[dac597]: / final_cnn_luna.ipynb

Download this file

12958 lines (12958 with data), 1.6 MB

{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "final-cnn-luna.ipynb",
      "version": "0.3.2",
      "provenance": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/ShreshthSaxena/Lung-Cancer-Prediction/blob/master/final_cnn_luna.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "metadata": {
        "id": "4sK4Z-Jv6eso",
        "colab_type": "code",
        "outputId": "5792a92b-cf48-41bf-910d-86e5d9d14b7d",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 544
        }
      },
      "cell_type": "code",
      "source": [
        "#for connecting google drive to colab\n",
        "from tensorflow.python.client import device_lib\n",
        "print(device_lib.list_local_devices())"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "[name: \"/device:CPU:0\"\n",
            "device_type: \"CPU\"\n",
            "memory_limit: 268435456\n",
            "locality {\n",
            "}\n",
            "incarnation: 2315741968601569725\n",
            ", name: \"/device:XLA_CPU:0\"\n",
            "device_type: \"XLA_CPU\"\n",
            "memory_limit: 17179869184\n",
            "locality {\n",
            "}\n",
            "incarnation: 2088203118180351511\n",
            "physical_device_desc: \"device: XLA_CPU device\"\n",
            ", name: \"/device:XLA_GPU:0\"\n",
            "device_type: \"XLA_GPU\"\n",
            "memory_limit: 17179869184\n",
            "locality {\n",
            "}\n",
            "incarnation: 9934803885435823108\n",
            "physical_device_desc: \"device: XLA_GPU device\"\n",
            ", name: \"/device:GPU:0\"\n",
            "device_type: \"GPU\"\n",
            "memory_limit: 11276946637\n",
            "locality {\n",
            "  bus_id: 1\n",
            "  links {\n",
            "  }\n",
            "}\n",
            "incarnation: 2333970530344321913\n",
            "physical_device_desc: \"device: 0, name: Tesla K80, pci bus id: 0000:00:04.0, compute capability: 3.7\"\n",
            "]\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "mp0QcVha6sA_",
        "colab_type": "code",
        "outputId": "5f649d8a-f599-4861-fc11-1f306da460be",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 782
        }
      },
      "cell_type": "code",
      "source": [
        "#RAM INFO\n",
        "!cat /proc/meminfo"
      ],
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "MemTotal:       13335276 kB\n",
            "MemFree:        10476296 kB\n",
            "MemAvailable:   12196644 kB\n",
            "Buffers:           72212 kB\n",
            "Cached:          1804404 kB\n",
            "SwapCached:            0 kB\n",
            "Active:           894712 kB\n",
            "Inactive:        1599580 kB\n",
            "Active(anon):     588684 kB\n",
            "Inactive(anon):     2400 kB\n",
            "Active(file):     306028 kB\n",
            "Inactive(file):  1597180 kB\n",
            "Unevictable:           0 kB\n",
            "Mlocked:               0 kB\n",
            "SwapTotal:             0 kB\n",
            "SwapFree:              0 kB\n",
            "Dirty:               972 kB\n",
            "Writeback:             0 kB\n",
            "AnonPages:        617692 kB\n",
            "Mapped:           408992 kB\n",
            "Shmem:              2948 kB\n",
            "Slab:             156076 kB\n",
            "SReclaimable:     116468 kB\n",
            "SUnreclaim:        39608 kB\n",
            "KernelStack:        4112 kB\n",
            "PageTables:         6492 kB\n",
            "NFS_Unstable:          0 kB\n",
            "Bounce:                0 kB\n",
            "WritebackTmp:          0 kB\n",
            "CommitLimit:     6667636 kB\n",
            "Committed_AS:    2251900 kB\n",
            "VmallocTotal:   34359738367 kB\n",
            "VmallocUsed:           0 kB\n",
            "VmallocChunk:          0 kB\n",
            "AnonHugePages:         0 kB\n",
            "ShmemHugePages:        0 kB\n",
            "ShmemPmdMapped:        0 kB\n",
            "HugePages_Total:       0\n",
            "HugePages_Free:        0\n",
            "HugePages_Rsvd:        0\n",
            "HugePages_Surp:        0\n",
            "Hugepagesize:       2048 kB\n",
            "DirectMap4k:      165876 kB\n",
            "DirectMap2M:     6125568 kB\n",
            "DirectMap1G:     9437184 kB\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "qATVtqpR6sG3",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "!apt-get install -y -qq software-properties-common python-software-properties module-init-tools\n",
        "!add-apt-repository -y ppa:alessandro-strada/ppa 2>&1 > /dev/null\n",
        "!apt-get update -qq 2>&1 > /dev/null\n",
        "!apt-get -y install -qq google-drive-ocamlfuse fuse\n",
        "from google.colab import auth\n",
        "auth.authenticate_user()\n",
        "from oauth2client.client import GoogleCredentials\n",
        "creds = GoogleCredentials.get_application_default()\n",
        "import getpass\n",
        "!google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URL\n",
        "vcode = getpass.getpass()\n",
        "!echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "IvBmVHkh34zO",
        "colab_type": "code",
        "outputId": "5c5ffb02-b521-4b2e-c397-d64044c348d1",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 122
        }
      },
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/gdrive')"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/gdrive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "pXJ3KwYa344P",
        "colab_type": "code",
        "outputId": "9cfd09e7-acc0-4332-f616-141f1c5b0266",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "cell_type": "code",
      "source": [
        "cd \"My Drive\""
      ],
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/gdrive/My Drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "ueK4e3bc6sJ4",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "!mkdir -p drive\n",
        "!google-drive-ocamlfuse drive"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "UWb3WN8b6sMu",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "import os\n",
        "os.chdir(\"drive/cnn-luna (6e89a3eb)\")\n",
        "#Connection process ends here"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "tiK7pwgK6sPW",
        "colab_type": "code",
        "outputId": "ec56ff87-ba3f-4612-c9de-b4191ae38299",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "cell_type": "code",
      "source": [
        "#importing libraries\n",
        "#import os\n",
        "import numpy as np\n",
        "import imageio\n",
        "import matplotlib.pyplot as plt\n",
        "import tensorflow as tf\n",
        "from glob import glob\n",
        "from datetime import datetime\n",
        "from collections import OrderedDict\n",
        "#import shutil\n",
        "import time\n",
        "from keras.models import Sequential\n",
        "from keras.layers import Conv2D, MaxPooling2D\n",
        "from keras.layers import Activation, Dropout, Flatten, Dense\n",
        "#from keras.preprocessing.image import ImageDataGenerator\n",
        "from keras.wrappers.scikit_learn import KerasClassifier\n",
        "from sklearn.model_selection import GridSearchCV\n",
        "from keras.callbacks import TensorBoard\n"
      ],
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Using TensorFlow backend.\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "metadata": {
        "id": "nGN3uGq86sSY",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#diferent parameters used\n",
        "IMAGE_SIZE = 40 # image width , height \n",
        "NUM_CHANNELS = 1 # as the image is in grayscale format,it would be 3 for RGB\n",
        "NUM_CLASSES = 2 # binary classification\n",
        "NUM_TRAIN_EXAMPLES = 2064\n",
        "NUM_VALIDATION_EXAMPLES = 442\n",
        "NUM_TEST_EXAMPLES = 442\n",
        "BATCH_SIZE = 104\n",
        "NUM_ITERS = 251\n",
        "DROPOUT_RATE = 0.2\n",
        "KEEP_PROB = 1 - DROPOUT_RATE\n",
        "JPEG_IMAGE_DIR = 'data/LUNA2016/images/'\n",
        "CONV1_NUM_FILTERS = 16\n",
        "CONV1_KERNEL_SIZE = [3, 3]\n",
        "CONV1_STRIDE = 1\n",
        "CONV1_PADDING = 'SAME' #with zero padding\n",
        "CONV1_ACTIV_FUNC = tf.nn.relu\n",
        "POOL1_FILTER_SIZE = [2, 2]\n",
        "POOL1_STRIDE = 2\n",
        "POOL1_PADDING = 'SAME'\n",
        "\n",
        "CONV2_NUM_FILTERS = 32\n",
        "CONV2_KERNEL_SIZE = [5, 5]\n",
        "CONV2_STRIDE = 1\n",
        "CONV2_PADDING = 'SAME'\n",
        "CONV2_ACTIV_FUNC = tf.nn.relu\n",
        "POOL2_FILTER_SIZE = [2, 2]\n",
        "POOL2_STRIDE = 2\n",
        "POOL2_PADDING = 'SAME'\n",
        "\n",
        "CONV3_NUM_FILTERS = 64\n",
        "CONV3_KERNEL_SIZE = [7, 7]\n",
        "CONV3_STRIDE = 1\n",
        "CONV3_PADDING = 'SAME'\n",
        "CONV3_ACTIV_FUNC = tf.nn.relu\n",
        "POOL3_FILTER_SIZE = [2, 2]\n",
        "POOL3_STRIDE = 2\n",
        "POOL3_PADDING = 'SAME'\n",
        "CONV4_NUM_FILTERS = 64\n",
        "CONV4_KERNEL_SIZE = [7, 7]\n",
        "CONV4_STRIDE = 1\n",
        "CONV4_PADDING = 'SAME'\n",
        "CONV4_ACTIV_FUNC = tf.nn.relu\n",
        "POOL4_FILTER_SIZE = [2, 2]\n",
        "POOL4_STRIDE = 2\n",
        "POOL4_PADDING = 'SAME'\n",
        "FC1_NUM_NEURONS = 1024\n",
        "FC1_ACTIV_FUNC = tf.nn.relu"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "tIh9vi8S6sVP",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#definition of the function which imports the dataset\n",
        "def import_data():\n",
        "    image_list = glob(JPEG_IMAGE_DIR + \"*.png\")\n",
        "    num_images = len(image_list)\n",
        "    images = np.zeros((num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS), dtype=np.float32)\n",
        "    labels = np.zeros((num_images, NUM_CLASSES), dtype=np.float32)\n",
        "    for i, filename in enumerate(image_list):\n",
        "        # importing image data and converting to numpy array of proper size\n",
        "        image = imageio.imread(filename)\n",
        "        image = image.astype(np.float32)\n",
        "        image = 1 - image/255 # convert pixels from range [0, 255] to [0.0, 1.0]\n",
        "        image = image[:, :, np.newaxis] \n",
        "        images[i] = image\n",
        "        print(\"\\ni=\",i)\n",
        "        print(\"filename=\",filename)\n",
        "        # importing labels and assigning to correct class:\n",
        "        classification = filename[-7:-4]\n",
        "        if classification == 'pos':\n",
        "            labels[i] = np.array([1.0, 0.0])\n",
        "        elif classification == 'neg':\n",
        "            labels[i] = np.array([0.0, 1.0])\n",
        "        else:\n",
        "            print( \"ERROR: classification cannot be determined from filename:\", filename)\n",
        "            assert False\n",
        "\n",
        "    # zero-center data over entire dataset (ONLY FOR TRAINING SET, subtract same mean value for test/validation sets)\n",
        "    images -= np.mean(images[0:NUM_TRAIN_EXAMPLES, :, :, :])\n",
        "\n",
        "    # spliting image data into three different sets, viz train, validation, and test sets\n",
        "    idx1 = NUM_TRAIN_EXAMPLES\n",
        "    idx2 = NUM_TRAIN_EXAMPLES + NUM_VALIDATION_EXAMPLES\n",
        "    idx3 = NUM_TRAIN_EXAMPLES + NUM_VALIDATION_EXAMPLES + NUM_TEST_EXAMPLES\n",
        "\n",
        "    train_data = images[0:idx1, :, :, :]\n",
        "    validation_data = images[idx1:idx2, :, :, :]\n",
        "    test_data = images[idx2:idx3, :, :, :]\n",
        "    train_labels = labels[0:idx1]\n",
        "    validation_labels = labels[idx1:idx2]\n",
        "    test_labels = labels[idx2:idx3]\n",
        "    test_image_filenames = image_list[idx2:idx3]\n",
        "    \n",
        "    return train_data, validation_data, test_data, train_labels, validation_labels, test_labels, test_image_filenames"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "p0q6qSlo6sYR",
        "colab_type": "code",
        "outputId": "6ddfc67f-8a40-4f29-e2f1-63e058edfb28",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 150365
        }
      },
      "cell_type": "code",
      "source": [
        "#fetching data\n",
        "train_data, validation_data, test_data, train_labels, validation_labels, test_labels, test_images_filenames = import_data()"
      ],
      "execution_count": 23,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "\n",
            "i= 0\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod1slc1neg.png\n",
            "\n",
            "i= 1\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod1slc1pos.png\n",
            "\n",
            "i= 2\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod2slc0neg.png\n",
            "\n",
            "i= 3\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod2slc0pos.png\n",
            "\n",
            "i= 4\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod1slc0neg.png\n",
            "\n",
            "i= 5\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod1slc0pos.png\n",
            "\n",
            "i= 6\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod2slc1neg.png\n",
            "\n",
            "i= 7\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod2slc1pos.png\n",
            "\n",
            "i= 8\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod3slc0pos.png\n",
            "\n",
            "i= 9\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod3slc0neg.png\n",
            "\n",
            "i= 10\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod3slc1neg.png\n",
            "\n",
            "i= 11\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod4slc0neg.png\n",
            "\n",
            "i= 12\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod3slc1pos.png\n",
            "\n",
            "i= 13\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod4slc1pos.png\n",
            "\n",
            "i= 14\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod0slc0neg.png\n",
            "\n",
            "i= 15\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod0slc0pos.png\n",
            "\n",
            "i= 16\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod0slc1neg.png\n",
            "\n",
            "i= 17\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod4slc0pos.png\n",
            "\n",
            "i= 18\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod4slc1neg.png\n",
            "\n",
            "i= 19\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod0slc1pos.png\n",
            "\n",
            "i= 20\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod1slc0neg.png\n",
            "\n",
            "i= 21\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod1slc0pos.png\n",
            "\n",
            "i= 22\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod1slc1neg.png\n",
            "\n",
            "i= 23\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc0neg.png\n",
            "\n",
            "i= 24\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.300246184547502297539521283806nod1slc1pos.png\n",
            "\n",
            "i= 25\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc1neg.png\n",
            "\n",
            "i= 26\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc0pos.png\n",
            "\n",
            "i= 27\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc1pos.png\n",
            "\n",
            "i= 28\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc2neg.png\n",
            "\n",
            "i= 29\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc3pos.png\n",
            "\n",
            "i= 30\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.303421828981831854739626597495nod0slc0neg.png\n",
            "\n",
            "i= 31\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.303421828981831854739626597495nod0slc0pos.png\n",
            "\n",
            "i= 32\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.303421828981831854739626597495nod0slc1neg.png\n",
            "\n",
            "i= 33\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc2pos.png\n",
            "\n",
            "i= 34\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.302557165094691896097534021075nod0slc3neg.png\n",
            "\n",
            "i= 35\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.303421828981831854739626597495nod0slc1pos.png\n",
            "\n",
            "i= 36\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod0slc0neg.png\n",
            "\n",
            "i= 37\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod0slc0pos.png\n",
            "\n",
            "i= 38\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod0slc1neg.png\n",
            "\n",
            "i= 39\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod0slc1pos.png\n",
            "\n",
            "i= 40\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc0neg.png\n",
            "\n",
            "i= 41\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc0pos.png\n",
            "\n",
            "i= 42\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc1neg.png\n",
            "\n",
            "i= 43\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc3neg.png\n",
            "\n",
            "i= 44\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc3pos.png\n",
            "\n",
            "i= 45\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc1pos.png\n",
            "\n",
            "i= 46\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod0slc0neg.png\n",
            "\n",
            "i= 47\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod0slc0pos.png\n",
            "\n",
            "i= 48\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod0slc1neg.png\n",
            "\n",
            "i= 49\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc0neg.png\n",
            "\n",
            "i= 50\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod0slc1pos.png\n",
            "\n",
            "i= 51\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc2neg.png\n",
            "\n",
            "i= 52\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.305858704835252413616501469037nod1slc2pos.png\n",
            "\n",
            "i= 53\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc0pos.png\n",
            "\n",
            "i= 54\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc1neg.png\n",
            "\n",
            "i= 55\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc1pos.png\n",
            "\n",
            "i= 56\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc2neg.png\n",
            "\n",
            "i= 57\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc2pos.png\n",
            "\n",
            "i= 58\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc3pos.png\n",
            "\n",
            "i= 59\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.309672797925724868457151381131nod0slc1pos.png\n",
            "\n",
            "i= 60\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.309672797925724868457151381131nod0slc0neg.png\n",
            "\n",
            "i= 61\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.306948744223170422945185006551nod1slc3neg.png\n",
            "\n",
            "i= 62\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod0slc0neg.png\n",
            "\n",
            "i= 63\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod0slc0pos.png\n",
            "\n",
            "i= 64\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod0slc1neg.png\n",
            "\n",
            "i= 65\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod0slc1pos.png\n",
            "\n",
            "i= 66\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.309672797925724868457151381131nod0slc0pos.png\n",
            "\n",
            "i= 67\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.309672797925724868457151381131nod0slc1neg.png\n",
            "\n",
            "i= 68\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod1slc0neg.png\n",
            "\n",
            "i= 69\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod1slc1neg.png\n",
            "\n",
            "i= 70\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod1slc1pos.png\n",
            "\n",
            "i= 71\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod1slc0pos.png\n",
            "\n",
            "i= 72\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod2slc0neg.png\n",
            "\n",
            "i= 73\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod2slc0pos.png\n",
            "\n",
            "i= 74\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod2slc1neg.png\n",
            "\n",
            "i= 75\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310395752124284049604069960014nod2slc1pos.png\n",
            "\n",
            "i= 76\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310548927038333190233889983845nod0slc0neg.png\n",
            "\n",
            "i= 77\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod0slc0pos.png\n",
            "\n",
            "i= 78\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310548927038333190233889983845nod0slc0pos.png\n",
            "\n",
            "i= 79\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod0slc0neg.png\n",
            "\n",
            "i= 80\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod0slc1pos.png\n",
            "\n",
            "i= 81\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod0slc1neg.png\n",
            "\n",
            "i= 82\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod1slc0neg.png\n",
            "\n",
            "i= 83\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310548927038333190233889983845nod0slc1neg.png\n",
            "\n",
            "i= 84\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.310548927038333190233889983845nod0slc1pos.png\n",
            "\n",
            "i= 85\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod1slc0pos.png\n",
            "\n",
            "i= 86\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod1slc1neg.png\n",
            "\n",
            "i= 87\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod2slc0neg.png\n",
            "\n",
            "i= 88\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod1slc1pos.png\n",
            "\n",
            "i= 89\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod2slc0pos.png\n",
            "\n",
            "i= 90\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod2slc1neg.png\n",
            "\n",
            "i= 91\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313334055029671473836954456733nod0slc0pos.png\n",
            "\n",
            "i= 92\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313334055029671473836954456733nod0slc0neg.png\n",
            "\n",
            "i= 93\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313283554967554803238484128406nod2slc1pos.png\n",
            "\n",
            "i= 94\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313334055029671473836954456733nod0slc1neg.png\n",
            "\n",
            "i= 95\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313334055029671473836954456733nod0slc1pos.png\n",
            "\n",
            "i= 96\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313605260055394498989743099991nod0slc0neg.png\n",
            "\n",
            "i= 97\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc0neg.png\n",
            "\n",
            "i= 98\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313605260055394498989743099991nod0slc1pos.png\n",
            "\n",
            "i= 99\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc1neg.png\n",
            "\n",
            "i= 100\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc0pos.png\n",
            "\n",
            "i= 101\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc1pos.png\n",
            "\n",
            "i= 102\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc2neg.png\n",
            "\n",
            "i= 103\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313605260055394498989743099991nod0slc1neg.png\n",
            "\n",
            "i= 104\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313605260055394498989743099991nod0slc0pos.png\n",
            "\n",
            "i= 105\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc2pos.png\n",
            "\n",
            "i= 106\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc3neg.png\n",
            "\n",
            "i= 107\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc3pos.png\n",
            "\n",
            "i= 108\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc4neg.png\n",
            "\n",
            "i= 109\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc4pos.png\n",
            "\n",
            "i= 110\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc5neg.png\n",
            "\n",
            "i= 111\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc5pos.png\n",
            "\n",
            "i= 112\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc6neg.png\n",
            "\n",
            "i= 113\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc6pos.png\n",
            "\n",
            "i= 114\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc8pos.png\n",
            "\n",
            "i= 115\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc8neg.png\n",
            "\n",
            "i= 116\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc9neg.png\n",
            "\n",
            "i= 117\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.314789075871001236641548593165nod0slc0neg.png\n",
            "\n",
            "i= 118\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc9pos.png\n",
            "\n",
            "i= 119\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc7neg.png\n",
            "\n",
            "i= 120\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.313835996725364342034830119490nod0slc7pos.png\n",
            "\n",
            "i= 121\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.314789075871001236641548593165nod0slc0pos.png\n",
            "\n",
            "i= 122\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.314789075871001236641548593165nod0slc1neg.png\n",
            "\n",
            "i= 123\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.314789075871001236641548593165nod0slc1pos.png\n",
            "\n",
            "i= 124\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.315214756157389122376518747372nod0slc0neg.png\n",
            "\n",
            "i= 125\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.315214756157389122376518747372nod0slc0pos.png\n",
            "\n",
            "i= 126\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.315214756157389122376518747372nod0slc1neg.png\n",
            "\n",
            "i= 127\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.315214756157389122376518747372nod0slc1pos.png\n",
            "\n",
            "i= 128\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc1neg.png\n",
            "\n",
            "i= 129\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc1pos.png\n",
            "\n",
            "i= 130\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc2neg.png\n",
            "\n",
            "i= 131\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc0pos.png\n",
            "\n",
            "i= 132\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc0neg.png\n",
            "\n",
            "i= 133\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc2pos.png\n",
            "\n",
            "i= 134\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc3neg.png\n",
            "\n",
            "i= 135\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc3pos.png\n",
            "\n",
            "i= 136\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc4neg.png\n",
            "\n",
            "i= 137\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc4pos.png\n",
            "\n",
            "i= 138\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc5neg.png\n",
            "\n",
            "i= 139\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.317087518531899043292346860596nod0slc5pos.png\n",
            "\n",
            "i= 140\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod0slc0neg.png\n",
            "\n",
            "i= 141\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod0slc0pos.png\n",
            "\n",
            "i= 142\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod0slc1neg.png\n",
            "\n",
            "i= 143\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod0slc1pos.png\n",
            "\n",
            "i= 144\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod1slc1neg.png\n",
            "\n",
            "i= 145\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod1slc1pos.png\n",
            "\n",
            "i= 146\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.321465552859463184018938648244nod0slc0neg.png\n",
            "\n",
            "i= 147\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod1slc0neg.png\n",
            "\n",
            "i= 148\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.319066480138812986026181758474nod1slc0pos.png\n",
            "\n",
            "i= 149\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.321465552859463184018938648244nod0slc1neg.png\n",
            "\n",
            "i= 150\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.321465552859463184018938648244nod0slc1pos.png\n",
            "\n",
            "i= 151\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.321465552859463184018938648244nod0slc0pos.png\n",
            "\n",
            "i= 152\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323302986710576400812869264321nod0slc0neg.png\n",
            "\n",
            "i= 153\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323302986710576400812869264321nod0slc0pos.png\n",
            "\n",
            "i= 154\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323302986710576400812869264321nod0slc1neg.png\n",
            "\n",
            "i= 155\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323302986710576400812869264321nod0slc1pos.png\n",
            "\n",
            "i= 156\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323541312620128092852212458228nod0slc0neg.png\n",
            "\n",
            "i= 157\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323541312620128092852212458228nod0slc1neg.png\n",
            "\n",
            "i= 158\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323541312620128092852212458228nod0slc0pos.png\n",
            "\n",
            "i= 159\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc0neg.png\n",
            "\n",
            "i= 160\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323541312620128092852212458228nod0slc1pos.png\n",
            "\n",
            "i= 161\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc10neg.png\n",
            "\n",
            "i= 162\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc11neg.png\n",
            "\n",
            "i= 163\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc11pos.png\n",
            "\n",
            "i= 164\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc12neg.png\n",
            "\n",
            "i= 165\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc0pos.png\n",
            "\n",
            "i= 166\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc10pos.png\n",
            "\n",
            "i= 167\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc13neg.png\n",
            "\n",
            "i= 168\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc13pos.png\n",
            "\n",
            "i= 169\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc12pos.png\n",
            "\n",
            "i= 170\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc14neg.png\n",
            "\n",
            "i= 171\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc15neg.png\n",
            "\n",
            "i= 172\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc14pos.png\n",
            "\n",
            "i= 173\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc15pos.png\n",
            "\n",
            "i= 174\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc1neg.png\n",
            "\n",
            "i= 175\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc1pos.png\n",
            "\n",
            "i= 176\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc2neg.png\n",
            "\n",
            "i= 177\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc2pos.png\n",
            "\n",
            "i= 178\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc4neg.png\n",
            "\n",
            "i= 179\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc4pos.png\n",
            "\n",
            "i= 180\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc5neg.png\n",
            "\n",
            "i= 181\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc5pos.png\n",
            "\n",
            "i= 182\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc3pos.png\n",
            "\n",
            "i= 183\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc3neg.png\n",
            "\n",
            "i= 184\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc6neg.png\n",
            "\n",
            "i= 185\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc6pos.png\n",
            "\n",
            "i= 186\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc7neg.png\n",
            "\n",
            "i= 187\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc7pos.png\n",
            "\n",
            "i= 188\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc8neg.png\n",
            "\n",
            "i= 189\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc8pos.png\n",
            "\n",
            "i= 190\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc9neg.png\n",
            "\n",
            "i= 191\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc0neg.png\n",
            "\n",
            "i= 192\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod0slc9pos.png\n",
            "\n",
            "i= 193\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc1pos.png\n",
            "\n",
            "i= 194\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc2neg.png\n",
            "\n",
            "i= 195\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc2pos.png\n",
            "\n",
            "i= 196\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc1neg.png\n",
            "\n",
            "i= 197\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc0pos.png\n",
            "\n",
            "i= 198\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc3neg.png\n",
            "\n",
            "i= 199\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc3pos.png\n",
            "\n",
            "i= 200\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc4neg.png\n",
            "\n",
            "i= 201\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc4pos.png\n",
            "\n",
            "i= 202\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc5neg.png\n",
            "\n",
            "i= 203\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323753921818102744511069914832nod1slc5pos.png\n",
            "\n",
            "i= 204\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod0slc0neg.png\n",
            "\n",
            "i= 205\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod1slc0pos.png\n",
            "\n",
            "i= 206\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod0slc0pos.png\n",
            "\n",
            "i= 207\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod0slc1neg.png\n",
            "\n",
            "i= 208\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod1slc1neg.png\n",
            "\n",
            "i= 209\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod1slc1pos.png\n",
            "\n",
            "i= 210\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod0slc0neg.png\n",
            "\n",
            "i= 211\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod0slc1pos.png\n",
            "\n",
            "i= 212\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.323859712968543712594665815359nod1slc0neg.png\n",
            "\n",
            "i= 213\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod0slc0pos.png\n",
            "\n",
            "i= 214\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod0slc1neg.png\n",
            "\n",
            "i= 215\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod0slc1pos.png\n",
            "\n",
            "i= 216\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc0neg.png\n",
            "\n",
            "i= 217\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc0pos.png\n",
            "\n",
            "i= 218\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc1neg.png\n",
            "\n",
            "i= 219\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc1pos.png\n",
            "\n",
            "i= 220\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc2neg.png\n",
            "\n",
            "i= 221\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc2pos.png\n",
            "\n",
            "i= 222\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc0neg.png\n",
            "\n",
            "i= 223\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc0pos.png\n",
            "\n",
            "i= 224\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc1neg.png\n",
            "\n",
            "i= 225\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc1pos.png\n",
            "\n",
            "i= 226\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc2neg.png\n",
            "\n",
            "i= 227\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc3pos.png\n",
            "\n",
            "i= 228\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod1slc3neg.png\n",
            "\n",
            "i= 229\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc2pos.png\n",
            "\n",
            "i= 230\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc3neg.png\n",
            "\n",
            "i= 231\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod2slc3pos.png\n",
            "\n",
            "i= 232\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc0neg.png\n",
            "\n",
            "i= 233\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc0pos.png\n",
            "\n",
            "i= 234\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc1neg.png\n",
            "\n",
            "i= 235\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc1pos.png\n",
            "\n",
            "i= 236\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc3pos.png\n",
            "\n",
            "i= 237\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc2neg.png\n",
            "\n",
            "i= 238\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod0slc0neg.png\n",
            "\n",
            "i= 239\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod0slc0pos.png\n",
            "\n",
            "i= 240\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod0slc1neg.png\n",
            "\n",
            "i= 241\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod1slc0neg.png\n",
            "\n",
            "i= 242\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod0slc1pos.png\n",
            "\n",
            "i= 243\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod1slc0pos.png\n",
            "\n",
            "i= 244\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc2pos.png\n",
            "\n",
            "i= 245\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324290109423920971676288828329nod3slc3neg.png\n",
            "\n",
            "i= 246\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod1slc1neg.png\n",
            "\n",
            "i= 247\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod1slc1pos.png\n",
            "\n",
            "i= 248\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod2slc0pos.png\n",
            "\n",
            "i= 249\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod2slc0neg.png\n",
            "\n",
            "i= 250\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod2slc1neg.png\n",
            "\n",
            "i= 251\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc1pos.png\n",
            "\n",
            "i= 252\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.324567010179873305471925391582nod2slc1pos.png\n",
            "\n",
            "i= 253\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc1neg.png\n",
            "\n",
            "i= 254\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc2neg.png\n",
            "\n",
            "i= 255\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc2pos.png\n",
            "\n",
            "i= 256\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc3neg.png\n",
            "\n",
            "i= 257\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc3pos.png\n",
            "\n",
            "i= 258\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc0pos.png\n",
            "\n",
            "i= 259\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc0neg.png\n",
            "\n",
            "i= 260\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc4neg.png\n",
            "\n",
            "i= 261\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc4pos.png\n",
            "\n",
            "i= 262\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc5neg.png\n",
            "\n",
            "i= 263\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc5pos.png\n",
            "\n",
            "i= 264\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc6neg.png\n",
            "\n",
            "i= 265\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc7neg.png\n",
            "\n",
            "i= 266\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc6pos.png\n",
            "\n",
            "i= 267\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc7pos.png\n",
            "\n",
            "i= 268\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc8neg.png\n",
            "\n",
            "i= 269\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc9pos.png\n",
            "\n",
            "i= 270\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod1slc0neg.png\n",
            "\n",
            "i= 271\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod1slc0pos.png\n",
            "\n",
            "i= 272\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod1slc1neg.png\n",
            "\n",
            "i= 273\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc8pos.png\n",
            "\n",
            "i= 274\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod0slc9neg.png\n",
            "\n",
            "i= 275\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.325164338773720548739146851679nod1slc1pos.png\n",
            "\n",
            "i= 276\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc0neg.png\n",
            "\n",
            "i= 277\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc0pos.png\n",
            "\n",
            "i= 278\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc1neg.png\n",
            "\n",
            "i= 279\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc1pos.png\n",
            "\n",
            "i= 280\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc2neg.png\n",
            "\n",
            "i= 281\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc2pos.png\n",
            "\n",
            "i= 282\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc3neg.png\n",
            "\n",
            "i= 283\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod0slc3pos.png\n",
            "\n",
            "i= 284\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod1slc1neg.png\n",
            "\n",
            "i= 285\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod1slc1pos.png\n",
            "\n",
            "i= 286\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod2slc0neg.png\n",
            "\n",
            "i= 287\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod2slc0pos.png\n",
