFgRM9LdKpWKBQwCMNjmYdT4ejy2wiHYojQLnXmvgLK/F1zw+p5ymXFe+mUhMGmHTOE4DK3l7r9ezAKR0Om29j4irY7EY2u32FWeB9gtS+UNHNTOmWYJQ5RttkVx/7zhTPqxryLWfNVr2vOzg4ACLi4v2jMS3pJ8ozM8159qwxOvFxQXu3LmDeDyO3d1du+d1tgn9DOmH+6S6JIf2AdH3lecovXndJErWq32YON3vJa/Fnqa0mZ2cnJhjmWtKGtESUuqoAxDi7x53aFCRXyO/jiqf2McnKsNMP0sspZ85OTmJrFT0i45f2AkRBIEZ+TQVVodXjqPAbRBMPE8vXrwwpkMPvVdgPVPgZmcyGeTzeRwdHYUiWimkySxIMASU2tyPHjkVfmw+oqBXmSYVu/X1dWv8w+wDbajEyEo23j0+PjbliF5gVQx1jaOiX7wiwPXg87CxNsFtr9ezeo9svM11UlDhiRCYKJnMsnj27NkVYEAinlauYW5uDkdHRzPp5dXRbrct0imqnjXXm4wvqlGf3yfvbPLCR5kmm+rNzc2hWCyi1+uZcGeKthoVuIdUHphiqWCYTI4R5B4sA0A+n7dMiPn5+VAfBD1vVOoZXRnlaY0yUE0zMunndZ20gRlBCkEHzxMN0P4MUFmg8c7zDAXLvJ/fP96v0+nMbI3GqBEEk5TJZDKJW7duhWiAdKMA0++Bvs61ajQaqFQqKBaL6Pf7piiTB7CcAvkXhRINr6w7W61WUSqVsLi4aCWdjo+PrX4hr5PJZKykEo2gNA7wuozm9sCbfMwDkfF4kjrM/hb63vz8vKUTM7vj9PQ0VEaPBm5dIyqtqVQKq6ur5oDmd31JFF3bbDaLUqmEfr+PZrMZGY3uFS7lO/4ZE4kEhsOhRbC9CaPT6WBvby9UCgS4VP6jziWHXxvgEhgtLS0Z3WYyGatTvLCwYI4I1vbmtRR8MiMhlUqh2Wyi2+2GUrhV+VOnAKPKYrGY9QK6desWgmBilGPEIwfnsb+/H4qepOJ2dnaG3d1da/CnSv9wOES1WjVHhEYC8jk4Z54bNhykjNd76nrmcjksLy9bYzPlyx6D8X6MbmJkGfdjmhxQvqRnVvc5kZg0V2cvljdpsLQS63ur3OeaxONxPH/+HIuLi3j8+DFarRZqtRr29vbsOnxu8tp2u433338fjx49wvb2dihiWvk8I6hIBxoJpoY5OuqZaUFlndmD3W7X8GSUokKliYpWLBazbDPSDhVxGlT1DKkMXlxcxG/8xm/gz//8z7G9vY3l5WXkcjk8efIEQRDYWeJ6XFxcoFgsIggmhjFtiukjyNRQw0hGYqfBYGA4TnkOe7gEwaTGbq1WwyeffHJFGf0/EQX2TY7RaGQGFR/spEPlTdR51bPPpuDauHnaoBwNgkk/vsPDQ8tu1P0gv02lUgiCwPS8WCxmGZf9fh+tVssygtPpNEql0pXr6bOzpEI6nQ5FFmuQGZ1VqjdyHRS76lp53hf1ngbFMZOd82w0GigUCuaE4LpG6dPEu8wuZHS47o/H6j7QjZ+d1TKOOqb1DeFz0X6gka78zWctFApYXV01ZxmzDikzWaqZNEbDJLPUqXdlMhlzTlIWaq8d2jZ2d3eRTqdRLpfN0DQ/P49qtRrKhu12u6aLtdtt9Pt9FAoF3Llzx3pQMjCHgWp0GABXo2QZyEXap4xgQCCdGVzPcrmMX//1X8d/+2//zWr7ZzIZK1P9s5/9LMS3uTak4Xw+j2w2i0ajEXLwUm8kH75//745C4+OjiKxRVR2GvcamBiLX7x4cSVYZ5bxAp+XPdF8IBz/5mfVHqQ4lXjz5s2byGazePXqFY6Pj698lj2XWPWDWYss90WerQEL5MmUDarPqJOW2QA8a8TO/X4/lA2sskMdqZq5wN/EEfoZtbPoINYejyeVTL744gsLQCPuB2DBhDyPNJqzbO7Ozk6otI7Ha5QHxEnqEOH6qaOHaxM1oq5PGu/3+zNZDk/P5cnJCXZ3d3H37l2bO5+dDqcoXY1nOBaLWY882itXV1cxGAwiS5VFzUOxLfdAZan/jrf5cPgzpz8culeqAylu4fNPs/+R5rjP1OkoI3wgnpbg5bNpAJ23aSkd6d9+0KZOu4PaOnktXWfeV22hdPC9fPny/2hQ+S/shAAuu6b7epUcuql+sfxiAjClYmNjA0tLS5FGJQDGeLQsRrVaRavVCgEubh6NuEo8JCYFENxoTUGsVquhSEoeAG+c4HW0L4CCRgpglgahE4KlQ5jB4K/p10fBua6NHkreD4AZ2SgsqtWqPR9/+ygPDo3C++ijj0IN4RTgci059HATVM+6Qff4+BidTge1Wi1kgAFw5X8OZVD6mh7aqMgUb8hRhh4EgXncm82mGWuAy/0gsBiPx5YFMW1eVFTUG6znhs2etSYvaRu4PLcaKcTm0Hxfn/nLmL3Sihpl1GirPWRI16QzZvf4e/A3lUZv3FVHaZTg4DPw2TWLYhaHpyFgchb39vaQyWRQr9dDzlMCLU1r1e97EM91Ys8FGuj1XgS5dB6ThofDIbLZrH2OvJNRfXQuaLktbVxG2qXCyQhxzXLgUCOZCmk9dzSIMc2W9BSLXTrzWAeVYJRRQQp6AJizLp1OW4PWIAisrjUAWyeef9Ixa+33+310Op1I+vJniXLER+Nznfr9PjY3N9+otPTxfHUe6wABAABJREFUeIzd3V3rY6SlrTSyxg9dG48l2u22OTVoDOW1AFiWC+UZ98gbKeLxuCngbILum+96ZwkNWQsLC1haWkKpVDJlyGMNZnQxu+jg4CAUvRqLxaw8B+ekihh5VzKZxOPHj/HkyRN0Op2Q0WU0GhktakSWrhs/S3xUKpWwvLxsyluUMuH/piGmVCrhxYsXkYaAKKWL5ysq2mhubg7Hx8d4/fr1TCpl1w3K2U8//RQ3btywvaBBAbjk2+fn5/ibv/kbywZg5hdLAJK2fIr2u+++iw8//BCHh4e2prw2+Q0NBjTKaWknlvtg3x6W3qKDeDAYYGdnJ1S+0csEzn9+fh7lctl+KpWKzYE0NxqNrAfMNCUzFpsYk7/73e9aPzbyhGfPngGA9VJh/Vwts5TL5SyTg9GdXBtmBAOT+ufLy8uo1WoYjUah8hMq/999912cnZ1hc3PTMi/0+b1j5k0dxDnMNpnmVIkKMAPCJVOUFx8dHVl/KtKxYjSuNbPeT05OkMlkUC6Xje5opOD9mblAnkGskEgkrHE65TpwGdRTKBTMCQvAjH+UMVHGBN3fVCplQWXeuKT7r+sThXmjPkMZRbmkPYoWFxetiS2NhIpPFYcxkGMwGIQaCPN9ronn6Rxcaw1AmtXhcX0UXkqn01YaRuUvMOHRlUoF9+/fx0cffRQqV8MgLgZ8XVxcWEAfo9cHg4GtEx0SnBN1D9IKHWeDwQCvXr3CW2+9Zbyt1WohHo+b0f6TTz6xMkjEHysrK7h37x5WVlZCmQNsFJ1MJi1ASGmYcyH+UOcz53V0dISf//znVpv8/Pwc6+vrlonc7XatlwB7k+RyOdOtVKbw+jR2a/kw1d0oC7797W9b2T7tw0UeouWCgLD9g7rCzs4ODg8P7f03hRcfHh7i5s2bkQ55HX5NPP8tl8uYm5tDr9fDgwcP8NFHH10J6mA5Wm2uW61WLeASuDTms2k1cMkjmRWswbr8DB0VtAPQYUDHFoMOVDfTuTHgjDSWz+fx2WefhXR3b1SNsh8yeC2bzVrvFgYl0GFHQyrPdCKRQKfTsR6qR0dHoc9RvvDMAJPztLy8bLJDqzFQztEuoiXPOG+uq/6vmJelumZteOxOJxoxFHDpXPIZVkDYUE4ZTifQxcWFVSBhhZgoe1nUnHht8lPNXgOuBsBH6S96HV/dhHvvA//UPqH6udKl3lN1P7XzMQiC/JjYgmtJu58Ginl+MQ1zRO0ddQFm77GvoD9PnIPvrUybI/sC/58cfysnBOtZLi8vhwyJQJh4yMDUs+uZqm7yyckJms1mSMD7RR6NRpZuxmi8QqFgjTII2mj4otAHEFLwAVgmRa/XM2ZARVmjYlTZI5EzErXRaFhEA4nIgz5N/SIRn5ycoNvtWkMfZWAkIG/gV6JRQE4mq+lR2WzWSi6MRiMUi0UAl5FsvI43DAMTY3O/3zcmfZ0x3h8Uro1mmczyGI8n6WYsVTVtzYFL540HR57ZUUmetm5RnyVDXFxcxMnJiSlXwKWRQyMGfMqZOhNYooC1kpXBAZM022KxaOeI79Fg4M+oRgWoUVqfX9fLP6f3WOvfZLoUZuooUyDN9F7eRx12VBZIr54er9sHvQYZ9SwPXWNd94uLC2xtbVn6tgIbdcr66OYofgzASqnpPqv3nvtGTzujfNj4lz0qVHDSoDZNqVchf3FxcWUvPBhVeo0Cf3wO8koqqFRAaUTO5XIYDAZW2kzBByNhuK65XM4cLTQ4x2KxkIOZjgeWOxuPxxa1GGWk8IPgyssRPlez2cT29vYbkwGh4+zsDK9fv7ZoOw++fC1ZD+b4On8fHx9jZ2cH6XTa9m44HIaMMqQ71gOnwcC/H4/HLQqVfVD4WQ1m4OeouBeLRWQymZBjvt/vG/hTOU0aZ81+Pi+NSvqcpG9GnDGScjQa4Z133sGTJ0+sPA2dd3wulgJiBJfHIOy9UiqVrpQN0rXXs8Q15HfZDD2Kln1gBxAup+fxwsnJCV69evVG0jQVjJ2dHWxubuLOnTuhjFjKNhpYgmDiVGc0//Lycqj8Zyw2MXqzdBf7ndy+fdsUASr+Z2dnplSQDkqlEoBLJYvGMZazKxQK6PV6KBQKuHv3LhYWFtDv941GKHup6NGhQbrJZrOo1Wq4e/eu3Uvxujr+dI303KrcXVxcxM7ODgaDAd5//30sLCzg9evX+PTTTy1imFkj/X4fu7u7CIJLBzuxN+c9Hk/6OrHm9e3bt7G2toa5uTn0+/1QsAXnQRx+dHSEx48fIwgCbG1tRSpq0yIe36TR6/UwGAysObeXraQn8jy/l8BVYxEV7KhMCK/D8TUa3+n4pRxXvZLzUccBG6aTd9MIVq/X0Ww2cXJyciVzkvSrz8MzQ15LvY9OAA0CuE7h59/T1sav28LCgpURZBRktVq1YDHKG85b9TSuBY1q6kRQw6/HvH7u/P6b4PT1EaFR55J6PzGAyvhYLIZqtYq/83f+Dv76r/8ar169Chld+Devd3Z2hnQ6jf39faMB0pgGtlxcXBiu47rzfepsm5ubGI1G6Pf7+OlPf2oZMIeHhxgMBoaDqKeznxR5N6/Dc8XAl9FoZHKDxmPfyJeDWLZUKmE8HuPDDz+0a1Cu/8Zv/Iat40cffYRXr15haWkJb7/9Nl6+fBnKEuc9KHvYf4glnChLuFe3bt1CpVIJZZl6A5s6zqLsRfF4PFQOZNZtCzp6vR7a7Taq1arRso8gj7L5eLsPKxjs7++jUCiYE1K/w2AX/V42m0WlUrF+OWrk5Pcoi7PZLPb29kIVGIBwqUXuLwN96VRgoI8+D3krS9gWi0VztBKH0CHiy67p2uhvBtYRD/M+w+HQsLk3ll9cXFgzeDpSuA8+M4rfLRQKqNfraLVaWFhYsCAi/rDcpJYC9rZQz4f12WY56FFl/3g8xvb2tunBXs5wDTXoRM92EEwCSag/NBoNZLNZlMvl0Bp4jKjX8UMDyKeNKH17mg1ag4d90Lo6SjRAUOerDg1ei9f196JTmd9Rfh21FtetQ5TNjYNnBJgEXFNf9DiPfFx17Xh8Uu751atX/0caUfvxt3JCjEYjHB4eYmVl5YrhNgrM0lOuhkX9PHC5wFTaFXQAl4ZtjTCLxWKoVCpYWVlBr9ez+1IhZ91GZQaM4mMzMBqKtJ7pyckJWq1WiHBZi5FG3fn5eSwsLGBrawtLS0u2mV5x53pxXgCsBqgnbg4lSG/g5v/8oZOHChkVWeCy1jSzR3wKMhmtev641lR21eCnUZu6N34vk8kkms2mpVrNKpPlYAkOny7pR1RUn6d14FL4ksb85/13gcs6j4yqPT8/N2CnjJGGDCrDjNCm4k+aJ0hWYcxrLS4uIpGY1DpkKTF1hKnzTc+PliNhylaUQh6135521TFI0B5lTNZIDF17jbYpl8tXnDQ69HvTaDEen93USD+8kFJHzevXr3H//n1bG36GhnAa46MiF/w4OTkxvhcl7EkrpKvl5WUsLCyg0WgYMFYlMSq6gEM/p3O7TvFXmtJn0fnF45eNhBlRqeAglUphYWEBhULBauFT8SPvpOOWSqh+/+LiwmQCBT4NI9ls1hTFTqcTcgxFGSdIw1HRtnR0HxwcYH9/f+bqiH6dwQbL9+/fN9lDUAZczdDzyhoHafzw8BDlctlKDET1KaCSMTc3Z7XQWR4xFouFMnKCILBIdZZxolErHo8blmHEIw3LLCHGrBsqXjybKj9IN/l8PhT9ooEErCsKXDrAiYNSqRQePHiAZ8+eod1uhyLh1UilZZ2oKGSzWSu/pD2vvKzi93gOGD0fj08yiFhGaNreKFaIuj6f5+zs7P8a0P1/MdgU+eTkBD/96U8t4lGjAdVhqryP9ckprzUDkGXxNjY2cHBwgNXVVWxubpqjhvxCI0jz+TxKpRLa7badhSCYNBGnsYwZaffv30culzNHBjCpeZ5IJLC/vx8yXpC/MdtudXXVnFj5fB6vXr0K4RWNZo1SzFUGaOm+8/NzCyyioZzRs6urq9jd3UWj0TDey+hldbbQyEIHysOHD60UwN7enuEalZ/Ly8vodruo1+vo9/t48uTJFQP0dUb2N22cn5/j6OgIt27duqLDAZc6iOJ/jml4SvUvrx94nMEzw+ApZi4wwlbvrTKefEx1KkbnxmKxUDlTjx9oQNGm5opH1DDoFXL/no4o/K/zVprnc2hzVa4BjTLtdtvK7ug5UXk4Pz9vTVj9XDgU/3n8zOtoRPosD3UWAbiyD8R3XM9SqWTBXMQXzNz9rd/6LWxvbxvvIeZiZhUDAlj+lfdVJ79WRSCfJ32wQgRfY/lNNvUcDAbI5/M4OzuzyHAGjt25cwdLS0sAYHiUe0cap3zIZDKhstPEP5729H86Zbe2tsxm8Omnn5q+99u//dvIZrPY39/Hp59+isFggPX1ddy/fx/b29vY3Nw0gxvPHuc5Ho8xGAysPwSDN4IgwKNHjyzogv2evO6s58PzGPJ3LV34Jo2Liwtsb2+jWq1e0XM931AdyK9Hp9PBjRs3LKva8zH+zfI33KvxeIx6vW49E2iw18bQ2WwW8XjcsAOxudfdiX0ZKNnpdGx/lP/rs9HBUSqVUCqVcHh4GKpsQOwCXOqVnn/6oU4G3ovBXsyK4lpqdYBGo4F6vW5BQrwGn5P3py2GNpRsNhtyOPKs8yw2m82QrKB9zjtQgyAwm52WI5pFO5nKENoX7t27d8VmSP2F9Kj6hgYW0gmUSqXQ7XatxwbLiunaetyoPMHLaXVsfhndRA1/n2k2JNr1SCcawMCh3/0yrBgVbO/lmv/f/z0NYwCwgEkA1ueX68Y90zOu12a/0f9bgWF/KycEADQajRD4B64CIL7mwZB/YA6+zmgDJQwKIgq6Wq2GVquFSqVikYfs2k2Cp1FIy4kwIoxe0L29PYsG1IYzFJQkaO8pYlQsDb8+mtAbTggcyXjVGKINpPm8+tz8vg6uK5UtKpx0bnCt6HBJJBJWgoSAwa87gJBRQhmNMhu+7+fIecbjcezt7YUadc/yILhh+YBpnusox5CnY67H8fExisXilQZIHizwb/bu4J6trKxgf38/VBJEQagCU6aOq7Ge+69CMR6fNOVliQOtqcwzo/Ni2rxG/6m3lgAmigFHnW/OzUdU8ExS0PN9NX5r9KLei86Ug4OD0L54BViFmgdXnJs2j38TRpTgaTabVndfPwNcGlJUeF4X1Xl+fm78QzME/G/S+87ODqrVKiqVitUf5D57PqLKpEYDeEF8HT3xGTRi0J9VXSsfTeivo1Hpumb6A1xmlpBm5+fnrYYznzMejxs9UUm7bpCPe2cP79vr9bCzs4N2ux0JXKL40CyMaWCw2Wxia2vL+pgAlzwFuGw8qdfxf/P32dkZ2u028vl8KAvI0ymNCOQZ+XzeaodrJiHPSDKZtH2lvKXB1oPtWCxmDQgZ6EA6omGDgzSvig/LiPB9nYc2oySuGY1GyGQyePDgAV6/fo2jo6NQVJjyfgBm5GLmRrVatUh3rySpormwsGD19NlonhG06lTzQ5+FUaZ+/6gIb25uznRE2JcNGvXH4zGazSaePn2Kb33rW6Hm2jRe06nEMRqN0Gw2DX9yJBIJywpuNBo4OztDNpvFrVu38Pz5c+urQ1zKvapWqyHsSbxJumEU4s2bN61O9Ntvv42NjQ0cHh7inXfewdraGv7H//gf5ihj49R8Po+VlRXcvn3b6Id9mJaWliyTmZhFlVIOf3ZJe/V6HbFYDH/1V3+Fx48fI5VKodVqmeGKQQI0ApC2eW41eCQWi9lZvnPnDh48eIB2u221q70TntHnx8fHVuJHdRZe803Bs19lBEGAw8NDrK6uTg0kU52Jr09TtvkdxRNRMpvfowGU/JOlSEnPqvOp7GYUOcsKqIGDJXF5HmlgJv6tVqvmQCb28XTI+ahxz/NSfV5+N0q/1UAZxRDxeDyUtcyMSjrh+DnVHdSwEovFrISbx7AczET1OotfV5aBm/XhI42p+6rMOj09tTNO/YsBBLHYpCFtqVTCt771LfzhH/6hrXUiMSmJXCgU8Pr161BNbOr1Gsil66x0onyXzT/Z9FkzKsibqPdzn6vVqtWsZzNoPqOW0WHmz/z8vPVl4ly83sOhemChUDD80e/30e12cefOHXz66ae4ffs2Hj58aP0JO50OdnZ2sLq6ilqtZjySz6sYnGtJAzgdEclkEu+88w5Go5Fl//A7GnCj9hWvsxEDk16j9LxZH0dHR+j1ehacBETjdur5/v3xeIyjoyP8zd/8jdms+B3vtAVggS/c94WFBVQqFWsIzLVnIA3PiOcp3GsGPMZikwa3pEmWdFL7hNflgiBAoVAwHMlMDTqUabPK5/MWDBiVocvBYB8tJ0UeTmzEaiBeNrEUE/fBn21+jlkQ6tBRvh2LXQYZMXMVuOQJnr51bebm5nB4eGhO91mlYz2DAAyr3rx5M2ST8eeR60qblAYk7e7uYmVlBcCEdugc8+VoPf7Seyg20c/re5QTOi9/RtR2oM/M35w7/6fDmg5vf04Vm/r1m4aH9J5f531/Lz/i8UnG/nA4xMLCAo6OjuysabCjxxbAxL7/+vXr/6s9ff/WToher2cp0hr15aMVaPDy4NQTtw5lPnot/s8ocQq0lZUVM/RQ2FMRYb1GNcyTIZGpa+qgzlsPDxkKv0eAQ0cCAFPq9bn1mclkmWWgkVY+W0IVdeAq+CHjU+Mg7zkcDi1NXg0JPjovSmlQ77DeS507OhfPhBiJcnBwMLOMNWo0Gg0sLy+H6tXr4MFlk7oo2tU1oZDMZrPmffTDgy1GtqggPDo6MqWY50sVNd5Ta4MT4PkSEDRAJBIJA4lUaPL5PLa3twGE0y4Jdtk8bTQaGbhh5Fo+n7/SbMc/ozJrT0saYaygRxU4v268bjqdtv4qfP5p68vhAZIaEd8kmvXCjuvF8jSVSsVoRT9D3qHRC97oy3UhGKTBPUoZ5xgOhzg4OEChUDCAp4YCHx3ree51gto7FTxg9EPv6/kmZcG0e0UpBgpAgEuncjqdNnml9RQp7Gmo43X0+lHXjVrbw8PDUL12nVfU37M0/B5zjMfRfUwAWCmbqNJdek2leWb5MNKV/CDKCMrsFDoZtN8MSxpwXzQ7g/KSChvlBFPQtZwDHVC+JITSuTpbvcGWtEFDBXk5081jsUlgRDqdxt27d63m78nJiQVZcLAMQ71eNycv5ZN35Gl2neK28/NzdLtdBEFgJar0maL2R40onq5jsRharRa2t7fNmPamDtIAz/rHH3+Me/fumQOfezUej0NKMWnl7OwMuVwu5IjgZ7R/QTKZxMrKCra2tswISx5IRyjLkjHakbTDpqzM2mL2ArMsWMrwk08+QbfbNbpghDow6b/21ltvoVgsYjgcotfrWTYk53fr1i1sb29bDwdm5XoeoHJZsSudgoyY1ewelpDUXm0qvxmVyLO0urqKt99+G7lcDs1m04wTqjyzhvqzZ89C8l+VZu4fHR5RGT1v4hgMBjg6OrLMWyAa136ZrFRZTr6tRtOozwMINaukc2E4HFo2r5Yl0nlRD1PjEX+rcUEdvdlsFrlcLmT0Ut6n/I80BSD0vhr0/TPxt8cz+npU1CQNBdls1gwG6XTayjv6a/J6jLb32Ebno3xdcTffOzs7CzlKZ3n4Ei8qX+jMokxLp9NW2qVYLJphq9lsWsbV8vKylXWjXGVkN+lR+bbyDNIGMyu0jB2xAzCRu2traxiNRtjb2wtlKdIhTQMR5w9cZg1fXFyEzhHnyqAxXoeG26gzGmXIm5ubw/LyMnq9Hs7Pz1Gv1/Hee+/h9PQUn332GZLJpJXspSN8d3fXotnZLwC4mv3E7Ca1lSwtLZnMICbSMTc3h1wuFypZ6vEA9c03sRQTB4MdHz16FBlwxBEVRKL2mpOTE+zv71tml1ac4OeZoULcyvNSLpfR6/Xs3JNHeicf6YZ4Vx3w7M3EYGHVYbR0uQY1EpsnEgmjVXWQqME+mUzi+Pg41GuAg885HA5xdHRkWcBqEwEu+UUul7M5aaWEwWBgsp/2QbU1JpNJ1Ot1wyTM3uAZDILL3hPz8/OhLF6/Z36QvxweHkba0mZ5kJcFQWCOCHWaTaNnfoZ4rtFoGC0OBgPrK7a/vx+6ht9/4GpwmZen+p7apBQrcqgTY9p9+Fzce5bg97baqHnwu94erJ/39hm9t7eT+PtEfY+DDjJm9RFPK+/W3zyHe3t72N3dvdKDNWr8bWj3a+cTK2OicGZqnKY3c9HUyxJlnASiCYylBjQt3S8WMElLW1hYsLTU1dVVi+5SxZmpuXovlhXgHGjI5zNEGS8VQKbTaZTL5VC5HX6PxKlght9lE0sKGTJuesijIu0JSHTtSSxsqkpjSiqVQqPRQLfbBQArJcJIL40414PKHxofCG694UABeZSxjM/MtJ83aZydnWFnZ8cMBTq8UQW4mi7KocoGlVqmb0UdVNIKGxvR+LO2tobFxUVr/sgILtKGGmA1i4bKmyooc3NzKJVKqNVqVlaDWTFzc3NWB5LNdklvbMpUKBSsJALL1/C6+/v72N7eNgNpVFS6zo2/6UgkUM3lctbHhcZHr1TpemvpEhrHoj7n9zBKoePevikKGQefiWeb4/T0FBsbG1YXW+nG82Gupaaa87rsMzIej1GpVEL1+jn8ep6enpqSkkwmQ7xQP69/K01HDeXNSp/xeNzOhudnSnP+nsrnp62rlzl67yC4LNeTzWYxHo9NyDM6WQ0lUXyd1/a1470BgXXmvQPiTRr+rPGHKeqDweCKoYvRJiyhFSVv9P/xeJJVdXx8bGUJ9N76Pe4lHQekn7OzM/T7fePbWrZD+T6jnljXX+tP8x50TPhgBg3S0DlpVoGuERWu4+Njcy6w5jkNEuPxGIVCAWtra1hfX8edO3dw9+5d3L59Gw8ePMDjx4/x4MEDlMtlBEFgZajIG6g8ZrNZZDKZUO+fwWCAZrNpDTH5bH74PaEDx9M/77e9vY2XL18a737TBx32Z2dnaLVa+PDDDyMzq3SfFXud/f/Ye88YydLrPPip0JVzVXd1DpPjBu5K5JISKYGiaUumZElWsAz7g6EABxgWDPCvZQiGf9gGZCgYlgVThgVblijJsiFTYpBNLjMpbt7hpO6Z6dzVlXPoqvp+NJ7T5759q2dmd2a3e/YeoNHdVTe8973nPe85z0ndLrLZrIV3uY9rngmFQlKuw5Rl1C1pPHBfzWazmJqawubmJm7cuCHNv2/cuIFisYg33nhDMoSq1Sru3bsnY2W9ZrfbjampKSnfREeA1glZLo6lDrg27J6X46eBWi6XpaTT2tqagHMAJPKXQR2UCaz/Tj5jyTzaG+yj0Ww24fP5pEcZ543g187OjoyTz0NZzx/doHjUvnHSaDAYYGtrS5w+o/ZEUw/TezA/13KPUaP6XPNa5APKWpa20z1qtEzVoHC9Xj9UUolrTQcC6MhzghxcawSsh8OhgGq9Xk8yc3WkIJ/XTvfXz2mCBnb6DfcPHQxHucu1rnVRc/+iXvYwEYp278Ltdkvj7ZNA5BOtz2mcAYCUiNG18geDAcLhsNhY9Xode3t7OH36tNgZOmuEDkzyJP/XDc1J1PuAA9CVDazdbjfi8Tiq1ao4IKhv0IYiUExdkf05NADNdUF+5w/LTesgM51xo/cMuzXN5sOxWAwXLlxANBrFc889h2q1ildeeQVra2viGCdP53I5KWFtZ9txHLy3x7NfZnByclJK6LE0FY8j2DsxMWHBTrg3aFvXzCg9aTQc7mefMbCEZK5P8qGJffG9khqNxiGsxnzX3DvJwz6fD+l0Wr7X5Wc1aGuOm7oigxiq1arY72wSzT573EP1u2NwkOlQ5ti1fUU+qlQqliomlOnUUbiva5zN3IsYKEGHA8fj9/ul508oFILf7xc+59rVjrN2u23JGmMJQZZy17zJ+9s50LmmqceP2iePG+nx9ft9bG1t4fbt22i1WoKXmfueHVGXyuVy2N3dFQdXLpeTdw8cziyz21/NeTXxHXNd6HPM/XnUWImN6EBBzoFZvWAUVm2HS5i6sB6HnWw118sofuFxDDxjr+NqtSprnaSvS71jfX0dGxsbFgfEUe/zqLHcjx46E8JOMG1ubmJpaUkUKJJmIDvAwDREgANDjWm1LKNkKny85mAwwM7OjjSrGwz2G5zNz89jOBxKXbvBYCDOCkZBud37NY3N2tP07OrPNPNQUWEtXN2wj+czpQiANN/ktfSc0GhkBJqOeDQVbL0p81r5fF5S2oLBoMWrTNDb7XZLvwrgoJk2lQS96fn9fknP11GZ5kK+n6DxeDyWkiEniQqFAorFIsbHxy2RVlpw6HIh/M7caEg0stjIx1QYzHMajQbi8biAW1TM2MyHABkdSRTajDjU9R3JC4FAANFoVBRzZi0Mh/u1EVmTvNFoSCRaqVTC2NgYZmdn5dmo1Pt8PiQSCYlYSaVSKJfL2NnZQSAQQCAQQDgcRiAQkGfkfBGk1Q2gyL+6TIV2QI7iM64TgrN6Xs251Yakmb7H+5nRwyeJONfAQRRNt9vF8vIy5ufnEY/HLf0+7GQb55s8RICn2WwKD2azWezs7IisHqX40oimE1RvaOYmbV7jKBDEVCDIw1oGm04w813raBeTND/Y3Y/X8/l80oeEQJueVzoyWfeSxqw+RkcfmTJBKwQ6jf8o4vOOiq56t2mUssXGV2fOnJEoY/2+dNQqjY1RCicNffZ3MAEWOzlBGcN3zqhIZgmYcsguSw443FfJbm2YyrMpn+z2eh6j1xDBDxpg+t4EbhmlxUg23odrm6BJq9WCz+eTGtV0qGg+om7i9/ulTvaoOdXBFXoeOJcsm8lI/qPIfFfHlbi+ORedTgc3b97EpUuXEI1GJVsAOCiLBFifj464M2fOoNlsStNSAOIkolyZnZ3F5uamADvAvu4ZDAbF0EilUigWixK9z14KvEapVEKlUkEoFLL0mGCENLD/7kqlkgQtMJiFxjjXK3UOgmq1Wg3JZBI7OztSLkHXK9eRj/V6HTs7O2i32+Js3drakt4QumQk9fuVlRW4XC5xxOm9KxAIoNfrSd8T1oanTaCBPNZi19HG3CO1fqzfLXWIJ4VqtZpkQ4ySbRoY0mQHAhBQZYaZJjvddzg8KNvFjJ1+f79EmRmxp516lCfMAGLmAK/LPdTtdmN8fFzkIa+1t7cn/KBlLvmB+qK+1ijHy4PYR/yMuhEdZ+FwWOw+nkPb1ZxrrnUG3h0lG0eBA1oPIrB/EuQsnZ7c//ljgrkEKaPRqATpRaNRCUjc2NhANpvF5OSkvFcAFocqHRMsqUSgSYM25DXKC+AgGIz17VutlpQtJH9p2552HAMharUams2mlMvltTgO4OC9kh/J45R/BIFHZdbu7e33wrpz5w46nQ4mJiaQTCYtWdHcN9irT5fdLhaLSCQSlnJRvL8JYHPvicfjqFQqqNVqImspQ1kKiIEdWvc27TkNSPN5jjvfkjjWZrOJSqWCTCYjfGUeB8Ci//Fc0wlOcNzUdbXNPRzuZ4HRedDv7/c+YX8D6tU6Y4zBCFr3jUQiGA4PyoIRm9N4gw7S1O+P2JzWs/Wc2GGFgUBASoXpKgv1eh2rq6tSWo3OND0vWi7zuSORiGTC0enMku9cS5wHv9+P8fFxwVSGwwPnEbEJOi3I0yav6rnQRGfQ1tbWiQ165LsoFApotVqYn5+Xsvh2do/dXggApVJJAgpIptzS79TkEbu/zb1Yj/1Bnk/zrGlLm9fg2tD4AzA68JF8wWuZx5n3MWXdURiJprGxMWSzWXFwM6BM90XR80PZvrq6Ktk5duN51PSWyzHpCWg2m1hfX8eFCxcsglAzAgUZaRRQqMEhNuayq8GqBVa325XabhQogUBAGgMyI0ALUxrwLI3EqEB6S/k3GUefPxzup2CdPn0aiURCohD7/T4ymYxspDyvXq9L1AMj/qhol8tl2XwZ7QDsGwV0ItBw08zHOWbUJ726TBd3uVwSUc7I90KhgHQ6jXw+L3NsAiKZTAbdbveQ42fU+zLfqx6nzuo4SdTr9bC+vi4NO01FQEfLaMFiklYcCAhz09KODVNQ9vt9VCoVqfNJIDcej8Pn80l9UWaaUCnTRhyvTZCeAAJTvgnklUolUewZ8UilUwtj8pUG+GjYsYxGt9tFtVpFrVZDKBRCt9uVuqN0/BGA6vf7ElmpI+UplPmZVvzNzYfHafBXG2mmkOZ7MzcqXtfj8VhSfU8SDYdDi2ORz0P+XVtbQz6flzR03XuE55OHTIWXGxiztZaWlpBKpbC7uwvAXjHgNWnMU6bqe/JcfX87slNeTGCIQJ0Gl0adY6e0jIr8GaUcMHOI0btmCS+eG4lEREFhRBj3Cw3S2gEz/X4fa2tr2NnZsVVkKXt02QDe6yQ0rDbfR7lcxvr6OpaWlg6B+STT6LYrHwYcgAnBYPAQyD3KaOVnLD3HeWSKN/dozSt2CqEd79ndy1Tm9Rj4N9ejuf/o//WeT16g4amjczg2XYuasp89IljCh5lPdvPF5tzmd3pN2pUZ4LzkcjnbsmJ27+UkAQx+v18cN4wWbDQaeOWVV/ADP/ADlhKWlIW67Aufk9GFMzMzuHTpEl5++WXZC6kTMnp/aWlJ9lP2FwuFQmi32wgGgygUCgJ0MqIQOAAm1tbWxOFAntIgFgEkOkcmJycF6OIaNGUYeZpOgLGxMbTbbQlsYWkE6u4bGxtYXl4WPWd9fV30cTpvdaknj8eDiYkJzM3NoVAowO/3S0kRzm273UY4HMbc3Bymp6dRKpWQSqWkYTEDHrLZrNQh1vJeG6Ea7OGa8Hg8ePnll99R/nqcxKykZDJpKSer50ODjaSjjGcCv9RNzLVu/tYyipnbzFzR8kgHptFJTP2SYKkGRT0eDzKZDFKplIyduhHlvFnalDJT9xnh9zyWfGm3B5jzYgZ70cZixr/ui8G543W0rOd1Wf5HZzqP2tNGfc57NRqNI/Wv40QMYIpEIpZ3zHdIuUK7n8ey3EcsFpOI5Y2NDXi9XszNzWFlZUXuQXuDQYu05fnu+R54b8Dae4N7bCwWw97enkVP5vfcIxk1zvfPhs6U6XxPOgODFSI4HvI4bT/WKSdvav7hOq7Varh16xa2t7cxOTkJr9eLcrmMfD4v5am4z9RqNYtdORgMUK1WEYvFpGeE5k/NW7wfgxu5jnWGO9eR2+2WwEUtc/X/AGzB3pNE3KMKhYKU+tGyz85O4RxoZ5uWz3Rg6fKY5DdmdFHWsexXv99HKpUS+1nr1Yz6Bg56l5BXdVlobWNqfZPj0+vD7XYLhmFWOTDnRwOj5Cc9pt3dXRSLRdmfzb4XBFS1rsxgh+Fw38nCQB09Ztq7zJqj04XOWu1Qp31BOa7tPG2HcC40MZhke3tbnuEk8TGDN7i+9/b2sLq6im63K0Gzes8kaVmkie9W40B6HWhMw07n4HHm/6Nw41HH6DHrMRxlL+rnMvVFPX7+rW048zlNDGDUPe2e1Vw37CvEYGJihfp8jZn1ej3cvXsXhULhgXBbLfPfTrD5W3JC2L24tbU1TE9Pi3KgXwB/k1ntomlMwEEDWGazPruXzzpXrDcH7Ctqs7Oz2NnZEQNMRwwCB1E1FL4UJDq1CIBFsPj9fly+fBkTExPodruiDIZCIYmm5jNphZyAFEtFUPngmCnQqSRQEdL1pJvNptT4CofDUjePaZ18zlAohFgshmQyiUgkgnw+L5kqdFpo7zUAKSkyqq6dGT1sMrJWQBgdfFKpWq1iY2MDi4uLloh9/ZxUEjUwZQfEauN+MBhIdJiu029Sr9eTJoosaaHBCjbcowNNlwLRPOvz+STiIRaLyfWpdPZ6PVFKKpWKpT4v023ZyEYDXO12W0ArllDi2mEkD/mFmQU+n0+cMPxbR35RWGslmyXSTF7TTjctAE0ZojcHzo8ZhQFYAbKT6DgDrPIGgEV5p8HearVQLpelXwPlBhVQwLoxsbEfy28Mh/vpsabha867/kxHmIwCljWZSoop7/WP+a50pKKObhy1No8y4Ed97nbv19/1er2oVCqHMmd4jtvtRjgclhTIwWAgkcpmlpjmVc7TxsaGZJxoJUwD73oe+A5PGv9qmZrL5RAKhTA5OSnfAfbRTdroN50RBFCZbs13dJRix9/M0qKeQsBL1/HnPeyucRQYpY/jsaxhb6cTaYNdz8WoNWI6JHSJTPIHnQzkv1gshkQiIdF5el/S9yBIpp0H5pjJ56ajkTrB5ubmyDqj91P0jzsRqNER491uF7dv38a5c+cwNTUlOii/02WXACsPrq6uIhAIYGpqSiJWqadyH2OgCcE2bexUKhUBGFlnnmAtQVDqeuwroiNUTSCX+jV1Hz4njXbKXUYKUjfi2vzGN76BlZUVaW4NHETBEZAbDofSY4r6hAYXaAvkcjkEAgFxXLARPX9CoRAymQyWlpZETsfjcRQKBXlPU1NT8Pv92NzctEQp8z0w2MIE/LxeL1577TV87Wtfe8d4652ger2O7e1tzM/PW/QBDcqzvKKdTmYawr1eD7VaDdFoVKLwePwofUGf73K5EI/H4ff7USwW0Wq1DvUAIeAKWJtKawBuYmJCdF+9X0SjUQHE2u02qtWqjJGgqdfrRaPREF1Z71X8X9dbP4r4PTPNhsOhpQQIbVGW17GzKYbDoejrzC6y06n08XYgB2Vyv98/UXYaHbt8n1q/p43CzxkhzlJXjFZmD0nqBBcuXJBSg7wWHVQadORcaocRcQ0C7VoPCQaDyOVyh/Rw2o26aS75ls5kZmzwHO7n2umi9RBelw3Zu90uUqmUyGX9DJ1OB9vb27h165Y4mL/xjW8gEomIM3YwGEg2O/tBULaTL/P5vKVUlXbQmGt6ZmZGKgFwjnlNOns6nY70IeL5nCuOHbD20DypNBwOxSlvArbaxiXp+dL2jJ4n2s2U2yag2+l0JPCV+vXe3h4SiYQEw5IPyV+0sT2e/abt7KekbSw6OcyocW1Hcnwsb6SPM50wJJ2Vofs/NRoNlEolGVe9Xhc9h2PSveD0eFgqjQ4EOhmoE3MOksmkpfTwcDgUBwb1B2YSMwhTOzz4zuzsAjoVq9WqZJpoOX0SqN/vW4IeOc+5XA6dTgfpdFqy+/TzmTauaa/qedC/eYx2uOpjRjkg7rcnj+LZo96HiRmZeITWjfR61evXPFf/bdp2+l5HkR5vv99HqVQSe4TB6nbHcn3eu3dPSpXakX7XOmDi7QY8viUnhN0ga7UaVldXcfnyZUtDSE4+XzQNFFPBMhUlft9ut6U+sS6NQNLH00jTjagDgYB4+uk5NQVts9kU8D8YDAI4mHANglJwXb58GXNzc1IuZzgcSr3GwWC//i6bQ3LRsMwMx8vSOazfm06nkcvlJLWeHj/WgObG0ul0BFjhXEYiEctG4Ha7xQHBMjkspbK1tWUBBzkepnsyVV/Pr51zyOQBc7GxVuVJpcFgv05uPB6XiGe9yXDhmgqDCYZp4iZIJ5HZaNqcU9YLpKJKhUULbvIdGwBzTATN2FwsEAjIvXQaNxUXXdqJPKydVt1uF263G6lUSppesmxUqVSC2+3G7OwsIpGIlIjQEd9erxfpdFqaWmshBuw7KFirkZsU58dUWl0ul4AhOhLsKEOMa10r7Pp4j8eDfD4vUUsnlbgRmqUi+DkdVjQgaGjEYjGJUCUPcPOio4rZKQSJNGBjbrz8nETe1YqzPsYEVvm5GU1hnmt+birmejymAqDHrn/bKS/6GpTb9XpdytKMAp5pbHJdsiyLKUNNubK+vo58Pi8RRHpsVN7M803w97gT17lW4hhR4/V6MTExYZG7JnHOeAyNAyr5NJhSqZQ4WIHDAQ96PBwH92deS8t6klY4Rym9dmvBVJypV1QqlUPHaOeT+bndffTY7KIIzeszWKFer6NSqRza+3ks9w09Dr0mKOd10z/9fP1+H6urq4dAGXM8J5m63a6UxCQ/sr781772Nfzoj/6oBdQ3gTNThvT7faysrODKlSuoVqvY2toCANFHKpUKotEoUqmU1DrmWqCTgWuHModBL+xVQp0hk8kgFothfX3dAmKQ91lahGMl/+ngHTMiEjiIgBwM9sumNptNbG9vi7N/OBxifHxcGhHzXnTO8HzyFTOIGbEVi8WQy+Uk45OyeXp6Whq1k3/Z84FZpZOTk3jttdcsoBbXMkuc8p0QcPb7/Xjttdfw4osvnrgyCvcj6rwMXNL7ibYZGHXLz809VO/B7N3AAKdRtoP+m9kuLAXjcrkwOTkpvWmYYU1bT/Mgr80a6OPj4xKxqXVIRgwTsA0EAhgfH5cG8Ol0GsPhUPgAsDan1nxBYFb3fLPTh7gmScFgUEAv2g3MMuO99DPRTiNwbAd0aKKtpseg9x7q/SxTdhKI2dZTU1Oy7/DZdSlj4OB9sVRNKBSS5rJer1eCC1KpFK5cuYK/+qu/sgRM8V2RZ3QTcLPmPbO6iScQgNMZRZoHmdGgg6gGg/2+FXSO0mFMp3G73bboA3x+7qeUkdevX0cul8PVq1cxMzNjKbvY6XSwtraGl156CZ1OBzMzMyiXy4JX8BkYAGoGD2k9tdVqieNbZ/lxTQL7fBaLxXDq1Cm5Nu3BwWAgmfnD4dASAKH1QZLWj/Vndrr/SSDiR7QJRj2H5h3TtiAPABC8S5dc4fkulwu1Wk3Kh1cqFZw5cwb1eh2JRELAeV5P34vYAp0H1WpV1hTHYdoe1A+ok7M0JBu2m4FbZqANiU7/RCKBUqkkgVmav6jX2+lP5nXJ23QcsCoEsyJcLpeUnCTG4HK5DmXisZ8GnXa8tt6H7GwGzgnxBgb2nSS+JZll8UjtdlsyVEOhkGBJxJoo87hf6uDZUTyu51Q7IrQdZO6V+hrm37zXqLm3wwn039p5wWPNc3isaStpDNvEV+1olG1p3kf/3e/3pdeItkfMcXFvuXfvnjRc1+Mkr9phEMxeebu8+0jKMfGh1tfXMTU1hXQ6fagesFbgGE3D70aBT1qJYFovlVI7Y59GH+/LCEMqsYFAAKVSSYwvHcHC5tLcRLnAdKRaMpnE0tISJicnJXKGNb+1UQYA2WxW7sWFSEFHBZ6KMJVlNkXjPI2NjSEYDKJer4tByGtRyJppySy5w7IrTFNPJBIoFApyvE5roiODoI1pFOvNRUdIjSJmZJi1YE8aUWFjxokZyaUBGZNvAXvvLABLyTC7xnP6eJZd0sLLBMW0kOB5zKoh/9JQ4z1p0FAZ1EoLlVXyq94oWQuU12k2m0gkEtjd3ZWoimQyiWKxiN3dXak1Tl6mUOO4mdFBhZNjpzGmhSgNS7/fL1H9Wjib4J5WZPW1zI2KCvXt27dPFIg7irg5jkpd5CZF+VGtVpHL5eD3+xGLxZDJZMQwIG8MBgORMRpk0iCsVhZMRYKGklYe7aIGzHO0QWKSeU+ep3+bfwNWj755b62E282fy+WSEj9Mmbe7H9dbvV4XBzBLYJVKpUM8y3u1Wi3kcjmp08r90g5g4Hi0YnCSiPJIy07y2927dzEYDCS11+QDE/jSCiojEuko8/l8mJ6exs7OjpS5MGUFSe95zMLUkWrmcbzWqOvZAW6a74bDoURycY3YKah217H7fNT47IiRYAT2zH1dn+f1epFMJoWfdcQdASAd1GD+Zl8T7bg8irRC/3ZSfd9JIr9o2cbnvXv3Lr7zne/ghRdeEB2P4A1wkJFL4lx2Oh3cu3cPTz31FJrNJur1upSJZGPaqakpiUzju2CzSvZGIP8GAgFEIhEJHKAe4Pf7MTU1hWKxiGq1KpkROujB5/MhFArJeBnlRtllrhOuZerRCwsLElgAQHQg1grn5wT6GETBes7MqvD5fKhUKiiXyzh9+rQ4xRnIwDJLLHXB7J9GoyFOjNOnT+POnTsCMmu5ogE1PgflyvLyMl588cUTHWBzFLXbbaytreH8+fMCogJWuUjepC4HHM5u4DnkR2ZwU/5qMvdOXXaMgQ90FkQiEUSjUVSrVSmdqd8fweFIJCJZFFyHeqz9fh87Ozuiy9IWSyQSFh2UmQLkSW0nUiftdrviQGb0uX4mllTl/FCP1YF4WjfSc2ICGAyue5C9XutQdkFObrfbUqLtJFCv15O5NkFH8qZ2QrhcLgFYGUClyyvxZ25uDpubm7h3757gCKyIQMcb31u/3xdHkS5tqxveUx8Lh8OWe9EWAQ6yOrRDIRqN4uzZs4jH4/K8dDzpfnU6QII4B7C/pxeLRdy8eRPFYhHZbBaxWEwcHtVqFYVCAXt7e1Lvns9FXZMZCwxaYgYo1wX1q0ajIbyjgUXyHfeIS5cuiTNY25IMamBmkLbnaPtqHUPLE5PuB+QdR+p2uyiXy4jH44fsJlN/Io0CIyk/iJXZ6XODwQCFQgHj4+MoFouo1WqYmZnBvXv3pIw4QUVtk9PpXCqV4PF4kEqlbHuGar2H+y5xPjbI5bunw4uky/GYPKRLQxPPAg6CW3R2HmW2OR6uDx2EyDmKx+Nin7G6RDgctrwHns/gqEgkgp2dHUt/Ty1nTX1YPytlCvvAvl0Q990kHbCin4N8U6/Xkc/nRW+j7CBvpFIpCaK2cwrouTXvq+ccsK4N01YEYLE9TAe/Btkpo3UAHDGxdrstTj4dUEFZzP6/wWBQMrz0dTlPZpDoqPV+1Bzo7/UzE9vhd3Y2F2V5q9XCnTt3pC+WzpzX+6MdBmEXUPJW6C07IeyEIRsdsea42dGef2sjQ18POGw8a+FKb6he3PocMrIJIFEoZjIZS6Mqpqfr8zVgqxlrYmICExMTYpi53QeNHQGIkcZ5YEkJKkE0DAm8ckxUKMfGxjA9PY1KpSIAFAUsn5Opu5xDMjIjlVkOiguBEbis26hrN5L4HFTyj4qw1AaaXjB2QmNlZeWJSJssl8tYW1vD0tKS1Fw0o8MAayMd8o65RjS/MmqBZRJMAWrew4wi0/NOPtUKARVXfkZHAFPamUnDzV9nJ+lsCj6bBgJZX5lZPKz93Ol0pNE7S3zoDAQ73ur1erIGdTkGs6xHKBSS+pXNZlMylOzIFMYm2M0503NJQOJJIfKQToc86lhuvM1mE4VCAclkUpQtXks7IDXvAYczGcz5NjdGfa7duM0NXjuxqQDQidLpdETp00Y31wDlIcsYmDxugsLaaCTxeQhKNxqNQ/KNY9fnlstl4WtGEOm1TRler9dRKBQEFDBBb5NM58NJVGT7/YPeSTrqgnrB1taW9JdhTxsCt6MiarXCxLJ3LIU4MTEhteZJ91sXBAEo/0Ydx3dqKpejyIwY1+frtXSUjDOf3fzO5F9NXq9XZLaek1H7VSKRAABpIMdMPhqudlG7PHd3d1dq39rNIdegXdSNGTF3nMnlconTnf8DB5Fv3/zmN5HJZHDu3DkLKMkoOw328Gc43G/8d+vWLdnLGD0aCoXEicxMAkZXMlUegPTjoV5cLBalebXHs187mUEEzWZTgnO07smeZjojWUelEijmc2sQgO/0mWeegcfjwc2bN8XJwd5CLB1GA43ODu7zvBejyanLDgYDaWLMrNBgMCgRn9wD+/39LOd0Oo1z586JU8wEfwBYgiGAg3rbhUIB/+///T/pMfckEvlte3sbMzMzst/qfZKfaR1Kl9UErE59AMIzoVDIEsVv6r3AQTk8ZtyynE4sFpMMNYJFLKPBvZAONfICYC3hwL2fYysWi4hGo1KvngC27qPC52fmBYMQNGAXCARQqVQsZW+5ngEI2GsGKGmZqZ07dvY1g2/sQFg9fxr00EFR+nt+Zma+H3dihCf3Za1LDYdDsWF1gKEGHZPJpOiMxAtYFun06dMoFAqS3cpAKx6nnU/kPw1O8f0xiLFer8vxGjgFrHomxwsA4+PjiMVisodQ5mlwVvOOzqgbDvedzEtLS7h165YEtOTzeXFSh0IhzM7OotvtYnd3V/AMU7fmNRuNhjSg5l7carUkSpxyQD8bnZcu134ZpqWlJQG8dKak2+2WudbOTg38mrabnktNduvlOBP5IpfLYXZ2ViLENdnhBxr4tzuGWJnp8OWab7Va0rCdASXpdFrKw1Kf0wAsAFkzbrdbyqFRdzfxOB1AzCyx6elphEIhuTZ1JX6v9WDqQ4PBQPpbce+JRCJSsotzyLLr+XxejqWeAhzgglwvOiCu1WrJnhGLxcQZoSPbOQ+0JXu9Hra2tiSDTO8ntE/03Jlyme+B1ShOOlH2mP1K7JyvOjDZ5drPzonH40gkEpI9Btg3hLZbCxqrNefSDiszMWMd6M5s8Hq9bgnc4Xl2ThKTyAOsMhGNRqU0leZz6rmmjTfqeUdhOHb4oD7ODBbVmEe1WsXm5qb0SNO4mX52E2t/1JjDW3ZC2NFwOMTW1hYmJiYwPz8vgpUPrr1d3LyoLJBpRxGFC+s58hztNCBRCNAbpY2YXq8ndfQrlYrU6zYNRoIhkUgEkUhEaofyJTAihgoJFV4qDAR6B4OBGJz07FJJZT1TRl4w7czj8UiDX49nv6kaAFGuCWhFIhEptcPr0ONIAyoYDErjPeBwmhHLTzFDwmR2vQg5f7wONwF9nsfjwcbGBlZXV98eMx0TGgz2mwcFg0FMT0/bRuVqxVIb5XbAO48DIDWHo9Go1IHV1zZBXbv3wnuZQI4uC0UepBDUziYqAeY1yasazND3Jv8FAgGp18hIB9YlBQ7SLLXyqe/D9UClRDeZ5nNTUarX69LYfdTcmIKUY+A82IF3t2/flmbtTxJRudeZU9zcR20yNORyuRxKpRKSySQymYykXZuRrqOit8mLdoaBncGgQVkzuoLyi42VNAitHVW8NsfB3zTgwuEwEokEYrGY1GHm+eZ4tcKg54dp/NrBrtetHgvXGp1b2nnLfa9SqWBnZwfVavUQEGzOkR3IYzbpO2mk59h0VLlcLpTLZVEOmWWlSx+M4uV8Po9gMIhQKCTyT6dUk0YpgPpaWh5zv+PxWqmz43VzbZmKrPn3qPVk8sRR+4Hdutbnut1uqaHfbDZF/zHBQJLHs18PeGNjQ7JIObfFYlHmwHwW9h3SJX54H+5POljElN2PItX3nSTWLqYupd81jffPf/7z8Pl8WFhYsKxdGj10eAGwyOrl5WXJUs3n85iZmcHdu3dx4cIFyeLT2TQENLhOeM9Wq4X19XXpJUG9s9/vS2Yvx8N92+/3IxqNCkDGMTGizwSW6FDg9X0+nzhnrly5gnq9js3NTYTDYSkHqPl+OBzi7NmzUuI1HA5LWcDhcCj93zwej2R00IhisBGzICjHk8kknnnmGdRqNdy8eVMivzTvEjTRYDCfbW9vD1/60pekXM+TTP3+fpPqcDiMZDJpkbP6HWlHPtf0UUBgp9NBNBqVaH67/Y3rgQBuOBy2ZBLQOUE5roEPvjNeg3YhMxMog7RuzIAC7SBh8EKxWBQ7VQPFw+FQ7DCCK3o96UANlrEEcGjv0SA07VM7Xdzlcskz68jbo+aPOhLXo963OI/lchnFYvEITjh+NBgMRCdIpVKWPUfzpbbVqVsQAKM9T9uXMmp6ehoTExPSI4ZynMT5JFBJe0VjAvpYXXbInH8eo2VPJBLB/Pw8AGu5DDqz6vW6ZJJ5PPs9TVwulyWos9vtIpFICM8TaKYTmZ9VKhWxzYLBoDTxNoHCer2OiYkJ+Hw+KYMGQLAJ8jwACybCMo/PPvssMpmMpQei1jW0c1zLFl6Hc6Hnza7JvWlXnhQiL7OJueYJ/VvPl8nb5lzQwUZHAz/nHLE8t9/vl/5eLFHocrmklLLW2ShDAGtmoF1vL+Cgbwf33kwmI3YW1warLWg8gnst+bLRaEgFBbfbjYmJCRSLRXEAcI/e2NiQYEqW/tNZRNrBo3tfAAcZScFgUEo6AtZARWbt9Pt96Ueh5Tn1Np3ppN8bifKYVUdOIs/aEfV1M6PXJG0fuFwuKQ+9u7sroH0ikUAkErHs26OwG977QR3p+p2wZ1W5XJYAQTN76K3QYDAQDKxWqyGfzyOdTiObzVrAfvKgxkw03Y839N7xoA4SZp4VCgXk83nRpY+aX/231qMeFb0tJ4TdA3e7XSwvLyOVSokwMEECwOrx5OSQ7Izh4XAoApMplRoE0MfyxTLlhwKCAokKxtTUlERW64hpXftYRwhQEdUNbNjUjM2baEhyMXk8+3U3y+WyAKwAJH2M46VwAiBKBBvAMuKHjNrv9xGLxSS6xgQpqPjSsNTNEHkPt9stNf5YH8/unWql1kzNNgETYL9G3muvvfbECFdgX1jpOuUALAAJ36n2yGoQwK5+Hc/jBswSRqahB1hTtUjaeWcnIAjmajCHUaxUHDWwpsfO+zNFV49dg621Ws0CDvA56QXWNVHNDBpdCkqvQT4vn2lvb0/6WdRqNct8mPOvDWOO0ZQNmtxuN3Z2dk58H4ijiPM7MzODsbEx1Gq1Q/0/NDhKGg73I2FzuRwKhYIA+PF4XN4tj9Pzr+ecxoUdQKvfnX5f3JiHw/2MGwL0XE8PKle0POPe0Wq1UCqVpGmp7lGijb5RRv5wOBTng+kE0YoFYA8Aa0CgUqlge3vb8myjzuN60dH4w+HwRNVyPorIM2aEF+eZdfVrtZo4hFmWg/2iTD1DN5rzeDySek2nK3nyqPnTY9BRPZrMMdudb/LGqD3W7jw7J4SdU0JfhzKb4zP5ifqBXTaPPo5j4FrXEeJ+v98CBpg6ntfrRb1ex+rqqiXYQs879wVzXh+HovtOkNvtPjQv2hnhcu071T7zmc/g4x//OE6fPm1x1gMHTd74/rSewWN2d3fR6XSkaejzzz+PRqOBfD6PXC4n5Wx4rsfjwZkzZ+B2u3H37l1EIhHJWNRGNuUTwSqCW7FYDPF4HMPhEBMTE5Kpy4hBXSed64vXY4YCsy6HwyGuXLmCzc1NrK+vo9PpIJvNIhqNYm1tTeQrez0QCNTBRFpvZgksRmbGYjEsLCyIXkzAYzgc4vr165YazoB1jTNjmfPAteHz+fCVr3wFt2/ffiLk7YNQs9mUxuisha8NfR2QwPmzM6S1nBoO97Ncw+GwpUQmcDh7i6ArHZ7M3OG71ACFuedquamd1dQt9Bi5H9P5QN4tl8sAYLGvdEANnXAcB/kmEAjIc5jPpvnWzNTXe6DW/9n/jz0BzHk1iePTDhc9Bp7b7/exvLx8IuVstVpFPp/H+Pi4OFCBA/2TMlX3oyEf6EwSXWKr3+9jcXER+Xwe+Xxeej3yh+9MO4O4JrRDXf/PdUPgidiABs20M2x+fh7pdFqyvZjxw4baWrfe29tDqVQSfuN9+/2+pSQu1wg/NzMYM5kMFhcXsbu7KzaBDkpoNpsolUpSTUHbc8Phfj8flijRNkU0GsX3fd/34ezZs/B6vWg2m4ecf1wDur+GjkDW9iD3MZbBPqlk2hWdTgcbGxuIxWLy/sz9CbAGfWpHhPkdr8+9cGpqCs1m01Keye12o1gsIh6PS7lDAIJb0UFZrVYtclNjZGZmD/k5Ho+j1WqJbRKNRjE5OSnvm+MeDPZLraZSKayurqLZbFrk4/T0NGKxGNbW1uRekUgEADA3N4c7d+4IDxL0BSAlf8rlsmV/MPtVaVmr+Zm6LmW9Hf5B0k5uOkN0kC7nRevsvKcOOntSiLxp4r5aTzD3LT3/rNays7ODYDCIeDyOZDIp5dCPAtr1HOt9Xx9P+4/lZyuVigW/OopGOf30d8BhzJp2+tbWFsrlMqamppDJZCy6BHlCO6qPsiv5mR3uoMdInYVrt16vW/r/mE5e/TwmUT4/juo2jywTQr+IcrmMW7du4erVq5JCqhecVs4IwnKD1pOvDWieQ+9pOByW6HETIAVgMZyZKcDakIyKdbv3G+3q1FoqMVQE9Eulp4zROS6XSyIsgQNDnAKx0+nA5/Mhl8uJE4ECXQt+rXjyh3Xp+Hz0BnNeWFvNXODsCcEoDRoHWvAmk0kpVaGNMnOBaaBARz3xWU2wvN1u48033xzpHT+JpN/9ysoK+v0+stmsGPmar/WcaJ7kwqXSZUZdt9ttRCIRKU1wlMDWf5sCl++I75z318oLlT4t7LRxqZ+HAAOvw+91ypwuZ8aNlY4I3SzSnB+m5tKg0wJYC1QCElpompvRg8yX/p5zv7Ozg5WVlSceWOj1elhbW8PVq1dx+vRpVCoVS+kfArW9Xs/S1Ey/c2aNMXWVjab4m85enscfM3MKOFwKy5Tx5XIZ29vbkiJs8j3pKGVAk/6Myk6j0ZCauel0Gi6XS9azXqcm6VRhbUzqe3OMZmmdTqeDQqGA3d3dQ7XRzedjLVRtSHMumSb/JPEtZZcdaML/aUzTmURepLKqs3UoIwhcaSNN6wymHDXvrUE27t3meyaRB+wca+bx5t96bPpzU8E1gTS9j+g1ZiqjvAZlM9f6KLmpx93r9QTwYFRmqVSylJvgseR5RrsPhwdRw1Rij4pa0uDDSSNG07HMFfmMshWAzN1nPvMZ/MAP/ACuXLkifE2jQZeX0dlBY2NjUqv41q1buHLlCq5duwafz4cPfvCDUpKJ6dWs5x2LxbCxsSHvS5c8YzQw9RQGWvj9fmxtbYm+OBwOpVkjg2logHe7XSktQP5kOSSuG8rWvb09xONxPP300/j2t7+NVquFQqGAsbExxOPxQ+XSstksgINyflzfZjQ8IyCXlpaQTqctTpzBYD+bFYCUziEQS76kfsT1oR0Qb775Jr71rW+NLIPzpBKzmFiKlHypQXkzAASwlmg0iRHpkUjEYjuRtMyjfagdW5Q3wOFmphybKRP5m7aWdpjo+zUaDUxMTEiZED1+vZbpoNL3YYk6c91qUFEHJPGaOgBC6+4sVcZyaya4ZWermWUKeaxpe3u9XqysrJxIMJe2w/r6Os6dO3cIuOVvXaVAA98kbZMBkNLFP/RDP4StrS3cvHlT7J/hcCgOAfIGsx60wwGABXz1+XySccXyMP1+X8road0jk8ng9OnTUnKJ+wf7qZil+vic7BfJcUajUYyNjeHChQv4xje+IXNDp8nm5qY4LujYYrAm5R/XGB1t+XweExMTGB8fl9JOAMS+I87A/30+H55//nlcvHgRXq9XAp8Aa5NvvX50iVUdQMc1znPW19eFbx/ULjhupGXocLhfPWRubk7wHtMRYeqrfNe0t7Sep3UrRndPTEwgFAphZ2dH7HW3241yuYxwOCzl5cgH3AMZUKFtb/KIdtTzXTGwhYFdHo8HExMTkrnMcrjE8OLxOLxeL5aWlrC2tiZZjTMzMxgfH0ej0UAymcT29jZcroNABOIOq6urFpuBeihtK13lQ/eS1XYoe2SxJJAOxjT3CS1jiFfq8n1mAJ75vjnWXq+H7e3tY8unb2dc/f5+ObBsNis4qnZO6v0OOJwdCOzLgmq1inq9ju3tbYRCISSTSSlTx3ek91Fta9EZxD2Asq/dbqPdbgv2dJQdMmpO7ocvjCIGOqysrKBQKGBqakoqVJhBiHo9a12I97KzjXkueZVrotVqoVwuo1QqSdY7j9W/TTKxC+5Jb4XuNz+PzAlhCs21tTWEQiGcO3dO+kOYnhcNOJA5NSivr61fBuvps4yNjqgxN2lu/NFoFLFYDMPhUAB6fZ5WKlnSyNwIKfy73a6UeaCCrBmBL5DN05iJYPfCtUKtn5HX4bU18MvFp1NztWHJOdEAA5VnMv/W1paUaNLzrIFHDWqbHm8+K3/3+3289tprKJVKD8Ywx5yorGvh1ul0sLKygmaziZmZGdlsTWMDsCoawEG6GmDNfOG8sucJU9U5Bj0eUzCZvK7vp883vaqjBJqOztFGujYwORc6wt0OtOOGw03JFKbmWM0x8ni32y0lLuzSF/X9RwF+es75UyqVsLy8/FAb0Ummfr+P119/HdVqFfPz8zh37hwGgwGq1SpKpZLU2NZRsEzP1kYsN3im+ZKPWS+TUYuMXjDrRJI3TD6lo4NNmfXGfNQmZiqHR5E+rt/vSyp0sVjE7OwsIpGIREuY68wEczl+HSmpeZx7AwE69iHSQI6+Dq/FKHUaG0wpjsViSCaTqNVquHPnzrFVYN8OkS/0XqjJlHm6zuju7i4ikQgymQwSiYQl4tBO3pnyWcsbU0bZyRxzXPxtRqdQMdQyUesRLDGmlWYNFNPhF4lExIjjXPEeJpg2atyah0c5IEwZTVnAFP69vT1xxNnpPHQQFQoF0b0elFe1U+8kEoNc/H6/GMCaV0nUDT/3uc+hVCrhAx/4gPSboq5HfVRnP7HMpsu1n1GxubmJqakprK6u4plnnsFHPvIRCQTodruIRqMYDvezwJrNpvR0GAwGUgKRgHyr1ZLyo16vF/l8HuFwGGNjY6jX67hw4QJSqZSlhnc6nUaj0bCU+qQsL5VKEpXInhVsbF2v17G4uIhAIIBr166hWq2KockGpsPhEMlk0gIyElzgPJEHWdIxnU5jbm7uECjB7E+CFyzbwLnk/kYAkIaa3+/H+vo6vvSlL1kiNZ9E2WtHg8FAohJnZmYszhkdIaod8jpKV8slTVwnmUwGlUrF0otLyyRtB+poVwJROjJXg0emPNa6vJ3M1+NiBrq2UXXwC3Cw5+vsRB0Qxt8En7WMBg5K9Wh72JTlqVQK/X7/ULm7Ue/J1NNMe43P7fF4cO/ePayvrz8oGxwr4rvf2tqScqEmf3E+eKwuaaQ/M/eajY0NzM3N4e/9vb+HT33qU1hfX7c0yWUGgbaNKFdMG5z9JJiNSRCWOiGDCF2u/ZJjFy5cQDqdhtfrlQbAzBBbX1+XPip2OEcgEIDH40G5XJY+lefOncPa2hp2dnaEt8rlspQSjcfjGBsbs2Q8seydmVkyGAyQz+dFD+X66Pf7yOVyloySwWCAixcv4umnnxY5ur29LccQ4NZOYp3tx71Sr1X9vm7evHmoGT3ng+efBNLP12q1sLKygitXrhwqHUcy17F2BPF6/F7fo9PpYHt7G7Ozs5ifn8fdu3ct12K5Ltp9uqQOHWfUUU1nn3YcURZSBvv9fqTTaaRSKYvjH4DI+0qlgnA4LHYnZd/e3p7YgMTPer0e0uk0fD6fJWhsc3PTYk9yTwAg/MfKJpS5lMt+v1+yhpgBQt2B52pdQs+rzrQ0A1Ht9hngwFa+cePGIeztOBErTrxV6na7WFtbe9vjoBzvdDpPDK44GAxQKpWO/fM8yoAb9v0YRY+0J4SmXq+HW7duiaczEAiI4auBbr2Z0kjgZqVBWlO4EtgcHx+XWom8JhUCnkeh1mq1kEgkLA2lzOP7/b4IPe2AoFLD8VCQmkAvN829vT3Z9LVAotKugVN+5nK5LGljpmJqggZmPVSO0y6CdzgcSvmKnZ0dS18NjoGbn1ak9bOZ4KG+9vLy8rFfWA9LWlnSCplOrUqn07KBcwPU82cqjbyWWbPV5dqPfkomk8jlchb+4Dl8R+a1eH2T7Aw6Gm96TPoYHWGrS4DZgaZ6fDzObMppjmUUoGsqj9rIzOfzh+5vGobmHGvD1DRmi8Uibt68eaIBr7dC/X4fKysr2NzcRCKRQCqVQjqdxvz8vLzvSqUiGRK67nGz2TwEoOs10e12LYYSDTLW3mVNWr2m6KBieqRdg9yjeOQow/xBaW9vD7u7u6jVapicnEQ2m5X1rO+jx6MVXj4DHdssA0TjSivFdmuUc8X54TmBQACZTEYi/PnulpeXT4yh9VaI759OftORQNLvnsBhqVSSXjV0RmjZrIl7mQlIURcYJe/MPVjvoXZOUKbC05Ajb/AcM+vIlItarobDYSnzSBBZ6y9avgIHGUda3jISWKcgm8Cd+Td1KP2ZBukASO3TSqViubYdz5vE53gS5PFgMJAUb+qvGiDU+2C73cbXvvY17O7u4gd/8AeRTqdlz9VlRjQooN/xvXv38NRTT2F8fBwbGxtYWFjAlStXsLe3h1wuJzoqAQBmCpXLZYkA9Pv9lgwJ7rfMuHC5XOKAoKOYpUJCoRDu3r1rcZiQ9vb2sL6+Drd7P9uYARvxeFyc2FNTU4hGo9JQkvdzuVwS6MNIOq/Xi3g8Lj12NM8zE2pyctKiEzOyUzty+C50prSO6qTO7/P5sLW1hc997nNSN/9JlrujiFmU3I8Aa71vwGofUBfQgTZ2AVjdbhfVahUTExPS5BM4XFKJpOWJGbhltz8wEpfjZRQtz9N7stYlGWShedluz2dEry5vq0ua6brtnBddwseUj9pRHQwG4XK5UCgULLLbnAOtI+trmTKa5PF4UKlUsLa2dmJ5mfNRKBRw+/ZtvP/977eUfdVzQGcPZTAzS/U7J3FfvH79Or7/+78fP/dzP4dPfepTEoXNvZNOBwDCU7oUEbODg8EgCoWCyBldAtHlciEUCgk4e+7cOczNzSEYDEqpjNnZWSwsLAi4v7GxgUKhYBlvKBTC9PQ0MpkMvF4v3nzzTdRqNcmGeO655/C1r30N9Xpd9hPy13C4H4xJnWQw2C+hxObDei5ZVop9HVjSWoPXPO706dP4gR/4AfR6Pfj9fukjRR1GA812Ogjvq8vh6Dm4e/fuIdmg+eIkkR7z5uYmUqmU9ARh0C71Pz1PgDX6W+NkwGGdq9frYXd3F9lsFvF4XHAa7rU62EmvDTrOmAVHGc09mPtAKBQSLI+BBuFwGLFYDKFQSHjE7XYLwK1LoLMh9OLiotxD6/PUgyqVCjKZDFqtlmRrki+452j9l3OkM3y4hom1sNwPbVU99wAO2Q28hun0NflXvwP+z+zS427DTU9PY21tTXrOOOTQW6HhcL+f5/T09JHHPXInhGbaTqeDa9euodvt4syZM2KIcAGbIJJWuHic6ZDggh4MBrKhX7x4EXfu3LGkCppCgJE0Ozs7oiTqurWMUDDHREGrFVj+T8Gqx6+jc3Q2hT6HzzQYDCRyAjgM6PIzE3DRircGS7Sybyqh3LCq1SoKhcKh6AN9bV5PK97mnAIHwPb169efuLI2VNJ0Zg4NKr671dVV7OzsiDed9cn5va6ja4JB/E2wku8EOHj/JhBKZ9Go8epr68/1NeyceuY9uFZYE1JnLJkbvb6OuRbMsZnRBCTTIBg1fv5vRoWYWQ5aRhAkJtit+f+9Su12G9vb2ygUCrh37x5CoRDi8ThSqRRSqRQmJyelbAJLFzGyi/VfTYPPlFHka6YDaueE+Z54nq6dq5U6/c5Jpuyy+26UAmXuDcC+jNva2kK1WkU6nRYQjvuQLieiHdW6pJjdWOzAbCrCLFVG0CsajSIejyMUColiX6vVsL6+jnv37p3I8glvhTi/4+PjEtWtM84IvJtzq/e4Wq2GQCCAWCxmaXTG4zSf8TMt/8ySXCZ/m7xp7vGVSgW7u7uoVCojG9Dd7zN9/X5/vwxVsVjE9vY2ksmkNDrTYzadrnp+AIiOo/clc73pz81n55olGFOr1aSJvakr6efQYJspt5ld8SQQn82MkAMO78XUF2/cuIFyuYyPfexjWFhYEPlqRkUygp/U6/Vw48YNKbG3vr6OWCyG+fl5MXgbjQZCoZCU9yRoNjY2hmAwKEZ/u90Wx0Kn00Eul8PS0pKU1BgOh1JelO/s7t276PV6sq5MANnlcmFpaQkLCwvY3d3F7du30Ww2pQxDs9mU5tQu135EaLVaFYCCYJcGiQk8UBdKJBJSbkLXZidAbILJLD3BsRKQJlDGObl+/Tq+/OUvSxknPh+vY9oJTwrZPRdLkXq9Xok8105J2ihm1Kgub6jtN+AgyKXb7SIWiwkQyu+0fDpqjKNknbZf7J5J67F8n16vVwAo/bl2aGiifkMyS+aQuIZNO8ocF8EyNmTV2cd6jxml+5h6j7ZRPR4PqtUqrl27dkgunSTS+tq1a9ewsLAg+qoZhaydj2wYTmeE5hu9PxWLRVy/fh1PP/00fvRHfxR/9md/Jo5X3hc4qD1PuUGQMRqNIhKJoN1uiwPE7XZLJuvu7q44Q8LhMGZnZzE5OQmXa79MX7vdRjgcRjqdFj3I5XJhcXFRgFmXa9+JMTs7K70hg8EgJiYmUC6XpR/A7Owsnn32Wbz88stSPYKZDGxM7ff7Rf5R76SOwN8EoSn3uZ8ws4P7xtzcHL7/+79fzmFvDZ31wX1Eg+jEgvh+9boEIPP8V3/1V2g0GvLONE9ocPgkEZ9jb28PN27cgM/nw+TkJIbDoeiNZsCMPs90aJp4EM+lHadtea3fms5Xzj/fWyAQEPyOQQB02pL/w+Ew4vG4lEunM5Vro1qtWjCzbreL3d1dy5oeDvcze4rFojhLOIZOp4NarYZYLIZarYZsNiv9qlZXV1GpVEbaBsBBiVsG8jAbiFn8brfbEmyn55d7GJ3spv1LMgN/+B7GxsZQKBTwxhtvHHu9we12Y3Z29t0ehkNPAB2VAUFyDR9gRVSr1Qe6GHBQZ00DBm73flf7paUlZDIZifYn+A9YAXj+Nhc5haY2LlwuF06fPo1QKIQ333xTmu/q70eBUXZKnQYfKEx0mQQd6W0a7cBBzXCv14tUKiXpZNqpYCrk+nraQaMVe30fPa86kt5UlHlNM0pTP48duGJH2njQRsXq6iq+/e1vP5RgrVQqiMViD3z8o6SH4WWS7qFA0mAKDRiWzuDGyMhmHf1kvnOdaaHnX6et2hlZ5rU0Peh3GtjVPGKC/HSsjLqOuRb0Z+Y4CIDpTdrc0LXBZoJynBvTMcnzWPuPza5ZyonRHm9FST1p/PowpOUHI19YI5NR+ASD2u026vW69IdgfVw6NEeBM6N40SS9nux+NB11v1H3HXWsCbzaAcFHPZMex1FrldFgkUgE4XDYAg4y7Z913Xd3d6WOI0HJR0HvJC9XKhUkEom3fH4oFMKFCxfg8Xiwu7srTbxpyLjdbgkesMs24ZzRycOG1gQ+CRqZe6Spb5hymr9NeT0c7peMyeVyKJfLj7WGPA3DbDaLiYkJKVsDHGTwmRGN+rlorPG3qctokJbEfZ81W3O53H0b7Gm+Z1kc7XTQPWgehMrl8mOVh2+FKKOj0ajsQaMilPX/mobDIeLxOL7v+74PV69eBXA4Cg+AzKF+L9FoFNlsFvV6XRqJdrtd1Go1bG1tWeo6R6NRS9N2XVIhHA6jVqvB4/FgcnJSegHoZs3US06dOgWPx4NGoyFyCjjQKRjZmMlkUK1W4XLtl364du0aIpEIYrGY6EaMxqXea5YC1GuduhYdH9S5gsGg6Cmsoa+zOrnGqQfwfM6xx+NBKBTC8vIy/u///b/Y3d0VHjX1GvOzd1M/eFh6EH3CLENKCoVCOHXqlJTMMjN8AGtGuClTTL2NYAczbMgndoE2pizjNe0+4/35v53uzWuaQWPhcBj1ev1QhhqveVQQjyb9/HbOATt9hry+sLCAnZ0d6fvE8Zlk6kD6t7YfvV4vGo0GXnrppQdy9h5HfibfptNpAQL39vawsLCAj370o5a+cXYOLK37cU6YJUXSDoann34a6XQaL774Iv7qr/4K5XJZelDqsrrUPahfMNo7GAxKTXSv1yt9agj+T05O4tSpU5Ym7cBBxgSzOUOhENrttkSXM6CHWco7OzvSvLzdbuP27dvodruW0r4rKyvifAqHwyLb2BeTZSFZooYyknZrNBq1PAt7nwQCAZnrU6dO4YMf/KA4g6vVKnZ2dmS/ogOI86z1DjN4TcsSYkVf+cpX8Morr8geQWCX16fjkllrx4mH7ydztR0cDAZx9uxZzMzMyF6o5+p+549yVvBv6mKj5A+vp7EAE9Dnu9Rj0zo2sx/0fs2SnqY+zevHYjHJLGIZc9NRSCcAyzKxxGQgEJAMr83NTSnbyGvTycBgu2AwCJ/PJ45E8k+j0ZA1rvcrrT+YgaB274R7nMZvdnd3H1j+AseLfx1y6HHSI3dCuFwu2Yy5WCm0PB4PotEopqamMD4+jnA4LIJFR5maAKfpkKBA4vWnpqYwMzOD119/Ha1WywKs6XHp69iBuXbKIpVUgh+mANeKOpVIZjiwhi5T0DTgwQ3W3Ax0IzYafOb49DgZ7WEXWWym7OrzOIZREbx6zmj06rH2ej1sbW3h1VdffegoxpMI6popj8DhDUg7aEKhECYmJsTbDhwoX3apwCZ/AwdGj7lxa7JTJkYZLFqJ0MaZHV+RyCdm7XvNaw8COptr2pw/rfRo400rpORF/q2BcZbz0aXUzGd7q1EyJ5FfH4YoR0x5SUONoFE8Hkc4HLb0jWg0GjL/dLjqmvF2ssXu/Wt6UMB9lFPhKNl+v3PtFPn7AQDmdblWOX8Ev2OxmAUAZ7ZJuVyW6H2mvOu98FHSO8nL6+vrmJube0fu5dB7g9bW1o5dlBZldCwWszjG6ZCgsa7Xswka0GD2+/24cuUKnnvuOaTTaXg8HgHXdGCNBl+GwyFCoZDom3QKUPerVqvY3d1Fs9kU43g4HEqkK8FXGuWMch0OD8qeEvSh44vlzjweD0qlkmRFeL1ehMNhTE9PIxKJYGdnR3SIQCCAb37zm+h0OgKysRZ0IBBAt9tFs9kUJ4ld6Ro+O6Mtmd1B3TyXy0l0pdY3KE8JjNBpx3kcDvfLW332s5/F7u6unEfScp3zSjpJgMGD6BO6Pjd1MuqtBFBnZmYQDAblcw2Ujdo/zeATr9eLM2fOCGjJMmYEPE3dz7ThSDpb/GH3ak0E0nR2g76GJtMZYWasm+eZzgE9Ln7H+QmFQgKGmYCidjbo+5M3TZthMBigXq/j+vXrD1zr+zjyM/k2GAweskdnZmbwzDPPSIAjcDBX2uaye4d0jmtQtN/fbx791FNPodfr4dq1a1heXhb9jFkOZgk3Aqgu135UeDKZtPAxQebJyUlMTk5K41/a+xwLcJC5EQwGMTU1hWAwKKWWmLnAEtcsjUPHMx26bI49GOz3dllZWZEodjqNySN6j9F18RuNhpSNarfbCAaDiMViqFarkuExNzeHCxcuSA+4breLQqFgKWWt7Tsz+M1cFxrALZVKeOmll3Dz5k0AkHtwDfDdslwUr32cePhBZC73Mc7H+Pg4ZmdnpSSO5mXTXgdG4wCmzQ0c4BR2eIJdMA7PN+WWljnUDdhHgvfg8cViUfAx7remjX/58mWUy2XpV6MxRC1n3W43xsfHMTY2JnwbDAbh8XhkDbD/Hp1WOvOcQcoa16hUKmg2m5bn4tjtKoGYOgkxOB0gwv4rlUoFt2/ftt1XRtFx4l+HHHqc9MidECRu7FykZvQ/m+CxRwMjx2komJsVSQsmHdng8/kkzdpOUdUKLWAfyWonZHisVmpMBd1UgIfD/VT6dDqNWq0mwkeXoNICnP+PKlOl59BunHbg7ijlSx+j51e/I3OT0ps8UzlLpZJsLA9LJxXUpYKm59M0CjQv0Rmho8pZxsLO4abPBw5HTmmeMYHWo4B/7STTDio7ZYY06pnMMdiNxe4Z9JjMv3W6uWnIascO10i9Xke5XBbFQZcWM+dNr4W3SieVXx+WtOIIHAbzmb4dDAYl7ZyR5bpkB6P56/X6oT4Jplw/ylFgkgng6XEepZDbXUOfZ2fUjyKTr8mbXq9XGnPrTAfdDLbT6UgjVyrKNGh19J5WfB81vZO8PBgMsLm56dQWdeht03B4UF/Uznh+N4kymgEqGgg0ATMdjW+ue5LL5UImk8GpU6cwNzeH+fl5AbzovGQQi+6xwyhVRgbm83kMh0Mxznk/nblGBwCvRVnF40nUZS5evAi/34+dnR0kk0lpisoyB6FQCMViEdVqFR6PB81mE41GQ5wjGlx1uVzIZrNIJpOWsqS0HbQzh/PCGuvMjOj1euI82d3dFWcISQc48Tl4TYJ4d+/exfXr17G6uiol77Te4fV65T0yC0i/r5MEGDyoPqHtNRPUHgz2a9+Pj48jlUpJ2Q3gIOBMg0sa1AEObA+dGaijTqvVqqXMDa9xlJ5rR6ZuPErf1Xonx2kGZWjS9qCpa5pj0s96lH6j7Ul9nKkrcT3r96LnifPP4ByWH2U5oQeh48jP5FtGS5sAZiQSQSqVQjKZlN/snUTd1LSJtV5LcJtOxl6vh2AwiAsXLqDRaODevXticzQaDXS7XckE43XY6Jk8xCbRHo9HsI5IJCJlR1lqks2AKWt0xDVlZSKRQCwWs5SFajab4lQADniO+InL5RJ9nQ6Se/fuSWlaOjrIO51ORyLDvV6v9Dlzu/czpIH9KgqMJGdPimw2K2On44LHmk5Kkl47WsZSrjcaDWxubuL27dtSZtvu/QGQ/eq4yuQHkbnc23RJQZ/PJ2VyWcLQlMN2WegPghFp2W53vM4kMOWNludmcOJwOLSMk04BE/vS+/pwuB8Qwb5T5Dk9dhPbisViYm+x7DkzxjmHnBetY2neIb+yX6zG40x+tbMxTayMWUXlcllKkVFfeNis6OPEvw459DjpsTkhAFgiDEyFVCv5Hs9+Y86JiQnMzMyIM4IKlQautBA1I8gBaykCU+iZivEoEOpBlEVTCSVRyFHo6kZYpmDV4ybZgdL6ufVn5nccm07v1OM278cNRpevogLWarVEia3X6xLl/HbK2pBOMqhLZVWD5sBhwJ+kFS3W+qThRj4xr2VHeiM218AosjNqzO81X5lrjMdoMteV3Rowx03jzjTMzOvzGbXSA+wr3HQ8lMtltFot2yhxPQ7+bTaQeit0kvn1YUnP/1EOJB7LMmR0TBB8Z7Mvt9stxhYdFHRM0Dmha/4flUHxoDKax9rx5VHnmuvL3KvYvIzPy9TjQCAgcgGAgADMgtMRdDT8Ro35cWQ/aHKUW4ccerSkZTSjyAF7eWlG4AHWhrjMItNO3wsXLuCHfuiHxAmvQTV9LYJWrMHNhqn83Nxz9W/T2a/BZNZRHwwGSKVSEjkbCoWwuLgo2RoMAmq321IXfWdnB+12W4x+7v0EG4D9TGY2ZtURjc1mU/Yh9segnkoZ3Ov1kMvlpGeOziLTkffAgcO43+9L0NL//t//WxpFahmv54E/LB1lvteTJFMfRp+wA+K1k02X4GAjUkaqk29GZbZrkIjf62xXHmvab/cjO+BIg5UmeM3P9fF8dh2IZedsMPVg894cz1F6qh6DXfaunhtzTATvdOCH1jMYHf+w+sRx5GedCQEczI120mi7X2egZjIZZLNZjI+PS7aaLpsHHOiydMRS1vr9fpw6dQrlchm5XE5sYGb8NptNC8DIuvrMLtOlX9iLQvMgZb92wpJYLo/7wfT0NGZnZ7G1tYXNzU1LqTo9J2YpQMo1gq7Mus3n8yKbGVzHvYT2PR0a2gkbi8UwMTEhQDCvTZ1eO35HVWDgvsXnbjab2N3dxc7ODnZ3d1EulyWafRTeAdg7IIDjxcMPKnO1fsD/+VkwGJSSQpFIREq5cm/Xc22Hc9k57kzswCzzqPdP2nmmbDad9cSPuE+Sv/juAav9z6AHM0iA9yC/6GcgPzJbkz1RGAxH/tMVH0x7ls4COhE5Li0PTNnNZzWdQRovK5VKqNVqUmZU9wV9GDpO/OuQQ4+THqsTAjhwCtiRVrAY2ZVKpTAxMSFRDDr9WQtaLQTN61NAjEo5Aw6nl2kheRSoaue04OcUSFqgMtrHBHaPusf9yG4MVBx0NoV5jt5QCBBSka1WqyiXy5LKb0boag/x223+dNJBXQKuOprRrNs4yjlBBTmZTCKTyUjNfW3wagX1fgaMadzpe486h2Tyj/58lCNC85HdsTqF3ByHNih5X71W9XfMeCiVSpLxYJc5YnctzjcdZm+X3k1+fbt19d8q6XdCGuVoM0EGyhcCRWx4x9q1ujGglil0SOgf3fzZTOs2lUTz7/vxiQY9OGaWUNI17LWhRSWdRiwNUbMHiY48tgMnTBqV+feo6TjW1HfIoZNMWqegvncUmfJSAzLctwh28ZrPPfccfvAHfxAABERnOULqmdrI1/ovjWft9NAAKsmMVud+q8ehnSwcP/X2ubk5aSJ648YNFAoFAaS1nk5ZR32H0fBjY2OIxWKYnJxEJBIRcE7r+joTkgY/A2R4beq/GvDWMp/g3ksvvYTvfOc7Fv2f55vymI50OzpJgMHD6r/3C3TRQJku58Wob63Xat2Q1+Y1THDMDDK7n71kZ8ZST9AAP9eJuSfbrQft9NLjOUqfttONRzlStB5jF3lrOh5oqzUaDQGSzcAGfc9er/fQDgjgePIz+Zb9CEY5fUzHEMnr9SIYDCKTyWB2dhbz8/PSZJ1BMDyfMoLYBe21breLSqViiT7X5Zr1WtC6IoHUUU49vlsCltoW0r1J+v0+Tp8+jWq1KhlbmkdN55UuFUU5SgcMI8eZSd5ut8VpDUD65nC8utY/HbX8YZYv+dCsZKHltwaPK5UKNjc3sbGxIf2ltEPBbk1qGg6HI/ulHScefthy5nreTTxB6wrMkojFYpZSXtoJr4nvgH/bOXdMvYHHEZ/TGZN0XPGdt9tt4R8zQNgE+lnOjLxLx3+9XrfYZvrdagcJx0Q+p0NOB4ZpbIGyk/KSpZK4FuzwMj4Hn517Bx0OOptd23ukt+IAJh0n/nXIocdJj90JARyk2wFHA5z6eL/fj1gshvHxcQFrGVWrASltWAGHQVnTIaGFK++vlcRRwt8k02jRXlc+AxVwbQjZKdh6DFr4HfVq9Hd6DPp7fT0KfHqem80mCoUC8vm8JbpcP5/+Wwv7t0sn3QkBAJlMBqdPn0atVkOpVEKr1ZIoREZn6MZNwGHed7vdUq6JZckIYGhHxKgIqVFkt6GOUuTsHAam00SDFvoYO2Nr1PX1+jLXJnAQ0dJqtVCpVGwzHkyllNfQdR6Bg1qmD9urZBS9m/zq1NV36FHScayp75BDJ5lMncLtdiMSiVhAKsB+nzT3WpfLJYACATJmDDz33HP48Ic/LOAUnRYaqNLAJvdGExDT99J7sQnU6h/df0IDZ6R+v4+lpSWcP38eX/3qV1GpVDAcDg85ETg/HK8ei/6fz2Y3V3t7exJpaJdFqnVeDeTu7e2hUqlgfX0dq6ur2NjYsATbjAK8CbKMopMEGLwV/ZdzOIrswHOfz4dEIoHx8XFEIhF4PJ5DtpKdPmfqlFpP1N/b2U6kUcC+Hqv5uR2IrSNoTRuR49LjtuNV09a1c4zoa2inoQa9qBMzOlyDXeac6DItb4WOIz/rTAg2RNbr35QxJFPm8hj2rTlz5gxmZ2cRCAQsQUsaMyB+QbmsAw21zW/nCOZvM8KbpPlYy2YdbKn5JBqNwuPxSBkmzWNaXmp8Qju09L1MJ6sO9ASs8lODwsRnuD+RH7UzRxOPZ4mn9fV1LC8vY3NzU0rW6LVm56gxcRo6hUfx+HHi4bdTztxuXyNxLhjwFY1GpVcTcQTznZryxuQvfmfKO45Fy2LyNN8NdR3TcQsczjbTfMljh8OhBFWYAcSjMAzqA5o/dM8Qc33xOUcFsZnOHgY+VKtVS0Akec/cv3idt+oAJh0n/nXIocdJ74gTAoA0NzLLz4wCL2WALhcCgQBSqRQmJyctzae0IqIjGUwFErAKRDMS1k5g8Vq8Dz83DT1TsOkxkPSz6ogIRkiQzAgzUykn6XHoMdgZtIzoGA6HUpd3Z2cHpVJJUuV4vCno9b3tSjy9VXoSnBAAkEwmcfXqVUQiETSbTeTzeakvyA3bNJqBw+8SgJQki0QiiEaj0hzSrqQZ/x5lgI/K6DEVjaO+M9eA3WarjTB9rsn/dps0s4ZYM5olv6jIjhorlQMN1PAYpmpvbGw8MgcE8O7y62Dg1NV36O3TcHh8a+o75NBJJjudwuPxSIQiQRMGcZhZk4B9sAszDwjI9/t9nD17Fh/60IcQDAbR6XTEUNYZqqY+qqMndZStHUhq6pvmPswIRjtHQr/fh9/vR6PRkOhDHtPv921LUWmwg2O2A271jy6RZAYUafCQ+n2lUsGdO3ewsrKC7e1taUDJcY8CEggm3C9D7SQBBm9V/6XOpe2NBwFZ2KcknU4jnU4jEAhYACv9XkfxIgCL7QaMLquo9V8epz8fZd+Y9+GY7HTvo65h97/Jv/xc/2ie1Y6HYrEojgdNdjo3cBDM83boOPKz5lv2I9HOJh2YeFRJFcDquBobG8P4+DjOnz+P06dPIxKJSACZxhDo0NXlWAAckukALPINgEXmkuzAdm3LmYDocDgU+9DtdmN3d/eQXNU25yg8QM/LUZn2ZrYcr038gtHkJp6j163OlMjn81heXsadO3dQLBYtTl27senPuWcQnGaZ06PoOPHw2ylnrksY2pH5nt3u/R5P8XgcExMTSKVS0kdqVGa2uU7sAH/tMNAOCPO9jbJRR+FY/G06Vs0y4fo6o66hP6cTYJR8tptDLYcZsJDP5yXIdFQJaD0H9wtYeFA6TvzrkEOPkx7ICfGoSoKEw2HE43FLiQ3TKBsFgA6HQ6mrPz4+jpmZGRHsOt3XNMQeRDDq3xpgNaMFtCPBbgPXG4G+rv5O/28aUDzHLgLnfkq/VmjpeHC59uvzFotF5HI5lMtlS8qc3Rzwb23EtVqtR+aAAN7dkiCPusb+2NgYJiYmMDU1hUQigUAgIGm7NCCYqktH0KgIDs0DVHoDgYA0YAoEAlLORjexsruGuTmba+tBN2U75UHzh3kvrhetmFIBYs1Q3axYRxTo62vi/ZjyT0PW6/VK6n80GsXu7i6uXbv2UE34HoQchcAhhxxyyCE7Okqn4P5NfU/3LGNj5FarNbJXDPdsRpP6/X6cOXMG73//+6Ungg5mMZuNUp/k3zqylfu8bi6p76nP13s7z6WjgecxOpVjNUvw6GAZ80dfV+sDurQSYA1g4LU5fh252+l0sLGxgRs3bmBlZQX1et227IKp++vMCV3m6Sg6SfrB29F//X4/4vH4oZIrOkjLDiwj7+vsiGg0KlnZ5g/PIZkOK/25CUhpu2kUmXaVaWvp65m6szkW09lwFJk2mrYTB4P9Piu6zJhdNoMenw5oc7lcI3uWPCwdR342+TaZTOLZZ59Fq9VCoVCQhvfabne5rJH6o+x12hLJZBLnzp3DuXPnkEgkRM4Q0KQ9bJajMXleZ51pnqF8seM3O7yCDiXKNwZjAvsZreQbkw/M64yy8XiMmZGj5a+ObOexugyxvj73NdqmrVYLq6uruH37NjY2NtBsNkdmF+n54fl0vgOQvYSlT+9Hx4mH347MjUajss8TMztKzup5JV6WzWaRzWalDyVltx2mNAq013JL6w+jyA77OsrpYMpTXsMMHtbVE8xran7mPJn7hTlfOuuCvSfz+bwFu7GbC5Jez3QePwo6TvzrkEOPkx7ICeGUBHHoUdK7WRLkcTX6Zc3RaDSKZDKJVColjaNYw7VarYphyxqa5kYM2EfwaANGpwfTKcE6nbo0kVn6a5TDyU45t0srZt1HrUAw8oiKPx2L/K0zG46KvLFTfvicjAjx+/1SvioSiYhSxUjH7e3t+0YtvhVyFAKHHHLIIYfs6CidwuPx4PTp0zh37hyWl5exs7ODRqMBl8uFcDgszUvdbjfa7Tbq9br0PwIO788u1365pqmpKZw5cwYLCwtIJBKW/ZOGM0F3XS9el9qgzqABhVFGux2gpp9R7++dTseSdTEYDKQcK6+lSYNpJvG6dkC31m9Y67xYLOL27du4desWdnZ2JCrczunhcrmkb5Hb7Uav15OxVKvVBwYUTpJ+8Hb130gkgkuXLqHT6ViAGvYK0Q2RTR2Sf1NXTiaTlmbW5BEzkIXnkUYF8BzlCLADoPi5He+bgN6o65rBZCaPAYcz73k8G5qyH1+j0TgUgW8HYuvm6W6329KX6lHQceRnO75dWlrCj/3YjyGTyWB5eRm3bt3CxsYGKpUKBoOBpYdEu91Go9GQILxRDgm32414PI6FhQWcPn0a2WxWmtjrcsSmQ8G8lh2/aBCXMlOXObJz/pL6/T4ikQguXryIQqGA5eVlcWSZspnPYbdmeNyooELzemaVBTpktANbA7ndbhc7Ozu4c+cOVldXUSqVLCWu9Fzwt1nuinKATbQZeFYoFE6kTH47MtflcmF8fBwLCwsol8uo1WoiY1niTtvYdvY1HViZTAYTExOIx+OW3iB255rOB81f2hFwP5Bf/+bfdk6UUTLWzvFr52wbtebsnscMxGBp8t3dXZnfo+ZC607coxhc+XYdwKTjxL8OOfQ46YGcEE5JEIceBQ2H735JkMflhCBxc2MWA/s9sJ6py+VCs9lEpVIRwKHVallqHJtG0SiF2SStFPNv0xmhjzEVaG7mOkrCNAjNGtf6h8cdRabCbYICeoOPRCIIh8Pymw3Nms2mNK3WitnjIkchcMghhxxyyI7up1O4XC587GMfw8c//nFUKhXcuHEDN27cwMbGBmq1moD0dLD7fD60Wi3JXOU1SNxvdW3zZDKJcDiMS5cuiXNe79+6XJO+jgZ/9OfmPTUoZvd9r9dDIBDA4uIiNjc3US6XpXl2v9+3RH6b99HXMnUPnQmha5Pz716vh3K5jI2NDaysrFjm1E7H8Xq9UtYkEAgAgERLE+xaXl6WeX8QOkn6waPQf0OhEC5duoRMJoO9vT0Ui0WLQ4KgJKOm2+22bQAKcOBUCwaDiMfjEvlLkN0kUz819U8eo/+2c+Tp40Y5IvTx5vdmeSgz+9104BEsZDNgliA1QXHz/gR6GXCkn4kNWNfW1lCv1w+N+63SceTnUXwbjUbxYz/2Y7h8+TJisRgajQbW1tZw+/ZtrK6uolwuYzDY79UXCATg8XjQbrdRq9WkKbMJsvJvv9+PdDqNmZkZzMzMIJPJIBAIiCy0q+LA803QFrDyDnskjLLxtKylU9ntdiOZTEpzXV3yjkRHATMY9PXN/oQk7WwwyQ6cZka61+tFv99Ho9HAzs4O1tbWsLOzg0KhIBk5duthODzI7KNdx2fms3q9XiQSCczMzCCdTuPzn/88NjY2RrHHITpOPPwoZO7Zs2dx9epVDIdD5HI55HI5S/YPAGm8bFd2CTjY7yORCFKpFJLJJCKRiJSMBGAJKOQ5dniEXZk6TXaOAXOd6fPtAiGOkslHORF5DnEQnU0B7JdQo35VLBZRrVbR6XQOlesjMTsnEAhYymNznysWi6hUKrbz8FbpOPGvQw49TnogJ4RDDj0p9KhKix1FVNT0/9zEWD4oFotZFNpmsym1Luv1Olqt1qE0YrtoGZPsIiHM+p783FSW9T0e5lntFAnzO/2/HgMNrGAwiFAohHA4jFAohGAwKLUs6bSp1WqSScIsi8eR+WDSu1k+zCGHHHLIoeNLD6pTzMzM4KMf/ShOnz6NRCKBUqmE5eVl3LhxA6urq6hUKuj1ehgbG5MsSg3ksgcCcDjKkIEP2WwWc3NzmJqaQiqVQjgcPgQw6H3fLJFkXl+DHNy/9XWYqTgYDBAKhbC4uIh+v49bt24JIEbQjdfjtc0+bnbj0LpUv99Hq9VCvV5HoVDAzs6O9DejTqDHqa8dDAaRSCQQDAYlcpzRxYuLi7hw4QIqlQr+5E/+BI1G46He/0nSDx6V/utyuZBIJDA5OYl0Oo1wOIzBYIBarSa90TqdjgA17Xb7UKkgO2eBCboTaA8EAgJ8mg4tu0jboyJk7+d8IMg2yiGh+VOXKuPaYCZIp9OR33x+HU2vr6mfn/fns7IXh8fjkeaz8Xgc7XYb3/nOdx6aX+9Hx5Gfj+Jbj8eDyclJnDlzBqdOncLs7CwSiQT29vaQy+Vw584d3L17F7lcDr1eD36/H5FIBF6vVxxopoPWfPcavM1ms/IOQqGQOHApF7V8BA76K5hl8XTpN35OXtJ2jQ4EMx0YJlise2OYctvcM8x1oteUBm91CcHhcCglnre3t7G1tYVisYhms2kbCGYCysyCisfjGBsbk6oAg8FAen0sLi5ibm4O6XQaa2tr+F//639hc3NzNHPY0HHi4UclcyORCM6ePYupqSnpXcIen+VyGb1eTzJTuMeZ/WG0LNTBkpFIBLFYTOxvXofn6IAG8zNzr+Xn5rs3ZbJdkIPptLLby3VggXYC6+900CTLPzPos9lsSiUKjsuuvJTH45H9BzhYf/F4HOPj43C5XHj99ddRLBbf2gs9go4T/zrk0OMkxwnh0HuKnNJiDj0svZvlwxxyyCGHHDq+5OgU7206SfqBw6sO3Y+OIz87fOvQw9Bx4mGHdx16WDpO/OuQQ4+THCeEQ+8pckqLOfSgNBy+++XDHHLIIYccOr7k6BTvTTqJ+oHDqw6NouPMzw7fOvQgdBx52OFdhx6UjiP/OuTQ4yTHCeGQQw455JBDDjnkkEMOOeSQQw455JBDDjnkkEMOPRZyXG0OOeSQQw455JBDDjnkkEMOOeSQQw455JBDDjnk0GMhxwnhkEMOOeSQQw455JBDDjnkkEMOOeSQQw455JBDDj0WcpwQDjnkkEMOOeSQQw455JBDDjnkkEMOOeSQQw455NBjIccJ4ZBDDjnkkEMOOeSQQw455JBDDjnkkEMOOeSQQw49FnKcEA455JBDDjnkkEMOOeSQQw455JBDDjnkkEMOOeTQYyHHCeGQQw455JBDDjnkkEMOOeSQQw455JBDDjnkkEMOPRZynBAOOeSQQw455JBDDjnkkEMOOeSQQw455JBDDjnk0GMhxwnhkEMOOeSQQw455JBDDjnkkEMOOeSQQw455JBDDj0WcpwQDjnkkEMOOeSQQw455JBDDjnkkEMOOeSQQw455NBjIccJ4ZBDDjnkkEMOOeSQQw455JBDDjnkkEMOOeSQQw49FnKcEA455JBDDjnkkEMOOeSQQw455JBDDjnkkEMOOeTQYyHHCeGQQw455JBDDjnkkEMOOeSQQw455JBDDjnkkEMOPRbyvp2TB4MBNjc3EY1G4XK5HtWYHHoCaDgcolarYXp6Gm73k+vrctbA8aInje8c/nLoUdCTti5Izvp49+lJ5S2HHHLIIYfeHXL2dofeDh13vcTh7/cmOXzp0HuBHpTP35YTYnNzE3Nzc2/nEg494bS2tobZ2dl3exiPjZw1cDzpSeE7h78cepT0pKwLkrM+jg89abzlkEMOOeTQu0PO3u7Qo6Djqpc4/P3eJocvHXov0P34/G05IaLR6Ns5/T1DHo8HwL5nCNj3NNLDqH/zb7fbDZfLJccPh0P0+30MBoN3euhvm550HuHzXbhwQd6zfpfD4dDyHr1eL/r9PlwuF3w+HxYWFnDp0iVcuHAB2WwWLpcLrVYLnU5HruH1etHr9eT9ezwe+W4wGGA4HMLtdsu9OA6v14tQKAS3243BYIBut4v19XVsbm5idXUV+XwexWIR7XYbANDtdjEYDOTH7XbLtTweD7xer/weGxuD3+9HIBCAz+dDIBAQvuVYer0eer0eGo0G6vW6/HS7XYyNjSEYDKLT6cj4OD8ulwu9Xu/QeuAcco4HgwE8Hg/6/b7cczAY4Pr1608M3z0pz0FyuVzCP2NjY5Z3OxgMsLe3h16vh36/j36/L+/7UZLP50MikUAmk0E8Hkc4HIbH4xFeBw7WLWVvq9VCrVZDqVRCsVhEs9l8LGN73PSk8ROf59KlS4f2VACH3hH/13zHz7Uc1bzn9Xrh9/vh8/kssn0wGKDX66HdbqPb7Vqua/K1z+eDx+NBs9mUa2hZ9rB0v3P1vsOxUO/Qc8L/OSYeN+oe+jP+3e/3cePGjSeOt5yIMIceBR33yEeHHDqOdNR+EovFkMlkRP/Xutv9yM6WMOW7ttlGXYN7IHUF7rOm7Uc7xevdh1vcbrfoC/oeg8FAdGLa+3Z6CgDs7e1Z9Ay9h+t78/7mM9rt7Vo2uVwuy3PxPtTLebzX6xV9we12Y29vT97FYDAQ28y8lx6jx+MR/ajb7VqwDj2m+70T3iOfz6NcLosuc1z1kuM6LofeGTqu7/+dGtfY2Bh8Pp9F3lFO0rbicQBEJlCmmLjQ3t6eyCseTxlFzIxyktfhPVwuF/b29tDtdgWjIGnbkMcDEHzsKGzW5XLB4/EgEAjA7/fD7/fLc4+Njcl9KFu73S663S5arRa63a4FD9E2HfFDjbfx+SiHOUbOjdvtxtjYGIbDIZrNpsjxx03346e35YQ4CYYZN18yprmpm8eaYIQ2yjUTa0cCr2sa+Rpc1Zu5SVphMAEQ3pfgrAleaOYjcRxcHO8mWHYSeOTtkHYU2CnC/N7j8aDVasHv92NmZgYf/vCHcfbsWWQyGfT7fREKg8FAAC8K1UAgYAF8NGDEz7QQJH+S/zSge+7cOVy5ckXObzQaqNVqqNVqKJfLogS6XC4Eg0EEg0FxOIRCIQSDQfj9fuFHDXBpAa8FJjeUTqeDXC6H69ev49q1a9jY2JAxc6za+aGVZ1MB5eecc71e9byfdDrpz+FyueD3+xGNRpFIJBCLxRAKhTA2NmZxptFp1e120el00G63Ua/X0Wg00Gg0LBuxvraWf6YcNGlsbAyJRAKzs7OYnJyEz+eTe48CaMmXoVAImUwGS0tLaLVayOVyWF9fR6lUesc280dBJ52fTNLrXe/xwGEgnsousC+PzX3X6/UiEAggmUxienoaCwsLmJiYwMTEBCKRCFwuF8bGxiz7aqvVQqlUQj6fx8bGBra2trC7u4tKpSKOYyrC5FEqghyjnaF91LOawILWW0zSTmkNWJj31/JTO7T1fXm83Toxj3sSyIkIc+hR0nGNfHTIoeNIR+0n8XgcoVAInU5HQKqH2X/0Xmr3N485KvCPx1OXIHimdQz+1nsk92StFwBAr9ez7O0EqLSDgftyMBgciRfQjtLjo87C/V3rIwSpNNBFXYFBc91u95DDgMdznqjr6PvyOTkuXp/Xph2pn4Of8ZqjbEC79wEA6XQajUZDgLjjqpcc13E59M7QcX3/j3tcbrdbglaJNzEoEYA4Aoh7dTodeL1ekUnEhrTt5vF4EIlEEI1GEYvFkEwmEY1GEQ6HBcOycxJ3u1202200m03UajVUKhWUSiVUKhU0Gg0ZH+dF7zUMmtTyyOPxwO/3Ix6PI5PJIJPJCO4RDAbF6aLHYiff+v0+Op0OWq0WqtUqcrkccrkcisUiOp2O/Hg8HvR6PQkIBg4wQspuAAgEAhKI7PF4EA6HxeHxuIPb78dPb8sJcRyJAKY2pknc5Owm3dzYTFBVH6eZmMfq/+2MchMAsAMD9AK5nzKk7znqHAKABIHfTWfEe5G0QplKpfCJT3wCzz33HLLZLLrdLprNJsrlskU5BPaVUQJiFLjtdls8nJqvKZTJI4FAQBxQHAMVu36/j3a7LdfiNSKRCGKxGObn5wUgo+NCOzC00LZT2E0+pBIJHGRSTE1N4dy5c/jbf/tvI5fL4dVXX8U3v/lN3L59Wzzhfr8fHo8H9XpdPnPoZJHP50MymcTk5CTS6TRCodChjDDToUoi//V6PTSbTTSbTXFGtFotNJtNy+Z5lHHidrvh8/kQj8eRzWaRzWYRCoUsRg7Ptdss7QDeQCCA06dPY2ZmBpubm7hz5w4qlYojX99FMp2Tdt/t7e2J8U0Z63a7kclkcPr0aVy8eBGnT59GMpkUBXlvbw/tdltkILPGqEj6fD5MT09jcXERH/jAB+By7UfUVKtVrK2tYXl5Gevr68jn82g0GhanLcdLpVEHKZiRL9pZoIEP7cCgw4xRklSYuQ9xn9H7hXZkj1IW7RwcWsY/qXz/ViLCmOHXbrcxNjYm8kM7wPh3r9dDNBrFlStXBJw29UHSUQ4hTabOq/+2yyi002ftHExHfc41tb29jevXr2N3d1cAIGadZbNZyTyjAUo5r68/Sg5rnZk60ajvzefRz64Nvkajgd3dXezs7KBSqQjQpqPyuD41yMjv9vb20Ol0Hpj/j2vko0MOnSTy+Xzw+XwWAGqUE34UaaDdlDv3A7sBe9ue2dsaf+Cxev/VWQ46eNH8u9friXOA9juziPk/j9WAPyNetaODug6fq1qtCrhHfdi0QZm1GYlERMYzG5jgnNvtRiQSwdjYmOgdGijU+x6vT92E9iwDjEg6C0JnWjzoew0EAgiFQiiXyw98nkMOOfT4yefzwe/3S7S/1+tFOByGy+VCu90WJyexJmahU0YzsCsYDIpNPzExgUQigWg0Kg5SkukoBaxYq8/nk0xn/hAvrVarKBQK2N3dRalUQrVatQSWUT4xQDcWiyGVSiGdTiMajVoyOPQ+Q90YsGLFpu7r8XgQi8WQSCSwtLQk9me5XMb29jbW19dRKBTQaDTQ7/fRaDREzmsHxNjYmOip/J6OH7/fj2azeciZ8k6Sa/g27lytVhGPxx/leB6K9IavUwBNoN801PVv0wuljWrTwDYZRRviZiqjHePrH9MLpq+ny+CYHjKOSZegMWlvb8+ycTNKnwvgnSzrVKlUEIvF3rH7vdPENXD58mVRmDRANDs7i7/+1/86nn32WREUJAoFKpsUEDxX8xUFl1buNN9oXtPnmEoc14vL5UKz2ZSoE6/XK15SACKkdEaFHf9qME2vB37G5+Rv/s3x00u9vr6Or3/967hx4wZ2dnbEyGfaMp0jZsSNTsemsn79+vUnhu/ebRn7sBQKhTA5OYn5+XlEo9FDEeeAPfBlBzxpmUpjjBkS9Xod7XYbtVoN7XZbNlkaOqFQCMlkEslkEvF4HMFg0JKSqfcHfX87sNU8VpPH40Gn08Hdu3dx7949tFqtRzCLj4+elHVB0vKXRrcJKphyyefzYXJyEs888wyeeuopTExMIBgMotlsotPpoNfrCd/6/X5L5oNdNoEG9PkZ027dbjf8fj/a7TYqlQo2Nzexvr6OjY0NFAoFNJtNtFotcfbSseH1euHz+RAKhSQDLRwOIxKJIBKJIBAICNDA56ZB32q1UCwWUSgUsL6+jq2tLXS73UN7i34e7YSwW5umHqSdF/1+H9/97nefWN56UKKBRQcXsC+3mD1Dw6DT6WAwGCAWi+HZZ5/FwsLCIRBtFJiu536U01VfwzzPlMF2Dgs7WWfHA+a1x8bG0O12sbGxgVKpBABIpVLIZDIIBoMADjvXzGuPkrPmPU2g8H6y3NxfTKOz2WyKYVcqlWR9aF2Ln1E34V7zoKntT9r6cMihx0mj5O/4+DjS6bTYAjqz8EHJTt807ZZRZOqy/K2zzglOMfjKdJi43W50Oh0AELuLQWcMxPL7/QiHw0ilUkgmk8hmsxgfH5egMYJIzJynzuHxeKTUh97ztc3YaDRk7syMYOILrVZLbDRep9VqodFoYG1tDdeuXcNXv/pV3Lt3Dy6XS4I2WKp0MBhIJDLnlT+01XQgkHbK2L2H+zmH+LnP50O1WsXW1hZ6vd6xlbsnzbZz6NHSe4kvXS6XyKl2u429vT2RV3RoUs6wXDdlKWUo5cPZs2dx5swZJBIJS1YEYB8wpcdAMm1E/bl2yGrdj7o7YMWRdbYXYA2+1fe2w3q1rnqUzq91W32dRqOB7e1t3LlzBxsbG1IamPsJYM2MIE4SDAYtwTWdTgfNZvPBXuZD0v34/ERlQpApzJJK/X7f4oXXqYS6dj03XJ3ao40zbXjwmmZ9cv7d7XYFPNbpj6aRR68Ua+dTOaCywb81M5vPqEEPRjoylYYeRdYQ03XV6N3a29sTQJrPzjHbLRiHHp6oaHLBp9Np/MiP/Ag++MEPot/vo1gsCk+SL8g7BKq0cGFUDYXycDiUyEoC7jqCFoDFgUAQi15lrRTzXL/fDwCiPGqwzu/3o9PpyDE+n88i7AkK8/oE6rQCaTrbeG3tiGC2QyaTwU//9E+j1+vhG9/4Br7whS9ga2tLnq3dblvq540CSu5nQDj0eCgcDmNubg7z8/OWVHEzWwE4DGDpv/Vx2jihvAwEApYNjXKY4DFTPencIunoMxOg1ryqS9Nw/HYgGf+ns+7ChQuYnJzEjRs3kMvlTlSJpieBzPdoJwcmJibwzDPP4IMf/CCy2az0rGk2m6jX66LQch/WmQQahDTvp/mKx5IntdPU7Xbj1KlTuHjxooxP1yGlDGY0D3UAXc5AAx0mgMx7a/3C7Xaj3W7j3r17ePnll/HGG2+gUCgAgIDi3Ft0hI7d/Oq5OArgfS+SdkDQgAIgCj6dWeSJQCCAM2fOSLknu73M7m/zWL2vmvqiec5RDoj70f2ctcPhUIyfU6dOiY5JXrWLtLqfI/p+fHWUQWd3DdPI07pKOBzG2bNnsbi4iO3tbdy4cQPFYtES3KT1NoKJBNp0XxiHHHLo0RLXrcfjkT53BPXNICvKHQJfBI6IB3BfpO6o5QAdjOzLNxgMLDY6YK1NTlmQzWYxPz8vP9PT08hmswiHw2K3UX7QXqINpTMXiQ9wP9GlS7XNyNrkph3PkhsMbAAgWRV8Vm2T8brEFehA1+WFy+WyyFRiC2fOnMHly5fxEz/xE5KpXC6XUavVkMvlJABidXUVOzs76HQ6qFar2NvbE7vUzBjRcpX6ll32tB0op/WfwWAgWIuu4e6QQw6980R8y+12o9FoYDgcIhwOS/CH1+tFMBgU2cPg1+FwCJ/Ph1gshmg0isnJSSwtLSEajYpso+2kydQnTZudZKdfan2av7VdSWDfvJ/eg+j01ZiC3TlajumAY7sgXtP+5Od+vx9LS0tYWlpCo9HAzs4OVldXsb29jWazacnopXx1ufYDkBnwRmyYeuw7jV0c60wIbpJ2jXjNF0zmDQQCCIfDCIVCltr1dkw4KorKzgC0izBjOjajGVm7nGn2rAMWCAQsjg/zOqMMxlFGmh3YQsWk2WyiWq2i0WiI14uLRKeEagWEz/I4mO+4ensfFZmRuIFAAM8//zx+9md/FoFAALlcTkpiAVYvKSN4CBwNh0NLoxwer5VGKq0s+0CFTq8DEoWhLj3S6/UQCAQQCATQ6/VQq9UEQGBNfmC/5mokEkG73ZZ1xuvQsaUb6NjxtfmZGamsBbH+nw2r/+zP/gxvvPEG8vm8RBXTOaPLIujmZ/1+H2+88cYTw3fHOVrG5XIhGo1ifn4es7OzUncQOFzuQ79nnYV2FGA0KjLAHIP5t90YABxSBvQ4dLSFvpZ2PNORofuymHvRcDjE6uoqbt++bcl6Oi70pKwLkpa/BH/5bmjwPvPMM/jIRz6Cc+fOYTAYoNVqWbLECAKQN3WdZgCSGWHKKjp3WSJP86KOlDGdF3QS66w5fmc67wBY9m3T2WFnlNudwygkALh79y6++MUv4tVXX0Wn05F+F5TlGghgJJKpjJvOwjfffPOJ5a37EUtaMIKL75VNyxn4QgXf7XZjcnISL7zwAmKx2KFIrlF6np0hYso/M2tRk762eb6dnB21j5vHaz1U/6352O7eD3ofu781mWvCfAZzrOZzmvf2er1otVq4ceMGbt++LToH1yz1EG3cMeWdASN29KStD4ccepyk5S/300gkgmw2awlIAqyVBjRxbbIEHANkGHg1HO5H91Ov6/V6SCQSOHv2LC5cuIDTp08jlUrJ/sk9kXKN4M3k5CSi0ag4N2hPEfinLOT4dL8Hks664tho1/Nc6irck/k55ZOpo5ik9xKts9A2Y9YlHQ+cdxND0M/DgA0dTMkszlarhUKhgMFggN3dXVy7dg0vvvgi7ty5g1KpJMdRb9PzQ0xCZ+/zGeywE71fDgYDFAoF5PP5Yyt3j7Nt96A0CgB+t0njdpongOMzxvcCX9LBwLK2Ho8HwWAQg8EAnU4HwWDQokPRHguHw4jH4zh16hTm5uZkPGYll1HYqP7MTkYcRfpa+l52Nr+dfqpxa42xan1Y7wXatjL3Cbtx6Wc37QVep91uY2dnB8vLy9jc3LTNLuF+QnySdgvLOz0qOnGZENwczeZE/E6/YK/Xi0gkgnA4LBEHFDr6ZR9FoxwAJumXol86m/dqI7Hb7Upku8lsRy0IOwPKbqxaqJobdzweRzKZFEasVquoVCqWFEkyHwFvKhEsDeRkRjw87e3tYWpqCj/90z+Np59+GoVCAeVyWcAIE7hkBLUGe4CDetFaEdXNUFmSQ0foUcBrQa7XkE598/l8kvbW6XSwt7eHpaUl+ZvKMaM3h8MhlpeXkU6nJfWXkSYsFUK+Yr1+7RTQ60kr0CTOheZ11rb7u3/372IwGGBlZQV/8Rd/gddff90yRpMoOxx6vOTxeJBIJLC4uIjJyUmL8gAcBrbMqG7ToWvKPNPxpuUW+UUfT9Kp3Ly/VkZNkFiDrVwrvKYGpXVUPLPKzAg64ECZOHXqFJLJJL773e9id3fXkafvAJnZYIPBAC+88AI+/vGPY3p6Wvrv6GPMZo0ALHKXspjH60gSHZlI3qDc1mAC+UzzD4MDNL+Sv/X1yfc06u2ibfQz8HMTYAAgjcxcLhcmJyfxC7/wCyiXy3j99dfxxS9+EYVCQa6p9xHtgDCBAMr5UeDye4GY5cr6teQX9k5yuVySZaL3+KmpKcRiMYv8Mx0Ker4Be+NZv2/AWgNXX3OUE+Coa9qNid+bzhF9rVHAEP8n3x5lLJr3tnsWU68272V3DfNzE9Di+g8EAnjqqacQjUYlqIFjp0Gn9TNmwLhcrofqE+GQQw7dn7g2o9Go2CX8nGTug8Ph0NKwk3oeMQI2JO31erh48SKuXLmCxcVFPPvss5ibm7NE0tNJwXGwrjn331arhVKpJHaY1i11ECV/67J0Wp5q/YXH6+802K+zdjVOAsBif3FP0tfWFRG4j9PZyuhYjbOYAJkOPGNliE6nY4nmpb05HO5HNJ8/fx7PPvssfvInfxLLy8v48z//c3zta1/D1taWlGPREcEAJIPQBPo0X2hnCe/t8ew3qs3n82+V5RzCwX6tdVLqhOQL7uf6N8FiE8x80H3RdJSZ9qB2Lujfulw1x8ggIX7ONftOlyZ/rxEdEHTKejz7DZGZYRYOh+VdsCxTMpnEhQsXcObMGQmOos1th5/aAfOmTsdj7RwWdhis+VtjEvoapp7JoHdW3+FaIM9xPLpHjqnHEivUFXb0s5myTj+j/t7n82FxcRGLi4vI5/N4+eWXcffuXQyHQ8u69fl86Ha7EqA2GAwQCoWkXN87QccmE4IKAgUdDXpugkxNDIfDEpVgF5141PXtmG2U4TPKaLvfM1BoaqZ7WDrKMfFWxgPsR3PW63VxSFAQaEHMNExdeurtGlPH1dv7qIhr4G/9rb+FX/iFX0Amk0E+n4ff70er1bJ4QpnqOxgMROHSESA6uk5vpHt7e4hGo4hGo5boXd14hpsyBZ7eeDudjqT6MvKS64qbwL1790Rh5BhCoRCmp6exvb2NRCJxqG64dpawYStriTLtDjgAh3X0jl5bdMbo8mHMhqBwj0ajuHfvHv70T/8U165dswh4naExGAzw+uuvPzF8d1yiZVyu/VTETCaD+fl5pNNpC4hqygnt2NROJzvSmzDvZRoVPEaX/TIjzLlu9P+8P6/5MHKdz2d3PMFkHUWviRk6y8vLWFlZkZIA7zY9KeuCxPVx5coV4Zm5uTn83M/9HBYXFy2ZWqb84Xslf1CmaIWTPKYzyYCD0pDsNUIe53X5P4FJXptj6HQ6aDQaoqBrXScYDIrOQ1lOx5dWUu14X8tvfqd1I62oUmF2uVz4whe+gM9//vMCnGtgQzsiNOl1+yRln5HuJ3sZOcoycLokI3vDEIhpt9sy95FIBB/5yEcwOTkpDUa1ccF5NUtRmGC5nfPCztDi50c5IkYZdPp7O7K7N+Ws+TnnQ+/1o/RwXlsDDnZjsxvfKOeFCezpa9vNJbD/Dra2tvDyyy+jWCxKBqkGzXTfD50BY9I7uT4GgwE2Nzel6aJDDr1VGg73GxJPT0+/o0E+pvz1+XyYn59HIBA4BOSQCIACkABBZigFg0H4/X7UajVZt+9///vxMz/zM1haWoLf75eeBqxqYCc7uC+aASpm2SbgcIaGuWfbyU8NVGkdW9tcdniHlvH62tzD9di1za/LTqZSKUSjUVSrVQQCAdEDzDEy04PZfQwM04EYutwwAHHOEqQbHx9Hs9nE5z//eXzhC1/Aa6+9huFwKKVU7crbmfuaGexGe5R753HuVXVcbDs7Yl8SwBoRTnuHPGU6BPi+TYcAj6OOqvlYf8/7aWeWHbBsOh/43rWuwGtqsFc7K3gvnRX1TtKTzJe0jVgxg9lo2tGp8S6v14uLFy/i6aefRiQSEUBeVwbRdpvJEzxGkykLzd4SHKe+nnlt8qq+N8emg2ops1hBZGZmRhzcLMder9cBHGTW64BjM4iIvylHdVsAPUY+51H4N9fpa6+9hu985zsSJE+MgiVjtZPa7XZbSvq9HTr2mRCaOehRZ+RfOBxGMplEJBIRY1lP9qPw1IxS0I+K8DMVCk0aqDXvoxUDuwUzipFGGYf3I63MMHo5mUyi3++j2WxKx3cKYZ3+SMCEQtrxGB9Nv/iLv4ixsTGpI0xFiBsvM2N05AqFGAUBQQyd5h8IBJDNZhEIBAS0oqJ979493Lt3D6VSCaVSCeFwGOPj45idnUUikYDP55O+DcFgELVaTdKHgQPPazabxc7Ojggdn8+HeDyOTCYj5Z7IG7peH9cIo8j5fGyiyjJlWhExAWYAFoWbSqqOJu73+8jlcojH4/jlX/5l3Lx5E3/8x3+MO3fuoNfrWbzODj0aoqLAzKpUKoV4PG5pdqT7iJDcbmvpF5OOkm86ekwTP9eKLA1NUxnRiiwdb6PANDsgTx+rgVdT4aHBSQPXvAb58fz580in07h+/bpEmzv0eCgQCOAjH/kIPvGJT4jiR1milVjKMW2gkAgo0yih0kpFlOUKdGmGdrttUZa1I5i1iT0eD2KxGLxeL4rFomSgaWXT5XIhEomgUqng7t27Ukc1HA4LIOByucTwp/PXbJYGWI03nVVK3tSRNnt7e/iRH/kRfPSjH8X169fx4osv4vr164cij0wyAdz3EvG96Gh4vkP9PgKBgKXOqsfjkYACE/y2M6jM+bUD2+3m386pMQqo1zKTv0c5JXRGmia7sZhGIH/MjLlR/GMHspnzZD6LPnbU8Xbnm1l02saYmpqCx+PBt7/9bTQaDfh8Psn6ZKktRvMxI2I4HL6rjufNzU3pN+KQQ4+C1tbWMDs7+47fl/KJfR11gJ9e59y3WRaXDgc6i4PBIFqtFnZ3d3H27Fn80i/9Ej7ykY+gVquhXq9je3vbElDAEk4aKNUZEbTvdBUBVkXg5xr41+U8dRAgP2dZXe3k4HMCB9kYxEx0kIAu72Tn9DDBJPbVoJNc7+UMRCDwBRzeE3QpYPZjAw6czMwQHAwGguloPaper6NWqyESieDHf/zH8fGPfxyf/exn8d/+23/DxsaGgJZ2OogdAG3yC+fToYcjrh0zwItrIBAIIBQKyW+t77IcOLNuddaM3lvNoDTt6NKOM60/cC3Q7tJ6NXVaBvToAE1tw+m1zOsS7yIfH9UXzaEHI/IQwXM6fxkMC0AqWrhcLmSzWTz33HPIZrPCL8BhfNe0N47SnbVcNnsA81w72WGS6SQjHzII0efzIZFIIBaLIRQKYWJiAvV6XXDA4XCIUCiESCQimfi1Wg3j4+MyP3R408mg+8FyHmizkcfNjGf97HrswAEm/eyzzyISieCb3/wmqtUqXC6XOIbI/8Qp9/b23rGMiHfNCUHjmN4YemL8fj/C4TCy2SwikQiA+3t6HuRedoaYSRp4N40wE2B6kEwHk0l0pMQow1FHKuiN4CgA7UHINHgjkQgikQi63S7y+TyKxaLFGUFiCujj6hnxpFCr1RKhSpALgC0QYDqHKGQYTUkvZDKZFIdBLpdDOBzGcDjEl770JXzhC1/A9va2pLVx/Zj1zYfDISYmJnDlyhV8+MMfFuEViUQstY6feeYZdDodcYRQSL3++usol8tIp9OYmJgQhZMlJ3SaHPmTWUqJRALhcFgyI3TpEl7DTsHk+HVtdkZl5PN5TE9P41d+5VfwV3/1V/jDP/xDbG1tjVRIn1R62PX/MNdNJBKYn58X5xd5VPOtHgPfmW449yBjswOhRgFK+lgdyaUVTI6TxGgFrazqcd8PqNNkbsR8ZhqqjHQ2lYDBYL/p+vd+7/dieXkZd+7ccRqYPgaKRqP4+Z//eTz99NPI5/OWfVMbHtoBoZU0KmLAQbQXlTGv14toNIpgMCjH12o1OYeOW4KRpqLL73UzsEgkIo5fyjoa6KdOnUI0GkUoFBJji7xFkIXgdyAQEECU49bPRkez1ml4PZ1RUS6X0ev1cPr0aTzzzDPY3t7GZz/7WXz9618/FEFOelwy6LgTHe2UQ2yqNzY2Jko7DTG+U21402CxkzVaNmmgxZSBPFbvl6P2QOoUZpSu5hP9uXZG6DFR79W8aGbLmufqzwlsmZ/bkXYa2hmeR537INce5aDQ9+D3g8FAdKhXXnkFvV5PeoDw+b1er0T8US5w7b0bFI1GH8l1aHjr93A/5yRLdlLWEAhgQEMmk0EsFrP0MiOZclvbYeQJNg7O5XJYW1tDsViUvR44qCc/inTUNq9r6hEMYBgbG5MMfALZDLLQAIcu50h9vtvtol6vo1QqYXd3F6VSScriagBMR0MeZxvrUfHUwxJ5MBwOH+nE5DwyaKpSqSAYDCIWi2FsbAyVSgWNRgM/8RM/gV/8xV9EJBLBysqK2BmhUAjAAUiqsx75fjTYT94lbkF+IT/x3fJYnaHIjHTyLQEpzf9a59Y6DDMyeV/Nd9SBdZAO5T6zHtj4muOjDkCbjmuPARnmPuByuQQMo4OdOrbmfb2GW62WgNg66rzdbmNlZQXhcBg/8iM/ghdeeAG/93u/h7/8y79ErVazOEhMHMe0O+8n1x06msjDOmiHek06ncbs7CzGx8ctsptzTx5ldkytVkOxWES5XEa1WrU4qngseVQ77Kgj8P1RV06n00in00ilUhJ1Toeh1rM7nQ7K5TK2trawtbUleq0mLeu5JvicY2NjYss59PBE3Zj7GBtQt1otC2/x3V2+fBlXr16Vd0A8ivLP1P9Ieq3roGlirFrX1eea++so/VLLVGJsrMJDBzfxjsFgIM63Wq2GZrOJ9fV1cW4988wz0mesVqsB2M8O2NvbQyQSQTQaxfT0tDjNV1ZWUK/XLZiFaeu1Wi1LryCS3TyR9vb2cPbsWSQSCXz961/HxsYGms2mvCNmAuqSheFwGPV6/bGuh3elHBMFCA00KhlutxsTExOYmJgYCdST7Iyt+3mG7EgvCJ2ixevZXYsCTwtLuzGYGyQ3/lHPY/eZjrwwF8vbYQy9URNEo6LcbrctoBs3ibfiiDiuKWePirgGfv/3fx/hcFiUVN14lEoa+R04AABoiOj3OTY2hlQqheFwKCld8Xgcr7zyCv7oj/4IuVxOAFAKEXrxKTABCNjJsTBaL5FISN294XCIjY0NtFotzMzMYGpqCp/5zGck60I3p15cXMTVq1cxGAxQLBalRJr+YZ3rdrst9+LGXqvVbDMjNGnFVW9Y9DpzTtvttqSH/8mf/Ak+//nPC6D3JJUGeSdTdgOBAJaWlrC0tHSoOa+drKEMIeBGB5P5/VGGgR2wNup/Krk0jjRAMhgMZO1p5YPGEBUCDaQcle3G803DZ9QxVL5N+a9lrMfjQT6fx82bN5HP598VwOFJWRckro//8T/+B7LZrDhGTXBHK3Ra9yDf6Kwe8pPb7RZnPcurEOBgz596vY5er2cJnCAg2e/3pSzf+Pi4ODl02iudUozWDIVCWFhYQLVaHWl881yz9nyz2UStVrMFse0Aahp9lLPsa0BQNRKJYHt7G3/6p38q/Xg08M3z2u02bty48cTylknsqUTnEgEh6oM6S4aGdigUEsfSuXPnsLCwYMmgAeydC7wOvx8lH03nJ4FUgqOmQabXggZ7Teeunc6pATbdH8duP7cbm/n3KAOQf+sxmHysz9UOGbs5BQ6X77Aju2vw2tevX8e1a9cskco6ApslIWjM6ZT2d3J9vF29weRBvW+apG018lwkEkEymUQ6nUYymUQsFhOH/VHBVaSjQAfy33C4n21SKBSwsbGBra0t0VvvF9FKwILAUzgcRiKRQCKRQDQaRSQSkVJ72gmjx2LyiB0/af2k2Wxia2sLy8vLsv/TBgBgKYV7HOmdlu+ah/1+PxYWFkTn0wAV/2b0PUsPR6NRjI+Po9/vo9FooFgs4kd/9EfxT/7JP5GGydpxABz02CN/cc/WepzOWHe73YhGo4jH48jn8yiVSvLOKYO180CvKeBAFxkOrWXnmGEJQHQJPjuPpUNG6zuso85MANqXGqzjXs/veQyf006WmvsBgcZ6vS5rneuO9ib5ms9SrVZRq9UsQRVmsGUwGEQ8HsdLL72E3/md38Hrr7+OWCwmDhLtCNLZa3q9c9xut/tY6yXHpRyTBo45pyzZsri4iPPnzyOZTFqC0QD7iiCmPjIYDNBut1Eul7Gzs4Pd3V3UajUL9kceJE4Si8WQzWYxNTWFRCIhPTD1/mOnp/B/rpNer4ft7W3cvn0bGxsbtiUSeQ6xOdoDj6oUzVH0pPGly+WSHqEApAwp16zOfohGo3jf+96HhYUFi8wxyc524dqmM9WuDB5gLW2k7T0tj/Xebmaskefm5+exuLgogbTaedzr9cQO8/l8iEajcLvd2NnZEZkUiUQQCASQz+fRarUsJfD5HMlkUsqtt1otKeXe7/elrCB7aOzs7KBer6PdbksPIl7PTpfWWXzcJzudDr797W/j1q1bACD2y9jYmAQjc670M74VOlblmLgh68hv/f/09DQmJiYAHDYuTHrQz/i5meGgX4oGz44CnDRpIEOfa2fk828zIm6UMqvP0c4RPT6OXy+wUXNyP+ahF2xmZgahUAg7OzuWDunclPj+3q3oruNMbEoDHI5mBHBo8zbTHckbLHnTbDYBHICXv/u7v4vvfOc7UrqJkSiMOhsO95uw9Xo9tFothMNh4VGd4uXz+VAoFPDFL34RX/nKV8Rw5rWuXr2KXq+HXC4HYL9JdL1eRyAQwPb2Nr761a9ajG1N4XAYU1NTuHTpkqW2Xzwetwg18tYofqXwp7Kvmz5yzkKhELa2thAOh/H3//7fx+XLl/Hf//t/x8rKymN4uyebHkQGxGIxPPXUU0in07IZHyVP9SbKGvZvl0zZp8dOGQQcpMmbCgSjxunk1t/xfzowyuWyxfjTz2aOSY/DBNQo42msUnk1r8M1mslkkE6nkcvlcO/ePezu7jqZEY+AWH9Up/ySTACSyiOPo+FBha3dbkuEitvtFvnX7Xbx4osv4sUXX8T6+roFCNAp4pRVExMTePrpp/E93/M9qNfrSCQSkpbs8XgwOTmJRCJhqRFKebe1tSVRnG63WxwEVH61EUdZGQgEEA6H0Wg0LJkRlNckrfRrHYzgAPeNUqmEeDyOf/yP/zHu3buHT3/607hx4wYAWJznj2LtnxSi0cMMK747vgsq8ywTODU1hfn5eUxMTCAajVoyJEbVIbYDO48C2Pm3NsxMsM4MKtEGmdZRdNCLlqEaROOxzOoheEqeNAE102GsgTY9D9rINOWnndPhQb439xFT3za/57l2ujwAnD59GsViEffu3ZNnZSQZn5U6GrNkWAv4pJCeC9PpwEAQ6n/MBmC0aiqVQjqdluhzc17NMgJH6Rh2AJO+DsczMzODmZkZ1Ot1FAoFFAoFAYQZqc17jo2NIZlMYnJyUprDMwKYPMsfvsujMj9MJ435nc62CAaDOHPmDJaWlrC7u4vr169jfX3dYmcxWMmOV9+rpO1gHYDC7/g3HcLVahWRSATj4+Podruo1WooFAr4xCc+gV/+5V9GtVpFuVxGKBSSvY7lMAKBgPRFYONqrc9pDIG9DWKxmOjAgUBAwP1WqyUBXAzko7zU16LcJZH3GNjDYyg/td7KfT0ej8uzaoco7005y3lkEIMuWcq9nHqyBqW1DB8Oh1IKkvpIp9NBq9VCtVqF1+uVbCeuDTo9eF1eUwfIDQYDNBoNtNttXL16Fb/xG7+B3/u938OnP/1pNBoNATgJVnPf4L5rYhPHOavouBD1BfZVJKC5sLCAp59+GplMxgLM6rUHHJ5j7RwEDoDpSCSC2dlZDAb7pbjy+Tyq1ao4Bvx+vzisI5GIRUcxHVUkUzchD+tKJdPT05iZmUE+n8ebb76J1dXVQ/jVcDi0rAWd4ezYZg9GOiuL76PZbMpnuvnxxMQE3v/+9yOVSt13bzV1MdralLOAteSWxi703q33EG0Pah7Sn+t9O5vNYnV1Vcop8RjKLx2MS1lHfiyVSgL0d7tdVKtVrK+vS884LbuoR2UyGckYjcfjSKVSSKVSyOfzCIfDiEQikjXBxtLs0aN1HT0nvBcACZ56//vfD6/XK6V3KVN16SztOGKJtUdN70gmhFbwqKCbqd1TU1NSw/RRKF70+Oh69fyc9zCj0s2XZwpTEzw2BSAjwni8diDoe2lFxnzeUU6Xo4gAnanI2M2JvseoY8rlMjY3Nw9F6gEHjTbtskDs6Lh6ex8VcQ18+tOfRiKRED7QTi87w5mLHtgXCqz7TRCMEQGvvvoq/tN/+k8olUpStw04qL0J7HtaqSxTkdQKHxVtRn4xpSsSiYhyyihxt9uNq1evolQq4e7du0gkEqhUKvIcXLfBYFBqfVIpBCCCKpFI4Pz58/jIRz6C5557DqlUSqKP9vb2UCqVLLyuBaR2ymieplKsz+HY0+k0+v0+PvWpT+E//sf/+MTw3eOKltEyLxaL4ZlnnkEqlbJE3erjTCJI9SAOCC1v7GSeHfE43atGl0jQUb7amcxUQkYrAAeZdzSckskkqtWqePi1E9cO6DPlvfks+hzWQx0FkvFv8nGj0cDOzg42NjZQLBYfyyav6UlZFySujz/4gz+Q8kUaBNROTf5oYNZ0pLrdbiQSCXg8HolaCYVCeOWVV/B//s//werqqgUYYKbDcDgU8JcykvcOBAIIBoOYnJzEs88+i6WlJdTrdXH0njp1ChsbG3j55ZdFgaXhNzc3h6tXryIcDiOXy0mtZCq+jLYE9vcU1uodDoeSGmw2TzcdafyMa5/PQMcLsO9gTqVS+OIXv4g/+ZM/QalUkvN7vR6uXbv2xPIWyeVySZahzs7ju2Y5ADqYzp8/j+np6UPp5aZTALAPuhl1rEna+aADVrQuqiMIeS8d/crjeIyOOLULtDHBHw0SUu5q41Dru/xfOyMo4839h/e73xyMcj7Y3W+Us8M02uzI7XZje3sb3/rWtySiU2eiskyTLsfZ7XbR6XSOdSaEnUwg8f0OBvtZtu12WxrLTk5OSokOs/+SaWeMsmuOcjrxezMS1u69cV+l/Go0GqhUKiiVStJfbWJiQiKr9bOOcm7dzx4bpcfcz8aiXrW1tYVXX31VSghqoJmg6nFxRLxbmRAulwupVAoLCwuWclaUC5yrWCwmmYkzMzMIBoPI5XIoFos4f/48fv3Xfx39fh+bm5sIBoPiDO50OnC59oMGxsfHJaO92WxKmWKSlrXsRceyHCsrKzKO4XAoDjAzE4JEW83UPamP6gbLtPv8fj+GwyEajYbov36/H7OzsxgbG8Pq6ioqlYrFUc59QV8f2K9NzsAFXVaXz6lBOq1X0/FBnbrf70tDVjpe6JAJhUJSZYE83+12USgUxE7WOI0JeE9NTeGb3/wmfvM3fxM3b97ExMSExQnK8zlm7kHdbhetVgt37949tnrJu5kJQTCXVQXoXA4EAnj22Wdx6tQpAFZ9wZTldriaSXYR2tS5NX9p3dxuXzb1dF5rlHw2ZSb3j/X1dbz88ssj+/OxDxtxBYK7j4OeFL70eDyiF7tcB9lZ5CkAgi8tLi7i+eefl9K2wOH3aOIFtKMoUyjLKAfsziW/mHqvKd/0HktZrfUMADh37hy8Xi+q1SqGw/3+b8xuoK7RbDbRbDaRy+VQqVRQqVSwsrKCtbU1KdXOa9KRru1UjpHP6nLtBy1kMhmcOXMGZ8+exdmzZyWImLoY+09QfuueKFr/ttN9OYZXXnkF165dk/2C+w4dk3RIDAYDsXUfhu7H54/VCUHGGQ4P6r/R06hfcjgcxoULF2RTH6W4HaXYmffV9UZHAV/3M0rMY01jSAtUl8tlqYNIZcU0+OgcIaMx1dLuXnZjHDXO4XBoaQak6X4AhHmsy+XC9vY2crncoVqVwEFvCz7vUXRcBe2jIu2ESKVSljrJ5A0tGMkfLOsxHA4l6lanb7XbbfzP//k/8ZnPfEbKMTG1Taf89/t9JBIJ8awylYqgbTKZFA+ujihgrdtyuSwbL6MSQqEQPvKRj+DLX/6ylIPS5aW0kKIir0E9GlGch0wmgx//8R/HD//wD8Pn86HRaEifCNZJb7VakslhB8JogEB/pgV5IBBALBbD93zP9zwxfDdKxj6IHLQjr3e/MTmjvH0+HxYXFy38RyIP293nYTMgRo3VzLjQyoN2olFuskQC1xBlE8eqs7V4TCgUQr1eR71el/9pzFFpohKhFWKOm3Oto3ztlGKSbhZMGrUHabmwubmJGzduSN3Ix0FPyrogcX380R/9kfTM0UCUnl/gIPjATglkw2CmuHJP/YM/+AO88sorcj6NchMc085Y7aAlX5KfuWaoB01PT2NpaQlvvPGGZKSxtBd//H4/ms2mJZrH7XYjlUrh1KlTuHr1Kk6fPg2Xy4XJyUmEQiFUKhXU63UpUWI6fLXyr6McCQ4AsAAh/X4fS0tLKBaL+NSnPoXvfOc7kp3x+uuvP7G8RQoEApa+T9oQp4KeSCRw9epVzM/PC2/ZyT472aplhH4vo0BxykTtfNDZuTSsRskvBiVo55mOgDWDczRQEAgEZA8hEBYKhTAY7Jdf4P6ux6Ovwb81GKwNRTs5zO/N6EjTaDXneRTArXVi0/g86lr9fh8vvfQSlpeXxfFAhzYNZUb+cf0QED+OToij5sy0oQKBADKZDJ566ikkk0nbfe1+c26332tAy+7d62ubgVx2x/JaZuY53692uB4FYtmNwXzOUd/pcYz6nLrKzZs38d3vfldkPHnxODVKfTedEPPz88hkMuI00KUBKY8CgYCUYcpkMsjn86hUKvB4PPi1X/s1PPXUU7h79y6CwaDIRsq7cDiM8+fPCwjjcrlkz9YBfjr7x+12i83d7XZx7949eL1e6S2hnc/aCaDlHuUJ5RnlMHmA64PgD8E72kk8JpvNYm9vD7u7u+j3+xKIwGua+qzX68Xu7q70u+I1CR6yb5F2MHOumW1SqVQEUGNAEn90yaV2u41isSh2KW3HZrOJer0uTh5mf7hc+z0kWM5lamoK1WoV/+E//Ad85jOfkeALBmBoLEI7xTudzrEOjni3nBCMWudezeycZDKJD3zgA0gmk0cC79r5w/fAd63lodaLCUyP2q9NfUjrpCYPAtasTY018FySvh+v2Ww2Zf82sTfqMgweYFT445DDTwJfut0HvXo4ZwzO0hnebrcbly5dwlNPPWWxuYCj9Q+PxyPrXTutdJYK+abT6cj9mZXFskbJZFLsft1nhnzDgFwG6fI6Ho8HkUgEFy5cQCAQkHt0Oh2pEsJ+J+RHOiCKxaLYkpTxus8Q8QnibpSvfFYdfBkIBJBIJDA3N4ezZ89Kv07qmtvb24LTUX5q57m5NnRWU7/fx6uvviold4mrcAx0ROisi4ehd6UcEzdql8tlcThopTydTksdOnrRKVg0jVICRyl/NKruB7bzGnYGnn5hBA1YaoGeJq0o63rSerw6GpIbMA0/kt/vR6VSsUQejAKs+NkohV6n05nfjXKu2AlsAJicnES73UapVBLFjHPF5zc/fy+TjuQHrJECGiQFDryyg8EAsVgMsVhMQMtIJIJyuYzf+Z3fwcsvvyz8wqgVelWpcOnNleAYx+NyuaSJTSAQEMGjFQN6qFlOqtPpoFqt4vbt27h8+TK+9a1vScMaAlSRSET4mz/acCJPUUmpVCr43d/9Xbz55pv4+Z//eSwuLqLT6SAcDqNUKlnSyPgcpnKiFW4CX/o5WaJqdXX1nXvp7yKNkmmjKBAIYGZmBvPz84jH4zLPjOpm9L4pM0yQbDAYiDNgFBB/lINkFGigwSjyJhUc81psbscoHjocNDhLEIjKNvuouFwuVCoVhEIhC5CWSqWwvr5uacKkjTjOCw1XGqF67CQ6OMzN2gRTSJQZMzMzSKfTeOONN7C5ufnQ7/i9TFp2aBnMOTSdXcCBPkIAVcvZcDiMl19+Gf/lv/wXyUKj4U/giM5i3o/yTiuSlMl6bHROMEsil8thOBziypUreOmllyQipd1uy7GMfORzcK3u7OxgfX0dX/nKV5DNZvHcc8/hwx/+MC5cuIBsNgsA4uRtNBriRNbZEwCEp3m8lusagLl37x4ikQg++clP4i/+4i/w6U9/+j3BpwQ8qJRT3vDZ2+02Zmdn8fzzzyMej8seOwqMPAo018ePAtjJOxwDjRwdGMJzNGhAcI3NdgkSNRoNAdTs3jt/gsGg9Lcg8M6o01qtJjxEUGNvbw+1Ws3SL0c7wXQDVa3/muCB/h+ARfewK2ulzzXn3ZxnO+eI3T7I316vF5OTk1hdXRWDlEY3DUfuQQQyjzPpudPv2uXaj5YNh8NIp9MSLJPNZmWPsyM7W4N2kAkoaX7gWPijnU20pXT9Z9OZSn7SNpAGmcw1Recw5bPJL9rRpQFru+e005Xs5tfuOb1eLy5fvoyJiQm89NJL2NnZAXCQ+cuxHKVXPcnkcrnE9vH7/QAgexj1V4JILI/U7/dRq9XQaDTwD//hP8Tzzz+PtbU1JBKJQ055Og5LpZKAVNQbeQ+Ow7RNCFIyS1Hv9bp0lC4NwnfI75rNJhqNhjT8pTzjPuN2u+W5WbObOgjHCEDKvtGm4xj5m/uRjrjd29sT3WI4HIqTkZHN+nk1luH3+yUwjnX+WZapWCxibGxMcB0+v7aRPZ790sPhcFicEZ1OR6oABINBye7f2dlBMpnEJz/5SSSTSfzhH/6hrFWWqSTuQwc4x+rQAWl5R72Vttzc3Bze9773iUMHOMzvdF7oPiea7PZW8jtBY23r62ubzgauI2376+fQ9+D+oK9P0vxP3g8EAnjhhRcQj8fx6quvHgJraTsSU2DZn+PkED4O5Hbv97HTNjdlog5e8ng8eN/73ocLFy7YYq52eycDyemUNOUZeaVarWJzcxPr6+sol8uCozEjlxgHr0MdJhgMii7M4FXyNYMRGdzTbDZRLpcRCAQs46AeAhw4nIPBICKRCBKJhPRtaDQaKJfL0uuBujaz1Dlnfr8f9Xpd5o57C2l3dxfr6+v4xje+gUQigcXFRSwuLiKVSsHv94vjhM5cOhHM4B6NF/L4Z555Bt1uF6+//rpF/9dYSrvdRigUsmQsPwp65E4IRglQGQQOIrYGgwGSySTm5+clWgCwNmrUm7QdIG/+JmmlcpTBZ5LJ+HqDpjByuVyHouHYuNnlcglYNkrZ5Zi0MsGXyJqSpVJJwD0ThDXHez+voU6JP+o6dn/rsXs8HmSzWZTLZXlGzbjcSOwyW97LRCPc3LAI/ut3xOZ3nU4HwWAQiUQCb775Jv7rf/2vWF5eRjAYRKPRgN/vl/IgVDCZXm4aSdwAgIMNlQJKG/BjY2MolUpSJml3d1c8ztFoFHfv3sXc3JzUWif/8m8deUnHgBmZSEWZzryvfe1ruH37Nv7m3/yb+OEf/mF4PB5MTEygXq8jGAxK2rxZPoXC3vSea+VYA3/vBXpQg9Tl2o+Mvnr1KqLR6CGjnsbRqDIYpuGusxH05/pc/q2B4VFGugYjOA6CNtls1sKf7F3CaCtdl1pfj/KWCnM+n5c1BOzvM7VaDS6XS4wpv9+PYDB4qASdVpo06EHetgMvgIO+FWZppqP2NhrR73vf+xAKhbCysvJIN/snmcibej82I7nJ7zTa6YDQtUnT6TTa7Tb+8A//EJ/73OfQ7++XnqOxr1NneV+d5cD3lUqlUKvVZL1RQacuQZlHeZrP55HJZHD16lW8/PLLwhO6rwPlvB4H92AAyOVy+LM/+zP8xV/8Ba5cuYJ/8A/+Ac6fP49Wq4V6vS79IobDoZQN4jU4V9qxZoKDpFqthlarhe/7vu/D6dOn8W//7b99PC/1GBH3WhobrN3ONT49PY0XXnhBAmtI2hDXxrOmB5XjWsc16+27XAcBP+R3GnIMynG790uNadm0s7Mj/XG0nqcjzyhTB4OB6CnclylrtUNAO+WCwSBSqRTa7bZEveq1A8CiT2pwmSAJ1y0AC3/qbB3qvKazUc/PUZ+Zn5vHmMYzQQrOO51CzWYT3W5XGuSepH4puixKIBBAPB7HhQsXkMlkLM+hdbOjiDxHHrTbK+10AvO6OqPNPN8EylgeTe/jowAM1tzX17EDQ/gdbTedGa75w440+GUGiGn+B4Dx8XH84A/+IK5fv46bN2+KrNZAx3sx6IsgIB3ye3t70oAZgKw1Nj2Ox+PY3d1Fu93GT/7kT+Jnf/ZnsbW1JXJC17b2+/1IJBKi+w2HQwlMIb/ZySvKrEajgVKpJPLLxDJ0wKK+BmDVsenw08EL2uahTkNHJ3kY2F8flOE6alUHw1B/4Z7F7A8Ah2zDWq0mJZ3Yx4g8qAMomVUdCoVQLBaxvb0NYD+Qbm9vD8ViEc1mE+l0GtFoVJw8nFM+A6/RaDREZ2IJEO635XIZPp8P//Sf/lMsLi7i137t19BoNMSmYfYxQTK9D73XiboxHeUEWVlW5ty5c7h06ZLIKDubj1mgOvBCyya7e+rfJJ3NwODeiYkJeDweKUerHVamE8xO7nKtUkdhYIBdcDBwIG+vXLmCUCiEb33rW1JJgt/TNqBeQ9zF4akDfmJWFp2BwEGlG76LQCCA7/me78Hp06dlH9R4gMk/vDazsLSzi7odyx6trKxgdXVV9kmtZ5PID8C+nKvX69jY2JBr8fqURRoboQxNJpO4dOmSJbtL6yIcM8+h3KT8Z6WFer0uQcHsS5TP5y0NprUTjtll1DeIpbGcealUwhtvvIFkMompqSmMj49jfHxcZLbOcNby0HREcN6ff/55NBoN3LlzR+ZCB77pnhHsWfso6JFpyFoImMALX9D09DRmZ2cB4FADIdNTM0rJHaXAAtbeE3Zk51EbBdITVIhGo0in08jn87LJh8NhVKtVeW4qCxr0oLDVEeJctDo9jRHoOuqGYzAjwLVCooWwuaC50T9oBJapyHPcjHhjOR8djcTFQIHzXt/0tUJIQaLfH9+tbq7L2qMejweJRAI3btzAr//6ryOXyyEajcrmz7JFrN1JJwOFk3ZgcQzAvgCORqNoNBpShiYQCCCfzwswQYWEXl5tKLXbbZw+fRq3bt0SoUUANx6Pi6Cyi/qkIsF1EAqFUK1WUa1W8fu///v40pe+hF/6pV/CpUuXpJZrMpkUYa0VdL258H6mE4KZRu8VHnwQ4AoAZmdn8eyzz1pSlrXM0zLHNO7t7kUAyzSkeY5+X6bxdpQyqccDAOl0GplMRsDaeDyOYrGI4XAo/Mzo9FarJXzR6/UwOzsrzr1CoSCAK9fTcLjfMKpQKEiaezgchs/nQyqVEmOISid/m8oN94nBYCCRavqZuMZo3Oo5MueAf5O3L168iEgkgu9+97uSrunQaNIOcj3HdvsjAAugSp4Lh8MoFov47d/+bbz55psiu2gQM+oOODDG6eDVOgAAUSx1GTttXBMQ0Knf169fx8c//nHE43FUq1UBigkKjo2NSaSM6RThHHDvfuWVV/Av/sW/wM/8zM/gx37sx5DNZtFsNlGpVKRZJq8NWIMw9F7G+TNBYK6haDSKT37yk/jKV77yOF/vu0pmuSOd7dLtdpHJZPCBD3wAoVDIEnhj0oM6IEwQgL81mKsdx7pkpjZi6KhwuVzS+NHl2s8Eu3v3LjY2NiSClcexjAcb4EUiEYsjgM31tCHDNHdmKGr9VoOG7GtSr9cthhyfmXJWB1FoQ0jvOTTYyO/Ut7STw5S5Wj6YslfPtX4H+l1o3mcZVX7f7XZFn+P6ZKQxIyqPM9GuGRsbw+TkJGZmZjAxMWEpnWACOaYRa+pqjGQ0gYZRuoupm/C6ZtSteZwp681SOcCBncZgAwYlcC1pR5bZX0/fh44a7ewy7adR46R+orPn9PmU6U899RTm5+dx7do13L1711L+VGcovVeI+t/e3p6l3wAdCpTNzWYTp06dgsvlwubmJr73e78X/+gf/SP4fD7JVGi1WgImEYSl7uZyHYDj5AvNV3t7e9LzgNlf2rnEY7Tdp9eEdmgBB4Fpw+F+1kOz2ZSKC/odM7iMmZocn8/nk6yDVquFXq8nzaB1med+v49kMmnJlgMO5NhwOLREe29ubsra8fl8SCQSSCQSEvVMTEMHmU1MTCAUCmF3dxeVSkX6QXCe2BtC4xok8n0ymRS9XduAlOvUX/7G3/gbiMfj+Hf/7t9J9ocG6yh3H9RGepKJGSKDwQDNZlP4itmQly5dwrlz5w5VcAAg8jIQCBy6rp1+o78jz1NnYNnCYDCIaDQq+0IoFEIsFkOxWJRx7e7uCo/qiHo7O9K0MTlm9s+kLLfbw/r9Pk6dOgWv14uvfe1rFkcEdRCt3zPI4L3KVww64R7ITE/OFfdFfhePx/GhD30IMzMzI3EZ850yC4o6HeUSM5zu3buH7373uxYeoSzUjl8d9Es5pXVIzQ88ljKT37XbbYyPj2N+fl4yf/UccMx6rDqoUgfpMIOYzrFer4d6vY5yuYxisYh8Po9CoSD3p67AYBCW2dPVHhgUvLOzg2KxCL/fj4mJCVy+fBnT09MyBgZqcr/SRN2M7+1DH/oQ2u02NjY2JKCDa4mZGdyjHlWG7yNxQhBI1QYEcFCWaTgcYnx8HLOzs4fAdgC2Cpn+e5TA0+CC2ZRPk2lg2P2vx0CFIhQKYWlpCblcDq1WSzZPNg1uNBpiwGnllGOikcJNniktZDQyUjgctqTRU6nRJWf0tbQhpReDnlPOh+5RYDd35nma6CXf3d0VAKVQKAiIoT2Huv7le5H4/KZQ1U1oKBRZ341OgrGxMdy5cwf//t//eykHQsCLmyoAqXnKcjSMtGu324hEIgAgAAEdUTp7gh5j1sgnoKaBCrfbjXg8jlAohO///u/HnTt3UCgUJJKIwr5Wq1lqxwEHKWpUKuncIOBFUNblcuHevXv41V/9Vfz0T/80PvGJT0gEC43DcrlsWUcEejUoppVsroOjlKMnkewMX1IsFsOlS5csxoJJer2OchKQrynntZJpNw5+p+WLBnr0e9LgO79nTV9GDgwGA4mUovwslUqIRCLioNNG4NbWFoLBIFqtliWqganhTGlnumShUJDILx19YUa3ayCWiod2MOp545wQCDR7/9jNuzl/CwsLiMfjeP3118UB45A9mWCYHWke8fv9iEajklkQj8fxxhtv4Hd/93exsbFhKX1HsJmRUZRFVBIJjFAu0WjW9aXpsAIgzdErlYqAKLz2jRs3sLi4iFdeeeWQPqOjLMmD5jrkXLjdbtRqNfzn//yf8ZWvfAV/5+/8Hanj3mw2pQwke/LwPDNCiGSuV+p73W5Xako/qURlnHNCY4AR7+973/sQDoctOpomO91Tz/ko0mCWdnjqd0F9mjykS8vw2qFQCJOTk2g2m/jud7+L1157TbIOteOM+y7371AohEwmI4FDTA2nLKOuP6qEgjbS+Nw64Ihj18dro4hzQB1TR6np98DrU3cwQV49z3qP0/Not4b0sTpDg6WnzLKs1HEI7rG3y3HWSRghOz4+jsXFRUxOTlrKbZq2mn4/pvOGc0rng5ZfZuCISaZOoY/Tzg7N/zqSOhaLiQNIZ3nq9Ua5SLlMsMLn8yEajUopnHq9LkEIu7u7FrvGXL96/Po5SNp5RV4dGxuTjBlN+vljsRheeOEFXLhwAdevX8fdu3ctIOt7JdgGOJC/DG5kFQUNQg0GA2QyGfj9fhQKBZw+fRr//J//c7GtKJu4Z/t8PgGGyCvAQUAkcLDu6ezgjy77ovd2gmca5OI6oT1k9rIAIGMj0M4Icb/fj3A4jMFgICWbCQjzM4KkLE9FPZ3rgPoLg2vcbjfq9To2Nzeln5/H40GhUMDt27fxrW99C7du3UKz2ZRrJRIJpFIpnD9/XsqqsHwJ541Bi1NTU9je3ka73ZZo2Xw+j7m5OWQyGQlEozzVujbfNeeDgRyMqHa73ZJd8aEPfQgTExP4l//yXyKXy0kvFb63o3CjJ5nIW3zv3A81Lkeg9/Lly+KAMG0z8h8xAjubDjgs18nj2klN2ysYDIqjngAq+YGyzev1Ynx8HMViUXRzXpN7krZHtSPPzJ4IBoMWZ4SdTtDv9zE/P4/BYICvf/3rloAvvT/w/nSSvZfkL+eSzlFmHRGH0lgg5Vg2m8UHP/hBZLPZQ2A135OJlemgBQLqe3t72N7elobi6+vrthgz3xGvzeAPjkfjSDxGB43r6/Hcixcv4vLlyxI8Tt1BB/fozyh/tFwjL2pnAHk4FoshkUhIwOXm5iby+byUCyQGrG0uZrMDB3gbebzdbqNWq6FcLuOZZ57BqVOnLA5ts4oPr8G/KWc/+MEP4gtf+IKUoCIWqftC6BLtb5ceWSaEjrLVk763t4dwOIzZ2VmLl2kUmWCOHUCjmZdKnS5XoJlc309PmFYStBeYTOV2u6WmcqVSkc2aKZHJZBKRSATVatUSiU4wmuOgAsKIdDKVXiwUtBSmjBqg10wrLgCEsahoaAeMnh+drj5qfvncpkFBI5PlKqhwZTIZbGxsIJ/PWzYaPseDNKt+EokLW/Oh9loy8nYwGEide2Y7FItF/MZv/AZ2dnZE2LOWHPmk0+kgmUxKuqpOeQP2o4AuXryIe/fuifAwGyq53W5UKhXxZPI7Rht87GMfw3PPPSdpvB7Pft3OsbEx/PEf/7GAuox45DWpqBPM63Q6FlDXjBp0u92IRqPodrv44z/+Y+zu7uInf/InMTU1hXw+j1arhXQ6Lf0iuMHoiKOjQO8nnUyZaG4olDlnz54VReGoc02FXc+xCS7wPqPGw3eky2qRV7QDg3KD/MvvgsEgJicnEQgEJD2X8jWRSEj9/L29PQFxOSYeRyBBy0tGgunm6zS0qFAlEgkZd6vVskQY2+1HfD4NBtsBjtxPdCSCHVhpzufe3h7i8Tg+8IEP4M0338Tq6up71sl7P9Lp0rpuuFa4yEvsBcJ9Mx6P47XXXsNv//ZvY3t7W76j05cRgYyE0TwNQJzEOl2WTgUafKw5TT6v1+sCogH78ntsbAy5XA4f+MAHcOvWLQvIQYOeOo3+0XsMI1Qo/wHgzp07+NVf/VV87GMfw8/8zM8gkUjI+vP7/RaHr9adaFjofQ2AZd0CkEzJJ5Wo23BPBw7qgV+8eBGZTOYQWMtjTENLGz56vvU5PF5H8JEPzP2cmRFmqQQt+6anp5HP5/HlL38ZN2/elF4jNPa4XzDClzosQTGWi+Re4vP50Gq1UCqVhId1nWjTKNPPxftyT6durevZcs0QJNSgLeeEBhDBCN2LghFnD5J9YOecMIn34HMRuDf1Xd6Pz8bxHLeeEAQzh8P9hoyXL1/G4uKi8Lger51uMIpcrv2MLZ0VqK9jgkT62nr/5P/m+S7Xfk1nzi8jFMmXW1tbEpBgGtqmjqhBBEZZkofD4TDOnTsn85BMJnHr1i1LBLnppNXj1HNlPjNwACa43YfLNerrDIdDJJNJvPDCCzh79izeeOMNrK+vH9I5nnS9l1Gc1M0IKmlgrN/vi62Sy+XwyU9+EgsLC1hdXZX+ZewpEQ6HLQ5bMyBEz+ne3n7PhEajYXGAEtQiYEXAk3s1dQaC6sx0oL1OfEBHFft8PtRqNfR6PYTDYSQSCRmjz+cTm5tBNJwPZq+1222x73SAGXmN46HTem9vD8FgELlcDp/73Ofw5S9/GZVKBQCkVFO1WkWtVsPKygpefPFFjI+P40Mf+hA+9KEP4emnn8bk5CT6/b40gPX7/ZienpbAHjrnd3Z2EAgEkE6nLWXrOH8cF9ct59Pv90uwJysGdLtdrKys4MyZM/g3/+bf4F/9q3+FN954A6lUCoC1VOZ7gbgHa/yJ+7fWD/Wef+HCBZw/f96CLfGHMty0Zfhb/63XD/VC6uDUASgDWfZLNwY2QWG7rGLqFPr+bJBLm4/PzeMBHOIlZgtpeUmbYWFhAb1eD9/85jct+x+DLGlX0qli59R4Eonz5/F4xAahDqRBfzqQer0eFhYW8KEPfUiyB+yuaeKPGtyPRCJSomt1dRWvvvoqXnrpJXFe0obSZYaY8cNeo9RTS6WS3EPb6/zM5BW3241MJoNnnnkG8/PzFv7Wa8jUdfm/DqjR2Alw0MdNB9VQl6SDbnx8HPl8Hru7u1IKv1ariWwNhUKo1WqW8WvHHLDv9P3617+OTqcjZaTIq7QLzTXA8weDAVKpFJ5//nm8+OKLIh84VtoHxDMfRVmmR+KEoBGjN3ANlC4sLDxU9Iap+GrSn7tcrkPC0g6c5N/8XjOBzkigMCOjac+RjqTo9Xool8uW9GsypB24RIWfDaUYicFIBEaokxjhrn8DsAh7jnkwGEjUpU4FMoEw/fx2Cr5JFLh6I+AGtbS0hLGxMWxtbcmGw/EdR6PrnSDylfbo6/VAZYqOLUZlVyoV/OZv/iZWVlYOpeEmEgnJbCBIsLCwgLW1NYmIoaMvFAphZ2dHlD6tMLPZF9N6KUyoCGcyGfzUT/0Uzp07J44GbjrBYBAXLlzARz/6UXzpS18S4FYLdW5G3W4XjUYDgUBA6oKylifTyZm5wY0jEAjg85//PN544w38yq/8CjKZjCgXyWRS6q3qUmudTseSAcR50L+fZBplrJPf/H4/zp8/j7m5ufuCBnqjNGUo3xkAS0+FUWPSWVcEk7gmtBKn782NncrdxMQEkskk1tfXBUQlH8XjcUSjUVQqFcvmS9nMZyFYTJmeyWTQ7/dRr9ct9buBg5IzAASAcLvdmJiYkJqNWu7q36axM2rP4nNyP7HbB03AhMS1+NRTTyEYDOLmzZvvCeX3rZBWMMkPOvCBa4NRfKFQCKFQCDdu3MBv/dZvoV6vC4CpoxTJmzrqjzzd7XaRSqWEt8bGxiQCmjKqWq1KFAkBYOpIg8EAk5OTiEajmJ6exqlTp7C0tIQ7d+7g9ddfF15wu93iqCCfk3dNHSEajUoENo/zer347Gc/i9u3b+OXf/mXMTc3B49nvw4vHb661BDBAc4pQVUew8/tsiyfNOI8UJmnjJmfn8epU6dG6p6mrmoHggL2TdM1aE/gzZT7GhzX57hcLjHmJycnsba2hr/8y7/E2tqaReZqGar5TOuMw+EQm5ubYmwx+2wwGKBQKFj0WToOdBSYvr4u4wnsN9rL5XLiNOYzut37ZRomJiaQzWYxPT2NbDYrvU3o6CaIxd/M5CTQQp1kFFB7v8/0eXwP3FOSySSuXLmCQqGAjY0NKdNAI02nsh8nfZjzw2zu7/3e70UqlbI43DWZPK2vY/I4ZZ9pY4xaC4B9OUjNe/ys3+9jbm4OyWRSysP4fD4UCgUx1pvNpmQLaftOj0PrC3yfBA+or7Buc6lUwszMjARhXb9+3QKO2ekFHDNtMwK+ds5INsdkYIRps+nPMpkMPvzhD2NtbQ2vvfaalC95L9hbiUTi0JwStOG7It81Gg0ByVdXVyUTnPtZJpOx1MoGrP36dFlbRvPr8lwaKKc+q4NMuK9HIhF0u10Ui0Wsra3h1q1buHv3LgqFguAW09PTOHPmDC5cuIDp6Wk5l6XRmOXQbDYRiUQQj8fF0UZwNBaLIZlMwu12o1QqCWBPXmSWEJtPsxwYdZZbt27hD/7gD3D79m14vV7JggIOGnZTjjJz9MUXX8RXv/pVnD17Fh//+Mfx0Y9+FPF4XKKkvV4v0uk09vb2pIwHA3u2t7elBI/LtR8AVKvVBKDWa597WzAYRLlctjgjgsEg1tbWMD09jX/9r/81PvnJT+Lu3btIJBLyTp90vYQyi6Ag90TKKDqDdeBDv9/H6dOncfHiReF/yhvOq8ZztB4NHGQKaWccZbheTzrAgtfxePZ7QOpgMK47jp96pQ6AIbaicS/qHN1uV/r/8DyOAbDameFwWCLGeW3ySL/fx5kzZ1Cv1/Haa69ZZLsuQcNyqixN86TbYsw6oxzlnLdaLcE1Odf9fh/nzp3DBz7wAYu9pInv0gTs+S4ikQgmJycFG/v2t7+Nb37zm1I6Vu+fmj9YRaPf76NarcLj8UgpUR0owsbRuiINs9p8Ph+Wlpbwvve9T4JpOWYdEKbXi64OwWM5Jyb+bOek0JgKA2hCoRDC4TDW1takAgJlK+WfDnLWejPnpN1u4zvf+Q4GgwEuX758CNtmaTy9lkmDwQALCws4e/Ysvvvd71rsXRKfw2ye/VbokWVC6I2P5PF4JFrFVDbvt0GYiqsdacBRA2rAQd8FHsexmUKVgosGHa/Dl+52uyViXSuLTA/lyzWdMLymro3Lus68J6OOTKCEgln3WtBCk9EQ3HzYrIpMrq/DOTCN4PvNPd+pncHgdrsxMzODXq8nvTI4r1yYOmLvvUB2GSuk4XA/SiUcDks6XyKRQD6fx5//+Z/j5ZdfFoGujSgahUy/KhaLmJ+fRzabFQCA5TSq1SoqlQri8TgikQjy+bxsvHQe1Wo1C695vV6cOXMGP/VTP4VMJiPeVirzTENLp9P4a3/tr2FmZgbf+MY3sLy8jE6nY8mGoHCkQkChFQqFhMe5eTMbhMe7XC6sr6/jt37rt/DP/tk/w9jYGKrVqijQjJbkmE2DlnNM58t7gfTmDxxEE0QiEZw/fx6Tk5MC1hx1jVEOSjOq1oxqNY1kjodKBs+ncUHZoTdifU1GOWWzWVSrVeELyiwCVdFoVLLPaKhoua4VX5fLJc6+Uqkk8pxgGVMMGYmr9wmWf7IzZshnBP/0O9BzpM/j85qORj2H5jsg8VnOnz8Pn8+Ha9euPfHAw8OSVmy1I4x7LR2lfO/BYBDD4X5D6N/8zd9EsVi0jcijHCbfkd+45zebTWQyGczNzWF5edkCOupoaBqHlPHAPh9dvHgR/9//9/+z9+cxkl7XeTj81NZdXfvW1V299/QsnBkOZzgzHIqLKFrWYsuSbHmlIBi2YyQOYiROkCCJkSBxDAMJECCxgRiIlzjxFsPyIkGLKckiKS7izmnOwtl736q7a1+79u+P+j2nz3u7ekg5tMgZfhcYdE9X1Vvve++5Z3nOc879OemfzO/+9Kc/jXw+jytXrljkWhMNWPEQCoVQLpelP7IORCmT9Ds2Njbw67/+6/ipn/opfPKTn0Q4HJZERC6XE0BHt2IxK6m0H9KrAuBuGyZTttFowOfz4dixYxJsmboUePtksV4jbZMpwzrIMn0KfQ19fcpru91GMBhEOp3GU089hfX1dfFx6adRj5nypROm2hdkdSbP5CE7mIETn0e3cOCz0adhoLS+vo6FhQVUKhUBwOk/AUA2m8Xm5ibW1taQzWZx3333IRqNyiGo9C/oh7NFig7uNFBBP1oPM8bYLylBP9rhcKBWq6FSqUh/6+HhYQwPD+PGjRvY3NyU/UKAiCDl++VMCM6/z+fDww8/DJ/PJ35mr3irlz3SMqkT8Tr51Gtw/s1YkUlSAkzaL6Bf7XA4EIvF5HvsdjvS6bQwHenrUg64ZpQFrqMGMdjKgGQYrlelUkEulxM/o1KpIBwO48SJE7h586YwMvXg9QlWEETjfurlSxH0I3i43/zTDgHA5OQkhoaG8NZbb+HGjRsfiDhramoKKysrAqz29fVJXEACH6siHA4HPv/5zwtQxhja5/NJ61smJExQyWazSXumRqMhuk5XVXIduV4E7QkEMWZaX1/Hyy+/jAsXLmB1dRXpdFqSJ8QF3nrrLTz33HM4cuQIPvzhD+O+++5DIBCwnFnCdhjVahWhUEjINDabzXKob6fTwdDQkLyXoBzbkrKajxUJfX19uHz5Mv7gD/4AyWQSQ0NDlmovkjU0vsBKXranYnuUYrEovgR9HbfbjVgshu3tbbE7xGS4Z30+HwKBABwOh5DtTIyG+53vYycAVqIlk0kkEgn8+q//Ov7Nv/k3SKVSlvMN78ZBvUVSLEkztL303zRbnzJ+7NgxnDx50qK3Ocf0janXdeURZRzYZcLv7Owgm82iWCwKSM0EsT5Hgp8l4ZbJpFAohNHRUQC7B6KXy2VLhaEGd7X+ph7V7bsY43HfmLEtACEnsFpJ6+Z2u40TJ04gk8lgeXl5z/0Du63hCMAyoXE3DrZUJLEUgJzVQrIJAIlDTp06hePHj4t+A3q3yTVjf+pVv9+P8fFxud7Xv/51vPbaa1Ilpv1s3RWDMko/kn5Iq9US0iLvg/83gfPBwUGcOnUKR44ckVa7WgdpwgLXWyfa+Fz8afrl2tZo30f7IdofIU7GPUMfWvuzZgJBYzDENmZnZwEAR48elfNY6LfrLg/6GvRb7r//fiSTSTlvQrcYZTsmVnb8v+AR70oSohfw53A4MD4+LplPPW4HuvRyYk3miXkdczE0q4fOA4XJvIZmwuiFcDqdcsASkxDcCGRfAbtVC+Zz8dpmAKJ/Z/aWv+tAlE6D1+uV/tQ8OIcAmN4YBH61w9TLCO+X2NFz2evv+v8MJicmJlCv16WEk4HtB4GNbg69mc2AB9htCVMulzEyMoJisYjl5WV86UtfEuCLMkwnOZ1Oyzoz43jt2jUcPHhQDhh1uVxy8BcdiXa7jaGhIWQyGckgdzodaS/CLOoDDzyAz33uc8K6abfb4tRzLZmU8Pv9OHXqFMLhMC5evIgLFy5gc3NT9jaTcPy+gYEBC7irAYP+/n7EYjGpzCiVSqjVarh+/Tq+9KUv4ZFHHpEqELbRoWPNgFEnU7Qj9UGQPa2ndPCUSCQwNTUFr9e7p6VCr8/ra3Botpl+TTOgTYCTn+P1+D4mn7g3CMLr6+hBh1IHc0y0EqDSQJV+Bp1w1smEarUq/Ugdjm7rnf7+fmxsbMh7NOCsW9z5/X5kMhkL04DfZzIDTECGe04nLOjMmA61+Sz7/a3V6h6k1mq1cOXKlbvW+f27DM61Tk7x75SPcDgszDqCqL/1W7+FtbU1AaAoDzwcWjuRU1NTwgqnI9jX14ft7W1ks1kEAgFLyTJZ0WwppxlfbrcbH//4x/HII4+Iw6jLXe12O37yJ38S3/zmN3H9+nVUq1XLoXj0Z9i+gSX0PFhVt6chS5iBe7lcxu/8zu9gZ2cHn/3sZ6VCgyxC2hXer648o54Fdskdd7vOJcue4LLNZsO9994roBBw+57wpr7moCxo1h51EHUF7XCvRASDY/qQtLcMQqrVKs6fP49kMmlh8msWu/YTWS2pSQW8P+qrdrt7HpR+Jsq83+8XAIB6nM/IeaQvvrGxIUQKrRfpt/Ne0uk0isUi8vk8PvShD2F4eBgjIyNIJpPyrPQv6vX6nirJTqcjgR0B6l5jPxupYwrqB52AZnuXQCCA2dlZbGxsSFBGn+f9tD86nQ6i0SgeeughaVugX+v1fg4t29pf1YkqnQjStpW2W88h5VDHPQD2VH6zjQvlMp1Oo1QqSYUZ15gtG00Sg07+6/+73W5pjapJFwBEh9brdSSTSaTTaUlEzM/Pi/9A2TPJX5wvvWd1YpHsefrstFE6huAc9KqqPn36NEZHRzE7Oys+yt06xsfHsbm5aQGdKpUKCoWCMHUZIzzxxBMYGxvD2tqa6C/uT90mTeslyl1fX5+QpihbXD/KDteJBCuul93erd5Kp9P42te+hu9+97vI5/MCoJEMxop46slWq4Xz58/j4sWLmJycxA//8A/j0UcfRSQSEUDV5XIhn8+j0WggFApJ1YFJyKJsUDfV63Wsr6/L9xN4HRgYwIsvvojf/d3fRbFYRCKRkPiKZyuwtYnNZkMwGBT5ZpxZrVYRCASQy+Xw5JNPYmJiAidOnEAwGJT2aAMDA4jH49Jil3aJcl+tVlGr1RCPxxEKheQcAPpvXB/iGowJWAnicHRbUW1sbODAgQP41V/9VfzGb/wGcrlcT5LQnT6oN2jLtK/LOJ3tw3rZs4MHD+LMmTOWuIH21+PxWHSgrvjU5xoRJ1hdXcXS0hLS6bRgV7SFbrcb99xzDyKRiPgBTCYvLi6Kzt7a2sLS0hKAXT2nk7a61cvAwADK5bJUzZB8EwwGhdDocDiQzWYlWcYqHtMGU270Qd3U1TabDWfPnkUmkxFSD7Ab83GvUwfczS3ISbJiAoJdMJioBbrrFo1Gce7cOYyPj+8hgpo+gvbL+JOVXxMTE2g2m4hEInj22Wfx7LPPylm8jMmpk+iX8h+xBo1LFAoFjIyMSDUb4xt+J+33+Pg4Tp48iYmJCUvcBEDiPO0Hcv35Pu1n7OdDaX+If9PEOfoDlGOenwp02+nS56addzqdCAaDIqM6LgNg8YlnZ2fhdHbPuPB6vZb25tqv0Ak5koseeOABPP3006JPGcvSrrGVtcbjvtfxrlVCWC7qdGJsbAxDQ0P7MuX2A8PN1ynEJigGWIM47bxxQriovQAvfR0qPxpABnW1Wk2MJwCLUdOBOGAVNH5nLxat/n6dvabDxNfI1vR4PBIEs2cklTqBLW4EJiJ6gYwmE7nXfLydIjWvy3XWB3TzPR+0agiWrnJtNPjabrcRCARQr9eRSCQErP/d3/1dWS86XcFgUBiHwK7SY5lrs9lEJpPB9PQ0lpaWRBl0Ot2DbgKBgPST0yB1u92Wcxr6+/vx8Y9/HJ/61KdEprUzksvlRB7JpmHWc2ZmBkNDQxgdHcXXvvY1bG9vy2tk0fI+mcQgqGW324UtMTw8LGyKfD4vh4t95StfwfPPP49/9s/+GWKxGGq1mrRIYfWFCeASvPl/UYR30tB60G63IxQK4cCBA0gkEmKw9ft66SETHNPAvTZMHHQcdeLT1NH8nXqZBpOBI9kp2ibQcSbDSx9IxvXmdzYaDemrqx0ds5WEDs4qlQq2trbESWdijrKig1ImyZrNpgS4TOhoZgedELbB43yZNk0zO3nPJmhpzrN+ja/r0W63MTMzg3w+L/2h//9jtzrFBH6of1klRBb7zs4O/vZv/xZvvvmmAMzabyD7hPp5a2sLR44cQSwWE1Yjy1SB7lr7fD7YbDZUKhXs7OzA7XZLWS/7eDJB/JnPfAanTp0CAAujSrMR/X4/fvzHfxyzs7OYnZ3F8vKypc9vq9US3Uxmj2YY8b54bwMDA1KGbLPZ8OUvfxlDQ0O45557ZK7YRk+DZZqBZPpjGsy5WwftGdd7amoKExMTAHpX7O7n2+r5M4MyrX/NwcBE62nKOxNMWifTBly5cgWLi4vyOa4jmee8pr4nDaADkL0TCAQsPZVNPU5mnGah6eQKh2bS8rO6rzvvQye92u02bt68iWKxiEceeQSHDh3CyMgIVlZWZH/S76DNYDKFz8hn00mzXmun10DraA1C9vKdw+EwTp8+jddee00qIhiwvV/2B4PbEydOSGsVc9zO9mhgUPsZOkAnUKFtMRO8tOP62lwPxiRsaUM5DgaDOHjwoIDIqVQKa2tr4iPY7XbRiS6XC6FQSN7L72BSjIxw3r/NZpPDb6nryKrUFd30OVOpFHZ2djAyMiJEBiZ9NZtRDy1LmpzBa/JztE0mMEZ50zEb52d4eBgf+chHcOnSJSwtLVmS1HfT0G1PuAfL5bLYW8Ywhw8fxqc//WmkUimZN56twAoIHf92Oh1LR4FgMChM/VqtZulGwKETRdRZnU6Xxfvaa6/hL/7iL3D58mVpbaQP8OT7SRzTZJd6vY6FhQX89m//Nl577TX883/+zxGPx7G5uYloNAqv1yuJmGg0agHRWLnDygKt0xuNhlT19vf3Y3JyEtevX8f/+B//Q5IcjDVpRyijrIQj0Mx2k5wXzptOBrJamTbA4/EgGo3KAe96OJ1OIXowEbG1tWVJRGtdwnYwDodDyHS0E0tLS7jvvvvwS7/0S/jN3/xNYfreLYPxEytSbDabzAXJB/s9r91ux6FDh3Du3Lk9r9lsNqkCoy+nqxJJPuM+S6fTuHnzJtbX14UUS91O/dXpdCRJ5ff75RwQyiMH71uDoJpISNnK5XKo1WpIpVLSjrGvrw+RSAShUAherxeRSASDg4OIRqNy2DUr2enL0g7Qz+a+0L4M9/J9992Hl19+2WK7GdOyYoTyxzm72wZJooyHAEglF9crkUjgoYceEt3Za2j/0tQBTN4ODQ2JfGcyGXzlK1+R1lf0WRnjmH4HySiayEL9WC6XMTo6imw2i/7+fmljSN/hwIEDOHHiBOLxuAU30AQr/k3H79RRPCdT+9Janjl0rNQLn9W+rvZbmRDnGcG8rtPpxMjICObn5y1JMO3T8l4qlQpmZ2fh9XoxPT1t6bpidpzQWEaz2T1368iRI3jrrbcsz0lyHbsM8MDsv4uv+64nIWw2GxKJBIaGht6RQ/R2QRwF0Mz08No0jBw09Dq7BOyt1qDQ9vf3Ww4LAXZBLf39+jAdYLcsq1cwzs2gn18z3rjg7EtNh95cQIK2/F4aHDowFFb9nfo6Wqj0vN1OUHTgpQWy11oStBgeHsbq6qo4WOYG/CAMsvA4fwTxGSAz4CCY+hd/8Re4deuW9O/m0NlJygWVIw/fYU98Hrxjt9vlMNVMJoNCoQBgb6KMgfqP//iP4xOf+ITFoWbQ7nQ6EYlELGwdyhVlMBqN4syZMyiVSvja174mh7dqIEVnqDudjpRE04Gw2+2SiACAl19+GYVCQZ7hj//4j/Grv/qrKJfL0u6B88u5pQPAewM+GIeRafmIxWI4evQoQqGQRYcBexOkZkKiFxCu9bH5uy513O+edLClgS7KsJYjzSiw2WyW6h5TB5v3SsdP604dtOv9RqBB3ysBPD43GWAEdKl7+/v7pbeqaUMIgGlwRQ/tYFDONRtUOzx8v55LvUb62V0uF44dO4ZmsymB6Qd9mMGLabcikQiq1SoSiQSazSauXLmCL37xi5bzanQLLsoA17bVamFpaQmTk5NCBKCMEaRlAMY1ajab2N7eloC9VqvhwIEDeOKJJ3Do0CHZI9RrBD7omJOI8Mgjj2B8fBznz5/HK6+8IvrW7XZb9Db1LPco75E+GRMWlUoFyWQS5XIZ/+f//B+cOXMGn/70p1GtVuH3+2UeeH8E4/i8Oqgw/bK7ddDmDAwM4Pjx45bgFujNpDd9W1N3avnU4K4mp/RqqWcmMxgc0ed1uVxYXl7G4uKiRQ64/tS5Pp9PKmQ0eKqJMZ1ORw6vZhs7DZb29fUhGo0KGKDZwRp4Ne0OWYra7ui+4PSDaONtNhuSySSeeeYZtFrdNmbRaBSbm5ty37xnJojNFkz6u/Rc6p/7BYn83XxdXy8UCuHee+9FqVSS/dOL8PNeDNqfRCIhZ0X1ktFeQ7+HoAQASysKzoFpI1mFoocZT9Aem726A4EAjh49KlXArIghO5Ks20qlgmKxKLabz8pEAltoMUimPec+ow5jLGiz2UQPsgKd72WbHsY9TDjRn9BVEXw2/tS/k1TDOdP92805pR3SRAvaGY/Hg7NnzyIUCuHatWvI5XLvC3l7N4dOaNInYzxUrValS8GP//iPo9VqIZvNSszAChpdIaZJXWSLBoNB2Gzd85t4yDKwmySjv6n1LNdiYGAATz31FH7/938fxWIRLpcLw8PDqFarlspyyjaJLWybw7iZiajnn38ehUIBv/Irv4IjR46I3MbjcTkwmraYSZNUKiWENMabfX190jaZRLHNzU385m/+JpLJpMi69oN161xtX7iPdTUbWcuxWEzmNZPJIJ1OY3JyUua9v78fwWAQqVRK4mH6ztxjm5ubGBoawtDQEHK53B5SkX5mv9+PTqeDQqGASqUiLUaWl5fxgz/4g9jc3MTv/d7vWXz+O3kw7ufz0Gcl5nC7/T4wMIB7770Xx48fB2CtYOO1qHv4dyZwmECmnZ6bm8OFCxekHaPWTzopBwDpdFqY6JFIxIIP8Ls4tH3VxIpMJoOtrS1JgulkHuNFftblciEej+P48eOYmZmRFl8aI+iFHxA81f5cu93GoUOHsL6+jsXFRct8MhHB/aHJwHdbNRrlgXENuwlQt0xMTODcuXPiV/bCCLVs8Jr6+qxGTCQSyOfzGB4exm/91m9he3sbwN5Yjix+3hv1h648pc/p9XpFZ0xOTuLq1auyXg6HA9PT07j33nulFZ1+ZsoJdSz1vtk20iRfa+KNng+Ny5okA8Aa+3POvF4votEohoaGUC6Xsb6+LvuI9oLPy4PXNW6ov6dcLuP8+fM4efIkhoaGEIvFpBUqbaOJE/NeT548iY2NDWnlp7Fo3m+r1RIi8jvB/fV415MQwWAQw8PDe/5uBmu9Hng/8AXYdSgZaGvwX7ec4WBAAlgPEOOkkblOBpdW5hpYstls4rDw85pdRcWpWWE64aC/10xEEOTl65rxQYWoGW7aGBEUpDLlM2lWWa8AVq+HCYbdDlw0f9fPNjQ0hGw2a2n1870K4t0yzABWgzhTU1Ow2Wx47bXX8OSTT0pwRbYMHQteh+tKh42lfwzIyTLQhzzx+2kYaDApW5/85Cfx2GOPWYB73qt+hlAohFKpJI4nA0nKFts5zc7O4ubNmxZQRDsnGoAmuDU9PS3vOXr0KJaXlzEzM4NisYhMJgOXy4Vr167h9ddfx9mzZ+UQJIImZPTyeXWbk7cLqO+GwT0bjUZx4sQJ6UvbC1wBdtnRlCfNEuoFnpnghA5GdNJ3P8PrcHT7NzNxlE6nLfqOrWN46B7vRSdSTaeGMqSDQepd7VjroJFnQOjWdVqfUnfyPoDd5DLLf+12u5SB00bwWYDdNnp0WEwnXw8d2O4HRgLWA+HM99MJ9nq9OHfuHJaWlnDlypW7zgH+Xgf1JWBtzcT1a7VaAjRUKhX8yZ/8iTBYCdyzxJVsGYLwBGLpa8TjcWxsbIjDRUc6lUpZSsgp79RVDz74IH76p38a8XhcvpMOPQGBWq0m/a3p5Pl8Phw+fBiDg4NoNpt4+eWX9/S/1yQIPj/vPRwOC9sIgAA3q6urSKVS+MpXvgKHw4Ef+ZEfkdZ+DHB5rV6Mcu3X3M2Dc7yzs4MjR44gGAz2ZJED+/uwGtjneumKSf1d/Cw/YwIyJuNM21sCc/Pz8yIjvJbb7RaQUjMc+Vnuk0ajYWEyEoilD8KAg2xEAn7sZ06QhHNBtrgG8SjjPGydMkW9R7IC9T59nHQ6je985zsYGBjA1NQU0un0HmYck37VarVnqwTqBU2aoB+h59NMnvSyr+a1E4kEJicnMT8/bzn88L0cGpQ/ePCgyN9+zwnsTc7wPVp2eyUwTL9Byxhf19cFIOxezVTv7+/HzMwM2u22BN+6XVin0z0w1O/3S/UwZUy3UCAwwaQZwSJeg0k7EiLy+bxU/7LtB5O9nAOywn0+H7a3ty0t0bQ+7EWa43u0P8N7N9div/hSD8rysWPHMDExgYsXL+LmzZt3FTN3aWlJ4qRgMChzon27Bx54ACdPnsT8/Lww5oeGhmCz2fZUmzMmoS9FPZPJZCxV29oH5RoQhyDo5XQ68fWvfx1/8id/IuB9IBCQilruF63XgG4CuN3ebX9LcK1eryMcDuPVV1/Ff/gP/wH//t//e5w9e1Z65fPZ+W97e1uIWvV6Hel0GtFo1HK2FX2fdruNr3zlK3jppZekhQ3BfIL7et+YulEDgn6/Hz/yIz+CU6dOSTVHp9NtsXPjxg1kMhncd999gm/4/X4Ui0VLL3auQzAYRKVSQSqVkhY7BMg499xf/BsTkFtbWzI3jUYDyWQSX/jCF3DhwgW8/vrr308x/XsZtGWsUmHc9HYJFqfTiampKZw4cUIIaqZuZks6DfKyqkwz3tvtNubm5jA7OysJOp1g53uo0xhjsqUdSQ5annS8asY/tVoNa2tr2NjYkOSyJr/oWIjxW71ex9LSEjY3N7G9vY0zZ84gFApJtQ/9EBOfItGHFXzArq4+d+4cisUi0um0ZW65Ryhz9A+Jldwt2Bfljv4e193tdmN6ehrnzp2zPLOJHZggu4kRUf4GBwfRaDQQDofx/PPP4/z583vkg5+jz6zXSrce1+Qd6tTV1VUcP35cyDQ2mw0jIyM4duyYhQirvwuArGmn0xE50j7i7Xw77QdoW87X9F4w502TI3w+HyKRCNbW1uTalOX19XUhaxIz0dgGv4v+dSqVwssvv4yf+ImfQL1eRzweFz3b6zl4HY/HgzNnzuCpp56S+JS4Iiv++X9W9X9PcvY9vfvtLvb/lYjo1kIcvTamLjsxHf393k8lp/uN6/drx0QrUcDqWPPgJQACAtNx0y1qyLowwSet1E0jbT6zuTH5Wi9mrQ5cKpUKAoGAgM+6JYpuu0SDwLnh5qGzTEXZ6x7Moe/17ZQp3+dyuTAyMoJbt26Jkn+vA6/3Ymg5YTBBJcaKl2KxiP/7f/+vJXnEz1EeAoGAKBWuJR1KOsJMRjmdToTDYdhsNiktZEaSZz2w3NJut+Ps2bNyeCrlBYDcJxU4HWMm+OhEM3hvt9vw+/2YmprCrVu3ejoXdJQdjm4vfir7RqOB6elpJBIJbG5u4tKlS5iZmZHvaLe77au++c1v4vTp0wJC6LZlDodDyvU0i+FucQDebvh8Phw/flyy4cBeYISyo1niwG5w3Cu47eXo8ZpMEOhkqgkw2O3dqhyWhTudTvmdwSFLGBno0LnR+8Fms0m5r+67qI2/mXzSrWx0aWa9XhdmuX4uMljoMKfTaYyMjMjeIlhBppBuRWJWwTEAJUhCppC2bzycTSeiTQekl+7V66qDBbvdjqmpKXQ6HVy+fHlfYPSDMHQrQu0oUhYAyJk8rEIjEMHXuT68hmb/U8esrq4KiKoTCel0GrlczlLqyqSy3W7H0aNH8dM//dMYHh5GuVy2JEy4puxvzf2hX3c6nYhGo/joRz+KxcVFLC0t7XlWrT95nUAgICCxy+XC4cOH0el0MDs7i83NTWEqfvWrX8VDDz0kbEy2a9FBm7brpp64m4fD4bC0szBtTC+fT+9tMnV1iyHOp8km5+d1sKX3v8mm4t/pE9hsNqytrSGXy1nun3KiwWYeMEfWvsvlsvQO11U17Pva19eHYDAoVRGsFPN6vfD5fJKcoE9DPUumFn3YYDAoJfz05/X88blrtRqi0aiAtTabDel0Gi+88ILcB0E0UxZNYJ3DtJM6wDWDwv38Ca2r9TrY7XYcPnzY0iv7vdwj9N3q9TqGhoYQj8f39c1pt3TFDt+rGdAafNLfY84V5a7XfqENZfWClnWn04nx8XHY7XakUin5rkgkIpXAmvnocu2et5bP5y2MVrIkdaKZctnpdIRYwPvh39iDmaApW914PB7xVcjS5cGNBFB5GLCubOMcmfOlfeVecqn/r/9mzjcrjR988EEh8XB+7/SRTCZht9ulvdH29rYk+CuVCoLBID7zmc9IwpEkGPoD9Fd1bKb9s0AgIIfrcpBsQ72g5YfxUbPZxHe+8x384R/+IdrttvROZwtZ+mlcJxIZqMcYA1Je6DMQWFtfX8d//+//Hb/2a7+Gw4cPW+yxzdZNppEoQ9tMvZ9IJORZmJje2dnBF7/4RYkJ6ZsEg0HLeToE6+jvMtlC/dBqtXDffffhE5/4BIBdX7rZbMLj8eD69euYnZ1Fu93G6dOnxQeLRCLSvpfX4jwQg0mlUoIh6UPnuYeoozkHwWDQ0gaEOuCXfumXsLCwgFu3bv39Cuff49AMZ8Y2b3cQst1uRzwex8mTJzE8PCx6DbBW0HP/aD3EddGHszscDty8eRMXL17cc96SWT1A/cn1brVaSCQSgl/sZ4/NmKfT6WB7e1sOIedac+9x31O3aoLwzs4Ozp8/j0KhgMcee0zeS9KxZn5zr+kEoLb9Ho8Hjz76KL7zne/Iuae8P84NP8vfOY93w2BCivgRExCTk5N48MEHLe0ZtW3TWIP+m5Y1h8MhMQk7ZOzs7OBLX/rSHiKujvG1jHQ6HakK5zmr+jyQqakpzM/Py5qOjIxgbm4O4XB4TwJCy7S+Z/ow1Hv6TAYTT9Cjl0zr1/id5lxxf/L7eZ4P/TLqv0ajYTknSccbxC905QZj2/Pnz+PRRx+Fz+eTf/V63WL7zHtstVqYmJjAoUOHcOXKFdRqNZkP6ifaE33exDsd72oSIhgMCuDEsR8wSHDHZH1op0w7uhRECjOVHAcZChrEMoMIKjRm4Jj9b7VacsAjAEuwCECcWJ0dZjUCs7wamAOsLVDMYIW/12o15PN5eDwe7OzsoFgsSjUBBTSZTCKRSAgQxmszCRMMBuUe+RkzcKVx0fOg76VX8Maf2mHfLyBrt9vigGez2fc88Hqvhg4QyAJgRtbn86Gvrw/f+ta3sLS0tCerStY4wU+WMLK1Eo0817hSqYiyIRjPAM3hcMDr9YrTWiqV0N/fjwMHDuDee+8VIEArPA7uKa1Q+P0cmhGUSCQshkXvSTrZnU63NI5KPRAIYHh4GJFIBJFIROaITlMqlUKz2cTa2hqWl5cxNTUlLcgImvAAOQIYmolxtw+n04nDhw/L3AF7A1WHw2FpnWDqIK4LgD2OBD+vSxH5d7Jc+H+tP3TSNp/PizHSwC71Jf/Ge9QOIA0pA6NeDDDTWPPe6ABr8F8bRP05Hcx0Oh0sLy9L31AAlnt1uVyWA1lN8ImgHfcp55TzbAICvDcTmDTBRX6XXj8NOLdaLUxOTiKdTmN1dfV7kKK7d2h9RDngoWQ3b97E3/7t30qgzSoxOng8rJW2XQMYZMZS37D9TK1WkzN/qJcJ0hLkeuSRRxCPxyWZyqEBP7ZnZFBnJp/obE9PTwszxgSlKEtM/BYKBfj9fgwODooz+8Ybb2B4eBihUEiYZk6nE9/4xjfwhS98QVr0MIBjxR7fZ7LqegUdd9PY2dlBs9nE2NgYQqHQHj9oP5vD6gOCLeb7tI/aC9AG9upmrb+oh6l3XS4XCoUClpeXLclOgkSa9MMkvs/nEwCJsstr6hYQwWBQequHw2EMDAxYEhXcC7ovPvUZwSy2PaW/WCwWBUBikMvPMchj2xoSM+hXra2t4dKlSzh27Jhl/vQ86fnRc6p/MtClT63/TpvSy8beLrkRCAQwNDQkvek5H+/F4HO4XC5MTk4KIMShbShZt6YfwDlilYxuoahtkSmjWrfx7/zJtTRZlGzvRWA2FAqh2eyeiZdIJPDCCy8gl8tZKn1pn5mQAiDtN3htkhPMKh36EwTYmIRgcmR1dRWlUgmdTrdvPYELVnjy/DW73Y5wOIzp6WmcPHkSfr8fqVRKEmRmbLofcUTLqpmM0O/je/X7uBfvu+8+FItF6a+v2ed34tCxOv1KVqe63W7cd999GB0dRTKZhM3WrRDmvGgSgekTOhwOOa9At2uivGi/TutdxtovvPAC/viP/xgApDqbepbrzfMeWO3TarWkIhzY3StMeGk2eTAYxPz8PP7X//pf+M//+T9L0gDo+qbFYtGi53nfGlhzu93IZDIIBoP46le/inw+L7qW5EaHwyFV5ozP8vm83Bv92kajgcHBQRw4cADnzp2TdlIEZFutFmKxGGKxmICJHo8Hx48fl0QDCXLAbmtS+hVcn2w2i6GhIemHzr1K8iXnjffdarWQSqUkxiwUCpicnMTnP/95vPLKK98nKX13B9eOa05C4O0SEMFgECdOnMD09LSFMGLGPIy76FNqPaO7jdjtdiwtLeHNN9+0HE6t/VHqbMovv2dnZwfRaBSDg4MSr5k2mtcycQh2KMnlcntAaMobv1/7G0xCNBoN3Lp1C7VaDT/4gz8omAHbUZMcxAoatqTStoi2IRwO49FHH5UWafq+yf7W+B8TEXcDIYwEJbZPc7lcSCQSOHfunPgDwF4/ALg9mVzrKcZYNpsN3/zmN0WH830AJP6gPjZtZKlUwtLSEkZGRuTsMn2eLn2DVqslLR7HxsYE2NffpZNelDft3/C+dacd+klm/K6fd7+/ab+pl51nspAVxrqqj765vr9AICBtqHi/3CsAkM/n8eyzz+Jzn/ucVDsT+9YV17326enTp7GxsSHVx3ydlYHEC91ut1T4vZPxriUhmIHVD8yb3/OlKrMOWMtt+H8CYJrFr4NfrWDJNDMX23wvkw8DAwMSHNLRpLEzs5t0cslwZKUCHTsz8NfCqIN0/WwEqlqtFvL5vJzeXqlUpDyGTjwPP2OJJY1HvV5HNptFsVjE8ePHUa1WkU6nxYHRyp1ZKw5dqqvvUQcNWggJJL6TDHw+nxem0Adp0Fnlc3M+WbbtdruRTqfxjW98Q8BYrhUVi9/vFzCBLTqYWGAfXBo5Oiia0R2JRMTgsw++x+ORcsPp6WkB0ExWgplRpSLWjrsOlGh4WfbL5ybjk0k6ssNpyIaGhhAMBuHz+URZDg0NCeNxcXFRnq1SqeDGjRs4efKkgIB0MnlAFEHqOz3Q+l7G8PAwxsfH97TyAHbZh5QJoDfzE4AEI5qxqV/zer0iS2TH8v1mAMz2GtTZmm1it9vlsHUyZqvVqpTAUoZ0QMWfZJVxf9H46TY5dAaoU+kgaV2rnWAzQG2328hkMtJbemJiQuyA3+8Xe8H36GfXzGQN+nGeube10dYOPNkE3B+9Ao1eoKcJRkxNTWFra+sD25bJtHvUTfw/QdM/+qM/EtkEIPNPfdPpdBOmBD91RQQD8mazKYlQoOusZzIZNBoNy6F1xWIRTqcTg4ODOHfunAXM0H4D5ZCAABN9ZmKB4Mbk5CS++93vWhLEJuOYbFD2xY1EIhgeHkY4HJYWJjz7h8DO+fPn8ZnPfEb2J/cZAJkjLXu9QLK7cdAXHB0dtYDStxt2u10CB2BvhalOVprzqW3ufgAk14ZrTxBoeXlZ+pLzOtTHGmimbJPIQvII5a7VakkPYAKsk5OTchgsz4ZgcMie4Sbgru9TM17ZWoW9o5m4Y8sO+vMEuthaSccGV65cQSwWkyoNPcck6XDvaMDF9GnMihM915rBZ8YovWIbvm9iYgK3bt0Sxv57NXj/fr8fIyMje2SIQW6vShITpKJPq88+06/1AproK+jrMCHPv9Gf9Hq90jqOoBfBhL6+Pnz3u9/F5uamtAMAgO3tbYknmTjQtkDHZRpA6LXWJD3U63VsbW3h5s2bwqzsdLoH9M7Pz1vAU51IyefzKJfLCIfDuPfee0XueW6b9sl0wK8H97N5b9pv6QVgmHbv/vvvx6uvvopMJmMhktyJg2c5UY76+/vh9/vRaDQwOjqKT33qU9KixufzSeshViaawCoJVgSsisWiXA/YJd9RL9RqNSH7FQoFuN1uLC8v4ytf+QpKpZK0u2Es19/fL3o/k8mIP0e7TpnXTFL+PxAIWCovOp0Ovv3tb+Of/JN/gsnJSZRKJdGNHo9Hkhz0JwOBAEKhkMUfYML5woULAp7x+Tc3NwXfICtWx1q8frValYq3xx9/HJOTkwB2kwHcAwMDA3j44YeRy+Xw5ptv4i//8i8Rj8fl3AjOufbPTeDLJGfqA5B10obXIKbDxArQBdsef/zx74+A/j0M3Q6Lv++Hv7Bd5+HDhy2Jfg6Nr3G9NAmNQC0Tb0z0b2xsSAsm7glNQgEgZ1pSrknSoQ1kAsDElbT/zUF5d7lcOHr0KCqVCrLZrPgBtBOMV2m76X9QV9OWLS4u4tvf/jY++tGPStsmjfFRJ9Ae8D163trtNmKxGJpc/msAAQAASURBVD784Q/jhRdesFRE8N51Utv0I+7kQbyJ8hEOh/Hggw+KTwag5zObcYF+D+WPVWMAUCqVkE6n8cYbb4h+pz6jX9DpdMS2a6xCkyPW19fR39+PaDQKj8cjZ0xqojhJXPRteZ+8N5PETYAd2D0/xawqNtde4yL6p0603U5OTL+AWCDjPxI4iP3R9gSDQUxMTKBQKFj8Ex1zdDodvPHGGzh79qz4ziQxEWPRa6fvKRAI4PTp0/jOd76DWq0Gr9crtpR4H7DbgeOdYhHvmnfMctXbAdXAbo+7Xo49B//P93EiaeR1Bo4PbIKq2uHV1Q/8abN1D6Ha3t5GJpMRljWBTS1IbrdbsmrFYlEm3OFwIJ1OS8+4kZERhMNhS8WGfk7eF51wCgadDhpcXcLpcrlQKpVQKBQwODgoTEkyL0qlEi5evIif/dmfRS6Xw/nz5/cwDPr7+1GtVkXx6kPRgF3gUhsKval025JeziznKhgMwuPxoFQq3TWK+J0OHaxqJ5M/y+Uynn76aayvr0tZoC6t4lyT8cNSK1ZRsCVBs9lELpfDzs6OOIgejwf9/f04efIkFhYWpEd8LBZDuVwWhsLU1JQoGc2U+F6H3me8hu7rr5No2klgAiGZTCIcDqNQKKBQKGB8fBxerxdDQ0MIhUICbthsNly8eBFf+MIXMDIygo2NDdRqNXG0CHrTUOg9e7eOvr4+HDx4sCcY1ovNuN+cUJ/yHwMDlq3qtkYMaPTBu5plGo1G4ff7kU6nRfeQHcV/brcbpVIJ2WxW2ipkMhnpI04gSSdv2aZBA/m8F4Ih6XQa1WoVLpcLQ0NDlgPTtJNKJgedab7OoGdjYwM7Ozuiz/1+P3w+n4A3Q0ND4qRrh0LrTAAWAEHfA99j2j06ejogM8EuXnu//UogMRQKYWtr6x3L0t02dLCv/8bEwIsvvoi5uTkJwnRynsBBp9ORtg8rKyuWZKoOxKhvWD0B7OpA9rmnT3LgwAEBX3kNnbDSzrkJ8ptOLJ9HB1sEiun0ManHYCsajSIajYrTefbsWaRSKYyOjmJjY0Mc63w+j+XlZZw9e1aYMf39/SiVSuKs6oSeyTC/m4fX68Xw8PC+CUK9twFI27leepi/U156BWeUO+07ajAd2D1ngraV1VBce9pHoCtnTPSz+oWggc/nQ6FQsIBv7O/a6XTkPBHaabYO0axfnQQwbY4OFrn3mNihPqfPSxum9TjtPZ+dNiuXy2FlZQXT09Mil7x/E0zg69wvAOQ9Oqjt5avrYYLv/N30nYPBIKLRKNbW1t5TAJgA9OTkpOgp3qfdbpc2hfoZOMzAmc+siSxm3KVtlVmprqtiOCg/LpdL/ALGJ9VqFWtra6hUKlhYWEA2m0UoFMLw8LBUhjMmoexq8LYXCEKAziRcUe7IkL1165ZUFVNGy+Wypd+xJj202902O8lkEq+99hr8fj8mJiYwPDwsB2NrH9XUmbwX3nsvPdNL5npdq9VqIRQK4dy5c3jllVewtbV1WxDz/T54Ng0ZmzwHr9Fo4OGHH8bU1BTm5ubkIGrGSPV6HX6/H8BuGx+gO9ehUEhacAYCAdFRtOnUCY1GA8FgEG63G/l8Hna7HaVSCU8++STm5+elwpLxNeUgnU5L6zP6D/RjWQ0QDAYlEaxZ3aVSSfYWQdcnn3wS//gf/2OJ/1lRQXIA94DZmYEJ32QyiQsXLgCA+PfUsTZbt/WpbtVG1i0AnD17Fu12G+FwGB/+8IcxNjYGp9MpRAX64kxuHzhwAD//8z+P3/u938Mrr7yCUCiEL3zhC0LG05Ua+jk1OS6Xy0mrFhKgdLwC7CbsBgYG4PP5LN0sSFK7EwdtlI6xdFzE4fF4cPDgQRw9ehQDAwOWPa71ibZ/AERfUX/QjgO7rb2LxSLefPNNFItFi19q2jqe5aNZ7Uyusa0W36uBXbPLgunjRCIRzMzM4PXXX5d793g8sh808YLyRx8K2D3bb3V1Fc888ww+/OEPi5/BhAZlnBUNOqYzdW0sFsNjjz2GF1980XJGBONTksiY5OtFELzTBmNy7rn7779fkqR8NpOkAeytNAVgWXvGYwAkhr9+/ToymYzIJvVAo9FAqVQS8os+XJx6g+cQtNttsbNMlHCN6VPMzMwgFApZMGh+lxnTa9tqkjW0HTf9CH7WTNTwPeZe2g+r0ftTk5t5be1/uVwuaQU5Nzcn7Zj4XJrcWSqV8N3vfhef/vSnhYwE7Lbf0jGN9jOazSYOHjyIlZUV3LhxQ85pYtKSpGfO//c9CRGNRgWA3PfL/j9ns1fioVcmjZ8BsO91ufC9HDEd2AMQI8/S80wmg83NTWGfulwu+P1+uaZWdASNtfIGIAfhdDodFItFnDhxAna7XYJJLqJm/VCItGByk+gDmTqdjmShi8Ui8vm8ALUsRaRQ/c3f/A3+03/6T7DZbKK4bTabMB7y+TwymYzlQCoGAGaGjj/17xrYNMuwOMiYY5+2D9LQwYoO1sjmaDQaePrpp8VR1eW/BAyA3RZdzAjzs1QyIyMjuOeee5BKpbC6uirrxLU4deoUSqUSksmksEn4fYODgxYQtte+eSdDOzq6fI6OpM3WZeToigWge6gkgbGrV69KKymW0Q8MDCAWi+HWrVuWZMzW1pawd5nd7nQ6UgXBMuIPgszF43Fp1QVYGXJajkwDYgLbetCRZyIiGo0C2G3Jxc/q5CmTXyMjI5iamsLi4qI4Anyd16aMDw4OSqI6n88jmUyi2WxieHjY4iy3290D+xi08T5Yjcb2XdlsFjdu3MDW1haazaYwVnhQpWae87wdzYAh45ZsXOrbSqUihw2TAUe7QeNPR4jVJNrW8NocJrDMv9FxJZhh2ri3c070cDqd0lrgTnd+/y5DO4t0ysjgabfbKJVK+LM/+zPZC2S86hJsVi0Ui0VkMhkhVjBQIcDAAJ5sd9rkl156CdVq1cKq7HQ6mJmZsciiCUqazqxmFXNocI/+BPW+DlI18DAwMAC/349CoYBcLidlzQ6HA8PDw9jY2JCeowTw3nzzTTz22GOyv+h/EKTj/tbJ7Lt92O12S5mz3sMm4Mn3Uw/rdeRPBuq0WQy6qD90gAHs+rK9/DRWINRqNSwtLVkO0NOVB9QZLJsm07xUKsmzkQDTbnfbJVE/Edxj8E72I9my2u8nEGIGpDpA0y3otKzrSgW22ymXy3KgfCaTkfeyP/b29jbGx8cBQOyPTvJxHvReInhlrh3vR4PVvYLNXsGn+bxOpxNjY2NYW1v7ng/qe7eH0+nExMTEHrDAbN1i+gl6cM/TnrNqq6+vT1rLmIkYMylsViTqqgSbzSYxCs9aoA0vl8uoVqvodLoH325ubuLIkSM4ePAgvF4vyuWytPUiEMakFuWJFcb0GzudjrTn0OAD74PnpFBXM3Zk0oF6ls8BQHz1xcVFPPvss3j88ceFwLC8vGzxT3v5YlrWeg3t5/P9pv7nIDHh3LlzePbZZy1tXe+08dBDD6HdbmNwcBCbm5sIBoN48803cerUKfzQD/0QstmsxLlOp1NaCUUiEfFbKWcETjqdbhsP6nTAundrtZr4ZrFYDKVSST578eJFvPLKK/D7/fB6vXKGEv1JXputgrROIZg1OTkpss1EAoGcdrstZwiyBeQzzzyDH/uxH8Po6Kgl4QrA0tsf2AWS6c/abDbMzc0JOQLYTUrr5EytVsPExASy2Szy+byQWkqlEj75yU8iEAjIWS16b2t/uFar4erVq8jn8zJfTz75JBwOB37hF34B6XRa9IdOKtDPB3YrNwqFgrCa9flwpo1hYoc+HSs7bty48f0Qz7+XofWAWanncrkwNTUlbd9M+7afTjFJI/qa/B76gW+99RZSqZS8j34eK9uY9OA62mzdhB1xLyaGeO/0R6lHGY8B2GMfub6JRAKhUEiqISgDTLTxQGozWaMTf+12G0tLS+jv78e5c+cAWKvW9XmwjNnM+JgjEongB37gB/DKK69gdXVV5pFxhvbLe/n5d9rQvtn4+DjGx8ctCQgTUzCBdXMOSPTSvjGxnLW1NYu/RfkiDsADkHUnBJvNJrGYz+eTVvbNZlNkZnR0FMvLy1IRPjIysm8lpPZ/TH+xV5Uvn9uUF+1Hal3VyyfudT3qVtOP5v3RxvC5Scip1WpYWVkRvIRnAQGwkOgajQauXLmCBx54ALFYTHxhJgZ7YQ36+x944AGkUilLWybGPDrWYOL97ca7koQgQHo7B0cHZuZ4O9BEl3Obzj8/rxeUTB1mrhggUUBZ/kMWLZ1r9uTvdDrCfqBS1u2X+N0E07hAZMowC6TPvGAvVbahoSGm4mc5qWaE0YHifZNRH4lE4PV6JaPo9XqxurqKL37xi3j88cextbUlSQ22ZFhcXITNtnt4sU60AFZGpjm35hqaRk+vYyAQ+DuD23f64BxqxjTQ3R+Li4tS3cD36oQcZVhnWslGZSCdy+XQaDSQz+cRDocxMTEhwIPNZsOtW7fwxBNPYGVlBcePH8df/dVfCSvQ6eweYM3fAeuB5vutZ6+/aVbbrVu3LMkpBqk6wPT7/cjlciiXy7jnnntw5coVkcOdnR0sLCzA6XTi2LFjGBkZgc/nQ6fTkaqJ2dlZfOhDH8Lw8DDy+TwCgQAymYwYJp3l3c+BuBuGw+HA5OSk6B5zb+q2D73Wrtc601Gg3JZKJbhcLjz++OP4sz/7M9jtdoRCIUQiEdjtdmSzWUkCHDhwAEeOHEGhULCcBUN2SKfTrZ4gyMXWRgMDA3j99delXU0wGJTydYIETArog9WBXWZns9lEJpORdnVA9wDDN954Az/wAz8gpYhsD0b9ykQvwToCG/pMHQaHtVpNgk+Ct3rf0rkmQEO9zTnlXteOmHbSuB66lLHX0O+9HUgRiUTelghwtw4Cr8BuEMPBoGpxcdHC0KDzRVCp0WhIQovgmtPphMfjwfDwMGKxGIrFIpLJJFKpFCKRiMjlyZMnsby8jGw2i2w2K2fy7OzsYGhoyOJc/l10lAZo8/m8ZS9TznUiMRgMolKpIJVKIRaLYWNjAysrK8jlcnjggQekTeDY2BjeeustAN3SeoIVrAYhcKMTOpp5zPm+20cgELCwEzn0s3Nv6yoYnTyifdJ2yuFwWHq7Msgg01v7AVqn8Huok7a3t5FOpy1BD5OkPLeEgXYsFhNfs9FoiB4mQQWA+L9sm6R1Hv1q6kpd1WkCHXpedBk7sHvYMZmRvEe+x+/3o1wui9+jQVf6rsViUeRVJ4n5vdTxJkDei6moSVLcb7pXbi+gp1cwy9/j8bj0x30vRygUQjwet/zNBK97+fucN+55/cw8lJx2U3/WBLz4WR3E6x7wtLPpdBrr6+vIZrMW4FjrciYmcrmc+BW8l83NTalm4Po5nU5hYGuSUKFQEJ1GH4H3wsOwbTabha3r8XikYojPQjCM1wa68ef8/Dw6nQ4eeughJBIJeDweFItF2eP0k/Rc6bUh0GJWlNwOwNBrBuwmIs6cOYPXX38d1Wp1zwGUd8IgoE32P8lHP/qjPwqHw4FUKoV4PC5s+FqtJufX6DPFCDaSmMXYivZe2zTKTywWg91uF5ubTqfx3HPPyTwWCgWxpZFIBPV6Xc4Non7iIeXcB9VqFaOjo3jzzTfle6rVKiYnJy1AMIHcSqWC5eVlPPPMM/iZn/kZ0fvEMrTPqUE8+s21Wg2XL1+WypBGoyEJCZ/PJ3s4k8kgkUhgfHxcWlT39fXh8uXLOHXqFI4fPy4xF/cWv4/VbfV6HdevX8fVq1flkOxms4mvfe1rOHr0KE6fPi0HufN+NSuZc8+OFEzwVCoVqdDTbXCoX9jhgkmXarV6R5+RpjEBMrqZiDt9+rQcPL5fpZ6+htYx9BtM/aH9hps3b2JpacmiQxnTsZ0W8TgA4gcwueB0OhGLxcTXjsVilhZhTFxoe6vP79FJhJmZGVy4cMHyLJQJfifvOxwOI5PJyH7Quntubg5erxf33nvvnviAtoj6QTPxtU0DuhWxjz32GC5fvoyrV69a2pcxEUZ9c6cnITgPgUAAx48flz1qYlYmSK2Ti7wG9yflUOO5OmmgyX7Uc9zP1FN6z9Om2Ww2+Hw+wXCLxSI8Hg/GxsZQKBRQLpcxPj4On88n3387343fQx/VbG+t/Xpzf/GzGpfSc/p28Z+eN16fP/1+v/jKiUQCBw4cwPz8PFKpFHK5nAXD0NcgAZPrUi6XcfPmTSHdm3GLKfv6eYPBIB588EE8/fTTcv4GyU2VSsXy/+9bEsLj8Yhh6jXMwIt/4/t7BS6moFMRsl/xfkALJ5+OKascHA6H9PzOZDLIZrPCRtcZuGazia2tLVSrVYyPj1uqBoBdIaLzqYMZOjbsWUonl/elv8tm67LFa7UayuWylBFxPkxDC0AYmTs7O/B6vdIGhUHBm2++KddlUuXll1+WDR6JRARMY2BlZtv225gcVCj7CRd7w78T4bubhk7QsLyPwKrL5cIbb7whGxaAZDOpWGn8gF22h2a1U27Yk75YLEqbpqmpKSwvL2N1dRXlchmZTEZK1qnsE4mEOMlaOfH6ZuaWP7UC1eVlLJPTARsAASQILPD9BMO2trYENKCM0Km5fPmy5cB3Hkz17LPP4tFHH0Umk5G9x0NTdas2DYLcjYPrrbPVGtQ227lw7Acw6J+cO5fLhZWVFbz66qvodDrCCB8ZGYHdbpc2CceOHcP999+PYDCIp59+WgI6AFIySceDCQiCmvPz8xIUMThvtbo9yBnwtdttAeO4D1qt3d7gfr9fEhD6mTc2NuTwPaDrNLJahgmF9fV1MZLFYlEObqf+J1OYjne9XkepVEI0GpXKiIGBAZlz/iOYqB0BPf96PWgr9ksA9gomtINjvq/d7h6UzLZXH8ShbbPJyHj22WfFLmnZ17ZfJ+Q04FutVpFMJlEulxEIBDA9PS36ptlsYnFxEZ/4xCcwPT2NRx99FH/yJ38iQZXdbpfKJe3nmL6Q9nd6Jfm1fp2bm7MEqGT60jl1uboHsS0vL0t7u9nZWUmmLS4uYmBgAGNjYxgcHMTJkyfR6XTZm6urq1hcXMSBAwcQj8elWoKt2LQu0cDH3T7C4fDbAs/Abh9dvU9NYFxfg4G4tpfmYGKfbHD6wwyMKpUKksmkJNdM4gvlgn9jZQNBWwK1lUoFMzMzck2uMSuHCYboFgtM7JIhaZIatMyYYDcBDp2w0cBSOBzGxsaGJWlos9mkRzBJOWyponvTal9FD9Pf1ffIeeZ3EUikL327pJv5t06ne7ZMKBR6z5MQiURCQKxeyRidHOCaa10EWAkrdrtd7CVgbd3SK4bgd5GYAuzOb61WQzKZxPLysrTQYUslLS9MygEQ/5q+NHvNk+iiEyYEmDQxihUcem3Z0rFSqSCXy8l902dpNBool8tyHc2aNcl3TGjPzc0BgBzkqe9B23PTF+c9ah/C9NNMX53DlO12u9sH+9ChQ3jrrbf29Tfez4P7kvNUr9fx2GOPYWhoCFtbW0KC1PoNgPikOn5mbFGpVARTMAEkJgECgQCCwaBUEdbrdVy+fBnXr1+3tIsjEJpMJgXwiUajUqHt8/nkvm02mzBYCbTX63VEIhHYbDZsb28DgMWe8zu+9a1v4ZOf/CRisRgACEFCJ7Xog/LZ+vr6kEql8NJLL0n7JuppJqiZ2BsYGMCtW7cwPT2NBx54AE8//bToA+4ZVmfwbyRbar8pn89je3tbzoHrdLoEzS9+8Yu45557ZB9wPjQwTp3EtS6VSggGg5KQpp3hemkMg/ECiZsEHO+0wWci6YH2/ujRozh58qTlrDMO0+bqofWxttGmj+JwOLCxsYHr16+j2WxKdQ9jFQDiRzAGpZ4yMQOen8Wzx3gP9Em0DuM99GJhJxIJIc8Q16tWqyiVSpb9xMS09iF0xWez2T1DKhAIyHkmWjdQ15t+Qy996XQ6cerUKSQSCbz55ptCXOJzMYFOMP1OHXyWqakpxONxy7OYfgR/19Uo2paZCQjuf1ad6Uo9Jt95TepXravJutdJ41wuJ8QbkkcY89MfA3q3ieLvZhxGeTY7xpj2W/9d+zzmPusVv/d6XWN+1GecC+rUVquFmzdvYmVlReJd7TPxesRgSKYn1ri8vIwjR46I7mVMof0+6n/t5zSbTanEeuONNyQZSLyb+N87lf13JQnBkpB3wsA0AZler5lOnV4gM+ilgiEAbLPZhMWny2mZbdve3hZHlRMMwKJIeehzIBBALBYTMI3GlM6Mdt7NxdeBEB1vLlCr1RKwwOfzIZPJoFQqWRx5Cj2FTzujupWEzdZlmnPRr169KoqejAfOaa/e6pwzvZF6gWZ6zk2h1M/M3oAftCSEZgVwjnlmg8PhwOXLl/dU5mgQUyvTXnPLvxFI0ofzMTFRqVTw3HPPIZvN4hvf+IY4pAxEaKy1EwnslmHqbK9WwBy6Z6rT6UQ6nbaUwdPw22zdzLXb7Ybf70epVMLg4KAcst1sNpFOp+V+2OeV7HM+O9tQXb9+Hevr65iYmLD0O9cyzP18Jxv9txuaXaL3qK5M2Y/lAlgNXK/BgN1m61bVsOJgaWlJzuxg4vXs2bM4efIknn32WWxubgpIwPWj4fP5fPD5fHA6nSgWi8hms3jttdewsbEhTiUrFWKxmJRh8r61PFD+gS4wnM1m9zwD5dYE/vjM5XIZ2WxWdDGTv9p5pW7ntdi3kgkJst4Ihun2DDTwJnjQa2iwhOuj10yvh26FpYNlfX0eHPhBTUJQ9zJQ5dk7lUoFV69e3VPWrpk4mn3F9+gqQSb/CVJ5vV6MjIxga2sLOzs7WF5eFpae7l89NDSEWCxmYX1rZ5F6S+t8DViZTm2pVMLGxoZl3TudjoAqDMRZSdTX14eNjQ0Bx3kQ5/b2trTLIxCdy+XQarXw3HPP4eDBg+I/eTweSV5znnl/1MV383C73RgcHNwz5738JF2RwzXTBBwddFM/kYl9u0EgTrfBoi+xubmJTCZjuSZfZ69y3o/dbkcmk0EoFBLWMNeVrW1isRgajYaAakw+60P5nE6ntMlh9Q2Db2D/ylr9k9U79KnpwzJYSiQSSKVScoYFdavuC9xqtZBOpzE+Pm7xmfX8c97fyTDXVCf2dcWaCaCY3wd0/f1oNCq27r0YbEFgzgNtlCaK9ArI+Uyca+oRvp9kG1ZLAbDEaFrXEjRlgj+fz2NpaQlra2vSwlXfJ/0Z+nUadFxaWkImk8HIyIglYKa8Up9qv4g6i3LK/vRMMNDfIEGhVqtJH3K2HqAuWFtbExtN2dW2mT4FK9CPHDkirT/0HOsEnJYdxokmkEG5Z3KE9osxn15jPf8HDx7E2tqa7NU7aUQiEbz66qsIhUKw2+0YHx/HmTNnpH0Rq6B4dpHH4xFZZfxFsLS/v99SlQLAoo+5z4kjsMrB7XZjYWEBL774IvL5vOhssj51Wxqge9gqfQAN4gOQthkEVhOJBD7/+c/jf//v/41isSgHftKPpX2+ceMGXnjhBXz2s58F0N1n9Lu5v4iDUB6LxSL+/M//HMvLy/D7/eIrBAIBYQ7ncjlLf/ybN2/i+PHj+Jmf+Rmsrq5iaWkJR48elWej/QcgNom+aiqVwo0bN7C9vS2Hv9Im3Lx5E8888ww+9alPoVAoWHxunXjQuqNSqUgltt/vFzvDqj5iP9yb2qa+Vzr33RjUrc1mE6FQCMePH8fU1JQFIOwVz+0X++lkA8FyPfdAVy6vX78uydZisSjdPHRVlta39Ak0AO31epFIJOB0OuVMFn63jl01gYu+Cm08v8PtduPo0aO4cOECms2mpeUih7YRuqqZiTXq4mazievXryMSicjZBro7y+1IfOY8dzodDA0N4WMf+xiWlpZw5coV5PN5qYagjiZx5E4cnU63s8mRI0fk//qn6QNx/bWvq99jxjLEIQuFAnZ2dsT/02A3iQv064jrMunD7zHJL4yz2KGBBHTetx4mdmv+XScgtBz0kolez66/k/Njfu52firte6fTPSuHe5dty3UVMveG9hV4PkqpVLLMVT6fR6lUkjNlgV3yg14rc3B97rvvPmQyGdy6dUtsMVvI96oa32+8K0mId3IA0H4PtV8wZw5diqcXks4mmbS6RJ2tjWy23UOoi8Wi3AsXTBtuKmh+ngf06V6KBH97Oep00LVAkJHBwwqB7oblBuGCmWW32rExNzsBiVQqBbfbLYAL29zQidFALZ+Hc8kDi/fbhPpe9Lrc7v0MLm93vbtxaCPPQVkol8tYX18XRimVmglCafmmQ0UlyO/QQWQqlZIScQKPFy9elH7eLpcLhUIBExMTuO+++0S2CSoVi0WpGKLMaAWkZU8rObvdjs3NTXz5y19GuVwWQ88+zQMDA5b+2ZQ1zgHlnRnqdrttcUB070Aq2JdffhkHDx4UGdfK0tQHd+Ow2WwChGk50OtDZ8vsecjB9dCMBL3eXH9tyICu3C0uLiKbzaK/v18O7X3ttdewsLAgQRJZYAAkCUE2ysbGBtLpNLa2trC8vGxpoUQ9RXYj153v0fuCepoMB94fB/v0MtgulUqWQ9CY7KXN4HewOgyARU9q4IMtHOhYEsig/fB6vSgWi3vAKg7aJbaM4L3roI77jI6/ti9cI23X9PM7HLvnqHzQhtZRwO7hd319fVhYWEAmk7FU1FDOGcDwGhrEBHZtHWUJ2G19xlaMXq8XL730EuLxOF555RU5uK7ZbGJsbAwDAwPSAowOJIMi3ivlW+tec68CkPMdKH86sVEqlSToIwuNSWc6/EwG8mBOssrIyuzr68Nrr72GJ554Yg9DRrel0W1YdKL6bhyhUEh6L3OYoDqHCUZq2dIyejvgQA+t3/mPPmmn023jsb6+bmHMAl39yxZOrGqgP8IDVkOhEKrVqjBaqd8JFOfzebRaLQQCAezs7KBQKEiLUiYpKNeUD8qMBlf5/OY8eDweaRtGEJjvqVQqKBQKiMfjcthdoVCQ9ic2224rPLY88fv9oos59D3ooBLYZUZrOe4FQBC8NH1//R3A3gDTZuu2iNBM9+/3YMKc92PqOm13+LNXoEyZNYlX/Ekwij6dHjZbl40XDoclEbqysoLr169LDMR7IatOD64L16vVamF7ext//dd/jQ996EM4dOgQisXinrZIfF76JJR/rqFm5AIQv5QABxMl1K9cRxJvCHbxcwMDA5YkGW3J/Pw8Wq0Wjh49agGN6YPo0QtU1HEfGex60NYxUd4rpu7r68ORI0eQSqXuuCTEhQsXZK77+/vxyCOPwOv1IplMShUEWbW6QoFxlCbgkfRizpEGZ9vtNvx+v7RSY1u6q1ev4tq1a5a+9twTTDDpqliuF+WWvkapVEKlUpGKjWq1iueff14SKqzsGRgYkOpvAkmvvvoqHn74YQwNDfUExvS+7XQ6eP311/HFL35RQN5YLIZWq4VMJoNcLofp6WmMj49jcXFRki2dTgdXr17FyZMn8alPfQq//du/bUmKMHmpWeM7Ozt4/fXXcePGDczPz1vam9FfqlQqePrpp/Hoo4/2JFNxHbgndWzCPagT3Ts7O9K6jfqVoPnm5ua+lYXv90F702g0EIvFcObMGcuh4Xrs54f08ikYx3AfUacCXd23vLyM9fV1C0jc6XQErNdxB2N6EhyZpLXb7RgeHobP55O4kN9N4izP4tG4GYm+lUpFzkWlHWIFejqdtuBlo6Oj0oKSQ+9hHSfzflOpFObm5nDy5El5P30CM7mx33yaNnRmZgYTExOYn5/H9evXAezGkLqaidfpBTS/H0e73cbMzIy0vurlz90OE+T7qTNo1zVmY7fbxSZRp1Cu6FcAEF3BxASrFnWSlz/dbrckNra3t6XdM0k3jL/0ves10f4gwXW2vNXv6eXT9sJl9NA+5n4gP+dH71d9RhErmQuFgoWYzFhQyzE/3+vQaVYx633K5+31jHrtuW8/9KEPoVAoIJ1OSwygzzjSsr/feFeSEDT0HL0CDzJvzN5aepiLyZ+aOa7PTODfqMAIprIskQawXq8jlUrJwSXmZzUYoAMTJjT0c3Az0lDy8yy7NAVVP7927glEs1SbYLIWPl5Dt5DgNXm9YrEowSFBLs6jBh15r8CuoWdWcb8qiP0c4v02L/+mHcEPyqDColHjYWFksDC4A/ZmWGmg+RnKoy4r43fQmBJILRQKqNVqCIfDACBBE53fj3/84/j85z8vMsFrk9EG7JZY6uCPDjQDKcqWzWZDMBjEH/3RH+HChQvCpqGxHRsbQyQSwdzcnICABDB0WwnuUwACEmtmMoETOh2zs7P4iZ/4CaTTaXg8HkurKq3Ybwfo3MmDwZZm0vGZtUOndZk2pjro1YAW9TLXggeCatYzDVuxWBT21vz8vOg9zj+ZSQ6HQ1hQ9XodS0tL2NzcxM7ODtLptOVzTKYx6RQMBuXMHOpj3eaMukr32OVc2Gw2DA8Pi+EFdkt8eY1isWhJzFKmmZhlYNlLDxIco0PEe9UliAQwzHMeNIhBAIPfTSdAl1z2+n7TKQOs7UXeD6DXezU4B7qqi07p1atXZW9wHfT8a/lot9uiF3XFIOWFwTSTWXS4VldXUSqVLGfdjI2N4cyZM5bkb6VSkUo2svV01SDvrZcey+fz+PM//3Pk83kBRWkvqBPJCGS1GVsAcl4YwPEQVTr/OpFYKpVw5coVPPbYYxZwWVdqap17t1c9xmKxnuXFpi/EYYK4vZIPvdb3dv4wB9mFgUBADhDN5XIi27SxTFZqG6B9i0KhAL/fj0QigVqths3NTQkYFhcXRb+43W5ks1nMzc1JhQJ78bKqkXKlffxe/p+20bRPwWBQ9hJ1O0EJngnFUn36rBrottls0tKUbUh7gXMmU45EGTO20P6E9ovpL9Ge9FobrrmOF/x+v6X69fs92Kaq1+hFVuD9m8/WCxjU7+eaEnAwZTYcDks7hPX1dVy8eFF6xus1IohAW0uGtW5BQP92e3sbX/3qVxGJRHD8+HE5o4fvoz6kL0l9Rz+T8SEAy7qaBAxdfWSz2Sy9lyn7lB3qUP7OeHVlZQVerxczMzNyX2aAz2vqJBl1Dv9OPa3jQBLYmAhi6zRzDA0NIRgMvucHpX+vI5vNIh6Po1gs4p/+03+K+++/HysrK2i329ImTzM++X8yrzudbgKWYJTWTZx7+mS01ezuwLabtVoNzz//PKrVqgDd/Hun04HH40EgEEC9XpfK9EgkIoQE2mBW/Hg8HiEE+Hw+PPvss9I+qFqtyve73W5p51SpVDA/Py9VwHz2XmBWp9NlzT755JNoNpsYHh5GpVJBPp8HAGlrXavV8KEPfchSDWG327G6uoqnnnpKEruaPKnnjXN78+ZN/OVf/qWcI+Hz+QS4o0/SarVw/fp1PPfcc/jsZz9rsR0cZitDJk90hZ2Osdm2l0l37g+PxyMM7jtp0Mdvt9sIhUJ48MEHpZ2nObRfoX1ZYG8lIq8N7AL1tHEEHufn5y0JYeJfXCeex0L/mkk+kmyYjBscHJQqIW1PyuXynsQEB2Xd4/FIKy/donp8fFzaM9MvJ+GKdpzfw8OxWTWh9aXN1q1OGxkZkVhRV5L1Atd5r1pP6/fxOw4fPoyxsTFcvXoVq6urwghnfKjt5p0wPB4PDh06JPbQfO5evqzpP2h5Mv/ORGUmkxEckrGY0+mUTgrEwBhbt9ttRKNRDA8Py1kIOiHq9/sRDAaxtraGSqWCaDSKw4cPo1wuS3WPJhaY987noV5ivMcYi8+u40Nzbri3NOansVgO7Uv2GsT4WLnH/Viv1zE8PIxSqYTt7W25Lm0fP6sxYLPySWOLtJvUB2a7yV72pdVqwev14sEHH8RTTz0lpM7vtRPOu0JhM51Zc1JNgMAc2hnT/6ggtKNnXpvgqc1mk/ZDGigCdksj6fhR4KnQ9PfxPu32bm/yVColQlAoFORAKi4sz2Xg6fFU3LqEhwvJHolsp0Q2um4JogcBCg1KaTCbjjV7qfKe9PeaQRhZ5vw8FYH5z1wb3g+d8l4bh9/1dq0F7sahKxo6nY5UB5FhwPnSPTx1wksrRM2yCQQCUi6l5ZaKiJ8lO5bfPTY2hr6+PnziE5+Qz7JsnOvICh8Cvqbccq/orKrD4cDKygq++93vwmaziYPYarUQj8dx6tQpjI2NAejKwebmJorFImw2mwB2ulLGbrdLwpBsRjqeGgDf3NzE9va26ARTzvneXuDO3TB4QDNgBXM0A0CXPmu9xqHbtPF3Zsg1i8zpdO6p/gKsvXn7+vokkKJu43e2221p05FMJjE3N4dkMont7W1ZVwKfdrtd3ktQgsE22TrU59qIm1VjQDeAGRwclBZ0GhzpdDoCElN/kdFFh1ozDJlU4OD3MhlSKBSQyWTE+eY9+Hw+SaJwjfQ1eV9mkkcDiL1kWK+lTjppu9BqtRAKhe5YBtj/y6CzTxnRIOP8/Lz0MwZ214TzreWbgwlh7hWuj2bjbmxsCMDFll38zkcffRS/9mu/hqNHj1qYtdxbwO4hq1oXarBUO7EEKmZnZy3Jsna7jXvuuQfj4+Oo1+vCxqWfQeCU/9j7nHuV38HqHvoUr776qiSPuU/13PG9Wg/frYNtQPYDbDk0I0v7aXzvfvv6dgEd36OBzXA4jMnJSXQ6HaTTaQtLlT4jfQUC90xM6e/d2dmRAJDrWavV5CBY7XfyoPZbt25hdXUV29vbIruUefoYJgtRAyN6nhwOh7C6/H4/BgYGEAwGxRfhIcXU/Uw88xrAbhU2S811UpxzSNvGimHuY84RbY3WBSbYDuxt19BLHszfybx+rwaT0uYwkzIcvWI36r5efzf/RnuqfdpQKCQtctPpNN566y2pItMVjlyPnZ0dqTrzeDxyBiATxJqcw3Zkt27dkgQY9f/a2hqefPJJPPnkk1hcXBSQWftABLt6tTXgM9Eu6PV1uVwWkI56UxOG6FcBkJZ9qVTKck1zTbRvwH2gSWQmiY92jzEBkzjmmhMsjsfjd5yP7HK5UC6X8dBDD+HEiRPY2NiQ1g+UQe5ryiljBK/Xi3A4jHA4DI/HI6Sq/eS+2WwKuA3s2uRLly7h5s2b4hdQb9DXov/r9XoxOTmJBx98EENDQxKbA7vxPLDrn9MWsw0pwd5IJIJYLIZAICB/d7vdSKVSuHr1qrBPdWymfWL63levXpVEAFv4Uvc7nU6sr68jmUwiGo3K2Wds15fL5fBXf/VXuH79ugW80rLFM8guXbpkidny+bwQLDlXnMuXXnoJ2WzWYlN17KyJOna7Xc7MZPzJNWT1PPc1k3HU93diW1L6rT6fDw888IAlAWHqIgL3GtSnDtnP16A/oOO+TqeDpaUlpNNpsXH6vFN+TlfimwkIyp/T6UQ0GrV0PGi320IU6OUX8Hl434FAQCqRWG0eDofh8/ksSWQC/dT3TERGo9E9+tXtdksMUC6Xce3aNWm7pv18PXQc0Ysc1AvzHBgYwJkzZ3Dq1Cnpw6/bWN5JujeRSCAUCu3xUTVOaPqovfxZ2knOo7ZxOqlIIJxxXD6fx+bmJux2O4aGhiwJ+FQqhXQ6jbGxMUxNTYkdZpXX6OgoxsfH4Xa7JRE8PT29p62s+VzAbpswjdERf6acMIHL6h4T2+6Fo+oEDXWc9pXN+2Bcxopk2npWaDLZS7yEZ0Jqv4HX4f3p5CKT9IAVm9fyqkkRvWKUdruN0dFRHDt2TOwZ4853WnH5rnjHvbJAvX4H0HNh9EPpjBZf1waMClJneikcZjBPxzCfz8tk89q61Qb/EZQgAFUqlTA3Nwe3241gMChlluwLHg6HEY/H4fP5hHHEa+rSIw46vSyfYRm6Bk80U9nclBQUBlb8vVwuo1AoCGOPf6ch4fzTSSXoxs1AFpsuhdRzpY2GFuj9Ri8H+24flEM6RFQM/D+wG8TygDAyx202mzA5eC22x6BjS5YM/8aAjOutk0wf//jHJZhj31w6uW9X+WKyOHXiic+yubmJarUKr9crLJd6vY6xsTHUajVcu3ZNSvMpq0AXhA2FQgIq65Y3/D4yhRhsUX4rlQpSqRRCoZDcK+eQrDe32y1Mn7tt6P7FwG7yVTOYtY7UFVt8vwmKARDgXQNnXA+zcgqwsnypFzSQwOuWy2Xs7OxgdXUVyWRSZIHXsNt3+/XyfnZ2diQRRb2jdR6fgQy1sbExmY9Go4FIJIJwOCxBKXV+o9FANpvF8vKysACpa2mwdUKH80f547PzM0ycbG1tWQ5Y5z5nOxPdHks7AdzrulepTixwaDDNHPs5BGTk3Wlsx//XQUeQMk+bWa/XLe2LNONGg/0aeKJOIgBAwoBmqDIIK5VKln14+PBhXL9+HadOnbK0xKHTxyAQ2N1L2jHXe4rvcTgcyGQyeO6556R6gmyT8fFx3HvvvVhYWBD/hME3A0yCvrpElskJMmN5dgDvZWFhQZjuZvKbdoaAxt0+mNjpBVyZQalpN2+XfDBtMf++3+9c91AoJJU0bC+qwVPts7lcLgHfCMBS5zYaDWQymT3tM3VLPKfTKa0VaB80KKL3HQf3A9+j58r853Q6xScoFArCbGU1GbCbdOX3A5DzJPhcZH9rIJKf1X2rOZiAp17Qfq/Wu3qNqSfM4MqMbfT/aV/eq6F7cr9dwkH/TetF6i5tc/YDuqgbmGD1+/0CXvX39+Py5cvY2trasze0b0K9yBZowWBQiA70RQGIf00i1s7ODgKBAOx2O9bW1vD0009LZdrc3BwOHDhgqWwDdg/N5PlOrJSkntXyrSvSCcCx/SIACxhK/5zX6HQ6yGazWFhYkHiRoKmed030YFKHNshcR70OOk4ko90E1Ww2GyKRyHtamfN3GZVKBffddx9+8Rd/ERsbG1KNBUDY15xLu90ulYYEQ8nepn4ArGQ+PWj3HQ6HsE87nQ6+8Y1vSLs6JoMIYnK+S6WSgO+Dg4Mia6zssdvtCIfDeOSRR/DGG29IlWKlUsHg4CDa7TYymYywvHd2dqS15sDAANxuN3K5HP7iL/4C/+pf/SupyKHPy71UrVaxubmJpaUlqXCgrMRiMSEpsCXj7Oys+Ka6KpKEy0KhgNnZWUxNTQHYbY1CW/Dmm29ibm5OKj3JrNfED+4pALh16xYuX76M06dPW/aiaSt0YiWfzyOTyYj/wX3BfUYGLlv3BQIBOSfpThmcr4GBAZw+fRqxWGyPftY+I+dAt8k0/Y1eGBx/Z7KyWCxiYWFBEjq8Dm0kY7VkMmmxi/Sn9b5iFYrGrBgv8XqUL9MPB3bJX2zly2Q18TYm9UgkoI87PDyMzc1NdDpdshlll/pBx7YAsLGxgZWVFczMzFj0oYmHaN/GlE/+bo5Op4OpqSl4vV7Mzs4ik8nIgdqU3zvBb04kEj3/rv0Axs3aJ9IYAe1SLzyUvhQ7ZlCWOOfUnxsbG5b9TqCbsjAzM4N77rkHq6urKBaLKBaLWF5exuHDhxEKhbC6uoq5uTmxubqKTLec1YNkQ7YaNZN/lG/+Xw/TN9LyY2LOOgbVPhb3dS6XE1KQPt/I4/EIQYfJRO4JTajsFUPw+4gR6zXTPoi2qfq++SwaUzp+/DiWl5ct5yB9X5MQ5iY1b9i8ca0s+X8aHNNBNCsKtHHSk8DFMSeIPY/NbLL+LBUq+4gT1NPtnJjt5b9cLodarYahoSFxWvSmNOcDgCREeMgp74EHoOlycF1aqoMCgsE6MGi1WigUCohEIlICrBMqfEa9WUymF4NOfX1+Tge2vQKXXnJwJyjZd3NoAJggUywWw87ODsLhsKVEiqwAoDtXAwMDAp7rxAUDLsrc5OSkMJ2DwaCl3DyTyaBcLmN6eho/8zM/g62tLfj9fhw4cMCy9r2Caz3ojDIxxfWnvFSrVelXyhYIbrcbQ0NDwmgn0MXyWDJ0Y7GY7BuygjhfBJ+pDPV5ADabDcViEfl8HvF4XPaoBtrJwrxbB0vAASsLWbPo9XpqHcfXWOZLfQfsDWRNmaCM0Qhqh9N0KCgnQBdEzeVyUhKpHRPKFgEABpX1eh0rKyvodDritJHhah6A1tfXh1OnTsnzUyb4O88kYascsudoVKn7yabUjigdDM4LDwrUwVGn05HkLw9EpD4mQEbGpWnX6DRwrrXt0LrT1KH87l6JYr5ut9sxOjqK7e3tD5wO1uWxrO6i3Ok9QJnT/XAZcACwJIiZAN7Z2ZHA2uXqnl1CEIJl6h/72McwPj6OTmf3cEuWpJuVclwr0x/SIC8dQtp3EhYoP16vF5FIBOvr67h27ZroVC2/BNfy+bw4pgTHCLoBuy01yQrO5XJS/q4TnJo9Tp3by47cTcPswc5hPrfe42Rl6/dpm0vnXwPs+j3m3tWBGX3FVqslcmbel2Z5UV647gQYuIZMQPH/oVAIMzMzUomgq3u1b5vL5TA/P49isYhIJIKJiQmEQiHxxTX4bsq5fmaXyyWJCLYhoe9NXc3gnYkYtoQi6FqtVrGzswOv1ys2iMQEHURx0PbopAzvUyeQtK2lXtFtG243+Ln95Of7MczqSWA3jjL9Je3r0R4yAaffY8Y1pr3SFZl+v19+39zcxLVr1yzJYu0X87NMgoXDYWSzWWlHwzNszPth7MKzGur1Oi5dumRhQmezWVQqFZEH3hNBKoIctOOdTkcqPZvNJorFosiFx+PB2bNnkc1m5aBI/Trnhr4Fv6fdbiOZTCIUCuHw4cOWQJ1ysl8Vg67a599uRyjic2hwAYAwJ++kJMQ999yDn/u5nxPwic/T19cnPq1mtwK7zGcmBzi3xAQ0KEn9SJkkWE6y4dLSEs6fP28hU3GvUH9wvUlAuXr1Kh577DEcP34c+XxekqRutxv33nsv5ubmLPKZy+UQi8UwOTkpZ4+tra3JM8bjcWxvb8PhcGB1dRWLi4s4ePAgstmsVHgxXuRZPeVy2VLlQ1lzuVw4cOAAjh8/jkqlgsuXL2N9fV2ei2eqRSIRIcN96UtfQrFYxOOPP47R0VE0m0289dZbuHDhAs6fP4+BgQEhezCOox4gEYR2x2634/z58zh69KgA0rVazRKf6PUxcRWus2brU2/1Ao3vhEF76XQ6cfToUQwNDe3BWkwMRxPSNBiqiU5aB/A16jmS2lZXV5HNZmUPcD9pe82+8rrKjYRcwFqlQT9FxyokC9KuU8fz/XrwOfv7+xEMBuUMq7GxMayurlrItSTTpNNpIdcQ7yOJCOgmsbTv3Ww2MTc3h0QiYdGJ9J1JMtLkOcahtDF6Ps3RbrcxODiIBx54AK+99pokA3Wc8X4fkUikZ9yisQfqVL0mwK4M8n1mjMM5pR1iuzqd9NdxEytz6RMy2dhsNrG8vIxoNIqjR49ibW0NW1tb0qVgcHAQLpcLpVIJN27cEH/myJEjch9a93PtSWzXBHjuR5Oszb9r8ov5U5M4tS9s6jp+pt1uyznGOnnVarVEBkk4ox7QJDP6VtpX0/qQ+kKfTanXSLdI1/dmYvj83ePx4Pjx43j55ZdF59P+vt14V+uEb+eYa6HiwuuH0DerhbwXi8hsOQLsgsAafGNpuT6tm0KgA3VumEqlIgvAbA4nX28MoLt5tra2pEpCL1YvwJetECg0ujWOnh8KORMS/L++Z96PFiyC2lR0GhTsVeEA7M3MsX8/r603Hu+zF3vEHO/kPXfb0GvOzDsZYQSOaPwo1wQ2zWws55+OSb1eRzgcRq1Ww9zcHDqdLjMgl8uhWCxajPO5c+fkMN4zZ85I8EJFy3vcb2ggTDsWOrs5MTGBX/zFX8Srr76Kvr4+rK6uYn19HYFAAOFwGMFgEMlk0qK4NEuXz8ogl44ynRy2DNGBl91ul/1JWdbAmGac3Y2DgZHpBJhgtGls9N7VhknLggmAmcaKVS0cBHt1gGACA51OR4BMyrPWRwDkMD+C9Z1Ot3dyNpu1HPLIpMLQ0BD8fr88u06kaIe21WoJIFGpVLCysiIyBUBkjvOg2QEcfr9fWDhkG1Af8vnJwCWDVwcD2rnQ4AQ/TzujEzf7BU1aR+vn1VVuWk8PDQ3B7XYLG+iDMLSuIUhJAEwfJEnglvPl9XpRKpUsAZx2+GgX2d6O7bYol5lMBtlsFtFoVPoc+3w+xONxS8ukXoGW3mumzdXBI8GQQ4cO4erVq3LAK8E3m82GeDyOhYUFAaxqtRpisRgcDoe0iWKQRh2rmYp0uGmr6vU6arWahcWpQRsTDLybR6+kAIfWn8BukEGGF+VM73va+/7+fgQCAZFLzYrW36sBWq6RZoLp+9TBHwM6Vt9SZzLwIxjg8XjED3G73fD7/UgmkxL8s/Werk5st9tYXFzE5cuXUa1WEY/H0Ww2cezYMQC7yRUzAWD6pRxMDhKI4R7VbdUI+Pl8PgHw+Fq9Xke5XLYcPNuLmMTf+VO3suDfNPil964Gr28nE3rQR3mvho4ZTPvCOaXO0C2GAAhoZCbT+Pvb7Qkma6lH2YbJtGeM2biWtJkOR/csCH6GQwPr/NlsNpHP59Fut6VPsr7ncrmMXC6H4eHhPUw/7T9mMhlZLyb4THltNpvY3t7G+vo6SqWSzKPpdzGm9Xg8cn1WEo+MjEirCw267ecLaCCk1+v8Tr7GvU5mJN//XrcH+7uMX/qlX5KDaTU5T+8tHd9rf46VXJRpTbSjDFDmqJOpP6jzLl68KK1q+H28BudV6/q+vj5ks1lcvnwZmUxGdCv17O///u+jVqvB7/ej1WpJVQXPdux0OkilUshkMggEAoI1UA9zbz377LN4+eWXMT4+jh/+4R+WVn1ko05NTeHMmTOYnZ21tE6tVCq4fv26dHnwer1SkdHpdAQv+chHPoKPfvSj+Lf/9t8im83i29/+Np577jnR06FQCHNzc4jFYjhw4AB2dnYEAGw0GhgdHcXk5CTy+Tzm5uakdWmr1UI6nUYgEJCWVjzYGLBW5N8O5NUEH9oVTZrgGTR3wqD8xONxqTgxYzTKmyaS7Tc3uhJa6xTaU52QW1lZsfih/Ax1Gs/3o64cHBzE8ePH8dJLL4nfyFZfOzs72NjYkIPTbbZusoItcomD0fc2yXP8bq4/48BCoYBQKIT+/n6RU2CXnMf4VLPyS6USQqGQHF7O+eJ8ZjIZJJNJHDx4UDAZTXagbdTrwMoQs6LOtIe8Rjgcxv3334+XX35ZkuD6/t/PQ+8fjSHQvnD9aKsZE2hMl1W4APbMF9C1y2wdq0mv/E7ubdpsHTdRH9frdWxtbWFnZweDg4MYGBhAKpXC6uoqRkdHYbN1SawbGxuWs2qmpqYEg6Ic0oYAu2QtHcdr4oRJADBlhc+gfWD9HjPxoOeoUqnIeWgkKPM8NPr0rC7TpGUt5xqz0N+p70PPu75P7b+bOEMvf77VamF6ehqXL1+WYwveKfnmXfFG3o5V0cs50+CrZt7w/boPsf4ssAum6cnjBDKD43a7RcD1hqeRMtuVMCj3+XxSCs7NRgBV3wMFM51Oy+Gk+t50cMr7NFtGALssWCpRp9MpZb58nQEV+1GajBvelwa+zB7YZvlbr/XRSQkdhJnf10uB6mveSSybd2toWaWS0n3sNYOcCSiCSPy/DngIMhJUYEkW5YjAAo0/ex7rA0vpZHAv9VKS5qDyMpkQNDQ0Ng8//DASiQQuXbqEhYUFCQKXl5el3RiB2YmJCTQaDTlEql6vi0OuD7oiaMe9VCqVLIfAEdihfLHihAHB7Z7rTh8mAEAjzGEaBz10oEt9xjWmLtQGyExEcG20HtABGbAXGCADjT0TmXCgvtc9nQFriXc+n5dzRGjk6KhMTU0hEokA2GWh8D0AREYIvmxvb1sYQ8AuuKDni7JIW8IAlfLKewZgCV53dnZQLBalQolOjA6UeW8aMKGDox0FzqMJNmidzZ8meMbXyOCJRCJYW1t7Z8J1FwzKL22d1lna8eJ7uUb6XB4d/JrJgaWlJdG/AwMD2NjYkINQU6kUTp8+LbKcSCTEMdSJQv39HHo/EQyhT8DrtVrdfs7/8B/+Qzz77LOoVqt46623sLW1ZWkZQZmo1WoIBoMAIHuQrfu4NwlGMyjS+pf3q1lg2uknAGD6Infr6OUzmXqSskM9adpbJjIJMjkcDsRiMXz2s59FoVBANptFKpXC8vKygKnm3tZAIg/L00ET14fgsX7N7XYjHo+jVCrJQc+RSASDg4OYnJzE6uoqUqmUMMc2NzelgrG/v19aHxGIKJfLwjZjMi4SiQgBgtW4ZnC23/zSDrGagfc4NDQEj8eDhYUFARTZBo3ALX2IcrmMSCSCYDAoSWi9t3v5vZRh/X/+TVci8z75vl72Vj+r/q73MgkB9G6Jxftm0MpAXAOren+/3TP0WmPGHO12t3J8eXl5D7Ou0+mCvRqcAiCtCGiPqU+1rFO38z5TqZTlMFIOJu8ajQb6+vrEXz1w4IBUUOTzedy6dUsY4Zrgpp/RZuueg3bp0iWLjdCglNbpTOjqgD6XyyGbzUqLXxJ8esW75nrp9dTv6/V/JiG07mCi6U4afr9fyHva7zHnmiAMz4ZkpSrPKjCrJmhfiQk0Gg3ZB51OR0hkFy5cEPuqq090VSCwS27xeDwAupU/bAfG5L7H4xGmNs+CZA97m82GUqkEp9Mp503xYOpcLgeXy4VgMIhDhw7h4MGD+N3f/V08//zz8Pl8eOaZZ+ByufBTP/VTePzxx6U67eMf/7iwxL1eL/L5vLSoq9fryOfzEmf5fD6Uy2WxH2+++aa0hXK5XPD5fMhkMsjlcggGg0gkEsKGZ6WR9muTyaS0fXK5XBgcHJSzWnZ2dgRrYa9/7nfK6u10TqfTEXKJtkvAbizCKrD3++Bz9vX14dChQxZGNbBLLiARjfqJMbHGfagr+Do/r3EIVpV3Oh0h0ZgECAAWxrWOZ8rlMs6fPy+Y1dDQEIrFopy3d/36dUQiEYnTWCGj8Q9ei/tNz4O2n9o+kIzJSiH2wed5r8RTAAhZgf4WsGvrOIedTpf0NjY2JpUZurJXV3loH4DyreMMM8bTvzNpMzs7i2azCY/HI6Th9/PQcqifk/6Cflbik/rMXE0C0UlFJsjZ0lh3qtGEP9pV6l19Nh/vSfsmJATwDCAC+ax47XQ6KBQKaDQauHXrFqLRqBC+idvSTvRK8Gn/aL+YQMf7fA+/26yU0Pgwf2oyRD6fRzabRSaTkXnnNXSHG12ZZ8aW+hl0TEG9of1kU241yU1fQz+flo3+/n4cOHAAb7zxhlRDvJPxriUhzAUxh2lQ6JwxEaGBMRME6wW402nTLH9ep9Vqwe/3S88sfQ3NNNSfoUIrFArCGtPsChP04WsE2RismQ6fDoS4kcyeWXw/gQgKFOeJz8rWJCb4x5/FYlH6nplzqTeuOUzFye8zFevbBZIcH8QkBJ08KjQ6tXRmNagE7O4Zh8OBSqUilQ5c73a7LWWxDM5pJDnXZJltbm5KT0xWC/D/VFJbW1uIxWICYABWhgXlzmRO8X50FppyykOACQgMDAygVCpJifD09DQ8Hg/m5uaQSqUAwMKO0waG30OgD+gyyHRVkMfjQSgUQjqdlrmkQ6aZ4XfjMIMurfP4uqkzNSBis3VZJWxTRCPEc2pMPWqCLGxRQ/