[7a5f37]: / data / __pycache__ / dataset.cpython-35.pyc

Download this file

105 lines (105 with data), 10.5 kB



;#Ę[ă(Ń	@sddlZddlZddlZddlZddlmZmZddl	m
Z
ddlmZddl
mZddljZddlmZddljZddljZddlmZdZd	d
äZGddädeâZd
däZddäZ ddäZ!GddädeâZ"GddädeâZ#ddddddäZ$dddddddäZ%dddddd äZ&d!d"äZ'd#d$äZ(e)d%kre&d&d'd(dd)ej*d*ej+âZ,x?e-e,âD]1\Z.Z/e0e/d+d,e/d-j1âe(e/âqŮWdS).ÚN)┌Dataset┌
DataLoader)┌
transforms)┌	transform)┌opt)┌train_test_split)┌
read_image┌pcCsÄtjrl|tjdddgâjdddâ}|dddůddůddůfjdddd	âS|d
djddddâd	S)
Ng»öełc▒^@gj╝tôŘ\@gđ│Y§╣żY@ÚÚ┌minr┌maxÚ g═╠╠╠╠╠╠?g═╠╠╠╠╠▄?Ú    )r┌caffe_pretrain┌np┌array┌reshape┌clip)┌imgęr˙4/home/PNW/wu1114/Documents/RSNA-UNet/data/dataset.py┌inverse_normalizes	+8rc@s(eZdZddäZddäZdS)┌	TransformcCs
||_dS)N)┌img_size)┌selfrrrr┌__init__szTransform.__init__cCso|d|d|d}}}|j\}}}t|||jâ\}}d|d|jâd|jâiS)N┌img_id┌image┌mask)┌shape┌
preprocessr┌copy)rZin_datarrr┌_┌H┌Wrrr┌__call__"s zTransform.__call__N)┌__name__┌
__module__┌__qualname__rr&rrrrrsrcCs×|j\}}}|d}tj||||fddâ}|jtjâ}tj|d||fddâ}tjrét}nt	}||â}||fS)NgÓo@┌mode┌reflectr)
r r┌resize┌astyper┌float32rr┌caffe_normalize┌pytorch_normalze)rrr┌Cr$r%┌	normalizerrrr!*s
!!		r!cCsItjddddgddddgâ}|tj|ââ}|jâS)	zŽ
    https://discuss.pytorch.org/t/how-to-preprocess-input-for-pre-trained-networks/683
    https://github.com/pytorch/vision/issues/223
    return appr -1~1 RGB
    ┌meang
Îúp=
▀?g╔vżč/Ţ?gľCőlšű┘?┌stdgZd;▀O═?gyÚ&1Č╠?g═╠╠╠╠╠╠?)rZ	Normalize┌torch┌
from_numpy┌numpy)rr2rrrr0;sr0cCsy|dddgddůddůf}|d}tjdddgâjd	ddâ}||jtjd
dâ}|S)z"
    return appr -125-125 BGR
    ÚrrNrg»öełc▒^@gj╝tôŘ\@gđ│Y§╣żY@r
r"T)rrrr-r.)rr3rrrr/Gs
(
'r/c@s7eZdZdddäZddäZddäZdS)	┌RSNADatasetTcCs:||_||_||_||_ttjâ|_dS)až
        Args:
        :param root_dir (string): Directory with all the images
        :param img_id (list): lists of image id
        :param train: if equals true, then read training set, so the output is image, mask and imgId
                      if equals false, then read testing set, so the output is image and imgId
        :param transform (callable, optional): Optional transform to be applied on a sample
        N)┌root_dirr┌mask_idrrrr┌tsf)rr:rr;rrrrrRs
					zRSNADataset.__init__cCs
t|jâS)N)┌lenr)rrrr┌__len__aszRSNADataset.__len__cCs┼tjj|jd|j|jdâddâ}tjj|jd|j|â}t|tj	dâ}t|tj
dâ}d|j|d|jâd	|jâi}|jr┴|j
|â}|S)
N┌images┌.rz	image.png┌masksFrrr)┌os┌path┌joinr:r┌splitr;rrr.┌uint8r"rr<)r┌idx┌img_pathZ	mask_pathrr┌samplerrr┌__getitem__ds2"+	zRSNADataset.__getitem__N)r'r(r)rr>rJrrrrr9Qsr9c@s7eZdZdddäZddäZddäZdS)	┌RSNADatasetTestTcCs:||_tj|â|_||_ttjâ|_dS)až
        Args:
        :param root_dir (string): Directory with all the images
        :param img_id (list): lists of image id
        :param train: if equals true, then read training set, so the output is image, mask and imgId
                      if equals false, then read testing set, so the output is image and imgId
        :param transform (callable, optional): Optional transform to be applied on a sample
        N)	r:rB┌listdirrrrrrr<)rr:rrrrrss			zRSNADatasetTest.__init__cCs
t|jâS)N)r=r)rrrrr>üszRSNADatasetTest.__len__c	Cs┴tjj|j|j|dâ}t|tjdâ}|j\}}}|d}t	j
||tjtjfddâ}tj
rît}nt}||â}d|j|d|jâi}|S)Nz	image.pngFgÓo@r*r+rr)rBrCrDr:rrrr.r rr,rrrr/r0r")	rrGrHrr1r$r%r2rIrrrrJäs"
'		zRSNADatasetTest.__getitem__N)r'r(r)rr>rJrrrrrKrsrKÚFÚc
Cs\tj|â}|jâtd|d|ddâ}t|d|d|d|d|â}|S)	a*Utility function for loading and returning training and validation Dataloader