            "\n",
            "i= 288\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod2slc1neg.png\n",
            "\n",
            "i= 289\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod2slc1pos.png\n",
            "\n",
            "i= 290\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod3slc0neg.png\n",
            "\n",
            "i= 291\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod1slc0neg.png\n",
            "\n",
            "i= 292\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod1slc0pos.png\n",
            "\n",
            "i= 293\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod3slc0pos.png\n",
            "\n",
            "i= 294\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod3slc1neg.png\n",
            "\n",
            "i= 295\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod4slc0neg.png\n",
            "\n",
            "i= 296\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod4slc1neg.png\n",
            "\n",
            "i= 297\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod3slc1pos.png\n",
            "\n",
            "i= 298\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod4slc0pos.png\n",
            "\n",
            "i= 299\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod4slc1pos.png\n",
            "\n",
            "i= 300\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod5slc0neg.png\n",
            "\n",
            "i= 301\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod5slc0pos.png\n",
            "\n",
            "i= 302\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.333145094436144085379032922488nod0slc0neg.png\n",
            "\n",
            "i= 303\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.333145094436144085379032922488nod0slc1neg.png\n",
            "\n",
            "i= 304\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334105754605642100456249422350nod0slc0neg.png\n",
            "\n",
            "i= 305\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.333145094436144085379032922488nod0slc0pos.png\n",
            "\n",
            "i= 306\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.333145094436144085379032922488nod0slc1pos.png\n",
            "\n",
            "i= 307\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod5slc1neg.png\n",
            "\n",
            "i= 308\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.326057189095429101398977448288nod5slc1pos.png\n",
            "\n",
            "i= 309\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334105754605642100456249422350nod0slc0pos.png\n",
            "\n",
            "i= 310\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334105754605642100456249422350nod0slc1neg.png\n",
            "\n",
            "i= 311\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334105754605642100456249422350nod0slc1pos.png\n",
            "\n",
            "i= 312\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc0pos.png\n",
            "\n",
            "i= 313\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc0neg.png\n",
            "\n",
            "i= 314\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc3neg.png\n",
            "\n",
            "i= 315\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc1neg.png\n",
            "\n",
            "i= 316\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc1pos.png\n",
            "\n",
            "i= 317\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc3pos.png\n",
            "\n",
            "i= 318\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc4neg.png\n",
            "\n",
            "i= 319\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc5neg.png\n",
            "\n",
            "i= 320\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc4pos.png\n",
            "\n",
            "i= 321\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc5pos.png\n",
            "\n",
            "i= 322\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod1slc0neg.png\n",
            "\n",
            "i= 323\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod1slc0pos.png\n",
            "\n",
            "i= 324\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc2neg.png\n",
            "\n",
            "i= 325\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod0slc2pos.png\n",
            "\n",
            "i= 326\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod1slc1neg.png\n",
            "\n",
            "i= 327\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod1slc1pos.png\n",
            "\n",
            "i= 328\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc0neg.png\n",
            "\n",
            "i= 329\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc1pos.png\n",
            "\n",
            "i= 330\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc0pos.png\n",
            "\n",
            "i= 331\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc1neg.png\n",
            "\n",
            "i= 332\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc2neg.png\n",
            "\n",
            "i= 333\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc2pos.png\n",
            "\n",
            "i= 334\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc3neg.png\n",
            "\n",
            "i= 335\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.334517907433161353885866806005nod2slc3pos.png\n",
            "\n",
            "i= 336\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336225579776978874775723463327nod0slc1neg.png\n",
            "\n",
            "i= 337\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336225579776978874775723463327nod0slc1pos.png\n",
            "\n",
            "i= 338\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336894364358709782463716339027nod0slc0neg.png\n",
            "\n",
            "i= 339\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336894364358709782463716339027nod0slc0pos.png\n",
            "\n",
            "i= 340\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336225579776978874775723463327nod0slc0pos.png\n",
            "\n",
            "i= 341\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336225579776978874775723463327nod0slc0neg.png\n",
            "\n",
            "i= 342\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336894364358709782463716339027nod0slc1neg.png\n",
            "\n",
            "i= 343\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.336894364358709782463716339027nod0slc1pos.png\n",
            "\n",
            "i= 344\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.339142594937666268384335506819nod0slc0neg.png\n",
            "\n",
            "i= 345\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.339142594937666268384335506819nod0slc0pos.png\n",
            "\n",
            "i= 346\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.367204840301639918160517361062nod0slc0neg.png\n",
            "\n",
            "i= 347\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.339142594937666268384335506819nod0slc1neg.png\n",
            "\n",
            "i= 348\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.339142594937666268384335506819nod0slc1pos.png\n",
            "\n",
            "i= 349\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.367204840301639918160517361062nod0slc0pos.png\n",
            "\n",
            "i= 350\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.395623571499047043765181005112nod0slc0neg.png\n",
            "\n",
            "i= 351\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.395623571499047043765181005112nod0slc0pos.png\n",
            "\n",
            "i= 352\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.367204840301639918160517361062nod0slc1neg.png\n",
            "\n",
            "i= 353\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.367204840301639918160517361062nod0slc1pos.png\n",
            "\n",
            "i= 354\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.395623571499047043765181005112nod0slc1neg.png\n",
            "\n",
            "i= 355\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.395623571499047043765181005112nod0slc1pos.png\n",
            "\n",
            "i= 356\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404364125369979066736354549484nod0slc0pos.png\n",
            "\n",
            "i= 357\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404364125369979066736354549484nod0slc0neg.png\n",
            "\n",
            "i= 358\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404364125369979066736354549484nod0slc1neg.png\n",
            "\n",
            "i= 359\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404364125369979066736354549484nod0slc1pos.png\n",
            "\n",
            "i= 360\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc0neg.png\n",
            "\n",
            "i= 361\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc1neg.png\n",
            "\n",
            "i= 362\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc2pos.png\n",
            "\n",
            "i= 363\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc3neg.png\n",
            "\n",
            "i= 364\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc0pos.png\n",
            "\n",
            "i= 365\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc3pos.png\n",
            "\n",
            "i= 366\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc4neg.png\n",
            "\n",
            "i= 367\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc2neg.png\n",
            "\n",
            "i= 368\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc1pos.png\n",
            "\n",
            "i= 369\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc4pos.png\n",
            "\n",
            "i= 370\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc5neg.png\n",
            "\n",
            "i= 371\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc5pos.png\n",
            "\n",
            "i= 372\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc6neg.png\n",
            "\n",
            "i= 373\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc6pos.png\n",
            "\n",
            "i= 374\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc7neg.png\n",
            "\n",
            "i= 375\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.404768898286087278137462774930nod0slc7pos.png\n",
            "\n",
            "i= 376\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.417815314896088956784723476543nod0slc0neg.png\n",
            "\n",
            "i= 377\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc0neg.png\n",
            "\n",
            "i= 378\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.417815314896088956784723476543nod0slc1pos.png\n",
            "\n",
            "i= 379\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc0pos.png\n",
            "\n",
            "i= 380\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc10neg.png\n",
            "\n",
            "i= 381\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.417815314896088956784723476543nod0slc1neg.png\n",
            "\n",
            "i= 382\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.417815314896088956784723476543nod0slc0pos.png\n",
            "\n",
            "i= 383\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc10pos.png\n",
            "\n",
            "i= 384\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc11neg.png\n",
            "\n",
            "i= 385\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc11pos.png\n",
            "\n",
            "i= 386\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc1neg.png\n",
            "\n",
            "i= 387\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc1pos.png\n",
            "\n",
            "i= 388\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc2pos.png\n",
            "\n",
            "i= 389\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc2neg.png\n",
            "\n",
            "i= 390\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc3neg.png\n",
            "\n",
            "i= 391\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc3pos.png\n",
            "\n",
            "i= 392\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc5pos.png\n",
            "\n",
            "i= 393\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc4neg.png\n",
            "\n",
            "i= 394\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc6neg.png\n",
            "\n",
            "i= 395\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc6pos.png\n",
            "\n",
            "i= 396\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc7neg.png\n",
            "\n",
            "i= 397\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc7pos.png\n",
            "\n",
            "i= 398\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc8neg.png\n",
            "\n",
            "i= 399\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc8pos.png\n",
            "\n",
            "i= 400\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc5neg.png\n",
            "\n",
            "i= 401\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc4pos.png\n",
            "\n",
            "i= 402\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc9neg.png\n",
            "\n",
            "i= 403\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc0neg.png\n",
            "\n",
            "i= 404\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod0slc9pos.png\n",
            "\n",
            "i= 405\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc0pos.png\n",
            "\n",
            "i= 406\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc1neg.png\n",
            "\n",
            "i= 407\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc1pos.png\n",
            "\n",
            "i= 408\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc2neg.png\n",
            "\n",
            "i= 409\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc2pos.png\n",
            "\n",
            "i= 410\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc4neg.png\n",
            "\n",
            "i= 411\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc4pos.png\n",
            "\n",
            "i= 412\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc5neg.png\n",
            "\n",
            "i= 413\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc0neg.png\n",
            "\n",
            "i= 414\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc5pos.png\n",
            "\n",
            "i= 415\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc3pos.png\n",
            "\n",
            "i= 416\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod1slc3neg.png\n",
            "\n",
            "i= 417\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc0pos.png\n",
            "\n",
            "i= 418\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc1neg.png\n",
            "\n",
            "i= 419\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc1pos.png\n",
            "\n",
            "i= 420\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc2pos.png\n",
            "\n",
            "i= 421\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc2neg.png\n",
            "\n",
            "i= 422\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc3neg.png\n",
            "\n",
            "i= 423\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.430109407146633213496148200410nod2slc3pos.png\n",
            "\n",
            "i= 424\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod0slc0neg.png\n",
            "\n",
            "i= 425\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod0slc0pos.png\n",
            "\n",
            "i= 426\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod1slc0neg.png\n",
            "\n",
            "i= 427\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod1slc0pos.png\n",
            "\n",
            "i= 428\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod1slc1neg.png\n",
            "\n",
            "i= 429\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod1slc1pos.png\n",
            "\n",
            "i= 430\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod0slc0neg.png\n",
            "\n",
            "i= 431\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod0slc1neg.png\n",
            "\n",
            "i= 432\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.443400977949406454649939526179nod0slc1pos.png\n",
            "\n",
            "i= 433\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod0slc1neg.png\n",
            "\n",
            "i= 434\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod0slc0pos.png\n",
            "\n",
            "i= 435\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod0slc1pos.png\n",
            "\n",
            "i= 436\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod1slc0neg.png\n",
            "\n",
            "i= 437\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod1slc0pos.png\n",
            "\n",
            "i= 438\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod1slc1pos.png\n",
            "\n",
            "i= 439\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.450501966058662668272378865145nod1slc1neg.png\n",
            "\n",
            "i= 440\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc0neg.png\n",
            "\n",
            "i= 441\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc0pos.png\n",
            "\n",
            "i= 442\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc1neg.png\n",
            "\n",
            "i= 443\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc2pos.png\n",
            "\n",
            "i= 444\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc3neg.png\n",
            "\n",
            "i= 445\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc3pos.png\n",
            "\n",
            "i= 446\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.461155505515403114280165935891nod0slc0neg.png\n",
            "\n",
            "i= 447\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc2neg.png\n",
            "\n",
            "i= 448\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.458525794434429386945463560826nod0slc1pos.png\n",
            "\n",
            "i= 449\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.461155505515403114280165935891nod0slc1neg.png\n",
            "\n",
            "i= 450\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.461155505515403114280165935891nod0slc0pos.png\n",
            "\n",
            "i= 451\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.461155505515403114280165935891nod0slc1pos.png\n",
            "\n",
            "i= 452\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.466284753932369813717081722101nod0slc0neg.png\n",
            "\n",
            "i= 453\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.466284753932369813717081722101nod0slc0pos.png\n",
            "\n",
            "i= 454\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.466284753932369813717081722101nod0slc1neg.png\n",
            "\n",
            "i= 455\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.466284753932369813717081722101nod0slc1pos.png\n",
            "\n",
            "i= 456\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod0slc0neg.png\n",
            "\n",
            "i= 457\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod0slc0pos.png\n",
            "\n",
            "i= 458\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod0slc1neg.png\n",
            "\n",
            "i= 459\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod0slc1pos.png\n",
            "\n",
            "i= 460\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod1slc1neg.png\n",
            "\n",
            "i= 461\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod1slc1pos.png\n",
            "\n",
            "i= 462\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc0neg.png\n",
            "\n",
            "i= 463\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc0pos.png\n",
            "\n",
            "i= 464\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod1slc0neg.png\n",
            "\n",
            "i= 465\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.479402560265137632920333093071nod1slc0pos.png\n",
            "\n",
            "i= 466\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc1neg.png\n",
            "\n",
            "i= 467\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc2neg.png\n",
            "\n",
            "i= 468\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc2pos.png\n",
            "\n",
            "i= 469\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc1pos.png\n",
            "\n",
            "i= 470\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc3neg.png\n",
            "\n",
            "i= 471\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod0slc3pos.png\n",
            "\n",
            "i= 472\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod1slc0neg.png\n",
            "\n",
            "i= 473\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod1slc0pos.png\n",
            "\n",
            "i= 474\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc0neg.png\n",
            "\n",
            "i= 475\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc1neg.png\n",
            "\n",
            "i= 476\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc1pos.png\n",
            "\n",
            "i= 477\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc0pos.png\n",
            "\n",
            "i= 478\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc2pos.png\n",
            "\n",
            "i= 479\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc2neg.png\n",
            "\n",
            "i= 480\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc3neg.png\n",
            "\n",
            "i= 481\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod1slc1pos.png\n",
            "\n",
            "i= 482\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.481278873893653517789960724156nod1slc1neg.png\n",
            "\n",
            "i= 483\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.487745546557477250336016826588nod0slc3pos.png\n",
            "\n",
            "i= 484\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod0slc0neg.png\n",
            "\n",
            "i= 485\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod0slc0pos.png\n",
            "\n",
            "i= 486\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod0slc1neg.png\n",
            "\n",
            "i= 487\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod0slc1pos.png\n",
            "\n",
            "i= 488\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod1slc0neg.png\n",
            "\n",
            "i= 489\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod1slc0pos.png\n",
            "\n",
            "i= 490\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod1slc1neg.png\n",
            "\n",
            "i= 491\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod1slc1pos.png\n",
            "\n",
            "i= 492\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod2slc1pos.png\n",
            "\n",
            "i= 493\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod2slc1neg.png\n",
            "\n",
            "i= 494\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc0neg.png\n",
            "\n",
            "i= 495\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc0pos.png\n",
            "\n",
            "i= 496\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod2slc0neg.png\n",
            "\n",
            "i= 497\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.503980049263254396021509831276nod2slc0pos.png\n",
            "\n",
            "i= 498\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc1neg.png\n",
            "\n",
            "i= 499\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc2neg.png\n",
            "\n",
            "i= 500\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc1pos.png\n",
            "\n",
            "i= 501\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc2pos.png\n",
            "\n",
            "i= 502\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc3neg.png\n",
            "\n",
            "i= 503\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod0slc3pos.png\n",
            "\n",
            "i= 504\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod1slc0neg.png\n",
            "\n",
            "i= 505\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod1slc0pos.png\n",
            "\n",
            "i= 506\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod1slc1neg.png\n",
            "\n",
            "i= 507\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod1slc1pos.png\n",
            "\n",
            "i= 508\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod2slc1neg.png\n",
            "\n",
            "i= 509\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc0neg.png\n",
            "\n",
            "i= 510\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod2slc1pos.png\n",
            "\n",
            "i= 511\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc0pos.png\n",
            "\n",
            "i= 512\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc1neg.png\n",
            "\n",
            "i= 513\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod2slc0pos.png\n",
            "\n",
            "i= 514\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.511347030803753100045216493273nod2slc0neg.png\n",
            "\n",
            "i= 515\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc1pos.png\n",
            "\n",
            "i= 516\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc2neg.png\n",
            "\n",
            "i= 517\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc2pos.png\n",
            "\n",
            "i= 518\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc4neg.png\n",
            "\n",
            "i= 519\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc3pos.png\n",
            "\n",
            "i= 520\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc3neg.png\n",
            "\n",
            "i= 521\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc4pos.png\n",
            "\n",
            "i= 522\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc5pos.png\n",
            "\n",
            "i= 523\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc5neg.png\n",
            "\n",
            "i= 524\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc7neg.png\n",
            "\n",
            "i= 525\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc7pos.png\n",
            "\n",
            "i= 526\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc0neg.png\n",
            "\n",
            "i= 527\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc0pos.png\n",
            "\n",
            "i= 528\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc1neg.png\n",
            "\n",
            "i= 529\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc6neg.png\n",
            "\n",
            "i= 530\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.525937963993475482158828421281nod0slc6pos.png\n",
            "\n",
            "i= 531\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc1pos.png\n",
            "\n",
            "i= 532\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc2neg.png\n",
            "\n",
            "i= 533\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc2pos.png\n",
            "\n",
            "i= 534\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc3pos.png\n",
            "\n",
            "i= 535\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc4neg.png\n",
            "\n",
            "i= 536\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc3neg.png\n",
            "\n",
            "i= 537\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc4pos.png\n",
            "\n",
            "i= 538\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc5neg.png\n",
            "\n",
            "i= 539\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc6pos.png\n",
            "\n",
            "i= 540\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc7neg.png\n",
            "\n",
            "i= 541\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc7pos.png\n",
            "\n",
            "i= 542\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc8pos.png\n",
            "\n",
            "i= 543\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc6neg.png\n",
            "\n",
            "i= 544\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc5pos.png\n",
            "\n",
            "i= 545\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc8neg.png\n",
            "\n",
            "i= 546\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc9neg.png\n",
            "\n",
            "i= 547\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod0slc9pos.png\n",
            "\n",
            "i= 548\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc0neg.png\n",
            "\n",
            "i= 549\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc0pos.png\n",
            "\n",
            "i= 550\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc1neg.png\n",
            "\n",
            "i= 551\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc1pos.png\n",
            "\n",
            "i= 552\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc2neg.png\n",
            "\n",
            "i= 553\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc2pos.png\n",
            "\n",
            "i= 554\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc3pos.png\n",
            "\n",
            "i= 555\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc3neg.png\n",
            "\n",
            "i= 556\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc5neg.png\n",
            "\n",
            "i= 557\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc5pos.png\n",
            "\n",
            "i= 558\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc6neg.png\n",
            "\n",
            "i= 559\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc6pos.png\n",
            "\n",
            "i= 560\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc4neg.png\n",
            "\n",
            "i= 561\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc4pos.png\n",
            "\n",
            "i= 562\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc7neg.png\n",
            "\n",
            "i= 563\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc7pos.png\n",
            "\n",
            "i= 564\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc8neg.png\n",
            "\n",
            "i= 565\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc8pos.png\n",
            "\n",
            "i= 566\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc9neg.png\n",
            "\n",
            "i= 567\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod1slc9pos.png\n",
            "\n",
            "i= 568\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc0neg.png\n",
            "\n",
            "i= 569\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc0pos.png\n",
            "\n",
            "i= 570\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc1neg.png\n",
            "\n",
            "i= 571\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc1pos.png\n",
            "\n",
            "i= 572\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc3neg.png\n",
            "\n",
            "i= 573\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc3pos.png\n",
            "\n",
            "i= 574\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod0slc0neg.png\n",
            "\n",
            "i= 575\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod0slc0pos.png\n",
            "\n",
            "i= 576\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod0slc1neg.png\n",
            "\n",
            "i= 577\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod0slc1pos.png\n",
            "\n",
            "i= 578\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc2neg.png\n",
            "\n",
            "i= 579\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534006575256943390479252771547nod2slc2pos.png\n",
            "\n",
            "i= 580\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod1slc0neg.png\n",
            "\n",
            "i= 581\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod1slc0pos.png\n",
            "\n",
            "i= 582\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod1slc1neg.png\n",
            "\n",
            "i= 583\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod1slc1pos.png\n",
            "\n",
            "i= 584\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod2slc0neg.png\n",
            "\n",
            "i= 585\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod2slc0pos.png\n",
            "\n",
            "i= 586\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod2slc1neg.png\n",
            "\n",
            "i= 587\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.534083630500464995109143618896nod2slc1pos.png\n",
            "\n",
            "i= 588\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc0neg.png\n",
            "\n",
            "i= 589\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc1pos.png\n",
            "\n",
            "i= 590\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc2neg.png\n",
            "\n",
            "i= 591\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc2pos.png\n",
            "\n",
            "i= 592\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc3neg.png\n",
            "\n",
            "i= 593\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc3pos.png\n",
            "\n",
            "i= 594\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc0pos.png\n",
            "\n",
            "i= 595\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod0slc1neg.png\n",
            "\n",
            "i= 596\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc0neg.png\n",
            "\n",
            "i= 597\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc0pos.png\n",
            "\n",
            "i= 598\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc1neg.png\n",
            "\n",
            "i= 599\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc1pos.png\n",
            "\n",
            "i= 600\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc2neg.png\n",
            "\n",
            "i= 601\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc2pos.png\n",
            "\n",
            "i= 602\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc3neg.png\n",
            "\n",
            "i= 603\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod1slc3pos.png\n",
            "\n",
            "i= 604\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc0neg.png\n",
            "\n",
            "i= 605\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc1pos.png\n",
            "\n",
            "i= 606\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc2neg.png\n",
            "\n",
            "i= 607\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc2pos.png\n",
            "\n",
            "i= 608\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc3neg.png\n",
            "\n",
            "i= 609\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc3pos.png\n",
            "\n",
            "i= 610\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc0pos.png\n",
            "\n",
            "i= 611\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.557875302364105947813979213632nod2slc1neg.png\n",
            "\n",
            "i= 612\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod0slc0neg.png\n",
            "\n",
            "i= 613\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod0slc0pos.png\n",
            "\n",
            "i= 614\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod0slc1neg.png\n",
            "\n",
            "i= 615\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod1slc0neg.png\n",
            "\n",
            "i= 616\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod0slc1pos.png\n",
            "\n",
            "i= 617\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod1slc0pos.png\n",
            "\n",
            "i= 618\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod1slc1neg.png\n",
            "\n",
            "i= 619\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.561458563853929400124470098603nod1slc1pos.png\n",
            "\n",
            "i= 620\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.566816709786169715745131047975nod0slc0neg.png\n",
            "\n",
            "i= 621\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.603166427542096384265514998412nod0slc0neg.png\n",
            "\n",
            "i= 622\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.566816709786169715745131047975nod0slc1pos.png\n",
            "\n",
            "i= 623\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.603166427542096384265514998412nod0slc0pos.png\n",
            "\n",
            "i= 624\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.603166427542096384265514998412nod0slc1neg.png\n",
            "\n",
            "i= 625\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.603166427542096384265514998412nod0slc1pos.png\n",
            "\n",
            "i= 626\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.566816709786169715745131047975nod0slc1neg.png\n",
            "\n",
            "i= 627\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.566816709786169715745131047975nod0slc0pos.png\n",
            "\n",
            "i= 628\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.614147706162329660656328811671nod0slc0neg.png\n",
            "\n",
            "i= 629\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.614147706162329660656328811671nod0slc0pos.png\n",
            "\n",
            "i= 630\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.614147706162329660656328811671nod0slc1neg.png\n",
            "\n",
            "i= 631\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.614147706162329660656328811671nod0slc1pos.png\n",
            "\n",
            "i= 632\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc0neg.png\n",
            "\n",
            "i= 633\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc0pos.png\n",
            "\n",
            "i= 634\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc1neg.png\n",
            "\n",
            "i= 635\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc1pos.png\n",
            "\n",
            "i= 636\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc2neg.png\n",
            "\n",
            "i= 637\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc2pos.png\n",
            "\n",
            "i= 638\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc3neg.png\n",
            "\n",
            "i= 639\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod1slc0pos.png\n",
            "\n",
            "i= 640\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod1slc1neg.png\n",
            "\n",
            "i= 641\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod2slc0neg.png\n",
            "\n",
            "i= 642\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod1slc1pos.png\n",
            "\n",
            "i= 643\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod2slc0pos.png\n",
            "\n",
            "i= 644\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod1slc0neg.png\n",
            "\n",
            "i= 645\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod0slc3pos.png\n",
            "\n",
            "i= 646\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod2slc1neg.png\n",
            "\n",
            "i= 647\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod2slc1pos.png\n",
            "\n",
            "i= 648\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod3slc0neg.png\n",
            "\n",
            "i= 649\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod3slc0pos.png\n",
            "\n",
            "i= 650\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod3slc1neg.png\n",
            "\n",
            "i= 651\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.616033753016904899083676284739nod3slc1pos.png\n",
            "\n",
            "i= 652\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.621916089407825046337959219998nod0slc0neg.png\n",
            "\n",
            "i= 653\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.621916089407825046337959219998nod0slc0pos.png\n",
            "\n",
            "i= 654\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc0neg.png\n",
            "\n",
            "i= 655\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc0pos.png\n",
            "\n",
            "i= 656\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.621916089407825046337959219998nod0slc1neg.png\n",
            "\n",
            "i= 657\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.621916089407825046337959219998nod0slc1pos.png\n",
            "\n",
            "i= 658\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc2neg.png\n",
            "\n",
            "i= 659\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc3neg.png\n",
            "\n",
            "i= 660\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc1pos.png\n",
            "\n",
            "i= 661\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc2pos.png\n",
            "\n",
            "i= 662\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc1neg.png\n",
            "\n",
            "i= 663\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc3pos.png\n",
            "\n",
            "i= 664\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc4neg.png\n",
            "\n",
            "i= 665\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc4pos.png\n",
            "\n",
            "i= 666\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc6neg.png\n",
            "\n",
            "i= 667\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc6pos.png\n",
            "\n",
            "i= 668\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc7neg.png\n",
            "\n",
            "i= 669\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc7pos.png\n",
            "\n",
            "i= 670\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc5pos.png\n",
            "\n",
            "i= 671\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.624425075947752229712087113746nod0slc5neg.png\n",
            "\n",
            "i= 672\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc0neg.png\n",
            "\n",
            "i= 673\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc0pos.png\n",
            "\n",
            "i= 674\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc1neg.png\n",
            "\n",
            "i= 675\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc1pos.png\n",
            "\n",
            "i= 676\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc3neg.png\n",
            "\n",
            "i= 677\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc2pos.png\n",
            "\n",
            "i= 678\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc2neg.png\n",
            "\n",
            "i= 679\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc3pos.png\n",
            "\n",
            "i= 680\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc5neg.png\n",
            "\n",
            "i= 681\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc5pos.png\n",
            "\n",
            "i= 682\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc6neg.png\n",
            "\n",
            "i= 683\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc7neg.png\n",
            "\n",
            "i= 684\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc6pos.png\n",
            "\n",
            "i= 685\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc7pos.png\n",
            "\n",
            "i= 686\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc0neg.png\n",
