Diff of /app.py [000000] .. [450719]

Switch to unified view

a b/app.py
1
from flask import Flask,request, url_for, redirect, render_template
2
import pickle
3
import numpy as np
4
import sklearn
5
from sklearn.preprocessing import StandardScaler
6
7
app = Flask(__name__)
8
9
#model = pickle.load(open('model.pkl','rb'))
10
11
filename = 'Lung_Cancer.pkl'
12
with open(filename, 'rb') as f:
13
    model = pickle.load(f)
14
15
@app.route('/')
16
def hello_world():
17
    return render_template("lung_cancer.html")
18
19
#Parameters used for Prediction
20
# ['GENDER', 'AGE', 'SMOKING', 'YELLOW_FINGERS', 'ANXIETY',
21
#        'PEER_PRESSURE', 'CHRONIC DISEASE', 'FATIGUE ', 'ALLERGY ', 'WHEEZING',
22
#        'ALCOHOL CONSUMING', 'COUGHING', 'SHORTNESS OF BREATH',
23
#        'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'LUNG_CANCER']
24
25
@app.route('/predict',methods=['POST', 'GET'])
26
def predict():
27
        if request.method == 'POST':
28
            int_features = [int(x) for x in request.form.values()]
29
            final = np.reshape(int_features, (1, -1))
30
            print(int_features)  #Checking Inputs Successfully Added
31
            print(final) #Reshaping into numpy array for Prediction
32
            prediction = model.predict(final)
33
            print(prediction) # Checking the Prediction Value
34
            output = prediction
35
            if output == 0:
36
                return render_template('lung_cancer.html', pred='Person Has Lung Cancer {}'.format(output))
37
            else:
38
                return render_template('lung_cancer.html', pred='Person Does Not Got Lung Cancer {}'.format(output))
39
        else:
40
            return render_template('lung_cancer.html')
41
42
if __name__ == '__main__':
43
    app.run(debug=True)