Diff of /model.py [000000] .. [bd7f9c]

Switch to side-by-side view

--- a
+++ b/model.py
@@ -0,0 +1,100 @@
+"""
+UNet
+The main UNet model implementation
+"""
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+# Utility Functions
+''' when filter kernel= 3x3, padding=1 makes in&out matrix same size'''
+def conv_bn_leru(in_channels, out_channels, kernel_size=3, stride=1, padding=1):
+    return nn.Sequential(
+            nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
+            nn.BatchNorm2d(out_channels),
+            nn.ReLU(inplace=True),
+            nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
+            nn.BatchNorm2d(out_channels),
+            nn.ReLU(inplace=True),
+    )
+
+def down_pooling():
+    return nn.MaxPool2d(2)
+
+def up_pooling(in_channels, out_channels, kernel_size=2, stride=2):
+    return nn.Sequential(
+        nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
+        nn.BatchNorm2d(out_channels),
+        nn.ReLU(inplace=True)
+    )
+
+# UNet class
+
+class UNet(nn.Module):
+    def __init__(self, input_channels, nclasses):
+        super().__init__()
+        # go down
+        self.conv1 = conv_bn_leru(input_channels,64)
+        self.conv2 = conv_bn_leru(64, 128)
+        self.conv3 = conv_bn_leru(128, 256)
+        self.conv4 = conv_bn_leru(256, 512)
+        self.conv5 = conv_bn_leru(512, 1024)
+        self.down_pooling = nn.MaxPool2d(2)
+
+        # go up
+        self.up_pool6 = up_pooling(1024, 512)
+        self.conv6 = conv_bn_leru(1024, 512)
+        self.up_pool7 = up_pooling(512, 256)
+        self.conv7 = conv_bn_leru(512, 256)
+        self.up_pool8 = up_pooling(256, 128)
+        self.conv8 = conv_bn_leru(256, 128)
+        self.up_pool9 = up_pooling(128, 64)
+        self.conv9 = conv_bn_leru(128, 64)
+
+        self.conv10 = nn.Conv2d(64, nclasses, 1)
+
+
+        # test weight init
+        for m in self.modules():
+            if isinstance(m, nn.Conv2d):
+                nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_out')
+                if m.bias is not None:
+                    m.bias.data.zero_()
+
+
+    def forward(self, x):
+        # go down
+        x1 = self.conv1(x)
+        p1 = self.down_pooling(x1)
+        x2 = self.conv2(p1)
+        p2 = self.down_pooling(x2)
+        x3 = self.conv3(p2)
+        p3 = self.down_pooling(x3)
+        x4 = self.conv4(p3)
+        p4 = self.down_pooling(x4)
+        x5 = self.conv5(p4)
+
+        # go up
+        p6 = self.up_pool6(x5)
+        x6 = torch.cat([p6, x4], dim=1)
+        x6 = self.conv6(x6)
+
+        p7 = self.up_pool7(x6)
+        x7 = torch.cat([p7, x3], dim=1)
+        x7 = self.conv7(x7)
+
+        p8 = self.up_pool8(x7)
+        x8 = torch.cat([p8, x2], dim=1)
+        x8 = self.conv8(x8)
+
+        p9 = self.up_pool9(x8)
+        x9 = torch.cat([p9, x1], dim=1)
+        x9 = self.conv9(x9)
+
+
+        output = self.conv10(x9)
+        output = F.sigmoid(output)
+
+        return output