            "\n",
            "i= 687\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc0pos.png\n",
            "\n",
            "i= 688\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc4pos.png\n",
            "\n",
            "i= 689\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.625270601160880745954773142570nod0slc4neg.png\n",
            "\n",
            "i= 690\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc1neg.png\n",
            "\n",
            "i= 691\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc1pos.png\n",
            "\n",
            "i= 692\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc2neg.png\n",
            "\n",
            "i= 693\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc3neg.png\n",
            "\n",
            "i= 694\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc3pos.png\n",
            "\n",
            "i= 695\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc0neg.png\n",
            "\n",
            "i= 696\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.640729228179368154416184318668nod0slc2pos.png\n",
            "\n",
            "i= 697\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc0pos.png\n",
            "\n",
            "i= 698\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc2neg.png\n",
            "\n",
            "i= 699\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc1neg.png\n",
            "\n",
            "i= 700\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc1pos.png\n",
            "\n",
            "i= 701\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc2pos.png\n",
            "\n",
            "i= 702\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.663019255629770796363333877035nod0slc0neg.png\n",
            "\n",
            "i= 703\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.663019255629770796363333877035nod0slc0pos.png\n",
            "\n",
            "i= 704\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc3pos.png\n",
            "\n",
            "i= 705\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.655242448149322898770987310561nod0slc3neg.png\n",
            "\n",
            "i= 706\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.663019255629770796363333877035nod0slc1neg.png\n",
            "\n",
            "i= 707\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.663019255629770796363333877035nod0slc1pos.png\n",
            "\n",
            "i= 708\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod0slc0neg.png\n",
            "\n",
            "i= 709\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod1slc0neg.png\n",
            "\n",
            "i= 710\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod0slc0pos.png\n",
            "\n",
            "i= 711\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod1slc1pos.png\n",
            "\n",
            "i= 712\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.690929968028676628605553365896nod0slc0neg.png\n",
            "\n",
            "i= 713\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod1slc0pos.png\n",
            "\n",
            "i= 714\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod1slc1neg.png\n",
            "\n",
            "i= 715\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.690929968028676628605553365896nod0slc0pos.png\n",
            "\n",
            "i= 716\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.690929968028676628605553365896nod0slc1neg.png\n",
            "\n",
            "i= 717\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod0slc1neg.png\n",
            "\n",
            "i= 718\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.674809958213117379592437424616nod0slc1pos.png\n",
            "\n",
            "i= 719\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.690929968028676628605553365896nod0slc1pos.png\n",
            "\n",
            "i= 720\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod0slc0neg.png\n",
            "\n",
            "i= 721\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod0slc0pos.png\n",
            "\n",
            "i= 722\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod0slc1neg.png\n",
            "\n",
            "i= 723\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod0slc1pos.png\n",
            "\n",
            "i= 724\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod1slc0neg.png\n",
            "\n",
            "i= 725\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod1slc0pos.png\n",
            "\n",
            "i= 726\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod1slc1neg.png\n",
            "\n",
            "i= 727\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.692598144815688523679745963696nod1slc1pos.png\n",
            "\n",
            "i= 728\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc2neg.png\n",
            "\n",
            "i= 729\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc2pos.png\n",
            "\n",
            "i= 730\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc1pos.png\n",
            "\n",
            "i= 731\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc1neg.png\n",
            "\n",
            "i= 732\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc3neg.png\n",
            "\n",
            "i= 733\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc3pos.png\n",
            "\n",
            "i= 734\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod0slc0neg.png\n",
            "\n",
            "i= 735\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod0slc0pos.png\n",
            "\n",
            "i= 736\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc0neg.png\n",
            "\n",
            "i= 737\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.716498695101447665580610403574nod0slc0pos.png\n",
            "\n",
            "i= 738\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod0slc1neg.png\n",
            "\n",
            "i= 739\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod0slc1pos.png\n",
            "\n",
            "i= 740\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc1neg.png\n",
            "\n",
            "i= 741\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc0pos.png\n",
            "\n",
            "i= 742\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc0neg.png\n",
            "\n",
            "i= 743\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc1pos.png\n",
            "\n",
            "i= 744\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc2pos.png\n",
            "\n",
            "i= 745\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc3neg.png\n",
            "\n",
            "i= 746\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc2neg.png\n",
            "\n",
            "i= 747\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.752756872840730509471096155114nod0slc0pos.png\n",
            "\n",
            "i= 748\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.752756872840730509471096155114nod0slc1neg.png\n",
            "\n",
            "i= 749\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.752756872840730509471096155114nod0slc1pos.png\n",
            "\n",
            "i= 750\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.752756872840730509471096155114nod0slc0neg.png\n",
            "\n",
            "i= 751\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.724251104254976962355686318345nod1slc3pos.png\n",
            "\n",
            "i= 752\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.756684168227383088294595834066nod0slc0neg.png\n",
            "\n",
            "i= 753\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.756684168227383088294595834066nod0slc0pos.png\n",
            "\n",
            "i= 754\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.756684168227383088294595834066nod0slc1neg.png\n",
            "\n",
            "i= 755\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.756684168227383088294595834066nod0slc1pos.png\n",
            "\n",
            "i= 756\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc0pos.png\n",
            "\n",
            "i= 757\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc0neg.png\n",
            "\n",
            "i= 758\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc1pos.png\n",
            "\n",
            "i= 759\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc1neg.png\n",
            "\n",
            "i= 760\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc3neg.png\n",
            "\n",
            "i= 761\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc3pos.png\n",
            "\n",
            "i= 762\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc0neg.png\n",
            "\n",
            "i= 763\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc2pos.png\n",
            "\n",
            "i= 764\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.768276876111112560631432843476nod0slc2neg.png\n",
            "\n",
            "i= 765\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc0pos.png\n",
            "\n",
            "i= 766\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc1neg.png\n",
            "\n",
            "i= 767\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc1pos.png\n",
            "\n",
            "i= 768\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc2neg.png\n",
            "\n",
            "i= 769\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc3neg.png\n",
            "\n",
            "i= 770\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc3pos.png\n",
            "\n",
            "i= 771\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc2pos.png\n",
            "\n",
            "i= 772\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc4neg.png\n",
            "\n",
            "i= 773\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc4pos.png\n",
            "\n",
            "i= 774\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.805925269324902055566754756843nod0slc0pos.png\n",
            "\n",
            "i= 775\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.805925269324902055566754756843nod0slc0neg.png\n",
            "\n",
            "i= 776\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.805925269324902055566754756843nod0slc1neg.png\n",
            "\n",
            "i= 777\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.805925269324902055566754756843nod0slc1pos.png\n",
            "\n",
            "i= 778\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc5pos.png\n",
            "\n",
            "i= 779\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.801945620899034889998809817499nod0slc5neg.png\n",
            "\n",
            "i= 780\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.822128649427327893802314908658nod0slc0neg.png\n",
            "\n",
            "i= 781\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.822128649427327893802314908658nod0slc0pos.png\n",
            "\n",
            "i= 782\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.822128649427327893802314908658nod0slc1neg.png\n",
            "\n",
            "i= 783\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.822128649427327893802314908658nod0slc1pos.png\n",
            "\n",
            "i= 784\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc0neg.png\n",
            "\n",
            "i= 785\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc0pos.png\n",
            "\n",
            "i= 786\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc1neg.png\n",
            "\n",
            "i= 787\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc1pos.png\n",
            "\n",
            "i= 788\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc3neg.png\n",
            "\n",
            "i= 789\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc2neg.png\n",
            "\n",
            "i= 790\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc2pos.png\n",
            "\n",
            "i= 791\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc3pos.png\n",
            "\n",
            "i= 792\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc5neg.png\n",
            "\n",
            "i= 793\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc5pos.png\n",
            "\n",
            "i= 794\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc0neg.png\n",
            "\n",
            "i= 795\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc0pos.png\n",
            "\n",
            "i= 796\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc4neg.png\n",
            "\n",
            "i= 797\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod0slc4pos.png\n",
            "\n",
            "i= 798\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc1neg.png\n",
            "\n",
            "i= 799\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc1pos.png\n",
            "\n",
            "i= 800\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc2neg.png\n",
            "\n",
            "i= 801\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc2pos.png\n",
            "\n",
            "i= 802\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc3pos.png\n",
            "\n",
            "i= 803\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.826812708000318290301835871780nod1slc3neg.png\n",
            "\n",
            "i= 804\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod0slc0neg.png\n",
            "\n",
            "i= 805\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod0slc1neg.png\n",
            "\n",
            "i= 806\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod0slc0pos.png\n",
            "\n",
            "i= 807\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod1slc0pos.png\n",
            "\n",
            "i= 808\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod1slc1neg.png\n",
            "\n",
            "i= 809\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod1slc1pos.png\n",
            "\n",
            "i= 810\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.842317928015463083368074520378nod0slc0neg.png\n",
            "\n",
            "i= 811\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.842317928015463083368074520378nod0slc0pos.png\n",
            "\n",
            "i= 812\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.842317928015463083368074520378nod0slc1neg.png\n",
            "\n",
            "i= 813\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod1slc0neg.png\n",
            "\n",
            "i= 814\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.832260670372728970918746541371nod0slc1pos.png\n",
            "\n",
            "i= 815\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.842317928015463083368074520378nod0slc1pos.png\n",
            "\n",
            "i= 816\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc0pos.png\n",
            "\n",
            "i= 817\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc0neg.png\n",
            "\n",
            "i= 818\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc1pos.png\n",
            "\n",
            "i= 819\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc1neg.png\n",
            "\n",
            "i= 820\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc4pos.png\n",
            "\n",
            "i= 821\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc2neg.png\n",
            "\n",
            "i= 822\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc2pos.png\n",
            "\n",
            "i= 823\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc4neg.png\n",
            "\n",
            "i= 824\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc5neg.png\n",
            "\n",
            "i= 825\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc6neg.png\n",
            "\n",
            "i= 826\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc5pos.png\n",
            "\n",
            "i= 827\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc6pos.png\n",
            "\n",
            "i= 828\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc3neg.png\n",
            "\n",
            "i= 829\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc3pos.png\n",
            "\n",
            "i= 830\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc7neg.png\n",
            "\n",
            "i= 831\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc7pos.png\n",
            "\n",
            "i= 832\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc8neg.png\n",
            "\n",
            "i= 833\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc8pos.png\n",
            "\n",
            "i= 834\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc9pos.png\n",
            "\n",
            "i= 835\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.861997885565255340442123234170nod0slc0neg.png\n",
            "\n",
            "i= 836\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.850739282072340578344345230132nod0slc9neg.png\n",
            "\n",
            "i= 837\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.861997885565255340442123234170nod0slc0pos.png\n",
            "\n",
            "i= 838\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod0slc0pos.png\n",
            "\n",
            "i= 839\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.861997885565255340442123234170nod0slc1neg.png\n",
            "\n",
            "i= 840\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod0slc1neg.png\n",
            "\n",
            "i= 841\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod0slc0neg.png\n",
            "\n",
            "i= 842\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.861997885565255340442123234170nod0slc1pos.png\n",
            "\n",
            "i= 843\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod1slc0pos.png\n",
            "\n",
            "i= 844\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod1slc1neg.png\n",
            "\n",
            "i= 845\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod1slc0neg.png\n",
            "\n",
            "i= 846\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod0slc1pos.png\n",
            "\n",
            "i= 847\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod1slc1pos.png\n",
            "\n",
            "i= 848\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod2slc0pos.png\n",
            "\n",
            "i= 849\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod2slc0neg.png\n",
            "\n",
            "i= 850\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod2slc1pos.png\n",
            "\n",
            "i= 851\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc0neg.png\n",
            "\n",
            "i= 852\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.868211851413924881662621747734nod2slc1neg.png\n",
            "\n",
            "i= 853\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc0pos.png\n",
            "\n",
            "i= 854\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc1neg.png\n",
            "\n",
            "i= 855\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc2neg.png\n",
            "\n",
            "i= 856\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc3pos.png\n",
            "\n",
            "i= 857\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc1pos.png\n",
            "\n",
            "i= 858\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc4neg.png\n",
            "\n",
            "i= 859\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc4pos.png\n",
            "\n",
            "i= 860\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc5neg.png\n",
            "\n",
            "i= 861\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc5pos.png\n",
            "\n",
            "i= 862\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc3neg.png\n",
            "\n",
            "i= 863\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.892375496445736188832556446335nod0slc2pos.png\n",
            "\n",
            "i= 864\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod0slc0neg.png\n",
            "\n",
            "i= 865\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod0slc0pos.png\n",
            "\n",
            "i= 866\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod0slc1neg.png\n",
            "\n",
            "i= 867\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod0slc1pos.png\n",
            "\n",
            "i= 868\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod1slc0neg.png\n",
            "\n",
            "i= 869\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod1slc0pos.png\n",
            "\n",
            "i= 870\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc0pos.png\n",
            "\n",
            "i= 871\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc1pos.png\n",
            "\n",
            "i= 872\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod1slc1pos.png\n",
            "\n",
            "i= 873\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc2neg.png\n",
            "\n",
            "i= 874\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc1neg.png\n",
            "\n",
            "i= 875\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc2pos.png\n",
            "\n",
            "i= 876\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc3neg.png\n",
            "\n",
            "i= 877\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc3pos.png\n",
            "\n",
            "i= 878\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.905371958588660410240398317235nod0slc0neg.png\n",
            "\n",
            "i= 879\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.898642529028521482602829374444nod1slc1neg.png\n",
            "\n",
            "i= 880\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.910607280658963002048724648683nod0slc0neg.png\n",
            "\n",
            "i= 881\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.910607280658963002048724648683nod0slc0pos.png\n",
            "\n",
            "i= 882\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.910607280658963002048724648683nod0slc1neg.png\n",
            "\n",
            "i= 883\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.910607280658963002048724648683nod0slc1pos.png\n",
            "\n",
            "i= 884\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc0pos.png\n",
            "\n",
            "i= 885\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc1neg.png\n",
            "\n",
            "i= 886\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc0neg.png\n",
            "\n",
            "i= 887\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc1pos.png\n",
            "\n",
            "i= 888\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc2neg.png\n",
            "\n",
            "i= 889\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc3pos.png\n",
            "\n",
            "i= 890\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc4neg.png\n",
            "\n",
            "i= 891\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc4pos.png\n",
            "\n",
            "i= 892\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc3neg.png\n",
            "\n",
            "i= 893\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc2pos.png\n",
            "\n",
            "i= 894\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc5pos.png\n",
            "\n",
            "i= 895\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc6neg.png\n",
            "\n",
            "i= 896\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc5neg.png\n",
            "\n",
            "i= 897\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc6pos.png\n",
            "\n",
            "i= 898\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc7neg.png\n",
            "\n",
            "i= 899\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc0neg.png\n",
            "\n",
            "i= 900\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod0slc7pos.png\n",
            "\n",
            "i= 901\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc0pos.png\n",
            "\n",
            "i= 902\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc2neg.png\n",
            "\n",
            "i= 903\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc1pos.png\n",
            "\n",
            "i= 904\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc1neg.png\n",
            "\n",
            "i= 905\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc2pos.png\n",
            "\n",
            "i= 906\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc4neg.png\n",
            "\n",
            "i= 907\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc4pos.png\n",
            "\n",
            "i= 908\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc3neg.png\n",
            "\n",
            "i= 909\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc3pos.png\n",
            "\n",
            "i= 910\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc5neg.png\n",
            "\n",
            "i= 911\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.922852847124879997825997808179nod1slc5pos.png\n",
            "\n",
            "i= 912\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod0slc0neg.png\n",
            "\n",
            "i= 913\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod0slc0pos.png\n",
            "\n",
            "i= 914\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod0slc1neg.png\n",
            "\n",
            "i= 915\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod0slc1pos.png\n",
            "\n",
            "i= 916\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod1slc0neg.png\n",
            "\n",
            "i= 917\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod1slc1neg.png\n",
            "\n",
            "i= 918\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.939152384493874708850321969356nod0slc0neg.png\n",
            "\n",
            "i= 919\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.939152384493874708850321969356nod0slc0pos.png\n",
            "\n",
            "i= 920\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.939152384493874708850321969356nod0slc1neg.png\n",
            "\n",
            "i= 921\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.939152384493874708850321969356nod0slc1pos.png\n",
            "\n",
            "i= 922\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc0pos.png\n",
            "\n",
            "i= 923\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc0neg.png\n",
            "\n",
            "i= 924\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc1neg.png\n",
            "\n",
            "i= 925\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod1slc0pos.png\n",
            "\n",
            "i= 926\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.935683764293840351008008793409nod1slc1pos.png\n",
            "\n",
            "i= 927\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc1pos.png\n",
            "\n",
            "i= 928\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc2neg.png\n",
            "\n",
            "i= 929\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc2pos.png\n",
            "\n",
            "i= 930\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc3neg.png\n",
            "\n",
            "i= 931\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc3pos.png\n",
            "\n",
            "i= 932\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc4neg.png\n",
            "\n",
            "i= 933\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc5neg.png\n",
            "\n",
            "i= 934\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc4pos.png\n",
            "\n",
            "i= 935\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc5pos.png\n",
            "\n",
            "i= 936\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc7neg.png\n",
            "\n",
            "i= 937\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc7pos.png\n",
            "\n",
            "i= 938\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc8neg.png\n",
            "\n",
            "i= 939\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc8pos.png\n",
            "\n",
            "i= 940\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc9pos.png\n",
            "\n",
            "i= 941\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc6pos.png\n",
            "\n",
            "i= 942\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc6neg.png\n",
            "\n",
            "i= 943\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311nod0slc9neg.png\n",
            "\n",
            "i= 944\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc0neg.png\n",
            "\n",
            "i= 945\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc1neg.png\n",
            "\n",
            "i= 946\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc0pos.png\n",
            "\n",
            "i= 947\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc1pos.png\n",
            "\n",
            "i= 948\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc2neg.png\n",
            "\n",
            "i= 949\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc2pos.png\n",
            "\n",
            "i= 950\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc3neg.png\n",
            "\n",
            "i= 951\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc5neg.png\n",
            "\n",
            "i= 952\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc5pos.png\n",
            "\n",
            "i= 953\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc3pos.png\n",
            "\n",
            "i= 954\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.961063442349005937536597225349nod0slc0neg.png\n",
            "\n",
            "i= 955\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.961063442349005937536597225349nod0slc0pos.png\n",
            "\n",
            "i= 956\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.961063442349005937536597225349nod0slc1pos.png\n",
            "\n",
            "i= 957\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.961063442349005937536597225349nod0slc1neg.png\n",
            "\n",
            "i= 958\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod0slc0neg.png\n",
            "\n",
            "i= 959\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc4neg.png\n",
            "\n",
            "i= 960\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.952265563663939823135367733681nod0slc4pos.png\n",
            "\n",
            "i= 961\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod0slc1neg.png\n",
            "\n",
            "i= 962\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod0slc1pos.png\n",
            "\n",
            "i= 963\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc0neg.png\n",
            "\n",
            "i= 964\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc0pos.png\n",
            "\n",
            "i= 965\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc1neg.png\n",
            "\n",
            "i= 966\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc1pos.png\n",
            "\n",
            "i= 967\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc2neg.png\n",
            "\n",
            "i= 968\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc3pos.png\n",
            "\n",
            "i= 969\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod0slc0pos.png\n",
            "\n",
            "i= 970\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod2slc0neg.png\n",
            "\n",
            "i= 971\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod2slc0pos.png\n",
            "\n",
            "i= 972\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod2slc1neg.png\n",
            "\n",
            "i= 973\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod3slc0neg.png\n",
            "\n",
            "i= 974\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod2slc1pos.png\n",
            "\n",
            "i= 975\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc3neg.png\n",
            "\n",
            "i= 976\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod1slc2pos.png\n",
            "\n",
            "i= 977\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod3slc1neg.png\n",
            "\n",
            "i= 978\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod3slc0pos.png\n",
            "\n",
            "i= 979\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.964952370561266624992539111877nod3slc1pos.png\n",
            "\n",
            "i= 980\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970264865033574190975654369557nod0slc0pos.png\n",
            "\n",
            "i= 981\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970264865033574190975654369557nod0slc0neg.png\n",
            "\n",
            "i= 982\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970264865033574190975654369557nod0slc1pos.png\n",
            "\n",
            "i= 983\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970264865033574190975654369557nod0slc1neg.png\n",
            "\n",
            "i= 984\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod0slc0neg.png\n",
            "\n",
            "i= 985\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod0slc0pos.png\n",
            "\n",
            "i= 986\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod0slc1neg.png\n",
            "\n",
            "i= 987\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod1slc0pos.png\n",
            "\n",
            "i= 988\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod1slc1neg.png\n",
            "\n",
            "i= 989\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod1slc1pos.png\n",
            "\n",
            "i= 990\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod1slc0neg.png\n",
            "\n",
            "i= 991\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.970428941353693253759289796610nod0slc1pos.png\n",
            "\n",
            "i= 992\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.975426625618184773401026809852nod0slc0neg.png\n",
            "\n",
            "i= 993\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.975426625618184773401026809852nod0slc0pos.png\n",
            "\n",
            "i= 994\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.975426625618184773401026809852nod0slc1pos.png\n",
            "\n",
            "i= 995\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.979083010707182900091062408058nod0slc0neg.png\n",
            "\n",
            "i= 996\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.975426625618184773401026809852nod0slc1neg.png\n",
            "\n",
            "i= 997\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.979083010707182900091062408058nod0slc0pos.png\n",
            "\n",
            "i= 998\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.979083010707182900091062408058nod0slc1neg.png\n",
            "\n",
            "i= 999\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.979083010707182900091062408058nod0slc1pos.png\n",
            "\n",
            "i= 1000\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod7slc0neg.png\n",
            "\n",
            "i= 1001\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod6slc1pos.png\n",
            "\n",
            "i= 1002\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod6slc0pos.png\n",
            "\n",
            "i= 1003\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod5slc1pos.png\n",
            "\n",
            "i= 1004\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod7slc0pos.png\n",
            "\n",
            "i= 1005\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod7slc1neg.png\n",
            "\n",
            "i= 1006\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod6slc0neg.png\n",
            "\n",
            "i= 1007\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod7slc1pos.png\n",
            "\n",
            "i= 1008\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod8slc0pos.png\n",
            "\n",
            "i= 1009\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod8slc0neg.png\n",
            "\n",
            "i= 1010\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod8slc1neg.png\n",
            "\n",
            "i= 1011\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod8slc1pos.png\n",
            "\n",
            "i= 1012\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc0neg.png\n",
            "\n",
            "i= 1013\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc2pos.png\n",
            "\n",
            "i= 1014\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc1pos.png\n",
            "\n",
            "i= 1015\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc3pos.png\n",
            "\n",
            "i= 1016\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc3neg.png\n",
            "\n",
            "i= 1017\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202811684116768680758082619196nod0slc0neg.png\n",
            "\n",
            "i= 1018\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc2neg.png\n",
            "\n",
            "i= 1019\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc1neg.png\n",
            "\n",
            "i= 1020\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202464973819273687476049035824nod0slc0pos.png\n",
            "\n",
            "i= 1021\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202811684116768680758082619196nod0slc0pos.png\n",
            "\n",
            "i= 1022\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202811684116768680758082619196nod0slc1neg.png\n",
            "\n",
            "i= 1023\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202811684116768680758082619196nod0slc1pos.png\n",
            "\n",
            "i= 1024\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc0neg.png\n",
            "\n",
            "i= 1025\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc0pos.png\n",
            "\n",
            "i= 1026\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc1pos.png\n",
            "\n",
            "i= 1027\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc2neg.png\n",
            "\n",
            "i= 1028\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc2pos.png\n",
            "\n",
            "i= 1029\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc1neg.png\n",
            "\n",
            "i= 1030\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc3neg.png\n",
            "\n",
            "i= 1031\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc1neg.png\n",
            "\n",
            "i= 1032\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc0pos.png\n",
            "\n",
            "i= 1033\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc1pos.png\n",
            "\n",
            "i= 1034\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc0neg.png\n",
            "\n",
            "i= 1035\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod0slc3pos.png\n",
            "\n",
            "i= 1036\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc2pos.png\n",
            "\n",
            "i= 1037\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc2neg.png\n",
            "\n",
            "i= 1038\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc3neg.png\n",
            "\n",
            "i= 1039\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc4pos.png\n",
            "\n",
            "i= 1040\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc3pos.png\n",
            "\n",
            "i= 1041\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc5neg.png\n",
            "\n",
            "i= 1042\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc4neg.png\n",
            "\n",
            "i= 1043\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc5pos.png\n",
            "\n",
            "i= 1044\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc7pos.png\n",
            "\n",
            "i= 1045\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc6neg.png\n",
            "\n",
            "i= 1046\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod2slc0neg.png\n",
            "\n",
            "i= 1047\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod2slc0pos.png\n",
            "\n",
            "i= 1048\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod2slc1pos.png\n",
            "\n",
            "i= 1049\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc6pos.png\n",
            "\n",
            "i= 1050\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod1slc7neg.png\n",
            "\n",
            "i= 1051\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod3slc0neg.png\n",
            "\n",
            "i= 1052\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod2slc1neg.png\n",
            "\n",
            "i= 1053\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc0neg.png\n",
            "\n",
            "i= 1054\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod3slc0pos.png\n",
            "\n",
            "i= 1055\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod3slc1neg.png\n",
            "\n",
            "i= 1056\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc0pos.png\n",
            "\n",
            "i= 1057\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod3slc1pos.png\n",
            "\n",
            "i= 1058\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc2neg.png\n",
            "\n",
            "i= 1059\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc1neg.png\n",
            "\n",
            "i= 1060\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc3pos.png\n",
            "\n",
            "i= 1061\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod0slc0neg.png\n",
            "\n",
            "i= 1062\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc3neg.png\n",
            "\n",
            "i= 1063\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc2pos.png\n",
            "\n",
            "i= 1064\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod0slc0pos.png\n",
            "\n",
            "i= 1065\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod0slc1neg.png\n",
            "\n",
            "i= 1066\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod0slc1pos.png\n",
            "\n",
            "i= 1067\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.204303454658845815034433453512nod4slc1pos.png\n",
            "\n",
            "i= 1068\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod1slc0neg.png\n",
            "\n",
            "i= 1069\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod1slc1neg.png\n",
            "\n",
            "i= 1070\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod1slc1pos.png\n",
            "\n",
            "i= 1071\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.206539885154775002929031534291nod1slc0pos.png\n",
            "\n",
            "i= 1072\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc10pos.png\n",
            "\n",
            "i= 1073\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc0neg.png\n",
            "\n",
            "i= 1074\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc0pos.png\n",
            "\n",
            "i= 1075\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc11neg.png\n",
            "\n",
            "i= 1076\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc1neg.png\n",
            "\n",
            "i= 1077\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc10neg.png\n",
            "\n",
            "i= 1078\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc1pos.png\n",
            "\n",
            "i= 1079\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc2neg.png\n",
            "\n",
            "i= 1080\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc2pos.png\n",
            "\n",
            "i= 1081\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc11pos.png\n",
            "\n",
