[7a5f37]: / model.py

Download this file

101 lines (80 with data), 2.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
"""
UNet
The main UNet model implementation
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
# Utility Functions
''' when filter kernel= 3x3, padding=1 makes in&out matrix same size'''
def conv_bn_leru(in_channels, out_channels, kernel_size=3, stride=1, padding=1):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
def down_pooling():
return nn.MaxPool2d(2)
def up_pooling(in_channels, out_channels, kernel_size=2, stride=2):
return nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
# UNet class
class UNet(nn.Module):
def __init__(self, input_channels, nclasses):
super().__init__()
# go down
self.conv1 = conv_bn_leru(input_channels,64)
self.conv2 = conv_bn_leru(64, 128)
self.conv3 = conv_bn_leru(128, 256)
self.conv4 = conv_bn_leru(256, 512)
self.conv5 = conv_bn_leru(512, 1024)
self.down_pooling = nn.MaxPool2d(2)
# go up
self.up_pool6 = up_pooling(1024, 512)
self.conv6 = conv_bn_leru(1024, 512)
self.up_pool7 = up_pooling(512, 256)
self.conv7 = conv_bn_leru(512, 256)
self.up_pool8 = up_pooling(256, 128)
self.conv8 = conv_bn_leru(256, 128)
self.up_pool9 = up_pooling(128, 64)
self.conv9 = conv_bn_leru(128, 64)
self.conv10 = nn.Conv2d(64, nclasses, 1)
# test weight init
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_out')
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
# go down
x1 = self.conv1(x)
p1 = self.down_pooling(x1)
x2 = self.conv2(p1)
p2 = self.down_pooling(x2)
x3 = self.conv3(p2)
p3 = self.down_pooling(x3)
x4 = self.conv4(p3)
p4 = self.down_pooling(x4)
x5 = self.conv5(p4)
# go up
p6 = self.up_pool6(x5)
x6 = torch.cat([p6, x4], dim=1)
x6 = self.conv6(x6)
p7 = self.up_pool7(x6)
x7 = torch.cat([p7, x3], dim=1)
x7 = self.conv7(x7)
p8 = self.up_pool8(x7)
x8 = torch.cat([p8, x2], dim=1)
x8 = self.conv8(x8)
p9 = self.up_pool9(x8)
x9 = torch.cat([p9, x1], dim=1)
x9 = self.conv9(x9)
output = self.conv10(x9)
output = F.sigmoid(output)
return output