2j9YlZlUWZY3s77VDoCiBtnBmQaICT90zAP5PJoL+/33Lwswb7eG+6pQFLbc0zGLQOJbOdst9oNDA4OIhUKrUHhDENMlv1cX/y+nTQ9wOqWF7KtdAVbPq59HrqddGghr4vvj48PIz19fW7HiDm0Cwayqdm93PNKXMEBjSwAUAqsAjA9vX1YWtrCzabTQCuZrMpvcf5HdxX2n7rah19fwQc9N90FZcOhLTfEYlE8JGPfAQvvPCCgBsAsLa2hmw2CwAIBoOYnJxErVbD6uqqyAmvpYM0+kEmQ4xyplvWEGzRFUR8rrfz/e70QZuu7UsvQBvY9X1ow6nn6vU63G635WyFTqeDcDgMoBtAPfjggxgeHsZTTz21x4fiGnL+mejX+5v3R4YoB2WMrUI0y4n6kWeb8FyxUqkkLHi2+7DZds9jq1QqloOidVKZNoGVC73mTOsrfr5cLqO/vx+xWAzb29tyDQIn7PG+vr5u6V/NeSfYGAqFxGfaD7w1fd7b2dJe/nEvkHq/8V7qYA349PLhCdbpSkL9rGRX61ZItFOmj2CCNQQGbbZu665CoSC+pH5/q9USPaP9wnq9Lr3ddQDd6XTEL+DfW60WisUiKpUK/H4/7rnnHqytrSEYDGJwcFDOi2o2m9jY2ECxWMTk5KTY+zfeeANLS0sSszH2sdvtUlHHw3T5nZogptn0WofqWFNXhKZSKYyMjAhg3YsRbNr7XmvXC9Tga6ad4XreaUmITqdj6QygwVatP0hmYns2xkW0uYAVuNJrrIFdLdepVAoXL14UedfgY6FQkCpdTSoj05n37XA45JBangPR398vZ1XWajUhOToc3XZ7n/zkJ/HKK6+Iz8HDqicnJ5FIJFCv1zE6Oop4PI5yuYylpSU0Gg1861vfwtmzZ4XIGAgEcOjQISwsLEgChBVGjJvYWrJWq0lbvHa7jeXlZXzpS1+S+V5bW5O5zOfzuHDhAnZ2dpBOp5FMJgU3YFUbMQkmNfRZWgQfY7EYWq2W3Btbipj62ByMVbQe0vZAg/Dv98H9ODg4iHg8DmAv+Ygyo/1FkqJMPcChP8+f9OOIX6VSKUsXEt2dIxAISItlzifj9Wq1KnsqmUxKDMnK22effVYIAcPDw1LxyX3BhHOn000y9Op4ou0KyZbRaBQbGxviL7M1NADZK5Rrt9stFXGmv0p/Kp1OI5fLSfW09pv4Ho2DcdA35tpRf+gWYfo5Jicnsb29jcXFRbne+32YeILGEjUBwLT/1AFmpX+n061+IWl7Y2NDEkpsD6bnUJNYaF+pG3Q7LN4TK2gzmYx05CA+Rb1Kuc1kMtjc3MT09LQlJiLZhj6A2fFhP6IAn3+/eIiYsn6vxi10ErVeryOdTqNYLEoVu7ZXfG5t/0xih9aJOknL2JgyWqlULHiIJpdqUqX2e/W9m77OxMSEJO3faaLtXUlC0EHgMAVTCy2FVCcDuNBURHoizEXupVg5dCaJzrdmg5kAlw4c+Zoux6JzqRdSlyqzZ53H45HssmZQ6eygBub0MEFFCgaFRQeyNAJst6BBKwJinU7HclBXLwfWnDcT4CKLmM9NYM1kFJtOAv//QTmwUg+WzVJONGjLrLGeY8pkrVaT3pt9fX0oFAqWZFQoFBLGI69B5VAul6WqgODu4uKiMERarRaSyST+y3/5LyiXyxgeHsa/+Bf/Aj6fT3qNAt1+iRqkBXYrekyWAuXR6eweQLW4uCjtlJhVHRsbQzwel/58dAr0fux0dtuLaXYbf5pKtFarIR6Pi2Eha92Uyfeadfj3NUynWusLwHpeAP9vOrFMdHFdte7VZ5SYQwO7/Mn3acNorpkG0rSOMR09Jgm0zqdDwgQXn5MVQXQAuRfogGpGIeWN30055L3xfsjo2tjYkLnW7RyoC9kjVBtfHlrMqiQ9L9qOaZvFZ9YAAe+N+0HLsRlw087pwFjfU7vdLQPmvH4QBmWGwCn1WSQSkSSw1hXcPyQsMFCm/8C9wrYvnG8eSFqv16W1XKPREICKYES73cbFixdx69YtHD58GGfPnpXe1BrEo53WTqLea1o3EhBLp9PiI7Tb3WpMp9OJmZkZ2O12JJNJZDIZkTnqU1ZEaMdSM8g0+8fpdAqbbX19XWyS3qcmyHy3Dibt325oG0nCCYF0BsX6vcViES+//DJisRgymQxarRZGR0ctfV0Ba6l2o9HAxsaGsBe55+nz8buBXSY615YtlghmMJFx6dIlrK+vY2BgAPPz81Ldw8oC+iYALPuI+pdywPJw6iB+rwYAtX7kv0ajIUxKm82GWCyGQCAgTDCbzSYHvTJo5TUYwFK+w+GwtADQZJpePi/vSf9f2zPzXk2guBcwrK/PeXgvyRFaTwDWamcAe2yRGcgGg0F84hOfwNzcHFZXV0XmqtWqgJW8rvY3OPdswUIQUrMNqU8oh3oEAgEMDQ1heHgYzz33nMRNjE9YHawTo2zJFY/HcebMGZw6dUoOqyXzu9Pp4KGHHhICHGOrra0tAFamH5/j0KFDYuM1a5J9qel7mPOr9wbnk7Y6lUohn89Le0kd1HP+e4GwvWKIXjKp/QH9nl5Ayvt9rKysSHWhbmPMNi+6iof6RBMHSUSgTOpqNdpdnUDifO/s7CCVSiGZTMLv94sM0W/u6+tDpVKRRAPQBW7K5bLFF/D7/Xt8OMozzw6z2XYPxHa5XEgmk0KksNm6h7STEc4K1yeeeAKnT5/GK6+8go2NDUxNTYlOJDgaDAZx9uxZAZT7+vqEEEb/he3CSKYhAYPgndfrRaVSwcmTJ3H69Gl8+ctfRqFQEH+XPhf9CSZU2LaJe0B3eyAQ7nK5pI2etnOcYxN8A3q3KdTApAbZ7oRBWRkfH++pq2ln9X4mW5vJJFN/m/qYf+OcO51OVCoVqT6hT6p9ZMZaGoDVsZrGq3ifTDQUCgUBhNmlAYAkCu12u+AFBH/5vfrZef/cw6FQCJFIRGxLNBpFf38/ksmkrDmvkc1mRfZ0TKX1fq1WQyaTQTwet2BrfB6NH2p5Yqs2Dso0E6CmPbPb7Th8+LD4YHfC6GV/gN3W0LSDxE9pUzl01RhlJRAIwO/3Ww4dZ1JKJxa1TGq9wb3udrstiQhit/wcbSur6Ox2u1To8jtXV1cxMTEhdkLjIvw/713H6hrLMIf2N7WPRb1MDFdXben4nRVhrI6mDuyVdNQ6kL/r/a9jM+2D6EH9QZ/MJM5zPjRup2VDD8bSJPObxK39xruShGDw0MuB4oNog9IrcOX7TPagZuj2yr7wsxydzi5DRZeDmAAXlaWeWN0OikqL1yaLkPfgdDoRi8UQjUbFkeRm1AKiD/zTLBSdXeJ72XpGH1pIwdXGQQu5ngf25HO73Xt6AuqNpNdJG3LNujSNgH5+PUyj0W639yjgD8IgkBMKhSwZz/7+fmFg6aofGkwyHLLZrPT6BrqymM1m5RBqOocTExNy8BjbJNAJ7u/vx+zsLP7n//yf+PjHP45KpYL19XUkk0n09/fj5s2beOuttyRhUS6XUSqVMDQ0hAceeEAOs6OTYDKOuP401AAQDofF+ZiamkIsFkMqlcLly5dF4TIY41krDNC0ku4FptOoUF9wHtiOQYM6DA57Kce7YeiDkQFrttvcg3xdJ3tCodAep4LXYCDEBIUet3PkewXHmplgri+Di173wcMCqYOob+iQOJ1OBINBRCIRhEIhOQBVg/0MCBkUVatVzM/PS9KCYEEkEkEulxN9v7i4KN9Lo8lkIAAJBjULQM8fq+G4D/XBUDpZwPViktAEufie27EtaBN1kGXKANeU7QE+CCMcDqPVaiEYDEoAUa1WLYc2cs45f2yFAEAO+wUggQnPf2CCweHotqIj6aJWq8Hj8aCvrw+Li4t45pln8IlPfALNZvewtP/23/6byO+//Jf/EjMzM5I8rlQqCAaDIvsMDLl3tE4EIPfsdDqRTqeFke71ejEzMwOPx4P19XUUCgWLLqTv4HK5JBnTq3pG91IGIAxoMuW1vPK+6LDezRVoAKQ1XK/Ag3tTJyD4U7f6YiWB/tdsNvHaa69JhZ/dbhfgR1/btGlLS0uiJ/jTPCOG38kgnAftdTodqdpiv1xd6bO1tSXnO9jtdgQCgT1MxXa7Db/fjyNHjmBkZATZbBY7OztyyKOpqzSZBbAm1KlbU6kUWq0WKpWK9D9n//qRkRF0Oh3cuHFDPk8fii0oi8WiVGeyV7FeDz2fnCPtp2sQUt+/Dg4Baxyhr2naQv5kEuq9GplMZs/fzHvV92vee19fH+LxuNjDWCyGmZkZLC8v41vf+taeBJ0O1qkvtfxSHtiKRlc+6LlkEH7z5k0h4bjdbng8HmGVaj+UvoMGEvx+P2ZmZqRKjYmQ/v5+bG9vy54gO1JXMtLnaLfbuHHjhtiKwcFB5PN5YRDrlh0aRGk0GvD5fJJgIShOxmyxWBSmOu9Br00vMNGUOVMf8z29SAzm+t5Jg/gCfStNBszn8yiXy0L4o24hqMl4ir6n1j3c89RB1I1cD1YTUn9Stvge+p66kvAjH/kItre38eKLL0o1FgmLzWZTksWMf9g2mWAuz/t59dVXUavVEA6HEQgE5LDigYEBHD16VKqSTp8+jccee0xIJ+zkkMvl5H7vvfdeBINBzM/PS4997j3GgYFAQBI7TEgwvuL81mo1DA8Pyz4j8Me5poyT9UsfhQkQxpVsv8J5JcAWj8exvLwsGJAmjDL5pNvxUt7pC2uC6J2UaGu1WnKOmGmjGC9ovar3sMYStG3SOoPypbE4zqNJFGNyiLJrkrra7TampqYQCARw5coVC/FLVysRL6hUKlhbW8PQ0JBFN87OziKZTCIej+PRRx8Vgo/p92ocjhXHAwMDSCaTAIDZ2VlL+0dNpqHtp/8L7GJhmizM9pcam6TMmYleU/dqfcKfTIpy7/O1UCiEmZkZXLp06Y7AyHr5n5ogRVtJm0asc2dnx0JQ0nPIw8KZkGC3C/pJ1C3s6uH3+0WGqY9YLaXP8TVxUN4T9V29XpezEguFgiSL5+fnMTMzsyfG0c+o50LbYFNWzUEfSie8ea86YaavRV+Y7Zio9/T3mvejyTb6u7U88r3EA2q1mpDia7UafD4ffD6fReaZrNMVTL1khHLBODIYDCKXy71jEuS7loToBUjx5vSEmMxQ/SDsy8a/0SkwWcC9FDVgZSuWy2XJrlG4tLNGB1MHHwSNeJ86y6TZV0C3zQedAhpcUzD5DOwtqUvayRLgtTWTANgNzgCIESK4oJ1dbXAJJO7niPYKoGnwGcja7Xbpx6vfp7Oe2tCYQzvmH6TBFh10JB0OhwD0ZGJpOQFgYfAB3cw9AX29D7a3tzE1NQW3243h4WEBKsgS9Hg8Aoi1Wi28+OKLuHLlCorFIn7yJ38SP/ZjP4ZLly7B7Xaj0WjgT//0TyXooaJ488038cu//MsArEbDDM6ZxW02u710p6amEA6HEQqF0Gq18MYbb0hfU53BprzqLLAGvXUyjM+t9zgNUyaTkQP9GGzw2QHsqTS6W4ZOQuwHegB726O0223Rq3T+TWNK1vPq6qrF8JoJS31Nfi/vSetKygn1j2agMMCnw2cGEdRnmhne39+PyclJjI+PCyMWgKU1mcPhgN/vR6VSEWBkeXlZ2tRQLux2uyQg+HztdtvCtORPlql3Ot2KJDqr5howOCDbgc64vhY/R91gOnbaOe41dPLBZPz0AhZ4vpGpy+/WwQCfNrzZbIreZaUDbT51kWYAsi2BJhIUi0VJAvv9fkxPT+PChQsCrBFQYHD0xS9+ERcuXECr1cLDDz+MgwcP4tatW3C5XCgUCviv//W/yqGRDocDwWAQP/uzP4uRkRELsEK/RAePTDbncjkcPXpUqtgmJyextLSEa9euYWdnRxJcdFx5Te1Q8jt0IGG2m9RsOc4b/0adoZk9d/PI5XI996UJCJiMOb0/tR+sQYJms4lCoYBisSjMJ8qfJt/o79eHMPLanU5H/AAm/M3KFa6bx+PB6OgoJiYmkM1mMTIyIpUP1WoV6XQadrtdqgr0+mr/lwElv5OJT36X6SNqe8D7Brp6vFQqIZFIYHh4GJubmyLL1Ne6VZ72q2OxmPhBTqdTDvvu7++3HF6t4w/TVvXaA1pn82/ct/slHLRc8G9sc/JejXQ6vUcGTPtvMm/5HvoMr7zyCqanp+XMr6mpKRw6dAjf+c53LGc3mX6Jadt1gsBsGWYSnHhPjHlI4AqFQggGg8hkMpY2afz+fD6PZrMpoF5fX5+0FqO/GYvF4HA4sLa2hlqtJkk93r8GoggOMxbVLXt1fKbJB9y76XQawG6bB82q5T3H43HLeW96HThMP0uDGVo+NfinGY16Pe7Esbm5iZMnT6JcLkucrG2XPkC82WzC6/X2xBn0oGxq0gxjE7Zxps0FILGx0+mUmEPLSbvdPZPm5s2bEvOxaovf5Xa7paKCbTCCwaDsA/bg534dGBiQto9erxcPP/wwms0mnnrqKXzta18TMG18fBwPPPAAfuiHfghTU1PIZDKWdqVOpxNjY2PweDzY3NxEu92WpK/P50M4HMbhw4fhdDpx4cIFrK+vC7Dr8XjkzIbl5WX8zu/8juhBJjEYsxIj4F4li5kEOs4juwRsbm5KdbHP55PXeS2tjynzjCtM4N1kFHNN75QRjUbFdgK7epq6xWz3BsCSlGECSCdueB09J8R7iC8VCgV5nfPebnfbf7F1s7Z7jG+WlpakCknbT00aI2bGsyJYzfDtb38bc3NzIodTU1NSxUu/Vq+ttkc8F4VnnB08eBBXr15Fp9NtbelwOKSqjfczPDyMQqEgbf1oN3httpuizGo2PN8D7AKt3O8aY9OvdTodwfeq1aoFiJ2amsLi4uIdkYQA9voLOlbVPgQTrU6nU1q69ZJD6r56vQ6/3494PA6fzyf6kHiqrmbT1ePEQRqNhpB7mZSgTmCMzGSxjltY8cIzJpPJpLQMM/1TPbjmGlPV9tq03drP176NxghMfJYVmUtLS9JKUGO5nAPqQsqpTrppsgwxFl1lov1Xm80mvjtbnVIP9PJFzNhFv67xu7GxMaytrb1jctq7Ej1Wq1Xs7OyIEeXNcTK0Q9DL6eXQjFwelESWOIcJivF6XIhSqSS9+SmwZpaTQuv1eiWBEgqFRCHzvWQlUOh18MRDlnTQqJ1FDeRpVlehUMD6+rr0hjR7getMNO9Bt4niM5iMLP19HKYC0Z+z2bol7kyQ0PnulUDgtTVoaG48fp7K5IM2KCNkuNLo6tYFms3qdDqlTIzOlm7nROaMx+PB6dOnEQwGcenSJTz77LNicOkocv1qtZocDkaj+jd/8zcYHR3F/fffj06ng6997WtyTz6fTwKr2dlZpNNpjI2NSWseshY6nW75eKVSwfb2NnZ2dlAqlTA1NYWPfvSjwhz6j//xP6JUKiESicDr9YqSI8BHcFgrJw0Ecx/wd4Jfeo8Du1lqXY7HPtB3axJCtzPgMB0B7nftENlsNgSDQWEC6p7k1M0MzJPJ5B5Dq4EYzRgzATiuCQDRxToDz2Be2wVeH7C29iCTgdcaGxvD5OQkhoeHLa32NGirS9rJqCUrnPOj38vn1ge58+/U9ZQlndwmu4vz39/fLxVsZF9QjjWQyCSvCXTxOiawoPs08p45z5qFpudSg350hD9Iw+VyyaGJtVoNsVgM9XodXq/X8j7Kp25pSL3JYIoyMTQ0hKmpKWxubuKNN94AADlYjjoKgFStzc/PS0/PD33oQ3j44Ydhs9nw2muvYW5uDkD3DJJGo4FMJoMvf/nL+JVf+RXR+xrc39nZkUNTue8SiQSOHj0qSek/+IM/QKlUQigUQi6XQ7lcluQKHXPqVMqn9ll0stsMrujA9vX1CSuODCSWOefz+bu+EiKXywkobvpSeq9rnWsC1TrJpAM6/r/d7h7eu7q6avFV+Xn9Of39lBsNopMxnsvl5L06uA8Gg/D5fEilUlLRG4vFcO3aNeRyOSll1yC6DjQIfrD6iOc5mKC91m8Epzg3rNTtdHbbPgwNDUllBQOicrmMdDptSaxRdlut7nlY1K3Ud9rmaODG1Mn8m25HxKBR+7T6Oxno6eczfXD+TkLPe1mNxpZW8Xh8T7tN3jfjIf6dgz7tm2++iWvXriEcDsPv9+PSpUuYnJy0VEGY5Ae99nyNcY32T3R1mv4MwQcCzGytYLPZsL6+jlarJVUE1E3Arg/t9/sxMDCAVCq1p083wdVQKIQrV65gZWVFEgQ6Md1oNBAIBCSozuVyePXVVy2ENLvdjsnJSWxtbQmwpMEAh8MhgB7JOdTl8XgcNptNGMC6RYMJiGgZ00k0bfPNddPtG/Rr+xEd3q9jfn5eqp0IRFJ+NIFOx8ia2NdrmGCN1t0Ezfv6+pDL5QQkp4zoJBpjdPplFy5ckMRtLBYTsIvnJBA4ImmNFQudTkfaHtVqNXz605+Gw+HAs88+i3q9jkQigaGhIfzcz/0crly5gkAgAJutS0y8cOECXn31VTz55JP4zd/8TSHjMA5k3BCLxaSlUyqVkpY5c3Nz2NjYQCKRsNwv5S6RSGBrawsulwvFYhE+nw/tdhsf/ehHcePGDayvr0ulMeWOvoWuTNF6s1arYWFhAQcPHrTEgA6HA8ViUUibtAPcH0wysuc8YGUl09+hLNwJg3iS3tucMxIVtV7m0LaMQ/sf2j5pIiDlVccVJrmUiQNtN6lPMpkMqtWqxR63221JmEWjUcEJiC9ls1kkEglsbGxgfn5e7q/ZbAruoLER3rfGBJgA9Hq94s8MDAxInNZsNuWQbFbPAbC0EWRcxMoJxgF81l7+G+9FE5RN3WL6OwDkfrXt8fl8SCQS0hLt/TxY3aDtha7Spn9EPex0OjE8PIyhoSEsLCxge3vb4sdqfwwA/H6/6E2ns3ueA0lzPp8PkUjEknRnLE+9ViwW5Twe3aVG+xSswPL5fKLTub68RjKZlLajTNCZ+IbWUSaGoeWU68w11zKjuyXoto60V7lcTnTxzs6O2BYzrtdyqg/d1nEF9wz/EQ/U1ancfw6HQ0jEfFYOrq1Ogurn1HEPfx8cHNyzf2433pUkRKvV7WM1MjKyx8HpFTjpnoxaSBuNhqXPps3W7Q9rs9ksPY6BXSffZJ+xv6yeJH4vHRaCtvwOCqwWPM1aMR1Agqz8GwVfKxu+phea7Xp46B6zpMyAaxCL7BldjkMQm2AWnWver+nIm0ZYK1iv14sjR47g6tWraDQaCIVCqFarKBaL8l5zDbVwm0aO68E+bx+0USwWJbGlnVkaep4NQnaf7rUIwAI8BYNBBAIBTE5OYnR0FNVqFd/+9rdFMdlsNklgAN35p1GmA6xZWdevX8fc3Byi0ShKpZLIlVkqXywWkUqlxMlkQqFUKmF1dVVArStXrmB2dhadTgf33Xcf/vW//tdSseTz+ZDP5+H1ejE2Nobt7W1h1NGJ2dnZERYlr0nnmPJM4w3sHpbFcyzIviH7TLd5upPYL9/LYLKJjCEz+OQ6aoYzDSMrw2jwzKQwg3av12vpga/l03Q8TJ3gdrvh8/lED2azWblXDgbgGoSgXmZrBF02y0A9kUhYGLY6eaKNMnWnZlcxKOV+0Pap0WjIgYHaydDzyO/RyVWdOPR4POII6dJbc31Mx9XUrzrI4PWp83kvZkURgb9eNpcOygdlsAWAdur6+vqQzWbh8XhkLrUPQBBBJ4zpdI2NjeHo0aMYGBjACy+8IPqPcmYGhXSkGUi322185StfEWb29va2ABnUWTxkl3acIATBr1wuh1KphEqlghs3buDKlSsol8v41Kc+hR/90R/F4uIi0uk0Wq1uiye2wymXy/D7/chms8L8orzSgaceoH2i/Wg0GlJWzfvRASpLnKmDBwYG3vEBZHfqIBA+Nja2BwDk78Dekn39U4Ni1G2mrqYfbbLwNDtWDw3OdDq7FZX9/f0SmNMeMpisVCrIZrPS0zsWi2Fzc1P0oK4mYzuFTqcDn88Hu92OSCQi4BDBUwZLuVzOote1z61Bfm07ms2m7FG/3y/AmN/vt5y/w0BSJ710kMeKJ+pNHohKf0nrW5fLhYmJCYTDYXQ6XULHjRs3MDc3J+/VelVXn+m57wX2mOvD/fleDbJW2Q6DQ98r4y3aCx1U83USbKLRKHw+H1566SXLWYA6MDVjEP6fa0E9q+2o1pv8SfutW7nwzDPOfV9fn7TSs9lsGBsbk57TbDdqrhGTFg6HA0NDQ1hZWRF5J7is9y7nh3uU90LCUa1Wk7hHMwJpU3RLJv5zOp0YHByUezGTOJz/SCSC8fFxaZvjdDqxsLCw58wYLY8EuXvJI9nrd9J46623xI9j+0OdlAR2ASHadZ00Nwc/owkdjLNttt32NwBk3UhqJCgEQNrhUj8DXWCN/jaw6x9SjliNzDjv0KFDuHnzprQII6nl4sWLcuaF0+nE4uIitra2cPXqVYTDYQtZhgm3mzdv4uLFi3j00UelEsbr9Yr+oU0fHBzE6Ogobt26JVXkOzs7WFpakmfqdDpSCbyysrInAT0yMoKPfexjyOVyuHHjhrRt5OGvei9QJhnzer1eaWHJil3aAu5/Vgi2223pVU6/jbGgJlPoBD+/+07BIfr7+xGNRi36kwkIc2iwk34FP0OdQxKXCapr/cLKHB0TUT/wd8ZRWj8xgaSvw7/n83nY7XY5E4X6vl6vY2trC+Pj41hYWLDgVMBufM8Y0Izt9HczOUZ9+MILL8hnisUirl27JjLDz1IX6mo83ptumcbRCzfjT61fNSCv7R/XiWuiib42mw2JRAKXLl36uwnL93GQoArsragxh83WJTvyjBcC15rwAcDCytfVNi6XC+FwWBLArVYLw8PDlnieREqdOAsGg3A6uy1qeX+aaEW9wriKB61T3nZ2duSMPd2yej8Z2I/wZ8oIAEkAa5KjjjF5vU6nm/RbXl7G8vKyBQcx96/2obVs035xEIchNsZuFwD2HFPAcxNpx3ph9lq/akI138u5ZjKSlYDvZLxrdfTb29sYHh62LAJv2hyceA2IdTrdKgaPx4OhoSFsb29Lv6rx8XFphaGvq5nSgHXBAOwBtBiMa8COCqRYLIrR5fVpyCnY3FRkkrndbjGaVM5aoWumLp0XZnFLpZIICJnvfI8GS3RAR0VGp1wbIG48XaKvBVY71Z1OR0Bfm63bq47Zbf0+zoPeBL0y8pz3ZrN5xxy6826PWCxmYejY7XYBYhksUYHS6eXG1+s0OjoqJbWrq6u4cOGCrDsdTpa4er1eeY0yxgyrDraoXPiZUqkkziYZDwzGWVHgcDjg8/lw7do1/OEf/iEKhQJCoRDuuecePPbYY9ja2sL8/DxyuRySySTcbjcOHDiAhYUFmQceiphKpURGNLhKGaPzyVJql8slQaF2qgjCa2CCCQ6HwyHg2d04WDpLBpQGsYC9zEOdMMxkMhgYGEAkEhE9pT9P3cbAxAzatUGmrtHtlqgrvV4varUaotEoXC4Xbt68KYkHbXSpVxkAsqKHOoT37ff7MTk5KSxXyiWwC67xOenYEiSw2WwYGRnB1taWtOswnaj+/n7pN0zgjnaF86MdCA2mUWfTkeIw2cA6kWYGBdp51X/jc2q9bTotOrmk11+DR7109d06GIARZAe64HGxWJSzF6iX6CQz2GWiJxAI4MiRI6KLzp8/j1QqJYwuMnPtdrtUBxBQAnYZqNoOUneRicPvJRgUDAalTR7v0e/348knn8SLL76I/v5+HDp0COPj43jjjTewubmJJ598Eg8++CCcTqckHWw2G4rFImKxmLQ6oD/A/UCfi8QH2gECaWRMEjjT+kGzxXkeD/2ZXn3n76bRbDaxvr6O8fFxAL2rT3vtba2TtT+nh9ZJZqm0HvR1+RrtH5Of9KUJyLJdCIMg2kibzSbyH41GUS6Xkclk5IC6AwcOYHl5Waqb2+021tfXhcnr8XgwPDwMYLdFIIFg+ugMWmiPtZ3g/XMPEJxiixPOlcOx21OZgNjQ0JAE9NxflMv+/n6EQiEA3RZEupKM303dfvDgQZw9exb5fB5utxvxeByXLl2y7BHqbjP5YPrSeg31oM3Y3t7+3oTt72EsLS3h2LFj4vObo9PpiLxogJ+vafCFh3hubGzIXGm5ND/DvxNY0++jDwrsgr3UgY1GA7FYTKoZq9WqnEtBXU1dT/9VV+foKnhtE7VOA7p+ezwel/YgvH/KFds1aXJYIpHA5uam+JrcJ/T7+b5wOCyt3MgUpb1h0s1m221/YAIcLpcLP/iDP4hEIoGbN2+i3W7j6NGj+OpXv4pr167JXJq+4O2ICQT67qRx+fJl2O3d9nC0Ozp5BVhjUH34qIlHAJDP0p5pAkwvMIx+BZMaJAbQvtJfYPUOq2V5PwSjgG5SgnLidrvxj/7RP8If/MEfYGVlRfznRqMhFV6sOOT+nJ6elvNQ+Gy89sDAALa3t2V+GFfR5wa6PiHPNrHb7dK6iYkIYgK6jYkJaJNMeenSJdy4cUNICdyP2ofWIDflnm0DL168KD6IBozp03NfMF7mntHrqwdjCl39eSeM/v5+C6nVrNDWsQtgJYWyGoSxtgZ9Of/0c/XnmXzSOlcnFNgFhPLDzgzAbltdfpY+B/UQ/WnuM8bojOGHh4clWdff329pR6pJYOZz877o65DYaSajtPyYyShNLuaz6iQi55WvczD5RvKwjlN7vV8PrW86nY74Ke/3USqVMDg4uCdBrudax7BMarFaSesMjkKhIAeL028ksZSx/ubmJgqFAlKplBBPiZ1x3+vz7ehjat+b/rY+LJvrRv1AuSmVSkJaAfZ2lenls/On3lOcC22T6YtonE/jM41GA/l8Htvb2xafinuKc68rcukjaxITE85MEPb392N8fByNRkMqi4kJ6njV5XJhfHwcrVb3PEVd0az9J/M5+/r6hKBkzhHJae80LnzXkhDlchnZbBaRSMRSBsrJ1wxlGm89+BCpVEqy9ZlMBg6HQ5gtutUK368zkGawYCobOp+mw8ZhZu4IHOvvs9m6LT9isZgwyfkZVi/QiPP+GAyylx0PVNGZKgZ9NPw09gBkI+kzJcj0pKDyunT22dZqvwCJrXs8Hg+2t7ctz2kad838pBCayQmHo3tGwd3aDuftBtmButy6UChIn/J4PI5MJiPrFggEAHRljqCjzdat+NnY2LCcA0LHmxlcOrpUqtwfPp8PW1tbopi1M0rjyRZgACQD3Wg08OCDD2JyclJOtaeCunTpkji9lUoFzz//PK5fv45/8A/+Aa5cuYJjx44hFovB6XTiiSeewG/8xm/I92QyGUvFBw+V497UlQ82m016NzLYpCOmy9VYXaH3B9lDvWT3bhmdTgeZTAZjY2PyN5ORrXUUfzJoajQaiEQiApqzBQZHNptFNBpFIBAQVp8JjtMJ1Jl0zrf+G5msDBop48Bur3k6pjSMdOjoDNvtdhw4cAChUAiNRsNyaLpOOGjAgIaaAVB/fz9GR0cl0NIOKVsoMfGt+6lrg+9yuSRprB0NAHLocS8n1FwXbfPMZLr+yfczcGXgazoBtDs62DId9g/SiMViloRUu91tb8MDyfTfWYVAAgBtdKvVwltvvSUJMdpn2lkGD2RFMlHLw6spOwzAeA3dP5q6zG7vVsM9+uijwlKnI7+ysoK//uu/Fj29vr6OQ4cO4Rd+4Rfw0ksv4d5775X+6J/+9Kfxp3/6pwC6+mBjY0PafjDY1P4Pk9SscqNdAHbPjaBMkR3Nyg0d1GobwfN47ubBEmnqHw2C6L3WyzfSIBDfo/ep6afq1zjnlF23241EIoFCoYByuYxwOIytrS2RR7YU43eazEKuI6sA1tfXLaQDAlHUo5RjJinI0CR5gc/DRBe/j7qxFzBtAlrBYBD9/f3I5XJwu90IBAICxvF95XIZN27cQCgUQigUktYfvCfatWq1KnFDr3Vxu9247777sLW1he3tbRw7dgzXrl2TZIG2I/TbAYgfZa6hqbf1a2xt9V6PQqGAGzdu4PTp03uYr/o56JuaPr5+b7vdllhFv2YmHXqRI/r7+y1BOP0Pyhv1Jok1c3NzwqrVIFun002IkKiiWdpa/9IPpx8E7AL0TGSwhcetW7csdlYDuNFoFI1GA7lcTnwBtp5ga11djQtAqkF1MkxXJwwODmJgYEDaDPGZ9HC73YhEIrhw4QI2NjYwMzMjJCad0NTJRuoTcz0ACJHtTktCtFotpNNpHDx4UNiVGmPQQAznUbfOY6JWg478nAZaWq0WIpGIgKz0VRl/6TYgel0Z+7Xbbekvnkwmkcvl5N4IuNLPJIBz/vx5lEolYeXSTtBfJcbQaHQPRv/IRz6CP/7jP5bqAWAXFNStedvttsRPOrFIv5h/9/l8otM1KYMtKNmymiAs5S+ZTOLq1avY2tqSZKFmldMnYBcAzicJn41GA1tbW8KQZ3yo8Q2uD+eMfhl1Avc7v0cD32w7cieMQCBgYTFrPQTsZV1rH03LMAF5YLfNmE5Ian1AEhXfZ7Zeom5mJY/H40EwGJSDodfW1lCpVHDgwAGcOXMGTz31lJzFwPvTZ1exQ8mpU6cEg9CHstvtdtGPpj3hNbU9DgaDmJ6exo0bN8T/0XubPprdbofP57OAzAAsPjftCs944z1o8N1MjtCn0vOq71XbPR1fcH3vhJHL5Xr6OGZiAYCsN8+4MWWWI5vNylmp3K/BYBCNRkOS/azKZiWQJu9Sd7EVY7FYxMTEhNwr42Z93/x/MBjE6OgoVlZWLJ0h6CuaSUsznqe87Iep0oZov92Ml3gN6sq33noLGxsb0gaP32Vi0Zosp9eAelx3e2BHlsOHD2N9fV1IO7qinT67z+fD8PAwMpmM6HfeO++TyRTOJ/3EXqQp7lOu7zsZ7xpVst1uWzI5epFM56oXUKgVT6lUwtramoWh93bfbTrAplDxda1MzL/pUp9Op2NhiWsFzYNVGATxe/VBwywX1cATv5NOAZU/P8+sWblcFqHUAR6FWbOQ+axkIgcCAUvJqL53fg+ftdFoYHt7W3q77peAMI1BLyMBQA69+iAO7RAQEGdbpL6+PkxNTUkFC9DNMpfLZUv/e10qzUN+OMh65XuYbWQWuV6vY3t7W/YKjSzZDFRSdDR1f+BwOIyf/dmflSSHVuaf+9znMDExIcwfl8uF5eVlfPGLX8Ty8jKuXLkipbNTU1NIJBLyjDowonEhAE15JXutv79fyuJ6BW2dTgdbW1tot9tytgCVKh1kOjV368hms7JuNAyA1UntBRrQQd3Y2MDq6irK5TKi0aiAAly/arWKiYkJMfS309N6nzOAKJfLCAQCqNfryOfzGBgYQDgclvdrB1cfkq1BBBqvgYEBRKNRC0jM9dV9Kvl8lAECZwQL2R5Nyzv1oT7QMJvNynfRGOs55Fw7HA643W44nU458NsEDjk4t70SCOZamU4N58usONHP3csR1mvGqr4PwmBFDf9R39lsNkQiEfj9fst8aUeV+qlSqaBcLlsStbS7bO9BJonN1k32F4tFSQbTIaQTSfmuVquy11gp0Ww2cezYMXzsYx+ztOool8s4cOAAPvrRj8rBkzabDW+++Sa+/vWvw+fzIZvNSuXOuXPnpDqM/oR2AJkks9vt0maBrWvYg9U8O4vzkUqlRIb5OokWZCh1Op09bdfuxpHP57GxsbGnoqlXMGLub02U0UPrA/1PM5V4HR0IjI6O4uzZswiHw4jFYrLGXDeuN7DbJkwDlqFQCJ1OBxsbGwJyUaeSKKHbcuTzeVQqFUQiEYTDYQtDkmAZZYO/MwGh50PrPh3QsBycRJtEIoFEIgGHwyH+Ef3VTCaDZDJpIRO5XC7pH8ygi/Om/QECc263WxKU58+fx8svv7wn6NPgA32h/eysuaZcc87vez1arRZu3rwpZ2sAe/0EBtD7+e/6OVkxCPSO5fRnuAZ2e7dKR5PPbLZu+1EmvjjPum2nDohZmdJutyUJp33nwcFBRKNRATkAiK+pq8IYl3k8HkSjUQwNDUnVTl9fn/ilHo8H4XAY4XBYwBIm4EiiALpA3fj4uMReei/qGJOyxMOEWZ2sW+Dqf/V6HWtrayKb169fx5e//GUkk0mJBbWO0dVLel24pgRm77QYrVar4YUXXpBn0mxnHUdzboGu7LDdsQZugN15ZosxApgknFBP9ff3Y2JiQmwg10HLillRmUwmsb6+jkQigenpaZFn6tnNzU3xv1utFp5++mkkk0mEQiHMzMzgxIkTOHnyJMLhsFQm1ut1nDx5Es1mEz/yIz+Ce+65R6oqKf+cD+2/E4eh7daAqCba6FZfrVYL99xzD/7dv/t3+OQnPylnDzLJNj4+jsOHDyMYDKJUKiEYDCKXy1mAvmAwaOm/zjVpt9tSZUkyUyaTkbOlSEZifMq9TqJls9mUZDiTJhwa5zBB9/f7YEUUh14bjl52RsslK2j5LxAIyCHoWqfQP6CfwfbnukNDX1+ftIRmt4Xl5WVsbW1J3/pUKiWJpMXFRelaYhLCONgWMJVKCQDMmFG3he6FK/H/1On8/Pz8PNLptOzdTqdLnDhz5gyA3VZR1AF63rRO4BlnAwMDliSOniP6QnyN864TmL0qJ/lMZux5JwzNZNfzBvRORjCm5+u02/ofzxMtl8tYXV0VQJu4T6fTra4m9suYyGwhpAli1Adav/H7NKHEbrfj+PHjuP/+++U8isHBQUxNTWF4eFjiRvPZdJyo/6+HXndiBZQx2hX6ntSH29vbWFxcRLFYtLRXpJ602+1CVtb4A7BbhcyYkn+nvI6NjSGfz2N5eVliPO3fMcaIRqPSLtDhcEhVPZ+zl7+o90YvbEPrmncy3tXdUCgUhDWth+kUmTfO3/kaFcfW1hYcDgfS6fQex8kEdPg7BZNgPxmBDJB0dgrYDdI0mGMqCu1U6nYFumKBTk+xWJQkAh0TAlEUBCo0nR0zq0NYVloqlVAqlYRhwGsRZOP9+f1+OT/DVBb8HtOQsa2PyZwxh54bvWYcTmf3wO33A+vrvRq6VQwAAX1Y1jozMwNgdz2oiLT8aUXCtSIzTPctpdImO4SgQalUEjnjuuosPMvatKPQbrfxkz/5kwiFQsLOoZwD3WTIz//8zyMQCEjrF1Y5sDqCyRCCeLx33XaH+5DGm/fjcHT78tLZ9vl84uzX63VUKhUBD9h7l3JPwK/dbkv59J0WYH0vg1UimmXNNdbKX+99DaJTn6yurgqLRR+KWKlU4Pf7MTY2tgcs0MaH8kSdwu+gnmbbB7II2bfRDMp1YpT3SDbAyMiIBDEOh8NyUB3liEEm9TurZ4DdQJUJA8o1v4+sIbt9t+yb+5B9K4HdftnaGBNs1kGodlS0vuRe1yXDvI7+CewGksDuQd2cK72m+31e/7/T6bwvALDv19AgqGaeUAYSiYSsj9Pp3HPAOK+hE5lMVPGa7HusQbK+vj5hRgKwnNNEWWE1Ae+PwNgXvvAFC7OegGq1WsVP//RPY3x8XIgIfX19WFlZQS6XQ7VaFbmmM0rZoU7Qss0AnuBJIpGQJIZmVNKWkPiQTqdRLBb3MHoI3HCvvlNn804ejUYD8/PzEtiaw/RD3w6kNl/ToAL9Q+0ba73J6sh7770Xg4ODCAQCe5Jr1EuUE66hBj4JXhBEo/0nIzCXy0niOxKJIJFICHucvja/VzPYaNf3mxPuTbaC6u/vl3aW+XwehUIBq6urkugieEzmptb5fA/bWZBVDOyeQaCBcLvdjps3b+L69eu4ceMGrl27ZuldawIEvWIVcz01kM/P1Ot1Sy/193oUCgVcunRJEvbA3kSEmYToFZ8BsFS47Dd62alQKCRAj/ZTgF0ms74f6jWdeNfXZ7DOe5qenhabTLurQQlgtzKdLT9ttu65gwTbAIj/S0Y820M0m02piGRSmvpbV+3o5AD3NPW0zdZtExmPx1Eul7G1tbWHIMF/zWYTmUwGN27cwI0bNzA/P4/V1VV5ZjPwJyCh18rUN0yc3Emj0Wjg9ddftyQetM+lQUCtW1hxQPIAz+Zg8j2dTsvB0yQ36XjFbrfjxIkT8jvXnUC71+u13AdZ/9lsFufPn5ekNW06D6MlWbFWqyGbzYqcF4tF3Lp1S1qD9fV1D8aenp7G2bNnUSqVMDIygl/+5V+G1+tFMpmUOCCdTmN4eBiHDh2SWNQkyGj9RBCY8Rgr62u1GorFIr75zW/i+eeflwN+K5UK+vv7USgUUKvVcOjQIdjt3f7/w8PDiEQiMt+MAegzAdYD2jlnel3YRUHrIN6vBpF1pZ2OkzXOwffpyrX382DViAl+mgl0rRNNoJ/dELStY5WqPuuH/gvjJbbG0XhDq9VCqVRCLpfD9va2JEntdrucWRUMBjEyMoLh4WHcunVL/FyXq3veEtnYPKOSiYxLly7h5ZdfRqVSkdjT7/dbkk4cph9FfU8bv7W1JUQjJnJarRZWVlYsfpomY2liF+eOZ2PpBDIxB6/XK3En/+/1euV92jemf6zXi5jdfjr5/TwymYwA3DpGMhM6GnQuFAqy9xl369FqtbC5uYlsNouFhQXRFZRXnifApCeTE7oTjI5vAoEAAoEARkZGpJMDz6bweDwYHBwUokw+n8f8/DwmJyfxyCOP4Pjx43LuRC8fWSfnNNamqxIot8RXSE43E1/0l3l2JokOJOaS2EW9rclE9MkpU3qvejwekVv+ZCXxlStXkMlkhMyhMRBiNqxCczgcsud1POp0Oi3+PLFnjaFz8L40mfqdjHe1LqjdbmNtbQ2hUMjSH5CLRVDFvGkNgOuf5XJZFswM2Ho50FQKVBJkIFIgqLS1o0gF4Xa7hZHD4IbOiQYVXC6XlBzReaSjzGAfgKUPug4wKSS9ei1qoFY7ze12WxwoChtBKoLc8XhcjBA/r8EJc/4I+ppBtemwaEPIedaKhXPKrOYHdbjdbmF/1Go16aHY6XTg9/sxPj4On88nlRGm06TnzmazyWGmACzXKhQKwuYCdo0q+97b7XbE43HkcjlLCSC/g7JDENjj8eD++++39DjVslOv13Hs2DEpPSfgf+zYMTQaDczOzuKxxx6Dx+PBN7/5TfleAm4E7TQ7kkqfybWlpSWMj49LIg+AlEETGOEeZYkzr91sNqVNiq5MuhtHvV7HxsYGotGoJfDRToIOSPl/zokuSV9ZWcHx48ctThuN5ujoKFKpFDKZzB4wgfLRq0Kq2Wxifn4eo6OjYkxDoZCcFaTP9dH3SVmhMY9Go0gkErLGNJD6vBMN9tbrdTkcmsEd74+VEbr1FAGPwcFBCQJpp8hyAXaTXAQQgF0nTCcg9F7U88HnNJNEpq2z2WwYHR3F5OQk5ubmLGd/sLpQzxM/y3vWjiC/j4DJB2XQeeSz056S2XrgwAHcvHlTQFfKik4eUbYIJGhgn+CFuZZMhrG1AX0d3daLlZE6OXXo0CFMTU2hWCxaSBu8h4GBATz66KP48pe/LG11xsbG0NfXh9nZWTz66KPwer346le/KixGOugauKP/A3Tb71WrVSwuLmJ6etrSFoI2SbeEsNlsyGaz8n/dkspM9nwQRjKZxObmJkZHRy1nh+k9beoAE8g1dbM5KpUKfD6fpRWo/nyr1e3LT1b24OAgNjc3kUqlLIkuyoAJ3GngVidHeV+UEQ3E+nw+jI6OIhKJyPOQ1cXgjLaFQYueA73H9L9UKoW1tTUkk0lMTU0JWFetVrG5uYnDhw+jr697gCkTM6xE0oEjW50wMNJ6VgOVtIWXL1+WxMN+oLsGQPRz8DVzDfV7nU4nVlZWkE6nvxfx+nsdnU4HS0tLSCQSOHr0qDy3TtZSNkxdAlifk6QTtkUxgSNzrtjusNPpCNmFNpZ6hPeo18n8u8nK07p+ZmZGiD4ETtgal/5Du92W1g9utxupVAqtVrfF49GjR/HMM8+g2WwKCEKwgfPB+IugnsPhgNfrRbValeSwlj3dR52+it/vx8GDB4VIZMqZXi+g24rPPOPElFPtr3Mv62vozxQKhT1+yPt9uFwuLC0toVgsir+jY27+jbqMckvwhGC7GQtpOSWAxBi+WCzC5/MhHo/D7/djfX1dem5TJugbMuHFjgKMkQqFAnZ2dvADP/ADOHfuHH7/939fyGO8T8bv9ENZIUAfxefz4TOf+Yyc/VSpVPDQQw/hv/7X/4q/+qu/wsLCApxOJ6ampvC5z30OJ06cwK1bt+S8SlZ2cPB5dQJF60y/34/NzU08/fTTlvskeTKdTqNcLuOJJ55ALpfD17/+ddxzzz1YWVmRPUafKBQKIZFICGueLfqYSGfMwX82m83SItMEPulvaLBL6zH6agTR75RKYH1mF7CX0EB51/LK1zWBkXOodQIAATAZ9+g++awaI7m20+lYqoRJSKDMDwwMwOl0YmhoCOFwGM1mE1euXJHXwuEwIpEIVlZWLM/Bjg3E9djphC0UqcdrtZqlykXPQT6fRzKZRCaTwfb2tsWGsL25zWaTSjGgKyOsKiKJkvdCvZFIJBCJRCyVd8Qf9Lxr7KJXSyVtMzWuQyLTnTZIqCYbX6+nxkS1zc/lclJVwnNF9Bza7XY5cJ7yRj1Ne+jz+VAoFCwt7Pn+nZ0dhEIhBAIB8VPtdjtisRgGBgYs/i0JMy6XC7lcThJs5XIZHo8HMzMzgqlcuHABgUAA09PTYktMsq4mb3Ct9WB1mq6o4L6jL8/XSIybmZnBlStX4HK5MDIyAqDb+pUJmampKczNzSGTyQim4fV6pZKDiWDaIVY+ra6uIpfLyXr18lPtdjtGRkYkBkwmkxaymcaaXS4XMpmMxe/u5bfwmb8X3fuuNyerVCpYXV3FzMyMRRlq1q45dBAEWB3eSqWCaDS6RxlwmEqXBtPpdCIWi0m5FxdJK2rNnmClAbCbyenl0PFgaSoWMrDo7Oj303ASJCP71ufzIRKJIJ1Oi+IkgK1BJmYJ6SBxrphto6MdiUQsjMZe51hw6OegUJusEv0+/VntuGllvb6+/oGuggCAlZUV+P1+JBIJybwC3Y0+ODgo55ysrq6K7OmezXREwuGwBUBi6SFBXsow5YoAq81mEyd5ZWUFDocDgUBAElg6qaCZr2fOnBHlrPcH9xtlZGpqCqurq5iYmMBHP/pRfOMb38DAwADOnTuHCxcuYH5+Hq+88gp8Pp8YEyYeNDNRt/7SjuPCwoJkxMm2YQALQIA5flYziIvFIsLhsFRN3a2DhmJmZkbAxWazuccoaOed86wTpkC3pDWXy+HgwYMSPNDB5HkOlUrF0leZ1+R1aZg12Makks/nQ39/P3w+n7Tocji658boe6Nc0+D39/fjwIEDwprq6+vD0NAQWq2WBZDXeoosB63HdDDK84R06xAGPLqknftAOxnci7onvm7/pZnzpnOi2Qx6f+k10vvrvvvug83WTTywBzCdbX1dPQe8J/4dgLDqPkiVEGxpwLMhuPZsUXjixAl84xvfEFtL9jd1CQCxoWRdMzFLeaIsMYCm30BQiqXhZAKZhztrnXru3DlpA8HXtfzU63UcPnwYjUYD4XAYn//85/HCCy8glUrh/vvvxxtvvIFbt25hdnbW0t/WZrNJyxDqXs2Op6wsLS3JYb7UtwAslUQMXjU7jPaDel7L390+qtUqrl27JpV7msBh+k/aLyUbTvfbB6wVAloXVioVBAIBpNNpea+upNra2pJgia0XBgcH5XwHXk/rBbKXeukMEnB0FQGZjGRLDQ0NSZUiQQ/9PXwWk/W333Pu7OwgmUxKpc38/DyAXUCGDLe1tTVLhRz1qX4un88nQRuBDBMM0MClbjtpBpNcL514NtezF3hrrtPc3Nz3xAb7foxarYZLly4hGo0iHo9bnpFyTLBWgzia0djpdCQZyf3fC9DWcYPH40EoFILX68XGxoYchE7b2+l0pKUcwSTN8uVPViZ0Ort94l0uFyYnJ/Hggw+ir69PDkD1+/0YGRmB3d49KJMBNNm/uprY5XJhenoat27dwurqqrTBY4swTTLQvqf+yQQg4ypWSWg/3WazSTJPJ380iKOf12bbPYtFz3GvBESvfacHEzb0v+6k0Ww2cevWLVy+fBknT54UUpMGtnRM3+l0ZP1I1KMdpH3XrGXqC5KzCGLTBh45cgQLCwvSNpYV7jphx/idNtfj8SAQCGBnZwcrKyuYmpoSf1HLSiAQwNLSklRRsKKM933ixAlMTU1ZDhJOp9M4ffo0zp07Jz4K44FsNitn5OhkhtZb9IvoX3Nfab3aarXg8/mQyWTg9/vR6XTEFy2Xy3j55ZelZd7s7Kwcnu3z+dBoNDA4OIijR48KqYYyTLZ8q9VCIBDAwMCA6BgAgsmYsYzeI5R3TezQ8QkJm7fbD++3ofe02VKTz7ZfIkLPAe2Z/p3gJP1Yntm4s7Mj7RzZYo/fwe9mwoLt6SijS0tLuHHjhoX0QB10/fp1i24HdqtZ6EPzfBQCx7lcTqqXWImuExFsxXjjxg2kUikL0Zb+bSwWkwQYACEKp9NpYZ4TEOYz9vX14fjx4wKaMuaj3jftvSmH5nqYa2Syxe8kmaxWq9je3rYcpE1fVgPy2p9ki3dW6G5ubu6R0U6nI/YfgOigQCAgZ6JSj1MP+/1+OJ1OxONxjI+PY319XSqCScyh7mYid3NzU7AMtmpk3EIfYWFhATdv3pRzLFdXVzE2NoYjR45ILKTjbx0P6Rice44JNO0b05eh3ufng8Egjh07BqfTiVQqhUOHDqHT6XYw8Pv9GB0dxYEDB9BqddtNDQ8PCxmHZ5/pFu8ABJceHh4W/EbfK/ELoEucjkaj0q4pn8/LtXQsSXtEEqneA71w+52dHcH53sn4ezkhZXt7G5FIxHJINQNYZmrMYW5mLqDuu2YaJv6N4BGwC+oQVBscHJRSWoK3fJ2f5wbRrBzNuNCgcTQaFUYkKzuoxHWShYbS7XZbKjEYmAwODkqpKACLI6X/0SE3Az7N2KWTYB7822ue9dwyO6iNjn6PVpjc4Hw2CnM+n8fq6uodmel9N8fMzAwikQhWV1eFlU2QmP0aDx8+LCW6brdbDrjjmtls3aTb+Pi4lDAyeUdgjM4i10yXchMwplwSMKJjw4QFGY47Ozs4efKk7KFe4AGNPNkKy8vLmJ2dhdPpxOrqKhwOB8LhMHK5HAYHB5FKpeR6BGoIwGlQFtjtr6+rPLhnCSzz+5n9JVON+4IMnVAohGq1etcfklooFLC2tmZJ8mqAS4Pb1GWcb+3gs8TQ7/cjFAoJk5TnJBCA5DADYV3lBcCir5rN7iHidORYyUaHlYdIcVCW3W43pqamEI/HpZxyZGREAjoAWFtbsxhAzaTq6+sTtvjS0pL0N49EIsjn85ZEDNvoaMCD4C3nTTOI9HO63W5hg2p7pkEv3hMTHzo46AVWFotFLCwsYGFhQcDFeDwu66vtFD9jAmVcZ7vdLuyzD8o4dOgQ/H4/NjY2EAgELEzJvr4+3HvvvbJHfD6fBDrUodS3o6OjcDqdwrJptVpS9cI9oAkVuiUjg2KuF200r6371h4+fBjA3lY12i8hAJVMJvHaa6+h0WgIWyUSiaBYLGJwcFAqlgg008fQ98HvoD9CoIyHnwJd3UI/IhQKCdPd7/dbEnfj4+MCVn6QZAzo6h+CSlwroHebJRO45frwPeZnCf6USiUMDw/D4/FIi0WdhCgUCtja2hIQqL+/HyMjI6jVasLupkxqe0Dbq/UVW3qZveKpE+PxOEZHR+Hz+aRtAvdRpVIRv4SMN3N/6PngaDa7ZxCRqdVut1EsFuU8IbYd4WHglD/6n5o5SiAvkUggGAwimUxKcs8MlsyEiQnm6j1IP4uf0WttDn0dp9OJtbU1rK+vfw9S9f0b2WwWb7zxhlSvmhW4TMB4PJ49gTfQnZtkMonBwUEBLzk4h2bsoUGxBx54AIVCARcvXrT4JQQm6OvyQFz6BhrM4RryLIYHH3wQwWBQzkQj09Vms6FQKGBjY0OeL5VKCRGM4DTb6t17773I5XISvJPoRT+G4LXu38z36Mo66nnaGD673+/HxMSEpSNAL5nS+1NX7+vX95vn/WTU4XBIq7M7CQjjyOVyuHTpEh555BGJC7g3NbmDg3taV6vqbgnArt+p/eharbYHHD9z5gy++c1vikxFo1EAsBxmb7fbceDAAdy6dUv67PNaxWIRf/u3fyuHfzIRcfjwYZw4cQLNZhOp1P+vvTf/cTw9zsMfNtns5n2z77vnvnbn2F2tRmtL3pW0shULlmIhCRQ4CIIkvzhwgAT5D4IgMJAfbAeG7MCGFF+yLMmyZUuKJEvaU7s79+zM9PR9N9ns5k02m8f3B36f6vq8zZ69d+dgAYPpZpMffo5666166qmqTdmbu7q6sLW1haGhITz33HOSZOX+QPKabpPDisWOjg5JEAKwJL51nB8KhRAMBrG1tSVri22ZyAAnw5a+cTqdFsLFP/zDP+C5557DyZMnMTs7K8QL3rOdnR3Mzs4KwUmDytzLeA58FhpY5nPhczMr9AHrgF/+jfZL+8v3u5h+PK+Bsa4ZK2h70Mrv0P6ktiXUBQKVtVpNBk7Tz9CJDz5PfgdnzvB86VM4HA5po+N2u7G+vi7npPeNrq4uDAwMoK+vD48//ri0/S2Xy4hEIoIlMS5jJRt9orm5OWxsbMigad2KtF6vy1yojY0NSSrQPycxUtsNAOjt7UVvb6/sAbx+jYfo+94KIzmIhKP/pv2NBwUrY0v8Q4cOWV4n3qCvW+skca1QKCTzH1rF7NxXmZTi3snjM/aiL8JZSiRVspqLsT3bM3d3dyMUColPyDZadrsdc3NzeP3113H69Gns7u7i7t27yOVyFnIZKzkYv+n9XXfrAGDZU5goAfbjp8TbSK7lvuXz+WTGD+e6hsNhie9ZeT04OIhisYh0Oo2VlRVsbm7KOtFkF4fDgfX1dWkjpslvJlbAxFyhUEAmk7EQlKm7XNMkRGnCq+k/M9nEtfl25QNJQhCs5EPRiQiWH7YypqaRpQNotjYCrAbXvCnlctkyHIllY1QeKoAuS9fHo6NpOi8sH9PsVm6Uujyf50EFdrvdUqpL1ozD4UAsFhNHmEEj/85jcQM2GZkEqnp6eoQhQbYvv18rH+9PvV6Hz+dDJBKRLGUrp9T8nB6Eoq95dnbW0urkURUy+/r6+rC8vCzzObSDe/r0afzwhz+UDdl0gIHmM1tdXUUul7PoNmCtACCrh+uJYBeNqW6DZCYiaODHxsZw7NgxSdDpTYXnRsbY/Py8GLRLly6Jo8lWTo1GM2tNtlCxWBQjSQdal7dT6MRQ1zmokEwK6vCpU6ck+aDPkf0cWQb4oGzw71bq9bq0VWDQwkBYB6x03rQ94D1lu7DBwUHZFJ1OJ7a3tyVwGhoawtLSklQYAK1ZD1o/gb32cbQZzPy7XC74/X4B1sl4ZCmm2+3G6OgoBgYGhMnATQ9oAqTBYBDpdFpaaWinxuFwYHx8HH19fcjlcujp6RF2VjAYtOgTsFfKTd3UCT1tv8ls0OWOevibHrbORLuZZND21XRs+UwZRHo8HqmCYIKaSWh+jgGEDhi0E9BoNCtmHkSw4d1KpVJBKpVCLBZDKpWC1+u1VCeSGbu0tGQZrArssedstubgSNozwJpY0kxcPg/qlA42dLKP64E6UqlU8NRTTyEUCsn61AlVfqfT6cSlS5cANJ//jRs3xOY++eSTAuDmcjlh1nImFUE7XcWkfSTqExnm9HW0r3H+/HnYbDZhqvH6yQLVAZVuv/OwS7lcxs2bNxGPxy33Qq9B2ki99rm3MdkL7G+dx+PUas15DPRh6dDzvbVaDXfu3BFQweHYG0YHQIIyfUydANH7Ab+PACt9ZAJPo6Oj6OrqktJ2tiJgck8zwGg/2TeXfj7PncctFArY3NxEKBTC9vY2yuUyYrEYwuEw7t69i0ajybrd3NyE3+8XUI1JOQLUXV1diEQiOHToEMbGxpDL5e5ZnWMSjMxkBF/jOtXJY1P4HdoWcA1NTU3dt61AGo0GVlZWcPXqVTzxxBMWxir1kTEJ9ctMApCd2N3dLX6qCZLzu4Bm1WUsFpOY5amnnhIyhbaB9EOYGNNAJAk4BCVI6jl+/DicTicSiYS032V1QzKZxPr6uiVmqtVqSCaTKBQKljWys7ODQCCAo0eP4tq1awK+8fyKxaKlDRj9GvonmrVLv6bRaIiP5HQ6MTIygkgkIiAs32/eP75Gf9eMkQFYPs973mq/1yDkysqK7HMPkm/AdfWtb30LX/nKVyygtFlhxv2Nfi7j6VZANn0o/XnqKsHxzs5OaUeby+Vgt9uxtbUlLbt2dnYEEBsbG8OdO3csYH48HsehQ4dw8+ZN0RtiAVNTU3jzzTfh9/ulgoK6MDQ0hF//9V+X+Iq+KnWWx2f8x3aR9K11hYO28WS6kmiRy+UQjUYxOTkpcSdt95kzZ2ROXHd3N7773e/K36rVKl577TU8+eSTaDQauHnzphyXwBbBR1Zp0EcjuMxEJskQ3DvYsoTPR/srxITou/CeApB9k8+S5Ir7XfL5vCVuqlar8lxb4WJc05popm2DaS/0vkZbz4RSV1cXQqEQtra2RP8CgQC2t7ctsbsZS/K5MCZiS9LV1VV5LvSLWX00Pj6Oxx57TEiDnIfD63C73ejt7cXS0pIM6200Gtje3kYikcDKyoqsBeoJ7wPQrO7l75qAY94b4h9c2/TNdRtKHXNpX0GLvrfm34C9AcrmMd4JS/yjlEajYZlZpJ+9xq50jMSfs9ksvF4vhoeHMT8/L1iUrtTlZ3WHC92qnFU6xFzZSUO3cwwEAvD5fKjVarJHM/4qFos4fPgwbLa96tjFxUUEg0EMDw+LH8M9fHd3V86F+yuTwrwuAvfc22n/aW/N+6F1g3G51+uVin12nmAFNGebrK2tIZPJIJVKwW5vtpOkT8x5w7wn1FWubZJAaTPN50Nbo/193h/6Jhrv5p5H20u91tdIsdlsYjt0THsv+UCSEEDTsK6trWFkZMTCVNDAPbCfCWI6VbwYbjY0cAc9ZCpHJpOR8iu/349arTm8SfcipLLzs9qxAawABPvvasaLzWazZPr0+fN/Xf2hS9dstuagtt3dXWxsbFh6h5objQ5oGVD6fD7EYjFRWvM+tHI0uUAIkJv3wLyffG5UUP391WoVMzMzj1Tf8XtJT08PEomEtA+js8gAptFo4NixYxJk8RlTLxjssdxVg1w0rKZeNhp7vbzpYOpSVDrj2vlkIqCrqwuf+MQn4PP5kEwmJVPMBAYTaC6XC9/97nextLQk2W8ywbxeL86dO4cXX3wRmUwGmUxGnJHu7m74/X5xPoE9piATYZpRQSCD30+nh2XJn/rUpyxsDgBy/ewVeFCV1cMmmUwGCwsLOHr0qNgUBrvUDe3U6k2funby5EkMDAwgmUyK3qytrUnwPzExgXPnzuGVV16R3s+A1cFtlWGnmJsxn280GrUEYgS4YrEYQqGQMIA6OpothRKJBIaGhmTTCwQCMkBPnw9BrEwmI3sEdaW3t1cYBLSnmsGok3amo0+nl7rLBEQwGITP55O2UzabTZIjJsB1L6YM90Um7hYWFlCrNVtPaTus36/BagrvNZkhD2Lbhfcifr9fhkwSOCcwzz3s+PHjWFlZkc9wjWiASjPC+dzNvVkHNrpdB6uI6KRRB3ksBk4f+9jHJBDs7e0VR5DfFQwG8eqrr+LVV18VggHXssvlkj6iZMOwMpMJMl4DE2PVatUy2EwH8wx2+X9HR7N9IMEFMh+5JoPBIJLJJPr7+5HNZgX0e5RkY2MDt27dklaG1I9WQKIGDbnfaR9A2wq9nukzsF0WdYvvy+fzuH79Onw+nzznQCAgCS8OmNMEg4MAdeqCx+PB6uqqJJVYAeF2uy2kCbKvGJAxENLEiHw+L0Cd3osKhQLu3Lkjw1e5JkgU4poiCM7kczweFxCiVmu2CgkEAhgZGcGRI0fk/urqTy02m00SvDp5S9Fsff7NJGaYYh7HbrdjYWEBy8vLb1OTPhqpVqu4e/cuAoEATp48aQk8gb2e9jq5at6LbDYLj8fTshpCC5Maa2trMufJ4/Hg+PHj8Hq9WF1dlUH3JCQQYAT2ErJcL2wh8Pjjj+PQoUPCFmQFI+1xJBJBKBSShBfPhUBHOBxGV1eXDMRlAD80NCRt1+hHMOaj76vXEIEEfi/1hgAdQW7qaSQSkf1I+8WmEATgubfysfQzOSiOBppAej6fx8zMjCRRHqQKNu678/Pz2N7eRiwWE/3kvAfGN9wHaVsYq5gYhAYHaRMcDoewQoPBoBAXx8fH8alPfQp/93d/J9X/JlEhn8/jRz/6kcRNTEQMDg5ic3MTiUQCgUAAoVAIqVRKBpxTt/iM6N9+9rOfxSc+8QmUy2VL8pTAk36+1E3GWjpBxu9gNTG/Z2dnRxIC1Wpz+LqOP9PpNLxeL0ZHRxGJRDA7O2upoiZp6fLly5icnMSpU6ewvr4uQC59ewKABPcajYaQQM6dOydt1fhcgL0qPNpxxoy60pTPXQOQPC7Z0A9Koi2VSu2rYjLBbfr+OoHJ11slKbVQJ/W9pD9htzfb062trQnpirZJJ3j08TVmwf9JgNWfo3/D82WVsd/vFzCZ10lMzu/3S+ty3purV68KOZHYRjQalXiLa5ukRPoZXNM6gUcdbzQa6OnpwcTEBMrlMlwuF9LptMVG6NhN+wX6OfF7ud5MH1BX9/BcdQxyv0smk0EulxN7yGeldQrYwymBPSJWOp2WzgRcr5rwwM+73W6Zl8p7brfbZbC5HljPll2crcrW9g6HQ+aK6UofJkS2trYwMDCA8+fPCxGBg7d1nF2r1bC6uopgMCgVbdQrzjyhHWLlMfVGk1Y09sHX8/k8bt++jWg0ikAggI6ODstsS+IiyWQSyWRS5kzpgdcmKYHPgx1F+LpOPmhd1piEz+eT2Rv6+m02mwz4djqdWFlZkf1W7z0aX6LYbDYZM3Av31nLB5aEaDQa2NjYQCQSgcfjsZRnUBHNslQaWQ3g8HM+nw8ApOe7aQy0s8yNTzt5zDbpgK4VG4IPQWeY7Xa7ZfCJdhzo8HAj1c683W4XQLZWqwlDTT88tqxiGxvtMLXKorrdbiljJHuAYiYj+Fn9eiQSQTAYxPz8vHymlXAxEZTkPWbQPT09/cgBXfeSlZUVjI+PS+/QUqkkpbjZbBbhcBiRSAT9/f1IJpNSqk2d0606aJyoe3wWumKACQPdDw5oPm+PxyPJBh0UsextZ2cHuVwOg4ODkmllxtflcomB9/v9+Pa3v41vf/vbYpB5TjSY3/rWt3Dq1Clcu3YN8Xgci4uLkhQgyMvAj3qkNyVuNgTgNCuOGeCLFy/ixIkTUkpOvaxWqwIw9/X1IZFIPBJJCGb0e3p6EIlELMC9TsToda+B066uLhw/fhzVahWpVEoCCg5zK5VKKBaLGBwcxMc+9jHMzMwIw4X6yGNqm63tsZnkpL1kr2+n0yktjWhTNFuN4AY3NDII2ceefUEJvAaDQbGv7G/Ie+L1evHkk09ienoad+/etTi/mlGgnVauM2CPPUAGQzQaRSwWg9frlb+z5R+fDwCLI34Q0EAAu1arYXl5WdhIOsmi9zr9PE1WPs9zaWnpkQOGmaza3NyE1+tFKpUS8gEdqCeeeEIq0bRtpA0lc5sOpba9OtkHNH0YtvTgc2QFFx0wOqNk8nAgGtvOcLgayRKNRpMp/PLLL+OP/uiPLPrJc9jd3cXXvvY1PPPMM6jVahgYGJC2eHrP4Dwg6mRnZydSqRS6u7sFuCYrlgkI2tt/9a/+FUZGRrC6uir3iW3NGFhw/oVZDvwoSK1Ww+3btxGJRDA+Pm6xFa1AAf079Yc6YyaJ+T4AkkyibeP+x/eylyuPZbfbZfAu98lqtTkYkckIXSEJQBJLlUpF2FPd3d0yX4WJBoIAvH62YKzVaggGg8KMZyscJorZT7ZarSKfz2N1dRUzMzPSHoFkhUwmIy1JNHhRq9WkjQnPt9FowO/3o6enB6Ojo1IpvbGxYdlv+I8BF+20FnPP4nrn9+tno5+RfqZAc30Vi0W8+eabD4TtLZVKuHr1Knw+H8bGxvbNwGNMw9YsgPVeNRoN6QHPQZNAa5AGgLR+jcfj4muOjo6K/7a9vY3t7W0hdBFMYlLKZrMJg/H06dOIx+MCkDBZ0NnZiXg8jlgsJrFSf3+/+ASs5Orp6ZH2nbFYDNevX5dz7+zslIHod+7cEQBEz4TSyV22XGXyiz4v7xnv77lz54SZrZMspl/Ae0ffyKza0+/RMa+uTtPCtcBe6lxz92ulTithQj+TyeCv/uqv8Nu//dsWQF77aSTMsEqgUCjA4/EIIcFcvyZph+C8roB1Op24cOECXnjhBWQyGRmwTGYu/YRKpYJAIIBqtSog09ramiR2aWPZ1q5cLss+TR+FWERfX59cO7CHQ9BX0TZcA3fAHjBKbIN+q81mQzKZlA4IbPXD2SgdHc12rB6PBx6PB5lMBi+99JJUnpGkwO9xu91YWFiQIcULCwuW+Sd8boxJGOcWi0UMDAzg8ccflz0DgLQf1pgMr5WJFQJqvGe6MoS+DtuZ/Omf/ukHqJXvn9DuMZ7Q4KLJZNaEB9pr6h99UXO/0oRfbW+ou8FgEOFwWBID2qfVQ5yBvWpYPisdtxeLRakAo52kXgWDQUl4cS3quIt77s7OjuCFNluTVc15PiaIyuth5QbQ1MlkMin4YjgcRiKRkPugY7NDhw5JqzNWS2m7YvplWswYm3gGdVa/rj9fqVRk/tWDIKVSCZubm4hGo5aKCPNa+Qx1VTSTRi6XS3wE7VNRt10uF/r6+rCwsGBJ5iQSCXg8Hmnvo8kSnZ2dCIVCcg7ENQHsq9q12+0ygN3lcmFqagoLCwsoFApCkmHrM5LVGU/S7oZCIWnzqyvr+vv7pSJUx5J6j6YtTiQSQt5g1cP6+jrefPNNeL1enDlzBn6/H4VCARsbG1IhxbiO/jsTImyNVqvtdUbhvseEj9ZTvX5YpacT8Pw750+QBMQEtU4O87q0PWEinO9/u/KBJSGAphKurq7i0KFD+8p++TM3KJO5C+wFBclkEn19fbIZEuDUhlgbJn6Wf6NSB4NBYdjqPnxUKgYzuvqALAIOTuPwXLZ84vC+QqEg7WeA5gMJhUKSkdcZbO3oczER+NOKo4V9zQjitSqvPwjoonA48traGrLZ7L4AWSsV74d+jQHs9PQ0tra23otqPHRSq9WkTQ4DqHw+L7MfotEoHA4HPvnJT+LP/uzPpG0SsJc5BmBxlnUwDew5JyzFpU7RYaQRyufzUgLL5AYTB3a7HYVCAb/8y7+MwcFBxGIxSa5tbW1JZtTr9eLrX/86/uEf/kHWLrPSZKK4XC689tprkvQ4e/aslMSxEkmvGSYcyFRhaRmdfQZ1BKEJOn/xi19EPB5HNpuVMuLd3V309/djY2MD/f39WF1d3cdEeJiFjNKzZ88KyMONiEG7tqPA3obITWxubk4221KpJD1gOaR0Y2MDsVgMw8PDCAaDWFxctIA4OijQtlcDQBoI4rkx8DCZFHR4yWxj2Sz10uVywev1wul0yl5Ali57mpbLZWSzWXR0dEif2kajgUgkgkAggL6+Pty4cQOrq6uWdmX8X//MfYnOy8DAAPr7+9HX1yf33GazSfJGX6uZHAaszEXuWdR1BlX6GBRt33mfTeCBf8tms1heXm7pOD/M0mg0ZDg1AyqCR1tbW+jt7cWZM2cQj8exvr6+b58HmveQ4Kgp3A9rtZrs+TwGHWT+47Fod3VS9ctf/jIGBgbg8XjERheLRSSTSeTzeWxvb+MP/uAPWn6+VCrBbrdjenoavb296OjowIULF7C9vS22HtgbKr2zsyPD+tg/fWFhQQgadFZpK2w2G/r7+/Hcc89JH9bOzk7kcjlZbwwoCoWCEEN0e71HRYrFIi5fvgyPx4Pe3l4Lo8kEa7k2+btmLDERodexBsLJ6OPeS7+VPgMHo1OPXS4XAoGAAJ38Dt2XVz8vglCsvmSrGwK10WhUiBQEFEhAICstl8shEonIIF+SC1ipwzlNyWQSqVTKwk7e2dmRihrGBG6321KdQxCkXq9LgiQcDiMYDEol2srKiqVNH7BHCOI8qWQyuY+hZQI2/N98lvcCI7jmb926hY2NjfeqWh+a5HI5XLp0CcFgEMFgUPTF1C+2T9FC0Kurq0sSEfeKPxjH8ZnSf+XQ6v7+fmQyGSQSCaTTaWl1wKB7aGgIhw4dwrFjx9BoNKR3OMEGCm1fPp8XEHR8fBwdHR3ic9OmMlA3wTy73Y6JiQl4vV7cuXNHiGua4WtWtfN4TEZ0dnYiGo3i8ccfx7lz5yRpwYRbq0oEDVxEIhFsb28fmNzRnyFYaeox0LTNq6urmJ6e3hcrvxOg4KMUHTu/8MIL+Hf/7t9JHKTbvuTzeVQqFSEcsmpFA/J8r24TYQKcuVxOhpoyNpmcnMQzzzyDb3zjG5JwJWhFAo0Gp1wul4UMQ+JVrVZDNBqFz+dDLpfD1taWxFf0d4PBoBDYdIUuAAuOQt3nc2U1LbBXzcT3ENza3NyU5DDBVzLQAUgMyYQMWcNHjhyBw+HAwsKC3HPGnltbW3LvmQyknfV4POLX0j/p6urCxYsXMTIyIuAW90+uWf7judL/of3gvsCWW/y+UCiEXC6Hr3/96/irv/qrD1NN37UUi0XMzc3hzJkzlnUMQGJlAJY2h9yH7XY7Tp06Jf6ey+XC6uqqVH1rbE2LTmp4PB709/db5jmS4BWPx2XmJ8Hajo4OabPD89VVKvw8fZhGo4EjR46gv79fKlb0vsnPcq06HA4BUyORyD58hGtdx0lcA5xFyAQ6P0P94HH6+vqkS4vT6ZSe9wBEv01cjWuew7P1/aXfw6Qlnx3vD9BM4CwuLkor1QdBqtUqlpaWpK2R1hu99xIs17hktVpFLpeDz+cTMiGF8T2Px/2OM8HoY+r2SjabTfw9tv2u1+vSPk/bcCYXaBc1g5/E762tLamq0BUy9Bf5MzEy+qHE7fjcI5GIEDlp/834P5/PS1y+tLQEl8uFU6dOwW63Y3t7W+afPfbYY4jFYjh16hRu3Lghes01U6832+57vV4cOXJEkkRMgjARAFj9CdNvYUt+ri2uRafTiYGBAbjdbhSLRSFGmjNA9H6qCU3JZHIftvxW8oFHj6lUCtFoFKFQyAK8ANY+uRpgAazgebFYRDablQfOftetLlR/h3bI6DiQEc5SFwbaAGQB6QwynVq24uCAJiotF4jH4wGwx14j25DMDLb1MK9RB44EBjSzgeft9XplYBZBRm2AgdbJCF4/+/ClUikp8eXfNfDVaDSkz7y+x2QwTE9PP1BG9MMSAqTM3MfjcctQLurTJz7xCXz7298WZ4IZf7JSaIDZo1DrArDXB5LHZFuEQCCAQqGAnp4ecXjJnOUGATQ3hhMnTuA3f/M3MTg4iFKphLW1NQSDQcRiMSm9TaVS+OEPfyiOnsvlwvb2Nlwul6U9VL1ex8zMDJxOJw4fPoybN2/izp07woyo1WoSELKMl/13A4EAAEgwqVnxQHMtnTp1CqdPn94XRPT29iKZTEr5smaxPwrSaDT7Nc7Pz+Pw4cOyGWhmrHYadFLW6/WiUqlgYWFBNl46ABqAyOVyKBQKWF9fR09PD0ZGRlAoFLC2tmYZzmRmxPl9+vtpy1iNw0BNBxdkCNBeU7/57CuVijDbaF9ZFskEChO7bE3ChDWZ6+FwGM888wxmZ2cxPz8vm7fel1i9xuFOZJLFYjEBoLkus9nsPraiee36df0/752uXNL7jw5GzONrp5zf19HRgdnZ2Qem5+j7KewVXiqVMDc3h3A4bKlO4Xr45Cc/iT//8z8XZ4x62Gg0ZHg0g1+t1zqQIIhVLBbh8XgEKJicnMTdu3fR3d0tTC+CxJVKBZ///Odx8eJFCdzpWLPseGZmBlevXhU95nHoANP2ORwOzMzMyByAWCwmrTaoR2TJEMiy2WxSGULfhfs6r7FYLOJzn/scenp6kEqlJOgMh8Oib0zUEKhotfYfFUmlUnj11Vfx1FNPIR6PA4Al6NTrmPdJ+1hMkrUilFBsNpsE1H6/H1tbW5ZjAZBqA9pv+nokFLBthcPhEH3o7u4W1m6tVhP2KAHpcDiMvr4+Aau4R2QyGdTrdUvrgt3dXaRSKUkIa/bf2tqaBGua+QjsMXadTqf4ALzeQCAgIDTJQbSV4XAYbrdb7HM2mxX914xZXk8gEEAqlWpJ8DHtKp8NbXwrMf13u92O2dlZTE1NWVoT3e/SaDRnb1y+fBnPPPOMJH603jKg1YkufrbRaFbjjI2NYW5uTvbBVveYz52gq2Y8Eihgm4JcLifPIBaLYWhoCKOjo+ju7pbAOJPJWFjCfLZra2tIJpPC4g2Hw+J3aGbmxsYGUqmUJHY1OE//aXBwEH6/H3Nzc1hZWRHfiv/TF9eJAvoOsVgMFy5cwNmzZ7Gzs4N8Pg+v14tqtSqDlfkZfc8YC5CRb77H1Emtr2Y8zHszNTUlrEq223mQbLZOyl65cgVvvPEGzp07JwkYxhcakNaVJnxeJHvo2J7JNAptNau8NJj17LPP4pVXXsHq6ioqlYrE9F1dXbLnMmmmq2JJhgkGg7DZmrMQnn/+eRQKBfzhH/6h7AX0V1dWVoTsxYSuXotse8PKAp2E4JrSFeWVSsXSS5wEGrKT7Xa7VMbwnnBdMK4kaxiAtDsBmvFkOp1Gf3+/xIS8B41Gw9Lah37HqVOn8JnPfEZARBLndAUf/Q36WnxdM3ZN39fr9SKdTuMP//AP8bOf/Uxmqj0IcvfuXUxOTkp8QWHMDOy1Zua9rNebLRhPnz6NmZkZLC8v49ChQ3j22WfxjW98Q2ytiQtx3egEVjweR39/P+bm5mRP0+1ztB/D50EyAdcnSWQa47Lb7fD5fBgeHpY9Ww+B1rEXz4/zA9fX1+H3+6WFGW0ufQTafTNm1DMfmESnP9/R0ayKPH78uFRtpFIpCyO8VewVDAbx7LPPit9PPOXVV1+VdUT7TPBcY2gUtqF8UKTRaGBtbU2qXLjPttIhYK91HoWtnOiDEafw+XwIh8NoNBpCaPb7/djc3JR7yGfY0dEhZAe32w2Hw4FAIIBMJiNtF4kbaXsAwIIL0aYwacAqzIWFBbG3DocD0WhUWjzFYjFpUabBfV4Hn6Xb7UZ3d7fsDUyAaZtOEkx3dzc2NjYwPDwsuDIAmcF57NgxBINBjI6OIpfLAYCQgEg+zGazmJ6elplpvb29yGazSCQSlqQAu5vwc8QWmWgwfQ9WyufzeSQSCcHndaIXwL4kI79vYWFBOg29XfnAkxC7u7tYWVkRVoF20mm8mGnR4I0JpKfTacTjcXR0NMt3dE9GHksfkz/TcPLmORwOeDweUSSCafozVDBm3YPBoDC9crmcfDafz1sSAg6HQ6ofdnd3xSnX/e8025aBPAEC9tKl4SdTyOfzCXOSQRY3Ju2cANY+4bwmOuNsb9IKXNEBmC7543VlMpn2DIh7CA0SDXUmk5F2G/V6HSsrK5icnEQ8HseFCxfwox/9SJ4BAQQdEDFJwYVOZ5S6Q4ePGWNgj+kei8UwPT0tbcCY4KJB/sIXvoChoSFks1nY7XbE43F0d3dje3sbdrtdgko92IxgAVlmPJfOzk5sbW2hVCphcXFRAjDNOtR99SqVioCFNNAamLHb7RKssTdqvV6XcstisQiv14tCoYC+vj5JJpLJx2TNoyDVahXz8/MIh8OIxWKiKwzANMDIvzFQpo7ZbDbpmagTkTq4LxQKmJ+fh8vlQiwWw5EjRzA9PS0Zbx6HTqC2xTqRyaQC9ZYMKTqU2mFg+w8dXDNgZAWE1+tFPp+3MAsJCnBPMYFSBnCjo6Po6+vD7u6uJFu4RugEu91uAdY4e4RB3O7urswgeKsN17wG2lza58HBQaysrOx7z0HH1WwMoGnDOzs7kUgksLS0dCB49jCL1lk+Y9ooVhh4vV48/fTT+Md//EdJpNN5ZeAAQPZ9AgN8TtQt7uv1el38ge7ubllv1G+W7xaLRQli2HuW7UDIwopGoxgaGkIsFhPnmyAIARSej8PhQD6fx9bWFn72s59JiS/XI/cBPbiPVReFQsESmDLpwmv8lV/5FZTLZfETAFh0n2tVA16Por4Be9U3r7zyCi5cuIC+vj5J/Le6Jwzc6KMRuNLggg7geZ8J3vT391tmgJBgEA6HMTExIeezsrIi4AAZg3x+9C+6u7sFiGPg7vV6EQqF0NPTg/7+fiESsP3NxsYGvv/974vdpg64XC709vZa2JCZTAZer1cqZwgE0kfiPaIPzJ95fwgiM/hjQoH+NYHlQqGA27dv70vgsm0fhxYf1N5O/8w1zWSOTgxpYIJ6z/NMJBK4du3aA5n8rdVqmJ+fx+DgII4ePSo2Btir3OO9062ZeA+4R09MTODOnTsWQFzfQ9olvl8nVE1AMRqNYnBwUAatA3sVO2xdop83A2ImUfgcC4UC8vk8hoaGLBW2y8vL4k/qZ6lbltHmBoNBnDhxAgMDA1hbW0MikRBfgdfAhJ7f75dZJVxDvB+spN/Y2LCAU1r3GNs6HA5JNpp+gLa59JM0eUQLB8Wura1Z2I60N7qV0f0sGtDPZrP45je/iRMnTmBlZUWIK+wOwAo+2iHqmB68SSCG+zl1SQPx1J9SqSSVXAMDA/it3/ot/Omf/ikymYy8l0AxW2gBsFTE8D0ElO7cuYNkMolKpSJVYEx2cDYKyS+MCQlqMkai38Jj01cgrsCWjzwmSUZ87ul0WhLQOkYgWYz6SF1PJBKylnX/cc1mZ3ynyRwEnB0OB3K5HMbHx/HP//k/x8DAgDwLDtXm8wH2g5lk/9L/4HfwPLxeL5LJJH73d38X8/Pz4tM9KJLL5XD79m088cQT+65d20z6CLxPxWIRL7/8MuLxONxuNzY2NhAKhRCPxy3sc9Nf08Ah7eL4+LgMwAWaviETpmzP3N3dja2tLSwvL1vmfHBfB/bsC3GN4eFhIRV4vV7xPfQsVWId/B9ogsXlchmhUAjZbHYfCMr7wZ81KOr1eqWziB4873a7cfLkSUQiETQaDWQyGYv91Al4/uvo6MBTTz2FcrmMK1euwOl0YnBwED09PXIPeY/ZqYH+jr73pVJJEssPithsNuRyOSSTSUxMTIh/wFic9k1fO58v1ynbr3E90m4R13Q6nVhYWEAoFJK/c89kTLazsyNt42KxGIDmHMj+/n5JOum9nL6mTj4AewPVCfxTR5PJpPiigUBAqnF8Pp+0faP+8Z/Gr5lsZiJCV9SXSiXcvXtXCGlMIszPz8v3F4tFdHR0YGtrC6+99hpGRkYANNd3Z2cnent7kUqlpGKHyTDaQ1Yz+Xw+bG1tYXt7W7r4MGbl+XLGGn/n2mElDysr0um0pYqC+yqJ91pHiOdwpqX2bd5KPpQ6+nQ6jfX1dQwODlrKNyhkLmjWgRYqPBWaRoVOQ6sAQX9W/0znktkhbuLMspL5zc18YGAAfX19lsE2ZIaRMaFZgXR+WEZP4wlYy7yoyDTcHPCnh6HwPLu7u4Uxx/dRERkQAnvGkP/TWaGDxiyZGYgBe4MzNZOPn0+lUpidnX2gNvUPW3TAwAx8V1eXtO1Kp9PSSuzjH/84XnnlFXH4gL2+l7psTDMPeHzqDAF3PjcOZs3lcvsYPmyNRLbu8ePHxbklayebzWJzc1MSErFYTPruMuHBgJT6z9JigrE/+tGPsL6+Lq1CqOt0crgOGOjpa6YxpFHe2dnB8PAwzpw5g2q1irW1NSn1ZS929rAOBAJiFx6EoOr9lEKhgLm5OSlH1CwV3nfTLlJnGo0ma5bDnHUCk6KBmFwuJ0P7+vv7JYEB7PXt5Xs1I0GvDR1Q0pHms2c7OwYldDL5dx24m/pF28rjsX0TAS+n04l8Pg+n0yk6xoRDMBiU8+eGSlCC38W/2+12ZLNZqaAwnVZTTDvL9/F4hw4dEgDZPI4+tg4geO4adC+VSrh169YD1ev5/RS9/9IhcrvdMiB3c3NTiBBnzpzBT3/6U0vVFXWRekubp4X7IfdmAJZhtysrK5KQq1ar0tO00Wjg8OHDiMfjEpRXq9V91QQMkGgreS4aFKzX64hEIlhZWcHu7i4uXbok1XAM/rSPwSCMPxO81bMtmNC6ePEi+vv7hYUbCoXQ0dEhDCUN0LWlKQT+X3zxRTz22GMYGxsTIoLZWkEnFWgbgb3Sdjr8ZH/p9zOADgaDSCQSlopI2jWyxcbGxvDmm29ifn5eyCxkgXM2ggYQmIDo6enB+Pi4tD68e/euJfkVDofR399v6Wnc3d2Nxx9/HBMTE5idnUWhUBDwYHd3V9o2sFqNesfqZ14b7TLPl7rGPcrr9UpfacYI3I+4V/Cecm4ak4+6asy00/p3BmsmM5piJi8cjuYA8EuXLkkS/0GUcrmMGzduCDuOiXW9j9NGMBGhfdTNzU2cOHECg4ODWF5e3nf/qP+0n0yyasKITmgNDQ0hGo1KAoq2slgsYmNjw5Iw1oxp7RNoZvns7CyOHj0Kh8OB9fV1AYJ0rMnjcM/X5DK2JQmFQhgbG0M+nxfmJJPNHNLN41KHSfqgf23u57z2rq4uAQxIRDOTvFpPGatqwFi/h3HE7du3BYDQ+sm94p2ABfeDNBoN/MM//AP+63/9r9J2MRwOSzKXdpeAPeMggvQaOyBYyeps6iTBba4D7pmdnZ04d+4cstksvve972Fzc1OG7DLuY+90VmHSH+Pz4XNOpVIol8vSXoTnzvaJOinH56uTBdR17acw1qfPzfdQFwju0RfQfwdgiZ2YuGYMykp1DoaPRCIyy4WEIQJU9DfYxYE+/aFDh/DlL38Zjz32mPg3hUJBWvgSA+K6ob9DAJz6Tr2tVqtCRrp27Rp+//d/H4lEAn6/H2traw+cXrMlk0kk5XMhu9rcv6ampmRPJjmBP5vAOrBX7aLJWUAzkXP06FEAkAQB7RCTfUwSECTu7OyUGNBkipMAefLkSfh8Pmxvb4se0f5o8piOGakTY2NjmJ+fx8rKivgDjFU1DkcdZ0zHxA33AgK1Z86cERyStkJXRZvJYV5PPp8XUBYAlpeXcfPmTUns6dhNYx16/W5vbz8Q86K08H7Pz89jfHzc4hfU63UhwtBO0lfg741Gs4I2Ho8L8Ur7dcViEf39/eIbkszF/ZvVvLQprKrgbCfdRUe3QuKz15WK+pp4HT6fD6Ojo6jX61hdXZW5lbu7uxgcHBR8GLCuJ2JNTEJof5xxJZMWGxsbMqtQd89ZWlqS9eT1emWvqFQqWFpagtPpFAJbV1cXhoaGAEASwrTRAKRlJAnzrChNp9PyPp43K4kBK6mhWq2K70G/i5iHFrPykhjEwsKCVLVwLb4d+VCSEI1GAysrKzLPgJubXuh0qqhspqMGQFoclEolyVbpVhg6c6kzY9oh5E3r6uraB3rqNgg+nw/xeBw+n0+MLpkFBAzIEqBRZB8xbpZsx8PFwH/aQHHTYKupUChkKbvkouL16awrlV8bAbOFFK+Xk+D1M9H33nwmNPLJZBLT09OP3PDJdyta53R5MJNALC88dOgQ3nzzTQubi0EMRT8jvUnX6822BLVaTfSfbNdarSZ9P5loA/YArMHBQbjdbnHguEEAe+yddDqNWCyGEydOCBDBa+P1cFCZx+PB6uoqOjqaQ9iAZtKDekfADYBsPppdrJ1lDcbUajV8+tOfFuO8tbWFwcFB2ZByuZycF43loyiNRpNdt7GxgaGhIbmvtEM6oObfGDRwE2Z7NoKvDGK0w6EDIc7UCQaDErQz0NNgbisAnaKz8ABkA+Q5aH2nfjOw0WCwdnhoa3l8BkbaeWfgSNaCZtoSWNLfx8QXA8pkMimglxYNKuoN2AS5eD+CwSCOHDmC7u5uXL58Wc7BfLZmIKX7+AOQ+3Dz5k1Lm71HTXiveI9pS3Z3dwVYIxvwySefxOXLl2V2DgMDDVJqveczYADFfpkEVrlXskqQDirtbKPRQE9PjwC/9Xrdkswlw6+7uxt9fX3w+XwSBGp9rtWabR/pGNvtdgkMNcsxEAhIewOuM+oz/Sz6R9TvRqOBz3/+87Db7VhbW5PXPB4P1tfX9wWNPB+dWHwUhTrC1kyZTAZHjx6Fz+cTv0o741qvNDhO29FqfdPnzWazCAaDKJfLUrVIRuHdu3fx2GOPiW0aGhqSNiWdnZ2WeTsMGgiueb1eDA0NYXJyEqFQCBsbG7h7964MW7xy5QqOHDkiQCwrjdiCsa+vT9rNbG5uolqtore3F8vLywCalV6Li4vS/oA66HK5BBjUSVUyaoG9NmtmAgKAgB86+U0gLp1Oy5wsBsOmLdWgnp6Rov9mfk7vE5lMBq+//jrW1tbedsB1P0qj0WzLNDU1hbNnz+4jivF3nYjQgSl7ZB89ehROp1OSTjy2Fp1oomg/w+fzSdDNAaWZTAZra2sCYmlhYG2KBtjINAwEApII0GQfDaBoYoT2efg9BET1ebe6Ts2m397elkQA76c+f5fLBZ/PJ7NZWiUpeE4aYNfPyATOnE4nFhcXZQ3qc+T1PKhSKBTw13/91/jKV74izHs+Lz3EE9jzxUjg062PmIBn+yDqNWN0Eh95fGIDFy9ehN/vx/e+9z1MT09LuwoSEZxOJ6LRKIrFovi0bKNcq9WQzWbFhwCauIZuLZpKpfDSSy9hdHRU9m/G9GbVA/dgnrPP55M9mfsK/Qlet9vthsvlkjVA3dctNjQJkufFWC6TycjcFracLpVK8Pv9ljkcXDuVSgUjIyP4yle+gvPnz0tcyHuhk0GaVGkSqhj38n45HA54vV786Ec/wp/8yZ8gn89Li1+2HHuQEhGFQgGpVAo9PT0t2cR6L2oVS3FvXVxcRCwWs+yLZhxG3WFLLNq6UCiEyclJGdzLxJNu66yTdZpJzfkdbAHT29uLs2fPIh6PS/vRdDot8ReJhEAzARKPx8VPB/YSqRcuXJA2ex0dHVKJo4k1TE7xOnVrHgAIBoM4fvw4BgYGZA+ijusKY95PE3NLpVKYm5uzEJ/5Hm1LeV/N50Mw+kEjSdL2cB6kxpRoI3UVr257qONyElw3NzcFt2KyqVAo4OjRo8jn8xgeHpb5uPQ3eC/ZthZoznXQld7AXvymyT/8We/lGt8AmolhDjenHlCfGbPx+NQRTYLgd7D6nudMrGRqagq7u7sYHx+X2X/cW+z25pxUVoqw0pKD33d3d6Wt2uTkJMbHxzE3N4crV64IEZIxXL1eF5JFJBKRBA6xbp43Sek2m032PH2fSCDi/qHjYCaeNJbBv8/Ozor9fyfyoSF3lUoF8/PzOHbsmFQLaKEhNRMRWtiKhcNEeDPZ6kizCnlTtUNNYB7YYwOTQahLZOmUMDvPno40bmSP6wyZBhb4oPRDAiCggHZ4mcnjotWtEriguHD4OYJ+mj1HI8Aydi6eXC4njHzeZ318HXjx73S4t7a22gmItymascAFm06nMTAwgNXVVemtST359Kc/jdnZWXG66OBR77nITXBNB1B0zux2O/L5vAVAZdkjQWg6r729vWKAarUaenp6RG+pM9zkY7GYRQcJ7hHA4DBBfgeTGJrdyBI7DgLWSTSel06meb1eAEAoFMIzzzwjVRB0Ln0+n7BcdLuhViz+R0U436Gnp2efbWUApTcigkAMjsxkpgbKgP0zHxhY6BZOzP7TKW3FstMsHQqdSG0/+R36c7TtZBtwLeg1Q5uvE1KsGNre3hbgmFVAHo8HHo8HLpdLPsu9QrM6WLKr5wRoB1QnU8xA3/xbd3c34vE4/H4/UqkUlpaWpCqi1X3Xr3Gt8Ph0Hm7duvVIDqPWYgZaZJFwNgSTpaFQCJFIBE8++SR++MMfCnNKgxfUAb0WdLKMs270mqI/oIMk2rhSqYTx8XEAzQQt2TYM8sgyazQaCIVCcLlcyOVyFmCa1zU4OIilpSUL0UKDFHQi6RxrxqQmNGj2V7VaxVNPPYWxsTHUas1BlGR0ApAECW2uDoa5bh9V0Wsun8/j+vXrSKfTOHr0qDDLqRtmCTOfnQl46vur+8/PzMxY5oNoX3JtbQ02mw2PP/44HI7m7AdWR9Cf43fR5pL4MjY2BrfbLWw9tmIkqSGRSCCTyaCnpwfValUGv7KKDGhWOy8tLWFjYwOFQgFDQ0MYGRmRoZaNRpOIxMo76icJPEww0I9lcMV2pAT6uD/oIaXUaa4rPe9N7xXmHqYTIiQg6efaCsTiOWYyGbzxxhtivx90qVarmJqawvj4OHw+n6xpTeYCID4n5zlRB9ke8+TJk2g0moOjNTgMWAcA63vLnwlKMFHQ2dmJ1dVVi+/I56ljH/18WwHtbF/HFqD3IhDoJARBNf6ufVsNaPAYfB/XNduhEDQ2z4v+l8fjkWpUU9+0PaAd0UxEfU68B6x8unHjhiQSee/4T9udB00qlQr+9m//Fl/4whcESNT3SO97ev1zndPfYlxPv0wDssDe8FT6iwDERz137hzi8Tj+3//7f3jppZckuVupNAdj9/X1YX19XXp57+7uor+/X/Z6JiFIJGAf8d3dXXi9XkxNTUnbUV0Zoc+P10MQENjzlXWLP/oDGncgZmC25TqI9apxlFKphL6+PqlCo0/OahSbzSb3kmSl3/iN38BTTz1l8T/Yksrr9Yo+624L2i7wf02eqtfr+PM//3N861vfQqPRQCAQQHd3t7TnY4XLgyK1Wg2rq6vo6+uzJNF4z7hvmzaH7+M9YnKN+gLs+Xs6PtN4AmNGJiJYPUyGNZ8zAGl9zM/7fD55bqxMOXr0KI4dOya+i81mk/ZIfX190oIHaNrMTCYDn88Ht9stbcs0E/yzn/0sfvrTn0rFh5noom5rHIVJw/7+fkxMTCAcDltiMfoOOqY0Ews8Prs9aExPEycojIH1c+F7SdJ8kITrku2DHnvsMcvewYox7sVM6jDJQNuyuLhoqUBhYiIcDmNpaQl2ux2Tk5MoFAriS/LYusqxXq+jr69PZs6YyXT9LLTfoWN7/UyAvX2YHWeYrNbJZ+qLTmCR1KMxO1Yx1+t1zM3NYW5uTpJqi4uLlqpdYnicddFoNDA4OIj5+Xmx7Vyfa2truHbtGp544gkEg0HLmtXrmH6LnofDNlAdHR2WFtOhUAi1Wk0wPI3x6T1Ui57RyXvodDqRyWSwurr6rsg4Hyp9mIo8MTFhaYWghUGBWa4L7IHyzLZphpcGZ8hM1NkdGhs9yEmX9WnAhwEjQQSCDcwc1et1y0wK7eRoZ0grBh+Ydg7ooOokAss+NfCrF40uOaXRZWDG4wGQREgrRjyPZTK/+D102tsJiLcv3JiofwSjAEhLjs7OTszPz0uv4lOnTuHq1asC8ujkGUUHbdoZ4XPks9cgLJ25aDSKfD5vGY565MgR1Ot1mQfB5AHL4EqlEgqFAkZGRhCLxfY589TBRqOBaDSKq1evyhrUrUp4rktLS6Lb3JS07jFZwQC0Wm328vwX/+JfIBwOY3d3V6o1NBiuh79p3X1Uhf0COSBOg+W6FA/YA1Jph/gcWgXApujXuEHrzdwM0k1gQIMI9wLctc2j7dYbnGa08Zpob/W5sjTeDGhYeUEgmDYYgKXM0myLoNchz91kNurr0kGwx+NBJBLB1tYWVldX5Rj62vR183y5J2p97+zsxM7OjrRdeRiAsPdLGGAVi0UBPeksbW1toaurCxcvXsSNGzdaVgiaQJapl2yJaLY30O9hwGy3N1ssjoyMyLOkI8t5D41GQ5x2n8+HoaEh6cvbaDQs9pND5clG1+QIgg06sNLlydQp9uslkNvd3Y2vfOUrsNvt2NjYgMfjwc7ODnp7e+V33gvtswBNB/dBGgD5QYrd3mxvmM/ncfv2baTTaQwODiIUCgmLVfuarVhGreyLBsuBPSBc+xsAhC0ei8WkDzeTC7R5GtwfHx/HwMCA+JTAXqk3yQCct8NA0u12IxwOC0t3dnYWd+7cEfYW18PW1hYGBgYwMTGB+fl5+V6yzdiWLJfLyRBC6iUHWHq9Xvh8PsRiMYRCIbF56+vrlp7LvCd9fX2SZDaDIROwIWmEIK3e+/hMzGMwrmACgv1vHxbZ3t7G3bt3cf78eQu4TR2jbeG953Niexm73Y5oNIq+vj643W6sra1JmwXGLCahwUxE7OzsYHl5GRsbGwD2WnwQLOYx+D/tG9eABml1VSb1WDMVSRTTLR0otdrekF0dnAN7Pjn/19dBvSF4y0SgubYdDgcikQhqtZqwhHmu+h7p9kL6/rVKWPLc7HY7rly5IhVsvC86If0gJh8oNpsNd+/exUsvvYRnnnlGWiLz2fI5aoBQg6EEsPR9pk7Tt+J9ZSWZ1iXq0djYGL74xS+iq6sLr776qqUym8/U5/NJgtXr9UoLG5IpOfw8nU5jZWVF9DeTyeDatWu4cOGC2Cfu16yG7O7ulmGvmsyoiREdHR3SGorxKNsF6ypiVh3RdvIesM0tMRcSGslo7ujokBZQGxsb6OzslGexu7uLaDSKL37xizL4nvc9mUxagEoAQu7Q65f6ympkJpoXFhbw53/+5/jFL34hSQ/Gn5xZ+CDa5uXlZZw5c2afXaSQTKq7Jpj4AMH3rq4uSy94HR/pRBExH+7R7IfP5Oj29jZyuZy0HaNN03gX/Y1YLIaxsTHEYjEhAxDPAyADf82Kz0ajSVJgxTATc5VKBYVCAX6/H5/61KfQ09ODa9euCZFBJw0Yw3F9+v1+jI2NYWBgAF6v17IuzK4Tpq2gcH+g3h4UG2gyg5nM6OjoQCaTkVY1D5pwnU9NTeHIkSMSr7YiYAF7leC6rXytVsP6+rolPllbW0Nvb6/Yv97eXszNzWF0dBTlchmrq6tSrQs07cHo6Ci8Xq8lEdQqEWHiQfpZ6WfD130+HwYHB2WeBX1DkzjEayFpRdsqvRdns1lcu3bN8llixrVaDS6XS2KvUCiEwcFB1Go13Lx5U7rzaDy6Xq9jcXEROzs7GB0dRSwWE9+KPgoTtPV6c1Yhq0b4jFwuFwKBAHp7ezE0NISOjg7L7D+em5mQ1pi2jnn1PZmfn5fK5HcqH2oSotFoIJFIoKurC8PDw5bsOrC/PNqcEcGbQSeCG7OZRAAgD4YOK5MEmgXAG66DdmBvPgN/5mR4KprO1jOY5M+aUWtmV02Qi+fE8+zo6JCKCL24tLFlokJngTV4TQeYAAfBEG1keX+140shoNKeAfHORAdBOgufSCTQ39+P+fl5+Hw+aZ/gcrnw/PPPY2ZmRjK+OlGkAyLqsJl11+wYHVzQmWBJKnUgGo0iGo0CgDixNPCaIVEqlVAqlTAwMCAVHPw+rgGCYQzM6VB0dHTI9+rMMJ1CnhuPR6YKK3hqtRqOHTuGX/u1XxNWLns89vT0IJFICLDC49BIm0D1oyS7u7uYm5uTaggNgtMmcMNg6xjdixWwsm408GoG2lp08N7RsVfpoO2ituumg6cdaNpP/Vqr/YG2XbP8gP2OAL+TDrbeVHVVmTmYTH+Wx+O5aZvLczIDBX2ufN3lciEcDguApoMB817rc6HDo+8L51tcv34dq6urloT1oypk6nP/ApqVj9vb2wiHw0gkEjLI1uFwIBAI4J/9s3+GP/qjP7JUNDLg1YAV92TtK4TDYRkmru871xaD8VKphBMnTggRgMlpJg64HpkMtNlsOH/+PF577TVL8gAAotEoNjY25Dt1EKADOp5jd3e3BORcG7QFtOH5fB5f+MIXMDIyIixkj8cjFSRsx6BZ57lcDoFAQNqcPMp6R6FfRrCQbTVWVlYwMTGBoaEhYd5yv2plD80gl6KDIe6ppl8MNFmqc3NzlmNrwkKj0WSMDg8PIxqNim54vV6sr69LwmlnZ0fY2focCGr4/X4Zgq3BJI/HI8P8lpeXJcByOBzY3NyUJIOeQ0QAg2CF2+1Gb28vJiYmhJnPRMXMzIylfQmvkUOrp6en5d7qfVDfY93zVtt33ndzDwH25hlsbW3h0qVLWFxcfCBBrntJrVbD9PQ0xsbGEA6H9/kF9CWoH5FIBLFYDMViEbu7uyiVSjJA0uFwSEswvl4oFMRO8Xmaes573yrJxL9re6Y/p+0fGZR8H1natLcESbRdNv1r/R3aJ9Frz9y3mdzg5zUpgsdzOp0YHx/H7u4uZmdnLSQOnSDTiZtWvlIrUMzhcOD27du4devWPhb4g66v2qfd2dnB1772NfzyL/8yBgYGhBio2cq8h9xfdfsYgpt2ux2hUMjCHtd+pLajfPa081tbW/D7/fjyl7+MgYEBfPvb3xYmNvdZTUZLp9NIJBKw2Wzo7+9HOp2WYxUKBeRyOdGfer2On//85zh06JDoB4Gv3d1djIyMwOfzIZ1OY3FxUVjkPH/N5NXtGk1cgdgAfVvGkIVCAYcPHwYAzM/PW2IH+hsE0kiA0EQeVn489dRT+PSnP41AICBxbi6XQ7lcFrII7bD297VfxWfhcDjQ19eHS5cu4fd+7/cwNzcn+w4JddPT0y2T0A+KbG9vY2NjA319fZaEjL435XJZ4gBz/6JUq1UMDw9jampK7Ky2b61iPT4/7q31el16zG9tbUkbGT4vjbu53W709fXB4/HI+tKV46w6J5nA5XIhFAphe3tbYqve3l709PQgHA7j7t27sldUq1XBICYnJ9Hf349r165hYWHBUvXLJJnP50MgEEB/fz+i0ahgYQD22XptU3kv+D6+3tvbi2Qy2fL9/AzXrWkzgKa9YquaB1Wq1So2NjYwOzuLkydPWgiAJJVQJzs69maOkbCkKyCAvVkTc3NzOHbsGDKZDFKplMQYAwMD4oMyHunv75c5da38Nh0vmf4AsJ8sqD/H9mG8Vu4BXBcaX+K1a1ItsAfa2+12wSZom7RP6nQ6EY/HxU9gcqCzsxMzMzOWeNDUJZLm2I6K16p9KZ479x/akc7OToyOjuL48eOw2WyyB/J9PA6vQROcTYySrxM/mp2dbVlU8HbkQ2+kXq83+ya63W7EYrEDe1vSEdVgOv+xRZLL5ZIBTyYorx1GJhxozLq7uyVbbyorHxiVKJ/PS3CkNwLtkPN3njODRA0O6U1VH0dnmQDr8Gp9P3g9nZ2dCIVCFoeEzqo+HvtA0injhs+kTSuHlPdrcXFRevW15e0JM/Ber1ccOhqIUqkEt9stABfnKUQiEfzGb/wG/uRP/sTiABMAo/4TPKAuEIQ8deoUlpaWhCGjHQ0OjKKjWC6XcfbsWWHlANZZKfxMqVSSTOzY2BgmJibw8ssvyzApbijxeBxra2sWZqwGzOg80LFhJQbLyfVneL1utxuVSgX/+l//a3R1dSGXyyGVSskGQcYTANnw7Xa7OLQ2m+2hZuWajpIpm5ubSCQS4sCan2NA5vF4pD8+nUXTqTI/q58rpRXbVDvGejPXoCl/1jZR97g1/wbAssnqWTm61QBFsyb5fTpoN/cIvkevBX0fWgF6tNOmfdeJFx6TLN319XVL71J9v1s5wbqHO49JJu7ly5fFMb6XTjwqwvuqQR+WiQIQwJ02zm6349SpU/jc5z6Hv//7vxd7RJvC+86gDNhj5pFZxR612vGln8FAzG634/nnnxcwn8eivSdhwOv1Cpj72GOPyX7BRK+2b/wMwQXqo3aUA4GA2FWuU+2XcF+amJjAl770JdhsNiwtLWF0dBQul0v6r+tKKVap0ScjU+jdOp8Pk2iGlBaWl6+trWF8fBy9vb1SxcfkJ3Dw+jXt7UHzwrTdoi7osmqeo8fjQTQaRaPRbBdZrzd7hCeTSSQSCUxMTKBQKMjsG/Pc2IN9bm4Od+/elaSETnLZ7XYh7dAHYXJ8c3MTHR0d0maEOsZzZH/eeDyOnp4eSRyS0LG6uio+EO237ifNGVl6r6H+U1c16HVQAkLfd/ow6+vreOONNx74GRDA/r7XvAfb29u4ceMGLl68KL6o3r81eMN+w/S5WEG9srIidovD0tkiln7e3bt3pV++uc+zKoY2717nzt9NUJ77gMnq0/sq4zD6RbTv9IVNtqx5Dib4x3XA43KNan/b7/djaGgIXV1duHr1qsXnYPJS91xu9axMYJzHttlsuH79Oq5evWpJDr+V3/igCfflN954A//tv/03nDp1CrFYDBcvXkQ4HJaZdEyc02bSflK3WD3A37WuE2giSUvbE/q5XB9dXV148skncePGDVy9elUSEX6/X+w8E7Sc5cOBoblcTnp7s7sD24MuLi5idnYW58+fh81mEzY6KxH8fj8OHTokQ1855Jkxv9frhcPhkLkL1J1KpYLt7W1ks1nZtxiT0mcolUpCVAKs/gptH21tMBiUNUNf5ciRI3jmmWdw7Ngx+P1+OR7PTffip35yTgATmvR3+Wz6+vrwd3/3d/jmN78pM4YASOK6Xq9jY2NjH97yIEm1WsWdO3cwMDBgIYnSptAG6wotjX3xOa+vryMUCmFgYEBatba6H2bcpytteFy3243+/n7R0WKxKJUK3It5LOJf9fpeC2BWSYZCIdmjHQ6H+ELZbFaSB4VCAR6PB4cPH8b169cBwJIUYaz/9NNP4+jRo1hbWxOMzmZrVucFAgH4/X54PJ59XUJoo/V95bWbttxmsyEUCqFeb1bXaBug/9c/m6AxffaZmZn3ohYfuVA3bty4gbGxMamI0vuQjlVYFawJdKa/6nA4sLGxIQmjlZUVmbHHittQKIR4PI5AIGCpHOca1wkJYH9HBf18TZzAjNX1Pky7o6tgdIccnr8+Dq+bLY8YG/J76Xuymot+cqFQwI0bN+Dz+ZDP5xEKhWCz2bC1tWU5R/4jOZzxLe8DEx78DM+VsWJ/fz+eeeYZIf1kMhnpEmH67yTK8d6ZlR/6GS4uLiKVSr1re/uRTHOtVquYn59HV1eXDKo2ASKdiKARYnaNhoj95k0DwIfCm0SHIZfLCZuLwaJOBvB/JiMITHCBaWbMQQZdl3qZjqJONJiBjn4ffzYTEMwwclPWTF19/eb/NAwM6A5ixNA5Ys/9trx92d3dlaFgukzV6XRic3MTsVgMW1tbUtaazWbhcDhw9OhR/Mqv/Ap+8IMfANhLZnBj5/NnJQEd3JGRERkapUvU+Wz1DBAa1c9+9rNiyJmx5pBhJq7cbjey2axUOJw4cQKXL1+Wc6DhzGazwibj+mSmn/rP3ugs7dQ97OiU67WWyWTw/PPP48KFC9jd3cXS0hJOnjwJt9uN5eVl1Go1Aed4DLLrWE78oLO97iXaFvB3LZVKBXNzc4jH4xbwkO/lvQmHw1hcXLSwlkxQRtsPYL9tMs/HTDRoxgBtkD5nk5XA9+j36fMwgRDNsNCJYf0dJjhBPdd9G/k5AsnczIH9A68o5nnq6zADIJvNhsHBQZljdBCDU//PwNVkirJ9yRtvvGHZ9FsFXA9qEPZuhYwZBtkcaM+BY16vV8p+mXzr6urCs88+i3Q6jVdeeUUAKQDST5hAmmYVOhwOTE9PIxQKIZlMWpxSBl8M5oPBICYnJ1EsFuH3+9HV1YWNjQ2Z4cN9o7e3V3Q6HA4jGAxK9QafYzqdlvOhXuvErw5Is9mstLLRwOvu7q7Mierq6sJv/dZvwe12Y319HcPDw7Db7dKSh4E91zHLfT0ej8wneZR07CDh8+e+pNdzrVZDLpfDzMwMNjc3MTw8jPHxcalC0G1WTJ9Q20ptx81qMzO4415NO6lBinq9Lm0BaGfYWqFer2N6elqCeor+fq4vDRTRXrISLpPJoLu7G16vV0AxsiCBJtDNe6X3DF4LdTMQCMDtdqNQKGBhYQGzs7Piy+jgTM+u4HXoPcNMGJg+vN4nzKCVeySHAXJewYMsBxEDAIgO9PT04OjRo2IT6T/o96fTaWxvb8Pn86HRaFaoT09PC+hJXUwmkwIU+nw+aXFLoJxxk06wHbR/UYf5M8/ZTEzoSnjNVNT+NI+h+6MfBNbp7zfBfS1cZwzkg8GgVEB3dXWJ/699dV67OZdE+0jmuXGtaGLelStXcPv2bfHDTd/sYRHe966uLrz++usYHh7G3NwcfvzjH+OJJ54Q5j2HffPaeY+ZgGL1VT6flyoC7SeTvMh1YvrAjHPq9Tq8Xi++8IUvYGtrS3wCkhFYjcikhyY1aDtFBjdbOWWzWbzwwgs4dOiQgKFMpK6srCAej8Pj8SAej6PRaFa4sZKd58iYiedPoJAJavpJ5nyreDyOcrksleg8b62T9HHoW7Oq5Ny5c/j4xz+OkZER2f8YpzH5oJnUZjxTrVYlPiXDfXJyEt/73vfwB3/wByiVSvD5fJIsYWy8uLhoaZn2oMaCy8vLWF9flwHVQOuKa22z6QNoHb5x4wZisRii0ajsua3sl/Yb2b62t7dXYnoOqmXveiYLqGds+63jTT5f2uadnR0sLCygu7tbZl6k02lpuVir1WRGSq1Wk2SSJpRpAiMTBJxxyeQdr6FQKKDRaLZS4rlxhonpT+l7oe+Pz+eTWNlMLmhmuxkv6/vqcDhw69YtmXPxIEu93hx8fOvWLZw/f16eFbA3RJ6tv7k3MRYyuwjo+3379m1h/etZlbFYTJJX9MNa6S5/N/dw87sorWJuYK8LTKPREGJYPp9HMBgU28vz4HrTewVxsWg0iq2tLXg8HtE3rhX6BDMzM+jq6sKFCxeQy+WE0MN15vP5pJJe+7rU/Ww2K5XVWu/0NfEZOJ1ORKNRfOYzn4HH40GpVJK2ZrpVGj+jCfrA3uwhM+HD75yfn5eE9LuRjyQJATSz6DMzMzh06JAEta0AHb3BBQIBZDIZYSpSIYC9QEmzAflaR0cHPB4PAAgz0iwr4f+mkefx9Oar2SsaJNMsIX0MKq/eBPQGrB3jVtUZepHYbDYpLabzqjd0oLkpsH8fe5w1Gg1sbm5a+orra+YCXFhYsPTIbsvbk1QqJX0pq9WqtBwgELW5uYlIJCLJAZYxBYNBPPfcc8jlcnj55ZfFcSUrhs5iIBCQIVGUmzdvIhKJWAI4svZ0wGiz2TA6OopIJIJkMikzKdbX12X4WaVSQTKZxMjICJxOp1QuDA8PSyJB62I6nZYhVHQqqes0ZtR7bv7BYFCALV0Cxn/j4+P4l//yX6JarSKZTOL48ePSX5sgoh6Ilc/nLedGltDDLOYGoF8DgI2NDSwvL8uQWROAKhQKmJ2dhcvlQldXlwQ8B23uJlhhnoPpzOn/NSudNk1XCJnOoPk79Uk7gJppqIERbev5Xto0neDQ942f4Rrjd9MOU4d1IsW8LmB/+zTeG4fDgcHBQQQCAVy/fn3f3mB+Tjva5j5Eu3Lz5k1JQByUjDrotYdZarW9gcoMtm22JgvJ6/WiUCiIMwY0k7T5fB6xWAxf+tKXkEqlcOvWLZmHQNtWLBZlDhQd1JWVFezs7CAUCkkbKGCvB3OlUoHb7cbOzg4+85nPSLsSHq9cLsPr9Yp+7ezsSJXX3bt34XK5cPjwYekRTbY6+zOzus2sIgUgFZusgjSdcAIJjUYDn/3sZ3H69Glh0+zs7CCfz1t6CfO62GLP6/VaAjq2XXmUhbbBBAr0GmWf8Hw+j/X1dYyPj2NiYsJSEaCDeB73Xox7DbLSRzWBMp2orVabs4BoCxn06SQWh9QB1mpf2kHN/tLAlD5vgqBMbnCoND/LIMqs1tN22WazybC7RCIhIJa5pxDM2N7elplSJmCgpZXdNBPlPAcCxrdu3XpogARgf1sec68ol8u4fPkyfD4fBgYGBNjR7+UzIpnM5/MJs66VHhOoyufziEQilnWiK7V0NUIr0WtLxz3UBQ086ONrP0ZXWJhxlpkEMM/DJMvpa6S4XC54vV7xo3UvfF05xrkA7M/P45i+nemX8Np5nFQqhRs3bmB5edlC9NH39mET+mvb29t46aWXcOrUKTQaDfzgBz/Ayy+/jOPHj+P06dM4ceIE4vE4crkcdnZ2JDbSiad8Po9arWaJcbSNBKwVVZqoQiLBzs4Oenp68Fu/9Vv46le/is3NTXR3dyOXywlxbH19XfRbx+8AREcIqDIRm0wmcefOHRw7dgyNRkNm9TAJXKlUEIlEsLa2JuA9e/YTO6Fov5vXQWIMz5WgIYEptlGirdexHc+RFSNHjx7FE088gXPnziEUCkn7nnw+bwGUeT/1mmTSQCcPqtUqgsEg+vr68Ld/+7f46le/io6ODknI1Ot1aSlcKBSEOawTjw+iVCoVXL58Gc8++6wlXtI2SoO6Ggcz7e7m5qa0gk2n06Jv2l5pPWcHhqWlJZnF5PF4UCgUhKVOjIG4nRk7AXuzbOgT89yLxSIWFxcxPj4uhAiSd1ghuri4KDFPo9GwrFtt+zTBmIQOtoyhfnI2xsbGhmAO2s/Q90KTvggEc0CyGd+Ze4Am8lE6OzuRTCZx+/bthyIe472/evUqRkdHEQ6HBVzn9TGZRCzMbreL/SPJikL/tFZrttkkmYG+GCusNGFAf9bEcFv5cHxvq1iZ79cdE2hTSBzI5/OylzNez2QyUunGqh/GXcTqBgYG0N/fj5mZGQvuwdZ1Ozs7YqPZ3YMxa7FYRGdnp7Qf122QqOdbW1vo6+uTdum0ebpDA9eHz+fDL/3SL2FiYgKLi4sYGxvD2tqakJE0zq39FT5vPWtC2yKHw4FisYiVlZV9PqX2v95KPrIkBADkcjlMT09jcnJSmNIanNcXUi6Xkcvl5IHx7yZbt5VTyQ3U5/NJNQTfo99rBkK6RMUE0IC9RakfGI0iz41/1/1ntcHiBmwmOvSmw3PiZsOSXToyWvhduVzOUmpJ9o1pTCl2ux1LS0vI5/Pv5ZE+suJwOKSFFQFD3fqDrcO8Xi8GBgawubkpPe/C4TC++MUvYnNzE7du3ZIMKJ3iXC4nBoXPMJvNol5vDpgOh8PST5Q6RxaDz+fDzs4Onn/+eTE6HFhXqVTE2NKZXl1dRU9PD1ZWVrC9vY3h4WFEIhHkcjlp+URjTJYNGUa8dp2AYCC3u7srw8y4rhh0VqtVeL1efOlLX0IkEkEikQAAJJNJ7OzsyBAegnDsL0wDzntPsO9REHMzpdRqNdy5cwehUEj6tmvgAIBl4NP8/LwlENDH10wW0wHQdlHbKNpvDYyZgQePYX6+laNtOna0mdzA9fvpuPJabTabpW2Hee9MIEMnM+iQAtgXPJkOjWY/8nUOIx4cHMSbb74pgZy+fyarTAOCev/j/jA9PS0DrQ8CQA7SkYddGCjkcjkEg0FJjDLAoRNZrVZx6NAhpFIpJJNJ1Ot1DA0N4Xd+53fw+7//+7h06RIcDoewv3Ryi+3xtA2mL6F1nYmMxx57DB//+McBQNrJ6Io52iqn04lkMolcLodQKIRSqYSnn34aL774olRWsKczfST2kmYA1t3dLYwvoAlwcfCZDtx4LefPn8fnP/95qZ5iKwYmpDs7O5HL5Syta5iYLhQKcj5ch4+63OseaDvFwcrZbBbJZBJHjx5Fb2+vMD+1D0wxwVUAotsMGHSSoFVCVAMBPCbtsW6bR93WQI72jal7muzAtacDzEqlIlUD9FN4LOor5wLwXPg/5wpw/okGOczrqtfrAuLqvUX/z+s176fej7TQL0mlUrh69SoWFhb2tdl62ETrBqvGX3jhBTz55JMYGRmR1m/6nlEvKpWK+JY6UOVxua/SfjFo1t/NmInHN/drTTrge8zvagVE8Jz4PcDeDDFz/9b/NJHNvEf8XuqRZmkSwHI6nSiVSshkMpYkC6uCvV4vAoGAVO/QLut1xuOxnUK1WpWe8YlEQqrzMpmMpapE34+HUbSf1mg0MDMzg4mJCfh8PoyMjAAArl69iqtXr2JkZARPPPEERkdHEY/H4ff7JVnJz5fLZZTLZbhcLgG1dctMJuH0LB+gqQ8ej8cS8x85cgT//t//e/zxH/8xNjY2UK1W4fP5AEDalrG6kbELk8PlchmZTMYy76ZQKGBjYwOHDh0S/ecx7ty5I9X0HNY7NDQEr9cLl8sl56V7jOue7dzz/X6/+Eu1Wk0Y5bw+VsbTB+J+QaLC6Ogojh49io997GMyYJX6yBZsJFvoynkdq/IeMylSrVYRCoXg9Xrx13/91/iLv/gLy3kCkLi1UqlgbW3NQkB70HV/bW0NN2/exNmzZ/cNOyYwqGM2fb0mllUsFlGv1xEKhaTSQe//2ifg8TjTKZ1OIxgMSgcO3aZUt1fWNtxms1a2mfgauxz09/cjm81iZ2dH/HMCmnwf7TnbnrHzA9eiw+FAOBy2EM46OzsRDAbR1dWFTCaDtbU1wQ51wkaL3q/cbjc6Ozul7aIZt1E0iY1rQif6dnd38frrrz80xEjqSiqVwmuvvYbnnntOdII+I/3IUqkklX/0FUk+BfZmDnD/JCmMdocVryZ2odeBjpH1fmmScfheHos+Lu0MjwvsVSpoP5QJ6u7ubkxPT2Nra0twuYmJCSGpkSxfqVTQ29uLc+fOYW1tTVraETNj3JhIJPDiiy/KLBV2SwCaZHmSQGZnZy1+CfHjRCKBnp4eS2cS3lfe887OTpw5cwZPP/00VldXEYlEYLfbhRTJ++pwOGRP0M+b83VMgj3X2fz8vLQW1LjIO7G/H2kSAmhOEZ+amsL4+DiCwaCFlUqF4gVtbm5KAON0OpFOp/eB8K2ANBNQ0oAQ36dFg/7aWGun13TG+TkNRungSWeKaMTNpEkrY8fXyG6o1+uW0jfzfZRMJiNZan6nZkAAe865w9EcuMcSuLa8c9nZ2UF3dzey2SwCgYDomc7Gskee2+3GoUOHkEwmpUXT0NAQ/st/+S/4vd/7PVy+fFlagHAjZjKDWVcGIOVyWWY40AmgsfN4PMjn8/j85z+PkydPSpsnstV8Pp/oNA2zw+HAm2++KbNHbDYbLl68iO985zvS9oA9HalfPB867mTtcoNm2Vi1WpWWakyicV7Er//6r+Opp55CNpvFxsaGbOIul0uyxsViEZlMRmwCAbB0Oi393k2W+sMurZID2WwW169fx4ULFwSsNBOp1B29IevgR4MHtH0HiZlkoDOiEw08P5NJaP5sAgP6O3SlAHsptmrdoIE1fRz9Hn1PaLN1EoGvdXZ2SuBGR0PvUUzmmGAg0NzbCDybdlXbbZY76uBW31OHwyF9RfVe1rbVe8JnAwCJREIABS1MUrCdXXd3N5aWljAwMIDBwUH85//8n/HHf/zH+OlPfwpgr10CW2OxnQIZhAxYcrmcBUTjrIUvf/nLMjfB4XBgdHQUhUJBgnrqKPfzQ4cOCTN2bGwMn/vc5/A3f/M3lrkU9XoduVwO0WhUgjDqHb+H50j/RZfb1ut1/NIv/RK++MUvwu12Y3Z2VoKuXC5naeVAm03HmrOFtI/V29uLP/iDP/jAn+/9LDoIAvZXmWo7x9dZkba9vY3Dhw9LVQSDOjMZode6TmgwiDODBG2ztf3V/rQGdHSyjTqv7TFnPDAgo83ThB4m+bTuUb+1fWNQYw6+02yvVix0TQLSlSMaEG5lZ1v56iZQw+N3dnZiZ2cHd+/exZtvvolUKvVAs2rfjujKAN6rarWKzc1N/NM//RMmJiZw5MgRBINBIcZwD9RJWH4e2M8+1O9jQorvMz8H7CXJdMxlJhxafQ9fM8Ei871mQkGLjhW5trRfaZIVNMOTwGg6nRbbTyFxhiziYrEo7GINqnOP1ySdZDKJtbU1ZLNZ8UE2NzeFpajvz8PuF5iVu6VSCTdu3MBTTz2FcrkMj8eDY8eOYXl5GQsLC5iZmUGj0UBvby9Onz6N06dPIxKJSFxC8If7PI/BoeX8HuoCAVb2t+dzoj07deoUfud3fgff/e53cevWLayurgq432g0pCUG2yDphNf29rbMuwSaOs3hvVo3stmsVKHv7u7i7NmzmJqaEtCPNpxxFIE9oKm/0WgUXq/X0hN8aGhI2ucxYdJoNCSJQeCZtp6tl5577jnEYjEhSwB79oAVG9RPvVZZ8QFAqkHpP7NS9I/+6I/wk5/8RKpIef2sIqpUKjI7kN/RCph/0KRer+PGjRuIRqMYHh62JCJof3d2dix6cpBwjdRqNcRiMUxMTGB1dVXskbZlfL/L5RLiL+eA8b5SvzS2pu02XzOJYhT6P2yTSp+S857op1C47zPu04QJYhmBQEB0qqOjA6lUSqo3KpWKJFH4/TxfXjsriPj37e3tfYlyrb/6npmtaGgrXnvtNaysrLxLDbj/RD/LO3fuYGhoCCdPnrTs0TruZlxDdj39DNpbEmt1QkAn3AHsi8n1P2B/FavpH5jnrmN+6jtf8/v96O3tRSaTkfk1u7u7CAQCcnzGbo1Gs8psfX0dx48fl7iOe0O5XMaZM2ewubmJF154wbLOmIhhCzwS57xeLxKJhLSzXFtbw9DQEPx+P7a3ty3riDgwW59qTIzr0+l0YmJiAr/8y78s+FgoFMJrr70m87g6OjqkYlPfa40zU/R64Hvn5+dbzo57J/KRJyEAIJ/PY2pqCiMjI4jFYrLRm4pHJSeznxulCcQBVmUsl8vY3t62gJQm0G86wdrYUExmmAmY2Ww2AYfNdjP6e/i//pw+ZzOhAOyVe9Gp0O/nzzq4ZJBgOt76/QBkUPL8/PwjwyL/IIQbkt1ux9bWlgzi4zPWxnJrawvlchmjo6MyH4L9Pf/Tf/pP+NrXvoYf/OAHAoDqlls0MBoQI0OVCQka9WKxiKeeegrPP/+8DD/b3d3FxMQEdnZ2sLm5aWGc0/DE43H09/djdnYWfr8fn/zkJ3H37l3cvn3bUokEQHrgaSPL8jEG9boXqHZMGGj95m/+Jp577jlUKhXMzs4iHA7DZrNJIMcej9qJ0NUgujTV7XZ/ZDrwUYhpAyjr6+u4cuUKzpw5IyXWdBY0K5a6Ceyxyc1kRCt7pDdD/buutjIBH8Bqn01n00xE8H3UTa6BZDKJfD4v3811Z7bqOOhn7iMmc0A7NuwJSeeU50nbSjYdP6crGbiOmIjT7c3Ma2QCQt8j3gvtMM3MzEg7kLcKOB7k4OvdCpn/BOZpN5gkIoDAdkJTU1Pw+XwyZJckiP/wH/4Djhw5gr/8y7+Uslig2WKDLZ2Y8KX++Xw+CUQ6OzvxxBNP4Nd//delbYDb7UYkEkG9XkckEsHGxob0t3c6nTh06BD8fr/Y5zt37iASieBXfuVXUK1W8fd///cSIBEY2dnZgdfrlSo5Dh1mxRqHW3LvoO39pV/6JTz77LPw+/1YXFyE3++XwIBOOcEEvVZ0AEgQwOv14i/+4i/w+uuvfzQP/T6RVjYLaN2ujq8DECCxVCohlUphYmICkUhE7jNtlAbC9M8E0GivdMWWtvE6SNSJCP2zBjA1eQXYG+hK++p0OhEOh+Vz1AmCo2T6aptp2nATeOU5c73yWvQ/7ddqP1r/rP83S8T1vadoln693ux5/Oabb2JpaemhYTDeS3QiAdh/f4rFIt58803Mz88jFoshEolgaGgI0WhUQFXdJsMEws34RutMq8QZz8cke/FzPKZ+7mb8ZvokB8VABIu06EBbA7lcbyZ5zPQ5dnZ2sL29Lb4Ar4dJNp4zQQB+XifgCMym02kkEgmpCOb5kpBWKpXED3mU9v1WiaO5uTk4nU5MTk5ia2tLAG62gwOas2i+//3v48c//rGwTMfGxmROD9nYuVwO5XJZ+t/TnukKbrZFZOKiUqlIUqlUKmFsbAz/8T/+R1y7dg0//vGPMT09jUKhgFwuJ8xRoIl9cH4OY3yn0ykzdILBII4ePSrtzhqNhlTJl8tl2O12qeJgb30d09G+aeIRyWAXL17ESy+9hHq9juPHj2NsbAyvv/465ubmEA6HAcDSvo94S09PD44dO4bz589jaGhIWuySwEB95z7idrultR2fC8+zq6sLm5ubFmY9B2p/9atfxcsvv4zu7m5ZL6zwIBmN8YDW/YclaVwul/HSSy/B5XJJ22Udv9EPZbU3sN//13trrVbD+vo6isUiRkdHkc/nkUwmLVWE9KFph6jfOkHBOEYfF9gj+DYaDdkbTBuv2+Mmk0mp2kkmky07ofB3rk2d9NUzDYll6PvA72FrIL33UDiwt15vtobS9tSMfc29kdgicTbeQ6fTibt37+LGjRsPnU3mPS6Xy/jFL36B3t5eRKNRYfub+zvJptyz9OwOgtyMzTSRiv6Y7pwB7K+IoA3ga1rnzHPW/iFxCtqhvr4+jI6OIplMIp1Oiy0Lh8OIRqNie6mTjP94/myTNz09LW3qtra28KlPfQqVSgWXLl2SuI3X53A4EAwGkU6n5Z709PSIja7Vmi2G2VJMkzCo/6yOpF3Y3d0VYm9/fz+efvppeV6hUAhXr161zFvhuZoJDt0iUt9P3gMS19kyGHj32MN9kYQAmgZ3ZmYGpVIJAwMD0kesFUuFikBjQaOiGSv6ZlSrVRk+xQ3VBP4pByUjeB46uDOZtlxELFPU59YqCDWTGXxNK7u5cChmMkUHePpczWvT18deitPT02JE2vLuhPMKWIJWr9eljzYXO53Zrq4u5HI5TE1NobOzE+vr6+js7MTIyAjC4TD+7b/9t5iYmMA3vvEN6dHdaDQsg551UiKTyYgjwsylx+PB5z73OTz77LOyAbhcLkSjUVQqFcTjcXR1deHu3buyGYyPj6OnpwdAU7+CwSDK5TLC4TD+zb/5N/j617+OK1euSC9IAnqVSsUyr8XpdCIYDCKfz6NYLArjiGuDPweDQXzpS1/C6dOnUavVsLKyglgshkajIUEc9ZTnyHVRLpdhs9mkDQlLMNkS61GXer2OpaUl7O7u4tSpUzJcqVW/Zs0U1IE3+9Pyb9ouHcQ8aNVv2bQ7GqDSDoIGGmjP9HE0I5LPn8fXySjaZF35pfeRRsPatslMyvCzbKmQzWYtpcUmE8gEPfQ5bW1tYXBwENFo1MI6q9fryOfzwmTU36+PRWeGfVJN0EV/n3kOj5qEw2HpQ8xnzGDYDMar1WaP/nA4DIfDgdXVVfT398PlcuH555/HuXPn8J3vfAevvvqqMPSYgKWOM9Df3d2Fx+PBiRMncPHiRZw7d84y/JmsvY6ODhSLRUtPdPYPZxkuAMRiMeRyOXi9Xvzqr/4q+vr68Nd//ddi53WFArDHdOM1s1cnky/lchnRaBSf+9zn8MQTT6Crq0tm+mgwWJdNUzQYWK83+/a6XC4sLS3hO9/5DpaWlnD8+HG8+OKLH+7Dvs/E9BvN3/maaWcASFVEKpVCT08Penp6EIlEpFUiQR1tHwArI5jg2EG2rBUwYbPZLMGNDnBM31H7uvPz89JjWfshuj0o7av2R/kdDNy07efxNVFI23UNjujEb6tEA7+X12jaRO2b0xYnEglMTU1JS1J9bo+StIpTqtUqstksOjs7kU6nkU6n4fP5EIlEEAgEhDVOH9SMRbQ90WxsE+QBsE9XtC9BW6XPzQSrdLVMq+fe6jv4c6u1yvfT3tPu6jWi/ZdGo2Hp0ayvw6zSNWMxoAlKLy0tWZKT3DOY5CCw09nZiXA4jGw2K61H7iUPsz7v7u5ieXlZ9icC3nrOCNnjTBSUSiXMzc2hu7sbo6OjOHHiBCYnJ6WdIysd/H7/vgpDoKlrbrdbgHZWR+RyOSwuLqKvrw9PPfUUjhw5gkQigVu3buH69etIJpPSTqujo0OqNvnP5/NJT/pwOCxDgomHRCIRDA4OCpjP+JLVkRSd8LXZmvMBCCDXajU8/vjjYnsvXLiAcDiMTCaD9fV1IbfRn2CP8pGREZw4cULaPlFHqefaf2C7RrboJfOX64kJBE2eIyj9v//3/8YvfvELS1zNIcME35nEz2Qysk8+LAkISjabxc9+9jN86lOfQjAYlLiYz5QzEjWL3wTOTX8jm83izp07GB4exvDwsCRF2RqJes/jklhL+9Wq2wCJCiTW8Pt04sTE53RVN5OsOjlNG8fr4N7Bygyzal/7FPwOwOqL6JgwFAphcHAQ29vbWF5eflt2WieTmTTTe5HT6cTKygpeffXVh5LUq/ePZDKJn//85/jMZz4jGA3/rlt0MkbSyQg+P85HoGgbwG4bpVJJQHnAilm0wmvNPc4kCvA9bA136NAh9Pb2IplMYnNzE8ViES6XS5LAHCI9NDSEQ4cO4caNGxJTnTlzBna7Hel0Gk6nE/F4XGYzsZXdr/7qr8Lr9eKVV16RVrdcD263W/bvlZUV6ajAa9Tkc64B3XLV7IBCwmM0GsWJEyfg8/nkWdy8eRPr6+uCJZLspO+LHjKvsQqK9punp6ctCfV3K7bGezgCW8+8n0LjwDIUndUH9gd1ZuCknUPTIPPzNIA0WFpx+TBbOcfma1patdPQD8w8d/P3VokGDcrpc2zl/La6RybwR6HSptNpzM3NCcPhg5BMJgO/3/+BHf+jFq6BH/zgB9JvFNjria8Bo66uLksLATIQYrEYgGbiIBqNCsNlbW0Nf/M3f4PLly9beirTkdNliZSuri6cP38en/jEJ3DixAlsb29Lr7dAICCf4+aeTqfFYe/p6RFjT6BgZmYG3d3dKBaLqFQq+N73vocf/OAHsNma/UI1G4P9TDUYxmORkUBHZXR0FL/5m7+J0dFR2dA1Iz2fz1t6sOu+gyyZJsjm8XjQaDRw+fJlfPvb38b3v//9h0bv3srG8j7TOWplg3w+HyYnJzE8PCzJXTMx0MqumlURWloB5lpavd98XdsunXxoBZiZ36HBNvN7bba90nn+btp4fa8000J/L6uQWl0Tj2FeD//GNe50OjE+Po7Ozk5p7eH1etHR0YHZ2VkBDlrtN+yZ+dprr2F5efkt72er+2TKw7IuKFwf//N//k+cPXtWZipwGKJm1mjAiuC82+1GIBBAuVyGz+dDX1+f2F+Hw4GpqSm88sormJmZwc7ODra2tsTe9fT0YHh4GPF4XGawlMtlsbNkx3BINM9neHgYHo9H/uZwOJDJZCwzGHiO/Ewul8P3vvc9XL58WdZmrbbXN5Xgr9YHOrrnz5/HZz/7WRnKTWCFNpfAjCY9EPTt6OiAx+MRVtzS0hJee+01zMzMSPXIjRs38Fd/9VcPrW69HWG5ucksP8g+mT9re+tyuRAIBBCPx9HX14dQKCSVhK2AXWBvaC1ttUmQMc/H/O5Wf9e2mL9zn2HArauWqeN2e3MGlmmfqacEzkyAuZV/rP1ivX4JALQ6d37W/J33RQ9v39jYwNLSkrS6Mdu7vp/yYa6Pd6K7us1MK9IXn3MgEIDNZpP/qecMfH0+H/x+P9xutwANDLjNZKYG57UvopNftF86Uar9GmAPaKWtpP7p4+pjttrntY9h/qz/mcG4SXbg+bQ6Hj9D4TkSOMvlctjc3JQe0mTI2+12rK6u7vN3uAbZKiKdTn/gg9M/bPv+TvGFzs5ODA0NYXh4WCr7NKsZ2AMi6ReEQiFpMVYqlTA8PIyxsTFMTk5iYmICQDO2Z996guqcMWm326VCkoCNzWaTCoJIJCKthZgEKZfLSKVS2NraEjtG28n9lvbT5XJJJUEikRC9GBkZEWIR/QAzQafB50qlgnQ6LXsHE62VSgXRaBR2u12qNG7duoVcLoeenh75vp6eHvj9fni9XkvbJfrJ2kYz6UB95ewJ7bdwYDVnS3EAbDgcxv/5P/8HP/zhD4UwV6lU4PF4kEqlkMvl4PP5kM1mUSqVJBlOYlsr//d+9UveiX7HYjFJRFBXtO2hj0v7pxO2Wg+0XQwGgzh06JCsCepnsViUJB1j7WKxKPuEWd0AWPErngMTE3a7XWYE6Bbn1WoVp0+fRiKRwMbGhmUGANucUZcorMzQ1c2tRPvEwF6FPvGC/v5+2O12bG9vWypp9P5ivtZoNCQho5Mr3Be4Rn/yk5+8ZUIYeDD1kj4U90O73Y7HH38czzzzjFQ3ULTeaeyGyUmSa2lf6RfG43H09vZKEtntdmNjYwPr6+sSj+sEB/XJJNsA1nlqeu/UODO/3+PxYGlpSXweAFI1NjExAb/fD5/Ph1u3buHu3bv45Cc/CZ/Ph83NTamgoB+8sbEh9rJeryMcDuPSpUv4p3/6J+TzebGVsVgMiURCOtJwvgSrcG02m6yLVoPVNbbMvSMej2N0dBT9/f0YGhpCuVzG0tKS+Afcx/T94HPQs8943+jn8Xl2d3cjl8vhO9/5jiQ1tJi/v5We33dJCEpXVxd6enrQ29srzG9dht0K/AFgcQypeFRObVy0cpqBof7fFBMUo+E1S5rN47c6L/1dplE/6MHyeHq4mr4npuNsngPQLLFMJBLSr/yDlPvV0L5fwjXwv/7X/8Lp06cRCoWQy+WkdxxBX7IDmN2kYwY0qyhcLheKxSKi0SgikYj0cHM4HLhx4wZeeOEF3L59G/V6XZgnHHQ3NDSEwcFBxGIx9PX1yXBROnEMVPL5vIBzrHxgoMPnVC6XsbW1hUKhYBk4ZbfbJdE2NzeHb3/721haWpIAVQNi3JTpLLCVB0G/T3/603jmmWektUi5XBbGC9udaDaZDpCr1Sq6urqkb2o2m8Xi4iJ++MMfIpVK4eTJk/gf/+N/PDR691Y21mazSS9xAHKPzFYeDocD0WgUY2Nj6Ovrk4SYWRmhj6vtoumA6ve0Yh+1cuYAa2BOp4TnYAJRJgDW6vxMO8fjUm95XzTDRh9Df4/5mmnr77VHHLSN2mw2carS6bQAv2RdtNrTeC9YqXT9+nWLI9DqOw56DqY8LOuCwvXx5JNP4ujRo3jyySdx8uRJBINB7O7uIpPJSBWCBqQ6OvYGTQeDQbHHdrsd/f398Pv9SCaTsNvtlsGSm5ubMluHQRarLXTrJpfLJRUHmi3O40xMTMDj8WBubk4qHGiLG42GtG4gW8XhcMDtdmNmZgY//vGPcffuXSSTSQB7vUUBiDPpcrlw6tQpPPPMMzh8+LAkcbkXAc11UiwWLYxy6ifbUFQqFczPz0s7PrvdjkOHDsFms+GNN97AwsKC/Pyw6tbbESYPWJ4PtCaBHJSEMN/PhITP50M8HsfAwABisZilBY5uW6OPZ7LMW9k0M0GrK8KAvQoGTQLSSSp+htU0+nz0NZgsNG2j9LG0v2yCu3q/YL9d897q79XC62ISkkOUV1ZWsLGxIexP3hvN5nu/5X5NQthsTUIJASLaM9oMVm6xzZ3dvjeXj2ATByMSXCC72+12i39L9p3Z0giwVidQz7QvQ6DWbBNAAIHtbHZ3d6WCCIAFEM3n83A4HPD5fBaGPPVU65y5LnhuOiFhxln6cxocaLXG6/Vmawa2RFlfX5eqXg6zZi9ttjwwY0S2gWAl3weZQAPu/ySEzdZsEzg5OQmfzyfsatoX7evyXhIMcrlcCIfDSKVSqFQqGB4exvnz53H27FkMDw8LaYHEEk3UYsKAtohgMOMnrgePxwO73S7gOwBpZUs9zmQyKJVKAtqR+U8/IBAIiK/g8XgsVUdmv3xdLbm9vS1tGhuNvYGjGnDT643tj0hAYKJMt8Khv6PZsq10nQkC+mAkZfD7SYILBAL43ve+h29+85uyPnd3d9HT0yPD1zl/q1QqycBhJnj0d2q5X/2Sd6rfsVgMn/zkJxEKhVomInQCgs+oVeUYbZbP55OB52SdVyoV6eTBe1qr1bC9vY1cLmexiSYJy3z2BJYJTlPX6IeToLW0tGSZT8H9nX4t11Mr7Ez7M/r6uGdQN+jnsw0bEwo3b968Z+wGYN+eaFZbcI1vbGzgJz/5ydvuxvCg6qXeG1mtcvbsWXz84x8XUpOuctF2gL9T52hHbDab2DqXy4WjR48iGAzKPJyenh50d3djdnbWMmexFemSv2vR+uPz+TA0NASHwyED7QOBAGKxGLa3ty2ErM7OTkxMTCAajaJUKkmXCADyPs7UW1paQiqVAtCszMvlchgZGZFqDq/Xi62tLbzwwgtYWVkR+5pIJKT6gL6VbjuqE11c2zrxxRbkHo8HfX19iEaj6O7uRjweh9/vx8rKisyeIl7HPYI+NWNAHQe0IjuRWPLzn/8cv/jFLyytIA9aRw9sEgLYA9h4Y7n5a+CG7wOsiQEuEu3wtgL+ze+wGR1aAAArjUlEQVTTnzeBKBOU4kMykwAHXQv/rsE8/bsJRJkGXn+vLs9vdY4abAEggMzW1pYAMx+G3K+G9v0SroGLFy/izJkzeOKJJzAxMSGtisjYIJORwRwN6O7uLvx+vwxlp6PY398Pr9eLZDIpwX693uy7ubm5iUKhIEOpqA92u116ztHA0WHd2tqSdcMAjUYyEAggn89jfn4ejUZDSuG42WYyGdRqNekzzoTKyy+/jJ/97GfY3NyUVjO6nzOd/J2dHUSjUZw+fRqf/vSnEYvF5NptNpswkcj45fVoB1UHttvb21haWsLt27cxPz8vvWArlQpeeeUV/OM//uNDo3dv18ZyQzcZsWQdaQZqJBLByMiIbOx02jQQYNrLg4J1wNpiSdsibeP4Gr/LBKz091JaOZutAn7T5ppAG8+Fjnmr72j1XXoP0A6PCa61+m59Th0dHdLzkQEee06a18z3O51ObGxs4PXXX0exWNy3FxDo4DMnOPdW8rCsCwrXx/nz50VHBwYG8LGPfQxnz56Vdku0mbRrmr1HgN/n88lz5jPu6OiQwV+cTaNnf2h2iu4d7ff7JdDnd2imXqVSQSwWQyqVEruqbXOjsTeQkuAdQUGHw4FSqYTV1VXcuXNHnEyHw4FwOIyhoSGMjY1Jaz2ue15TtVqVqgsGm3R0Q6EQqtUqrly5ghs3bmBmZgb1eh2Tk5M4fPiwzJpJpVLShiKbzeL69esPrW69HWGyqlwuW0r0TZAS2N8ms1XA1Arsj8Vi6O/vF1aqbkFxUCsK89imzdS2UvuirSouTD+X58bARFfu8P06oNHf1wo80Odn3r9arSYzJ0wQWJ8Pf9bVnsViEel0Guvr68Im5nPSdppEi3sFVO9FPsz1kclkEAwG39FnCPxpAKvRaDJm6YvRJ9QxCCsxDxLOMaAfx97QZrUOdVhX4+okhAZJ9TM3QY6D2jIC1rZOtIfaL9B/o27Th2bLKZ6/Pi510kzemQAWgT5WO3B4Ku087293d7fsN7x2CgkKTHpmMpkPPAEBNKumP8h435R3mkhj3BGJRDA6OirAKv9uJr24z9tsNmFY059iO41jx45hZGTEMtMuFothdHQUwWBQqr+5Xth6VoM9TCYwieByuWC326VlItv2MsZjm6ZGoyHtJXlOTAjy+fO4AATM4/VSZ8rlspDaTJ+chAr65eyKoJOSqVRK9IvrWN9HipmMYKxAH6lcLkuSvtFoSGLR4XCgt7cXf/d3f4evf/3rlhlsDocDfX19uHPnjvgptVoNm5ub0ttcA+Kt9sD71S95N/hZKBTCM888g97e3n2z5HS8wvtPndCti4CmDenp6REyDavb2A+fSTLaIqfTiVwuJyxu6rSOQ/TxWWUD7FWHaZ/Bbm+2e47FYlhYWJD2urST2hZzfWnhsXSyQa85Eo+YCI9EItJOtVKpSDXN3NzcgcA1bbf2O3h86hr3iOXlZfz85z9/WxUQlAdZL202m8z7rNeblYjHjh3DE088IYlVTSbQ61L7diRn0a5Qb7xeLx577DF0dnZibW1N2nf39fVhe3sbU1NTkqzXsbj2JbQ+2u12eL1ejI6OIhwOY3l5GYlEAvV6XVoveTweSXTSlvf29iKfzwsRwG63IxqNSmcDVtH09/ejv78fKysrskaq1arMzmLbOY/HA6/Xi+vXr+Pq1auCrWl/lJXEnA2h22LTDnNtMBkdDocRi8WEyEYfhTrMuJHHYAWe2bJP2xC+TmEFy/T0NH7wgx9YurPcy19+oJMQlI6OZp+w3t5eRCIRy9CSVokE7aDSydSAlBYTLDMDHP5uBkX6+/i/CV6ZctB79ELRzrP5Xu3g6uPr93GzqVQq0pOfzq4ePvlhyf1qaN8v0SAYN+zJyUk88cQTOHXqlLTdyOfzMhydiQY6lvV6XYwTKwa0IWF2tLOzE5VKRSot6DgSbOa6IBjAYWUE9qknrFqg0zE+Po7Z2VkZxMsgToPYetg2g04OZltdXcXMzAxu376N1dVVcY5YXnv48GGcPHlS2j0BEOYOvyOfz8vfaDQbjYb0VE8mk5iamsLNmzextraG3d1dTE5OYmRkBKlUCteuXcP6+jpqtRouX7780OjdO7GxTA5p8Ic2QYNBvM9khfT19cHj8exjtLayc/zZDNhbOcJA68qHVuxdignA6dcPSnZQWiVGeBx+Jzdj3bZPi2bk3gscNJMi5vno3qH6u1tdj/5HZsjm5iYuXbokFVXmefOzXJ+6jPJe8rCsCwrXx7lz50QvaP8ikQiefPJJnD9/Xsqvc7mcAPCahaNZKLTNFOoP77Pu6UlbzSoy9kZlUMYEER06rjGbzYZIJIJUKgW7vdkb1fwMk1bc87m383cNFFK0n8CEMa+lXC5LgGmz7bUCYTDZ19eHtbU1/N//+3+xuroKt9uNY8eOoaenB9PT07h165a8l/rMa33ttdceWt16O2Kz2cSG6vlaB/mnb8dfbPUdXV1d8Pl8iEajQs5huw/aA9ob6hlti8kWbHVerew2f9c2FbAmEA4CI1olQUy/1/ybfo8Go3Uwa947Xh/PoV5vzuNZWFjA2tqagLmAlcSjv1snAHV71fdLPsz1sby8jKGhoQ/lu9ryaMjS0hIGBwc/tO97p/gCweiuri7E43GMjIyIX6RjeA2Ucz81bRv3WxK5SMKy2WzI5XIYGBjA5z//eZw5c0YqEul3MGbTvc91QsJms0llhNvtFiCKleQa19AALhMGxDT8fr+ld7dugcR7wVaLtMuMGXl9/D7dzYFxWS6XE9+F7W9Y1aBxBDMOoM3WTF49bBWAhTDT39+Pn/zkJ/jqV78qxyZgHAwGUSqVkMvlUCwWZUD37Ozs2+7icL/6Je8WP/P7/XjqqacwPj5uuaca5DexMb5OnXc6nThy5IgkWXd3d7G4uCizILi385gkSiaTSdELAqY6+WXGNfo1/gxAgOdwOIxEIiFJwFYxlk6g8LxaJTkIHBP/ikQiAohrkkalUpH5kVtbW/viNOqg1mF+t5lM4RDql19++R23NX9Q9ZJ+lmmrGNMcOXIE4+Pj8Pv9gluZNobv1z4dfTeNX507dw4+n08qFjinJpVKYW1tbV/yvZUf7XK5MDY2hv7+fhQKBayvr6NUKllm1jDJQeIY7f7KyooMTafPeOzYMcHp7ty5IzZ9cHAQw8PD2NrakuOw5d/m5iZyuRwajQbcbjdCoRAymQxeeeUVLC0tSRs0HYtSj0neYFJdV+BFIhGEw2FJInKd8T28/60SappAr++d1m8KY+WFhQX80z/9E9bW1vbtp3ym5nN4KJIQFCYjOLiPWVxtvIDWgJkGzVrddJNJ1ipIM4EmHWhpw2sGV/zMQUkQ85z1ZmFmpvRnzNKZnZ0dZLNZpFIpYVC834HUO5X71dC+X6KTECxXZ/Z+cHBQGLkcuMyyUmY4NXuLjq7X6xUnTA+F0o4lQUnqVS6Xk57fPLZmFLBKwnS8q9WqtELq6OgQ46wZvDp4B/ay4PwunjcNHY0bM7jsNUdHgYkZ9p40SzXZi5LZ6e985zv4xS9+gUQigXA4LNn2mZkZvP766+IM8d48qkkIwMqGMkWDRbqioaurC+FwGD09PQgGgxKEaLDGZJ4CewncVkkILdp2mdUPB4FkZkKB52MmaM0kB18zExjaeeXfubG2OqYJouk1Q9HBq/6s2ebKtP36+/g3DYKtra3h1q1bMsRdf1+rIPWdJJYflnVB4fo4e/bsvv6YtG8+nw+PP/44zp8/j7GxMXg8HhQKBctQNLKotJ4yIUFbSja2GeA1Gg1hi+lkErA3OEwH6uVyWWZIrKysSHCjWSm8Fs3+49qt1+visLJknXaXLZR079Td3V15v15b7NMbCATQ2dmJa9eu4YUXXoDT6cTIyAiq1SouX74siWW9znW1W7lcfqhsLuXd2F6PxyPDY+8FtvP/g/xWU0y7SpDL6/UiGo0iFoshEonA7/fLHkCdMnv9mwkG7WsC+220+V7TjrV6j5mIOOg187PmXqNJN/cCKHRFWCKRwOzsLNbW1qT9JPWefk2rfUonMRnsvZ/yYa6Per2O1dVV+Hy+e+pVW9ryVtJoNJDL5dDf39+SuPFBybtJQnBNd3d3Y3h4GOFwWGIb7p0Eyk2/shUUwpZX9JM56HNtbQ0OhwO/8Ru/gU9+8pMAIHMWmDAgqYFALckNtEd8je8lKY3+nI4Ngb1e5gTPdOUl38O+/vwcKzrcbjdKpZIkMvRAUxITmCjgdevEBQCp8NP2VNtw2lb6H9qXIhCpEyC1Wg3xeBx/+Zd/iW984xvw+/2yb7ISiGBfsVhEMBhENpvF7OzsO5p/cr/6Je8FP+vu7sapU6dw5swZOByOfTNJqes69qJwDbBKIBQKIZvNWsgTmvBCPIN6o0mKrUSvI3Pv1r4D/V1WGpv4FuNPM2Zthd9pX8FutyMcDiMajUp7HfrDrMAYHR1FMpnEwsKCYGVa1/W91BgbdZ/Y4+XLl3H9+vV31VnkQdRL2h/TL9NCu+f3+xEOhzE4OIjx8XEEAgFLggc4GFcldmS32zE5OYmhoSGpUtjZ2UEul5PqAp0c0mSvzs5O9PX1YXx8XLCtrq4uSWR0dHQgm81iYWEByWQSIyMjiMViQjZbWlpCsVi02K2Ojg74fD4cOXJEKjJ4zna7HYODg9IGncmEjY0NSyKae6jX64Xb7cbCwgJu3LiBlZUVS0yq405dDW+z2YTgS7xGr1e2uvN6vXIMbZPNfcW893zOfNYdHc1W7lNTU7h69SqSyeQ9sXJTPrIkhFn2934KgUwGXxyywU1QixnwtQL3dWBzL4ddP6h7JRRafT9/1sat1fvNc9Dnxc9qkCKTycjAJoK3H8Q9f7dyvxra90s0E5cVAhrQ2tnZwdDQEB5//HFcuHABAwMD6OrqQiaTQTabtbQk0sadz529xZmtpUHRjnVnZ6eU32smIsvaaMioV0wg0AkYGhpCMpmEzWYTA0YjpPWRGzn/J4hLJ5aMTDoq2lnQm7dOkNGhsdvtkj1myXO5XMY3v/lNXLp0CWNjYzhz5gwKhQKuXLmCubk5y+BqHWT84he/eGj07t04quaQuoOSp/yZDh6DrGAwiGg0Kn3hGbTpf6b90s6hllbJXL5u2mM6ewzUtKOjf6aN5zPX1W48Nm2lybww7X6rCgMeoxV4aN5DHdRyfZrXZt4L7Yjz3BuNZun98vIyVlZWpGrtIEeP3/1OK9selnVB0faXTEI+fwb1ZII4nU5MTEzgiSeewPHjxxEOh9FoNGQGjS5b5f1m+xDNktY2GthrQ8BkAIO1RqMh7B2bba/UvFKpYGxsDD6fD3fv3pXquO7ubknKBgIBS9BFvWLprtYb6gGrYijcW2jLAVjaOEYiEVSrVdy9exdvvvkm/H6/zCGZmZnB+vq69Btt5SPpe33p0qWHVrferthsNun7XSwW94H55s+Ug+zFQd/BzwB7iQAO8AsGgwiFQhKgeDyefUkJbVda+cH6vFrZwLfrK79VEqbVMUwAw7xWXq8m6tTrdRQKBSQSCSwuLmJjY8Mym6OVDTa/U7/HBHXeL3nY1kdb2vJByruxv3pPdLvdOHz4sMw0AFonYN8qXtakLK/XC5/PB6/XK/v74OAgDh8+jCeffFJm+5HBaoKvnGVHEJP/631a+5a6uoDgHlsllUolFAoFqSTXCRAdv7ndbgwMDKCjo0P8Es6IoM/S6t5ov4L/6LNqG673FH5OJyo4T0Mfu1qtore3Fy+99BJ+93d/F4FAwFK1AkBi3K6uLkluLC4uSn/zt5skvl/trqnf5r5o+lrmzx0dHejt7ZW5JQQaWyX9TT3UeydF65+OyQBYkgAA9sUl2hc0kw76PTqJydfNddIq3tHro9V56mvlfDYy0FslaLq7u1Eul6Wvv/4e/V36moC9ljTb29t45ZVXsLCwcGAM9lZ+x4Oil6YcZDNNjJVsfb/fj0AggHg8jsOHD0ubyFYJCR6D8RtJVh6PR1opVSoVZDIZmSUC7G9Fz5kIsVgMHo8Hfr8foVAIjUYDq6ur2NzcRLFYxNbWForFIhqNJmnW6/UKiYhYKu0zz6lSqWBychKNRgOzs7NyzlwfrEzweDzY3d3F9evX4XQ6cfjwYQQCAUmuARByV71ex/r6Oubm5iz+K3WPSQjOgXW73VIVx/um4z9d4a9jQv18dAUR1wX/pnHF6elp3L17V8hoPN7bxZk/siQEAUpuUhpEer/EZtsbKBWLxWRIHr/rXkGEaSAOCqruFRjqazlo4zCP0yowu9dr5t9pHAuFAtbW1rC5ufmh9AN9t3K/Gtr3SzQTlw4lHSRm+4E9Rs3Jkyfx5JNPSk/RSqWCdDptcQSZSGAlAh3XRqMhx9VtmJiQ2t3dlXVXrTYHONPIFYtFSXTo9i0ulwsjIyNYXV2VvnQEw0qlEjweDzwejzigmnntdDqFXUNHX4OyTH6Q3WKCHaYj6/F4EAgEUCqV8PLLL2N+fh6xWAzBYBALCwt4/fXXkc1mBRjXDg8dht3dXVy5cuWh0bt3k4SgA6BZ9KbdPQhgYpBB5yEcDiMcDktWXTubrVor6e96O7ZeO7dM2jG44uwE6qvZkoMlvS6XC263G16vF36/X9qKHXSe3CNaJWN0Eu9edl87p5qp9lbXrRkGQHO4VTKZxMbGBlKplAyFa3U/+RrtwLsByR6WdUHR9pfJAx3caNCdThnLwI8cOYILFy5gfHwcHo/HkpBgAAw07zl7lvJ/nXjSDBftA5j7NtB0vNnHmWA1q8j0ezUzjMdlb2e2U9I6yDWvGZ48BsEHm63JoHG5XEilUpibmxP2YyKRwI0bN7CxsbEvGaftK51t7cDWarV2EuL/F1ZDcC+lmPudFh3s3svuHOQz6uNpYgLnnDAxwcBIBy/aPzcDbvO79Hm0es38jE5wmPehFdCg9Uy/l7aZa4i9xLPZLNLpNFKplJS76x7wb2fP0+eugYZ2EqItbflo5d3YX+1LNhrNeSaHDh0SXwBoAj+aaHCvRAQJBto+0r6yipDJiNHRUTz99NOYmJiQeM1ma1Yrcqi6tmdsl0E/XYO82vZp0BnYa5dUKBSEvc6ZYIyNWOlA0LSrq0uOS5+YA7BJjKAf293djVqthmw2ayE06f/1nsXjAvvnAGn/g/4OGcp37tzBf//v/x1AsyrT7XZb4lo9CDgcDmNxcRGJRGJf14q3kvvV7mr9PmjPp7SKsagb3d3dOH/+PE6fPi2go7nXaf3h763wqlZxEdC66pH/34sVrT9v+gGtjtUqcXLQfdBrRSclAGuLJvMczaSDPrbpt2gfnGtoamoKb7zxhrTEPujazftg/v1B0MuDRFfaaNwAsCZySIbhOvb5fOjp6UE8Hpf5ONoHBfbrFe0tAGkxzqoAElp1xYzT6ZQqA/q7DocD2WwWyWTSkrho5VNrvdHnoc+LVW1sX0YcTifJdBWCzWaT2Q3E6IhZZzIZpNNpOb6ePcgqHr1WeZ/1ebHbCNeZ7kii41L+rvc/fY5MkFQqFaRSKczOziKZTEr3Fn3c+z4JAeyV7mgmXitg6L0mJmy2JhPM5/NJFor9G82ERCtD2CqA0j8f9Hfz82YAqUFX83gHXfNBwBMdlHK5LEOZONz0wxDtFD3K7T9M4Rp4/PHH95Wvmo5ZR0eHMGMnJyfx2GOP4dSpU4jFYmIUGFxTb3TLJfZ3o1HWzrFeXwSfTMCYLCGeX6VSQXd3N3p7ezE1NSVVE3Re+T4mGHgeNHg0VhS9IdG5rdfrUiGinYVqtYpyuYyuri4Eg0F0dnZifX0dN27ckGHd6XQa165dw9zcnCRk9HWaGyGv82FqDfJeSnbdbrclOaTb1rWyP2ZQpsvIfT4fAoEAQqGQVEiY1W4HgfKtkh2tdGFrawupVArpdBrFYlGqZbQz2Op4ACzORzgcln7pBGY146LVMXgN2tnWv+vAVjurmiXRykHmMXSyhcPl19bWkEqlWrJ29b5jOubvpc3ew7IuKLoSgklgDZZrHTT3ViZPe3p6cPr0aRw/fhzDw8Pw+XySrN3d3UWpVJK2eHqWhK6cMJ1E6rfux8mkrE4Kc20zaViv1/cxGekrkbmldVB/Ttt+JiNY1kxG0eLiItLpNLa3t5FMJnH16lWkUinL+Wu/ifdO3zcdWPI+tpMQTbHZbNKXmGXVpr9n3kctpt+nbY0OjPhe099oBfjT/pBBFQgEhJ3GpBQDtVYggOk/m/ZYi9YZfe76fPW1m3uBblcCQMAo9gXf3t7G9va2DMnc2dm5Z/WZ/q6D/Hrzelv1PX8/5GFbH21pywcp76YSArC2uwSAvr4+mQnFSgAdC+mEv2k7aPvYnkjvsxr4crlcMidveHgYp06dQr3ebIn22GOP4fz58zLPj8fg8YD9THNtD+lHaDCfhB3ta1erVekNzrZL9Dt47UwKcAg6Y1LGfKweBSDAnbatOqbT913bUp0I0vtGuVyGz+eDz+fDzMwMfv/3fx/Ly8toNBqy//Cc6AMBzaTI5uamzCx4pzjE/Wp375WEMHEnrc+t8AWHw4ETJ07gySefRGdnp6XyxATXAezzJVodXwOYB/kqZhx5EKbG10y/oNW1tPKVDjrOQWLijeb5md/Fa9XnxZ85NyORSODSpUuCR7Q63luJfs+DoJcHic/ns4DsZnVtvd5swca5PJwnStyA95WYAjt+0A7QTgN7z4lxF1/Tzwuw2kzaMz57PYuUlTKtSJqmrmtiLYXPnudkxv9mRZuJu/G8XS6XzORsNJqt2jnUulbbm+dXr9dllqGJ7VWrVam84++69ZhpQ4ihlctl6aLD9la8X5y/o+0rq+10hYY5V+0g+chnQugAA9hfUs2baZaJv1vp6GgOiwkGgwiHw5aWIqaha2WQ+JoGeO9lCM2yMFPMoO1ex+PCMu9do9FAsVjE5uamsGXfb5aWKXxOOrsH4B0NQQXuX0P7fkmrdiB8NgTy9WLW+l+pVGT45/nz53H8+HH4/X7pbUw2itmXH4Awv3l8fhedOL1R0/gAsIC+QJOJzUoLl8slPfb4PoJuWrc5+yKTybTskc7v0etcA2pAs4rC4/Fgc3NThnbXajWk02lMTU3h9u3bwprR91EDDa3AHZvNhtdff/2h0bv3OncnGAwiEolIyywdRHEtt7Il5vPUCQmv1ytl6T6fz5Ic0zpHacWUoTNQKpWQTqeRTCalNLLV0NC3cji1E+F0OhEKhSxDt3UixrxeE4Dla+a509nQ12Fer7aVdIaAJtMrlUphY2MDyWRSWueZ+0arc6Adttlslv6m70YelnVB4fr42Mc+Zhm4rB1FBtZmUoL/k93Y0dGcOTU8PIzDhw+jv78fvb29iEQiUv2g2Xl0xNgqQAfHtHvUN9ox6iATsxp84LrUn+P79blq8IR/o3NOwEL3n6azeefOHczMzGB5eRnb29solUrSKor3qtFoWPYxcy3zO3kuBLZ/+MMfPrS69U6FZegMXhgcmHbnoADeFNMWtvrMW/nM5r7JpC2TVEyIeTwemYVCBq0eSqqTIebea9r5VtenQSqd4GCLSVZgcog6q+IKhYJUxek1oa/toHvaCuBpBcrwNYJ97yUOaSUP2/poS1s+SHm3SWBgbz3TVtEXBKwsab2X6QpZ/jNJXvwOxkD0LzRxoF6vIxAISIshthI5fPgwDh06hFgshnw+D6/Xi1qtJgAQBwQToCLxgbEbr0knADh0mm1ESDS4c+eO2NBwOIzHH38c8XhcbGxXVxd2d3exvLyMjY0NRKNRdHV1YX19Hbdv34bX68VnP/tZ9PX1SfUm0GyRZMYMB/nNJsDMtijf//738Rd/8RfSSsrn81lamdLHJfkpm81iZmZG7s07xT7uV7trJiH0/eKcBO5VBwHzJoje29uLc+fOIRKJiP6+VfJB/28eX/9+UBx2UOLBjGtaHd+Mn+6VMGh1Pibp4aDETSs5KBGij1Wv17G1tYWpqSnMzMwcOHz6oKSLFlNvHwS9PEhsNpuQHKmnrFBlTMQWSKlUyjLn1BSPxyOthiKRCAYHBxEOhyW+ouiqFLMypxUGa/qjusMI4yRNejH1AdjbK3RnBVY5d3R0SLtTAOLD0p/WeBzXHY+nZ8JyLgtn8zHBrJPfu7u7yOfzEoOWSiWZd6Jb9WpMQceUTP7kcjmsra1he3sbW1tb++YHud1uGZINQCqquR9xuLbN1pxDm8lkLDrBe63lrfTcceBf3ifhg9AlJKah0eUrfA9vyjvdcKgk6+vrSCQScDqdUpbDTJzZ2459rriZMzCngpp9xXW5If9WqVRQKpXk4XEAih6woo1cKwBV3y8ChMViEdlsFtlsVpye91N0MkX/47nw+hn8fdDJjwdVaDAJKmkDqu8vsNeXm4zYa9eu4cqVK3C73RgdHcWZM2cwMjIibG6CaAQfqWtbW1uSKNDsH7MsjAaIg241eMV+nYVCQbLVPE+yfM1nzySGNpLmmtDZYxpiVivR0K2vr2N2dhabm5u4ceMG1tbWpFVJR0cHXC6XnIcprUAOsn3asifpdBperxcXL15EKpXC0tIS0um02Dpgr5RbzyHQ91xvcEw+kZXAfvlsVeN0OsWhIHilk1G068ViEfl8Hul0et88G9MZvBcIx/PTf9vd3ZUKg3w+j4GBAYRCIQHSzPYj2lHXP2s7rX83ASsNzGlno1AoYGtrSxIsvEaeq7lpa3CQDhudnd3dXWQymbb9PUCOHz+O7e1tJBIJFItFyx5Gp1MnKOiUMslKe10oFHDt2jW8/vrr6OrqgtvtRjgcxvDwMIaGhhCPxxEKhcSfYJsywDofhM+U9lmD0QzGue44P0D7SlxbnBdBUJQ6o2dC0O7S+c9kMpidncXS0hLm5uawvLwsw8R00oMtqKi/2u9qFbTyGgiyx2Ix+Hw+C6PoYZKDfK23Cm7JDvN6vajX65YWGTpI03bF/L63k5AwE6faVrYCBHQCGGgCSvQpG40G1tfXRUe4r2u7zr60HMLOJAbtqp7NYwZCwF5VA/1aDhokw0rfG/4zEwamPdZ+s/5fv69V0sS8X60qON5v+SCO2Za2tGVPtK3h73a7Haurq3A6nejp6bFUBtA/5e9mkrRV7AFAjkFboVtBMq5jLEJQfXFxEW+88QbGxsawvb2NWCyGs2fPoqenB41GA9lsFpubm+jq6pJEAdvTlkolAYnsdjuy2SwymQxeeuklbG5uShW70+nE+vo65ufn5VyCwSDu3LkDv99vSeTu7u5iZmYGmUwGsVhM5uvV63XpZ37q1Cm5h+FwWIZcs+q0XC5b2oDUajULy5gJFb/fj5WVFXzta1/Diy++KHgLW9zwGZAE5/V6UalU0NPTg9u3bwtY9rDaUL2fEYzVw7dbAaTA/gqGra0t/PSnP7XMMdMkLQKxZoWDjmHM18yYjP+3es08N54Xz8P8m74+/n9QS1ztT7T6zoPOw/QfzO+j382/c0i7w+FAPp9HJpMRcJlzBQ4CXPUzMZMomUzmodHfRqMh3Qro/zkcDng8Honz2Uq80WgIgE3RZL5cLidkxnw+j1QqhYmJCfT390uy1MQkNBFM+5z6WQIQv5W2Wq8Fnqd+DdirXOB79LMul8vSVo+JF36/boGtyWJatzSeylhxd3cX29vbMpPC4/EITsa9iN+RzWaRSCSQSCQscWWr2EGTF4vFIlZWVrC0tIRcLiedRngeTJjn83l5Fkw4MKkSjUZFh+12O9LptDwDztV4N/KBJyGAPSCgVbCqQX6CtgRPdTZJ96J6u8JNkq0+TLCd388F0dXVhVAoBL/fLxstlYtCoCKbzSKXy1mYkDq41CVBGpBrVQaqwTCCFroH+rsNhg/6DJWTCqoXL4EIM9h9rxUqD7v09PQgl8sJWNTKaWgFPHR0dGBnZ0dYMLdv38b169fR0dGBWCyGeDyOyclJHDp0CKFQSNiJwWDQ4izr+Qt8jdUO7EdqOh71el0MHdk8uoWEZgFxDehSr0ajIY421zaTHgTReCyew/z8PO7cuYO5uTmsrq5K338mbsyNoRVIrJ1+vfnYbDb5zrbsyfLyMl577TU8/fTTOHHiBHK5HFZXV7GysiIVKGzTwQQTgwugdQkrwaRSqWRpuaefk2lHtJOrK99asabMRIT+2Twf8308x0wmI4yB3t5exONxqYwzP29u4ubv5nno95G5UCqVpL8jW0q1Yo2Z4CFbpTBpzfvhdDrh8/mQyWSwvLzcTkDcQ0KhEHp6ehAOh3Hnzh1hCGpnV7eEow5TF/ke+im0I+y7vLi4KO9jr32/3y/99qPRKCKRiATc1WoVmUwGQ0NDlpkPbrcb9Xod3/rWt2Cz2fCrv/qr0uOZettoNAdHvv7661hbW8Pg4CAmJycFGKhWq9KeZmtrC1tbW0gkElJVRt3TtluTIHgf9D/aWN4zbYu1vsfjcUQiEamGqteb/ZofRtFBk5a34wcR4L9f5X6eI/Z+yzuxm+93CyYtuVzuPVU1tqUtbXlnooGgxcVF1Ot1RKNRAY+APQKZrmTQ0ioh3MoX5ecY89O/Jahpt9uxsrKC6elpqTa8efMmJicn0d/fL/OZvv/97+PixYuYnZ0VHyWTyUibWo/HI9Vi2WwW5XIZLpdLEsoulwvxeFwwBABYWFgQn57+L683Go2io6PZooMzAMvlMq5cuYJbt27JfEGPxwOv14tYLIaRkREMDg7K4Fft87NPeiAQkGv+xje+gRdffBGpVEoS2IwXdEs9EkJjsRgmJibws5/9DPl8/gPRjftRiM3wXhyUfDBF6yExKn72oETa2xFTx+/1vXy//puZAGgVr93r2K3e3+q45ne3Ojf9HjN5YQK5fK9JYGi17rVo8qV+T6tuEQ+6MIYC9jobmOSTTCYjbfJpC2m7tH/MqqiOjg5sb28jm81ia2sLQ0NDCAaDMqdGkySJSTFeMSsfAEj1lMY89TNtlRg7qGKZtkkTDpm4JtFIH0cn8HRsx3hf41lsn5bL5STpYFYfs2oul8vJveI/ja0TB9vd3ZWEBTsw7OzsoLe3V6opSDKu1ZozWVlxTIKdzWZDJBKR+UWdnZ0yi61UKgnJvl6vv+vxAO+pHVMmk5FJ529XzL75b8cQacV5txUSb1cInrIknW0YmNAgg+vt9sO6X0Qz1jW4e1AWDdjPKnk3kk6nH+rAi2vgt3/7t5HNZrG0tCQVOMD+cknNONVGj+APgSAN8PN/ttaJx+OIRqPo6+tDLBZDOByW9gkUgmn8HlYfkO1CA+L3+5FKpRAMBrG5uSmf14bQ6XRKqS9nDOjhV5oFQ3YxwbClpSUsLCxgY2MDGxsbyOVykklmpQPPVxt303BTZ8lk1ka3VqshEokgFArB6XTiz/7szx4avXs3NvYg6erqwtjYGEZHR9Hb2yuBSzKZxMrKChKJhKU/LO2cnkFwL6cPwL6Nkc9S9xF8N8ONTDnIiT3IKSYrw+v1IhgMSi90sth1QrbV9fFcmSDWbUOKxaK0u+K6aHUu+rWOjg6p0GMCrl6vC8O8r68PbrcbN27cwJUrV963veZhWRcUro+XX34ZyWQSly9fRjqdRkdHB958800sLy8LyG8mIVoFHWZwohnSOgHK9+uezNT7RqMhSSW2K2Jylj2bGZSEQiHZEzT5gOdSr9eRzWYlWUtAg+W6usrM3Ft0ktpM0PGazOvm/dG9pzs7O9HT04Oenh6EQiGUSiV4PB6Mj4/jwoULWF9fx6/92q89dLpVrzd7evt8vnsG4m1py72EwWV/f/97AoTa0pZHSd4v35d7IcH0gYEB+Hw+AXY4z4E2nhiD3kNbHRNoXYGl38P9l/s6wTPiCvwet9uN7u5uXLhwAX6/H93d3XjppZcwMzOzj3wF7AFiLpdLWuJy/3e5XAIu8fzNlrYmKKqrOYG9Ck4mDHiNjNu6u7sRDocxODiI4eFhxGIxIWQ4nU7k83lMTU3h8uXLePHFF5HL5QR8IynTZrNZfGmyqh9//HGMjIzgu9/9LpaXl99zB4j71S9ppd8EEIPBoAyrPQhMfyufpBUBzPy8Gc/dK3Ggz7HVd+i/tfIx387nW0mr83s3cq9khfa3+Rp963s9g7fzHMx5hJQHSS/fSog9tcIHaPPYgpvDojmAmUlLCnEwxktsi+v3+6VTB+Mcxjq0kWYiwExema+b9prnq69B46CtjqWxPZ5/K6K3eTwAQvw1WzPr5CHPh8RPk0TG62BCAGjq1s2bN6VygntPLBZDKBTC0tKSYD0ABA9iuzHGlN3d3fD5fGg0Gsjn85b4kzEoz+sg0tZb6fl7SkIsLy9jaGjo3X68LY+ALC0tYXBw8KM+jQ9M2mvg/pSHRe/a+tWW91MelnVBaa+P+0ceNt1qS1va0pa2fDTS3tvb8n7I/eqXtPX70Za2XrblUZC30vP3lIRoM8XacpA8Kuyv9hq4v+Rh07u2frXl/ZCHbV1Q2uvjo5eHVbfa0pa2tKUtH4209/a2vBe53/2Stn4/mtLWy7Y8CvJ29fw9JSHa0pa2tKUtbWlLW9rSlra0pS1taUtb2tKWtrSlLW1pS1sOkvsvDdeWtrSlLW1pS1va0pa2tKUtbWlLW9rSlra0pS1taUtbHgppJyHa0pa2tKUtbWlLW9rSlra0pS1taUtb2tKWtrSlLW1pywci7SREW9rSlra0pS1taUtb2tKWtrSlLW1pS1va0pa2tKUtbflApJ2EaEtb2tKWtrSlLW1pS1va0pa2tKUtbWlLW9rSlra0pS0fiLSTEG1pS1va0pa2tKUtbWlLW9rSlra0pS1taUtb2tKWtrTlA5F2EqItbWlLW9rSlra0pS1taUtb2tKWtrSlLW1pS1va0pa2fCDSTkK0pS1taUtb2tKWtrSlLW1pS1va0pa2tKUtbWlLW9rSlg9E/j8usCRw/NzJ0QAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"sample = load_images()\n",