            "i= 1082\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc4neg.png\n",
            "\n",
            "i= 1083\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc3pos.png\n",
            "\n",
            "i= 1084\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc3neg.png\n",
            "\n",
            "i= 1085\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc5pos.png\n",
            "\n",
            "i= 1086\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc6neg.png\n",
            "\n",
            "i= 1087\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc4pos.png\n",
            "\n",
            "i= 1088\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc5neg.png\n",
            "\n",
            "i= 1089\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc6pos.png\n",
            "\n",
            "i= 1090\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc7pos.png\n",
            "\n",
            "i= 1091\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc7neg.png\n",
            "\n",
            "i= 1092\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc8neg.png\n",
            "\n",
            "i= 1093\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc9pos.png\n",
            "\n",
            "i= 1094\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc8pos.png\n",
            "\n",
            "i= 1095\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod0slc9neg.png\n",
            "\n",
            "i= 1096\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc0pos.png\n",
            "\n",
            "i= 1097\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc0neg.png\n",
            "\n",
            "i= 1098\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc1pos.png\n",
            "\n",
            "i= 1099\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc2neg.png\n",
            "\n",
            "i= 1100\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc2pos.png\n",
            "\n",
            "i= 1101\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc3neg.png\n",
            "\n",
            "i= 1102\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc1neg.png\n",
            "\n",
            "i= 1103\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc4pos.png\n",
            "\n",
            "i= 1104\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc5neg.png\n",
            "\n",
            "i= 1105\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc5pos.png\n",
            "\n",
            "i= 1106\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc6neg.png\n",
            "\n",
            "i= 1107\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc4neg.png\n",
            "\n",
            "i= 1108\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc7neg.png\n",
            "\n",
            "i= 1109\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc6pos.png\n",
            "\n",
            "i= 1110\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc7pos.png\n",
            "\n",
            "i= 1111\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208511362832825683639135205368nod1slc3pos.png\n",
            "\n",
            "i= 1112\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc0neg.png\n",
            "\n",
            "i= 1113\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc0pos.png\n",
            "\n",
            "i= 1114\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc1neg.png\n",
            "\n",
            "i= 1115\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc1pos.png\n",
            "\n",
            "i= 1116\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc2pos.png\n",
            "\n",
            "i= 1117\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc2neg.png\n",
            "\n",
            "i= 1118\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc3neg.png\n",
            "\n",
            "i= 1119\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod0slc3pos.png\n",
            "\n",
            "i= 1120\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc0neg.png\n",
            "\n",
            "i= 1121\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc1neg.png\n",
            "\n",
            "i= 1122\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc0pos.png\n",
            "\n",
            "i= 1123\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc1pos.png\n",
            "\n",
            "i= 1124\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc3neg.png\n",
            "\n",
            "i= 1125\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc3pos.png\n",
            "\n",
            "i= 1126\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc0neg.png\n",
            "\n",
            "i= 1127\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc0pos.png\n",
            "\n",
            "i= 1128\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc1neg.png\n",
            "\n",
            "i= 1129\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc2pos.png\n",
            "\n",
            "i= 1130\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod1slc2neg.png\n",
            "\n",
            "i= 1131\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc1pos.png\n",
            "\n",
            "i= 1132\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc2neg.png\n",
            "\n",
            "i= 1133\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc2pos.png\n",
            "\n",
            "i= 1134\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc3neg.png\n",
            "\n",
            "i= 1135\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.208737629504245244513001631764nod2slc3pos.png\n",
            "\n",
            "i= 1136\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.212346425055214308006918165305nod0slc0neg.png\n",
            "\n",
            "i= 1137\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.212346425055214308006918165305nod0slc0pos.png\n",
            "\n",
            "i= 1138\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc0pos.png\n",
            "\n",
            "i= 1139\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc1neg.png\n",
            "\n",
            "i= 1140\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.212346425055214308006918165305nod0slc1neg.png\n",
            "\n",
            "i= 1141\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc2neg.png\n",
            "\n",
            "i= 1142\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc2pos.png\n",
            "\n",
            "i= 1143\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc3neg.png\n",
            "\n",
            "i= 1144\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc3pos.png\n",
            "\n",
            "i= 1145\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc0neg.png\n",
            "\n",
            "i= 1146\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.212346425055214308006918165305nod0slc1pos.png\n",
            "\n",
            "i= 1147\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc1pos.png\n",
            "\n",
            "i= 1148\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc4neg.png\n",
            "\n",
            "i= 1149\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc5neg.png\n",
            "\n",
            "i= 1150\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc4pos.png\n",
            "\n",
            "i= 1151\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod1slc0neg.png\n",
            "\n",
            "i= 1152\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod1slc0pos.png\n",
            "\n",
            "i= 1153\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod1slc1pos.png\n",
            "\n",
            "i= 1154\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod0slc5pos.png\n",
            "\n",
            "i= 1155\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod2slc1neg.png\n",
            "\n",
            "i= 1156\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod0slc0neg.png\n",
            "\n",
            "i= 1157\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod2slc1pos.png\n",
            "\n",
            "i= 1158\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod1slc1neg.png\n",
            "\n",
            "i= 1159\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod2slc0pos.png\n",
            "\n",
            "i= 1160\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.213140617640021803112060161074nod2slc0neg.png\n",
            "\n",
            "i= 1161\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod0slc0pos.png\n",
            "\n",
            "i= 1162\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod0slc1neg.png\n",
            "\n",
            "i= 1163\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod1slc0neg.png\n",
            "\n",
            "i= 1164\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod1slc1neg.png\n",
            "\n",
            "i= 1165\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod1slc0pos.png\n",
            "\n",
            "i= 1166\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod1slc1pos.png\n",
            "\n",
            "i= 1167\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.216882370221919561230873289517nod0slc1pos.png\n",
            "\n",
            "i= 1168\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod0slc0neg.png\n",
            "\n",
            "i= 1169\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod1slc0neg.png\n",
            "\n",
            "i= 1170\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod0slc0pos.png\n",
            "\n",
            "i= 1171\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod1slc0pos.png\n",
            "\n",
            "i= 1172\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod1slc1pos.png\n",
            "\n",
            "i= 1173\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod1slc1neg.png\n",
            "\n",
            "i= 1174\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod2slc0neg.png\n",
            "\n",
            "i= 1175\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod2slc0pos.png\n",
            "\n",
            "i= 1176\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod0slc1neg.png\n",
            "\n",
            "i= 1177\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod0slc1pos.png\n",
            "\n",
            "i= 1178\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod2slc1pos.png\n",
            "\n",
            "i= 1179\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod3slc0neg.png\n",
            "\n",
            "i= 1180\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod3slc0pos.png\n",
            "\n",
            "i= 1181\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod2slc1neg.png\n",
            "\n",
            "i= 1182\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod3slc1pos.png\n",
            "\n",
            "i= 1183\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod0slc0pos.png\n",
            "\n",
            "i= 1184\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod1slc0neg.png\n",
            "\n",
            "i= 1185\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217589936421986638139451480826nod3slc1neg.png\n",
            "\n",
            "i= 1186\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod0slc0neg.png\n",
            "\n",
            "i= 1187\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod1slc0pos.png\n",
            "\n",
            "i= 1188\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod0slc1neg.png\n",
            "\n",
            "i= 1189\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod0slc1pos.png\n",
            "\n",
            "i= 1190\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod1slc1neg.png\n",
            "\n",
            "i= 1191\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod1slc1pos.png\n",
            "\n",
            "i= 1192\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod2slc0neg.png\n",
            "\n",
            "i= 1193\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod2slc0pos.png\n",
            "\n",
            "i= 1194\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod2slc1pos.png\n",
            "\n",
            "i= 1195\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217697417596902141600884006982nod2slc1neg.png\n",
            "\n",
            "i= 1196\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217955041973656886482758642958nod0slc0neg.png\n",
            "\n",
            "i= 1197\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217955041973656886482758642958nod0slc0pos.png\n",
            "\n",
            "i= 1198\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217955041973656886482758642958nod0slc1neg.png\n",
            "\n",
            "i= 1199\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc0pos.png\n",
            "\n",
            "i= 1200\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc1neg.png\n",
            "\n",
            "i= 1201\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc1pos.png\n",
            "\n",
            "i= 1202\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.217955041973656886482758642958nod0slc1pos.png\n",
            "\n",
            "i= 1203\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc0neg.png\n",
            "\n",
            "i= 1204\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc3neg.png\n",
            "\n",
            "i= 1205\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc2pos.png\n",
            "\n",
            "i= 1206\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc3pos.png\n",
            "\n",
            "i= 1207\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod0slc2neg.png\n",
            "\n",
            "i= 1208\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod1slc0neg.png\n",
            "\n",
            "i= 1209\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod1slc1neg.png\n",
            "\n",
            "i= 1210\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod1slc0pos.png\n",
            "\n",
            "i= 1211\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219087313261026510628926082729nod1slc1pos.png\n",
            "\n",
            "i= 1212\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc1pos.png\n",
            "\n",
            "i= 1213\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc2neg.png\n",
            "\n",
            "i= 1214\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc1neg.png\n",
            "\n",
            "i= 1215\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc2pos.png\n",
            "\n",
            "i= 1216\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc3neg.png\n",
            "\n",
            "i= 1217\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc0neg.png\n",
            "\n",
            "i= 1218\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc0pos.png\n",
            "\n",
            "i= 1219\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219349715895470349269596532320nod0slc3pos.png\n",
            "\n",
            "i= 1220\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod0slc0neg.png\n",
            "\n",
            "i= 1221\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod0slc0pos.png\n",
            "\n",
            "i= 1222\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod0slc1pos.png\n",
            "\n",
            "i= 1223\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod0slc1neg.png\n",
            "\n",
            "i= 1224\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod1slc0neg.png\n",
            "\n",
            "i= 1225\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod1slc0pos.png\n",
            "\n",
            "i= 1226\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod0slc0neg.png\n",
            "\n",
            "i= 1227\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod0slc1neg.png\n",
            "\n",
            "i= 1228\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod1slc0neg.png\n",
            "\n",
            "i= 1229\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod0slc1pos.png\n",
            "\n",
            "i= 1230\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod1slc0pos.png\n",
            "\n",
            "i= 1231\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod1slc1pos.png\n",
            "\n",
            "i= 1232\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.219909753224298157409438012179nod1slc1neg.png\n",
            "\n",
            "i= 1233\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod0slc0pos.png\n",
            "\n",
            "i= 1234\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod1slc1neg.png\n",
            "\n",
            "i= 1235\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod1slc1pos.png\n",
            "\n",
            "i= 1236\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod2slc0pos.png\n",
            "\n",
            "i= 1237\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod2slc0neg.png\n",
            "\n",
            "i= 1238\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod2slc1neg.png\n",
            "\n",
            "i= 1239\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225154811831720426832024114593nod2slc1pos.png\n",
            "\n",
            "i= 1240\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc1neg.png\n",
            "\n",
            "i= 1241\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc1pos.png\n",
            "\n",
            "i= 1242\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc0neg.png\n",
            "\n",
            "i= 1243\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc0pos.png\n",
            "\n",
            "i= 1244\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc2neg.png\n",
            "\n",
            "i= 1245\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc4neg.png\n",
            "\n",
            "i= 1246\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc3neg.png\n",
            "\n",
            "i= 1247\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc2pos.png\n",
            "\n",
            "i= 1248\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc4pos.png\n",
            "\n",
            "i= 1249\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc5neg.png\n",
            "\n",
            "i= 1250\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc3pos.png\n",
            "\n",
            "i= 1251\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc7pos.png\n",
            "\n",
            "i= 1252\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc8neg.png\n",
            "\n",
            "i= 1253\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc8pos.png\n",
            "\n",
            "i= 1254\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc5pos.png\n",
            "\n",
            "i= 1255\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc6neg.png\n",
            "\n",
            "i= 1256\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc9neg.png\n",
            "\n",
            "i= 1257\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod1slc0neg.png\n",
            "\n",
            "i= 1258\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc6pos.png\n",
            "\n",
            "i= 1259\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc7neg.png\n",
            "\n",
            "i= 1260\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod1slc1pos.png\n",
            "\n",
            "i= 1261\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod0slc9pos.png\n",
            "\n",
            "i= 1262\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod2slc0neg.png\n",
            "\n",
            "i= 1263\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod2slc0pos.png\n",
            "\n",
            "i= 1264\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod2slc1neg.png\n",
            "\n",
            "i= 1265\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod1slc1neg.png\n",
            "\n",
            "i= 1266\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod2slc1pos.png\n",
            "\n",
            "i= 1267\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc0neg.png\n",
            "\n",
            "i= 1268\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc1pos.png\n",
            "\n",
            "i= 1269\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod1slc0pos.png\n",
            "\n",
            "i= 1270\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc2neg.png\n",
            "\n",
            "i= 1271\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc2pos.png\n",
            "\n",
            "i= 1272\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc3neg.png\n",
            "\n",
            "i= 1273\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc0pos.png\n",
            "\n",
            "i= 1274\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc1neg.png\n",
            "\n",
            "i= 1275\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.225227615446398900698431118292nod3slc3pos.png\n",
            "\n",
            "i= 1276\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc0neg.png\n",
            "\n",
            "i= 1277\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc1neg.png\n",
            "\n",
            "i= 1278\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc0pos.png\n",
            "\n",
            "i= 1279\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc1pos.png\n",
            "\n",
            "i= 1280\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc2pos.png\n",
            "\n",
            "i= 1281\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc5neg.png\n",
            "\n",
            "i= 1282\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc3neg.png\n",
            "\n",
            "i= 1283\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc3pos.png\n",
            "\n",
            "i= 1284\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc2neg.png\n",
            "\n",
            "i= 1285\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc4pos.png\n",
            "\n",
            "i= 1286\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc4neg.png\n",
            "\n",
            "i= 1287\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc0neg.png\n",
            "\n",
            "i= 1288\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226383054119800793308721198594nod0slc5pos.png\n",
            "\n",
            "i= 1289\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc0pos.png\n",
            "\n",
            "i= 1290\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc1neg.png\n",
            "\n",
            "i= 1291\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc1pos.png\n",
            "\n",
            "i= 1292\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc2neg.png\n",
            "\n",
            "i= 1293\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc2pos.png\n",
            "\n",
            "i= 1294\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod0slc0neg.png\n",
            "\n",
            "i= 1295\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc3pos.png\n",
            "\n",
            "i= 1296\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod1slc1neg.png\n",
            "\n",
            "i= 1297\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod0slc3neg.png\n",
            "\n",
            "i= 1298\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod0slc0pos.png\n",
            "\n",
            "i= 1299\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod0slc1neg.png\n",
            "\n",
            "i= 1300\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod1slc0neg.png\n",
            "\n",
            "i= 1301\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod1slc0pos.png\n",
            "\n",
            "i= 1302\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.226456162308124493341905600418nod1slc1pos.png\n",
            "\n",
            "i= 1303\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod0slc1pos.png\n",
            "\n",
            "i= 1304\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc0neg.png\n",
            "\n",
            "i= 1305\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc0pos.png\n",
            "\n",
            "i= 1306\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc1pos.png\n",
            "\n",
            "i= 1307\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc1neg.png\n",
            "\n",
            "i= 1308\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc2neg.png\n",
            "\n",
            "i= 1309\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc2pos.png\n",
            "\n",
            "i= 1310\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc3neg.png\n",
            "\n",
            "i= 1311\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod1slc3pos.png\n",
            "\n",
            "i= 1312\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc1neg.png\n",
            "\n",
            "i= 1313\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc1pos.png\n",
            "\n",
            "i= 1314\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc0neg.png\n",
            "\n",
            "i= 1315\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc0pos.png\n",
            "\n",
            "i= 1316\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc2pos.png\n",
            "\n",
            "i= 1317\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc3neg.png\n",
            "\n",
            "i= 1318\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc3pos.png\n",
            "\n",
            "i= 1319\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227796349777753378641347819780nod2slc2neg.png\n",
            "\n",
            "i= 1320\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc0neg.png\n",
            "\n",
            "i= 1321\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc1neg.png\n",
            "\n",
            "i= 1322\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc1pos.png\n",
            "\n",
            "i= 1323\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc3neg.png\n",
            "\n",
            "i= 1324\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc0pos.png\n",
            "\n",
            "i= 1325\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc3pos.png\n",
            "\n",
            "i= 1326\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc0neg.png\n",
            "\n",
            "i= 1327\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc2neg.png\n",
            "\n",
            "i= 1328\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227885601428639043345478571594nod0slc2pos.png\n",
            "\n",
            "i= 1329\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc1pos.png\n",
            "\n",
            "i= 1330\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc1neg.png\n",
            "\n",
            "i= 1331\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc2neg.png\n",
            "\n",
            "i= 1332\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc3neg.png\n",
            "\n",
            "i= 1333\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc0pos.png\n",
            "\n",
            "i= 1334\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc3pos.png\n",
            "\n",
            "i= 1335\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc2pos.png\n",
            "\n",
            "i= 1336\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc4neg.png\n",
            "\n",
            "i= 1337\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc5neg.png\n",
            "\n",
            "i= 1338\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc4pos.png\n",
            "\n",
            "i= 1339\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod0slc0pos.png\n",
            "\n",
            "i= 1340\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod0slc1neg.png\n",
            "\n",
            "i= 1341\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod0slc0neg.png\n",
            "\n",
            "i= 1342\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.227962600322799211676960828223nod0slc5pos.png\n",
            "\n",
            "i= 1343\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod1slc0neg.png\n",
            "\n",
            "i= 1344\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod1slc0pos.png\n",
            "\n",
            "i= 1345\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod1slc1neg.png\n",
            "\n",
            "i= 1346\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod1slc1pos.png\n",
            "\n",
            "i= 1347\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod0slc1pos.png\n",
            "\n",
            "i= 1348\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod2slc0neg.png\n",
            "\n",
            "i= 1349\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod2slc0pos.png\n",
            "\n",
            "i= 1350\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod2slc1neg.png\n",
            "\n",
            "i= 1351\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc0pos.png\n",
            "\n",
            "i= 1352\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc1pos.png\n",
            "\n",
            "i= 1353\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc1neg.png\n",
            "\n",
            "i= 1354\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.231002159523969307155990628066nod2slc1pos.png\n",
            "\n",
            "i= 1355\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc0neg.png\n",
            "\n",
            "i= 1356\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc2pos.png\n",
            "\n",
            "i= 1357\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc3pos.png\n",
            "\n",
            "i= 1358\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc0neg.png\n",
            "\n",
            "i= 1359\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc2neg.png\n",
            "\n",
            "i= 1360\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.232071262560365924176679652948nod0slc3neg.png\n",
            "\n",
            "i= 1361\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc0pos.png\n",
            "\n",
            "i= 1362\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc1neg.png\n",
            "\n",
            "i= 1363\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc1pos.png\n",
            "\n",
            "i= 1364\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc2neg.png\n",
            "\n",
            "i= 1365\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc2pos.png\n",
            "\n",
            "i= 1366\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.237428977311365557972720635401nod0slc0neg.png\n",
            "\n",
            "i= 1367\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.237428977311365557972720635401nod0slc1neg.png\n",
            "\n",
            "i= 1368\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.237428977311365557972720635401nod0slc1pos.png\n",
            "\n",
            "i= 1369\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.237428977311365557972720635401nod0slc0pos.png\n",
            "\n",
            "i= 1370\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc3pos.png\n",
            "\n",
            "i= 1371\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.235364978775280910367690540811nod0slc3neg.png\n",
            "\n",
            "i= 1372\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod0slc0neg.png\n",
            "\n",
            "i= 1373\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod0slc0pos.png\n",
            "\n",
            "i= 1374\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod0slc1neg.png\n",
            "\n",
            "i= 1375\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod0slc1pos.png\n",
            "\n",
            "i= 1376\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod1slc0neg.png\n",
            "\n",
            "i= 1377\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod1slc1neg.png\n",
            "\n",
            "i= 1378\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod1slc0pos.png\n",
            "\n",
            "i= 1379\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.240969450540588211676803094518nod1slc1pos.png\n",
            "\n",
            "i= 1380\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.241570579760883349458693655367nod0slc0neg.png\n",
            "\n",
            "i= 1381\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.241570579760883349458693655367nod0slc0pos.png\n",
            "\n",
            "i= 1382\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod0slc0neg.png\n",
            "\n",
            "i= 1383\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod0slc0pos.png\n",
            "\n",
            "i= 1384\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod0slc1neg.png\n",
            "\n",
            "i= 1385\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.241570579760883349458693655367nod0slc1pos.png\n",
            "\n",
            "i= 1386\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.241570579760883349458693655367nod0slc1neg.png\n",
            "\n",
            "i= 1387\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod1slc0neg.png\n",
            "\n",
            "i= 1388\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod1slc0pos.png\n",
            "\n",
            "i= 1389\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod0slc1pos.png\n",
            "\n",
            "i= 1390\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod1slc1neg.png\n",
            "\n",
            "i= 1391\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod1slc1pos.png\n",
            "\n",
            "i= 1392\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod2slc0neg.png\n",
            "\n",
            "i= 1393\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod2slc1neg.png\n",
            "\n",
            "i= 1394\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod3slc0pos.png\n",
            "\n",
            "i= 1395\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod3slc0neg.png\n",
            "\n",
            "i= 1396\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod3slc1neg.png\n",
            "\n",
            "i= 1397\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod2slc1pos.png\n",
            "\n",
            "i= 1398\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod2slc0pos.png\n",
            "\n",
            "i= 1399\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod4slc0pos.png\n",
            "\n",
            "i= 1400\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod4slc1neg.png\n",
            "\n",
            "i= 1401\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod4slc0neg.png\n",
            "\n",
            "i= 1402\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod3slc1pos.png\n",
            "\n",
            "i= 1403\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.243094273518213382155770295147nod4slc1pos.png\n",
            "\n",
            "i= 1404\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod0slc0neg.png\n",
            "\n",
            "i= 1405\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod0slc0pos.png\n",
            "\n",
            "i= 1406\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod0slc1pos.png\n",
            "\n",
            "i= 1407\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod1slc0pos.png\n",
            "\n",
            "i= 1408\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod1slc1neg.png\n",
            "\n",
            "i= 1409\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod1slc1pos.png\n",
            "\n",
            "i= 1410\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod1slc0neg.png\n",
            "\n",
            "i= 1411\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244447966386688625240438849169nod0slc1neg.png\n",
            "\n",
            "i= 1412\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244204120220889433826451158706nod0slc1neg.png\n",
            "\n",
            "i= 1413\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244681063194071446501270815660nod0slc0neg.png\n",
            "\n",
            "i= 1414\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244681063194071446501270815660nod0slc0pos.png\n",
            "\n",
            "i= 1415\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244447966386688625240438849169nod0slc0neg.png\n",
            "\n",
            "i= 1416\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244447966386688625240438849169nod0slc0pos.png\n",
            "\n",
            "i= 1417\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244447966386688625240438849169nod0slc1pos.png\n",
            "\n",
            "i= 1418\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244681063194071446501270815660nod0slc1neg.png\n",
            "\n",
            "i= 1419\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc0neg.png\n",
            "\n",
            "i= 1420\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc0pos.png\n",
            "\n",
            "i= 1421\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc1pos.png\n",
            "\n",
            "i= 1422\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc1neg.png\n",
            "\n",
            "i= 1423\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.244681063194071446501270815660nod0slc1pos.png\n",
            "\n",
            "i= 1424\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc2pos.png\n",
            "\n",
            "i= 1425\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc2neg.png\n",
            "\n",
            "i= 1426\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc0neg.png\n",
            "\n",
            "i= 1427\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc0pos.png\n",
            "\n",
            "i= 1428\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc1neg.png\n",
            "\n",
            "i= 1429\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc1pos.png\n",
            "\n",
            "i= 1430\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc2neg.png\n",
            "\n",
            "i= 1431\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc3neg.png\n",
            "\n",
            "i= 1432\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod0slc3pos.png\n",
            "\n",
            "i= 1433\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc2pos.png\n",
            "\n",
            "i= 1434\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc3neg.png\n",
            "\n",
            "i= 1435\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod1slc3pos.png\n",
            "\n",
            "i= 1436\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod2slc1neg.png\n",
            "\n",
            "i= 1437\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod2slc0pos.png\n",
            "\n",
            "i= 1438\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod2slc1pos.png\n",
            "\n",
            "i= 1439\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.247769845138587733933485039556nod2slc0neg.png\n",
            "\n",
            "i= 1440\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod0slc1neg.png\n",
            "\n",
            "i= 1441\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc0neg.png\n",
            "\n",
            "i= 1442\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod0slc1pos.png\n",
            "\n",
            "i= 1443\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc1neg.png\n",
            "\n",
            "i= 1444\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod0slc0neg.png\n",
            "\n",
            "i= 1445\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod0slc0pos.png\n",
            "\n",
            "i= 1446\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc1pos.png\n",
            "\n",
            "i= 1447\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc2neg.png\n",
            "\n",
            "i= 1448\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc0pos.png\n",
            "\n",
            "i= 1449\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc2pos.png\n",
            "\n",
            "i= 1450\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc3pos.png\n",
            "\n",
            "i= 1451\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod1slc3neg.png\n",
            "\n",
            "i= 1452\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc0neg.png\n",
            "\n",
            "i= 1453\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc0pos.png\n",
            "\n",
            "i= 1454\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc2neg.png\n",
            "\n",
            "i= 1455\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc2pos.png\n",
            "\n",
            "i= 1456\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc3neg.png\n",
            "\n",
            "i= 1457\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc3pos.png\n",
            "\n",
            "i= 1458\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc4neg.png\n",
            "\n",
            "i= 1459\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc1neg.png\n",
            "\n",
            "i= 1460\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc1pos.png\n",
            "\n",
            "i= 1461\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc4pos.png\n",
            "\n",
            "i= 1462\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc5neg.png\n",
            "\n",
            "i= 1463\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc5pos.png\n",
            "\n",
            "i= 1464\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc6neg.png\n",
            "\n",
            "i= 1465\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc6pos.png\n",
            "\n",
            "i= 1466\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc7neg.png\n",
            "\n",
            "i= 1467\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod0slc0neg.png\n",
            "\n",
            "i= 1468\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.249530219848512542668813996730nod2slc7pos.png\n",
            "\n",
            "i= 1469\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod0slc0pos.png\n",
            "\n",
            "i= 1470\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod0slc1neg.png\n",
            "\n",
            "i= 1471\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod1slc0pos.png\n",
            "\n",
            "i= 1472\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod1slc1neg.png\n",
            "\n",
            "i= 1473\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod1slc0neg.png\n",
            "\n",
            "i= 1474\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod0slc1pos.png\n",
            "\n",
            "i= 1475\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc0neg.png\n",
            "\n",
            "i= 1476\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod1slc1pos.png\n",
            "\n",
            "i= 1477\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc0pos.png\n",
            "\n",
            "i= 1478\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc1neg.png\n",
            "\n",
            "i= 1479\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc1pos.png\n",
            "\n",
            "i= 1480\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc2pos.png\n",
            "\n",
            "i= 1481\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc3neg.png\n",
            "\n",
            "i= 1482\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc3pos.png\n",
            "\n",
            "i= 1483\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod2slc2neg.png\n",
            "\n",
            "i= 1484\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod3slc0neg.png\n",
            "\n",
            "i= 1485\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod3slc1pos.png\n",
