[7a5f37]: / train.py

Download this file

137 lines (121 with data), 5.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import os
from tqdm import tqdm
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from data.dataset import get_train_val_loader, inverse_normalize, get_test_loader
from model import UNet
from utils.Config import opt
from utils.vis_tool import Visualizer
from utils.eval_tool import compute_iou, save_pred_result
import utils.array_tool as at
def train(model, train_loader, criterion, epoch, vis):
model.train()
batch_loss = 0
for batch_idx, sample_batched in enumerate(train_loader):
data = sample_batched['image']
target = sample_batched['mask']
data, target = Variable(data.type(opt.dtype)), Variable(target.type(opt.dtype))
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
batch_loss += loss.data[0]
if (batch_idx+1) % opt.plot_every == 0:
ori_img_ = inverse_normalize(at.tonumpy(data[0]))
target_ = at.tonumpy(target[0])
pred_ = at.tonumpy(output[0])
vis.img('gt_img', ori_img_)
vis.img('gt_mask', target_)
vis.img('pred_mask', (pred_ >= 0.5).astype(np.float32))
batch_loss /= (batch_idx+1)
print('epoch: ' + str(epoch) + ', train loss: ' + str(batch_loss))
with open('logs.txt', 'a') as file:
file.write('epoch: ' + str(epoch) + ', train loss: ' + str(batch_loss) + '\n')
vis.plot('train loss', batch_loss)
def val(model, val_loader, criterion, epoch, vis):
model.eval()
batch_loss = 0
avg_iou = 0
for batch_idx, sample_batched in enumerate(val_loader):
data = sample_batched['image']
target = sample_batched['mask']
data, target = Variable(data.type(opt.dtype), volatile=True), Variable(target.type(opt.dtype), volatile=True)
output = model.forward(data)
loss = criterion(output, target)
batch_loss += loss.data[0]
avg_iou += compute_iou(pred_masks=at.tonumpy(output >= 0.5).astype(np.float32), gt_masks=target)
batch_loss /= (batch_idx+1)
avg_iou /= len(val_loader.dataset)
print('epoch: ' + str(epoch) + ', validation loss: ' + str(batch_loss), ', avg_iou: ', avg_iou)
with open('logs.txt', 'a') as file:
file.write('epoch: ' + str(epoch) + ', validation loss: ' + str(batch_loss) + ', avg_iou: ' + str(avg_iou) + '\n')
vis.plot('val loss', batch_loss)
vis.plot('validation average IOU', avg_iou)
return avg_iou
# train and validation
def run(model, train_loader, val_loader, criterion, vis):
best_iou = 0
for epoch in range(1, opt.epochs+1):
train(model, train_loader, criterion, epoch, vis)
avg_iou = val(model, val_loader, criterion, epoch, vis)
if avg_iou > best_iou:
best_iou = avg_iou
if opt.save_model:
save_path = './checkpoints/RSNA_UNet_' + str(round(best_iou, 3)) + '_' + time.strftime('%m%d%H%M')
torch.save(model.state_dict(), save_path)
if opt.save_model:
save_path = './checkpoints/RSNA_UNet_' + str(round(best_iou, 3)) + '_' + time.strftime('%m%d%H%M')
torch.save(model.state_dict(), save_path)
# make prediction
def run_test(model, test_loader):
pred_masks = []
img_ids = []
images = []
for batch_idx, sample_batched in tqdm(enumerate(test_loader)):
data, img_id = sample_batched['image'], sample_batched['img_id']
data = Variable(data.type(opt.dtype), volatile=True)
output = model.forward(data)
# output = (output > 0.5)
output = at.tonumpy(output)
for i in range(0, output.shape[0]):
pred_mask = np.squeeze(output[i])
id = img_id[i]
pred_mask = (pred_mask >= 0.5).astype(np.float32)
pred_masks.append(pred_mask)
img_ids.append(id)
ori_img_ = inverse_normalize(at.tonumpy(data[i]))
images.append(ori_img_)
return img_ids, images, pred_masks
if __name__ == '__main__':
"""Train Unet model"""
model = UNet(input_channels=1, nclasses=1)
if opt.is_train:
# split all data to train and validation, set split = True
train_loader, val_loader = get_train_val_loader(opt.root_dir, batch_size=opt.batch_size, val_ratio=0.15,
shuffle=True, num_workers=4, pin_memory=False)
optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay)
criterion = nn.BCELoss()
vis = Visualizer(env=opt.env)
if opt.is_cuda:
model.cuda()
criterion.cuda()
if opt.n_gpu > 1:
model = nn.DataParallel(model)
run(model, train_loader, val_loader, criterion, vis)
else:
if opt.is_cuda:
model.cuda()
if opt.n_gpu > 1:
model = nn.DataParallel(model)
test_loader = get_test_loader(batch_size=20, shuffle=True,
num_workers=opt.num_workers,
pin_memory=opt.pin_memory)
# load the model and run test
model.load_state_dict(torch.load(os.path.join(opt.checkpoint_dir, 'RSNA_UNet_0.895_09210122')))
img_ids, images, pred_masks = run_test(model, test_loader)
save_pred_result(img_ids, images, pred_masks)