--- a +++ b/utils/Config.py @@ -0,0 +1,39 @@ +""" +Common utility functions and classes +""" +import torch + +class Option(): + """Training Configuration """ + name = "Lung-Segmentation" + # root dir of training and validation set + root_dir = '/media/storage/wu1114/RSNA/rsna-unet/' + + test_root = '/media/storage/wu1114/RSNA/stage_1_test' + + result_root = '/media/storage/wu1114/RSNA/rsna-unet/test_result/' + + img_size = 512 + num_workers = 1 # number of threads for data loading + shuffle = False # shuffle the data set + batch_size = 8 # GTX1060 3G Memory + epochs = 150 # number of epochs to train + plot_every = 5 # vis every N batches + is_train = True # True for training, False for making prediction + save_model = True # True for saving the model, False for not saving the model + caffe_pretrain = False + env = 'RSNA-UNet' + + n_gpu = 2 # number of GPUs + + learning_rate = 1e-3 # learning rage + weight_decay = 1e-4 # weight decay + + pin_memory = True # use pinned (page-locked) memory. when using CUDA, set to True + + is_cuda = torch.cuda.is_available() # True --> GPU + num_gpus = torch.cuda.device_count() # number of GPUs + checkpoint_dir = "./checkpoints" # dir to save checkpoints + dtype = torch.cuda.FloatTensor if is_cuda else torch.Tensor # data type + +opt = Option() \ No newline at end of file