            "\n",
            "i= 1486\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod4slc0neg.png\n",
            "\n",
            "i= 1487\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod4slc0pos.png\n",
            "\n",
            "i= 1488\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod3slc0pos.png\n",
            "\n",
            "i= 1489\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod3slc1neg.png\n",
            "\n",
            "i= 1490\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod4slc1neg.png\n",
            "\n",
            "i= 1491\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod4slc1pos.png\n",
            "\n",
            "i= 1492\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod5slc0neg.png\n",
            "\n",
            "i= 1493\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod5slc0pos.png\n",
            "\n",
            "i= 1494\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod5slc1neg.png\n",
            "\n",
            "i= 1495\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250397690690072950000431855143nod5slc1pos.png\n",
            "\n",
            "i= 1496\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc0neg.png\n",
            "\n",
            "i= 1497\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc1neg.png\n",
            "\n",
            "i= 1498\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc0pos.png\n",
            "\n",
            "i= 1499\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc2pos.png\n",
            "\n",
            "i= 1500\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc3neg.png\n",
            "\n",
            "i= 1501\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc3pos.png\n",
            "\n",
            "i= 1502\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc0neg.png\n",
            "\n",
            "i= 1503\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc0pos.png\n",
            "\n",
            "i= 1504\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc2neg.png\n",
            "\n",
            "i= 1505\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.250863365157630276148828903732nod0slc1pos.png\n",
            "\n",
            "i= 1506\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc2neg.png\n",
            "\n",
            "i= 1507\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc1neg.png\n",
            "\n",
            "i= 1508\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc3neg.png\n",
            "\n",
            "i= 1509\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc2pos.png\n",
            "\n",
            "i= 1510\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc1pos.png\n",
            "\n",
            "i= 1511\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc3pos.png\n",
            "\n",
            "i= 1512\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc4neg.png\n",
            "\n",
            "i= 1513\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252697338970999211181671881792nod0slc0neg.png\n",
            "\n",
            "i= 1514\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc4pos.png\n",
            "\n",
            "i= 1515\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252697338970999211181671881792nod0slc1pos.png\n",
            "\n",
            "i= 1516\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252697338970999211181671881792nod0slc1neg.png\n",
            "\n",
            "i= 1517\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc5neg.png\n",
            "\n",
            "i= 1518\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252634638822000832774167856951nod0slc5pos.png\n",
            "\n",
            "i= 1519\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.252697338970999211181671881792nod0slc0pos.png\n",
            "\n",
            "i= 1520\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc0pos.png\n",
            "\n",
            "i= 1521\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc0neg.png\n",
            "\n",
            "i= 1522\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc1neg.png\n",
            "\n",
            "i= 1523\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc2pos.png\n",
            "\n",
            "i= 1524\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc2neg.png\n",
            "\n",
            "i= 1525\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc3neg.png\n",
            "\n",
            "i= 1526\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc1pos.png\n",
            "\n",
            "i= 1527\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod0slc3pos.png\n",
            "\n",
            "i= 1528\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod1slc1pos.png\n",
            "\n",
            "i= 1529\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod2slc0neg.png\n",
            "\n",
            "i= 1530\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod2slc0pos.png\n",
            "\n",
            "i= 1531\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod2slc1neg.png\n",
            "\n",
            "i= 1532\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod1slc0neg.png\n",
            "\n",
            "i= 1533\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc0neg.png\n",
            "\n",
            "i= 1534\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod2slc1pos.png\n",
            "\n",
            "i= 1535\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc0pos.png\n",
            "\n",
            "i= 1536\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc1neg.png\n",
            "\n",
            "i= 1537\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod1slc1neg.png\n",
            "\n",
            "i= 1538\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.253322967203074795232627653819nod1slc0pos.png\n",
            "\n",
            "i= 1539\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc1pos.png\n",
            "\n",
            "i= 1540\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc2neg.png\n",
            "\n",
            "i= 1541\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc2pos.png\n",
            "\n",
            "i= 1542\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc3neg.png\n",
            "\n",
            "i= 1543\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod0slc3pos.png\n",
            "\n",
            "i= 1544\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod1slc0neg.png\n",
            "\n",
            "i= 1545\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod1slc0pos.png\n",
            "\n",
            "i= 1546\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod1slc1neg.png\n",
            "\n",
            "i= 1547\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.254254303842550572473665729969nod1slc1pos.png\n",
            "\n",
            "i= 1548\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc0neg.png\n",
            "\n",
            "i= 1549\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc0pos.png\n",
            "\n",
            "i= 1550\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc2neg.png\n",
            "\n",
            "i= 1551\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc2pos.png\n",
            "\n",
            "i= 1552\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc3neg.png\n",
            "\n",
            "i= 1553\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc3pos.png\n",
            "\n",
            "i= 1554\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc1neg.png\n",
            "\n",
            "i= 1555\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259227883564429312164962953756nod0slc1pos.png\n",
            "\n",
            "i= 1556\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod0slc0pos.png\n",
            "\n",
            "i= 1557\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod0slc1neg.png\n",
            "\n",
            "i= 1558\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod0slc0neg.png\n",
            "\n",
            "i= 1559\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc0neg.png\n",
            "\n",
            "i= 1560\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod0slc1pos.png\n",
            "\n",
            "i= 1561\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc3neg.png\n",
            "\n",
            "i= 1562\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc2neg.png\n",
            "\n",
            "i= 1563\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc3pos.png\n",
            "\n",
            "i= 1564\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc2pos.png\n",
            "\n",
            "i= 1565\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc0pos.png\n",
            "\n",
            "i= 1566\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc0neg.png\n",
            "\n",
            "i= 1567\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc1pos.png\n",
            "\n",
            "i= 1568\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod1slc1neg.png\n",
            "\n",
            "i= 1569\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc0pos.png\n",
            "\n",
            "i= 1570\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc1neg.png\n",
            "\n",
            "i= 1571\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc2pos.png\n",
            "\n",
            "i= 1572\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc3neg.png\n",
            "\n",
            "i= 1573\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc1pos.png\n",
            "\n",
            "i= 1574\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc2neg.png\n",
            "\n",
            "i= 1575\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.259543921154154401875872845498nod2slc3pos.png\n",
            "\n",
            "i= 1576\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod0slc0neg.png\n",
            "\n",
            "i= 1577\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod0slc0pos.png\n",
            "\n",
            "i= 1578\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod1slc0neg.png\n",
            "\n",
            "i= 1579\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod1slc0pos.png\n",
            "\n",
            "i= 1580\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod1slc1neg.png\n",
            "\n",
            "i= 1581\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod0slc1pos.png\n",
            "\n",
            "i= 1582\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod0slc1neg.png\n",
            "\n",
            "i= 1583\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod1slc1pos.png\n",
            "\n",
            "i= 1584\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod2slc0neg.png\n",
            "\n",
            "i= 1585\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod2slc0pos.png\n",
            "\n",
            "i= 1586\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod2slc1neg.png\n",
            "\n",
            "i= 1587\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod2slc1pos.png\n",
            "\n",
            "i= 1588\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod3slc0neg.png\n",
            "\n",
            "i= 1589\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod3slc1neg.png\n",
            "\n",
            "i= 1590\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod3slc0pos.png\n",
            "\n",
            "i= 1591\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod3slc1pos.png\n",
            "\n",
            "i= 1592\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod4slc0pos.png\n",
            "\n",
            "i= 1593\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc1neg.png\n",
            "\n",
            "i= 1594\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc0pos.png\n",
            "\n",
            "i= 1595\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc0neg.png\n",
            "\n",
            "i= 1596\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod4slc0neg.png\n",
            "\n",
            "i= 1597\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod4slc1neg.png\n",
            "\n",
            "i= 1598\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.265453131727473342790950829556nod4slc1pos.png\n",
            "\n",
            "i= 1599\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc2pos.png\n",
            "\n",
            "i= 1600\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc1pos.png\n",
            "\n",
            "i= 1601\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc3neg.png\n",
            "\n",
            "i= 1602\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc2neg.png\n",
            "\n",
            "i= 1603\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod0slc3pos.png\n",
            "\n",
            "i= 1604\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod1slc0neg.png\n",
            "\n",
            "i= 1605\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod1slc0pos.png\n",
            "\n",
            "i= 1606\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod2slc0pos.png\n",
            "\n",
            "i= 1607\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod2slc0neg.png\n",
            "\n",
            "i= 1608\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod2slc1neg.png\n",
            "\n",
            "i= 1609\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod1slc1neg.png\n",
            "\n",
            "i= 1610\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod1slc1pos.png\n",
            "\n",
            "i= 1611\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267519732763035023633235877753nod2slc1pos.png\n",
            "\n",
            "i= 1612\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod0slc0neg.png\n",
            "\n",
            "i= 1613\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod0slc0pos.png\n",
            "\n",
            "i= 1614\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod0slc1pos.png\n",
            "\n",
            "i= 1615\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod0slc1neg.png\n",
            "\n",
            "i= 1616\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod1slc0neg.png\n",
            "\n",
            "i= 1617\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod1slc1neg.png\n",
            "\n",
            "i= 1618\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod1slc1pos.png\n",
            "\n",
            "i= 1619\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod2slc0neg.png\n",
            "\n",
            "i= 1620\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod2slc0pos.png\n",
            "\n",
            "i= 1621\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod1slc0pos.png\n",
            "\n",
            "i= 1622\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc0neg.png\n",
            "\n",
            "i= 1623\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc0pos.png\n",
            "\n",
            "i= 1624\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc1neg.png\n",
            "\n",
            "i= 1625\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod2slc1pos.png\n",
            "\n",
            "i= 1626\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod2slc1neg.png\n",
            "\n",
            "i= 1627\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc1pos.png\n",
            "\n",
            "i= 1628\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc2pos.png\n",
            "\n",
            "i= 1629\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc2neg.png\n",
            "\n",
            "i= 1630\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc3neg.png\n",
            "\n",
            "i= 1631\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc3pos.png\n",
            "\n",
            "i= 1632\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc4neg.png\n",
            "\n",
            "i= 1633\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc4pos.png\n",
            "\n",
            "i= 1634\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc5neg.png\n",
            "\n",
            "i= 1635\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc5pos.png\n",
            "\n",
            "i= 1636\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc6pos.png\n",
            "\n",
            "i= 1637\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc6neg.png\n",
            "\n",
            "i= 1638\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc8neg.png\n",
            "\n",
            "i= 1639\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc9neg.png\n",
            "\n",
            "i= 1640\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc8pos.png\n",
            "\n",
            "i= 1641\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc7neg.png\n",
            "\n",
            "i= 1642\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc7pos.png\n",
            "\n",
            "i= 1643\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.267957701183569638795986183786nod3slc9pos.png\n",
            "\n",
            "i= 1644\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod0slc0pos.png\n",
            "\n",
            "i= 1645\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod0slc1neg.png\n",
            "\n",
            "i= 1646\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod0slc1pos.png\n",
            "\n",
            "i= 1647\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod0slc0neg.png\n",
            "\n",
            "i= 1648\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod1slc0neg.png\n",
            "\n",
            "i= 1649\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod1slc0pos.png\n",
            "\n",
            "i= 1650\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod1slc1pos.png\n",
            "\n",
            "i= 1651\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod1slc1neg.png\n",
            "\n",
            "i= 1652\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod2slc0neg.png\n",
            "\n",
            "i= 1653\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod2slc1pos.png\n",
            "\n",
            "i= 1654\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270152671889301412052226973069nod0slc0neg.png\n",
            "\n",
            "i= 1655\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270152671889301412052226973069nod0slc0pos.png\n",
            "\n",
            "i= 1656\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270152671889301412052226973069nod0slc1pos.png\n",
            "\n",
            "i= 1657\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270152671889301412052226973069nod0slc1neg.png\n",
            "\n",
            "i= 1658\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod0slc0neg.png\n",
            "\n",
            "i= 1659\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod0slc0pos.png\n",
            "\n",
            "i= 1660\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod2slc0pos.png\n",
            "\n",
            "i= 1661\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.269075535958871753309238331179nod2slc1neg.png\n",
            "\n",
            "i= 1662\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod0slc1neg.png\n",
            "\n",
            "i= 1663\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod1slc0neg.png\n",
            "\n",
            "i= 1664\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod1slc0pos.png\n",
            "\n",
            "i= 1665\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod0slc1pos.png\n",
            "\n",
            "i= 1666\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod1slc1neg.png\n",
            "\n",
            "i= 1667\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod1slc1pos.png\n",
            "\n",
            "i= 1668\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod2slc0neg.png\n",
            "\n",
            "i= 1669\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod2slc0pos.png\n",
            "\n",
            "i= 1670\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod2slc1neg.png\n",
            "\n",
            "i= 1671\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272042302501586336192628818865nod0slc0pos.png\n",
            "\n",
            "i= 1672\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272042302501586336192628818865nod0slc1neg.png\n",
            "\n",
            "i= 1673\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.270390050141765094612147226290nod2slc1pos.png\n",
            "\n",
            "i= 1674\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272042302501586336192628818865nod0slc0neg.png\n",
            "\n",
            "i= 1675\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272042302501586336192628818865nod0slc1pos.png\n",
            "\n",
            "i= 1676\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod0slc0neg.png\n",
            "\n",
            "i= 1677\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod0slc0pos.png\n",
            "\n",
            "i= 1678\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod0slc1neg.png\n",
            "\n",
            "i= 1679\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod1slc1neg.png\n",
            "\n",
            "i= 1680\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod0slc1pos.png\n",
            "\n",
            "i= 1681\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272961322147784625028175033640nod0slc0neg.png\n",
            "\n",
            "i= 1682\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod1slc1pos.png\n",
            "\n",
            "i= 1683\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod1slc0pos.png\n",
            "\n",
            "i= 1684\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod0slc0neg.png\n",
            "\n",
            "i= 1685\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272961322147784625028175033640nod0slc1pos.png\n",
            "\n",
            "i= 1686\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272190966764020277652079081128nod1slc0neg.png\n",
            "\n",
            "i= 1687\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272961322147784625028175033640nod0slc0pos.png\n",
            "\n",
            "i= 1688\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.272961322147784625028175033640nod0slc1neg.png\n",
            "\n",
            "i= 1689\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod0slc0pos.png\n",
            "\n",
            "i= 1690\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod1slc0pos.png\n",
            "\n",
            "i= 1691\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod1slc0neg.png\n",
            "\n",
            "i= 1692\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod1slc1pos.png\n",
            "\n",
            "i= 1693\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod0slc1pos.png\n",
            "\n",
            "i= 1694\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod1slc1neg.png\n",
            "\n",
            "i= 1695\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod0slc0neg.png\n",
            "\n",
            "i= 1696\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod0slc0pos.png\n",
            "\n",
            "i= 1697\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.274052674198758621258447180130nod0slc1neg.png\n",
            "\n",
            "i= 1698\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod0slc1pos.png\n",
            "\n",
            "i= 1699\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod0slc1neg.png\n",
            "\n",
            "i= 1700\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc0neg.png\n",
            "\n",
            "i= 1701\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc1neg.png\n",
            "\n",
            "i= 1702\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc0pos.png\n",
            "\n",
            "i= 1703\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc1pos.png\n",
            "\n",
            "i= 1704\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc2neg.png\n",
            "\n",
            "i= 1705\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc2pos.png\n",
            "\n",
            "i= 1706\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc3neg.png\n",
            "\n",
            "i= 1707\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod1slc3pos.png\n",
            "\n",
            "i= 1708\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc0neg.png\n",
            "\n",
            "i= 1709\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc1pos.png\n",
            "\n",
            "i= 1710\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc1neg.png\n",
            "\n",
            "i= 1711\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc0pos.png\n",
            "\n",
            "i= 1712\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc2neg.png\n",
            "\n",
            "i= 1713\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc2pos.png\n",
            "\n",
            "i= 1714\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc3neg.png\n",
            "\n",
            "i= 1715\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc4pos.png\n",
            "\n",
            "i= 1716\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc4neg.png\n",
            "\n",
            "i= 1717\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc3pos.png\n",
            "\n",
            "i= 1718\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc5neg.png\n",
            "\n",
            "i= 1719\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275007193025729362844652516689nod2slc5pos.png\n",
            "\n",
            "i= 1720\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc0neg.png\n",
            "\n",
            "i= 1721\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc1neg.png\n",
            "\n",
            "i= 1722\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc0pos.png\n",
            "\n",
            "i= 1723\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc1pos.png\n",
            "\n",
            "i= 1724\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc2neg.png\n",
            "\n",
            "i= 1725\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc2pos.png\n",
            "\n",
            "i= 1726\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc3neg.png\n",
            "\n",
            "i= 1727\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc3pos.png\n",
            "\n",
            "i= 1728\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc4pos.png\n",
            "\n",
            "i= 1729\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc5neg.png\n",
            "\n",
            "i= 1730\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc0pos.png\n",
            "\n",
            "i= 1731\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc1neg.png\n",
            "\n",
            "i= 1732\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc4neg.png\n",
            "\n",
            "i= 1733\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod0slc5pos.png\n",
            "\n",
            "i= 1734\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc0neg.png\n",
            "\n",
            "i= 1735\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc2neg.png\n",
            "\n",
            "i= 1736\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc2pos.png\n",
            "\n",
            "i= 1737\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc3neg.png\n",
            "\n",
            "i= 1738\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc1pos.png\n",
            "\n",
            "i= 1739\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc3pos.png\n",
            "\n",
            "i= 1740\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc4neg.png\n",
            "\n",
            "i= 1741\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc4pos.png\n",
            "\n",
            "i= 1742\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc5neg.png\n",
            "\n",
            "i= 1743\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod0slc1neg.png\n",
            "\n",
            "i= 1744\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod0slc0neg.png\n",
            "\n",
            "i= 1745\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod0slc1pos.png\n",
            "\n",
            "i= 1746\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod1slc0neg.png\n",
            "\n",
            "i= 1747\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod1slc0pos.png\n",
            "\n",
            "i= 1748\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.275766318636944297772360944907nod1slc5pos.png\n",
            "\n",
            "i= 1749\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod0slc0pos.png\n",
            "\n",
            "i= 1750\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod1slc1pos.png\n",
            "\n",
            "i= 1751\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod0slc0neg.png\n",
            "\n",
            "i= 1752\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.276556509002726404418399209377nod1slc1neg.png\n",
            "\n",
            "i= 1753\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod0slc0pos.png\n",
            "\n",
            "i= 1754\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod0slc1neg.png\n",
            "\n",
            "i= 1755\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod0slc1pos.png\n",
            "\n",
            "i= 1756\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod1slc0neg.png\n",
            "\n",
            "i= 1757\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod1slc1neg.png\n",
            "\n",
            "i= 1758\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod1slc0pos.png\n",
            "\n",
            "i= 1759\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc0pos.png\n",
            "\n",
            "i= 1760\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc10neg.png\n",
            "\n",
            "i= 1761\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc10pos.png\n",
            "\n",
            "i= 1762\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc11neg.png\n",
            "\n",
            "i= 1763\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc1neg.png\n",
            "\n",
            "i= 1764\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc0neg.png\n",
            "\n",
            "i= 1765\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277445975068759205899107114231nod1slc1pos.png\n",
            "\n",
            "i= 1766\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc11pos.png\n",
            "\n",
            "i= 1767\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc2pos.png\n",
            "\n",
            "i= 1768\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc1pos.png\n",
            "\n",
            "i= 1769\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc2neg.png\n",
            "\n",
            "i= 1770\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc3neg.png\n",
            "\n",
            "i= 1771\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc3pos.png\n",
            "\n",
            "i= 1772\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc4neg.png\n",
            "\n",
            "i= 1773\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc4pos.png\n",
            "\n",
            "i= 1774\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc5neg.png\n",
            "\n",
            "i= 1775\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc6pos.png\n",
            "\n",
            "i= 1776\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc7neg.png\n",
            "\n",
            "i= 1777\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc8neg.png\n",
            "\n",
            "i= 1778\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc7pos.png\n",
            "\n",
            "i= 1779\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc9neg.png\n",
            "\n",
            "i= 1780\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc5pos.png\n",
            "\n",
            "i= 1781\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc6neg.png\n",
            "\n",
            "i= 1782\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc9pos.png\n",
            "\n",
            "i= 1783\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.277662902666135640561346462196nod0slc8pos.png\n",
            "\n",
            "i= 1784\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc0neg.png\n",
            "\n",
            "i= 1785\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc0pos.png\n",
            "\n",
            "i= 1786\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc1pos.png\n",
            "\n",
            "i= 1787\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc1neg.png\n",
            "\n",
            "i= 1788\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc2neg.png\n",
            "\n",
            "i= 1789\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc2pos.png\n",
            "\n",
            "i= 1790\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc3neg.png\n",
            "\n",
            "i= 1791\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod0slc0pos.png\n",
            "\n",
            "i= 1792\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod0slc1neg.png\n",
            "\n",
            "i= 1793\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod0slc1pos.png\n",
            "\n",
            "i= 1794\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod1slc0pos.png\n",
            "\n",
            "i= 1795\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod1slc0neg.png\n",
            "\n",
            "i= 1796\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.278010349511857248000260557753nod0slc3pos.png\n",
            "\n",
            "i= 1797\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod0slc0neg.png\n",
            "\n",
            "i= 1798\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod1slc1neg.png\n",
            "\n",
            "i= 1799\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod1slc1pos.png\n",
            "\n",
            "i= 1800\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc0neg.png\n",
            "\n",
            "i= 1801\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc1pos.png\n",
            "\n",
            "i= 1802\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc1neg.png\n",
            "\n",
            "i= 1803\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc2neg.png\n",
            "\n",
            "i= 1804\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc2pos.png\n",
            "\n",
            "i= 1805\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc0pos.png\n",
            "\n",
            "i= 1806\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc3neg.png\n",
            "\n",
            "i= 1807\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod3slc0pos.png\n",
            "\n",
            "i= 1808\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod3slc1neg.png\n",
            "\n",
            "i= 1809\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod3slc1pos.png\n",
            "\n",
            "i= 1810\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod2slc3pos.png\n",
            "\n",
            "i= 1811\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod3slc0neg.png\n",
            "\n",
            "i= 1812\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod4slc0neg.png\n",
            "\n",
            "i= 1813\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod4slc0pos.png\n",
            "\n",
            "i= 1814\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod4slc1neg.png\n",
            "\n",
            "i= 1815\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod4slc1pos.png\n",
            "\n",
            "i= 1816\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod5slc0neg.png\n",
            "\n",
            "i= 1817\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod5slc0pos.png\n",
            "\n",
            "i= 1818\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod5slc1neg.png\n",
            "\n",
            "i= 1819\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod5slc1pos.png\n",
            "\n",
            "i= 1820\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc0neg.png\n",
            "\n",
            "i= 1821\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc1pos.png\n",
            "\n",
            "i= 1822\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc2neg.png\n",
            "\n",
            "i= 1823\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc2pos.png\n",
            "\n",
            "i= 1824\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc0pos.png\n",
            "\n",
            "i= 1825\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc1neg.png\n",
            "\n",
            "i= 1826\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc3neg.png\n",
            "\n",
            "i= 1827\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc3pos.png\n",
            "\n",
            "i= 1828\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc4neg.png\n",
            "\n",
            "i= 1829\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc4pos.png\n",
            "\n",
            "i= 1830\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc5neg.png\n",
            "\n",
            "i= 1831\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc5pos.png\n",
            "\n",
            "i= 1832\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc6neg.png\n",
            "\n",
            "i= 1833\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc6pos.png\n",
            "\n",
            "i= 1834\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc8pos.png\n",
            "\n",
            "i= 1835\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc8neg.png\n",
            "\n",
            "i= 1836\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc9neg.png\n",
            "\n",
            "i= 1837\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc9pos.png\n",
            "\n",
            "i= 1838\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc7neg.png\n",
            "\n",
            "i= 1839\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc0pos.png\n",
            "\n",
            "i= 1840\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc0neg.png\n",
            "\n",
            "i= 1841\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.280072876841890439628529365478nod6slc7pos.png\n",
            "\n",
            "i= 1842\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc1pos.png\n",
            "\n",
            "i= 1843\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc2neg.png\n",
            "\n",
            "i= 1844\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc2pos.png\n",
            "\n",
            "i= 1845\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc1neg.png\n",
            "\n",
            "i= 1846\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc3neg.png\n",
            "\n",
            "i= 1847\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.281489753704424911132261151767nod0slc3pos.png\n",
            "\n",
            "i= 1848\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc0neg.png\n",
            "\n",
            "i= 1849\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc2neg.png\n",
            "\n",
            "i= 1850\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc1neg.png\n",
            "\n",
            "i= 1851\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc1pos.png\n",
            "\n",
            "i= 1852\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc0pos.png\n",
            "\n",
            "i= 1853\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc3pos.png\n",
            "\n",
            "i= 1854\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc4neg.png\n",
            "\n",
            "i= 1855\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc4pos.png\n",
            "\n",
            "i= 1856\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc3neg.png\n",
            "\n",
            "i= 1857\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc2pos.png\n",
            "\n",
            "i= 1858\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc5neg.png\n",
            "\n",
            "i= 1859\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.282512043257574309474415322775nod0slc5pos.png\n",
            "\n",
            "i= 1860\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod0slc0neg.png\n",
            "\n",
            "i= 1861\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod0slc1neg.png\n",
            "\n",
            "i= 1862\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod0slc0pos.png\n",
            "\n",
            "i= 1863\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod0slc1pos.png\n",
            "\n",
            "i= 1864\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod1slc0neg.png\n",
            "\n",
            "i= 1865\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod1slc0pos.png\n",
            "\n",
            "i= 1866\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod1slc1neg.png\n",
            "\n",
            "i= 1867\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod2slc0pos.png\n",
            "\n",
            "i= 1868\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod1slc1pos.png\n",
            "\n",
            "i= 1869\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod2slc0neg.png\n",
            "\n",
            "i= 1870\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod3slc0neg.png\n",
            "\n",
            "i= 1871\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod2slc1neg.png\n",
            "\n",
            "i= 1872\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod2slc1pos.png\n",
            "\n",
            "i= 1873\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod3slc0pos.png\n",
            "\n",
            "i= 1874\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod3slc1neg.png\n",
            "\n",
            "i= 1875\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283569726884265181140892667131nod3slc1pos.png\n",
            "\n",
            "i= 1876\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283733738239331719775105586296nod0slc0neg.png\n",
            "\n",
            "i= 1877\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283733738239331719775105586296nod0slc0pos.png\n",
            "\n",
            "i= 1878\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod0slc1neg.png\n",
            "\n",
            "i= 1879\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod0slc1pos.png\n",
            "\n",
            "i= 1880\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod0slc0neg.png\n",
            "\n",
            "i= 1881\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod0slc0pos.png\n",
            "\n",
            "i= 1882\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod1slc0neg.png\n",
            "\n",
            "i= 1883\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283733738239331719775105586296nod0slc1neg.png\n",
            "\n",
            "i= 1884\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.283733738239331719775105586296nod0slc1pos.png\n",
            "\n",
            "i= 1885\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod1slc0pos.png\n",
            "\n",
            "i= 1886\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod1slc1neg.png\n",
            "\n",
            "i= 1887\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod2slc0neg.png\n",
            "\n",
            "i= 1888\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod1slc1pos.png\n",
            "\n",
            "i= 1889\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod2slc0pos.png\n",