    :param root_dir: the root directory of data set
    :param batch_size: batch size of training and validation set
    :param split: if split data set to training set and validation set
    :param shuffle: if shuffle the image in training and validation set
    :param num_workers: number of workers loading the data, when using CUDA, set to 1
    :param val_ratio: ratio of validation set size
    :param pin_memory: store data in CPU pin buffer rather than memory. when using CUDA, set to True
    :return:
        if split the data set then returns:
        - train_loader: Dataloader for training
        - valid_loader: Dataloader for validation
        else returns:
        - dataloader: Dataloader of all the data set
    r:rrT┌
batch_size┌shuffle┌num_workers┌
pin_memory)rBrL┌sortr9r)r:rOrPrQrR┌img_ids┌transformed_datasetZ
dataloaderrrr┌get_train_loaderśs
rVgÜÖÖÖÖÖ╔?c
Cstjtjjtjdââ}t|dât|dâ}}t||ddd|ddâ\}	}
}}t	d	|d
|	d|dd
â}
t
|
d|d|d|d|â}t	d	|d
|
d|dd
â}t
|d|d|d|d|â}||fS)a*Utility function for loading and returning training and validation Dataloader
    :param root_dir: the root directory of data set
    :param batch_size: batch size of training and validation set
    :param split: if split data set to training set and validation set
    :param shuffle: if shuffle the image in training and validation set
    :param num_workers: number of workers loading the data, when using CUDA, set to 1
    :param val_ratio: ratio of validation set size
    :param pin_memory: store data in CPU pin buffer rather than memory. when using CUDA, set to True
    :return:
        if split the data set then returns:
        - train_loader: Dataloader for training
        - valid_loader: Dataloader for validation
        else returns:
        - dataloader: Dataloader of all the data set
    z	train.csvr┌labelZrandom_stateÚ*Z	test_sizerPFr:rr;rTrOrQrR)┌pdZread_csvrBrCrDrr:┌listrr9r)r:rO┌	val_ratiorPrQrR┌dfrr;Ztrain_img_idZ
val_img_idZ
train_mask_idZval_mask_idZ
train_dataset┌train_loaderZval_dataset┌
val_loaderrrr┌get_train_val_loader░s!!-!!r_c
Cs:tdtjâ}t|d|d|d|d|â}|S)aUtility function for loading and returning training and validation Dataloader
    :param root_dir: the root directory of data set
    :param batch_size: batch size of training and validation set
    :param shuffle: if shuffle the image in training and validation set
    :param num_workers: number of workers loading the data, when using CUDA, set to 1
    :param pin_memory: store data in CPU pin buffer rather than memory. when using CUDA, set to True
    :return:
        - testloader: Dataloader of all the test set
    r:rOrPrQrR)rKrZ	test_rootr)rOrPrQrRrUZ
testloaderrrr┌get_test_loader╬sr`cCs▀|d|d|d}}}tjtj|ââtjtj|ââ}}t|â}tj||â}tjdâ}|j|dâ|j	|dâtjdâ}|j|dâ|j	|dâtj
âdS)	zA
    Visualize one training image and its corresponding bbox
    rrrÚygÓo@rÚzN)r┌squeeze┌at┌tonumpyr┌multiply┌pltZsubplot┌imshow┌	set_title┌show)┌sample_batchedrrrZcombinedZax1Zax2rrr┌show_batch_trainŮs 1rlcCs`|d|d}}ttjtj|dâââ}tjâtj|dâtjâdS)Nrrrr)	rrrcrdrerg┌figurerhrj)Zsample_batchrrrrr┌show_batch_test­s
"
rn┌__main__rOrrPrQrRrz, r)2rBr7rr5┌pandasrYZtorch.utils.datarrZtorchvisionrZskimager┌utils.ConfigrZmatplotlib.pylabZpylabrgZsklearn.model_selectionr┌utils.array_tool┌
array_toolrdZmatplotlib.patchesZpatchesZdata.data_utilsrZDSB_BBOX_LABEL_NAMESr┌objectrr!r0r/r9rKrVr_r`rlrnr'rQrR┌test_loader┌	enumerateZi_batchrI┌printr rrrr┌<module>s@
!&