"fig = plt.figure(figsize=(20,5))\n",
"l = 1\n",
"shapes = []\n",
"for i in range(sample.shape[0]):\n",
" for m in range(sample.shape[1]):\n",
" ax = fig.add_subplot(4,9,m+l,xticks = [], yticks = [])\n",
" ax.imshow(np.squeeze(sample[i,m]))\n",
" shapes.append(sample[i,m].shape)\n",
" l +=9"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "x7hBKDpmekO5",
"outputId": "9e757af6-cdca-4307-a091-b819b5710ed5",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([300.27777778, 468.44444444, 3. ])"
]
},
"metadata": {},
"execution_count": 10
}
],
"source": [
"np.array(shapes).mean(axis=0)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "raXPpwn0ekO6",
"outputId": "41f0784a-5cdc-46aa-bfe0-1c6a7fcbaa83",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Found 613 images belonging to 4 classes.\n",
"Found 72 images belonging to 4 classes.\n",
"Found 315 images belonging to 4 classes.\n"
]
}
],
"source": [
"image_shape = (305,430,3)\n",
"N_CLASSES = 4\n",
"BATCH_SIZE = 32\n",
"\n",
"train_datagen = ImageDataGenerator(dtype='float32', rescale= 1./255.)\n",
"train_generator = train_datagen.flow_from_directory(train_path,\n",
" batch_size = BATCH_SIZE,\n",
" target_size = (305,430),\n",
" class_mode = 'categorical')\n",
"\n",
"valid_datagen = ImageDataGenerator(dtype='float32', rescale= 1./255.)\n",
"valid_generator = valid_datagen.flow_from_directory(valid_path,\n",
" batch_size = BATCH_SIZE,\n",
" target_size = (305,430),\n",
" class_mode = 'categorical')\n",
"\n",
"test_datagen = ImageDataGenerator(dtype='float32', rescale = 1.0/255.0)\n",
"test_generator = test_datagen.flow_from_directory(test_path,\n",
" batch_size = BATCH_SIZE,\n",
" target_size = (305,430),\n",
" class_mode = 'categorical')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2Ns5hr7wekO6",
"outputId": "19fd61db-849e-471c-d033-8dd754fe0137",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param # \n",
"=================================================================\n",
" conv2d (Conv2D) (None, 305, 430, 8) 104 \n",
" \n",
" max_pooling2d (MaxPooling2D (None, 152, 215, 8) 0 \n",
" ) \n",
" \n",
" conv2d_1 (Conv2D) (None, 152, 215, 16) 528 \n",
" \n",
" max_pooling2d_1 (MaxPooling (None, 76, 107, 16) 0 \n",
" 2D) \n",
" \n",
" dropout (Dropout) (None, 76, 107, 16) 0 \n",
" \n",
" flatten (Flatten) (None, 130112) 0 \n",
" \n",
" dense (Dense) (None, 300) 39033900 \n",
" \n",
" dropout_1 (Dropout) (None, 300) 0 \n",
" \n",
" dense_1 (Dense) (None, 4) 1204 \n",
" \n",
"=================================================================\n",
"Total params: 39,035,736\n",
"Trainable params: 39,035,736\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"base_hidden_units = 8\n",
"weight_decay = 1e-3\n",
"model = Sequential([\n",
"\n",
" Conv2D(filters = 8 , kernel_size = 2, padding = 'same', activation = 'relu', input_shape = image_shape),\n",
" MaxPooling2D(pool_size = 2),\n",
" \n",
" Conv2D(filters = 16 , kernel_size = 2, padding = 'same', activation = 'relu',\n",
" kernel_regularizer = regularizers.l2(weight_decay)),\n",
" MaxPooling2D(pool_size = 2),\n",
" \n",
" \n",
" Dropout(0.4),\n",
" Flatten(),\n",
" Dense(300,activation='relu'),\n",
" Dropout(0.5),\n",
" Dense(4,activation='softmax')\n",
" \n",
"])\n",
"\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8DUY6tVtekO7",
"outputId": "14457598-078d-4408-c416-2d869c183ae7"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.9/dist-packages/keras/optimizers/legacy/adam.py:117: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n",
" super().__init__(name, **kwargs)\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/100\n",
"20/20 [==============================] - ETA: 0s - loss: 4.7365 - acc: 0.3719\n",
"Epoch 1: val_loss improved from inf to 1.19796, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 18s 436ms/step - loss: 4.7365 - acc: 0.3719 - val_loss: 1.1980 - val_acc: 0.4861\n",
"Epoch 2/100\n",
"20/20 [==============================] - ETA: 0s - loss: 1.0326 - acc: 0.5644\n",
"Epoch 2: val_loss improved from 1.19796 to 0.89381, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 8s 389ms/step - loss: 1.0326 - acc: 0.5644 - val_loss: 0.8938 - val_acc: 0.5278\n",
"Epoch 3/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.6938 - acc: 0.7553\n",
"Epoch 3: val_loss improved from 0.89381 to 0.82468, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 7s 338ms/step - loss: 0.6938 - acc: 0.7553 - val_loss: 0.8247 - val_acc: 0.5556\n",
"Epoch 4/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.4552 - acc: 0.8352\n",
"Epoch 4: val_loss improved from 0.82468 to 0.81689, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 8s 385ms/step - loss: 0.4552 - acc: 0.8352 - val_loss: 0.8169 - val_acc: 0.5833\n",
"Epoch 5/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2860 - acc: 0.9054\n",
"Epoch 5: val_loss improved from 0.81689 to 0.69750, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 7s 335ms/step - loss: 0.2860 - acc: 0.9054 - val_loss: 0.6975 - val_acc: 0.6944\n",
"Epoch 6/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1779 - acc: 0.9527\n",
"Epoch 6: val_loss did not improve from 0.69750\n",
"20/20 [==============================] - 5s 252ms/step - loss: 0.1779 - acc: 0.9527 - val_loss: 0.7120 - val_acc: 0.6944\n",
"Epoch 7/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1166 - acc: 0.9755\n",
"Epoch 7: val_loss improved from 0.69750 to 0.67049, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 7s 364ms/step - loss: 0.1166 - acc: 0.9755 - val_loss: 0.6705 - val_acc: 0.6667\n",
"Epoch 8/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1180 - acc: 0.9821\n",
"Epoch 8: val_loss improved from 0.67049 to 0.59089, saving model to chestmodel.hdf5\n",
"20/20 [==============================] - 8s 399ms/step - loss: 0.1180 - acc: 0.9821 - val_loss: 0.5909 - val_acc: 0.7778\n",
"Epoch 9/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1146 - acc: 0.9886\n",
"Epoch 9: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 251ms/step - loss: 0.1146 - acc: 0.9886 - val_loss: 0.6477 - val_acc: 0.7500\n",
"Epoch 10/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0519 - acc: 0.9935\n",
"Epoch 10: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 257ms/step - loss: 0.0519 - acc: 0.9935 - val_loss: 0.7306 - val_acc: 0.7083\n",
"Epoch 11/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0538 - acc: 0.9967\n",
"Epoch 11: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 245ms/step - loss: 0.0538 - acc: 0.9967 - val_loss: 0.6454 - val_acc: 0.7500\n",
"Epoch 12/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0518 - acc: 0.9951\n",
"Epoch 12: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 6s 303ms/step - loss: 0.0518 - acc: 0.9951 - val_loss: 0.6182 - val_acc: 0.7778\n",
"Epoch 13/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0483 - acc: 0.9967\n",
"Epoch 13: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 247ms/step - loss: 0.0483 - acc: 0.9967 - val_loss: 0.6190 - val_acc: 0.7361\n",
"Epoch 14/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0230 - acc: 1.0000\n",
"Epoch 14: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 261ms/step - loss: 0.0230 - acc: 1.0000 - val_loss: 0.7175 - val_acc: 0.7083\n",
"Epoch 15/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0308 - acc: 0.9984\n",
"Epoch 15: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 7s 370ms/step - loss: 0.0308 - acc: 0.9984 - val_loss: 0.6265 - val_acc: 0.7778\n",
"Epoch 16/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0280 - acc: 0.9951\n",
"Epoch 16: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 6s 294ms/step - loss: 0.0280 - acc: 0.9951 - val_loss: 0.6314 - val_acc: 0.7778\n",
"Epoch 17/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0256 - acc: 0.9967\n",
"Epoch 17: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 252ms/step - loss: 0.0256 - acc: 0.9967 - val_loss: 0.6790 - val_acc: 0.7500\n",
"Epoch 18/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0314 - acc: 0.9984\n",
"Epoch 18: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 6s 315ms/step - loss: 0.0314 - acc: 0.9984 - val_loss: 0.7277 - val_acc: 0.7500\n",
"Epoch 19/100\n",
"19/20 [===========================>..] - ETA: 0s - loss: 0.0154 - acc: 1.0000\n",
"Epoch 19: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 249ms/step - loss: 0.0155 - acc: 1.0000 - val_loss: 0.6700 - val_acc: 0.7500\n",
"Epoch 20/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0279 - acc: 0.9984\n",
"Epoch 20: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 254ms/step - loss: 0.0279 - acc: 0.9984 - val_loss: 0.8650 - val_acc: 0.6944\n",
"Epoch 21/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0156 - acc: 0.9984\n",
"Epoch 21: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 250ms/step - loss: 0.0156 - acc: 0.9984 - val_loss: 0.6891 - val_acc: 0.7639\n",
"Epoch 22/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0177 - acc: 0.9984\n",
"Epoch 22: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 6s 311ms/step - loss: 0.0177 - acc: 0.9984 - val_loss: 0.6801 - val_acc: 0.7639\n",
"Epoch 23/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0236 - acc: 0.9967\n",
"Epoch 23: val_loss did not improve from 0.59089\n",
"20/20 [==============================] - 5s 251ms/step - loss: 0.0236 - acc: 0.9967 - val_loss: 0.7270 - val_acc: 0.7639\n"
]
}
],
"source": [
"checkpointer = ModelCheckpoint('chestmodel.hdf5',verbose=1, save_best_only= True)\n",
"early_stopping = EarlyStopping(monitor= 'val_loss', patience= 15)\n",
"optimizer = Adam(lr=0.001, decay=1e-6)\n",
"\n",
"\n",
"model.compile(loss= 'categorical_crossentropy', optimizer= optimizer, metrics=['acc'])\n",
"history = model.fit(train_generator,\n",
" steps_per_epoch = 20,\n",
" epochs = 100,\n",
" verbose = 1,\n",
" validation_data = valid_generator,\n",
" callbacks = [checkpointer, early_stopping])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zacoIlnlekO8",
"outputId": "17225486-9cbd-481d-ab76-a772cf476048",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"10/10 [==============================] - 3s 256ms/step - loss: 2.1638 - acc: 0.5492\n"
]
}
],
"source": [
"result = model.evaluate(test_generator)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ne1oNDmaekO8",
"outputId": "fdb08d0f-d0e6-42ca-e6e1-4148daeb9267",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 449
}
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdIUlEQVR4nO3dd3xUVfrH8c9MkkkhjRBISAgEpHcNgoANRWJDQFSsIAquCq7CD1exgB13VRZX2UVdsRcUQXFRFENREUVBkBp6J6Gn15n7++OSQKQlYWbuTPJ9v17z4s7NvXOfyTCZZ855zjk2wzAMRERERGoIu9UBiIiIiLiTkhsRERGpUZTciIiISI2i5EZERERqFCU3IiIiUqMouREREZEaRcmNiIiI1CiBVgfgbS6Xi927dxMREYHNZrM6HBEREakEwzDIyckhISEBu/3UbTO1LrnZvXs3SUlJVochIiIi1bBjxw4aNWp0ymNqXXITEREBmL+cyMhIi6MRERGRysjOziYpKan8c/xUal1yU9YVFRkZqeRGRETEz1SmpEQFxSIiIlKjKLkRERGRGkXJjYiIiNQoSm5ERESkRlFyIyIiIjWKkhsRERGpUZTciIiISI2i5EZERERqFCU3IiIiUqMouREREZEaxdLk5vvvv6dv374kJCRgs9n4/PPPT3vOggULOOeccwgODqZ58+a8/fbbHo9TRERE/IelyU1eXh6dOnVi8uTJlTp+y5YtXHXVVfTq1Yvly5fzwAMPMGzYML755hsPRyoiIiL+wtKFM6+44gquuOKKSh8/ZcoUmjZtyksvvQRAmzZt+PHHH/nnP/9Jamqqp8IUEXELwzDILiwlv7iU0KAAQh0BOALslVoIUDzDMAyKnS4Kip0UlDgJsNsIcwQSGhRAgF2vi7/yq1XBFy9eTO/evSvsS01N5YEHHjjpOUVFRRQVFZXfz87O9lR4IlILFRQ72Z9bxMG8Yg7kFbE/t5gDucUcyC3iQF6xecstMvflFVHiNCqcH2C3ERYUQIgjgDBHAKFB5r9hjkBCHWXbAYQcu//IduiR+2GOAKJCg4gNDyamjgNHYM0qp3S6DApKnOQXl1JY7CK/pJT8YicFxU7yi839ZdtlxxUUuyg4ctzRY0uPOcZZntA4XcYJrxscaD/utTj2dx8aFFj++pT/3BFI2DHHBAcG4Ou5q91m+9P/Mf9PvP0qucnIyCAuLq7Cvri4OLKzsykoKCA0NPS4cyZMmMCTTz7prRBF5BRKnC4O5hWXJwMH84oBjnxgVPwwDz3mg9xT36CP/dZe9qF3og/MQ/lHkxQzfjNROZBbTH6xs8rXDbTbKD3ygep0GeQUlZJTVOq25xUREkhseDD16jioF+6gXtl2nSPb4Y7yRKhumOOMf79//j1WSCaO+Z0WFJdWSCzKjz0mCSksOT4ZKSp1uek3c2qBdhtOw8A4kusUlbooKnVxKL/EK9f3NWWJd4XE7bhk+2iSd+z7Ny4yhItbNbAsdr9Kbqpj7NixjB49uvx+dnY2SUlJFkYkUnO4XAaHC0o4kGu2WFRsvTjaWmEmBsVkFVTvQyI40G7+4Qw6JulxHP/HNcwRQGCA7aTf2gtKXBQUH/Ot/xTf2qvCEWgn9pjEoV6dsn+PSSbqBBNzZF9IUAClTleFD/5jk6ljP/ALjom1QutD2bElTvKLSjlcUMLBvGIzWSosJaewlC37804bu80GMWGO8rhjwh3E1nEQHhLoltYPd/vzh+ufW0qObWkJ/dP+41tajn4ohwYFEBRgxzAMCktcJ3mef/5dOMv/P5W9PkdfK+8mZmfC6TKOeY84y1sXzyTx7pwUreSmsuLj48nMzKywLzMzk8jIyBO22gAEBwcTHBzsjfBEapTCEic7DxWw81A+Ow4VsPNgPruzCiu0XhzKL67yh5rdBjF1gokNN1sNgKMtJiUVuxf+/A36MJ77Bh0UYCtvQTr2Ay/UEUDd8g//Y1pBws3nUC88mDqOgCo33wcG2IkMsBMZEuS25+ByGWQVlBztCjvy7wkTz7xiDueXYBiUd59B7hnHcKLf45+TkJAjieqxrQHHd8EFHtdNFxLk+W4Sm81mvvaOAOp59Eq+q8Tp+tOXghO3tFVsqauY5DWLrWPpc/Cr5KZ79+589dVXFfbNnTuX7t27WxSRiP8qcbrYc7iQHYfy2XEwn52HCips780pOv2DHBEdFkRMHbN1wuwGObb1oqwbxNyOCg3CXolukD9/gy7rrvhzN8afuzxKnMZxtQMn+tb+566woAD/r1Ox223UreOgbh0HzRuEn/b4EqfL7HIrqxPKO9rallfkrLW/x9ouKMBOVKidqFD3Jd7eZmlyk5uby8aNG8vvb9myheXLlxMTE0Pjxo0ZO3Ysu3bt4t133wXg7rvv5tVXX+Vvf/sbd9xxB/PmzeOTTz5h9uzZVj0FEZ/ldBlkZhf+KXExW2J2HipgT1YBp2t0CQ8OpFHdUBrVDSMpJpTE6FDqR5i1GvXKWl/qODzygaZv0J4XFGCnQUQIDSJCrA5FxK0sTW5+++03evXqVX6/rDZmyJAhvP322+zZs4ft27eX/7xp06bMnj2bUaNG8fLLL9OoUSP++9//ahi41Goul8GuwwWsz8whPTOH9Rk5rM/MZeO+XIpP098fHGinUd1QkmLCzH/rhlXYjg4L8tvREiJSe9kMw/BOFZiPyM7OJioqiqysLCIjI60OR6TSDMMgM7uI9MwcNmTmkJ6Rw/q9uWzIzDnpiJ1Au42E6FCSYkJpFG22vpjJSxhJdUOJDQ+uVBeRiIjVqvL57Vc1NyK1xYHcsiQm95jWmByyC088aiEowMZZ9cNpGRdBq/gIWjQwtxvVDSVQNRAiUssouRGxUFZBidkKU5bIZOSwYW8O+3OLT3h8gN1Gcr0wWsZFlCcyLePCaVKvjgo5RUSOUHIj4gV5RaVs2JvL+rJWmL25rM/IISO78ITH22yQVLcsiQk/ksRE0Kx+HYIDA7wcvYiIf1FyI+JGhSVONu0zk5j0jNzyVpmdhwpOek5CVAgtjiQxZa0xzRuEE+bQ21NEpDr011OkGkqcLrbszytviSnrVtp6IO+kw6tjw4NpFR9OiwZHu5NaxEW4dRI3ERFRciNSJaVOF+/9vI1J32046VICUaFBtIqLoGV8eHltTMu4CGLqOLwcrYhI7aTkRqSSftl8gPGzVrMuIweAOo4AWsZH0LJBhPlvXDit4iKoHxGsuWFERCyk5EbkNDKzC5nw1Vo+X74bMJcaeDC1FTee29hjq1WLiEj1KbkROYkSp4u3F21l0nfrySt2YrPBTV0b82CfVtRVF5OIiM9SciNyAj9t3M+4WavZuNdcJblzUjRP9WtHx0bR1gYmIiKnpeRG5Bi7Dxfw7Fdrmf3HHgBi6jh4+PLWXJfSSMsUiIj4CSU3IkBRqZM3f9zCK2kbKShxYrfBbec1YfRlrYgK01BtERF/ouRGar2F6/fx5KzVbN6fB0CXJnV5sl872iVEWRyZiIhUh5IbqbV2HMzn6f+t4ds1mYA5yd4jV7ZmwNmJGsotIuLHlNxIrVNY4uT17zczef5GikpdBNhtDOmezAOXtdBswSIiNYCSG6lV0tZm8uSXa9h+MB+Abk1jeKpfe1rFR1gcmYiIuIuSG6kVth3I46kv15C2bi8AcZHBPHpVW/p2bKguKBGRGkbJjdR4Hy3ZzvhZqykudRFot3HnBU2575IWhAfrv7+ISE2kv+5Soy1cv49HZ67EZcD5zWN54pp2NG8QbnVYIiLiQUpupMbauj+P+z5chsuA61Ma8Y/rOqoLSkSkFrBbHYCIJ+QWlTL83d/ILizl7MbRPDOgvRIbEZFaQsmN1Dgul8GoacvZsDeXBhHBTLk1heDAAKvDEhERL1FyIzXOy2kbmLsmE0eAndduSyEuMsTqkERExIuU3EiNMmdVBi+nbQDgmQHtObtxXYsjEhERb1NyIzVGekYO//fJcgBu75HMDV2SrA1IREQsoeRGaoTD+cUMf/c38oqddG9Wj0evamN1SCIiYhElN+L3Sp0u7vvod7YfzKdR3VAm33IOQQH6ry0iUlvpE0D83t/nrOOHDfsJDQrgjcFdiKnjsDokERGxkJIb8Wszlu3kjR+2APDi9Z1o0zDS4ohERMRqSm7Eb/2x8zAPz1gJwMhezbmqY0OLIxIREV+g5Eb80t6cQv7y3lKKS11c2roBoy9raXVIIiLiI5TciN8pLnVx7/vL2JNVSLP6dfjnjZ2x27W0goiImJTciN8ZP2s1v207RERIIG8M7kJkSJDVIYmIiA9RciN+5f2ft/HRku3YbPCvG8/mrPrhVockIiI+RsmN+I0lWw7yxKzVADyY2operRtYHJGIiPgiJTfiF3YdLuCe95dS6jK4umND7rnoLKtDEhERH6XkRnxeQbGTv7z3GwfyimnbMJIXruuEzaYCYhEROTElN+LTDMPg4Rl/sGpXNjF1HLw+OIVQR4DVYYmIiA9TciM+7fXvN/PF8t0E2m38+5ZzaFQ3zOqQRETExym5EZ+1cP0+/j5nHQDj+rblvGb1LI5IRET8gZIb8Ulb9+dx34fLcBkwqEsSt53XxOqQRETETyi5EZ+TU1jCsHd/I7uwlHMaR/NU/3YqIBYRkUpTciM+xeUyGDVtBRv35hIXGcyUW1MIDlQBsYiIVJ7lyc3kyZNJTk4mJCSEbt26sWTJkpMeW1JSwlNPPcVZZ51FSEgInTp1Ys6cOV6MVjztixW7+G5tJo5AO6/d1oUGkSFWhyQiIn7G0uRm2rRpjB49mvHjx7Ns2TI6depEamoqe/fuPeHxjz32GK+99hqvvPIKa9as4e6772bAgAH8/vvvXo5cPKGwxMmL36wH4P5LW9A5KdragERExC/ZDMMwrLp4t27dOPfcc3n11VcBcLlcJCUlcd999/Hwww8fd3xCQgKPPvooI0aMKN83cOBAQkNDef/99094jaKiIoqKisrvZ2dnk5SURFZWFpGRkW5+RnImXv9+E899tY6GUSHMH3MxIUHqjhIREVN2djZRUVGV+vy2rOWmuLiYpUuX0rt376PB2O307t2bxYsXn/CcoqIiQkIqdlOEhoby448/nvQ6EyZMICoqqvyWlJTknicgbnU4v5hX520EYPRlLZXYiIhItVmW3Ozfvx+n00lcXFyF/XFxcWRkZJzwnNTUVCZOnMiGDRtwuVzMnTuXGTNmsGfPnpNeZ+zYsWRlZZXfduzY4dbnIe4xef5GsgtLaR0fwbXnNLI6HBER8WOWFxRXxcsvv0yLFi1o3bo1DoeDkSNHMnToUOz2kz+N4OBgIiMjK9zEt+w4mM87P20D4OErWhNg17BvERGpPsuSm9jYWAICAsjMzKywPzMzk/j4+BOeU79+fT7//HPy8vLYtm0b69atIzw8nGbNmnkjZPGQiXPXU+x00eOselzUsr7V4YiIiJ+zLLlxOBykpKSQlpZWvs/lcpGWlkb37t1PeW5ISAiJiYmUlpby2Wef0a9fP0+HKx6yalcWM3/fBcDYK9posj4RETljgVZefPTo0QwZMoQuXbrQtWtXJk2aRF5eHkOHDgVg8ODBJCYmMmHCBAB++eUXdu3aRefOndm1axdPPPEELpeLv/3tb1Y+DakmwzCY8PVaAPp1TqBDoyiLIxIRkZrA0uRm0KBB7Nu3j3HjxpGRkUHnzp2ZM2dOeZHx9u3bK9TTFBYW8thjj7F582bCw8O58soree+994iOjrboGciZ+H7DfhZtPIAjwM6YPq2sDkdERGoIS+e5sUJVxsmL5zhdBlf96wfWZeQw7PymPHZ1W6tDEhERH+YX89xI7fb577tYl5FDREggI3o1tzocERGpQZTciNcVljh56dt0AEb0ak7dOg6LIxIRkZpEyY143ds/bWV3ViEJUSHc3iPZ6nBERKSGUXIjXnUor5jJ881lFv6vTystsyAiIm6n5Ea86tX5G8kpLKVNw0j6n51odTgiIlIDKbkRr9lxMJ/3FpvLLIzVMgsiIuIhSm7Ea178Np1ip4vzm8dyoZZZEBERD1FyI16xcmcWXyzfDZiLY4qIiHiKkhvxOMMweO4rc5mFAWcn0j5RyyyIiIjnKLkRj1uwfh+LN5vLLPxfn5ZWhyMiIjWckhvxKKfL4Pmv1gFwe89kGtUNszgiERGp6ZTciEfNWLaT9MwcIkMCuffis6wOR0REagElN+Ix5jIL6wEYeUlzosO0zIKIiHiekhvxmKmLtpCRXUhidCiDuydbHY6IiNQSSm7EIw7mFfOf+ZsAGJPaUsssiIiI1yi5EY94Zd4GcopKadswkn6dtMyCiIh4j5IbcbvtB/J5/+cjyyxc2Rq7llkQEREvUnIjbvfCt+mUOA0uaBHLBS20zIKIiHiXkhtxqxU7DvPlit3YbFpmQURErKHkRtzmz8sstEvQMgsiIuJ9Sm7Ebean7+WXLQdxBNr5vz6trA5HRERqKSU34hZOl8HzX5vLLAztmUxidKjFEYmISG2l5Ebc4rOlO1mfmUtUaBD3XtTc6nBERKQWU3IjZ6yg2MlLc9MBuO+S5kSFBVkckYiI1GZKbuSMTV20hczsIhrVDeW27k2sDkdERGo5JTdyRg7kFvGfBeYyCw+mtiI4UMssiIiItZTcyBl5df5GcotKaZ8YSd+OCVaHIyIiouRGqm9fThEf/rIdgIcu1zILIiLiG5TcSLX998fNFJW6OLtxNOc3j7U6HBEREUDJjVRTVn4J7y82F8cccXFzbDa12oiIiG9QciPV8vZPW8krdtI6PoJL2zSwOhwREZFySm6kyvKKSnnrpy0AjOilVhsREfEtSm6kyj74ZRuH80toGluHKzs0tDocERGRCpTcSJUUljh54wez1eaei84iQCOkRETExyi5kSr5dOlO9uUUkRAVQv+zE60OR0RE5DhKbqTSSpwuphyZjfiuC5vhCNR/HxER8T36dJJKm7V8N7sOFxAb7uDGro2tDkdEROSElNxIpbhcBv9esBGAO89vRkiQ1pASERHfpORGKmXO6gw27csjMiSQW89Tq42IiPguJTdyWoZhMHm+2Wpze49kIkKCLI5IRETk5JTcyGktWL+P1buzCXMEMLRnU6vDEREROSUlN3JKhmEweZ7ZanNz18bUreOwOCIREZFTszy5mTx5MsnJyYSEhNCtWzeWLFlyyuMnTZpEq1atCA0NJSkpiVGjRlFYWOilaGufJVsO8tu2QzgC7Ay/sJnV4YiIiJyWpcnNtGnTGD16NOPHj2fZsmV06tSJ1NRU9u7de8LjP/zwQx5++GHGjx/P2rVrefPNN5k2bRqPPPKIlyOvPV49UmtzfZdGxEWGWByNiIjI6Vma3EycOJHhw4czdOhQ2rZty5QpUwgLC2Pq1KknPP6nn36iZ8+e3HzzzSQnJ9OnTx9uuumm07b2SPWs2HGYHzbsJ8Bu4+6LzrI6HBERkUqxLLkpLi5m6dKl9O7d+2gwdju9e/dm8eLFJzynR48eLF26tDyZ2bx5M1999RVXXnnlSa9TVFREdnZ2hZtUTtkIqX6dEkiKCbM4GhERkcoJtOrC+/fvx+l0EhcXV2F/XFwc69atO+E5N998M/v37+f888/HMAxKS0u5++67T9ktNWHCBJ588km3xl4brM/M4ds1mdhscG8vtdqIiIj/sLyguCoWLFjAc889x7///W+WLVvGjBkzmD17Nk8//fRJzxk7dixZWVnltx07dngxYv/17yOtNpe3i6d5gwiLoxEREak8y1puYmNjCQgIIDMzs8L+zMxM4uPjT3jO448/zm233cawYcMA6NChA3l5edx11108+uij2O3H52rBwcEEBwe7/wnUYNsO5DFrxW4A7r24ucXRiIiIVI1lLTcOh4OUlBTS0tLK97lcLtLS0ujevfsJz8nPzz8ugQkIMNc4MgzDc8HWMlMWbsZlwEUt69OhUZTV4YiIiFSJZS03AKNHj2bIkCF06dKFrl27MmnSJPLy8hg6dCgAgwcPJjExkQkTJgDQt29fJk6cyNlnn023bt3YuHEjjz/+OH379i1PcuTMZGQV8tnSnQCMvEStNiIi4n8sTW4GDRrEvn37GDduHBkZGXTu3Jk5c+aUFxlv3769QkvNY489hs1m47HHHmPXrl3Ur1+fvn378uyzz1r1FGqc17/fTLHTRdfkGM5NjrE6HBERkSqzGbWsPyc7O5uoqCiysrKIjIy0OhyfciC3iPP/Pp+CEifv3NGVi1rWtzokERERoGqf3341Wko8661FWykocdIhMYoLW8RaHY6IiEi1KLkRALILS3hn8VYARvQ6C5vNZm1AIiIi1aTkRgB4b/E2cgpLadEgnD5tTzwUX0RExB9YWlAsvqGg2MnUH7cA5mzEdrtabbyutBjy90NkgtWR+LeSQsjNhLpNrI7Eu/ZvhLx97n3M8AZQT7OTi39SciN8tGQ7B/KKSYoJpW9Hfbha4su/woqP4JzBcPnz4KhjdUT+Z+dv8NmdcGgrXPUSnDvM6oi8Y8sP8E5fwANjQ84dBn2egaBQ9z+2iAcpuanlikqdvP79ZgDuvugsAgPUU+l1+Qdh5afm9rJ3YfvPcN1UiO9gbVz+wuWCRZNg/rPgKjX3zR4DoTHQ/lpLQ/M4lwu+eQQwIDwOgt20VIphwMFN8Ot/YdtP5v/HBm3c89giXqDkppabuWwXGdmFxEUGc11KI6vDqZ3WzjI/lKMbg7ME9q+HNy6By56Gbn8BFXefXPYemPkX2LLQvN/uWvMDftk7MOMuCImC5pdaG6MnrfwEMv6A4Ei4ZzHUqee+x974Hcy8B/augdcvhtTnoMsd+v8ofkFf02uxUqeL/yzcBMDwC5oRHKhZni2x6jPz3y53wN2LoOUV4CyGOQ/Bh4Mgb7+18fmq9DkwpaeZ2ASFQb/JZgvD1f80kxxXCUy71eyuqolKCiDtyKLB549yb2ID0Lw33LPI/Le0EGaPNn+f+Qfdex0RD1ByU4vNXrmHbQfyqRsWxM3dGlsdTu2Uk2HWTID5gVynHtz0EVzxAgQEw4Zv4D89YfMCS8P0KSWF8PVD8NEgyD8A8R3hL9/D2bearQr2ABjwGpx1CZTkwwfXwd51Vkftfr9MgeydENkIzrvHM9cIbwA3fwp9ngV7EKz7H0w5H7b+6JnribiJkptayuUy+Pd8s9Xmjp5NCXOoh9ISqz8HDGh07tERPjYbdLsLhs+D+q0hNwPe7Q9zx5vdVrXZvnT4b2/zgx3gvBEw7DuIbVHxuEAH3PAeJHaBgkPw3gA4vN378XpK3n74YaK5fenjni34tduhx0jz9xxzFmTvMguY5z0LzlLPXVfkDCi5qaW+W5tJemYO4cGBDO6RbHU4tVdZl1T7gcf/LL49DJ8PKUMBwyyafbMPHNzszQh9g2HA0rfhtYsgcyWExcIt0+Hy5yAw+MTnBIfDLZ9CbCvI2W0mODWli2/hP6Ao22y16nCDd66Z0NlsIet8Kxgu+P4f8PaVNStplBpDa0vVQoZh0H/yIlbszOKei8/ioctbWx1S7XRoG7zcEbDB/62DiFNMnrhmFswaCYVZ4IiAqydCRy99qFmt4BB8eT+s+cK836yX2e0UEVe587N2wdRUyNoBDTvD7f9z36giKxzYBJO7mkXog7+AZhd7P4aV0+F/o8wEKzgKrnkZ2g3wfhy1Td5+s4A+d6/VkZxeXHsY8B+3PmRVPr/VF1ELLdp4gBU7swgJsnPn+U2tDqf2Wj3T/Df5/FMnNgBtr4GEs80RQNt/ghnDYWMaXPWif39Qn872n+GzYWZiYg+ES8dD95FmV0llRSXCbTPNBGfPcvj4ZrOOJCjEY2F71HdPmIlNiz7WJDYAHa6DRl3M12bnr/Dp7bBpnuZo8rR5T5uj2PxBoLXvLyU3tdCr8zcAcOO5jYkNP0mTvnjequnmvyfqkjqR6CQY8iX88CIs/Dv88THsXAID34TEczwXpxVcTvj+RVj4vNkFUrcpXPcmJKZU7/FiW5jdWO/0hS3fw4xhcP07ZvGxP9n+szl1gM0Olz1lbSx1k2Ho17DgefjhJc3R5Gl715m/Y4C+/zKTdl8WEm3p5dUtVcss3XaQgf9ZTFCAjYUP9iIhWjOPWmLfeph8rtkaMWYDhMVU7fxti81vzdk7j7RojIPu91WtRcNXZe00W6i2LTLvd7oJrnzBPS1Umxeao6ecxXDOEOj7sv/M22IYZs3VziXmTNbXvGJ1REdt+d58zXL2QIBDczR5wgc3mKMnW18NN35gdTSWqMrndw34SyhV8eq8jQBce3YjJTZWWj3D/PesS6qe2AA06Q73/AhtrjG7KOaOg/evhZxM98bpbWtmmUPfty0CRzgMeB0GTHFf11uzi8yWLpvdnOgvzeLWj6pY84WZ2ASFQa9HrY6moqYXmnM0tbpSczR5wpbvzcTGHgi9n7Q6Gr+g5KYW2bQvl/np+7Db4O6LtSCeZQzj1KOkKiu0Ltzwrtn6EBgKm+fDf3rAhrnuidObivPhywfgk9ug8LDZ/XT3D9BpkPuv1fYac6I/gB8nwk+vuv8a7lZabNbaAPT46+lrtKxQpx7c+CFc+eIxczT1gE3zrY7Mv7lc8O1j5nbKUIhtbm08fkLJTS3y21ZzZtFzk2NoGquiP8tkrDSXWAgMMb/pngmbDVJuh78sNEcn5O83u13mPAKlRW4J1+MyV8MbvWDpW4DNnG33jm8gppnnrplyu9mVB/Dto7D8I89dyx1+exMObTHXj+pxn9XRnJzNBl2HHzNHU6Y5BF9zNFXfqumwZ4U5SvLih62Oxm+ooLgWWbkrC4BOSdHWBlLblbXatOgDIW6q+6rfCoalwXfjzQnufp4MW3+A697y3W96hmEuzPjNo+AsMj+4B7wGZ/XyzvXPH20uJbD4VfhiBIRGQ6srvHPtqig4bBaQA1w81py/x9eVzdH0zSNm0rpoktm1cu6dgA/X4djsZtdlZILVkZhKCo92nV4wCurEWhuPH1FyU4us3GkmN+0ToyyOpBYzDFh1pN7mTLqkTiQoBK74uzk8+PN7zQUVp6bCnd9CPR/shvz+RZj/jLndIhX6/9u7f7xtNrPwNf8ArPjIHM5820xo0sN7MVTGjxPNuX5iW8HZt1kdTeU5wqDvJLOubNZI2L0MvlhmdVSnF9MM7v7RN4a0/zLFnAYhMhHOu9fqaPyKkptaosTpYm1GDgAdldxYZ+evkLXdLJZt0ccz12h1BdzzE3x4vdkF9l5/uONbiGzometVx69vHk1sLh1ntqJYMbLGbjdHHRUchvVfm0WwQ7/ynaHMh7fDz0eWmujzNAT44Z/ssjmaFjxvdlP5st2/mzOAf/u4OVGmlfIPHl1i45LHPLvERg3kh+8UqY71mTkUl7qICAmkSb0wq8Opvcq6pFpdaX6z9ZTIhnDrDLPl5uBmcyTV7bOrNzLL3VbPhNn/Z25f+CBc8H/WxhMQBNe/Be9da06Q+N61cKeHa34qa94zZpdd8gWeS4a9IToJ+k+2OorT27wA3u1n1ji1vtJcEd0qC/8BRVkQ1wE6eqCwvoZTQXEtUd4llRCFTXNPWMPlPDorcYfrPH+98AZw2+cQHg9715itEsV5nr/uqWyaB58NBwzocofvDGkOCjVXY4/rAHl7zSLYnAxrY9r9O/wxzdzu87TmjPGGZhdDt7vN7c9HmK0nVjiwyaxHA/O197fJJn2AkptaoqyYuGMjdUlZZtsis1k+JNpcH8kb6jYx60hCosw5Uj4ZYt2olZ1L4eNbwVVirkN05Yu+9YEdGg23fmbOhnxoK7w/0OyusoJhmF0jYC6MmXC2NXHURr2fgNiWkJsBX42xJoa0J833SfPe3iuwr2GU3NQSq3apmNhyK48st9D2Ggh0eO+6cW3NtZQCQ2HjXPj8HnPuDG/alw4fDISSPPPb8YDXfPPbaEScmQyGx0HmKvjoRnMOHm/b8K052i0gGC593PvXr82CQs2JI20BZjdy2fvWW3YsMSds9IUlNvxYtZKb+fM1KZM/KS51sXbPkWJitdxYo7TYXBMI3D9KqjIad4NB75kznK78FOY8bLYOeMPhHWY3T8Ehc3K+QR9AoA+vaRbT1KxXCo6C7YvNUVTebO1yHplxGuC8uyG6sfeuLabEFLjob+b27NGQvds71zWMoxP2db4Z4tp557o1ULWSm8svv5yzzjqLZ555hh07drg7JnGz9Zk5FDtdRIYE0jhGxcSW2LzA/HCv08AsDrVCi8ug/3/M7SWvwfcveP6aefvNxCZ7l9nUf/On/jNPy83TzIkWN3xjdud5q4vq9/dg3zoIjTFHkYk1Lvg/szuwMMucB8kbXwbWfgk7fvHNJTb8TLWSm127djFy5EimT59Os2bNSE1N5ZNPPqG4uNjd8YkbrDymS0rFxBYpGyXVboC13TEdb4DLj0wIN//Zo0WLnlCUY86WfGADRDYyu3vq1PPc9dytSXdzeQt7EKTPhikXwPZfPHvNolyY/5y5fdHfzDogsUZAkLm2WWCIWQjvyfcKHFliY7y53X2k70wk6KeqldzExsYyatQoli9fzi+//ELLli259957SUhI4K9//SsrVqxwd5xyBsqSmw7qkrJGSQGs+5+5bUWX1J+ddzdcWNbkPubopILuVFoEH99ijvgJjTETm6hG7r+Op7VMNZeCqNvUnJ/orSvMIboup2eu99Mr5mituk2hy52euYZUXv2WRxeq/PZxcxSTpyx9y5y2oU596PlXz12nljjjguJzzjmHsWPHMnLkSHJzc5k6dSopKSlccMEFrF692h0xyhkqKybuoGJia2z4FopzISoJGp1rdTSmXo8c+fA0YMZdsDHNfY/tcsJnw2DLQgiqA7dONz8k/FWjFPjL9+ZcI4bTbPF65xrI2uXe6+RkwE//Mrd7P+HdonM5ua53QdOLoLTAfK84S91/jcIsc5JDOLLERoT7r1HLVHsSv5KSEr744gumTp3K3Llz6dKlC6+++io33XQT+/bt47HHHuP6669nzZo17oxXqqi41MW6smLixGhrg6mtylcAv9acEdcX2Gxw5QtmHdDqGTDtVhjyJTTqcmaPaxhmAebaWRDggBs/MIsz/V1IJFz7urmUwOz/g20/wpSecM2r0OZq91xj/rNQkg+NukLbfu55TDlzdru5NMi/e8Cu32DRP83JJ0/B6XRSUlKFIvSf3oCAOtCoHbQdBIWFZxi0/3I4HNjd8HfSZhhVr5K67777+OijjzAMg9tuu41hw4bRvn37CsdkZGSQkJCAy9tDTk8jOzubqKgosrKyiIx006KFPmzVriyufuVHokKDWD7uMtXceFtRDrzQHEoLzW//DTtZHVFFpcXw4Q2weT6E1oWhc6BB6+o/XtpT8MNLgA2ufxva9XdToD7kwCb47E6zyw3MyQhTnzuz6fH3roX/9ADDZS6V0bibe2IV91kxDWbeZY44HJYGCZ2PO8QwDDIyMjh8+HDlH9dVCtl7AMPskqrlyyzY7XaaNm2Kw3F8y2VVPr+r1XKzZs0aXnnlFa699lqCg088pDM2NlZDxn3AH+WLZUYqsbHCuq/MxKZec4jvaHU0xwt0wKD34d1rYNdSc2TTnd9Ub/jx4n8fSWyAq/9ZMxMbMBchveNbc22sRS/Db1Nh22K4bqo5p1B1zB1nJjZt+iqx8VUdbzBr59bOgpl/gbsWmovVHqMssWnQoAFhYWGV+5ubtQsiYs0RUtFNfGtiSy9zuVzs3r2bPXv20Lhx4zP6zKpWcpOWdvr++cDAQC666KLqPLy4UXkxsbqkrFHeJTXQd/9oBYfDLdNh6uWwP91McO74pmordK/4GL4Za25f8jh0GeqZWH1FoMOcYK3pRTDzbti3Ft7oBX2egXOHVe213rzArMuyBx4tXhXfY7PB1ZNg+8/mUP15T0Pqs+U/djqd5YlNvXqVHBVYnA/ObAi0Qb0kcNTuVhuA+vXrs3v3bkpLSwkKCqr241SrY2vChAlMnTr1uP1Tp07l73//e7WDEfdTMbGF8g/CpiNfBHxhlNSphJWNaEqCAxvNIdxFOZU7N30OfH6vuX3evdYvhOlNzS81V2BvfpnZQvfVGHOUWGXXJHK5ji6z0OVOs1VIfFedetDvVXN78WTY8kP5j8pqbMLCKjmXmGGY8z8BhNQFRx13Ruq3yrqjnM4zG5FYreTmtddeo3Xr4/vl27Vrx5QpU84oIHGfolIn6zKyAc1MbIm1X5r96XEdoH4rq6M5vahEM8EJq2fWk3x8szmk+1S2/QSfDjFHEXUcBH2e9d0WKk8Jrw83fwKpE8wi6vTZ8J+eFT74TmrlJ5DxBwRHwkUPeT5WOXMtU+GcIYBhJvWF2RV+XOmulKJscxQlNohs6PYw/ZW7yieqldxkZGTQsOHxL0b9+vXZs2fPGQcl7rE+I5cSp0FUaBCN6qq50+tWHVmTpv211sZRFbEtzC4qRzhs+d4snD3ZnC4ZK+HDG80Wixap0G+y74wG8za7HbrfC8O+g3otIGc3vNMX5j1z8qHDJQWQ9rS5ff4o/5rgsLZLfQ7qJptzH815uOrnG8bRJR3q1Pft5Uj8VLX+EiUlJbFo0aLj9i9atIiEBM2q6CtWHtMlpWJiL8vJOPrN3Z+SG4DEc8wh3AEOs/Xpf6OOn3r+4BZz1eyiLGjc3RwZFVD9/vEao2En+MtCOPs2wDCXuHjrCji07fhjf5kC2TvN2ZvPu8frocoZCA6H/lMAGyz/ANb+r2rn5x8wvxTYAszFWmuQ5ORkJk2aZHUY1Utuhg8fzgMPPMBbb73Ftm3b2LZtG1OnTmXUqFEMHz7c3TFKNa3cdRjQzMSWWPMFYJiT9tVNtjqaqmt2MQz8r7ky8bJ3zOLJMjmZ8F5/yM2EBu3gpo/BoTXLyjnqmHUZ1001u5t2LjGXbigrLgfIOwA/TDS3L3281g//9UtNukPP+83tL++HvMrWWTnNLz8AEfFmIbnFLr74Yh544AG3PNavv/7KXXfd5ZbHOhPV+q0++OCDHDhwgHvvvbd8PamQkBAeeughxo4d69YApfpWqpjYOseOkvJXbfuZQ7q/vN8c4h1WDzrfAu9fC4e2msNWb5uh9Y9Opv1ASOxizta8cwlMv8Nco+iKf8DCv5s1F/EdocMNVkcq1dXrEdj4HWSuMtcEazfi9Ofk7QVXidkyWpURiRYyDAOn00lg4OlThvr163shotOrVsuNzWbj73//O/v27ePnn39mxYoVHDx4kHHjxrk7PqmmolIn6RnmaBclN152eLu5si82aNvf6mjOTMrtcOmR9/U3j8B/LzX/kNdpAIM/N795ysnVbQJDvz4yo60Nfn/fbMX57U3z532err11SjVBYDAMeM1cXHXrgiMFwqfgLIHcveZ2ZILZMmqx22+/nYULF/Lyyy9js9mw2Wy8/fbb2Gw2vv76a1JSUggODubHH39k06ZN9OvXj7i4OMLDwzn33HP57rvvKjzen7ulbDYb//3vfxkwYABhYWG0aNGCWbNmefx5ndFvtuzJtW/f/qST+Yk10jNyKHEaRIepmNjryhaiTD6/ZoyCOH80nHfkG+mBjWZXy62fQUwza+PyFwGBcMlj5vIWEQlwcJM5iq75ZWb3n/i3+PZwyaPmdsFhc9ZvzNaO/OLSircDu8x/CSHfHn78z910q8rCAy+//DLdu3dn+PDh7Nmzhz179pCUlATAww8/zPPPP8/atWvp2LEjubm5XHnllaSlpfH7779z+eWX07dvX7Zv337Kazz55JPccMMN/PHHH1x55ZXccsstHDxYyW68aqp2Z99vv/3GJ598wvbt28u7psrMmOGBVYalSlRMbKGa0CV1LJvNnJzOVQrrvzYLKRv64GzLvq7pBXDPInPtrT0rzBE3UjP0+CtsXWrOMp2zG+pEUFDipO24b05x0maPhbPmqVTCHJX7eI+KisLhcBAWFkZ8vNkSu27dOgCeeuopLrvssvJjY2Ji6NTp6BIyTz/9NDNnzmTWrFmMHDnypNe4/fbbuemmmwB47rnn+Ne//sWSJUu4/PLLq/zcKqtaLTcff/wxPXr0YO3atcycOZOSkhJWr17NvHnziIqqehfI5MmTSU5OJiQkhG7durFkyZKTHnvxxReXN50de7vqqquq81RqrJU7VW9jif0bzHlL7IHQ5hqro3Efux2u/Ac8sBKSe1odjf8KizFHlv31d/9eKV0qsgdA7/FmN1NJPuTtszoit+jSpeJCurm5uYwZM4Y2bdoQHR1NeHg4a9euPW3LTceOR78M1alTh8jISPbu3euRmMtUq+Xmueee45///CcjRowgIiKCl19+maZNm/KXv/zlhPPfnMq0adMYPXo0U6ZMoVu3bkyaNInU1FTS09Np0KDBccfPmDGjQkvRgQMH6NSpE9dff311nkqNpWJii5S12jTrpXlLRGqT6CQIPWxuZ+8mNDacNU+lmveLcs3uSGwQ2wqCPFvGERoU4JbHqVOn4qzJY8aMYe7cubz44os0b96c0NBQrrvuuuN6b/7sz8so2Gw2jy+qXa3kZtOmTeUtJQ6Hg7y8PGw2G6NGjeKSSy7hyScrvz7KxIkTGT58OEOHmmvRTJkyhdmzZzN16lQefvj4yZFiYmIq3P/4448JCws7aXJTVFREUdHRWVazs7NPeFxNUlhytJi4vZIb7zGMo8lNh+usjUVEvM8RDkEBYORhO7ydsPotARtkZUCQHcJioY7vLbPgcDgqtdzBokWLuP322xkwYABgtuRs3brVw9FVT7W6perWrUtOjvnhmZiYyKpVqwA4fPgw+fn5lX6c4uJili5dSu/evY8GZLfTu3dvFi9eXKnHePPNN7nxxhuPyzDLTJgwgaioqPJbWaFUTZaekUOpy6Cuiom9K3MV7F8PAcHQ6kqroxERK0Q2NCfnKy0w57MpOGTORm2z++zowuTkZH755Re2bt3K/v37T9qq0qJFC2bMmMHy5ctZsWIFN998s8dbYKqrWsnNhRdeyNy5cwG4/vrruf/++xk+fDg33XQTl156aaUfZ//+/TidTuLiKs7QGBcXR0ZGxmnPX7JkCatWrWLYsGEnPWbs2LFkZWWV33bs2FHp+PxVWZdUexUTe9fKI8sttOwDIZHWxiIi1ggIMruowJzosmxxzPA4n53Fe8yYMQQEBNC2bVvq169/0hqaiRMnUrduXXr06EHfvn1JTU3lnHPO8XK0lVOtbqlXX32VwsJCAB599FGCgoL46aefGDhwII899phbAzyVN998kw4dOtC1a9eTHhMcHFzrhqmXFRP75WKZzlJzNtwsNyehYfWg5wPm4pCeYBhHh4DXlFFSIlI9oXWhMMtstXGVmvPg1PGNye1OpGXLlsf1ltx+++3HHZecnMy8efMq7BsxouLEhX/upjrRsPTDhw9XK86qqHJyU1payv/+9z9SU81CKbvdfsLamMqIjY0lICCAzMzMCvszMzPLh6SdTF5eHh9//DFPPfVUta5dk/l1MfHaWbBokmcee+Wn5uKOrT0wsm7nb+Yieo5wcxFJEandohqZhcSuErOryu6eIl+pnConN4GBgdx9992sXbv2jC/ucDhISUkhLS2N/v37A+ByuUhLSzvlmHmATz/9lKKiIm699dYzjqMmKSxxsj7Tj4uJywpyW10FTS9004MasOJj2LMcPr4Zzh1mztvizvV8yuO+UussiYg5HURsCygpVDe1BarVLdW1a1eWL19OkyZNzjiA0aNHM2TIELp06ULXrl2ZNGkSeXl55aOnBg8eTGJiIhMmTKhw3ptvvkn//v2pV0/DbY+17kgxcUwdB4nRflZMXJgFG741t3s9Ys786S5d7oR5T8FPr8Cv/4VtP5kLGzZoc+aP7XLCanVJicifBAabN/G6aiU39957L6NHj2bHjh2kpKQcN1Lp2Al7TmfQoEHs27ePcePGkZGRQefOnZkzZ055kfH27dux/2ntlfT0dH788Ue+/fbb6oRfo/l1MfG62eAsNueBiGvn3scOdJitNc0uhpn3wN418PrF5iyxXe4wZ+Gtrm2LzMLBkGg46xI3BSwiItVVreTmxhtvBOCvf/1r+T6bzYZhGNhstkqNlz/WyJEjT9oNtWDBguP2tWrVqkprZ9QmK3ceBqCjP3dJtR94ZsnGqTTvbU6B//k95mq+s0ebKzVf84o5e2x1lMXd9hoziRIREUtVK7nZsmWLu+MQN1m5y5yk0O/qbfL2w6b55ranu3bCG8DNn8LP/4bvnoB1/4Pdv8O1b1R9aQFnCaz5wtxWl5SIiE+oVnLjjlobcb/CEicbjhQTd/C3YeBrvgDDCQ07QWxzz1/PboceI82Vu6ffYU6N/s7VcOGDcOHfzJWcK2PTfHO4Z50GkHyBZ2MWEZFKqVZy8+67757y54MHD65WMHJm1u7JptRlUK+Og4SoEKvDqRqr5ohJ6Ax/+R6+fgiWvw8L/w6bF8LANyC68enPL+uSatdfQz1FRHxEtZKb+++/v8L9kpIS8vPzy5dNV3JjjVX+WkycvdssygVod633rx8cDv0nw1m94H+jYMfP8J/z4ZqXod2Ak59XUmAWQQO011pSIiK+olrLLxw6dKjCLTc3l/T0dM4//3w++ugjd8colfSHv85MvHomYEDSeUenLbdCh+vg7h+g0blQlAWf3g6z7oPivBMfv2EuFOdAVJJ5johILZScnMykSZOsDqOCaiU3J9KiRQuef/7541p1xHuOHQbuV44dJWW1uskw9Gu44P8AGyx71xwynrHy+GNXHVlLqt0As4ZHRER8glv/IgcGBrJ79253PqRUUmGJkw17cwE/W3bh4BbYtdRcMbddf6ujMQUEwaXjYPAXENHQXOn7jUvg5ynmGlIARTmw/htz2xeSMhERKVet5GbWrFkVbl988QVTpkzh1ltvpWfPKg6lFbdYsycbp8sgNtxBQ38qJi6b2bfpheYQbV/S7CK4exG0vMKcXHDOQ/DhIHPYevrXUFoI9ZqbI7xERPzQ66+/TkJCAi6Xq8L+fv36cccdd7Bp0yb69etHXFwc4eHhnHvuuXz33XcWRVt51SooLlsHqozNZqN+/fpccsklvPTSS+6IS6rIb4uJV/pQl9SJ1KkHN30ES96Abx+DDd/Af3oeXeHXkxMOioj/Mgwoybfm2kFhlf67dP3113Pfffcxf/58Lr30UgAOHjzInDlz+Oqrr8jNzeXKK6/k2WefJTg4mHfffZe+ffuSnp5O48aVGFFqkWolN3/O8MR65cXE/tQltXct7F0N9iBofbXV0ZyczQbd7oImPcw5cfanQ26G+TMrRneJiO8ryYfnEqy59iO7wVHn9McBdevW5YorruDDDz8sT26mT59ObGwsvXr1wm6306nT0dbpp59+mpkzZzJr1qzTLnBtJVVB1hCr/LGYuGxum+aXVn/pA2+Kbw93LYCU2837jXtAg9ZWRiQicsZuueUWPvvsM4qKigD44IMPuPHGG7Hb7eTm5jJmzBjatGlDdHQ04eHhrF27lu3bt1sc9alVq+Vm4MCBdO3alYceeqjC/n/84x/8+uuvfPrpp24JTiqnoPiYYmJ/GQZuGEdHG/nTHDGOMOj7MvS8H8K0Ir2InERQmNmCYtW1q6Bv374YhsHs2bM599xz+eGHH/jnP/8JwJgxY5g7dy4vvvgizZs3JzQ0lOuuu47i4mJPRO421Upuvv/+e5544onj9l9xxRWqubHA0WLiYOIj/aSYeM9yOLgZAkOh1RVWR1N1Mc2sjkBEfJnNVumuIauFhIRw7bXX8sEHH7Bx40ZatWrFOeecA8CiRYu4/fbbGTDAnNA0NzeXrVu3Whht5VQrucnNzcXhOH7146CgILKzs884KKmasi6pDomR/lNMXDa3TctUc4ZgERGxzC233MLVV1/N6tWrufXWW8v3t2jRghkzZtC3b19sNhuPP/64X9TdVqvmpkOHDkybNu24/R9//DFt27Y946CkalaWJzd+0iXlcsGqmea2r46SEhGpRS655BJiYmJIT0/n5ptvLt8/ceJE6tatS48ePejbty+pqanlrTq+rFotN48//jjXXnstmzZt4pJLLgEgLS2Njz76SPU2Flh5ZKRUh0bR1gZSWTt+geyd4IiAFn2sjkZEpNaz2+0nnIQ3OTmZefPmVdg3YsSICvd9sZuqWslN3759+fzzz3nuueeYPn06oaGhdOzYke+++46LLrrI3THKKZjFxDmAH7XclHVJtbkagvykRkhERPxGtZIbgKuuuoqrrrrKnbFINazZk4XLgPoRwcRFBlsdzuk5S2HN5+a2uqRERMQDqlVz8+uvv/LLL78ct/+XX37ht99+O+OgpPLKu6T8ZWbirT9A3j4IjYFmF1sdjYiI1EDVSm5GjBjBjh07jtu/a9eu4/rixLNW7jJHp/nN5H1lc9u07WcuUCkiIuJm1Upu1qxZc8Jq6bPPPps1a9accVBSeSt3HQb8ZNmF0iJY+6W5rS4pEamBDMOwOgS/5q7fX7WSm+DgYDIzM4/bv2fPHgIDq13GI1WUX1zKRn+amXjTPCjMgvB4c50mEZEaIijIbInOz7doscwaomzm44CAgDN6nGplIn369GHs2LF88cUXREWZH6qHDx/mkUce4bLLLjujgKTy1uzOxmVAg4hg4vxhZuKyUVLtrwX7mf3HFRHxJQEBAURHR7N3714AwsLC/KMO0oe4XC727dtHWFjYGTeUVOvsF198kQsvvJAmTZpw9tlnA7B8+XLi4uJ47733ziggqTy/mryvOB/WfWVuq0tKRGqg+Ph4gPIER6rObrfTuHHjM04Mq5XcJCYm8scff/DBBx+wYsUKQkNDGTp0KDfddFN505x43kp/Wgl8/RwoyYPoxpCYYnU0IiJuZ7PZaNiwIQ0aNKCkpMTqcPySw+HAbq9WxUwF1W73qVOnDueffz6NGzcu7yP7+uuvAbjmmmvOODA5vbJh4B39od6mvEtqoLmgnIhIDRUQEHDGNSNyZqqV3GzevJkBAwawcuVKbDYbhmFUaEJyOp1uC1BOLL+4lE37jhQT+3rLTWEWbJhrbre/ztpYRESkxqtW28/9999P06ZN2bt3L2FhYaxatYqFCxfSpUsXFixY4OYQ5UTKionjIoNp4OvFxOtmg7MIYltBXDuroxERkRquWi03ixcvZt68ecTGxmK32wkICOD8889nwoQJ/PWvf+X33393d5zyJ3/s9KNiYnVJiYiIF1Wr5cbpdBIREQFAbGxs+UqiTZo0IT093X3RyUmt8pdi4rwDsGm+ua1RUiIi4gXVarlp3749K1asoGnTpnTr1o1//OMfOBwOXn/9dZo1a+buGOUE/tjlJ8XEaz4HwwkNO0Fsc6ujERGRWqBayc1jjz1GXl4eAE899RRXX301F1xwAfXq1WPatGluDVCOl1d0tJjY51tuVs0w/1WrjYiIeEm1kpvU1NTy7ebNm7Nu3ToOHjxI3bp1NSOjF6zZk41hQHxkCA0ifLiYOHs3bFtkbrcbYG0sIiJSa7htIaiYmBh3PZScRlkxsc+32qz+HDAgqZs5eZ+IiIgXnPk0gOJ1q/xl2YVV081/NbeNiIh4kZIbP/THzsOAjxcTH9wCu5aCzQ5t+1kdjYiI1CJKbvxMblEpm/ebxdw+3S21+kghcfIFEBFnbSwiIlKrKLnxM2t2Hy0mrh8RbHU4J1c2SqqDuqRERMS7lNz4mbIuqQ6+3CW1dx1krgJ7ELS+2upoRESkllFy42f8opi4bLmF5pdCmEbRiYiIdym58TMry5IbX225MYyKa0mJiIh4mZIbP3JsMbHPttzsWQEHN0FgKLS60upoRESkFrI8uZk8eTLJycmEhITQrVs3lixZcsrjDx8+zIgRI2jYsCHBwcG0bNmSr776ykvRWmv1riwMAxpGhRAb7qPFxGVz27RMheBwa2MREZFayW0zFFfHtGnTGD16NFOmTKFbt25MmjSJ1NRU0tPTadCgwXHHFxcXc9lll9GgQQOmT59OYmIi27ZtIzo62vvBW2Clr9fbuFywaqa5rS4pERGxiKXJzcSJExk+fDhDhw4FYMqUKcyePZupU6fy8MMPH3f81KlTOXjwID/99BNBQUEAJCcnezNkS/l8crNzCWTvBEcEtLjM6mhERKSWsqxbqri4mKVLl9K7d++jwdjt9O7dm8WLF5/wnFmzZtG9e3dGjBhBXFwc7du357nnnsPpdJ70OkVFRWRnZ1e4+SufLyZeeaRLqs3VEBRqbSwiIlJrWZbc7N+/H6fTSVxcxdlr4+LiyMjIOOE5mzdvZvr06TidTr766isef/xxXnrpJZ555pmTXmfChAlERUWV35KSktz6PLwlp7CEzft8uJjYWQprPje31SUlIiIWsryguCpcLhcNGjTg9ddfJyUlhUGDBvHoo48yZcqUk54zduxYsrKyym87duzwYsTus3q32eKUEBVCPV8sJt76A+Ttg9C60Oxiq6MREZFazLKam9jYWAICAsjMzKywPzMzk/j4+BOe07BhQ4KCgggICCjf16ZNGzIyMiguLsbhcBx3TnBwMMHBPpgMVNHKnT7eJVU2t03bfhAQZG0sIiJSq1nWcuNwOEhJSSEtLa18n8vlIi0tje7du5/wnJ49e7Jx40ZcLlf5vvXr19OwYcMTJjY1iU8XE5cWwdpZ5nZ7rSUlIiLWsrRbavTo0bzxxhu88847rF27lnvuuYe8vLzy0VODBw9m7Nix5cffc889HDx4kPvvv5/169cze/ZsnnvuOUaMGGHVU/Ca8mUXGkVbG8iJbJoHhVkQHg9NelgdjYiI1HKWDgUfNGgQ+/btY9y4cWRkZNC5c2fmzJlTXmS8fft27Paj+VdSUhLffPMNo0aNomPHjiQmJnL//ffz0EMPWfUUvCK7sMS3ZyYu65JqNwDsAac+VkRExMNshmEYVgfhTdnZ2URFRZGVlUVkZKTV4VTK4k0HuOmNn0mMDmXRw5dYHU5FxfnwQnMoyYNhadCoi9URiYhIDVSVz2+/Gi1VW63cdRjw0Vab9XPMxCa6MSSmWB2NiIiIkht/sHKXOQzc50ZKZayCeUfmGGo/EGw2a+MRERHB4pobqZxVvjZSyjBgyRvw7WPgLDILibvcaXVUIiIigJIbn5ddWMIWXyomzjsAX4yA9V+b91ukQv9/Q51Ya+MSERE5QsmNjytrtUmMDqVuHYvn8tm8EGb+BXL2QIADLnsauv1F3VEiIuJTlNz4uLLkpqOV9TbOElgwAX6YCBgQ2xIGvgkNO1oXk4iIyEkoufFxfxxZdqG9VV1SB7fAZ8Ng12/m/XMGw+XPg6OONfGIiIichpIbH2dpy83K6fDlA1CcA8FRcM3L5kR9IiIiPkzJjQ/LKihh64F8ANoneDG5KcqFr/8Gyz8w7yedBwPfMOeyERER8XFKbnzY6iOtNo3qerGYePfvMP1OOLgJbHa48EG48G8QoP8qIiLiH/SJ5cNWerNLyuWCnyfDd0+CqwQiE+HaNyC5p+evLSIi4kZKbnzYH7u8VEycuxdm3g2b0sz7ra+Ga16BsBjPXldERMQDlNz4MK/MTLzxOzOxydsHgSFw+QRIGaq5a0RExG8pufFRWQUlbPNkMXFpMaQ9CYtfNe83aAvXTYUGbdx/LRERES9ScuOjPFpMfGATTL8D9iw37587HPo8DUGh7r2OiIiIBZTc+KiVnuiSMgxY8RHMHgMleRBaF/pNhtZXue8aIiIiFlNy46NWuruYuDAbZo+GlZ+a95MvgAGvQVSiex5fRETERyi58VFuLSbe+ZvZDXV4G9gCoNdYOH802APO/LFFRER8jJIbH5RdeHRm4jNKblwuWDQJ5j8LrlJzhuGBb0JSV/cEKiIi4oOU3PigslabxOgzKCbO3gMz74It35v3210LfSdBiIWri4uIiHiBkhsfdMZdUulz4PN7oOAgBIXBlS9A51s0d42IiNQKSm580Mpd2QB0qOqyCyWFMHccLHnNvB/f0Zy7JraFmyMUERHxXUpufNDq6oyU2pduFg1nrjLvnzcCeo+HwGAPRCgiIuK7lNz4mJzCEjbvzwMq2S1lGLDsHfj6YSgtgLBYGDAFWlzm4UhFRER8k5IbH7N6t9kllRgdSszpiokLDsGX98OaL8z7zXqZc9dExHk4ShEREd+l5MbHlBUTt0uIPPWB23+Gz4ZB1g6wB8Kl46H7SLDbvRCliIiI71Jy42NOu+yCywnfvwgLnwfDBXWbwnVvQmKKF6MUERHxXUpufEz5sgsnGimVtRNm3AXbFpn3O91kDvMOjvBihCIiIr5NyY0PyS0qZcvJionXzIJZ90HhYXCEw1UTodMg7wcpIiLi45Tc+JDVu7IwDGgYFUJs+JEh3MX58M0jsPQt837COWY3VEwz6wIVERHxYUpufMhxK4HvXQefDoF968z7PR+AXo9CYDWXZBAREakFlNz4kArLLhzYBO9cDXn7IDzOHOJ9Vi+LIxQREfF9Sm58SFnLTUpMIbx3s5nYxHeAW2dCeH2LoxMREfEPmhTFR+QWlbJ5fx6R5NJt0XA4vN2sq7l1hhIbERGRKlDLjY9YszubEKOQ90NfInB/OoTHw20zIbyB1aGJiIj4FbXc+IhVO/bz76CX6WikQ0iUmdjUTbY6LBEREb+jlhtf4HLR6bexpASsoMQeTNDNn0JcW6ujEhER8UtqubGaYcCch0nJ/o4SI4A1578CjbtZHZWIiIjfUnJjte9fgCWvATCm5C80PLefxQGJiIj4NyU3Vvr1vzD/WQCeKBnMz+GX0iAixOKgRERE/JuSG6usmgGzxwDwe9O7eNt5+clXAhcREZFKU3JjhY1p5ureGNDlDt4LuRk4ZtkFERERqTYlN9628zeYdhu4SqDdALjyRVbtzgZOsBK4iIiIVJlPJDeTJ08mOTmZkJAQunXrxpIlS0567Ntvv43NZqtwCwnxkzqVvevgg+ugJA+a9YIBr5NfarBxby6g5EZERMQdLE9upk2bxujRoxk/fjzLli2jU6dOpKamsnfv3pOeExkZyZ49e8pv27Zt82LE1XR4B7x/LRQcgsQUGPQ+BDpYuycblwENIoJpEOknSZqIiIgPszy5mThxIsOHD2fo0KG0bduWKVOmEBYWxtSpU096js1mIz4+vvwWFxd30mOLiorIzs6ucPO6vP3w3gDI3gWxreDmTyE4HICVO83FMlVvIyIi4h6WJjfFxcUsXbqU3r17l++z2+307t2bxYsXn/S83NxcmjRpQlJSEv369WP16tUnPXbChAlERUWV35KSktz6HE6rKMfsijqwASIbwW0zoE698h+v3GUmW0puRERE3MPS5Gb//v04nc7jWl7i4uLIyMg44TmtWrVi6tSpfPHFF7z//vu4XC569OjBzp07T3j82LFjycrKKr/t2LHD7c/jpEqL4OObYffvEBpjrhcV1ajCIat2mS03qrcRERFxD79bW6p79+507969/H6PHj1o06YNr732Gk8//fRxxwcHBxMcHOzNEE0uJ3w2DLZ8D45wuHU61G9Z4ZCCYicb9uYASm5ERETcxdKWm9jYWAICAsjMzKywPzMzk/j4+Eo9RlBQEGeffTYbN270RIjVYxjwv1GwdhYEOODGD8wi4j9Zc6SYODY8mLhICxIwERGRGsjS5MbhcJCSkkJaWlr5PpfLRVpaWoXWmVNxOp2sXLmShg0beirMqpv3NCx7B2x2GPhfaHbxCQ872iUVic1m82KAIiIiNZfl3VKjR49myJAhdOnSha5duzJp0iTy8vIYOnQoAIMHDyYxMZEJEyYA8NRTT3HeeefRvHlzDh8+zAsvvMC2bdsYNmyYlU/jqMWT4YeXzO2r/wltT74Q5krV24iIiLid5cnNoEGD2LdvH+PGjSMjI4POnTszZ86c8iLj7du3Y7cfbWA6dOgQw4cPJyMjg7p165KSksJPP/1E27ZtrXoKRy3/CL55xNy+5HFIuf2Uh5e13GiklIiIiPvYDMMwrA7Cm7Kzs4mKiiIrK4vIyEj3PfD6b+GjG8FwwnkjIPVZOEVXU2GJk3bjv8HpMlg89hIaRoW6LxYREZEapiqf35a33NQYsc3NYd6Nu0OfZ06Z2IBZTOx0GcSGO4jXzMQiIiJuo+TGXWKawbA0CI0G++nrtI/tklIxsYiIiPsouXGn8PqVPrRs2QUVE4uIiLiX5WtL1VYrVUwsIiLiEUpuLFBY4mTD3lxALTciIiLupuTGAmuPFBPXq+OgYZSKiUVERNxJyY0FVu0+uhK4iolFRETcS8mNBVapmFhERMRjlNxYQMXEIiIinqPkxssKS5ysz8wBoEMjJTciIiLupuTGy9Izcih1GcTUcZCgYmIRERG3U3LjZWVdUu0SIlVMLCIi4gFKbrysbNkFFROLiIh4hpIbL1up5EZERMSjlNx4UVHp0WJijZQSERHxDCU3XpSekUOJ0yA6LIhGdUOtDkdERKRGUnLjRcd2SamYWERExDOU3HjRKk3eJyIi4nFKbrxIxcQiIiKep+TGS4pKnaRnHJmZWMmNiIiIxyi58ZL1GbmUOA2iQlVMLCIi4klKbrxExcQiIiLeoeTGS7QSuIiIiHcoufESLbsgIiLiHUpuvKC41KViYhERES9RcuMF6zNzKHa6iAoNIilGxcQiIiKepOTGC45O3hepYmIREREPU3LjBSomFhER8R4lN16gYmIRERHvUXLjYSVOF2tVTCwiIuI1Sm48bH1mDsWlLiJCAmkcE2Z1OCIiIjWekhsPKy8mTtDMxCIiIt6g5MbDypddaKQuKREREW9QcuNhK3dlAxopJSIi4i1KbjyoxOli7R4zuVExsYiIiHcoufGgDZm5ZjFxcCBNVEwsIiLiFUpuPKismLhdYiR2u4qJRUREvEHJjQet1OR9IiIiXqfkxoO07IKIiIj3KbnxkFIVE4uIiFhCyY2HbNibS1Gpi/DgQJLr1bE6HBERkVpDyY2HlHVJtUtQMbGIiIg3+URyM3nyZJKTkwkJCaFbt24sWbKkUud9/PHH2Gw2+vfv79kAq0ErgYuIiFjD8uRm2rRpjB49mvHjx7Ns2TI6depEamoqe/fuPeV5W7duZcyYMVxwwQVeirRqtOyCiIiINSxPbiZOnMjw4cMZOnQobdu2ZcqUKYSFhTF16tSTnuN0Ornlllt48sknadasmRejrZxji4k1UkpERMS7LE1uiouLWbp0Kb179y7fZ7fb6d27N4sXLz7peU899RQNGjTgzjvvPO01ioqKyM7OrnDztE378igsMYuJm6qYWERExKssTW7279+P0+kkLi6uwv64uDgyMjJOeM6PP/7Im2++yRtvvFGpa0yYMIGoqKjyW1JS0hnHfTplXVJtVUwsIiLidZZ3S1VFTk4Ot912G2+88QaxsbGVOmfs2LFkZWWV33bs2OHhKFVMLCIiYqVAKy8eGxtLQEAAmZmZFfZnZmYSHx9/3PGbNm1i69at9O3bt3yfy+UCIDAwkPT0dM4666wK5wQHBxMcHOyB6E9Oyy6IiIhYx9KWG4fDQUpKCmlpaeX7XC4XaWlpdO/e/bjjW7duzcqVK1m+fHn57ZprrqFXr14sX77cK11Op+N0GazZrWJiERERq1jacgMwevRohgwZQpcuXejatSuTJk0iLy+PoUOHAjB48GASExOZMGECISEhtG/fvsL50dHRAMftt8qmfbkUlDip4wigWayKiUVERLzN8uRm0KBB7Nu3j3HjxpGRkUHnzp2ZM2dOeZHx9u3bsdv9pzRo5U4VE4uIiFjJZhiGYXUQ3pSdnU1UVBRZWVlERka6/fGfmLWat3/aytCeyYzv287tjy8iIlIbVeXz23+aRPyERkqJiIhYS8mNGzldBquPFBMruREREbGGkhs32nykmDjMEUCz+uFWhyMiIlIrKblxo/KZiRtGEqBiYhEREUsouXGjsuRG89uIiIhYR8mNG6mYWERExHpKbtykQjFxIyU3IiIiVlFy4yZb9ueSX+wkNCiAs1RMLCIiYhnLZyiuKTKzi6gbFkSz+uEqJhYREbGQkhs36dk8lmWPX0ZOUanVoYiIiNRq6pZyI5vNRmRIkNVhiIiI1GpKbkRERKRGUXIjIiIiNYqSGxEREalRlNyIiIhIjaLkRkRERGoUJTciIiJSoyi5ERERkRpFyY2IiIjUKEpuREREpEZRciMiIiI1ipIbERERqVGU3IiIiEiNouRGREREapRAqwPwNsMwAMjOzrY4EhEREamsss/tss/xU6l1yU1OTg4ASUlJFkciIiIiVZWTk0NUVNQpj7EZlUmBahCXy8Xu3buJiIjAZrO59bGzs7NJSkpix44dREZGuvWxpfr0uvguvTa+Sa+L76rNr41hGOTk5JCQkIDdfuqqmlrXcmO322nUqJFHrxEZGVnr/tP5A70uvkuvjW/S6+K7autrc7oWmzIqKBYREZEaRcmNiIiI1ChKbtwoODiY8ePHExwcbHUocgy9Lr5Lr41v0uviu/TaVE6tKygWERGRmk0tNyIiIlKjKLkRERGRGkXJjYiIiNQoSm5ERESkRlFy4yaTJ08mOTmZkJAQunXrxpIlS6wOqdZ74oknsNlsFW6tW7e2Oqxa6fvvv6dv374kJCRgs9n4/PPPK/zcMAzGjRtHw4YNCQ0NpXfv3mzYsMGaYGuR070ut99++3Hvocsvv9yaYGuRCRMmcO655xIREUGDBg3o378/6enpFY4pLCxkxIgR1KtXj/DwcAYOHEhmZqZFEfseJTduMG3aNEaPHs348eNZtmwZnTp1IjU1lb1791odWq3Xrl079uzZU3778ccfrQ6pVsrLy6NTp05Mnjz5hD//xz/+wb/+9S+mTJnCL7/8Qp06dUhNTaWwsNDLkdYup3tdAC6//PIK76GPPvrIixHWTgsXLmTEiBH8/PPPzJ07l5KSEvr06UNeXl75MaNGjeLLL7/k008/ZeHChezevZtrr73Wwqh9jCFnrGvXrsaIESPK7zudTiMhIcGYMGGChVHJ+PHjjU6dOlkdhvwJYMycObP8vsvlMuLj440XXnihfN/hw4eN4OBg46OPPrIgwtrpz6+LYRjGkCFDjH79+lkSjxy1d+9eAzAWLlxoGIb5/ggKCjI+/fTT8mPWrl1rAMbixYutCtOnqOXmDBUXF7N06VJ69+5dvs9ut9O7d28WL15sYWQCsGHDBhISEmjWrBm33HIL27dvtzok+ZMtW7aQkZFR4T0UFRVFt27d9B7yAQsWLKBBgwa0atWKe+65hwMHDlgdUq2TlZUFQExMDABLly6lpKSkwnumdevWNG7cWO+ZI5TcnKH9+/fjdDqJi4ursD8uLo6MjAyLohKAbt268fbbbzNnzhz+85//sGXLFi644AJycnKsDk2OUfY+0XvI91x++eW8++67pKWl8fe//52FCxdyxRVX4HQ6rQ6t1nC5XDzwwAP07NmT9u3bA+Z7xuFwEB0dXeFYvWeOqnWrgkvtccUVV5Rvd+zYkW7dutGkSRM++eQT7rzzTgsjE/EPN954Y/l2hw4d6NixI2eddRYLFizg0ksvtTCy2mPEiBGsWrVK9YJVpJabMxQbG0tAQMBxVeqZmZnEx8dbFJWcSHR0NC1btmTjxo1WhyLHKHuf6D3k+5o1a0ZsbKzeQ14ycuRI/ve//zF//nwaNWpUvj8+Pp7i4mIOHz5c4Xi9Z45ScnOGHA4HKSkppKWlle9zuVykpaXRvXt3CyOTP8vNzWXTpk00bNjQ6lDkGE2bNiU+Pr7Ceyg7O5tffvlF7yEfs3PnTg4cOKD3kIcZhsHIkSOZOXMm8+bNo2nTphV+npKSQlBQUIX3THp6Otu3b9d75gh1S7nB6NGjGTJkCF26dKFr165MmjSJvLw8hg4danVotdqYMWPo27cvTZo0Yffu3YwfP56AgABuuukmq0OrdXJzcyt829+yZQvLly8nJiaGxo0b88ADD/DMM8/QokULmjZtyuOPP05CQgL9+/e3Luha4FSvS0xMDE8++SQDBw4kPj6eTZs28be//Y3mzZuTmppqYdQ134gRI/jwww/54osviIiIKK+jiYqKIjQ0lKioKO68805Gjx5NTEwMkZGR3HfffXTv3p3zzjvP4uh9hNXDtWqKV155xWjcuLHhcDiMrl27Gj///LPVIdV6gwYNMho2bGg4HA4jMTHRGDRokLFx40arw6qV5s+fbwDH3YYMGWIYhjkc/PHHHzfi4uKM4OBg49JLLzXS09OtDboWONXrkp+fb/Tp08eoX7++ERQUZDRp0sQYPny4kZGRYXXYNd6JXhPAeOutt8qPKSgoMO69916jbt26RlhYmDFgwABjz5491gXtY2yGYRjeT6lEREREPEM1NyIiIlKjKLkRERGRGkXJjYiIiNQoSm5ERESkRlFyIyIiIjWKkhsRERGpUZTciIiISI2i5EZERERqFCU3IlLrLFiwAJvNdtzCgyJSMyi5ERERkRpFyY2IiIjUKEpuRMTrXC4XEyZMoGnTpoSGhtKpUyemT58OHO0ymj17Nh07diQkJITzzjuPVatWVXiMzz77jHbt2hEcHExycjIvvfRShZ8XFRXx0EMPkZSURHBwMM2bN+fNN9+scMzSpUvp0qULYWFh9OjRg/T09PKfrVixgl69ehEREUFkZCQpKSn89ttvHvqNiIg7KbkREa+bMGEC7777LlOmTGH16tWMGjWKW2+9lYULF5Yf8+CDD/LSSy/x66+/Ur9+ffr27UtJSQlgJiU33HADN954IytXruSJJ57g8ccf5+233y4/f/DgwXz00Uf861//Yu3atbz22muEh4dXiOPRRx/lpZde4rfffiMwMJA77rij/Ge33HILjRo14tdff2Xp0qU8/PDDBAUFefYXIyLuYfWy5CJSuxQWFhphYWHGTz/9VGH/nXfeadx0003G/PnzDcD4+OOPy3924MABIzQ01Jg2bZphGIZx8803G5dddlmF8x988EGjbdu2hmEYRnp6ugEYc+fOPWEMZdf47rvvyvfNnj3bAIyCggLDMAwjIiLCePvtt8/8CYuI16nlRkS8auPGjeTn53PZZZcRHh5efnv33XfZtGlT+XHdu3cv346JiaFVq1asXbsWgLVr19KzZ88Kj9uzZ082bNiA0+lk+fLlBAQEcNFFF50ylo4dO5ZvN2zYEIC9e/cCMHr0aIYNG0bv3r15/vnnK8QmIr5NyY2IeFVubi4As2fPZvny5eW3NWvWlNfdnKnQ0NBKHXdsN5PNZgPMeiCAJ554gtWrV3PVVVcxb9482rZty8yZM90Sn4h4lpIbEfGqtm3bEhwczPbt22nevHmFW1JSUvlxP//8c/n2oUOHWL9+PW3atAGgTZs2LFq0qMLjLlq0iJYtWxIQEECHDh1wuVwVaniqo2XLlowaNYpvv/2Wa6+9lrfeeuuMHk9EvCPQ6gBEpHaJiIhgzJgxjBo1CpfLxfnnn09WVhaLFi0iMjKSJk2aAPDUU09Rr1494uLiePTRR4mNjaV///4A/N///R/nnnsuTz/9NIMGDWLx4sW8+uqr/Pvf/wYgOTmZIUOGcMcdd/Cvf/2LTp06sW3bNvbu3csNN9xw2hgLCgp48MEHue6662jatCk7d+7k119/ZeDAgR77vYiIG1ld9CMitY/L5TImTZpktGrVyggKCjLq169vpKamGgsXLiwv9v3yyy+Ndu3aGQ6Hw+jatauxYsWKCo8xffp0o23btkZQUJDRuHFj44UXXqjw84KCAmPUqFFGw4YNDYfDYTRv3tyYOnWqYRhHC4oPHTpUfvzvv/9uAMaWLVuMoqIi48YbbzSSkpIMh8NhJCQkGCNHjiwvNhYR32YzDMOwOL8SESm3YMECevXqxaFDh4iOjrY6HBHxQ6q5ERERkRpFyY2IiIjUKOqWEhERkRpFLTciIiJSoyi5ERERkRpFyY2IiIjUKEpuREREpEZRciMiIiI1ipIbERERqVGU3IiIiEiNouRGREREapT/B6nIJV7S1osEAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"plt.plot(history.history['acc'], label = 'train',)\n",
"plt.plot(history.history['val_acc'], label = 'val')\n",
"\n",
"plt.legend(loc = 'right')\n",
"plt.xlabel('epochs')\n",
"plt.ylabel('accuracy')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "awm3pK-5ekO-"
},
"source": [
"## VGG"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jmYD5UkHekO-",
"outputId": "04d44c1d-1b30-4c06-ac75-ee119ef4858c",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Found 613 images belonging to 4 classes.\n",
"Found 72 images belonging to 4 classes.\n",
"Found 315 images belonging to 4 classes.\n"
]
}
],
"source": [
"image_shape = (460,460,3)\n",
"N_CLASSES = 4\n",
"BATCH_SIZE = 32\n",
"\n",
"train_datagen = ImageDataGenerator(dtype='float32', rescale=1./255.)\n",
"train_generator = train_datagen.flow_from_directory(train_path,\n",
" batch_size = BATCH_SIZE,\n",
" target_size = (460,460),\n",
" class_mode = 'categorical')\n",
"\n",
"valid_datagen = ImageDataGenerator(dtype='float32', rescale=1./255.)\n",
"valid_generator = valid_datagen.flow_from_directory(valid_path,\n",
" batch_size = BATCH_SIZE,\n",
" target_size = (460,460),\n",
" class_mode = 'categorical')\n",
"\n",
"test_datagen = ImageDataGenerator(dtype='float32', rescale=1./255.)\n",
"test_generator = test_datagen.flow_from_directory(test_path,\n",
" batch_size = BATCH_SIZE,\n",
" target_size = (460,460),\n",
" class_mode = 'categorical')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7gVQC7dwekO_",
"outputId": "626e233e-4846-447c-b5f0-1d85c9e46072",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5\n",
"58889256/58889256 [==============================] - 3s 0us/step\n"
]
}
],
"source": [
"vgg_model = VGG16(include_top=False, pooling='avg', weights='imagenet', input_shape = (image_shape))\n",
"for layer in vgg_model.layers:\n",
" layer.trainable = False\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zBJYi6PiekO_",
"outputId": "9f373bc4-3416-4423-9f8a-476bf53f2bd2",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model: \"sequential_1\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param # \n",
"=================================================================\n",
" vgg16 (Functional) (None, 512) 14714688 \n",
" \n",
" flatten_1 (Flatten) (None, 512) 0 \n",
" \n",
" batch_normalization (BatchN (None, 512) 2048 \n",
" ormalization) \n",
" \n",
" dense_2 (Dense) (None, 4) 2052 \n",
" \n",
"=================================================================\n",
"Total params: 14,718,788\n",
"Trainable params: 3,076\n",
"Non-trainable params: 14,715,712\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model = Sequential()\n",
"model.add(vgg_model)\n",
"model.add(Flatten())\n",
"model.add(BatchNormalization())\n",
"model.add(Dense(N_CLASSES, activation='softmax'))\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4Vqu4t1dekO_"
},
"outputs": [],
"source": [
"optimizer = Adam(lr=0.001, decay=1e-6)\n",
"model.compile(optimizer=optimizer, loss = 'categorical_crossentropy', metrics = ['acc'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "35c9F7UiekO_"
},
"outputs": [],
"source": [
"checkpointer = ModelCheckpoint(filepath='./chest_CT_SCAN-/vgg16.hdf5',\n",
" monitor='val_loss', verbose = 1,\n",
" save_best_only=True)\n",
"early_stopping = EarlyStopping(verbose=1, patience=15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "maoSTMjKekO_",
"outputId": "93f4293a-8250-483a-be21-e52b6bdb10ba",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/100\n",
"20/20 [==============================] - ETA: 0s - loss: 1.0239 - acc: 0.5449\n",
"Epoch 1: val_loss improved from inf to 1.66919, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 36s 1s/step - loss: 1.0239 - acc: 0.5449 - val_loss: 1.6692 - val_acc: 0.2083\n",
"Epoch 2/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.8295 - acc: 0.6672\n",
"Epoch 2: val_loss improved from 1.66919 to 1.58347, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 12s 613ms/step - loss: 0.8295 - acc: 0.6672 - val_loss: 1.5835 - val_acc: 0.2083\n",
"Epoch 3/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.7308 - acc: 0.7178\n",
"Epoch 3: val_loss improved from 1.58347 to 1.54076, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 622ms/step - loss: 0.7308 - acc: 0.7178 - val_loss: 1.5408 - val_acc: 0.2083\n",
"Epoch 4/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.6737 - acc: 0.7651\n",
"Epoch 4: val_loss improved from 1.54076 to 1.47023, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 622ms/step - loss: 0.6737 - acc: 0.7651 - val_loss: 1.4702 - val_acc: 0.2083\n",
"Epoch 5/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.6256 - acc: 0.7830\n",
"Epoch 5: val_loss improved from 1.47023 to 1.42129, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 636ms/step - loss: 0.6256 - acc: 0.7830 - val_loss: 1.4213 - val_acc: 0.2083\n",
"Epoch 6/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.5709 - acc: 0.8157\n",
"Epoch 6: val_loss improved from 1.42129 to 1.36619, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 646ms/step - loss: 0.5709 - acc: 0.8157 - val_loss: 1.3662 - val_acc: 0.2500\n",
"Epoch 7/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.5398 - acc: 0.8320\n",
"Epoch 7: val_loss improved from 1.36619 to 1.30456, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 694ms/step - loss: 0.5398 - acc: 0.8320 - val_loss: 1.3046 - val_acc: 0.2500\n",
"Epoch 8/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.5206 - acc: 0.8157\n",
"Epoch 8: val_loss improved from 1.30456 to 1.28642, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 659ms/step - loss: 0.5206 - acc: 0.8157 - val_loss: 1.2864 - val_acc: 0.2778\n",
"Epoch 9/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.4725 - acc: 0.8467\n",
"Epoch 9: val_loss improved from 1.28642 to 1.26006, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 661ms/step - loss: 0.4725 - acc: 0.8467 - val_loss: 1.2601 - val_acc: 0.2917\n",
"Epoch 10/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.4563 - acc: 0.8597\n",
"Epoch 10: val_loss improved from 1.26006 to 1.22241, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 673ms/step - loss: 0.4563 - acc: 0.8597 - val_loss: 1.2224 - val_acc: 0.2917\n",
"Epoch 11/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.4287 - acc: 0.8825\n",
"Epoch 11: val_loss improved from 1.22241 to 1.17021, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 13s 663ms/step - loss: 0.4287 - acc: 0.8825 - val_loss: 1.1702 - val_acc: 0.3472\n",
"Epoch 12/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.4181 - acc: 0.8874\n",
"Epoch 12: val_loss did not improve from 1.17021\n",
"20/20 [==============================] - 14s 675ms/step - loss: 0.4181 - acc: 0.8874 - val_loss: 1.1724 - val_acc: 0.2917\n",
"Epoch 13/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3967 - acc: 0.8858\n",
"Epoch 13: val_loss improved from 1.17021 to 1.11331, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 673ms/step - loss: 0.3967 - acc: 0.8858 - val_loss: 1.1133 - val_acc: 0.5000\n",
"Epoch 14/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3758 - acc: 0.9038\n",
"Epoch 14: val_loss improved from 1.11331 to 1.08281, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 719ms/step - loss: 0.3758 - acc: 0.9038 - val_loss: 1.0828 - val_acc: 0.5139\n",
"Epoch 15/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3570 - acc: 0.9217\n",
"Epoch 15: val_loss improved from 1.08281 to 1.08184, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 708ms/step - loss: 0.3570 - acc: 0.9217 - val_loss: 1.0818 - val_acc: 0.5139\n",
"Epoch 16/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3528 - acc: 0.9021\n",
"Epoch 16: val_loss improved from 1.08184 to 1.03131, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 740ms/step - loss: 0.3528 - acc: 0.9021 - val_loss: 1.0313 - val_acc: 0.5694\n",
"Epoch 17/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3302 - acc: 0.9201\n",
"Epoch 17: val_loss improved from 1.03131 to 0.97688, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 681ms/step - loss: 0.3302 - acc: 0.9201 - val_loss: 0.9769 - val_acc: 0.5972\n",
"Epoch 18/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3109 - acc: 0.9331\n",
"Epoch 18: val_loss improved from 0.97688 to 0.93023, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 718ms/step - loss: 0.3109 - acc: 0.9331 - val_loss: 0.9302 - val_acc: 0.6667\n",
"Epoch 19/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3231 - acc: 0.9103\n",
"Epoch 19: val_loss improved from 0.93023 to 0.87230, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 689ms/step - loss: 0.3231 - acc: 0.9103 - val_loss: 0.8723 - val_acc: 0.6667\n",
"Epoch 20/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.3037 - acc: 0.9299\n",
"Epoch 20: val_loss improved from 0.87230 to 0.86469, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 15s 729ms/step - loss: 0.3037 - acc: 0.9299 - val_loss: 0.8647 - val_acc: 0.7222\n",
"Epoch 21/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2836 - acc: 0.9413\n",
"Epoch 21: val_loss improved from 0.86469 to 0.81455, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 700ms/step - loss: 0.2836 - acc: 0.9413 - val_loss: 0.8146 - val_acc: 0.7361\n",
"Epoch 22/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2665 - acc: 0.9462\n",
"Epoch 22: val_loss improved from 0.81455 to 0.80435, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 685ms/step - loss: 0.2665 - acc: 0.9462 - val_loss: 0.8043 - val_acc: 0.7639\n",
"Epoch 23/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2650 - acc: 0.9364\n",
"Epoch 23: val_loss improved from 0.80435 to 0.78655, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 702ms/step - loss: 0.2650 - acc: 0.9364 - val_loss: 0.7865 - val_acc: 0.7361\n",
"Epoch 24/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2566 - acc: 0.9511\n",
"Epoch 24: val_loss improved from 0.78655 to 0.74931, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 713ms/step - loss: 0.2566 - acc: 0.9511 - val_loss: 0.7493 - val_acc: 0.7917\n",
"Epoch 25/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2599 - acc: 0.9429\n",
"Epoch 25: val_loss improved from 0.74931 to 0.74846, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 704ms/step - loss: 0.2599 - acc: 0.9429 - val_loss: 0.7485 - val_acc: 0.7917\n",
"Epoch 26/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2453 - acc: 0.9511\n",
"Epoch 26: val_loss improved from 0.74846 to 0.71700, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 689ms/step - loss: 0.2453 - acc: 0.9511 - val_loss: 0.7170 - val_acc: 0.8056\n",
"Epoch 27/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2461 - acc: 0.9462\n",
"Epoch 27: val_loss improved from 0.71700 to 0.70920, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 688ms/step - loss: 0.2461 - acc: 0.9462 - val_loss: 0.7092 - val_acc: 0.7500\n",
"Epoch 28/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2408 - acc: 0.9494\n",
"Epoch 28: val_loss improved from 0.70920 to 0.70519, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 694ms/step - loss: 0.2408 - acc: 0.9494 - val_loss: 0.7052 - val_acc: 0.7917\n",
"Epoch 29/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2301 - acc: 0.9576\n",
"Epoch 29: val_loss improved from 0.70519 to 0.67909, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 690ms/step - loss: 0.2301 - acc: 0.9576 - val_loss: 0.6791 - val_acc: 0.7917\n",
"Epoch 30/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2273 - acc: 0.9527\n",
"Epoch 30: val_loss improved from 0.67909 to 0.65874, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 15s 754ms/step - loss: 0.2273 - acc: 0.9527 - val_loss: 0.6587 - val_acc: 0.8056\n",
"Epoch 31/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2257 - acc: 0.9576\n",
"Epoch 31: val_loss did not improve from 0.65874\n",
"20/20 [==============================] - 14s 695ms/step - loss: 0.2257 - acc: 0.9576 - val_loss: 0.6591 - val_acc: 0.7778\n",
"Epoch 32/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2155 - acc: 0.9625\n",
"Epoch 32: val_loss did not improve from 0.65874\n",
"20/20 [==============================] - 14s 688ms/step - loss: 0.2155 - acc: 0.9625 - val_loss: 0.6591 - val_acc: 0.7917\n",
"Epoch 33/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2095 - acc: 0.9511\n",
"Epoch 33: val_loss improved from 0.65874 to 0.63871, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 15s 726ms/step - loss: 0.2095 - acc: 0.9511 - val_loss: 0.6387 - val_acc: 0.8056\n",
"Epoch 34/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2265 - acc: 0.9478\n",
"Epoch 34: val_loss improved from 0.63871 to 0.63014, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 696ms/step - loss: 0.2265 - acc: 0.9478 - val_loss: 0.6301 - val_acc: 0.8333\n",
"Epoch 35/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1984 - acc: 0.9560\n",
"Epoch 35: val_loss improved from 0.63014 to 0.59584, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 728ms/step - loss: 0.1984 - acc: 0.9560 - val_loss: 0.5958 - val_acc: 0.8472\n",
"Epoch 36/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.2047 - acc: 0.9527\n",
"Epoch 36: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 691ms/step - loss: 0.2047 - acc: 0.9527 - val_loss: 0.6077 - val_acc: 0.8333\n",
"Epoch 37/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1874 - acc: 0.9674\n",
"Epoch 37: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 684ms/step - loss: 0.1874 - acc: 0.9674 - val_loss: 0.6221 - val_acc: 0.8194\n",
"Epoch 38/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1958 - acc: 0.9608\n",
"Epoch 38: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 692ms/step - loss: 0.1958 - acc: 0.9608 - val_loss: 0.6042 - val_acc: 0.8333\n",
"Epoch 39/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1803 - acc: 0.9641\n",
"Epoch 39: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 15s 741ms/step - loss: 0.1803 - acc: 0.9641 - val_loss: 0.6100 - val_acc: 0.8194\n",
"Epoch 40/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1807 - acc: 0.9657\n",
"Epoch 40: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 680ms/step - loss: 0.1807 - acc: 0.9657 - val_loss: 0.6017 - val_acc: 0.8333\n",
"Epoch 41/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1746 - acc: 0.9608\n",
"Epoch 41: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 696ms/step - loss: 0.1746 - acc: 0.9608 - val_loss: 0.6117 - val_acc: 0.8333\n",
"Epoch 42/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1668 - acc: 0.9739\n",
"Epoch 42: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 692ms/step - loss: 0.1668 - acc: 0.9739 - val_loss: 0.5981 - val_acc: 0.8472\n",
"Epoch 43/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1658 - acc: 0.9723\n",
"Epoch 43: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 15s 721ms/step - loss: 0.1658 - acc: 0.9723 - val_loss: 0.6564 - val_acc: 0.8194\n",
"Epoch 44/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1772 - acc: 0.9625\n",
"Epoch 44: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 689ms/step - loss: 0.1772 - acc: 0.9625 - val_loss: 0.5995 - val_acc: 0.8194\n",
"Epoch 45/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1582 - acc: 0.9690\n",
"Epoch 45: val_loss did not improve from 0.59584\n",
"20/20 [==============================] - 14s 704ms/step - loss: 0.1582 - acc: 0.9690 - val_loss: 0.5990 - val_acc: 0.8056\n",
"Epoch 46/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1673 - acc: 0.9674\n",
"Epoch 46: val_loss improved from 0.59584 to 0.58980, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 720ms/step - loss: 0.1673 - acc: 0.9674 - val_loss: 0.5898 - val_acc: 0.8333\n",
"Epoch 47/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1552 - acc: 0.9706\n",
"Epoch 47: val_loss did not improve from 0.58980\n",
"20/20 [==============================] - 14s 683ms/step - loss: 0.1552 - acc: 0.9706 - val_loss: 0.6136 - val_acc: 0.8194\n",
"Epoch 48/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1582 - acc: 0.9592\n",
"Epoch 48: val_loss improved from 0.58980 to 0.58911, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 682ms/step - loss: 0.1582 - acc: 0.9592 - val_loss: 0.5891 - val_acc: 0.8472\n",
"Epoch 49/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1651 - acc: 0.9657\n",
"Epoch 49: val_loss did not improve from 0.58911\n",
"20/20 [==============================] - 14s 700ms/step - loss: 0.1651 - acc: 0.9657 - val_loss: 0.6300 - val_acc: 0.8194\n",
"Epoch 50/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1423 - acc: 0.9772\n",
"Epoch 50: val_loss did not improve from 0.58911\n",
"20/20 [==============================] - 14s 686ms/step - loss: 0.1423 - acc: 0.9772 - val_loss: 0.6253 - val_acc: 0.8333\n",
"Epoch 51/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1649 - acc: 0.9576\n",
"Epoch 51: val_loss did not improve from 0.58911\n",
"20/20 [==============================] - 14s 726ms/step - loss: 0.1649 - acc: 0.9576 - val_loss: 0.5931 - val_acc: 0.8472\n",
"Epoch 52/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1335 - acc: 0.9804\n",
"Epoch 52: val_loss improved from 0.58911 to 0.57339, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 685ms/step - loss: 0.1335 - acc: 0.9804 - val_loss: 0.5734 - val_acc: 0.8472\n",
"Epoch 53/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1481 - acc: 0.9625\n",
"Epoch 53: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 691ms/step - loss: 0.1481 - acc: 0.9625 - val_loss: 0.5888 - val_acc: 0.8472\n",
"Epoch 54/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1508 - acc: 0.9674\n",
"Epoch 54: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 692ms/step - loss: 0.1508 - acc: 0.9674 - val_loss: 0.5980 - val_acc: 0.8472\n",
"Epoch 55/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1265 - acc: 0.9837\n",
"Epoch 55: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 699ms/step - loss: 0.1265 - acc: 0.9837 - val_loss: 0.6048 - val_acc: 0.8472\n",
"Epoch 56/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1291 - acc: 0.9755\n",
"Epoch 56: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 694ms/step - loss: 0.1291 - acc: 0.9755 - val_loss: 0.5779 - val_acc: 0.8333\n",
"Epoch 57/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1288 - acc: 0.9804\n",
"Epoch 57: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 683ms/step - loss: 0.1288 - acc: 0.9804 - val_loss: 0.6053 - val_acc: 0.8472\n",
"Epoch 58/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1399 - acc: 0.9690\n",
"Epoch 58: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 683ms/step - loss: 0.1399 - acc: 0.9690 - val_loss: 0.6103 - val_acc: 0.8333\n",
"Epoch 59/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1247 - acc: 0.9755\n",
"Epoch 59: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 700ms/step - loss: 0.1247 - acc: 0.9755 - val_loss: 0.5976 - val_acc: 0.8333\n",
"Epoch 60/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1282 - acc: 0.9723\n",
"Epoch 60: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 690ms/step - loss: 0.1282 - acc: 0.9723 - val_loss: 0.6059 - val_acc: 0.8472\n",
"Epoch 61/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1272 - acc: 0.9788\n",
"Epoch 61: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 688ms/step - loss: 0.1272 - acc: 0.9788 - val_loss: 0.5781 - val_acc: 0.8472\n",
"Epoch 62/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1161 - acc: 0.9821\n",
"Epoch 62: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 676ms/step - loss: 0.1161 - acc: 0.9821 - val_loss: 0.6073 - val_acc: 0.8472\n",
"Epoch 63/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1175 - acc: 0.9837\n",
"Epoch 63: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 678ms/step - loss: 0.1175 - acc: 0.9837 - val_loss: 0.6055 - val_acc: 0.8472\n",
"Epoch 64/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1231 - acc: 0.9739\n",
"Epoch 64: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 707ms/step - loss: 0.1231 - acc: 0.9739 - val_loss: 0.6097 - val_acc: 0.8472\n",
"Epoch 65/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1175 - acc: 0.9804\n",
"Epoch 65: val_loss did not improve from 0.57339\n",
"20/20 [==============================] - 14s 679ms/step - loss: 0.1175 - acc: 0.9804 - val_loss: 0.5900 - val_acc: 0.8472\n",
"Epoch 66/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1329 - acc: 0.9723\n",
"Epoch 66: val_loss improved from 0.57339 to 0.56467, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 707ms/step - loss: 0.1329 - acc: 0.9723 - val_loss: 0.5647 - val_acc: 0.8472\n",
"Epoch 67/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1190 - acc: 0.9804\n",
"Epoch 67: val_loss did not improve from 0.56467\n",
"20/20 [==============================] - 14s 685ms/step - loss: 0.1190 - acc: 0.9804 - val_loss: 0.6068 - val_acc: 0.8472\n",
"Epoch 68/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1084 - acc: 0.9804\n",
"Epoch 68: val_loss did not improve from 0.56467\n",
"20/20 [==============================] - 14s 698ms/step - loss: 0.1084 - acc: 0.9804 - val_loss: 0.6042 - val_acc: 0.8472\n",
"Epoch 69/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1081 - acc: 0.9853\n",
"Epoch 69: val_loss improved from 0.56467 to 0.56092, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 711ms/step - loss: 0.1081 - acc: 0.9853 - val_loss: 0.5609 - val_acc: 0.8472\n",
"Epoch 70/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0974 - acc: 0.9902\n",
"Epoch 70: val_loss did not improve from 0.56092\n",
"20/20 [==============================] - 14s 693ms/step - loss: 0.0974 - acc: 0.9902 - val_loss: 0.5802 - val_acc: 0.8472\n",
"Epoch 71/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1113 - acc: 0.9821\n",
"Epoch 71: val_loss did not improve from 0.56092\n",
"20/20 [==============================] - 14s 681ms/step - loss: 0.1113 - acc: 0.9821 - val_loss: 0.5841 - val_acc: 0.8333\n",
"Epoch 72/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1064 - acc: 0.9804\n",
"Epoch 72: val_loss did not improve from 0.56092\n",
"20/20 [==============================] - 14s 687ms/step - loss: 0.1064 - acc: 0.9804 - val_loss: 0.5636 - val_acc: 0.8472\n",
"Epoch 73/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1130 - acc: 0.9772\n",
"Epoch 73: val_loss did not improve from 0.56092\n",
"20/20 [==============================] - 14s 680ms/step - loss: 0.1130 - acc: 0.9772 - val_loss: 0.6051 - val_acc: 0.8472\n",
"Epoch 74/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1140 - acc: 0.9837\n",
"Epoch 74: val_loss improved from 0.56092 to 0.55968, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 696ms/step - loss: 0.1140 - acc: 0.9837 - val_loss: 0.5597 - val_acc: 0.8472\n",
"Epoch 75/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1033 - acc: 0.9772\n",
"Epoch 75: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 695ms/step - loss: 0.1033 - acc: 0.9772 - val_loss: 0.6055 - val_acc: 0.8472\n",
"Epoch 76/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1073 - acc: 0.9804\n",
"Epoch 76: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 697ms/step - loss: 0.1073 - acc: 0.9804 - val_loss: 0.5669 - val_acc: 0.8472\n",
"Epoch 77/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0997 - acc: 0.9837\n",
"Epoch 77: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 698ms/step - loss: 0.0997 - acc: 0.9837 - val_loss: 0.5621 - val_acc: 0.8472\n",
"Epoch 78/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1044 - acc: 0.9837\n",
"Epoch 78: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 702ms/step - loss: 0.1044 - acc: 0.9837 - val_loss: 0.5929 - val_acc: 0.8472\n",
"Epoch 79/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0990 - acc: 0.9755\n",
"Epoch 79: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 684ms/step - loss: 0.0990 - acc: 0.9755 - val_loss: 0.6109 - val_acc: 0.8333\n",
"Epoch 80/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1018 - acc: 0.9804\n",
"Epoch 80: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 687ms/step - loss: 0.1018 - acc: 0.9804 - val_loss: 0.5705 - val_acc: 0.8472\n",
"Epoch 81/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.1109 - acc: 0.9723\n",
"Epoch 81: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 709ms/step - loss: 0.1109 - acc: 0.9723 - val_loss: 0.5707 - val_acc: 0.8472\n",
"Epoch 82/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0882 - acc: 0.9869\n",
"Epoch 82: val_loss did not improve from 0.55968\n",
"20/20 [==============================] - 14s 698ms/step - loss: 0.0882 - acc: 0.9869 - val_loss: 0.5904 - val_acc: 0.8472\n",
"Epoch 83/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0958 - acc: 0.9853\n",
"Epoch 83: val_loss improved from 0.55968 to 0.55556, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 699ms/step - loss: 0.0958 - acc: 0.9853 - val_loss: 0.5556 - val_acc: 0.8472\n",
"Epoch 84/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0919 - acc: 0.9886\n",
"Epoch 84: val_loss did not improve from 0.55556\n",
"20/20 [==============================] - 14s 702ms/step - loss: 0.0919 - acc: 0.9886 - val_loss: 0.5623 - val_acc: 0.8611\n",
"Epoch 85/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0916 - acc: 0.9821\n",
"Epoch 85: val_loss did not improve from 0.55556\n",
"20/20 [==============================] - 14s 682ms/step - loss: 0.0916 - acc: 0.9821 - val_loss: 0.5703 - val_acc: 0.8472\n",
"Epoch 86/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0947 - acc: 0.9804\n",
"Epoch 86: val_loss improved from 0.55556 to 0.55527, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 693ms/step - loss: 0.0947 - acc: 0.9804 - val_loss: 0.5553 - val_acc: 0.8472\n",
"Epoch 87/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0928 - acc: 0.9821\n",
"Epoch 87: val_loss improved from 0.55527 to 0.55307, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 701ms/step - loss: 0.0928 - acc: 0.9821 - val_loss: 0.5531 - val_acc: 0.8472\n",
"Epoch 88/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0824 - acc: 0.9902\n",
"Epoch 88: val_loss did not improve from 0.55307\n",
"20/20 [==============================] - 14s 687ms/step - loss: 0.0824 - acc: 0.9902 - val_loss: 0.6216 - val_acc: 0.8472\n",
"Epoch 89/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0903 - acc: 0.9837\n",
"Epoch 89: val_loss did not improve from 0.55307\n",
"20/20 [==============================] - 14s 700ms/step - loss: 0.0903 - acc: 0.9837 - val_loss: 0.5626 - val_acc: 0.8472\n",
"Epoch 90/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0933 - acc: 0.9837\n",
"Epoch 90: val_loss did not improve from 0.55307\n",
"20/20 [==============================] - 14s 703ms/step - loss: 0.0933 - acc: 0.9837 - val_loss: 0.5793 - val_acc: 0.8472\n",
"Epoch 91/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0868 - acc: 0.9821\n",
"Epoch 91: val_loss did not improve from 0.55307\n",
"20/20 [==============================] - 15s 721ms/step - loss: 0.0868 - acc: 0.9821 - val_loss: 0.5611 - val_acc: 0.8611\n",
"Epoch 92/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0857 - acc: 0.9886\n",
"Epoch 92: val_loss improved from 0.55307 to 0.53613, saving model to ./chest_CT_SCAN-/vgg16.hdf5\n",
"20/20 [==============================] - 14s 707ms/step - loss: 0.0857 - acc: 0.9886 - val_loss: 0.5361 - val_acc: 0.8472\n",
"Epoch 93/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0825 - acc: 0.9837\n",
"Epoch 93: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 694ms/step - loss: 0.0825 - acc: 0.9837 - val_loss: 0.5704 - val_acc: 0.8472\n",
"Epoch 94/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0889 - acc: 0.9837\n",
"Epoch 94: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 693ms/step - loss: 0.0889 - acc: 0.9837 - val_loss: 0.5445 - val_acc: 0.8472\n",
"Epoch 95/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0733 - acc: 0.9886\n",
"Epoch 95: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 688ms/step - loss: 0.0733 - acc: 0.9886 - val_loss: 0.5628 - val_acc: 0.8472\n",
"Epoch 96/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0825 - acc: 0.9886\n",
"Epoch 96: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 676ms/step - loss: 0.0825 - acc: 0.9886 - val_loss: 0.5867 - val_acc: 0.8611\n",
"Epoch 97/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0695 - acc: 0.9951\n",
"Epoch 97: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 699ms/step - loss: 0.0695 - acc: 0.9951 - val_loss: 0.6258 - val_acc: 0.8611\n",
"Epoch 98/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0765 - acc: 0.9902\n",
"Epoch 98: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 15s 763ms/step - loss: 0.0765 - acc: 0.9902 - val_loss: 0.6023 - val_acc: 0.8472\n",
"Epoch 99/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0748 - acc: 0.9869\n",
"Epoch 99: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 704ms/step - loss: 0.0748 - acc: 0.9869 - val_loss: 0.5856 - val_acc: 0.8611\n",
"Epoch 100/100\n",
"20/20 [==============================] - ETA: 0s - loss: 0.0756 - acc: 0.9886\n",
"Epoch 100: val_loss did not improve from 0.53613\n",
"20/20 [==============================] - 14s 689ms/step - loss: 0.0756 - acc: 0.9886 - val_loss: 0.5655 - val_acc: 0.8611\n"
]
}
],
"source": [
"history_vgg = model.fit(train_generator,\n",
" steps_per_epoch = 20,\n",
" epochs = 100,\n",
" verbose = 1,\n",
" validation_data = valid_generator,\n",
" callbacks = [checkpointer, early_stopping])"
]
},
{
"cell_type": "code",
"source": [
"plt.plot(history_vgg.history['acc'], label = 'train',)\n",
"plt.plot(history_vgg.history['val_acc'], label = 'val')\n",
"\n",
"plt.legend(loc = 'right')\n",
"plt.xlabel('epochs')\n",
"plt.ylabel('accuracy')\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 449
},
"id": "k7KMvtI2l7aQ",