            "\n",
            "i= 1890\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod2slc1neg.png\n",
            "\n",
            "i= 1891\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc0neg.png\n",
            "\n",
            "i= 1892\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod2slc1pos.png\n",
            "\n",
            "i= 1893\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc1pos.png\n",
            "\n",
            "i= 1894\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc2neg.png\n",
            "\n",
            "i= 1895\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc3neg.png\n",
            "\n",
            "i= 1896\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc0pos.png\n",
            "\n",
            "i= 1897\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc1neg.png\n",
            "\n",
            "i= 1898\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc3pos.png\n",
            "\n",
            "i= 1899\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc4neg.png\n",
            "\n",
            "i= 1900\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc5neg.png\n",
            "\n",
            "i= 1901\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc4pos.png\n",
            "\n",
            "i= 1902\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc2pos.png\n",
            "\n",
            "i= 1903\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod3slc5pos.png\n",
            "\n",
            "i= 1904\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod4slc0neg.png\n",
            "\n",
            "i= 1905\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod4slc1neg.png\n",
            "\n",
            "i= 1906\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod4slc0pos.png\n",
            "\n",
            "i= 1907\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod0slc0pos.png\n",
            "\n",
            "i= 1908\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod0slc1neg.png\n",
            "\n",
            "i= 1909\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod0slc1pos.png\n",
            "\n",
            "i= 1910\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod1slc0neg.png\n",
            "\n",
            "i= 1911\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod1slc0pos.png\n",
            "\n",
            "i= 1912\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod1slc1neg.png\n",
            "\n",
            "i= 1913\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886nod4slc1pos.png\n",
            "\n",
            "i= 1914\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod0slc0neg.png\n",
            "\n",
            "i= 1915\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod1slc1pos.png\n",
            "\n",
            "i= 1916\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod2slc0neg.png\n",
            "\n",
            "i= 1917\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod2slc0pos.png\n",
            "\n",
            "i= 1918\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod2slc1neg.png\n",
            "\n",
            "i= 1919\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc0neg.png\n",
            "\n",
            "i= 1920\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod2slc1pos.png\n",
            "\n",
            "i= 1921\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc0pos.png\n",
            "\n",
            "i= 1922\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc1neg.png\n",
            "\n",
            "i= 1923\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc1pos.png\n",
            "\n",
            "i= 1924\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc3neg.png\n",
            "\n",
            "i= 1925\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc3pos.png\n",
            "\n",
            "i= 1926\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc2neg.png\n",
            "\n",
            "i= 1927\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.292057261351416339496913597985nod3slc2pos.png\n",
            "\n",
            "i= 1928\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc0pos.png\n",
            "\n",
            "i= 1929\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc0neg.png\n",
            "\n",
            "i= 1930\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc1pos.png\n",
            "\n",
            "i= 1931\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc2neg.png\n",
            "\n",
            "i= 1932\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc2pos.png\n",
            "\n",
            "i= 1933\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc1neg.png\n",
            "\n",
            "i= 1934\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc3neg.png\n",
            "\n",
            "i= 1935\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293593766328917170359373773080nod0slc3pos.png\n",
            "\n",
            "i= 1936\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc0neg.png\n",
            "\n",
            "i= 1937\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc2neg.png\n",
            "\n",
            "i= 1938\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc2pos.png\n",
            "\n",
            "i= 1939\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc0pos.png\n",
            "\n",
            "i= 1940\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc3neg.png\n",
            "\n",
            "i= 1941\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc3pos.png\n",
            "\n",
            "i= 1942\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc1pos.png\n",
            "\n",
            "i= 1943\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod0slc1neg.png\n",
            "\n",
            "i= 1944\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc0neg.png\n",
            "\n",
            "i= 1945\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc0pos.png\n",
            "\n",
            "i= 1946\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc1neg.png\n",
            "\n",
            "i= 1947\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc1pos.png\n",
            "\n",
            "i= 1948\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc2neg.png\n",
            "\n",
            "i= 1949\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc2pos.png\n",
            "\n",
            "i= 1950\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc3neg.png\n",
            "\n",
            "i= 1951\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc3pos.png\n",
            "\n",
            "i= 1952\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc4neg.png\n",
            "\n",
            "i= 1953\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc4pos.png\n",
            "\n",
            "i= 1954\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc5neg.png\n",
            "\n",
            "i= 1955\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod0slc0pos.png\n",
            "\n",
            "i= 1956\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod0slc1neg.png\n",
            "\n",
            "i= 1957\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod0slc1pos.png\n",
            "\n",
            "i= 1958\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod1slc0neg.png\n",
            "\n",
            "i= 1959\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod1slc0pos.png\n",
            "\n",
            "i= 1960\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod0slc0neg.png\n",
            "\n",
            "i= 1961\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.293757615532132808762625441831nod1slc5pos.png\n",
            "\n",
            "i= 1962\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod1slc1pos.png\n",
            "\n",
            "i= 1963\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod1slc1neg.png\n",
            "\n",
            "i= 1964\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod2slc0neg.png\n",
            "\n",
            "i= 1965\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod2slc0pos.png\n",
            "\n",
            "i= 1966\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod2slc1neg.png\n",
            "\n",
            "i= 1967\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.294188507421106424248264912111nod2slc1pos.png\n",
            "\n",
            "i= 1968\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod0slc0neg.png\n",
            "\n",
            "i= 1969\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod0slc0pos.png\n",
            "\n",
            "i= 1970\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod0slc1pos.png\n",
            "\n",
            "i= 1971\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod0slc1neg.png\n",
            "\n",
            "i= 1972\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod1slc1neg.png\n",
            "\n",
            "i= 1973\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod1slc1pos.png\n",
            "\n",
            "i= 1974\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod1slc0pos.png\n",
            "\n",
            "i= 1975\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295298571102631191572192562523nod1slc0neg.png\n",
            "\n",
            "i= 1976\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod0slc1neg.png\n",
            "\n",
            "i= 1977\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod0slc0neg.png\n",
            "\n",
            "i= 1978\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod0slc0pos.png\n",
            "\n",
            "i= 1979\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod0slc1pos.png\n",
            "\n",
            "i= 1980\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod1slc0pos.png\n",
            "\n",
            "i= 1981\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod1slc0neg.png\n",
            "\n",
            "i= 1982\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod1slc1neg.png\n",
            "\n",
            "i= 1983\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod1slc1pos.png\n",
            "\n",
            "i= 1984\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod2slc0neg.png\n",
            "\n",
            "i= 1985\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod2slc0pos.png\n",
            "\n",
            "i= 1986\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod2slc1neg.png\n",
            "\n",
            "i= 1987\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod3slc0pos.png\n",
            "\n",
            "i= 1988\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod3slc1neg.png\n",
            "\n",
            "i= 1989\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod3slc1pos.png\n",
            "\n",
            "i= 1990\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod3slc0neg.png\n",
            "\n",
            "i= 1991\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod2slc1pos.png\n",
            "\n",
            "i= 1992\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod4slc0neg.png\n",
            "\n",
            "i= 1993\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod4slc0pos.png\n",
            "\n",
            "i= 1994\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod4slc1pos.png\n",
            "\n",
            "i= 1995\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.295420274214095686326263147663nod4slc1neg.png\n",
            "\n",
            "i= 1996\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod0slc0neg.png\n",
            "\n",
            "i= 1997\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod0slc1neg.png\n",
            "\n",
            "i= 1998\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod0slc0pos.png\n",
            "\n",
            "i= 1999\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.299767339686526858593516834230nod0slc1pos.png\n",
            "\n",
            "i= 2000\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc0neg.png\n",
            "\n",
            "i= 2001\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc0pos.png\n",
            "\n",
            "i= 2002\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc1pos.png\n",
            "\n",
            "i= 2003\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc1neg.png\n",
            "\n",
            "i= 2004\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc1pos.png\n",
            "\n",
            "i= 2005\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc2pos.png\n",
            "\n",
            "i= 2006\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc1neg.png\n",
            "\n",
            "i= 2007\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc0neg.png\n",
            "\n",
            "i= 2008\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc3neg.png\n",
            "\n",
            "i= 2009\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc3pos.png\n",
            "\n",
            "i= 2010\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc0pos.png\n",
            "\n",
            "i= 2011\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod0slc2neg.png\n",
            "\n",
            "i= 2012\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc4pos.png\n",
            "\n",
            "i= 2013\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc3neg.png\n",
            "\n",
            "i= 2014\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc2pos.png\n",
            "\n",
            "i= 2015\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc6neg.png\n",
            "\n",
            "i= 2016\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc4neg.png\n",
            "\n",
            "i= 2017\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc6pos.png\n",
            "\n",
            "i= 2018\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc5neg.png\n",
            "\n",
            "i= 2019\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc5pos.png\n",
            "\n",
            "i= 2020\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc3pos.png\n",
            "\n",
            "i= 2021\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc2neg.png\n",
            "\n",
            "i= 2022\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc7pos.png\n",
            "\n",
            "i= 2023\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod1slc7neg.png\n",
            "\n",
            "i= 2024\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc3pos.png\n",
            "\n",
            "i= 2025\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc0neg.png\n",
            "\n",
            "i= 2026\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc1neg.png\n",
            "\n",
            "i= 2027\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc2pos.png\n",
            "\n",
            "i= 2028\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc2neg.png\n",
            "\n",
            "i= 2029\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc0pos.png\n",
            "\n",
            "i= 2030\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc3neg.png\n",
            "\n",
            "i= 2031\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc1pos.png\n",
            "\n",
            "i= 2032\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc4pos.png\n",
            "\n",
            "i= 2033\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc5pos.png\n",
            "\n",
            "i= 2034\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc4neg.png\n",
            "\n",
            "i= 2035\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc5neg.png\n",
            "\n",
            "i= 2036\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc6neg.png\n",
            "\n",
            "i= 2037\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc1neg.png\n",
            "\n",
            "i= 2038\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc6pos.png\n",
            "\n",
            "i= 2039\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc0pos.png\n",
            "\n",
            "i= 2040\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc7neg.png\n",
            "\n",
            "i= 2041\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod2slc7pos.png\n",
            "\n",
            "i= 2042\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc0neg.png\n",
            "\n",
            "i= 2043\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc1pos.png\n",
            "\n",
            "i= 2044\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc2pos.png\n",
            "\n",
            "i= 2045\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc2neg.png\n",
            "\n",
            "i= 2046\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc3pos.png\n",
            "\n",
            "i= 2047\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc4neg.png\n",
            "\n",
            "i= 2048\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc3neg.png\n",
            "\n",
            "i= 2049\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc5pos.png\n",
            "\n",
            "i= 2050\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc6pos.png\n",
            "\n",
            "i= 2051\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc6neg.png\n",
            "\n",
            "i= 2052\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc5neg.png\n",
            "\n",
            "i= 2053\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc4pos.png\n",
            "\n",
            "i= 2054\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc7neg.png\n",
            "\n",
            "i= 2055\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016233746780170740405nod3slc7pos.png\n",
            "\n",
            "i= 2056\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100953483028192176989979435275nod0slc0neg.png\n",
            "\n",
            "i= 2057\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100953483028192176989979435275nod0slc0pos.png\n",
            "\n",
            "i= 2058\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100953483028192176989979435275nod0slc1neg.png\n",
            "\n",
            "i= 2059\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc2neg.png\n",
            "\n",
            "i= 2060\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc1neg.png\n",
            "\n",
            "i= 2061\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc1pos.png\n",
            "\n",
            "i= 2062\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.100953483028192176989979435275nod0slc1pos.png\n",
            "\n",
            "i= 2063\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc0pos.png\n",
            "\n",
            "i= 2064\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc0neg.png\n",
            "\n",
            "i= 2065\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc2pos.png\n",
            "\n",
            "i= 2066\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc3pos.png\n",
            "\n",
            "i= 2067\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760173137525888934217nod0slc3neg.png\n",
            "\n",
            "i= 2068\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106164978370116976238911317774nod0slc0neg.png\n",
            "\n",
            "i= 2069\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106164978370116976238911317774nod0slc0pos.png\n",
            "\n",
            "i= 2070\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106164978370116976238911317774nod0slc1neg.png\n",
            "\n",
            "i= 2071\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc0pos.png\n",
            "\n",
            "i= 2072\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc1neg.png\n",
            "\n",
            "i= 2073\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106164978370116976238911317774nod0slc1pos.png\n",
            "\n",
            "i= 2074\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc0neg.png\n",
            "\n",
            "i= 2075\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc1pos.png\n",
            "\n",
            "i= 2076\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc2neg.png\n",
            "\n",
            "i= 2077\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc2pos.png\n",
            "\n",
            "i= 2078\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc3pos.png\n",
            "\n",
            "i= 2079\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc3neg.png\n",
            "\n",
            "i= 2080\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc4neg.png\n",
            "\n",
            "i= 2081\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492nod0slc1pos.png\n",
            "\n",
            "i= 2082\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc5neg.png\n",
            "\n",
            "i= 2083\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492nod0slc0pos.png\n",
            "\n",
            "i= 2084\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492nod0slc0neg.png\n",
            "\n",
            "i= 2085\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc4pos.png\n",
            "\n",
            "i= 2086\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375nod0slc5pos.png\n",
            "\n",
            "i= 2087\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108197895896446896160048741492nod0slc1neg.png\n",
            "\n",
            "i= 2088\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108231420525711026834210228428nod0slc0neg.png\n",
            "\n",
            "i= 2089\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108231420525711026834210228428nod0slc0pos.png\n",
            "\n",
            "i= 2090\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc2pos.png\n",
            "\n",
            "i= 2091\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108231420525711026834210228428nod0slc1neg.png\n",
            "\n",
            "i= 2092\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.108231420525711026834210228428nod0slc1pos.png\n",
            "\n",
            "i= 2093\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc3neg.png\n",
            "\n",
            "i= 2094\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc3pos.png\n",
            "\n",
            "i= 2095\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc1pos.png\n",
            "\n",
            "i= 2096\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc0neg.png\n",
            "\n",
            "i= 2097\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc0pos.png\n",
            "\n",
            "i= 2098\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc2neg.png\n",
            "\n",
            "i= 2099\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod0slc1neg.png\n",
            "\n",
            "i= 2100\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod1slc0pos.png\n",
            "\n",
            "i= 2101\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod1slc1neg.png\n",
            "\n",
            "i= 2102\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod1slc0neg.png\n",
            "\n",
            "i= 2103\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059nod1slc1pos.png\n",
            "\n",
            "i= 2104\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.111172165674661221381920536987nod0slc0neg.png\n",
            "\n",
            "i= 2105\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc2pos.png\n",
            "\n",
            "i= 2106\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc1pos.png\n",
            "\n",
            "i= 2107\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.111172165674661221381920536987nod0slc0pos.png\n",
            "\n",
            "i= 2108\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc2neg.png\n",
            "\n",
            "i= 2109\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc3neg.png\n",
            "\n",
            "i= 2110\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc3pos.png\n",
            "\n",
            "i= 2111\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc1neg.png\n",
            "\n",
            "i= 2112\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.111172165674661221381920536987nod0slc1pos.png\n",
            "\n",
            "i= 2113\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc0pos.png\n",
            "\n",
            "i= 2114\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc0neg.png\n",
            "\n",
            "i= 2115\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.111172165674661221381920536987nod0slc1neg.png\n",
            "\n",
            "i= 2116\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc4pos.png\n",
            "\n",
            "i= 2117\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc4neg.png\n",
            "\n",
            "i= 2118\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc5neg.png\n",
            "\n",
            "i= 2119\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod0slc5pos.png\n",
            "\n",
            "i= 2120\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc0neg.png\n",
            "\n",
            "i= 2121\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc3neg.png\n",
            "\n",
            "i= 2122\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc2neg.png\n",
            "\n",
            "i= 2123\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc1neg.png\n",
            "\n",
            "i= 2124\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc0pos.png\n",
            "\n",
            "i= 2125\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc2pos.png\n",
            "\n",
            "i= 2126\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc1pos.png\n",
            "\n",
            "i= 2127\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc0neg.png\n",
            "\n",
            "i= 2128\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod1slc3pos.png\n",
            "\n",
            "i= 2129\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc1neg.png\n",
            "\n",
            "i= 2130\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc0pos.png\n",
            "\n",
            "i= 2131\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc1pos.png\n",
            "\n",
            "i= 2132\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc5neg.png\n",
            "\n",
            "i= 2133\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc4pos.png\n",
            "\n",
            "i= 2134\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc3neg.png\n",
            "\n",
            "i= 2135\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc2neg.png\n",
            "\n",
            "i= 2136\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc2pos.png\n",
            "\n",
            "i= 2137\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc4neg.png\n",
            "\n",
            "i= 2138\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc3pos.png\n",
            "\n",
            "i= 2139\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.114218724025049818743426522343nod2slc5pos.png\n",
            "\n",
            "i= 2140\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc0pos.png\n",
            "\n",
            "i= 2141\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc0neg.png\n",
            "\n",
            "i= 2142\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc1neg.png\n",
            "\n",
            "i= 2143\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc1pos.png\n",
            "\n",
            "i= 2144\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc5pos.png\n",
            "\n",
            "i= 2145\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc2neg.png\n",
            "\n",
            "i= 2146\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc3pos.png\n",
            "\n",
            "i= 2147\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc3neg.png\n",
            "\n",
            "i= 2148\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc4neg.png\n",
            "\n",
            "i= 2149\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc2pos.png\n",
            "\n",
            "i= 2150\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc6neg.png\n",
            "\n",
            "i= 2151\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc4pos.png\n",
            "\n",
            "i= 2152\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc5neg.png\n",
            "\n",
            "i= 2153\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc6pos.png\n",
            "\n",
            "i= 2154\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc7pos.png\n",
            "\n",
            "i= 2155\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121391737347333465796214915391nod0slc7neg.png\n",
            "\n",
            "i= 2156\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod0slc1neg.png\n",
            "\n",
            "i= 2157\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod1slc0neg.png\n",
            "\n",
            "i= 2158\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod0slc1pos.png\n",
            "\n",
            "i= 2159\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod0slc0neg.png\n",
            "\n",
            "i= 2160\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod0slc0pos.png\n",
            "\n",
            "i= 2161\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod1slc1pos.png\n",
            "\n",
            "i= 2162\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod1slc0pos.png\n",
            "\n",
            "i= 2163\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod0slc0neg.png\n",
            "\n",
            "i= 2164\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121824995088859376862458155637nod1slc1neg.png\n",
            "\n",
            "i= 2165\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod0slc0pos.png\n",
            "\n",
            "i= 2166\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod0slc1neg.png\n",
            "\n",
            "i= 2167\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod0slc1pos.png\n",
            "\n",
            "i= 2168\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc0pos.png\n",
            "\n",
            "i= 2169\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc1pos.png\n",
            "\n",
            "i= 2170\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc0neg.png\n",
            "\n",
            "i= 2171\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod1slc0pos.png\n",
            "\n",
            "i= 2172\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod1slc0neg.png\n",
            "\n",
            "i= 2173\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod1slc1neg.png\n",
            "\n",
            "i= 2174\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.121993590721161347818774929286nod1slc1pos.png\n",
            "\n",
            "i= 2175\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc2neg.png\n",
            "\n",
            "i= 2176\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc1neg.png\n",
            "\n",
            "i= 2177\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc2pos.png\n",
            "\n",
            "i= 2178\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc3pos.png\n",
            "\n",
            "i= 2179\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc3neg.png\n",
            "\n",
            "i= 2180\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc7pos.png\n",
            "\n",
            "i= 2181\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc4neg.png\n",
            "\n",
            "i= 2182\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc4pos.png\n",
            "\n",
            "i= 2183\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124154461048929153767743874565nod0slc0neg.png\n",
            "\n",
            "i= 2184\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc6neg.png\n",
            "\n",
            "i= 2185\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc6pos.png\n",
            "\n",
            "i= 2186\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc5pos.png\n",
            "\n",
            "i= 2187\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc5neg.png\n",
            "\n",
            "i= 2188\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.123697637451437522065941162930nod0slc7neg.png\n",
            "\n",
            "i= 2189\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124154461048929153767743874565nod0slc1pos.png\n",
            "\n",
            "i= 2190\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod0slc0neg.png\n",
            "\n",
            "i= 2191\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124154461048929153767743874565nod0slc0pos.png\n",
            "\n",
            "i= 2192\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124154461048929153767743874565nod0slc1neg.png\n",
            "\n",
            "i= 2193\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod0slc0pos.png\n",
            "\n",
            "i= 2194\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod0slc1pos.png\n",
            "\n",
            "i= 2195\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod0slc1neg.png\n",
            "\n",
            "i= 2196\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod1slc0neg.png\n",
            "\n",
            "i= 2197\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod1slc0pos.png\n",
            "\n",
            "i= 2198\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod2slc1pos.png\n",
            "\n",
            "i= 2199\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod1slc1neg.png\n",
            "\n",
            "i= 2200\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod1slc1pos.png\n",
            "\n",
            "i= 2201\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod2slc0neg.png\n",
            "\n",
            "i= 2202\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod2slc0pos.png\n",
            "\n",
            "i= 2203\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.124663713663969377020085460568nod2slc1neg.png\n",
            "\n",
            "i= 2204\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc0neg.png\n",
            "\n",
            "i= 2205\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc1pos.png\n",
            "\n",
            "i= 2206\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc0pos.png\n",
            "\n",
            "i= 2207\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc2neg.png\n",
            "\n",
            "i= 2208\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc2pos.png\n",
            "\n",
            "i= 2209\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc1neg.png\n",
            "\n",
            "i= 2210\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc5neg.png\n",
            "\n",
            "i= 2211\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc3neg.png\n",
            "\n",
            "i= 2212\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc4pos.png\n",
            "\n",
            "i= 2213\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc3pos.png\n",
            "\n",
            "i= 2214\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc4neg.png\n",
            "\n",
            "i= 2215\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126264578931778258890371755354nod0slc5pos.png\n",
            "\n",
            "i= 2216\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod0slc0neg.png\n",
            "\n",
            "i= 2217\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod0slc0pos.png\n",
            "\n",
            "i= 2218\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod0slc1pos.png\n",
            "\n",
            "i= 2219\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc0neg.png\n",
            "\n",
            "i= 2220\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod0slc1neg.png\n",
            "\n",
            "i= 2221\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc0pos.png\n",
            "\n",
            "i= 2222\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc3pos.png\n",
            "\n",
            "i= 2223\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc1neg.png\n",
            "\n",
            "i= 2224\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc1pos.png\n",
            "\n",
            "i= 2225\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc2neg.png\n",
            "\n",
            "i= 2226\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc3neg.png\n",
            "\n",
            "i= 2227\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc2pos.png\n",
            "\n",
            "i= 2228\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc4pos.png\n",
            "\n",
            "i= 2229\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc4neg.png\n",
            "\n",
            "i= 2230\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc5neg.png\n",
            "\n",
            "i= 2231\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126631670596873065041988320084nod1slc5pos.png\n",
            "\n",
            "i= 2232\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126704785377921920210612476953nod0slc0neg.png\n",
            "\n",
            "i= 2233\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126704785377921920210612476953nod0slc0pos.png\n",
            "\n",
            "i= 2234\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128023902651233986592378348912nod0slc0pos.png\n",
            "\n",
            "i= 2235\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126704785377921920210612476953nod0slc1neg.png\n",
            "\n",
            "i= 2236\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128023902651233986592378348912nod0slc1neg.png\n",
            "\n",
            "i= 2237\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.127965161564033605177803085629nod0slc1pos.png\n",
            "\n",
            "i= 2238\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128023902651233986592378348912nod0slc0neg.png\n",
            "\n",
            "i= 2239\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128023902651233986592378348912nod0slc1pos.png\n",
            "\n",
            "i= 2240\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod0slc0neg.png\n",
            "\n",
            "i= 2241\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod0slc0pos.png\n",
            "\n",
            "i= 2242\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod0slc1pos.png\n",
            "\n",
            "i= 2243\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod0slc1neg.png\n",
            "\n",
            "i= 2244\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod1slc0neg.png\n",
            "\n",
            "i= 2245\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.127965161564033605177803085629nod0slc0pos.png\n",
            "\n",
            "i= 2246\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod1slc0pos.png\n",
            "\n",
            "i= 2247\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.126704785377921920210612476953nod0slc1pos.png\n",
            "\n",
            "i= 2248\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.127965161564033605177803085629nod0slc1neg.png\n",
            "\n",
            "i= 2249\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.127965161564033605177803085629nod0slc0neg.png\n",
            "\n",
            "i= 2250\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod1slc1neg.png\n",
            "\n",
            "i= 2251\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod0slc0neg.png\n",
            "\n",
            "i= 2252\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod0slc0pos.png\n",
            "\n",
            "i= 2253\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128059192202504367870633619224nod1slc1pos.png\n",
            "\n",
            "i= 2254\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod0slc1neg.png\n",
            "\n",
            "i= 2255\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod1slc1pos.png\n",
            "\n",
            "i= 2256\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod1slc0pos.png\n",
            "\n",
            "i= 2257\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod1slc0neg.png\n",
            "\n",
            "i= 2258\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod1slc1neg.png\n",
            "\n",
            "i= 2259\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.128881800399702510818644205032nod0slc1pos.png\n",
            "\n",
            "i= 2260\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc0neg.png\n",
            "\n",
            "i= 2261\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc1pos.png\n",
            "\n",
            "i= 2262\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc1neg.png\n",
            "\n",
            "i= 2263\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc2neg.png\n",
            "\n",
            "i= 2264\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc2pos.png\n",
            "\n",
            "i= 2265\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc0pos.png\n",
            "\n",
            "i= 2266\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc3pos.png\n",
            "\n",
            "i= 2267\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.130438550890816550994739120843nod0slc0pos.png\n",
            "\n",
            "i= 2268\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.130438550890816550994739120843nod0slc1neg.png\n",
            "\n",
            "i= 2269\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.130438550890816550994739120843nod0slc0neg.png\n",
            "\n",
            "i= 2270\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.129055977637338639741695800950nod0slc3neg.png\n",
            "\n",
            "i= 2271\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.130438550890816550994739120843nod0slc1pos.png\n",
            "\n",
            "i= 2272\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc0neg.png\n",
            "\n",
            "i= 2273\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc0pos.png\n",
            "\n",
            "i= 2274\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc1neg.png\n",
            "\n",
            "i= 2275\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc1pos.png\n",
            "\n",
            "i= 2276\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc2neg.png\n",
            "\n",
            "i= 2277\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc2pos.png\n",
            "\n",
            "i= 2278\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc1neg.png\n",
            "\n",
            "i= 2279\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc3neg.png\n",
            "\n",
            "i= 2280\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod0slc3pos.png\n",
            "\n",
            "i= 2281\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc0pos.png\n",
            "\n",
            "i= 2282\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc0neg.png\n",
            "\n",
            "i= 2283\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc1pos.png\n",
            "\n",
            "i= 2284\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc3neg.png\n",
            "\n",
            "i= 2285\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc2neg.png\n",
            "\n",
            "i= 2286\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc2pos.png\n",
            "\n",
            "i= 2287\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.133378195429627807109985347209nod1slc3pos.png\n",
            "\n",
            "i= 2288\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod0slc0neg.png\n",
            "\n",
            "i= 2289\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod1slc1neg.png\n",
            "\n",
            "i= 2290\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod0slc1neg.png\n",
            "\n",
            "i= 2291\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod0slc0pos.png\n",
            "\n",
            "i= 2292\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod1slc1pos.png\n",
            "\n",
            "i= 2293\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod0slc0neg.png\n",
            "\n",
            "i= 2294\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod0slc1neg.png\n",
            "\n",
            "i= 2295\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod0slc1pos.png\n",
            "\n",
            "i= 2296\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod1slc0neg.png\n",
            "\n",
            "i= 2297\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod1slc0pos.png\n",
            "\n",
            "i= 2298\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod1slc0pos.png\n",
            "\n",
            "i= 2299\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod1slc1pos.png\n",
            "\n",
            "i= 2300\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod2slc0neg.png\n",
            "\n",
            "i= 2301\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod2slc0pos.png\n",
            "\n",
            "i= 2302\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod0slc1pos.png\n",
            "\n",
            "i= 2303\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod1slc0neg.png\n",
            "\n",
            "i= 2304\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134370886216012873213579659366nod0slc0pos.png\n",
            "\n",
            "i= 2305\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod1slc1neg.png\n",
            "\n",
            "i= 2306\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod2slc1pos.png\n",
            "\n",
            "i= 2307\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod2slc1neg.png\n",
            "\n",
            "i= 2308\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod3slc0neg.png\n",
            "\n",
            "i= 2309\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod3slc1neg.png\n",
            "\n",
            "i= 2310\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod3slc0pos.png\n",
            "\n",
            "i= 2311\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.135657246677982059395844827629nod0slc0pos.png\n",
            "\n",
            "i= 2312\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.135657246677982059395844827629nod0slc0neg.png\n",
            "\n",
            "i= 2313\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.135657246677982059395844827629nod0slc1neg.png\n",
            "\n",
            "i= 2314\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.135657246677982059395844827629nod0slc1pos.png\n",
            "\n",
            "i= 2315\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.134996872583497382954024478441nod3slc1pos.png\n",
            "\n",
            "i= 2316\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137375498893536422914241295628nod0slc0neg.png\n",
            "\n",
            "i= 2317\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137375498893536422914241295628nod0slc0pos.png\n",
            "\n",
            "i= 2318\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137375498893536422914241295628nod0slc1pos.png\n",
            "\n",
            "i= 2319\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc0neg.png\n",
            "\n",
            "i= 2320\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137375498893536422914241295628nod0slc1neg.png\n",
            "\n",
            "i= 2321\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc0pos.png\n",
            "\n",
            "i= 2322\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc1pos.png\n",
            "\n",
            "i= 2323\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc1neg.png\n",
            "\n",
            "i= 2324\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc3neg.png\n",
            "\n",
            "i= 2325\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc2neg.png\n",
            "\n",
            "i= 2326\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc2pos.png\n",
            "\n",
            "i= 2327\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc0neg.png\n",
            "\n",
            "i= 2328\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod0slc3pos.png\n",
            "\n",
            "i= 2329\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc1neg.png\n",
            "\n",
            "i= 2330\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc1pos.png\n",
            "\n",
            "i= 2331\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc0pos.png\n",
            "\n",
            "i= 2332\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc2neg.png\n",
            "\n",
            "i= 2333\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc2pos.png\n",
            "\n",
            "i= 2334\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc5pos.png\n",
            "\n",
            "i= 2335\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc4pos.png\n",
            "\n",
            "i= 2336\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc4neg.png\n",
            "\n",
            "i= 2337\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc5neg.png\n",
            "\n",
            "i= 2338\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc3neg.png\n",
            "\n",
            "i= 2339\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc3pos.png\n",
            "\n",
            "i= 2340\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc6neg.png\n",
            "\n",
            "i= 2341\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc7neg.png\n",
            "\n",
            "i= 2342\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc6pos.png\n",
            "\n",
            "i= 2343\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.137763212752154081977261297097nod1slc7pos.png\n",
            "\n",
            "i= 2344\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.138080888843357047811238713686nod0slc0neg.png\n",
            "\n",
            "i= 2345\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.138080888843357047811238713686nod0slc1pos.png\n",
            "\n",
            "i= 2346\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.138080888843357047811238713686nod0slc0pos.png\n",
            "\n",
            "i= 2347\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc2pos.png\n",
            "\n",
            "i= 2348\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc3neg.png\n",
            "\n",
            "i= 2349\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.138080888843357047811238713686nod0slc1neg.png\n",
            "\n",
            "i= 2350\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc2neg.png\n",
            "\n",
            "i= 2351\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc0neg.png\n",
            "\n",
            "i= 2352\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc0pos.png\n",
            "\n",
            "i= 2353\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc1neg.png\n",
            "\n",
            "i= 2354\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc1pos.png\n",
            "\n",
            "i= 2355\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc3pos.png\n",
            "\n",
            "i= 2356\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc4neg.png\n",
            "\n",
            "i= 2357\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc4pos.png\n",
            "\n",
            "i= 2358\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc5neg.png\n",
            "\n",
            "i= 2359\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc5pos.png\n",
            "\n",
            "i= 2360\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.141069661700670042960678408762nod0slc1pos.png\n",
            "\n",
            "i= 2361\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc6pos.png\n",
            "\n",
            "i= 2362\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod0slc0pos.png\n",
            "\n",
            "i= 2363\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod0slc0neg.png\n",
            "\n",
            "i= 2364\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.141069661700670042960678408762nod0slc0pos.png\n",
            "\n",
            "i= 2365\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.141069661700670042960678408762nod0slc1neg.png\n",
            "\n",
            "i= 2366\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc7pos.png\n",
            "\n",
            "i= 2367\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc7neg.png\n",
            "\n",
            "i= 2368\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.141069661700670042960678408762nod0slc0neg.png\n",
            "\n",
            "i= 2369\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod0slc1pos.png\n",
            "\n",
            "i= 2370\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.139258777898746693365877042411nod0slc6neg.png\n",
            "\n",
            "i= 2371\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod1slc0neg.png\n",
            "\n",
            "i= 2372\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod1slc0pos.png\n",
            "\n",
            "i= 2373\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod1slc1pos.png\n",
            "\n",
            "i= 2374\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod2slc0neg.png\n",
            "\n",
            "i= 2375\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod2slc1neg.png\n",
            "\n",
            "i= 2376\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod1slc1neg.png\n",
            "\n",
            "i= 2377\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod2slc0pos.png\n",
            "\n",
            "i= 2378\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod2slc1pos.png\n",
            "\n",
            "i= 2379\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.142485715518010940961688015191nod0slc1neg.png\n",
            "\n",
            "i= 2380\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc0neg.png\n",
            "\n",
            "i= 2381\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc3pos.png\n",
            "\n",
            "i= 2382\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc1neg.png\n",
            "\n",
            "i= 2383\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc0pos.png\n",
            "\n",
            "i= 2384\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc2neg.png\n",
            "\n",
            "i= 2385\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc3neg.png\n",
            "\n",
            "i= 2386\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc1pos.png\n",
            "\n",
            "i= 2387\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.143412474064515942785157561636nod0slc2pos.png\n",
            "\n",
            "i= 2388\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc0neg.png\n",
            "\n",
            "i= 2389\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc0pos.png\n",
            "\n",
            "i= 2390\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc1neg.png\n",
            "\n",
            "i= 2391\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc1pos.png\n",
            "\n",
            "i= 2392\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc3neg.png\n",
            "\n",
            "i= 2393\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc5neg.png\n",
            "\n",
            "i= 2394\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc2neg.png\n",
            "\n",
            "i= 2395\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc5pos.png\n",
            "\n",
            "i= 2396\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc2pos.png\n",
            "\n",
            "i= 2397\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc4pos.png\n",
            "\n",
            "i= 2398\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc4neg.png\n",
            "\n",
            "i= 2399\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod0slc3pos.png\n",
            "\n",
            "i= 2400\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod1slc0neg.png\n",
            "\n",
            "i= 2401\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod1slc0pos.png\n",
            "\n",
            "i= 2402\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod1slc1neg.png\n",
            "\n",
            "i= 2403\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.144883090372691745980459537053nod1slc1pos.png\n",
            "\n",
            "i= 2404\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.145759169833745025756371695397nod0slc1neg.png\n",
            "\n",
            "i= 2405\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.145759169833745025756371695397nod0slc0neg.png\n",
            "\n",
            "i= 2406\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.145759169833745025756371695397nod0slc1pos.png\n",
            "\n",
            "i= 2407\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.145759169833745025756371695397nod0slc0pos.png\n",
            "\n",
            "i= 2408\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc0pos.png\n",
            "\n",
            "i= 2409\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc3neg.png\n",
            "\n",
            "i= 2410\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc1neg.png\n",
            "\n",
            "i= 2411\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc0neg.png\n",
            "\n",
            "i= 2412\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc2pos.png\n",
            "\n",
            "i= 2413\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc1pos.png\n",
            "\n",
            "i= 2414\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc2neg.png\n",
            "\n",
            "i= 2415\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod0slc3pos.png\n",
            "\n",
            "i= 2416\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc0pos.png\n",
            "\n",
            "i= 2417\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc1neg.png\n",
            "\n",
            "i= 2418\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc1pos.png\n",
            "\n",
            "i= 2419\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc0neg.png\n",
            "\n",
            "i= 2420\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc2pos.png\n",
            "\n",
            "i= 2421\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc2neg.png\n",
            "\n",
            "i= 2422\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod0slc0neg.png\n",
            "\n",
            "i= 2423\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod0slc0pos.png\n",
            "\n",
            "i= 2424\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc3pos.png\n",
            "\n",
            "i= 2425\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.147250707071097813243473865421nod1slc3neg.png\n",
            "\n",
            "i= 2426\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod0slc1neg.png\n",
            "\n",
            "i= 2427\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod0slc1pos.png\n",
            "\n",
            "i= 2428\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod1slc0pos.png\n",
            "\n",
            "i= 2429\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod1slc1neg.png\n",
            "\n",
            "i= 2430\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod1slc1pos.png\n",
            "\n",
            "i= 2431\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod1slc0neg.png\n",
            "\n",
            "i= 2432\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod2slc0pos.png\n",
            "\n",
            "i= 2433\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod2slc1neg.png\n",
            "\n",
            "i= 2434\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc1neg.png\n",
            "\n",
            "i= 2435\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod2slc1pos.png\n",
            "\n",
            "i= 2436\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod2slc0neg.png\n",
            "\n",
            "i= 2437\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc1pos.png\n",
            "\n",
            "i= 2438\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc0pos.png\n",
            "\n",
            "i= 2439\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc0neg.png\n",
            "\n",
            "i= 2440\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc2pos.png\n",
            "\n",
            "i= 2441\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc3neg.png\n",
            "\n",
            "i= 2442\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc2neg.png\n",
            "\n",
            "i= 2443\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc4neg.png\n",
            "\n",
            "i= 2444\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc3pos.png\n",
            "\n",
            "i= 2445\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc4pos.png\n",
            "\n",
            "i= 2446\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc6pos.png\n",
            "\n",
            "i= 2447\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc5neg.png\n",
            "\n",
            "i= 2448\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc7neg.png\n",
            "\n",
            "i= 2449\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod4slc0neg.png\n",
            "\n",
            "i= 2450\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod4slc0pos.png\n",
            "\n",
            "i= 2451\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod4slc1neg.png\n",
            "\n",
            "i= 2452\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc6neg.png\n",
            "\n",
            "i= 2453\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc5pos.png\n",
            "\n",
            "i= 2454\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod4slc1pos.png\n",
            "\n",
            "i= 2455\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod3slc7pos.png\n",
            "\n",
            "i= 2456\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod5slc0neg.png\n",
            "\n",
            "i= 2457\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod5slc0pos.png\n",
            "\n",
            "i= 2458\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.149463915556499304732434215056nod0slc1pos.png\n",
            "\n",
            "i= 2459\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod5slc1pos.png\n",
            "\n",
            "i= 2460\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod0slc0pos.png\n",
            "\n",
            "i= 2461\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.149463915556499304732434215056nod0slc0neg.png\n",
            "\n",
            "i= 2462\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod0slc0neg.png\n",
            "\n",
            "i= 2463\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod0slc1neg.png\n",
            "\n",
            "i= 2464\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod1slc0neg.png\n",
            "\n",
            "i= 2465\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod1slc0pos.png\n",
            "\n",
            "i= 2466\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.149463915556499304732434215056nod0slc0pos.png\n",
            "\n",
            "i= 2467\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.149463915556499304732434215056nod0slc1neg.png\n",
            "\n",
            "i= 2468\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.148447286464082095534651426689nod5slc1neg.png\n",
            "\n",
            "i= 2469\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod0slc1pos.png\n",
            "\n",
            "i= 2470\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod1slc1neg.png\n",
            "\n",
            "i= 2471\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod2slc0neg.png\n",
            "\n",
            "i= 2472\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod2slc0pos.png\n",
            "\n",
            "i= 2473\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod2slc1pos.png\n",
            "\n",
            "i= 2474\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod1slc1pos.png\n",
            "\n",
            "i= 2475\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod3slc1neg.png\n",
            "\n",
            "i= 2476\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod3slc1pos.png\n",
            "\n",
            "i= 2477\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod2slc1neg.png\n",
            "\n",
            "i= 2478\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod3slc0neg.png\n",
            "\n",
            "i= 2479\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod3slc0pos.png\n",
            "\n",
            "i= 2480\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod4slc0pos.png\n",
            "\n",
            "i= 2481\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod4slc1neg.png\n",
            "\n",
            "i= 2482\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod4slc0neg.png\n",
            "\n",
            "i= 2483\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc0neg.png\n",
            "\n",
            "i= 2484\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc1neg.png\n",
            "\n",
            "i= 2485\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.153536305742006952753134773630nod4slc1pos.png\n",
            "\n",
            "i= 2486\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc1pos.png\n",
            "\n",
            "i= 2487\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc3neg.png\n",
            "\n",
            "i= 2488\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc0pos.png\n",
            "\n",
            "i= 2489\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc2neg.png\n",
            "\n",
            "i= 2490\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc2pos.png\n",
            "\n",
            "i= 2491\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc3pos.png\n",
            "\n",
            "i= 2492\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc4neg.png\n",
            "\n",
            "i= 2493\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc4pos.png\n",
            "\n",
            "i= 2494\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc5neg.png\n",
            "\n",
            "i= 2495\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod0slc0pos.png\n",
            "\n",
            "i= 2496\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154677396354641150280013275227nod0slc5pos.png\n",
            "\n",
            "i= 2497\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod0slc1neg.png\n",
            "\n",
            "i= 2498\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod0slc1pos.png\n",
            "\n",
            "i= 2499\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod0slc0neg.png\n",
            "\n",
            "i= 2500\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod1slc1pos.png\n",
            "\n",
            "i= 2501\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod2slc0neg.png\n",
            "\n",
            "i= 2502\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod1slc0neg.png\n",
            "\n",
            "i= 2503\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod2slc1neg.png\n",
            "\n",
            "i= 2504\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod2slc0pos.png\n",
            "\n",
            "i= 2505\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod1slc0pos.png\n",
            "\n",
            "i= 2506\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod1slc1neg.png\n",
            "\n",
            "i= 2507\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc0neg.png\n",
            "\n",
            "i= 2508\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.154703816225841204080664115280nod2slc1pos.png\n",
            "\n",
            "i= 2509\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc1neg.png\n",
            "\n",
            "i= 2510\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc0pos.png\n",
            "\n",
            "i= 2511\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc1pos.png\n",
            "\n",
            "i= 2512\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162718361851587451505896742103nod0slc0neg.png\n",
            "\n",
            "i= 2513\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc2pos.png\n",
            "\n",
            "i= 2514\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc2neg.png\n",
            "\n",
            "i= 2515\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162718361851587451505896742103nod0slc0pos.png\n",
            "\n",
            "i= 2516\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162718361851587451505896742103nod0slc1neg.png\n",
            "\n",
            "i= 2517\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc0pos.png\n",
            "\n",
            "i= 2518\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162718361851587451505896742103nod0slc1pos.png\n",
            "\n",
            "i= 2519\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc3neg.png\n",
            "\n",
            "i= 2520\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.159996104466052855396410079250nod0slc3pos.png\n",
            "\n",
            "i= 2521\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc0neg.png\n",
            "\n",
            "i= 2522\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc1neg.png\n",
            "\n",
            "i= 2523\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc1pos.png\n",
            "\n",
            "i= 2524\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc2neg.png\n",
            "\n",
            "i= 2525\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc2pos.png\n",
            "\n",
            "i= 2526\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc3neg.png\n",
            "\n",
            "i= 2527\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc3pos.png\n",
            "\n",
            "i= 2528\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc4neg.png\n",
            "\n",
            "i= 2529\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc5pos.png\n",
            "\n",
            "i= 2530\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc6pos.png\n",
            "\n",
            "i= 2531\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc7neg.png\n",
            "\n",
            "i= 2532\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc5neg.png\n",
            "\n",
            "i= 2533\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc4pos.png\n",
            "\n",
            "i= 2534\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162901839201654862079549658100nod0slc0neg.png\n",
            "\n",
            "i= 2535\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc7pos.png\n",
            "\n",
            "i= 2536\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162845309248822193437735868939nod0slc6neg.png\n",
            "\n",
            "i= 2537\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162901839201654862079549658100nod0slc0pos.png\n",
            "\n",
            "i= 2538\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162901839201654862079549658100nod0slc1neg.png\n",
            "\n",
            "i= 2539\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.162901839201654862079549658100nod0slc1pos.png\n",
            "\n",
            "i= 2540\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc1neg.png\n",
            "\n",
            "i= 2541\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc0neg.png\n",
            "\n",
            "i= 2542\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc0pos.png\n",
            "\n",
            "i= 2543\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc1pos.png\n",
            "\n",
            "i= 2544\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc3neg.png\n",
            "\n",
            "i= 2545\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc4neg.png\n",
            "\n",
            "i= 2546\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc2pos.png\n",
            "\n",
            "i= 2547\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc3pos.png\n",
            "\n",
            "i= 2548\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc2neg.png\n",
            "\n",
            "i= 2549\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc4pos.png\n",
            "\n",
            "i= 2550\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc6neg.png\n",
            "\n",
            "i= 2551\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc7pos.png\n",
            "\n",
            "i= 2552\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc7neg.png\n",
            "\n",
            "i= 2553\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc6pos.png\n",
            "\n",
            "i= 2554\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc5pos.png\n",
            "\n",
            "i= 2555\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc5neg.png\n",
            "\n",
            "i= 2556\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc8neg.png\n",
            "\n",
            "i= 2557\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc9neg.png\n",
            "\n",
            "i= 2558\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc8pos.png\n",
            "\n",
            "i= 2559\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163901773171373940247829492387nod0slc9pos.png\n",
            "\n",
            "i= 2560\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163994693532965040247348251579nod0slc0neg.png\n",
            "\n",
            "i= 2561\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163994693532965040247348251579nod0slc1neg.png\n",
            "\n",
            "i= 2562\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163994693532965040247348251579nod0slc1pos.png\n",
            "\n",
            "i= 2563\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.167919147233131417984739058859nod0slc1neg.png\n",
            "\n",
            "i= 2564\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.163994693532965040247348251579nod0slc0pos.png\n",
            "\n",
            "i= 2565\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc0neg.png\n",
            "\n",
            "i= 2566\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc0pos.png\n",
            "\n",
            "i= 2567\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc1neg.png\n",
            "\n",
            "i= 2568\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.167919147233131417984739058859nod0slc0pos.png\n",
            "\n",
            "i= 2569\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.167919147233131417984739058859nod0slc0neg.png\n",
            "\n",
            "i= 2570\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.167919147233131417984739058859nod0slc1pos.png\n",
            "\n",
            "i= 2571\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc1pos.png\n",
            "\n",
            "i= 2572\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc3neg.png\n",
            "\n",
            "i= 2573\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc3pos.png\n",
            "\n",
            "i= 2574\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc5neg.png\n",
            "\n",
            "i= 2575\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168605638657404145360275453085nod0slc0pos.png\n",
            "\n",
            "i= 2576\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc2neg.png\n",
            "\n",
            "i= 2577\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc2pos.png\n",
            "\n",
            "i= 2578\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc4pos.png\n",
            "\n",
            "i= 2579\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc4neg.png\n",
            "\n",
            "i= 2580\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168037818448885856452592057286nod0slc5pos.png\n",
            "\n",
            "i= 2581\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168605638657404145360275453085nod0slc1neg.png\n",
            "\n",
            "i= 2582\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168605638657404145360275453085nod0slc0neg.png\n",
            "\n",
            "i= 2583\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.168605638657404145360275453085nod0slc1pos.png\n",
            "\n",
            "i= 2584\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc1neg.png\n",
            "\n",
            "i= 2585\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc2neg.png\n",
            "\n",
            "i= 2586\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc0neg.png\n",
            "\n",
            "i= 2587\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc2pos.png\n",
            "\n",
            "i= 2588\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc0pos.png\n",
            "\n",
            "i= 2589\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc1pos.png\n",
            "\n",
            "i= 2590\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc3neg.png\n",
            "\n",
            "i= 2591\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc4pos.png\n",
            "\n",
            "i= 2592\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc5neg.png\n",
            "\n",
            "i= 2593\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc5pos.png\n",
            "\n",
            "i= 2594\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc3pos.png\n",
            "\n",
            "i= 2595\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc4neg.png\n",
            "\n",
            "i= 2596\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc6pos.png\n",
            "\n",
            "i= 2597\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc7neg.png\n",
            "\n",
            "i= 2598\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod1slc0neg.png\n",
            "\n",
            "i= 2599\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc6neg.png\n",
            "\n",
            "i= 2600\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod1slc0pos.png\n",
            "\n",
            "i= 2601\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod1slc1neg.png\n",
            "\n",
            "i= 2602\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod0slc7pos.png\n",
            "\n",
            "i= 2603\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod1slc1pos.png\n",
            "\n",
            "i= 2604\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod2slc1neg.png\n",
            "\n",
            "i= 2605\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod2slc1pos.png\n",
            "\n",
            "i= 2606\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod3slc0neg.png\n",
            "\n",
            "i= 2607\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod3slc0pos.png\n",
            "\n",
            "i= 2608\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod4slc0neg.png\n",
            "\n",
            "i= 2609\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod3slc1neg.png\n",
            "\n",
            "i= 2610\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod4slc0pos.png\n",
            "\n",
            "i= 2611\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod3slc1pos.png\n",
            "\n",
            "i= 2612\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod4slc1neg.png\n",
            "\n",
            "i= 2613\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod4slc1pos.png\n",
            "\n",
            "i= 2614\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod5slc0neg.png\n",
            "\n",
            "i= 2615\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod5slc0pos.png\n",
            "\n",
            "i= 2616\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod2slc0neg.png\n",
            "\n",
            "i= 2617\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod2slc0pos.png\n",
            "\n",
            "i= 2618\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod5slc1pos.png\n",
            "\n",
            "i= 2619\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod5slc1neg.png\n",
            "\n",
            "i= 2620\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod6slc0pos.png\n",
            "\n",
            "i= 2621\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod6slc1neg.png\n",
            "\n",
            "i= 2622\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod6slc0neg.png\n",
            "\n",
            "i= 2623\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.171667800241622018839592854574nod0slc0neg.png\n",
            "\n",
            "i= 2624\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.171667800241622018839592854574nod0slc0pos.png\n",
            "\n",
            "i= 2625\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc0neg.png\n",
            "\n",
            "i= 2626\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.169128136262002764211589185953nod6slc1pos.png\n",
            "\n",
            "i= 2627\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc1neg.png\n",
            "\n",
            "i= 2628\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.171667800241622018839592854574nod0slc1pos.png\n",
            "\n",
            "i= 2629\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.171667800241622018839592854574nod0slc1neg.png\n",
            "\n",
            "i= 2630\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc1pos.png\n",
            "\n",
            "i= 2631\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc2neg.png\n",
            "\n",
            "i= 2632\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc2pos.png\n",
            "\n",
            "i= 2633\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc0pos.png\n",
            "\n",
            "i= 2634\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc3neg.png\n",
            "\n",
            "i= 2635\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod1slc0neg.png\n",
            "\n",
            "i= 2636\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod1slc0pos.png\n",
            "\n",
            "i= 2637\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod1slc1neg.png\n",
            "\n",
            "i= 2638\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod1slc1pos.png\n",
            "\n",
            "i= 2639\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod0slc0neg.png\n",
            "\n",
            "i= 2640\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.172573195301625265149778785969nod0slc3pos.png\n",
            "\n",
            "i= 2641\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod0slc1pos.png\n",
            "\n",
            "i= 2642\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod1slc0neg.png\n",
            "\n",
            "i= 2643\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod1slc0pos.png\n",
            "\n",
            "i= 2644\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod0slc0pos.png\n",
            "\n",
            "i= 2645\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod0slc1neg.png\n",
            "\n",
            "i= 2646\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod1slc1neg.png\n",
            "\n",
            "i= 2647\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod1slc1pos.png\n",
            "\n",
            "i= 2648\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod2slc0pos.png\n",
            "\n",
            "i= 2649\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod2slc0neg.png\n",
            "\n",
            "i= 2650\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod3slc0neg.png\n",
            "\n",
            "i= 2651\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod2slc1neg.png\n",
            "\n",
            "i= 2652\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod4slc0neg.png\n",
            "\n",
            "i= 2653\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod3slc0pos.png\n",
            "\n",
            "i= 2654\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod2slc1pos.png\n",
            "\n",
            "i= 2655\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod4slc0pos.png\n",
            "\n",
            "i= 2656\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod4slc1neg.png\n",
            "\n",
            "i= 2657\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod3slc1neg.png\n",
            "\n",
            "i= 2658\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod3slc1pos.png\n",
            "\n",
            "i= 2659\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod4slc1pos.png\n",
            "\n",
            "i= 2660\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177685820605315926524514718990nod0slc0neg.png\n",
            "\n",
            "i= 2661\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod5slc0pos.png\n",
            "\n",
            "i= 2662\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod5slc1pos.png\n",
            "\n",
            "i= 2663\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177685820605315926524514718990nod0slc0pos.png\n",
            "\n",
            "i= 2664\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177685820605315926524514718990nod0slc1neg.png\n",
            "\n",
            "i= 2665\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod5slc1neg.png\n",
            "\n",
            "i= 2666\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.173106154739244262091404659845nod5slc0neg.png\n",
            "\n",
            "i= 2667\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177785764461425908755977367558nod0slc0neg.png\n",
            "\n",
            "i= 2668\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177685820605315926524514718990nod0slc1pos.png\n",
            "\n",
            "i= 2669\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177785764461425908755977367558nod0slc0pos.png\n",
            "\n",
            "i= 2670\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177785764461425908755977367558nod0slc1pos.png\n",
            "\n",
            "i= 2671\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.177785764461425908755977367558nod0slc1neg.png\n",
            "\n",
            "i= 2672\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc0neg.png\n",
            "\n",
            "i= 2673\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc0pos.png\n",
            "\n",
            "i= 2674\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc1pos.png\n",
            "\n",
            "i= 2675\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc1neg.png\n",
            "\n",
            "i= 2676\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc2neg.png\n",
            "\n",
            "i= 2677\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc0pos.png\n",
            "\n",
            "i= 2678\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc1pos.png\n",
            "\n",
            "i= 2679\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc3neg.png\n",
            "\n",
            "i= 2680\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc2pos.png\n",
            "\n",
            "i= 2681\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc1neg.png\n",
            "\n",
            "i= 2682\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc3neg.png\n",
            "\n",
            "i= 2683\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc2neg.png\n",
            "\n",
            "i= 2684\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc3pos.png\n",
            "\n",
            "i= 2685\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod1slc0neg.png\n",