"outputId": "7c7f652d-4633-4503-d959-9155111bc3a3"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuqUlEQVR4nO3dd3wU1frH8c+mJ6SRQgIhEDqEXgRpIhpERewVlKJyLWCBq1e5Klh+ihWxY0OvHUWsKIpBUJTeO1JDS6Ok1935/TFkQ0ghfbPJ9/167Wt3Z2dmnx2ReTjnOedYDMMwEBEREaknXBwdgIiIiEh1UnIjIiIi9YqSGxEREalXlNyIiIhIvaLkRkREROoVJTciIiJSryi5ERERkXrFzdEB1DabzcaRI0fw8/PDYrE4OhwREREpB8MwSEtLo1mzZri4lN020+CSmyNHjhAZGenoMERERKQSDh48SPPmzcvcp8ElN35+foB5cfz9/R0cjYiIiJRHamoqkZGR9vt4WRpcclPQFeXv76/kRkRExMmUp6REBcUiIiJSryi5ERERkXpFyY2IiIjUK0puREREpF5RciMiIiL1ipIbERERqVeU3IiIiEi9ouRGRERE6hWHJjd//PEHI0eOpFmzZlgsFr799tuzHrNkyRJ69eqFp6cnbdu25cMPP6zxOEVERMR5ODS5ycjIoHv37rzxxhvl2n/fvn2MGDGCoUOHsmHDBu6//35uv/12fvnllxqOVERERJyFQ5dfuOSSS7jkkkvKvf/s2bNp1aoVL730EgCdOnVi2bJlvPzyywwfPrymwhQREREn4lQ1N8uXLycmJqbItuHDh7N8+fJSj8nJySE1NbXIQ0REROovp0pu4uPjCQsLK7ItLCyM1NRUsrKySjxmxowZBAQE2B+RkZG1EaqIiIhTy823kZVrdXQYleJUyU1lTJ06lZSUFPvj4MGDjg5JRESkzjIMg+83HmHQc4vp9dQiHv9+KwePZzo6rApxaM1NRYWHh5OQkFBkW0JCAv7+/nh7e5d4jKenJ56enrURnohIg2AYBhaLxdFhODXDMADq3HXcm5TOtO+2smx3sn3bh3/v5+MVB7i0a1PuOK81XSICHBhh+ThVctO/f39++umnItsWLVpE//79HRSRiEjDkJ1nZd7aQ8xZto/sPCsv39CDfq2DHR1WrcrJt7L5UArNAr1pFljyP6jLY09SOvd9sZ4TGXk8fElHLuvWtNJJzrH0HHbEp9GvVRBuruXvjNl06CQHjxct59h6JIX3/txHrtWGh5sLE89vS/fIAN5fto8//0nmh41H+GHjETo19WdYpyYMiw6nS4S/PfbcfBtxxzPYk5SBp5sL53doUqnfVB0sRkH66ADp6ens3r0bgJ49ezJz5kyGDh1KUFAQLVq0YOrUqRw+fJiPPvoIMIeCd+nShYkTJ3LrrbeyePFi7r33XhYsWFDu0VKpqakEBASQkpKCv79/jf02EZH64ERGLh+vOMD//t7PsYxc+3ZXFwsPDu/AHee1rnOtD5WRlWtlVuwuMKB1aCPahPrSOtQXFwss2ZnEom0JLN2VRHpOPh6uLtwxpDUTh7bFy921Qt/z46YjPDRvExmn1bIMbhfCk1d0oVVIo3Kfx2oz+HTlAV74ZSdp2fk0b+zNbYNaccM5kfh4lNxuYbMZLNqewNtL97Au7mSp5x7SPpQnr+hMy+DCeLYcTuHdP/fy46ajWG2FaUO4vxcdwv04cCyDgyey7J/1bRXEl3dUb8NDRe7fDk1ulixZwtChQ4ttHzt2LB9++CHjxo1j//79LFmypMgxkydPZtu2bTRv3pzHHnuMcePGlfs7ldyISEUcOZlFUCOPCt/EakKe1cbB45k08nQjzN+rRr/r4PFM3vtzL1+uOURWnnkjjgj05vbBrdh0KIVv1h8GIKZTGC9d150AH/cKnT87z8qhE5m0beJXoeMOHMsgPiW7yDYvd1e6RATg6lL5JOuheZuYu+bsNZl+nm6k5eQD0CLIhyeu6MzQcrRQ5ObbeOan7Xz4934A+rUKol+rIGb/sZfcfBseri7cOaQ1A9uGFDnO28OVqJBG+HsVXt9Nh07y6Ldb2HQoBQB3Vwt5VvNWHujjzi3ntmRg2xBOvxp7kjJ478+97E3OAMDD1YUekYGcnpd6urty0zmRXNwlvNSE9XhGLot3JPLbtgT++CeJzDMKjht5uNI61JdeLQJ54oouZ70uFeE0yY0jKLkRkfL6Y1cSt364miZ+nrw+uhe9WjSute/Ot9pYe+AES3clsSshnb3J6cQdyyT/1L+Mp10Wza2DWlX79245nMLbf+xlwaYjFPwDvXMzf/51XmtGdG2Km6sLhmHw+aqDPP79VnKtNiKDvLl1YCtah/rSOqQREYHeuJSSaBiGwS9bE3jyh60cSckmplMTpo/sTGSQT4n7W20G6+NOsGh7Ar9tS2BPUkaJ+/WNCuL1UT1pUomk74eNR7jn8/VYLHBd7+YcTclmb1IGh0+a3TYdwvyIiTa7YbpFBPDL1nie+GEb8almkjUsOoyhHZrYW3xCfD0ASEzLYU9SOnuTMpi39hAbDp4E4K7z2/DvYe1xc3Vhf3IG077fyh+7ksqMMdTPk9YhjQjwdmfR9gQMA/y83PjP8A5c3as536w/zLt/7uXAsbILf/283Ljl3JaMGxBVqWt1uuw8K8v3HONoSjZRIT60CfWliZ9njbXkKbkpg5IbkYbphV92sC85g5eu64G3x9lbYdKy8xj+8h8cOdVK4O5q4b+XdmLcgCj7X95Wm8GibfF8siKOtk18eeyy6Cq1HmTm5rN0ZxKLtifw+45ETmTmFdvH082FnHwbAJOGtuXfF7UvcjPJzM3njd93s2rfcR4c3pG+rYKKncMwDD5dGccnKw6Qe+pcAPk2g7jTRsUMbhfCHee1YWDb4BJvWJsPpXD3Z2uL1W54urnQIdyP8zs04aLoMDo3M+sy4o5l8vgPW1m8I7HI/l7uLtxzQTsmDG6Nh5sLmbn5/PlPMr9tS2DxjsQi3WHurhYig3yKtEocOZlNVp6VEF9PXr2pBwPaFLZ+ZOTkM3f1Qb7feIRLu4Zz+6DWRRKvg8czufSVP0nLyeeeC9ry74s6FLmWGTlWQv2KD0pJz8nnld92Meev/UW6acBMIAzD3Od0/l5uzLy+BzHRRac0MQyDn7fE8/Yfe0nPLvrfPDU7n6S0nGLff1XPCKZe2pEmfoUJitVm8OvWeD5afoDEtKKtW94erlzZI4Ib+7bA19Opym3tlNyUQcmNSP2zfM8xXF0sJd7IwWyNuOy1ZQDcd2E7Jg9rf9ZzPvrtZj5ZEUdkkDddIwL4aXM8ACO6NuWJKzqzcEs87/25l/2n/Ut5VL8WPH1llwr/y9UwDL7bcIT/W7Cd5PTCG1mgjztDOzShR2TgqRqQRoT7e/HW0j288MtO+3c+dUUXXF0s/HqqRaGgxcHVxcJDF3dgwuDCupiMnHymzt/M9xuPlBiLq4uFkd2aMuG81nRudvZRMSmZeXz49362H01lT1I6B45lkmu1FdmnaYAXfaKC+HVrPDn5NtxdLdxxXhsu7hLO/y3Yxoq9xwFoE9qIqOBGLNudbE/gwEwKhnZswrDoMM5rH1qkiwbMET53f7qOHfFpuFjg3xd14Lrezflo+QE+XnGAlKzChCGmUxNeuq4HAT7u5FltXP/2ctbHnaRXi0C+vKN/hYpyAXbEp/LVmkPsTjRb1w6dyKLgrupiMbuuWof60q6JLzef27LUFqqypGXnsTcpg73J6Rw+kUXfVsGl/lmvz5TclEHJjUjV5Z66QdWFQtJv1x/m/rkbcHWx8Mv959G2iW+xfSZ9to4fNx0FwMPNhd8mD6FFcOk3mRV7j3HjOysA+Oz2fvRvE8yHf+/n6QXbybcZWCzYb2AB3u5cFB3GvHWHMAyzy+GhizsWOV9iWjZv/r6HlKw8zu8QyvkdmhDgbd6gdyem89i3W1i+9xhg1rVc0iWcYdFh9G7ZuNSb7Wcr43j0283YDBjeOQyrzeC37Yn2c0Q382fRNnPqjIuiw3jhuu4kpmZz16fr2J2YjquLhX9f1J5zooreJFsE+VSpniffauPQiSzWHDjBom3x/LEr2V6zAzCgTTBPXdmFNqHmf6fCxG4byemFLTTNG3szLDqMYZ3COKdVEO5nSTqycq1M+24LX609BFDkv1GrkEZc2LEJH51qqWre2Ju3Rvfml63xvP77bvy83Pjp3sGVSjzOlJ1nZf+xDFwtFloE++Dp5vharfpCyU0ZlNyIVM2Xaw7y8Neb8PV0M2ssTtUZ9G0VVOxGWdN+25bAHZ+stXcLXBQdxjtj+hTZ58CxDIa+uASbYdZO7ExII6ZTGO+N7VPSKcnKtXLJK3+w/1gmN/VtwYyru9o/W3vgBJM+W8fRlGx7ce31fSJp5OnG56vimDp/MwAPX9KRO4e0KTaipYCbi4V+rYNoGdyIr9YcJM9q4Onmwr0XtuP2wa3KfUP8efNR7vtig72lxN3VwoTBrZl0QVu83V35dGUcT/6wjVyrjYhAb45n5JKVZyXM35PXR/Wqlf9eBXUZK/cdp1vzAC4ppVg1JSuPT1YcAODCTk3oEOZXqeT5y9UHeey7LeTk2+gRGcidQ9owLDoMVxcLWw6ncNenZjeah6sLeTYbhgFvjOrFiG5Nq/xbpWYpuSmDkhuRylu9/zij3l1hH5lxpv9c3IG7hrSpVLfMnqR0Fm1L5PDJTO67sH2JdQ6nW77nGGM/WEVuvo2hHUJZuisJmwHz7uxPn9Nu2o98s5lPV8YxpH0oj47oxCWv/Em+zeCDcecwtGPxUS5PL9jGu3/uI9zfi1+nnFesCyQlK49tR1I5J6p4q8rbS/cw4+cdANxzQVuW7kqyj2jp1jyA/m2CWbw9kX8S04scd2HHJjx+eelFtWX5a3cy98/dQPswX564vHOx0UebDp3k7k/XceiE2VU1sG0wr9zYkxDf+ju56cHjmZzMzCsyB0uBlMw8/v3VRn7bbrZq3XhOJM9e080RYUoFKbkpg5IbaSj2JWcQ1MjD3v1RVYdPZnH5a8s4lpHLiG5NueeCtmYdQFI6mw6l8OupLpDbB7Xiv5d2KlK0eeBYBk/9uJ11cSdo3tib1iGNaB3qS4sgH7YeSeG37YnsSy4cBdMx3I+5/+pf6vDijQdPMurdFWTkWhkWHcZbo3vx2Hdb+HzVQXq1COTruwZgsVhISsth4HOLyc238cW/zuXc1sH25CUq2IdfJp9XpJVkfdwJrnnrb2wGzBnXhws6hpX4/WV5fuEO3lyyx/6+YETLqH4t7cXG+5Mz+G17AtuPpnFR5zAuig6rUhff2WYMTsnMY+ainTQL9Ob2wa2rVPRcHxiGwScr49iblM6DwzuUOi+M1C1Kbsqg5EYagl+3xnPHJ2vx83TjwYs7Mqpvi1JvaPlWGwdPZLH31JDV45m5XNw5nO6RgfZ9MnPzufat5Ww7mkp0U3/m3dW/2A3hvT/38n8LtgNwda8InrumGzbD4O2le3nj991FCkRL4uHqQv82wWw7mkpSWg69WgTyye39in3PxoMnGffBKk5k5jGgTTBzxp2Dl7srCanZnP/CErLyrMy+uRcXd2lqTzR6RAbyzd1mwpOWnceFLy0lMS2HB4d3YOLQtuxLzuDdP/cyb+0hcvNtXNUzgpdv6FHxC49543zih238b/l+ruxRfESLiFSOkpsyKLmRuiQ1Ow/DoNpaVwCOpmRxySt/cvK0YcTdmwfwf1d2pWvzAAzDYMvhVBZtT2DxjgR2xqeV2M10busg7jivDUPah3LP5+tZsPkowY08+P6eQUSUMvX812sP8Z+vN2G1GQxqG8KRk1n2ScMGtg3m3gvacSIzzz73R9zxDJo39rGPgvH1dGNHfCo3vL2ClKw8BrcL4b2xffB0cyU1O4+XftnJxysOYDOge2Qgn97er8iw1pd+3clri3fTOqQR8+8ewODnfyctO5+3b+nN8M7h9v0KipC93V0Z3C7EPm8ImPOlvDOmN4E+HlX675CdZ60TE/+J1BdKbsqg5Ebqgr1J6bz75z6+XncIHw9XPp9wLp2aVv3Po9VmMOrdFazcd5yuEQFc0yuCl37dRVpOPi4WGNqhCVuPpNonHyvg5e5CqxCzOBjgly3x9sniwvw9SUjNwd3Vwqe3n3vWIaix2xO4+9N19paaUD9PHrssmpEVWD9nXdwJbn5vJZm5Vi7pEn5qyPB2+3wfI7s346krOhdLQNKy8zj/hSUcy8ila0QAmw+n0Ca0EYsmDynSTWYYBje8vYJV+4/bt8V0asK/zmvDOVGN68QoMBEpSslNGZTcSE0pz7/U18Wd4O2le/h1W2FLAUCIryfz7uxPVAXWlinJq7H/MHPRLhp5uPLjvYNpFdKIxNRsnv5pO99tKJzXxMfDlSHtQ4npFEa/1kE0Cyg6o+yRk1l88Nc+PlsZZ18D55mrujKqX4tyxbF6/3Ge+GEr50QFMXlY+2JFueWx7J9kbv1wdZE5U1qHNOKpK7sUm6L+dP/7ez/Tv99qf//8td24vk9ksf12J6bz7y830CHcjwmDW9MurGLLAIhI7VJyUwYlN1LdTmTk8u+vNvL7zkSGR4dzx5DW9Dxtmn6bzSB2RyLv/LGH1ftP2Ldf2LEJt/RvyXMLd7L9aCoRgd7Mu6s/TQPKXm0432pj0bYEmjf2KTIaZM3+41z/9nJsBsy8vjtX92pe5Ljle46xfO8xerYIpH/r4HJ1maRk5fH12kP4ermVmCDUtIVb4rn707W4u7owaWhb/jWk9VmHSefm2xj28lIOHMsk3N+LP/4zFA+3ik3MJiJ1j5KbMii5keq0Pu4EEz9dZ5+iv0DfqCAmnNea4xk5vPPHXvt6OO6uFq7qGVGkpSApLYfrZv/N/mOZtG3iy5d39CeoUcn1Homp2Uz6fD2r9pndKeH+XlzYqQlD2ofaZ6atSjFsXbQ/OQMfD9cKrYPzx64k/v3VRh4d0YkrekTUYHQiUluU3JRByU3DZRgGmw+n0D7Mr9RWC8MwWBd3gqjgRgSXMQ+IYRh8tPwA/7dgG3lWg6hgHx4ZEc2vW+P5dsPhYgW6fp5ujD63JeMHRpU4++uhE5lc+9Zy4lOz6RoRwPvj+hQbYfP3nmTu/XwDyek5+JxaG+nMFXlbBvvw4z2D8KtEN5CISF2m5KYMSm4armd/3sHspXto18SXt27uVWyys9TsPB6at4mft8Tj6ebCdX2aM2Fwa1oGF9bB5ObbWLXvOJ+sOMDCreZaQ5d0Cee5a7vZ60riU7L54O99fL4yjkaebowfGMVNfVucNeHYnZjG9W+v4HhGLhYL9GrRmJhOYQyLbsIvWxN46ded2AxzDpg3R/eiWaA3y/ccs6+WnJVr5ZPb+xUZwi0iUl8ouSmDkpv6Kd9qI+54Jq1CGpU40uWPXUmMmbPK/t7Hw5Vnr+nG5d2bAbDtSCp3f7q2yCKIYC58d3GXcIa0D2XZ7mMs2Zlon0bfzcXC1Es7cevAqGobXbPlcAr//WazfVbbM13buzlPXdGl2KrWhmFgtRkVXvRPRMRZKLkpg5Kb+iUzN58vVx/kvWX7OHQiiyt7NOOF67oXWWQvKS2HS175k+T0HK7uFUFCajZ/7TYXKRzTvyXRTf2Z/v1WcvLN9XdeH9WT7Dwbb/+xhyU7k4p9Z4ivBxd2DGP0uS3o1jywRn7XkZNZxO5IZNG2BJbvScbFYuGpK7pw/Tm1X9QrIlIXKLkpg5Kb+iE5PYeP/t7PRysOFJmsDuD8DqG8OboXPh5u2GwG4z9czdJdSXQI8+O7SQNxd3Vh1m+7eG3x7mLHvXx9DxqfVsy7Iz6V9/7cx+7EdPq3CWZYdBg9mgcWGTZd0zJy8smz2qo8qZyIiDNTclMGJTfOb+uRFEa9u5KULDOpaRHkw4TBrQj18+L+uevJzrPRq0Ugc8adw1drDvH0T9vxdHPhh3sG0f60uUx+35nI5LkbSM3KY8qw9tx9fttaTVpERKT8lNyUQcmNc9ublM51s5dzLCOXDmF+3HthOy7uEm5fN2ntgeOM/2A1qdn5tA5pxMETmeRZDZ6+qguj+7Usdr6UzDxSs/MqtRqziIjUnorcv1V9KE7jyMksbn5vJccycukSYS7eOKJb0yILQvZuGcRXdw4gzN+TvckZ5FkNLu4czqi+Jc+sG+DjrsRGRKSeUXIjDvXnP0k8+/MOsvOsZe6XnJ7Dze+v5EhKNm1CG/G/8X1LHVrdIdyPeXcOoEuEP9FN/Xn2mq5aK0hEpAFxO/suIjVjfdwJbvvfGnLzbQQ38mDCea1L3C81O4+xc1axNymDiEBvPr6tX5kT7AFEBvnw4z2DMQxDiY2ISAOjlhtxiITUbO74eC25p1aOfm/ZXnLyS269mfr1ZrYeSSXE14NPbu9Hs8Cy1146nRIbEZGGR8mN1LrsPCv/+ngtiWk5tA/zJczfk4TUHL5bf6TYvmsPnGDB5qO4WGDOuHNoVcVVs0VEpP5TciO1yjAM/jt/MxsPniTQx533xpzDbYNaATD7jz3YbEaRfZ/9eTtgzsxbUxPmiYhI/aLkRqrF/uQM/vXRGlbuPVbmfu/+uZf56w/j6mLhzVG9aBHsw019W+Dv5cbepAx+3ZZg3/e37Yms3n8CTzcXJg9rX9M/QURE6gklN1JlhmHw4LyN/LotgSlfbiy1dmb1/uM8+/MOAB4b0YkBbUMA8PNy55b+5hw0by3dg2EY5Ftt9lab2wa1omlA+etsRESkYVNyI1X23YYjrN5/AoDDJ7P4ePmBYvvkW2089u0WbAZc3SuCsQOiinw+bkArPN1c2HjwJMv3HuOrtYfYk5RBYx937jy/TW38DBERqSeU3EiVpGXn8fRPZgtLj8hAAF5bvJuUM9Z7+mTFAXbEpxHo485jI6KLjWIK9fPk+j7mopCv/PYPLy/aBcCkC9rhX8p8NiIiIiVRciNV8mrsPySl5RAV7MPnE86lXRNfUrLyeHNp4aKUyek5vHQqWXlweIciC1OebsLg1rhYYOW+4ySm5RAZ5M3N55Y8s7CIiEhplNxIpf2TkMYHf+0HYPrlnfH2cOWhizsC8MFf+zlyMguA5xfuIC07ny4R/tx4TunJSotgHy7r1sz+/oGLOuDp5lpzP0BEROolJTdSKYZh8PgPW8m3GcR0CmNohyYAXNipCX1bBZGbb2Pmol2sjzvBl2sOAfDE5V2KrANVkolD2+Ll7sI5UY0ZeVqiIyIiUl4OT27eeOMNoqKi8PLyol+/fqxatarUffPy8njyySdp06YNXl5edO/enYULF9ZitFLg5y3x/LX7GB5uLky7LNq+3WKxMPUSs/Xm63WHmDx3A2DOU9O7ZeOznrdDuB9/P3whH9/WD5ezJEIiIiIlcWhyM3fuXKZMmcL06dNZt24d3bt3Z/jw4SQmJpa4/6OPPsrbb7/Na6+9xrZt27jzzju56qqrWL9+fS1H3rBl5ubzfz9uA+DOIW1oEVx0Ve2eLRozomtTDAP2H8vEz9PN3l1VHkGNPPByV3eUiIhUjkOTm5kzZzJhwgTGjx9PdHQ0s2fPxsfHhzlz5pS4/8cff8x///tfLr30Ulq3bs1dd93FpZdeyksvvVTLkTdsb/6+hyMp2UQEenPXkJKHaT84vANup1peJg9rT6hf2QtdioiIVBeHrQqem5vL2rVrmTp1qn2bi4sLMTExLF++vMRjcnJy8PLyKrLN29ubZcuWlfo9OTk55OTk2N+npqZWMfKGbV9yBu/8sReAxy6Lxtuj5BaWqJBGvHR9d/YkpjPm1AR9IiIitcFhLTfJyclYrVbCwsKKbA8LCyM+Pr7EY4YPH87MmTP5559/sNlsLFq0iPnz53P06NFSv2fGjBkEBATYH5GRkdX6OxoSwzB44oet5FptDG4XwvDOYWXuf0WPCKZc1AE3V4eXdomISAPiVHedV155hXbt2tGxY0c8PDyYNGkS48ePx8Wl9J8xdepUUlJS7I+DBw/WYsT1S+z2RJbsTMLd1cLjl3cuNhGfiIhIXeCw5CYkJARXV1cSEhKKbE9ISCA8PLzEY0JDQ/n222/JyMjgwIED7NixA19fX1q3bl3q93h6euLv71/kIRWXnWfliR+3AnDboNa0CfV1cEQiIiIlc1hy4+HhQe/evYmNjbVvs9lsxMbG0r9//zKP9fLyIiIigvz8fL7++muuuOKKmg63QcnIyS+2fMI7f+zl4PEswvw9ueeCtg6KTERE5OwcVlAMMGXKFMaOHUufPn3o27cvs2bNIiMjg/HjxwMwZswYIiIimDFjBgArV67k8OHD9OjRg8OHD/P4449js9n4z3/+48ifUW/sS87g3T/38vXaQ+Tk2whu5EHr0Ea0DvHl2w2HAXhkRDSNPB36x0ZERKRMDr1L3XDDDSQlJTFt2jTi4+Pp0aMHCxcutBcZx8XFFamnyc7O5tFHH2Xv3r34+vpy6aWX8vHHHxMYGOigX1A/rI87wdtL9/LLtngMo3D7sYxcjmXk2lf87tcqiJHdmjooShERkfKxGMbpt7P6LzU1lYCAAFJSUlR/A7y5ZDfPL9xpf39BxybccV5rOkcEsC8pg73J6exJyuB4Rg53DmlD88Y+ZZxNRESkZlTk/q3+hQbsZGYury82V+++skcz7h7alvZhfvbPuzYPoGvzAEeFJyIiUilKbhqwj5YfIDPXSqem/rx8Qw8N7RYRkXrBqea5keqTlWvlw7/3A3DnkNZKbEREpN5QctNAfbnmIMczcokM8mZEVxUJi4hI/aHkpgHKs9rs60P9a3BrLY8gIiL1iu5qDdCCTUc5fDKL4EYeXNdHa22JiEj9ouSmgTEMg9lL9wAwfmAUXu4lr+otIiLirJTcNDBLdiaxIz6NRh6u3HJulKPDERERqXYaCt7AvLXEbLUZ1a8FAT7uDo5GRMSJZByDb+6AJh1h2FNQ26NMj++F7++F9sNhwD3Ve+49i2HhVMhOKbo9ojdcNRs8/YofYxiw+P9gw2fAGfMBN+0Bo76o3hgrQMlNA/LDxiOs2n8cd1cLtw0qfSV1ERE5g80K8283k4Ddi8CvKfSfWHvfn5cFc2+BhC2w/08IiITOV1bPuY/vhS/HQk5q8c92/Ag/3AfXvF88mVvzPvz5YsnnDHBsPaeSmwZiy+EUHpy3EYDbB7cmPMDLwRGJiDiRpc+biY3FFQwrLJpmtmq0OLd2vn/BA2ZiU/D9302CsC4Q0rZq583LgrljzMQmsh9c+gJwKok5sR/mjYctX0PkudDvX4XHHV5rtvQAnD8VOlxa9Lzujl2qRzU3DUBSWg7/+mgN2Xk2hrQP5YGLOjg6JBER57H7N1j6nPn6yjehy7Vgy4evxkF6Us1//7qPYcMnYHGB0V9By4GQmwZf3gK5mVU7908PQsJm8AmB6z6Ept2haTfzEX05DHvS3O+X/8LB1ebrzOPw5Tiw5kLHy2DIQ4XHFDyqmnRVkZKbei4338Zdn6zlSEo2rUMa8epNPXF10WzEIiLlcvIgfD0BMKD3eOh+I4x8BUI6QNpR+Po2s8uqphzdBD89YL4e+gi0vRCunQONmkDiNlgwxax9qYz1n8D6jwELXPs++Dcrvs+5d0Ony8GWZyZzGclm3VFKHDRuZSZ7dXCGeyU39ZhhGEz/fgtrDpzAz9ONd8f2IcBbRcQiIuWSn2ve0LOOmy0aFz9rbvf0hRs+BvdGsG8p/P5MzXx/1kmzdSY/G9oNh0FTzO1+4XDdB2ZLzsbPYe2HFT/30U2w4N/m66GPQOvzS97PYoEr3oCgNpB6CN4aCP/8Cm5e5jXwqpuLK1sMo7Ipn3OqyJLpzu7TlQd45JstWCwwZ9w5DO3QxNEhSXU4vBa+nQjdrofBU2r/+3f9av6lOOxx6HJNzX5XTjp8ei0EtzH/gi2vXb+aRZBZx6seg8UV+oyHi/6v5H+hpiWYN6Cg1nD56+BazlLGnT/Dj5Mh60TVY6xtzXrCDZ9Co+DinxkGLHwY1n0Ehq124vHwNROPbteV/PmB5WZrQ3pCxc5r2MyuF69AuGMpNI4q+vnmeWbLDZg3++pms5otJoEt4F9LwSeo6OfLXobfHq/c91vzzNqddhfBTXPB5SxtHQlb4d0LIT/LfH/FG9Dz5op9ZxVV5P6tguJ6ymozeOW3fwD4z/COSmzqi4xjZvFf6iGIfcK86UdfUXvff2yP+Zd5TioseRY6X12zTdJbvoa45ebj3IkQFl2xGKvL8tfNG1vfCUW3W/PN7zq40nz4N4MLp539fMn/wNe3Q2569cVYm+KWmyOHRs8DlzMmAl3xJqycXbvx5GfDd3ebdR7Nehb9LC0evhwDGYmVO7eHL1z9bvHEBqDrtRC/Gf6aZcZQE7yD4Lr/FU9sAAbcBwnbYPOXlfv+JtFw1dtnT2wAwjrD5a/B9/dA73G1nthUlFpu6qnle45x07sr8PdyY82jw/BwUw+k07NZzVaMPYvB1ROsOeDhZ/6LMrhNzX9/Xha8N8wsPixw2yKI7Ftz3/neMDi0ynzdfxIMf7rs/XMz4f1h5qiSFv3Nv7irmnxt+hIWPwUu7nDrL9C8d+Fnvz1u/uu54L8HmP8K7nBxGTFmwHsxZr1Ey4Fw5Vt1smahVCmH4OOrzX/BD3kYhk4t/CxuBXw4wiy2HfZU9Q1VPpufH4KdPxVv4bDmw/9GQtzf5o38xk/BpYL/pvcKBK+z3CvSkwpbNKqbTwh4nGXkUepRs4WnovwjiienZ5OXDe6OGW2rlhvhh01HALikS1MlNvXFHy+YiY2bN9z2i/kXetxyc+6L2387+1+AVfXTA4WjKpr1NOf6WP9xzSU3STsLExuAjV/AhdPBzaPk/Q3jVIxboFEoXPsB+FfDiveD/w1H1pvzfXw1Fu74w7x57vzZTGwArnrLvLGvege++Ze5T0n/0jcM+HGKmdg0amIWhvqFVz3G2hTYAi57Gb690xxBFHkOtI0xb/BfjTMTmy7XmJPM1VbSduWb8PYQOHkAvr0LbvzcbI2IfcJMbDz84PqPza7DmuAbWjPnLa/q+HNeXg5KbCpKd716KM9q4+fNRwEY2b2E6ndxPrtjzW4ggJGzzOLGaz8wb+KJW80amJpshF33sTmywuJijqoYNNncvmW+WRdTE9Z/bD63uwh8wyAzGXYtLHv/DZ+einFO9f2Fb7GYN8+g1pByEOb/y5z07Js7zM/73mHezC96GiL6mDO8fjkW8nOKn2vd/2DTF2aM133gfIlNgR43mV0TGOZIohMHzO65tKMQ0h5Gvlq7rVHejc3iVldP88/IXy/D9h/h71fNz6943eFDk6V2Kbmph/7ancyJzDxCfD04t3UJ/bTiXFIOmfUZGOYNpfuN5nb/puZN3OICGz8zCzjPpjwJkDXPbHoueBxZf9pQ1P+aoypaDjBv9rnpsO27Sv6wU/GUFJM1z2ypgVO/+Sbz9fpPSj7P0Y3mJGcAFzwKrc6rfEwl8QqA6z8yizZ3L4J3zjeTmIg+ZqExmC1K131o1kgc3WAW1Z5+HQ+thZ/+Y+574TSIGlS9Mda2i58zk+ys4/D2YHPUkLuP2ULi6Vv78TTtfmoCOswlAQqSz3Mn1l73mNQZSm6c1I74VBbvKLny/4eNZqvNpV2b4uaq/8RO75s7TxuK+lzRz1qdZ97MwZyM6+jG0s+z+Gl4qSPs+b30fVa9CzOaw9NhhY93zj81FPUiGHRq6KjFUlhQWFrCcTYnD5rxzJ8AtjNG1fzzK2QkmV037S6CnreY23cvMusLTpd10iwYteZA+4th4OTKxXM24V1hxEvm6+yUU4WeHxbtJguMhGveBSywZk7R6/jeBadivMQsBHV27l5mwucVULge0chXzXWXHKXXGOg+yhzllJtuzrg77AnHxSMOozufE4pPyea62cu59cM1/LDxSJHPsvOs/Lo1HlCXVL0Qv9lcR8bF3RwxUVJ/98DJ5k3dmmPe5LNOFt9n01fwx/OQHg/zbjUTizPt+wN+/k/Joy6a9ig+qqL7TWarUdzfkLy74r9tzRwzns1fmd0IpytImLrfCK7uZpdCi/7mTWvj54X7GQZ8e7c5TXxgC7M4tzwjPyqr581mLUmjULPVLLCE9XPaxsBFT4FrCbVBzXqZ9Tk1GWNtahxlrjnkE2LWJpU2FLu2WCxmAtrqPHOSves+NP/8SIOj0VJOxjAMJny0ht+2m8Magxt5sGjKEIIamX+R/rI1njs+XkvTAC/+eugCXDQbsXP7+SFzWG30Fea/kkuTdQLePg9OxplrvNz4WWHNQ+IOeHco5GWCp785RDqiD4z/ubDVIfWo2bWQkWT+y/fS54ue38O35BqKT68zW1kGTYaYx8v/u6z58HJnM7kBM0ka8515U0qLh5nR5hwcE1dDaHtzn/WfwHcTzcnE7llrxrNsFvw23Uwkbv0FInqVP4aqsNnOnqDkZRcfwVLadXR25bketamgu7MuxSRVVpH7t/7LO5nvNx7ht+2JuLtaaBnsw7GMXJ74Yav984KWnMu6NVVi4+zyc2DTXPN1zzFl7+vd2Ex+XD3MIbF/vWJuz0k3J5jLy4RWQ8xh416BcHgN/HqqO8uaZy6Ol5FkLsQ34iXw9Cv6KO2GXNBdtOFzM2Eprz2xZmLjHQTdbjRbZObdaiZZG78wE5vIfoWJDUD0lWZycHyPOUps/zJzNAzAJc/VXmID5btpunuV/zo6u7qWRFgsdS8mqVX6r+9EjqXn8MQP2wCYNLQdr97YExcLfLfhCL9tSyAzN5/YUy066pKqB3b+ZLbI+DWDNkPPvn+znnDJqRaX2CfNm/8P90LyLvMc17xvFgFf9ba5z6q3zUnyYp8wkwUPPzNBqsiQ8vYXg0+wmajsiS3/cQUjobrfaA4rDutiJlfzxhd2SZ05SZinL3S+yny9bBZ8Nd5MirrdaK75IyJyipIbJzL9+60cz8ilY7gfd53fhu6RgUwYbM7b8Mi3m5m/7jBZeVaign3oGlE31/uQClh3KgHoMar8E231HneqJcQKn1xrJi8ubuaw44K5ODpcXLhGzbd3w9+vma+vfLPikwG6eZjfB7DmA7PlpeCRkVzyMelJ5hwxYLb8ePiYSZWnv5lkHfvHHHVTkMicrqCl6J9fzBlnQzvBZTPrb4uIiFSKkhsn8evWeH7cdBRXFwsvXNvdPjHf5GHtaRXSiITUHB7/3uyeGtm9GRb9Ze/cUg6ZE/YB9Bxd/uMsFrMlpEl04Yypw56EFucW3W/oIxA1uLB4uP8kiL68crEWtLDs+hlmdix8vNAGfri/+FDvTXPNid6a9SpcTuHMtaM6X2V245wpsi8EtzNfe/iZc5t4NKpc3CJSbym5cQIpWXk8+u0WACYMbk3X5oWtMl7urjx7dVcA8m3mTURdUvXAhs8Bw0xAKjqrqsepuUbCukDff8G5dxffx9XNHO3T/BxzfaiKFAOfKSwaul5nthCd/gBY+wGsfq9wX8Mo7JI6s9sp+nIY+qg5JXz/SSV/l8UC5z8Mfk3h6rchpF3l4xaRekujpZzA64v/4cVfd9E6tBE/3TsYL/fiXRTTvtvCR8sP0CHMj18mV/MEZlK7bDZ4tYc5lfxVbxdO2uds/n4dfn2k6JpMh9aa8724ecEDu8w5UkREykFrS9UzCzabw2XvPK9NiYkNwNRLOhHm78WQ9g5e40Sq7sAyM7Hx9IdOlewqqgv6T4SDK2D7D4VrMq0/NZw9+golNiJSY5Tc1HH7kzPYfjQVVxcLw6LDSt3P28OViUO1dkq9UDBaqMs1Nb8YZk2yWMw6moSt5lpM826FQ2vMz87skhIRqUaquanjft5ittoMaBNM40alrIYs1SvzePHlACojO8WcyK0isk4WrtVUMDLImXkFmPU/bl6w93fITTNntW3p5OsqiUid5vDk5o033iAqKgovLy/69evHqlWrytx/1qxZdOjQAW9vbyIjI5k8eTLZ2RW8gTiRn7eY6+hc3MVJVw92Nlvmw4vtYOFDVTtP4naY1RXei6lYorTqXXMEU2in2p2UriaFd4ERMwvf97hZE6yJSI1y6N8wc+fOZcqUKUyfPp1169bRvXt3hg8fTmJiYon7f/bZZzz88MNMnz6d7du38/777zN37lz++9//1nLktePQiUw2HUrBxQIXRSu5qXFJO+G7SeYw5V2/VP48OWkw9xaz5SZhM+z/o3zH7V8GS54xXw+4p37N3dJzNAx+ACJ6m3PxiIjUIIcmNzNnzmTChAmMHz+e6OhoZs+ejY+PD3PmzClx/7///puBAwcyatQooqKiuOiii7jpppvKbO3JyckhNTW1yMNZLDzVJdW3VRChfp4Ojqaey0k3E5K8DPP9yQPm7MAVZRjw/T3mRHQFyrNqdlr8aTPu3mBO3FffXPgYTFhcOJmgiEgNcVhyk5uby9q1a4mJiSkMxsWFmJgYli9fXuIxAwYMYO3atfZkZu/evfz0009ceumlpX7PjBkzCAgIsD8iI0tYxbeO+mmz2SV1SZemDo6knjMM+PF+SN5pzp/ie6pwO35zxc+16h3Y+o05z0vBUgjbvi87UbLmm8W29hl3X65frTYiIrXMYclNcnIyVquVsLCiI4DCwsKIj48v8ZhRo0bx5JNPMmjQINzd3WnTpg3nn39+md1SU6dOJSUlxf44ePBgtf6OmhKfks26uJOA6m1q3Or3YPNXYHGFaz8wJ7YDOLqpYuc5uBp+ecR8fdH/mRPohXUBaw5snlf6cYufggN/mYtCasZdEZEqc6qqviVLlvDMM8/w5ptvsm7dOubPn8+CBQt46qmnSj3G09MTf3//Ig9nsPBUIXGflo0J8/dycDT1hGFA/BY48HfhY8t8WDjV/HzYk9CyPzTtbr6PLyO5Ob6v6Hn2LjXncrHlmatX97vTbH0pGPJcMCvvmXb8BH/NMl9f8bpm3BURqQYOm+cmJCQEV1dXEhISimxPSEggPLzklorHHnuMW265hdtvvx2Arl27kpGRwb/+9S8eeeQRXOrRCIyfTtXbqNWmGm2eB/NvL/mzTiPNSecAwruZz6W13CTthDf7m4tTnim4LVz+WmG3Utfr4dfH4OhG83xNuxXue3wffHun+brfXSUvFCkiIhXmsGzAw8OD3r17Exsba99ms9mIjY2lf//+JR6TmZlZLIFxdTVn7K1Pq0gkpmWzev9xAC7pqnqbarN3ifnsE2Iuvljw6HyVOdlcQUJS0HKTvBNyM4ufZ9dCM7HxDCh6nqjBcONn4HVa62CjYOh4qiZsw6eF2/Oy4csx5oiq5ueYrUYiIlItHDpD8ZQpUxg7dix9+vShb9++zJo1i4yMDMaPHw/AmDFjiIiIYMaMGQCMHDmSmTNn0rNnT/r168fu3bt57LHHGDlypD3JqQ9+3ZqAYUD3yEAiAr0dHU79Eb/RfB45y2ypKY1fODQKhYwkSNwGzfsU/XzfqaHd5z8M/UtYlPJMPceYE/NtmmsmMW6e8PN/zG4vn2C47n/gpgkaRUSqi0OTmxtuuIGkpCSmTZtGfHw8PXr0YOHChfYi47i4uCItNY8++igWi4VHH32Uw4cPExoaysiRI3n66acd9RNqRMHEfZeqS6r65OdC4g7zdUHLTGksFrNrak+s2Z10enJjzYMDp0bztSrnAqVthoJfM0g7AjsWmJP0rfsfYIFr3oOAiAr/HBERKZ3D15aaNGkSkyZNKvGzJUuWFHnv5ubG9OnTmT59ei1E5hhbDqfw955jgIaAV6uk7Waxr1cgBJRjOoCmp5KbM4uKD68z58LxDoIm0eX7bhdXc96aP1+EP1+CY3vM7edPhTYXVOhniIjI2dWfCtx6wGYzmPbdFgwDLuvWlBbBTrxoYl1TUBzctFv55pAprai4YLbhVoMrtoRAz9Hmc8IWyM+CtjFw3oPlP15ERMpNyU0d8s36w6yLO4mPhyuPjOjk6HDql6On6m3Cu5W9X4GCrquErWZXVIGCepuowRX7/qDWhcf4N4er39X6SiIiNUR/u9YRqdl5zPjZrAm554J2NA1QIXG1KuheOlu9TYHGrcDDz5yAL3mXuS0vGw6eWuqj1ZCKxzDsCegwAm76HHyCKn68iIiUi5KbOmLWon9ITs+hdUgjbh0U5ehw6heb1Zy8D8rfcuPiAuFdzdcFXVOHVpvFwL5hlZtsL6I33PRZ0bluRESk2im5qQN2xqfxv+X7AZh+eWc83erPsPY64fheswjYzbtiSUlBElLQ6rP/T/O51Xla+0lEpA5TcuNghmEw/fstWG0GwzuHMaS9VkyudvZ6my7myKXyOrOouLL1NiIiUquU3DjYwi3xrNh7HE83Fx4dUc6hxVJcfg78s8hcYftMBS0v5e2SKnB6y01OOhxaY74v7/w2IiLiEEpuHOzHzeaEfeMGRhEZpKHflfbb4/DpteZcMmc6fRh4RYR2BFcPyEk1Zxe25Zlz5DSOqmq0IiJSg5TcONi6AycAOL99EwdH4sTysgrXbVr7oVlAXMAwKj4MvICre+FEfSveNJ9VbyMiUucpuXGgIyezOJqSjauLhe6RAY4Ox3lt/9FcgBIg7SjsLlyMldTDkHUcLK7ln1H4dAWtPcd2m8+qtxERqfOU3DjQujiz1aZTUz98PBy+EobzWv+x+ewVWPQ9FHZJhXYEd6+Kn/vM1p5WSm5EROo6JTcOtPZUl1TvFo0dHIkTO3EA9i0FLHDV2+a2nT9DRrL5uqKT953p9OOCWkNA80qHKiIitUPJjQMV1Nv0aqnkptIKam1anw8dLoZmPc3C301zze2VLSYuENYZOFVjoy4pERGnoOTGQbLzrGw9kgpAL7XcVI7NCutPJTc9bz71fIv5vO5js5i4ssPAC3g0gian1vlqXYklF0REpNYpuXGQTYdSyLcZNPHzpHljrSNVKXuXQOohs9am42Xmti7XgJsXJG2H3b9BykFze8FSCpVx2Sy44DGIvrJq8YqISK1QcuMg9nqblo2xaGhx5az/xHzudn1hsbB3IHS63Hz9y3/N58atwMu/8t/Toh+c90DFZjcWERGHUXLjIKcnN1IJmcdhx4/m64IuqQK9TnVNFazmrYUqRUQaFCU3DmAYButPDQPvqXqbytn8FVhzze6mM0dCtRwEgS0L31d2pJSIiDglJTcOcOBYJscycvFwdaFLRBW6Sxqygrlseo4p/pmLS9HWnHAlNyIiDYmSGwco6JLq2jwATzfVcVTY+k8gfrO57lPXa0vep8cosLiYMxOr5UZEpEHRtLgOsDZO9TaVdnQTLPi3+XrIf8AnqOT9AprDjZ+bc974htZefCIi4nBKbhzAPnlfi0DHBuJsslPgyzGQnw3tLoJB/y57/w4X105cIiJSp6hbqpalZeexMyEN0OR9FWIY8O3dcGIfBLQwl1pw0R9fEREpTneHWrbh4EkMAyKDvGniX4mFHBuq5a+bQ79dPeD6D0vvjhIRkQZPyU0t02KZlRC3AhZNN19fPAMiejs2HhERqdOU3NSydXEnAS2WWSHLXgbDCl2vgz63OToaERGp45Tc1CKbzWC9vZhYyU25HVlvPve9A7RUhYiInIWSm1q0JymdtJx8vN1d6Rju5+hwnENaAqQnmHPWhHV2dDQiIuIElNzUog0HTwLm5H1urrr05RK/yXwObgcePo6NRUREnILusLVo46GTAPSIDHRoHE7l6EbzWYtfiohIOSm5qUUbD6YA0L15oGMDcSYFLTfhSm5ERKR86kRy88YbbxAVFYWXlxf9+vVj1apVpe57/vnnY7FYij1GjBhRixFXXHaele1HUwHoHhng4GicyNFTyY1abkREpJwcntzMnTuXKVOmMH36dNatW0f37t0ZPnw4iYmJJe4/f/58jh49an9s2bIFV1dXrrvuulqOvGK2HU0l32YQ4utBRKC3o8NxDtkp5ozEoJYbEREpN4cnNzNnzmTChAmMHz+e6OhoZs+ejY+PD3PmzClx/6CgIMLDw+2PRYsW4ePjU+eTm42niom7Nw/EouHM5RO/2XwOaKEZiUVEpNwcmtzk5uaydu1aYmJi7NtcXFyIiYlh+fLl5TrH+++/z4033kijRo1K/DwnJ4fU1NQiD0ewJzcqJi4/dUmJiEglODS5SU5Oxmq1EhYWVmR7WFgY8fHxZz1+1apVbNmyhdtvv73UfWbMmEFAQID9ERkZWeW4K2PjoVPFxEpuyk/FxCIiUgkO75aqivfff5+uXbvSt2/fUveZOnUqKSkp9sfBgwdrMULTycxc9iVnANC9uYqJy00tNyIiUglujvzykJAQXF1dSUhIKLI9ISGB8PDwMo/NyMjgiy++4MknnyxzP09PTzw9Pasca1VsOtVqExXsQ6CPh0NjcRp5WZC0w3ytlhsREakAh7bceHh40Lt3b2JjY+3bbDYbsbGx9O/fv8xjv/rqK3Jycrj55ptrOswqU71NJSRuMxfL9AkG/2aOjkZERJyIQ1tuAKZMmcLYsWPp06cPffv2ZdasWWRkZDB+/HgAxowZQ0REBDNmzChy3Pvvv8+VV15JcHCwI8KukIKZiTV5XwUcPa3eRqPLRESkAhye3Nxwww0kJSUxbdo04uPj6dGjBwsXLrQXGcfFxeHiUrSBaefOnSxbtoxff/3VESFXiGEYbDioYuIKKygmbtrdsXGIiIjTcXhyAzBp0iQmTZpU4mdLliwptq1Dhw4YhlHDUVWPIynZJKfn4OZioXMzf0eH4zxUTCwiIpXk1KOlnEFBvU3Hpn54ubs6NhhnYc2HhK3m63C13IiISMUoualhp89MLOV07B/IzwIPXwhq7ehoRETEySi5qWEbNFKq4gq6pMK6gIv+iIqISMXozlGDrDaDzYfNYuIeSm7KL171NiIiUnlKbmrQ7sR0MnOtNPJwpU2or6PDcR5HN5rPmrxPREQqQclNDSqot+naPABXF83VUi6GoWHgIiJSJZUaCv77778zdOjQ6o6l3rFP3qcuqdKt+QCWvw6GzXxv2CA7BVzcIbSjY2MTERGnVKmWm4svvpg2bdrwf//3fw5ZiNJZHDyRBaAuqbL8/Roc2w3H95qPE/vN7VEDwU3rcImISMVVquXm8OHDfPzxx/zvf//jiSee4IILLuC2227jyiuvxMNDN6QCx9JzAAj1dezCnXVWfm5hMjPqS/AKNF9bLBDe1VFRiYiIk6tUy01ISAiTJ09mw4YNrFy5kvbt23P33XfTrFkz7r33XjZu3FjdcTqlY+m5AIQouSnZiX3m4pgevtDuImjRz3xE9gV3b0dHJyIiTqrKBcW9evVi6tSpTJo0ifT0dObMmUPv3r0ZPHgwW7durY4YnZJhGBzLMFtugn3VmlWi5H/M55B2WhxTRESqTaXXlsrLy+O7775jzpw5LFq0iD59+vD6669z0003kZSUxKOPPsp1113Htm3bqjNep5GalU+e1Vz/KqiRkpsSJe8yn4PbOTYOEZFqZLVaycvLc3QYTsnDw6PYYtmVUank5p577uHzzz/HMAxuueUWnn/+ebp06WL/vFGjRrz44os0a9asygE6q+RTrTZ+Xm5aU6o0x3abzyFKbkTE+RmGQXx8PCdPnnR0KE7LxcWFVq1aVbl+t1LJzbZt23jttde4+uqr8fQsuZ4kJCSE33//vUrBObPkNDO5Ub1NGQq6pYLbOjYOEZFqUJDYNGnSBB8fHyzqbq8Qm83GkSNHOHr0KC1atKjS9atUchMbG3v2E7u5MWTIkMqcvl44lmEWEwerS6pkhlHYLRXS3rGxiIhUkdVqtSc2wcHBjg7HaYWGhnLkyBHy8/Nxd3ev9Hkq1bE1Y8YM5syZU2z7nDlzeO655yodTH1SMAxcLTelyDwG2ScBCwS3cXQ0IiJVUlBj4+Pj4+BInFtBd5TVaq3SeSqV3Lz99tt07Fh89tjOnTsze/bsKgVUXySdGgaukVKlKOiSCojUsG8RqTfUFVU11XX9KpXcxMfH07Rp02LbQ0NDOXr0aJWDqg8KWm6C1XJTMnuXlIqJRUSkelUquYmMjOSvv/4qtv2vv/5q0COkTlcwgV+oWm5Kduy0OW5ERKReiIqKYtasWY4Oo3IFxRMmTOD+++8nLy+PCy64ADCLjP/zn//w73//u1oDdFbJarkpW/KpYeAaKSUi4lDnn38+PXr0qJakZPXq1TRq1KjqQVVRpZKbBx98kGPHjnH33XeTm2u2UHh5efHQQw8xderUag3QWWm01FlopJSIiFMwDAOr1Yqb29lThtDQ0FqI6Owq1S1lsVh47rnnSEpKYsWKFWzcuJHjx48zbdq06o7PaRW03IT4qeWmmNMXzFS3lIiIw4wbN46lS5fyyiuvYLFYsFgsfPjhh1gsFn7++Wd69+6Np6cny5YtY8+ePVxxxRWEhYXh6+vLOeecw2+//VbkfGd2S1ksFt577z2uuuoqfHx8aNeuHd9//32N/65KL78A2H+cFJWdZyUtOx+AkEZKboo5sb9wwUy/4oXpIiLOzjAMsvKqNpy5srzdXcs96uiVV15h165ddOnShSeffBLAvi7kww8/zIsvvkjr1q1p3LgxBw8e5NJLL+Xpp5/G09OTjz76iJEjR7Jz505atGhR6nc88cQTPP/887zwwgu89tprjB49mgMHDhAUFFT1H1uKSic3a9as4csvvyQuLs7eNVVg/vz5VQ7MmR0/1SXl7mrB37tK+WP9ZF9Tqq0WzBSReikrz0r0tF8c8t3bnhyOj0f57j0BAQF4eHjg4+NDeHg4ADt27ADgySefZNiwYfZ9g4KC6N69u/39U089xTfffMP333/PpEmTSv2OcePGcdNNNwHwzDPP8Oqrr7Jq1SouvvjiCv+28qpUt9QXX3zBgAED2L59O9988w15eXls3bqVxYsXExAQUN0xOp2CkVLBjTw150FJNFJKRKTO69OnT5H36enpPPDAA3Tq1InAwEB8fX3Zvn07cXFxZZ6nW7du9teNGjXC39+fxMTEGom5QKWaFZ555hlefvllJk6ciJ+fH6+88gqtWrXijjvuKHH+m4amYNFMTeBXCvtIKSU3IlI/ebu7su3J4Q777upw5qinBx54gEWLFvHiiy/Stm1bvL29ufbaa4v13pzpzGUULBYLNputWmIsTaWSmz179jBixAjAnCo5IyMDi8XC5MmTueCCC3jiiSeqNUhnU7BopoaBl8I+UkrDwEWkfrJYLOXuGnI0Dw+Pci138NdffzFu3DiuuuoqwGzJ2b9/fw1HVzmV6pZq3LgxaWlpAERERLBlyxYATp48SWZmZvVF56QKhoGHqOWmZPZuKQ0DFxFxtKioKFauXMn+/ftJTk4utVWlXbt2zJ8/nw0bNrBx40ZGjRpV4y0wlVWp5Oa8885j0aJFAFx33XXcd999TJgwgZtuuokLL7ywWgN0Rlo0swwZxyDrhPk6SAtmiog42gMPPICrqyvR0dGEhoaWWkMzc+ZMGjduzIABAxg5ciTDhw+nV69etRxt+VSqzez1118nOzsbgEceeQR3d3f+/vtvrrnmGh599NFqDdAZJadrAr9SFXRJBUSCh1bPFRFxtPbt27N8+fIi28aNG1dsv6ioKBYvXlxk28SJE4u8P7ObyjCMYuc5efJkpeKsiAonN/n5+fz4448MH24WSrm4uPDwww9Xe2DOTEsvlEEjpUREpIZVuFvKzc2NO++8095yI8UVDAVXzU0Jkk8lNxopJSIiNaRSNTd9+/Zlw4YN1RLAG2+8QVRUFF5eXvTr149Vq1aVuf/JkyeZOHEiTZs2xdPTk/bt2/PTTz9VSyzVJVk1N6VLVsuNiIjUrErV3Nx9991MmTKFgwcP0rt372Jj4U+fsKcsc+fOZcqUKcyePZt+/foxa9Yshg8fzs6dO2nSpEmx/XNzcxk2bBhNmjRh3rx5REREcODAAQIDAyvzM2qEzWbYZyjWPDclULeUiIjUsEolNzfeeCMA9957r32bxWLBMAwsFku5xsuDWXk9YcIExo8fD8Ds2bNZsGABc+bMKbGOZ86cORw/fpy///7bPilQVFRUZX5CjUnNziPfZhZQBWtdqaKseYULZqpbSkREakilkpt9+/ZV+Ytzc3NZu3YtU6dOtW9zcXEhJiamWNV2ge+//57+/fszceJEvvvuO0JDQxk1ahQPPfQQrq4lz8iYk5NDTk6O/X1qamqVYy9LQZeUv5cbHm6V6vWrv47vA1s+uDcC/2aOjkZEROqpSiU3LVu2rPIXJycnY7VaCQsLK7I9LCzMvmjXmfbu3cvixYsZPXo0P/30E7t37+buu+8mLy+P6dOnl3jMjBkzanXG5GR7MbFabYpJ3GY+B7fRgpkiIlJjKpXcfPTRR2V+PmbMmEoFczY2m40mTZrwzjvv4OrqSu/evTl8+DAvvPBCqcnN1KlTmTJliv19amoqkZGRNRIfnD5SSslNMVvmmc9Rgx0bh4iI1GuVSm7uu+++Iu/z8vLIzMy0L5tenuQmJCQEV1dXEhISimxPSEiwL7t+pqZNm+Lu7l6kC6pTp07Ex8eTm5uLh0fxAl5PT088PWsv0Sic40bFxEVkJMPOn83XPW92bCwiIlKvVaoo5MSJE0Ue6enp7Ny5k0GDBvH555+X6xweHh707t2b2NhY+zabzUZsbCz9+/cv8ZiBAweye/fuImtZ7Nq1i6ZNm5aY2DjCMSU3Jds016y3adYLwqIdHY2IiFSTqKgoZs2a5egwiqi2itd27drx7LPPFmvVKcuUKVN49913+d///sf27du56667yMjIsI+eGjNmTJGC47vuuovjx49z3333sWvXLhYsWMAzzzxTbPpnR0rOULdUMYYB6z42X6vVRkREali1rsfu5ubGkSNHyr3/DTfcQFJSEtOmTSM+Pp4ePXqwcOFCe5FxXFwcLi6F+VdkZCS//PILkydPplu3bkRERHDffffx0EMPVefPqJJjWnqhuCPrIGk7uHlBl2scHY2IiNRzlUpuvv/++yLvDcPg6NGjvP766wwcOLBC55o0aRKTJk0q8bMlS5YU29a/f39WrFhRoe+oTfbRUlo0s1BBq030FeAd6NBQRESk0DvvvMPjjz/OoUOHijQmXHHFFQQHB/PII48wZcoUVqxYQUZGBp06dWLGjBnExMQ4MOqzq1Ryc+WVVxZ5b7FYCA0N5YILLuCll16qjricVkHLTYifWm4AyM2ELV+br9UlJSINhWFAXqZjvtvdp9zTbVx33XXcc889/P7771x44YUAHD9+nIULF/LTTz+Rnp7OpZdeytNPP42npycfffQRI0eOZOfOnbRo0aImf0WVVCq5Ob2gV4oqGAoerJYb0/YfICcVAltCy0GOjkZEpHbkZcIzDpqs9L9HwKPR2fcDGjduzCWXXMJnn31mT27mzZtHSEgIQ4cOxcXFhe7du9v3f+qpp/jmm2/4/vvvS+11qQs0hW41ys6zkpaTD6jmxm79aYXELvrjJiJS14wePZqvv/7aPpv/p59+yo033oiLiwvp6ek88MADdOrUicDAQHx9fdm+fTtxcXEOjrpslWq5ueaaa+jbt2+xQt7nn3+e1atX89VXX1VLcM7m2KmRUh6uLvh7VWuttnM6vhf2/wlYoMcoR0cjIlJ73H3MFhRHfXcFjBw5EsMwWLBgAeeccw5//vknL7/8MgAPPPAAixYt4sUXX6Rt27Z4e3tz7bXXkpubWxORV5tK3YH/+OMPHn/88WLbL7nkkgZdc3P6HDcWLS8AGz4zn9tcAAHNHRuLiEhtsljK3TXkaF5eXlx99dV8+umn7N69mw4dOtCrVy8A/vrrL8aNG8dVV10FQHp6Ovv373dgtOVTqeQmPT29xEnz3N3da3xhyrpMsxOfYfOpFryeox0bh4iIlGn06NFcdtllbN26lZtvLhz80a5dO+bPn8/IkSOxWCw89thjTlF3W6kiiK5duzJ37txi27/44guioxvu7LNaNPM0mcfhxH7zddthDg1FRETKdsEFFxAUFMTOnTsZNaqwjGDmzJk0btyYAQMGMHLkSIYPH25v1anLKtVy89hjj3H11VezZ88eLrjgAgBiY2P5/PPPG2y9DZw+UkrJDUc3ms+NW4GXv2NjERGRMrm4uJQ4CW9UVBSLFy8usu3MVQHqYjdVpZKbkSNH8u233/LMM88wb948vL296datG7/99htDhgyp7hidRkG3VIi6pSB+k/nctJtj4xARkQan0kN6RowYwYgRI6ozFqdnn8BP3VJwtCC56V72fiIiItWsUjU3q1evZuXKlcW2r1y5kjVr1lQ5KGdVMBRcBcUUttyEK7kREZHaVankZuLEiRw8eLDY9sOHD9epFbprW1KaFs0EICcdkv8xX6tbSkREalmlkptt27aVWC3ds2dPtm3bVuWgnJW95aahL72QsBUwwDccfJs4OhoRkVpjGIajQ3Bq1XX9KpXceHp6kpCQUGz70aNHcXNrmDPz2mwGx08lN6ENfdFMFROLSAPj7u4OQGamgxbLrCcKZj52dXWt0nkqlYlcdNFFTJ06le+++46AgAAATp48yX//+1+GDWuYc5qkZOVhtZkZZ2OfBt5yUzAMPFzJjYg0DK6urgQGBpKYmAiAj4+PZqqvIJvNRlJSEj4+PlVuKKnU0S+++CLnnXceLVu2pGfPngBs2LCBsLAwPv744yoF5KwKhoEHeLvj4dbAF4hUy42INEDh4eEA9gRHKs7FxYUWLVpUOTGsVHITERHBpk2b+PTTT9m4cSPe3t6MHz+em266yd4019AUzk7cwFttrHmQuN18rWHgItKAWCwWmjZtSpMmTcjLy3N0OE7Jw8MDF5eqNxBUut2nUaNGDBo0iBYtWtj7yH7++WcALr/88ioH5my6Ng9g/t0D7F1TDVbSDrDmglcABLZ0dDQiIrXO1dW1yjUjUjWVSm727t3LVVddxebNm7FYLBiGUaQJyWq1VluAzsLX041eLRo7OgzHO73eRv3NIiLiAJVq+7nvvvto1aoViYmJ+Pj4sGXLFpYuXUqfPn1YsmRJNYcoTqVgZmIVE4uIiINUquVm+fLlLF68mJCQEFxcXHB1dWXQoEHMmDGDe++9l/Xr11d3nOIsVEwsIiIOVqmWG6vVip+fHwAhISH2lURbtmzJzp07qy86cS42G8RvNl+r5UZERBykUi03Xbp0YePGjbRq1Yp+/frx/PPP4+HhwTvvvEPr1q2rO0ZxFif2QW46uHlBSHtHRyMiIg1UpZKbRx99lIyMDACefPJJLrvsMgYPHkxwcDBz586t1gDFiRQUE4d1BteGOVO1iIg4XqXuQMOHD7e/btu2LTt27OD48eM0btxYMzI2ZJqZWERE6oBq++d1UFBQdZ1KnJWKiUVEpA5o4OsESLUxjNOGgWtmYhERcRwlN1I90o5CZjJYXCEs2tHRiIhIA6aqT6mcrd/A7tjC9+mnFooL7QDu3o6JSUREBCU3UhlbvoZ5t5b8WfM+tRuLiIjIGZTcSMUk7YLv7zVfd74awrsUfubqCd1ucExcIiIipyi5kfLLzYAvbzEn6osaDFe/q/lsRESkzqkTBcVvvPEGUVFReHl50a9fP1atWlXqvh9++CEWi6XIw8vLqxajbaAMA364H5J2gG84XPO+EhsREamTHJ7czJ07lylTpjB9+nTWrVtH9+7dGT58OImJiaUe4+/vz9GjR+2PAwcO1GLEDdSa92Hzl+ZoqOs+AL8wR0ckIiJSIocnNzNnzmTChAmMHz+e6OhoZs+ejY+PD3PmzCn1GIvFQnh4uP0RFlb6jTYnJ4fU1NQiD6mgoxth4VTzdczj0HKAQ8MREREpi0OTm9zcXNauXUtMTIx9m4uLCzExMSxfvrzU49LT02nZsiWRkZFcccUVbN26tdR9Z8yYQUBAgP0RGRlZrb+hQdj4BVhzoe0wGHCPo6MREREpk0OTm+TkZKxWa7GWl7CwMOLj40s8pkOHDsyZM4fvvvuOTz75BJvNxoABAzh06FCJ+0+dOpWUlBT74+DBg9X+O+q9rBPmc9RA0NphIiJSxzldRWj//v3p37+//f2AAQPo1KkTb7/9Nk899VSx/T09PfH09KzNEOufnDTz2cPXsXGIiIiUg0NbbkJCQnB1dSUhIaHI9oSEBMLDw8t1Dnd3d3r27Mnu3btrIkQBc+g3gKefY+MQEREpB4cmNx4eHvTu3ZvY2MJp/G02G7GxsUVaZ8pitVrZvHkzTZs2rakwJedUcqOWGxERcQIO75aaMmUKY8eOpU+fPvTt25dZs2aRkZHB+PHjARgzZgwRERHMmDEDgCeffJJzzz2Xtm3bcvLkSV544QUOHDjA7bff7sifUb/ZW26U3IiISN3n8OTmhhtuICkpiWnTphEfH0+PHj1YuHChvcg4Li4OF5fCBqYTJ04wYcIE4uPjady4Mb179+bvv/8mOlorUdeYHHVLiYiI87AYhmE4OojalJqaSkBAACkpKfj7+zs6HOfwbAvIToGJqyG0vaOjERGRBqgi92+HT+IndZxhnNZyo24pERGp+5TcSNnys8Gwmq9VUCwiIk5AyY2UraDVBpTciIiIU1ByI2XLObUWl3sjcNEfFxERqft0t5KyaRi4iIg4GSU3UjZN4CciIk5GyY2UTS03IiLiZJTcSNkKFs301JxAIiLiHJTcSNly1S0lIiLORcmNlE0T+ImIiJNRciNlU8uNiIg4GSU3UjZ7zY2SGxERcQ5KbqRs9pYbrQguIiLOQcmNlE0tNyIi4mSU3EjZNImfiIg4GSU3UjZN4iciIk5GyY2UTZP4iYiIk1FyI2XTUHAREXEySm6kbJrET0REnIySGymbWm5ERMTJKLmR0tmskJdpvvbUPDciIuIclNxI6QpabUAtNyIi4jSU3EjpCuptXNzAzdOxsYiIiJSTkhspXcEwcA9fsFgcG4uIiEg5KbmR0tkn8FO9jYiIOA8lN1K601tuREREnISSGymdWm5ERMQJKbmR0mkCPxERcUJKbqR0msBPRESckJIbKZ190Ux1S4mIiPNQciOlU8uNiIg4oTqR3LzxxhtERUXh5eVFv379WLVqVbmO++KLL7BYLFx55ZU1G2BDpZobERFxQg5PbubOncuUKVOYPn0669ato3v37gwfPpzExMQyj9u/fz8PPPAAgwcPrqVIGyANBRcRESfk8ORm5syZTJgwgfHjxxMdHc3s2bPx8fFhzpw5pR5jtVoZPXo0TzzxBK1bt67FaBuYXNXciIiI83FocpObm8vatWuJiYmxb3NxcSEmJobly5eXetyTTz5JkyZNuO222876HTk5OaSmphZ5SDnlqOZGREScj0OTm+TkZKxWK2FhYUW2h4WFER8fX+Ixy5Yt4/333+fdd98t13fMmDGDgIAA+yMyMrLKcTcYmsRPRESckMO7pSoiLS2NW265hXfffZeQkJByHTN16lRSUlLsj4MHD9ZwlPWICopFRMQJuTnyy0NCQnB1dSUhIaHI9oSEBMLDw4vtv2fPHvbv38/IkSPt22w2GwBubm7s3LmTNm3aFDnG09MTT0/PGoi+AbAPBVfLjYiIOA+Httx4eHjQu3dvYmNj7dtsNhuxsbH079+/2P4dO3Zk8+bNbNiwwf64/PLLGTp0KBs2bFCXU3WzT+KnlhsREXEeDm25AZgyZQpjx46lT58+9O3bl1mzZpGRkcH48eMBGDNmDBEREcyYMQMvLy+6dOlS5PjAwECAYtuligxDk/iJiIhTcnhyc8MNN5CUlMS0adOIj4+nR48eLFy40F5kHBcXh4uLU5UG1Q/5OWDLN1+r5UZERJyIxTAMw9FB1KbU1FQCAgJISUnB39/f0eHUXRnJ8MKp+qVpx8HF1bHxiIhIg1aR+7eaRKRkOafmA3L3UWIjIiJORcmNlEwT+ImIiJNSciMl0wR+IiLipJTcSMk0gZ+IiDgpJTdSsoJFMzWBn4iIOBklN1IytdyIiIiTUnIjJdMEfiIi4qSU3EjJ1HIjIiJOSsmNlMxec6PkRkREnIuSGylZjoaCi4iIc1JyIyXLUcuNiIg4JyU3UjJN4iciIk5KyY2UTAXFIiLipJTcSMk0iZ+IiDgpJTcNXeZx2LEAbLai29VyIyIiTkrJTUP3yyPwxSjY/GXR7ZrET0REnJSSm4Yu7m/z+cDfRber5UZERJyUkpuGLOsknNhvvj66sXC7zQZ5GeZr1dyIiIiTUXLTkMVvLnyduA2seebrgi4pUMuNiIg4HSU3DVn8psLX1lxI2mm+LkhuLK7g5lX7cYmIiFSBkpuG7Oimou8Lkp2C2Yk9fcFiqd2YREREqkjJTUNWkMw0bmU+FyQ79mJi/9qPSUREpIqU3DRUeVmF3VA9bzafC5IdrQguIiJOTMlNQ5WwDQwr+ARD+4vNbfGbzZFSGgYuIiJOTMlNQxV/auh30+4Q2gFcPSEnFU7u1wR+IiLi1JTcNFQF9TXh3cDVHcKiC7efXlAsIiLiZJTcNFQF9TVNu5nP4aeej248reVGE/iJiIjzUXLTEFnzIWGr+Tq8u/lckOTEb1LNjYiIODUlNw3RsX8gP9usqQlqbW4rSHKOblLNjYiIODUlNw1RwTpSYV3A5dQfgbDOYHGBjEQ4ttvcppYbERFxQkpuGqKjZ9TbAHj4QHA783XcSvNZk/iJiIgTUnLTEMWfNlLqdAXJjibxExERJ1Ynkps33niDqKgovLy86NevH6tWrSp13/nz59OnTx8CAwNp1KgRPXr04OOPP67FaJ2cYZw2Uqp70c/OfK9uKRERcUIOT27mzp3LlClTmD59OuvWraN79+4MHz6cxMTEEvcPCgrikUceYfny5WzatInx48czfvx4fvnll1qO3EmdPADZKeDiDqEdi352ZkuOWm5ERMQJOTy5mTlzJhMmTGD8+PFER0cze/ZsfHx8mDNnTon7n3/++Vx11VV06tSJNm3acN9999GtWzeWLVtWy5E7qYJ6myadwM2j6GfhXYu+99Q8NyIi4nwcmtzk5uaydu1aYmJi7NtcXFyIiYlh+fLlZz3eMAxiY2PZuXMn5513Xon75OTkkJqaWuTRoBWMlGrarfhnPkEQ0KLwvVpuRETECTk0uUlOTsZqtRIWFlZke1hYGPHx8aUel5KSgq+vLx4eHowYMYLXXnuNYcOGlbjvjBkzCAgIsD8iIyOr9Tc4HXsxcfeSPz896VHNjYiIOCGHd0tVhp+fHxs2bGD16tU8/fTTTJkyhSVLlpS479SpU0lJSbE/Dh48WLvB1jUlDQM/3el1N2q5ERERJ+TmyC8PCQnB1dWVhISEItsTEhIIDw8v9TgXFxfatm0LQI8ePdi+fTszZszg/PPPL7avp6cnnp6e1Rq309j1K6z9AGz55nvDBunxgMWcwK8kTZXciIiIc3NocuPh4UHv3r2JjY3lyiuvBMBmsxEbG8ukSZPKfR6bzUZOTk4NRemkDq2FL0aBLa/4Z+FdS+9yiugNrh7QKBRcHfrHQ0REpFIcfveaMmUKY8eOpU+fPvTt25dZs2aRkZHB+PHjARgzZgwRERHMmDEDMGto+vTpQ5s2bcjJyeGnn37i448/5q233nLkz6hbMo/DV2PNxKbtMOh8VeFnFgu0Krn4GgDfJnDbr5qdWEREnJbDk5sbbriBpKQkpk2bRnx8PD169GDhwoX2IuO4uDhcXApLgzIyMrj77rs5dOgQ3t7edOzYkU8++YQbbrjBUT+hbrHZYP4ESDloLop57fvgFVCxczTrWTOxiYiI1AKLYRiGo4OoTampqQQEBJCSkoK/fz1snVj6PPz+NLh5we2xEF5KbY2IiIgTqcj92ylHS0kp9iyG358xX4+YqcRGREQaJCU39UVaAnx9O2BArzHQc7SjIxIREXEIJTf1xZr3IfOYOcT7kucdHY2IiIjDKLmpD2xWWP+p+XrQZHD3dmw8IiIiDqTkpj7YtxRSD5mjojqOcHQ0IiIiDqXkpj5Y97H53PV6tdqIiEiDp+TG2WUehx0/mq973uzYWEREROoAJTfObvM8sOZCWFdoWspK3yIiIg2Ikhtnt/4j87nXLebSCiIiIg2ckhtndnQjxG82F7rsep2joxEREakTlNw4s/WfmM8dR4BPkGNjERERqSOU3DirvGzY9KX5WoXEIiIidkpunNWOHyH7JPg3h9ZDHR2NiIhIneHm6ACkHI5ugq/GQnZq4bbcdPO5xyhwcXVMXCIiInWQkhtnsO4jOL63+HZ3H3OUlIiIiNgpuXEG+/80ny99EaIGFW73DVMhsYiIyBmU3NR1aQmQtAOwQJdrlMyIiIichQqK67qCVpvwLkpsREREykHJTV237w/zudUQx8YhIiLiJJTc1HUFLTdRgx0bh4iIiJNQclOXpRwyR0lZXKHlAEdHIyIi4hSU3NRl+0612jTrAV7+Dg1FRETEWSi5qcvs9TbnOTYOERERJ6Lkpq4yDNXbiIiIVIKSm7rqxD5IOQgu7tDiXEdHIyIi4jSU3NRVBfU2zfuARyPHxiIiIuJElNzUVaq3ERERqRQlN3XR6fU2Sm5EREQqRMlNXZS8C9ITwM0Lmp/j6GhEREScipKbuqigSyqyH7h5OjYWERERJ6NVwatLfo7Z2lIddv9mPrfSEHAREZGKUnJTXY5ugvdjqvecWixTRESkwupEt9Qbb7xBVFQUXl5e9OvXj1WrVpW677vvvsvgwYNp3LgxjRs3JiYmpsz9a43FYtbIVNej5SBo1svRv0pERMTpOLzlZu7cuUyZMoXZs2fTr18/Zs2axfDhw9m5cydNmjQptv+SJUu46aabGDBgAF5eXjz33HNcdNFFbN26lYiICAf8glOa94FHq6lbSkRERCrNYhiG4cgA+vXrxznnnMPrr78OgM1mIzIyknvuuYeHH374rMdbrVYaN27M66+/zpgxY4p9npOTQ05Ojv19amoqkZGRpKSk4O+vxShFREScQWpqKgEBAeW6fzu0Wyo3N5e1a9cSE1NYq+Li4kJMTAzLly8v1zkyMzPJy8sjKCioxM9nzJhBQECA/REZGVktsYuIiEjd5NDkJjk5GavVSlhYWJHtYWFhxMfHl+scDz30EM2aNSuSIJ1u6tSppKSk2B8HDx6sctwiIiJSdzm85qYqnn32Wb744guWLFmCl5dXift4enri6am5YkRERBoKhyY3ISEhuLq6kpBQtBA3ISGB8PDwMo998cUXefbZZ/ntt9/o1q1bTYYpIiIiTsSh3VIeHh707t2b2NhY+zabzUZsbCz9+/cv9bjnn3+ep556ioULF9KnT5/aCFVERESchMO7paZMmcLYsWPp06cPffv2ZdasWWRkZDB+/HgAxowZQ0REBDNmzADgueeeY9q0aXz22WdERUXZa3N8fX3x9fV12O8QERGRusHhyc0NN9xAUlIS06ZNIz4+nh49erBw4UJ7kXFcXBwuLoUNTG+99Ra5ublce+21Rc4zffp0Hn/88doMXUREROogh89zU9sqMk5eRERE6ganmedGREREpLopuREREZF6RcmNiIiI1CtKbkRERKReUXIjIiIi9YrDh4LXtoLBYampqQ6ORERERMqr4L5dnkHeDS65SUtLA9Dq4CIiIk4oLS2NgICAMvdpcPPc2Gw2jhw5gp+fHxaLpVrPnZqaSmRkJAcPHtQcOjVM17r26FrXHl3r2qNrXXuq61obhkFaWhrNmjUrMrlvSRpcy42LiwvNmzev0e/w9/fX/yy1RNe69uha1x5d69qja117quNan63FpoAKikVERKReUXIjIiIi9YqSm2rk6enJ9OnT8fT0dHQo9Z6ude3Rta49uta1R9e69jjiWje4gmIRERGp39RyIyIiIvWKkhsRERGpV5TciIiISL2i5EZERETqFSU31eSNN94gKioKLy8v+vXrx6pVqxwdktObMWMG55xzDn5+fjRp0oQrr7ySnTt3FtknOzubiRMnEhwcjK+vL9dccw0JCQkOirj+ePbZZ7FYLNx///32bbrW1efw4cPcfPPNBAcH4+3tTdeuXVmzZo39c8MwmDZtGk2bNsXb25uYmBj++ecfB0bsnKxWK4899hitWrXC29ubNm3a8NRTTxVZm0jXuvL++OMPRo4cSbNmzbBYLHz77bdFPi/PtT1+/DijR4/G39+fwMBAbrvtNtLT06senCFV9sUXXxgeHh7GnDlzjK1btxoTJkwwAgMDjYSEBEeH5tSGDx9ufPDBB8aWLVuMDRs2GJdeeqnRokULIz093b7PnXfeaURGRhqxsbHGmjVrjHPPPdcYMGCAA6N2fqtWrTKioqKMbt26Gffdd599u6519Th+/LjRsmVLY9y4ccbKlSuNvXv3Gr/88ouxe/du+z7PPvusERAQYHz77bfGxo0bjcsvv9xo1aqVkZWV5cDInc/TTz9tBAcHGz/++KOxb98+46uvvjJ8fX2NV155xb6PrnXl/fTTT8YjjzxizJ8/3wCMb775psjn5bm2F198sdG9e3djxYoVxp9//mm0bdvWuOmmm6ocm5KbatC3b19j4sSJ9vdWq9Vo1qyZMWPGDAdGVf8kJiYagLF06VLDMAzj5MmThru7u/HVV1/Z99m+fbsBGMuXL3dUmE4tLS3NaNeunbFo0SJjyJAh9uRG17r6PPTQQ8agQYNK/dxmsxnh4eHGCy+8YN928uRJw9PT0/j8889rI8R6Y8SIEcatt95aZNvVV19tjB492jAMXevqdGZyU55ru23bNgMwVq9ebd/n559/NiwWi3H48OEqxaNuqSrKzc1l7dq1xMTE2Le5uLgQExPD8uXLHRhZ/ZOSkgJAUFAQAGvXriUvL6/Ite/YsSMtWrTQta+kiRMnMmLEiCLXFHStq9P3339Pnz59uO6662jSpAk9e/bk3XfftX++b98+4uPji1zrgIAA+vXrp2tdQQMGDCA2NpZdu3YBsHHjRpYtW8Yll1wC6FrXpPJc2+XLlxMYGEifPn3s+8TExODi4sLKlSur9P0NbuHM6pacnIzVaiUsLKzI9rCwMHbs2OGgqOofm83G/fffz8CBA+nSpQsA8fHxeHh4EBgYWGTfsLAw4uPjHRClc/viiy9Yt24dq1evLvaZrnX12bt3L2+99RZTpkzhv//9L6tXr+bee+/Fw8ODsWPH2q9nSX+n6FpXzMMPP0xqaiodO3bE1dUVq9XK008/zejRowF0rWtQea5tfHw8TZo0KfK5m5sbQUFBVb7+Sm7EKUycOJEtW7awbNkyR4dSLx08eJD77ruPRYsW4eXl5ehw6jWbzUafPn145plnAOjZsydbtmxh9uzZjB071sHR1S9ffvkln376KZ999hmdO3dmw4YN3H///TRr1kzXup5Tt1QVhYSE4OrqWmzUSEJCAuHh4Q6Kqn6ZNGkSP/74I7///jvNmze3bw8PDyc3N5eTJ08W2V/XvuLWrl1LYmIivXr1ws3NDTc3N5YuXcqrr76Km5sbYWFhutbVpGnTpkRHRxfZ1qlTJ+Li4gDs11N/p1Tdgw8+yMMPP8yNN95I165dueWWW5g8eTIzZswAdK1rUnmubXh4OImJiUU+z8/P5/jx41W+/kpuqsjDw4PevXsTGxtr32az2YiNjaV///4OjMz5GYbBpEmT+Oabb1i8eDGtWrUq8nnv3r1xd3cvcu137txJXFycrn0FXXjhhWzevJkNGzbYH3369GH06NH217rW1WPgwIHFpjTYtWsXLVu2BKBVq1aEh4cXudapqamsXLlS17qCMjMzcXEpeptzdXXFZrMButY1qTzXtn///pw8eZK1a9fa91m8eDE2m41+/fpVLYAqlSOLYRjmUHBPT0/jww8/NLZt22b861//MgIDA434+HhHh+bU7rrrLiMgIMBYsmSJcfToUfsjMzPTvs+dd95ptGjRwli8eLGxZs0ao3///kb//v0dGHX9cfpoKcPQta4uq1atMtzc3Iynn37a+Oeff4xPP/3U8PHxMT755BP7Ps8++6wRGBhofPfdd8amTZuMK664QsOTK2Hs2LFGRESEfSj4/PnzjZCQEOM///mPfR9d68pLS0sz1q9fb6xfv94AjJkzZxrr1683Dhw4YBhG+a7txRdfbPTs2dNYuXKlsWzZMqNdu3YaCl6XvPbaa0aLFi0MDw8Po2/fvsaKFSscHZLTA0p8fPDBB/Z9srKyjLvvvtto3Lix4ePjY1x11VXG0aNHHRd0PXJmcqNrXX1++OEHo0uXLoanp6fRsWNH45133inyuc1mMx577DEjLCzM8PT0NC688EJj586dDorWeaWmphr33Xef0aJFC8PLy8to3bq18cgjjxg5OTn2fXStK+/3338v8e/osWPHGoZRvmt77Ngx46abbjJ8fX0Nf39/Y/z48UZaWlqVY7MYxmlTNYqIiIg4OdXciIiISL2i5EZERETqFSU3IiIiUq8ouREREZF6RcmNiIiI1CtKbkRERKReUXIjIiIi9YqSGxEREalXlNyISIOzZMkSLBZLsYVARaR+UHIjIiIi9YqSGxEREalXlNyISK2z2WzMmDGDVq1a4e3tTffu3Zk3bx5Q2GW0YMECunXrhpeXF+eeey5btmwpco6vv/6azp074+npSVRUFC+99FKRz3NycnjooYeIjIzE09OTtm3b8v777xfZZ+3atfTp0wcfHx8GDBjAzp077Z9t3LiRoUOH4ufnh7+/P71792bNmjU1dEVEpDopuRGRWjdjxgw++ugjZs+ezdatW5k8eTI333wzS5cute/z4IMP8tJLL7F69WpCQ0MZOXIkeXl5gJmUXH/99dx4441s3ryZxx9/nMcee4wPP/zQfvyYMWP4/PPPefXVV9m+fTtvv/02vr6+ReJ45JFHeOmll1izZg1ubm7ceuut9s9Gjx5N8+bNWb16NWvXruXhhx/G3d29Zi+MiFSPKq8rLiJSAdnZ2YaPj4/x999/F9l+2223GTfddJPx+++/G4DxxRdf2D87duyY4e3tbcydO9cwDMMYNWqUMWzYsCLHP/jgg0Z0dLRhGIaxc+dOAzAWLVpUYgwF3/Hbb7/Zty1YsMAAjKysLMMwDMPPz8/48MMPq/6DRaTWqeVGRGrV7t27yczMZNiwYfj6+tofH330EXv27LHv179/f/vroKAgOnTowPbt2wHYvn07AwcOLHLegQMH8s8//2C1WtmwYQOurq4MGTKkzFi6detmf920aVMAEhMTAZgyZQq33347MTExPPvss0ViE5G6TcmNiNSq9PR0ABYsWMCGDRvsj23bttnrbqrK29u7XPud3s1ksVgAsx4I4PHHH2fr1q2MGDGCxYsXEx0dzTfffFMt8YlIzVJyIyK1Kjo6Gk9PT+Li4mjbtm2RR2RkpH2/FStW2F+fOHGCXbt20alTJwA6derEX3/9VeS8f/31F+3bt8fV1ZWuXbtis9mK1PBURvv27Zk8eTK//vorV199NR988EGVzicitcPN0QGISMPi5+fHAw88wOTJk7HZbAwaNIiUlBT++usv/P39admyJQBPPvkkwcHBhIWF8cgjjxASEsKVV14JwL///W/OOeccnnrqKW644QaWL1/O66+/zptvvglAVFQUY8eO5dZbb+XVV1+le/fuHDhwgMTERK6//vqzxpiVlcWDDz7ItddeS6tWrTh06BCrV6/mmmuuqbHrIiLVyNFFPyLS8NhsNmPWrFlGhw4dDHd3dyM0NNQYPny4sXTpUnux7w8//GB07tzZ8PDwMPr27Wts3LixyDnmzZtnREdHG+7u7kaLFi2MF154ocjnWVlZxuTJk42mTZsaHh4eRtu2bY05c+YYhlFYUHzixAn7/uvXrzcAY9++fUZOTo5x4403GpGRkYaHh4fRrFkzY9KkSfZiYxGp2yyGYRgOzq9EROyWLFnC0KFDOXHiBIGBgY4OR0SckGpuREREpF5RciMiIiL1irqlREREpF5Ry42IiIjUK0puREREpF5RciMiIiL1ipIbERERqVeU3IiIiEi9ouRGRERE6hUlNyIiIlKvKLkRERGReuX/AUFmOGwTB1XOAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YcuGowOhekO_",
"outputId": "389bdaa8-540a-40f3-94f9-e1abc7cc89e4",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"10/10 [==============================] - 20s 2s/step - loss: 0.4604 - acc: 0.8381\n"
]
}
],
"source": [
"result = model.evaluate(test_generator)"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.12"
},
"accelerator": "GPU",
"gpuClass": "standard"
},
"nbformat": 4,
"nbformat_minor": 0
}