            "\n",
            "i= 2686\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192nod0slc3pos.png\n",
            "\n",
            "i= 2687\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc0neg.png\n",
            "\n",
            "i= 2688\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod1slc0pos.png\n",
            "\n",
            "i= 2689\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod0slc2pos.png\n",
            "\n",
            "i= 2690\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod1slc1neg.png\n",
            "\n",
            "i= 2691\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod2slc0pos.png\n",
            "\n",
            "i= 2692\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod2slc0neg.png\n",
            "\n",
            "i= 2693\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod1slc1pos.png\n",
            "\n",
            "i= 2694\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179730018513720561213088132029nod0slc0pos.png\n",
            "\n",
            "i= 2695\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179730018513720561213088132029nod0slc1neg.png\n",
            "\n",
            "i= 2696\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179730018513720561213088132029nod0slc1pos.png\n",
            "\n",
            "i= 2697\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod0slc0pos.png\n",
            "\n",
            "i= 2698\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod2slc1neg.png\n",
            "\n",
            "i= 2699\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod0slc1neg.png\n",
            "\n",
            "i= 2700\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod0slc0neg.png\n",
            "\n",
            "i= 2701\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod0slc1pos.png\n",
            "\n",
            "i= 2702\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179730018513720561213088132029nod0slc0neg.png\n",
            "\n",
            "i= 2703\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.179162671133894061547290922949nod2slc1pos.png\n",
            "\n",
            "i= 2704\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod1slc0neg.png\n",
            "\n",
            "i= 2705\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod1slc0pos.png\n",
            "\n",
            "i= 2706\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod1slc1neg.png\n",
            "\n",
            "i= 2707\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183184435049555024219115904825nod1slc1pos.png\n",
            "\n",
            "i= 2708\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod0slc0neg.png\n",
            "\n",
            "i= 2709\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod0slc1neg.png\n",
            "\n",
            "i= 2710\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod1slc0neg.png\n",
            "\n",
            "i= 2711\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod0slc1pos.png\n",
            "\n",
            "i= 2712\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod0slc0pos.png\n",
            "\n",
            "i= 2713\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod2slc0neg.png\n",
            "\n",
            "i= 2714\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod1slc1pos.png\n",
            "\n",
            "i= 2715\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod2slc0pos.png\n",
            "\n",
            "i= 2716\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod1slc1neg.png\n",
            "\n",
            "i= 2717\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod1slc0pos.png\n",
            "\n",
            "i= 2718\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod2slc1neg.png\n",
            "\n",
            "i= 2719\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod2slc1pos.png\n",
            "\n",
            "i= 2720\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod3slc0pos.png\n",
            "\n",
            "i= 2721\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod3slc1neg.png\n",
            "\n",
            "i= 2722\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod3slc0neg.png\n",
            "\n",
            "i= 2723\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183843376225716802567192412456nod3slc1pos.png\n",
            "\n",
            "i= 2724\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod0slc0neg.png\n",
            "\n",
            "i= 2725\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod0slc1neg.png\n",
            "\n",
            "i= 2726\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod0slc0pos.png\n",
            "\n",
            "i= 2727\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod1slc0pos.png\n",
            "\n",
            "i= 2728\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod1slc1neg.png\n",
            "\n",
            "i= 2729\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod1slc1pos.png\n",
            "\n",
            "i= 2730\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.184412674007117333405073397832nod0slc0pos.png\n",
            "\n",
            "i= 2731\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.184412674007117333405073397832nod0slc0neg.png\n",
            "\n",
            "i= 2732\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod0slc1pos.png\n",
            "\n",
            "i= 2733\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.183924380327950237519832859527nod1slc0neg.png\n",
            "\n",
            "i= 2734\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.184412674007117333405073397832nod0slc1pos.png\n",
            "\n",
            "i= 2735\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc0neg.png\n",
            "\n",
            "i= 2736\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.184412674007117333405073397832nod0slc1neg.png\n",
            "\n",
            "i= 2737\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc0pos.png\n",
            "\n",
            "i= 2738\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc1neg.png\n",
            "\n",
            "i= 2739\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc2neg.png\n",
            "\n",
            "i= 2740\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc3pos.png\n",
            "\n",
            "i= 2741\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc1pos.png\n",
            "\n",
            "i= 2742\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc2pos.png\n",
            "\n",
            "i= 2743\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod0slc3neg.png\n",
            "\n",
            "i= 2744\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod1slc0neg.png\n",
            "\n",
            "i= 2745\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod1slc0pos.png\n",
            "\n",
            "i= 2746\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod1slc1pos.png\n",
            "\n",
            "i= 2747\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod2slc0neg.png\n",
            "\n",
            "i= 2748\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod2slc0pos.png\n",
            "\n",
            "i= 2749\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod1slc1neg.png\n",
            "\n",
            "i= 2750\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod2slc1neg.png\n",
            "\n",
            "i= 2751\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod3slc1neg.png\n",
            "\n",
            "i= 2752\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod2slc1pos.png\n",
            "\n",
            "i= 2753\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod4slc1neg.png\n",
            "\n",
            "i= 2754\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod3slc1pos.png\n",
            "\n",
            "i= 2755\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod3slc0neg.png\n",
            "\n",
            "i= 2756\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod3slc0pos.png\n",
            "\n",
            "i= 2757\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod4slc1pos.png\n",
            "\n",
            "i= 2758\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod0slc0neg.png\n",
            "\n",
            "i= 2759\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod4slc0neg.png\n",
            "\n",
            "i= 2760\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod0slc0pos.png\n",
            "\n",
            "i= 2761\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod0slc1neg.png\n",
            "\n",
            "i= 2762\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187108608022306504546286626125nod4slc0pos.png\n",
            "\n",
            "i= 2763\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod0slc1pos.png\n",
            "\n",
            "i= 2764\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod1slc0neg.png\n",
            "\n",
            "i= 2765\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod1slc0pos.png\n",
            "\n",
            "i= 2766\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod0slc0pos.png\n",
            "\n",
            "i= 2767\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod0slc0neg.png\n",
            "\n",
            "i= 2768\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod1slc1pos.png\n",
            "\n",
            "i= 2769\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187451715205085403623595258748nod1slc1neg.png\n",
            "\n",
            "i= 2770\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod1slc0pos.png\n",
            "\n",
            "i= 2771\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod1slc1neg.png\n",
            "\n",
            "i= 2772\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod1slc0neg.png\n",
            "\n",
            "i= 2773\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod0slc1neg.png\n",
            "\n",
            "i= 2774\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod0slc1pos.png\n",
            "\n",
            "i= 2775\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod1slc1pos.png\n",
            "\n",
            "i= 2776\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc0neg.png\n",
            "\n",
            "i= 2777\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc0pos.png\n",
            "\n",
            "i= 2778\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc2pos.png\n",
            "\n",
            "i= 2779\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc1neg.png\n",
            "\n",
            "i= 2780\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc3neg.png\n",
            "\n",
            "i= 2781\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc3pos.png\n",
            "\n",
            "i= 2782\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc0pos.png\n",
            "\n",
            "i= 2783\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc2neg.png\n",
            "\n",
            "i= 2784\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod2slc1pos.png\n",
            "\n",
            "i= 2785\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc0neg.png\n",
            "\n",
            "i= 2786\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc1pos.png\n",
            "\n",
            "i= 2787\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc1neg.png\n",
            "\n",
            "i= 2788\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc2pos.png\n",
            "\n",
            "i= 2789\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc2neg.png\n",
            "\n",
            "i= 2790\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc3neg.png\n",
            "\n",
            "i= 2791\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc4neg.png\n",
            "\n",
            "i= 2792\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod0slc0neg.png\n",
            "\n",
            "i= 2793\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod0slc0pos.png\n",
            "\n",
            "i= 2794\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod0slc1neg.png\n",
            "\n",
            "i= 2795\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod0slc1pos.png\n",
            "\n",
            "i= 2796\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod1slc0neg.png\n",
            "\n",
            "i= 2797\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc3pos.png\n",
            "\n",
            "i= 2798\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc5neg.png\n",
            "\n",
            "i= 2799\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod1slc0pos.png\n",
            "\n",
            "i= 2800\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod1slc1neg.png\n",
            "\n",
            "i= 2801\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc4pos.png\n",
            "\n",
            "i= 2802\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.187966156856911682643615997798nod3slc5pos.png\n",
            "\n",
            "i= 2803\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188209889686363159853715266493nod1slc1pos.png\n",
            "\n",
            "i= 2804\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc0neg.png\n",
            "\n",
            "i= 2805\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc1neg.png\n",
            "\n",
            "i= 2806\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc0pos.png\n",
            "\n",
            "i= 2807\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc2neg.png\n",
            "\n",
            "i= 2808\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc2pos.png\n",
            "\n",
            "i= 2809\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc3neg.png\n",
            "\n",
            "i= 2810\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc1pos.png\n",
            "\n",
            "i= 2811\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod0slc3pos.png\n",
            "\n",
            "i= 2812\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod1slc1neg.png\n",
            "\n",
            "i= 2813\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod1slc1pos.png\n",
            "\n",
            "i= 2814\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod1slc0pos.png\n",
            "\n",
            "i= 2815\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod1slc0neg.png\n",
            "\n",
            "i= 2816\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod2slc0neg.png\n",
            "\n",
            "i= 2817\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod2slc0pos.png\n",
            "\n",
            "i= 2818\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod2slc1pos.png\n",
            "\n",
            "i= 2819\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod3slc0pos.png\n",
            "\n",
            "i= 2820\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod2slc1neg.png\n",
            "\n",
            "i= 2821\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod3slc1neg.png\n",
            "\n",
            "i= 2822\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod3slc1pos.png\n",
            "\n",
            "i= 2823\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.188376349804761988217597754952nod3slc0neg.png\n",
            "\n",
            "i= 2824\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.190298296009658115773239776160nod0slc1pos.png\n",
            "\n",
            "i= 2825\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.190298296009658115773239776160nod0slc0neg.png\n",
            "\n",
            "i= 2826\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.191266041369462391833537519639nod0slc0neg.png\n",
            "\n",
            "i= 2827\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.191266041369462391833537519639nod0slc1neg.png\n",
            "\n",
            "i= 2828\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod0slc0neg.png\n",
            "\n",
            "i= 2829\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.190298296009658115773239776160nod0slc1neg.png\n",
            "\n",
            "i= 2830\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.190298296009658115773239776160nod0slc0pos.png\n",
            "\n",
            "i= 2831\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.191266041369462391833537519639nod0slc0pos.png\n",
            "\n",
            "i= 2832\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod0slc1neg.png\n",
            "\n",
            "i= 2833\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.191266041369462391833537519639nod0slc1pos.png\n",
            "\n",
            "i= 2834\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod0slc1pos.png\n",
            "\n",
            "i= 2835\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod0slc0pos.png\n",
            "\n",
            "i= 2836\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod1slc0neg.png\n",
            "\n",
            "i= 2837\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod1slc0pos.png\n",
            "\n",
            "i= 2838\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod1slc1pos.png\n",
            "\n",
            "i= 2839\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod2slc0pos.png\n",
            "\n",
            "i= 2840\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod2slc0neg.png\n",
            "\n",
            "i= 2841\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod1slc1neg.png\n",
            "\n",
            "i= 2842\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod3slc1neg.png\n",
            "\n",
            "i= 2843\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod3slc1pos.png\n",
            "\n",
            "i= 2844\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod3slc0neg.png\n",
            "\n",
            "i= 2845\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod2slc1neg.png\n",
            "\n",
            "i= 2846\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod2slc1pos.png\n",
            "\n",
            "i= 2847\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod4slc0neg.png\n",
            "\n",
            "i= 2848\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod3slc0pos.png\n",
            "\n",
            "i= 2849\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod4slc1pos.png\n",
            "\n",
            "i= 2850\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192419869605596446455526220766nod0slc0neg.png\n",
            "\n",
            "i= 2851\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod4slc0pos.png\n",
            "\n",
            "i= 2852\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.193808128386712859512130599234nod0slc0neg.png\n",
            "\n",
            "i= 2853\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192256506776434538421891524301nod4slc1neg.png\n",
            "\n",
            "i= 2854\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192419869605596446455526220766nod0slc0pos.png\n",
            "\n",
            "i= 2855\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192419869605596446455526220766nod0slc1neg.png\n",
            "\n",
            "i= 2856\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.192419869605596446455526220766nod0slc1pos.png\n",
            "\n",
            "i= 2857\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.193808128386712859512130599234nod0slc0pos.png\n",
            "\n",
            "i= 2858\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.193808128386712859512130599234nod0slc1neg.png\n",
            "\n",
            "i= 2859\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194440094986948071643661798326nod0slc0neg.png\n",
            "\n",
            "i= 2860\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194440094986948071643661798326nod0slc0pos.png\n",
            "\n",
            "i= 2861\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.193808128386712859512130599234nod0slc1pos.png\n",
            "\n",
            "i= 2862\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194440094986948071643661798326nod0slc1neg.png\n",
            "\n",
            "i= 2863\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194440094986948071643661798326nod0slc1pos.png\n",
            "\n",
            "i= 2864\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod0slc1neg.png\n",
            "\n",
            "i= 2865\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod0slc1pos.png\n",
            "\n",
            "i= 2866\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc0neg.png\n",
            "\n",
            "i= 2867\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod0slc0pos.png\n",
            "\n",
            "i= 2868\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod0slc0neg.png\n",
            "\n",
            "i= 2869\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc0pos.png\n",
            "\n",
            "i= 2870\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc2pos.png\n",
            "\n",
            "i= 2871\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc2neg.png\n",
            "\n",
            "i= 2872\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc3neg.png\n",
            "\n",
            "i= 2873\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc1neg.png\n",
            "\n",
            "i= 2874\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod0slc0neg.png\n",
            "\n",
            "i= 2875\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc3pos.png\n",
            "\n",
            "i= 2876\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod0slc0pos.png\n",
            "\n",
            "i= 2877\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.194488534645348916700259325236nod1slc1pos.png\n",
            "\n",
            "i= 2878\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod1slc0neg.png\n",
            "\n",
            "i= 2879\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod1slc0pos.png\n",
            "\n",
            "i= 2880\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod0slc1neg.png\n",
            "\n",
            "i= 2881\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod0slc1pos.png\n",
            "\n",
            "i= 2882\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod1slc1neg.png\n",
            "\n",
            "i= 2883\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod1slc1pos.png\n",
            "\n",
            "i= 2884\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod2slc0neg.png\n",
            "\n",
            "i= 2885\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod2slc0pos.png\n",
            "\n",
            "i= 2886\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod2slc1pos.png\n",
            "\n",
            "i= 2887\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod3slc0neg.png\n",
            "\n",
            "i= 2888\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod3slc1neg.png\n",
            "\n",
            "i= 2889\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod2slc1neg.png\n",
            "\n",
            "i= 2890\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod3slc1pos.png\n",
            "\n",
            "i= 2891\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod4slc0neg.png\n",
            "\n",
            "i= 2892\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod3slc0pos.png\n",
            "\n",
            "i= 2893\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod4slc1pos.png\n",
            "\n",
            "i= 2894\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod0slc0neg.png\n",
            "\n",
            "i= 2895\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod0slc0pos.png\n",
            "\n",
            "i= 2896\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod0slc1neg.png\n",
            "\n",
            "i= 2897\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod4slc1neg.png\n",
            "\n",
            "i= 2898\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.197063290812663596858124411210nod4slc0pos.png\n",
            "\n",
            "i= 2899\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod0slc1pos.png\n",
            "\n",
            "i= 2900\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod1slc0neg.png\n",
            "\n",
            "i= 2901\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod1slc1pos.png\n",
            "\n",
            "i= 2902\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod1slc0pos.png\n",
            "\n",
            "i= 2903\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199220738144407033276946096708nod0slc0neg.png\n",
            "\n",
            "i= 2904\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199220738144407033276946096708nod0slc0pos.png\n",
            "\n",
            "i= 2905\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod0slc0pos.png\n",
            "\n",
            "i= 2906\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199171741859530285887752432478nod1slc1neg.png\n",
            "\n",
            "i= 2907\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod0slc1neg.png\n",
            "\n",
            "i= 2908\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199220738144407033276946096708nod0slc1neg.png\n",
            "\n",
            "i= 2909\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod1slc0neg.png\n",
            "\n",
            "i= 2910\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod0slc1pos.png\n",
            "\n",
            "i= 2911\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199220738144407033276946096708nod0slc1pos.png\n",
            "\n",
            "i= 2912\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod1slc1neg.png\n",
            "\n",
            "i= 2913\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod1slc0pos.png\n",
            "\n",
            "i= 2914\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod0slc0neg.png\n",
            "\n",
            "i= 2915\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod0slc0pos.png\n",
            "\n",
            "i= 2916\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod0slc0neg.png\n",
            "\n",
            "i= 2917\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199670099218798685977406484591nod1slc1pos.png\n",
            "\n",
            "i= 2918\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod0slc1neg.png\n",
            "\n",
            "i= 2919\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod0slc1pos.png\n",
            "\n",
            "i= 2920\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod1slc0neg.png\n",
            "\n",
            "i= 2921\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod1slc1neg.png\n",
            "\n",
            "i= 2922\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod1slc1pos.png\n",
            "\n",
            "i= 2923\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod0slc1pos.png\n",
            "\n",
            "i= 2924\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.199975006921901879512837687266nod1slc0pos.png\n",
            "\n",
            "i= 2925\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod0slc0pos.png\n",
            "\n",
            "i= 2926\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod0slc0neg.png\n",
            "\n",
            "i= 2927\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod1slc0pos.png\n",
            "\n",
            "i= 2928\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod0slc1neg.png\n",
            "\n",
            "i= 2929\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod1slc0neg.png\n",
            "\n",
            "i= 2930\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod1slc1neg.png\n",
            "\n",
            "i= 2931\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod1slc1pos.png\n",
            "\n",
            "i= 2932\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod2slc0neg.png\n",
            "\n",
            "i= 2933\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod3slc1pos.png\n",
            "\n",
            "i= 2934\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod3slc0pos.png\n",
            "\n",
            "i= 2935\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod4slc0neg.png\n",
            "\n",
            "i= 2936\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod2slc0pos.png\n",
            "\n",
            "i= 2937\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod4slc0pos.png\n",
            "\n",
            "i= 2938\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod3slc0neg.png\n",
            "\n",
            "i= 2939\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod3slc1neg.png\n",
            "\n",
            "i= 2940\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod4slc1neg.png\n",
            "\n",
            "i= 2941\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod2slc1neg.png\n",
            "\n",
            "i= 2942\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod2slc1pos.png\n",
            "\n",
            "i= 2943\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod4slc1pos.png\n",
            "\n",
            "i= 2944\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod5slc1neg.png\n",
            "\n",
            "i= 2945\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod5slc0pos.png\n",
            "\n",
            "i= 2946\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod6slc1neg.png\n",
            "\n",
            "i= 2947\n",
            "filename= data/LUNA2016/images/1.3.6.1.4.1.14519.5.2.1.6279.6001.202187810895588720702176009630nod5slc0neg.png\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "dQcKKW3w6sbE",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#CNN model as a function\n",
        "\n",
        "def modrun():\n",
        "\n",
        "        input_shape = (40,40,1)\n",
        "        \n",
        "        model = Sequential()\n",
        "        img_width, img_height = 40, 40\n",
        "        \n",
        "        #convolution layer 1\n",
        "        model.add(Conv2D(CONV1_NUM_FILTERS, kernel_size=(CONV1_KERNEL_SIZE[0],CONV1_KERNEL_SIZE[1]), strides=(1, 1), padding = 'same',\n",
        "                 activation='relu',data_format=\"channels_last\"))\n",
        "      \n",
        "        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2),padding = 'same'))\n",
        "        \n",
        "        #convolution layer 2\n",
        "        model.add(Conv2D(CONV2_NUM_FILTERS, kernel_size=(CONV2_KERNEL_SIZE[0],CONV2_KERNEL_SIZE[1]), strides=(1, 1), padding = 'same',\n",
        "                 activation='relu'))        \n",
        "\n",
        "        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2),padding = 'same'))\n",
        "\n",
        "        #convolution layer 3\n",
        "        model.add(Conv2D(CONV3_NUM_FILTERS, kernel_size=(CONV3_KERNEL_SIZE[0],CONV3_KERNEL_SIZE[1]), strides=(1, 1), padding = 'same',\n",
        "                 activation='relu'))        \n",
        "\n",
        "        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2),padding = 'same'))\n",
        "                \n",
        "        \n",
        "        # densely connected layer\n",
        "        # image size has been reduced to 10x10 so we will add a fully-connected layer with 1024 neurons\n",
        "        model.add(Flatten())\n",
        "        \n",
        "        model.add(Dense(1024, activation='relu'))\n",
        "\n",
        "        # dropout\n",
        "        model.add(Dropout(0.2))\n",
        "\n",
        "        # readout layer\n",
        "        model.add(Dense(1))\n",
        "        \n",
        "        model.add(Activation('sigmoid'))\n",
        "        \n",
        "\n",
        "        model.compile(loss='binary_crossentropy', # or categorical_crossentropy\n",
        "                      optimizer='Adam',\n",
        "                      metrics=['accuracy']) \n",
        "\n",
        "        return model"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "NWK8KvHSaOfu",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 629
        },
        "outputId": "a8b28860-56c2-4309-cecf-409fc6fcee8c"
      },
      "cell_type": "code",
      "source": [
        "print( \"Train Data Size\", train_data.shape)\n",
        "print (\"Train Labels Size\", train_labels.shape)\n",
        "print (\"Validation Data Size\", validation_data.shape)\n",
        "print (\"Validation Labels Size\", validation_labels.shape)\n",
        "print (\"Test Data Size\", test_data.shape)\n",
        "print (\"Test Labels Size\", test_labels.shape)\n",
        "\n",
        "from keras.models import load_model\n",
        "model = load_model('cancerCNN.h5')\n",
        "print(model.summary())"
      ],
      "execution_count": 31,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Train Data Size (2064, 40, 40, 1)\n",
            "Train Labels Size (2064, 2)\n",
            "Validation Data Size (442, 40, 40, 1)\n",
            "Validation Labels Size (442, 2)\n",
            "Test Data Size (442, 40, 40, 1)\n",
            "Test Labels Size (442, 2)\n",
            "_________________________________________________________________\n",
            "Layer (type)                 Output Shape              Param #   \n",
            "=================================================================\n",
            "conv2d_31 (Conv2D)           (None, 40, 40, 16)        160       \n",
            "_________________________________________________________________\n",
            "max_pooling2d_4 (MaxPooling2 (None, 20, 20, 16)        0         \n",
            "_________________________________________________________________\n",
            "conv2d_32 (Conv2D)           (None, 20, 20, 32)        12832     \n",
            "_________________________________________________________________\n",
            "max_pooling2d_5 (MaxPooling2 (None, 10, 10, 32)        0         \n",
            "_________________________________________________________________\n",
            "conv2d_33 (Conv2D)           (None, 10, 10, 64)        100416    \n",
            "_________________________________________________________________\n",
            "max_pooling2d_6 (MaxPooling2 (None, 5, 5, 64)          0         \n",
            "_________________________________________________________________\n",
            "flatten_2 (Flatten)          (None, 1600)              0         \n",
            "_________________________________________________________________\n",
            "dense_3 (Dense)              (None, 1024)              1639424   \n",
            "_________________________________________________________________\n",
            "dropout_2 (Dropout)          (None, 1024)              0         \n",
            "_________________________________________________________________\n",
            "dense_4 (Dense)              (None, 1)                 1025      \n",
            "_________________________________________________________________\n",
            "activation_52 (Activation)   (None, 1)                 0         \n",
            "=================================================================\n",
            "Total params: 1,753,857\n",
            "Trainable params: 1,753,857\n",
            "Non-trainable params: 0\n",
            "_________________________________________________________________\n",
            "None\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "RSXQ-W5NVxGS",
        "colab_type": "code",
        "outputId": "2d718e9d-109a-43f6-9326-1bd70e0ef39e",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 238
        }
      },
      "cell_type": "code",
      "source": [
        "#for tensorboard diagram\n",
        "!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip\n",
        "!unzip ngrok-stable-linux-amd64.zip"
      ],
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2019-02-14 18:53:51--  https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip\n",
            "Resolving bin.equinox.io (bin.equinox.io)... 52.72.245.79, 52.7.169.168, 52.73.9.93, ...\n",
            "Connecting to bin.equinox.io (bin.equinox.io)|52.72.245.79|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 5363700 (5.1M) [application/octet-stream]\n",
            "Saving to: ‘ngrok-stable-linux-amd64.zip’\n",
            "\n",
            "\r          ngrok-sta   0%[                    ]       0  --.-KB/s               \r         ngrok-stab  20%[===>                ]   1.05M  5.24MB/s               \rngrok-stable-linux- 100%[===================>]   5.11M  15.8MB/s    in 0.3s    \n",
            "\n",
            "2019-02-14 18:53:51 (15.8 MB/s) - ‘ngrok-stable-linux-amd64.zip’ saved [5363700/5363700]\n",
            "\n",
            "Archive:  ngrok-stable-linux-amd64.zip\n",
            "  inflating: ngrok                   \n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "_i4wrn7tVxNI",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "LOG_DIR = './log'\n",
        "get_ipython().system_raw(\n",
        "    'tensorboard --logdir {} --host 0.0.0.0 --port 6006 &'\n",
        "    .format(LOG_DIR)\n",
        ")"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "tYxnXCbiVxSo",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "get_ipython().system_raw('./ngrok_new_f1 http 6006 &')"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "O6dldGJcVxW8",
        "colab_type": "code",
        "outputId": "1124e758-3111-4728-f2fa-8310626f9f08",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 204
        }
      },
      "cell_type": "code",
      "source": [
        "#generating link\n",
        "! curl -s http://localhost:4040/api/tunnels | python3 -c \\\n",
        "    \"import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])\""
      ],
      "execution_count": 21,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Traceback (most recent call last):\n",
            "  File \"<string>\", line 1, in <module>\n",
            "  File \"/usr/lib/python3.6/json/__init__.py\", line 299, in load\n",
            "    parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw)\n",
            "  File \"/usr/lib/python3.6/json/__init__.py\", line 354, in loads\n",
            "    return _default_decoder.decode(s)\n",
            "  File \"/usr/lib/python3.6/json/decoder.py\", line 339, in decode\n",
            "    obj, end = self.raw_decode(s, idx=_w(s, 0).end())\n",
            "  File \"/usr/lib/python3.6/json/decoder.py\", line 357, in raw_decode\n",
            "    raise JSONDecodeError(\"Expecting value\", s, err.value) from None\n",
            "json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "txUCmQdpVxQj",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "batch_size = 300\n",
        "\n",
        "tbCallBack = TensorBoard(log_dir='./log', histogram_freq=1,\n",
        "                         write_graph=True,\n",
        "                         write_grads=True,\n",
        "                         batch_size=batch_size,\n",
        "                         write_images=True)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "eTWXwcEL6sgO",
        "colab_type": "code",
        "outputId": "3973d746-0080-40da-9ee9-d07b4749b42b",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1641
        }
      },
      "cell_type": "code",
      "source": [
        "#execution of the model\n",
        "model = modrun()\n",
        "epochs = 45\n",
        "batch_size = 300\n",
        "        \n",
        "#fitting the model with train data and validating on validation data\n",
        "model.fit(train_data, train_labels[:,0],validation_data=(validation_data, validation_labels[:,0]), epochs=epochs, batch_size = batch_size,callbacks = [tbCallBack])\n",
        "        \n",
        "#evaluating the trained model with test data\n",
        "score = model.evaluate(test_data, test_labels[:,0], verbose=1)\n",
        "print('Test loss:', score[0])\n",
        "print('Test accuracy:', score[1])"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Train on 2064 samples, validate on 442 samples\n",
            "Epoch 1/45\n",
            "2064/2064 [==============================] - 3s 2ms/step - loss: 0.5902 - acc: 0.6623 - val_loss: 0.4433 - val_acc: 0.8009\n",
            "Epoch 2/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 0.4432 - acc: 0.7999 - val_loss: 0.4425 - val_acc: 0.7738\n",
            "Epoch 3/45\n",
            "2064/2064 [==============================] - 0s 104us/step - loss: 0.3807 - acc: 0.8343 - val_loss: 0.3614 - val_acc: 0.8416\n",
            "Epoch 4/45\n",
            "2064/2064 [==============================] - 0s 96us/step - loss: 0.3108 - acc: 0.8740 - val_loss: 0.2822 - val_acc: 0.8869\n",
            "Epoch 5/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.2598 - acc: 0.9026 - val_loss: 0.2424 - val_acc: 0.9118\n",
            "Epoch 6/45\n",
            "2064/2064 [==============================] - 0s 95us/step - loss: 0.2251 - acc: 0.9138 - val_loss: 0.2135 - val_acc: 0.9186\n",
            "Epoch 7/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.1859 - acc: 0.9370 - val_loss: 0.1891 - val_acc: 0.9299\n",
            "Epoch 8/45\n",
            "2064/2064 [==============================] - 0s 95us/step - loss: 0.1519 - acc: 0.9520 - val_loss: 0.1815 - val_acc: 0.9299\n",
            "Epoch 9/45\n",
            "2064/2064 [==============================] - 0s 96us/step - loss: 0.1313 - acc: 0.9549 - val_loss: 0.1626 - val_acc: 0.9367\n",
            "Epoch 10/45\n",
            "2064/2064 [==============================] - 0s 91us/step - loss: 0.1196 - acc: 0.9608 - val_loss: 0.1783 - val_acc: 0.9321\n",
            "Epoch 11/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0932 - acc: 0.9695 - val_loss: 0.1435 - val_acc: 0.9502\n",
            "Epoch 12/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.0756 - acc: 0.9777 - val_loss: 0.1348 - val_acc: 0.9548\n",
            "Epoch 13/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0618 - acc: 0.9792 - val_loss: 0.1444 - val_acc: 0.9548\n",
            "Epoch 14/45\n",
            "2064/2064 [==============================] - 0s 96us/step - loss: 0.0519 - acc: 0.9845 - val_loss: 0.1599 - val_acc: 0.9480\n",
            "Epoch 15/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0409 - acc: 0.9889 - val_loss: 0.1745 - val_acc: 0.9434\n",
            "Epoch 16/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.0335 - acc: 0.9922 - val_loss: 0.2004 - val_acc: 0.9412\n",
            "Epoch 17/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0381 - acc: 0.9874 - val_loss: 0.1592 - val_acc: 0.9593\n",
            "Epoch 18/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.0310 - acc: 0.9927 - val_loss: 0.1445 - val_acc: 0.9638\n",
            "Epoch 19/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.0221 - acc: 0.9942 - val_loss: 0.1870 - val_acc: 0.9502\n",
            "Epoch 20/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 0.0199 - acc: 0.9966 - val_loss: 0.1354 - val_acc: 0.9593\n",
            "Epoch 21/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0136 - acc: 0.9981 - val_loss: 0.1784 - val_acc: 0.9570\n",
            "Epoch 22/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0094 - acc: 0.9985 - val_loss: 0.1708 - val_acc: 0.9548\n",
            "Epoch 23/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0085 - acc: 0.9985 - val_loss: 0.1707 - val_acc: 0.9593\n",
            "Epoch 24/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.0052 - acc: 0.9990 - val_loss: 0.1709 - val_acc: 0.9638\n",
            "Epoch 25/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0040 - acc: 0.9995 - val_loss: 0.1726 - val_acc: 0.9615\n",
            "Epoch 26/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0025 - acc: 1.0000 - val_loss: 0.1814 - val_acc: 0.9615\n",
            "Epoch 27/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0026 - acc: 0.9995 - val_loss: 0.1743 - val_acc: 0.9615\n",
            "Epoch 28/45\n",
            "2064/2064 [==============================] - 0s 102us/step - loss: 0.0019 - acc: 1.0000 - val_loss: 0.1792 - val_acc: 0.9638\n",
            "Epoch 29/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0013 - acc: 1.0000 - val_loss: 0.1846 - val_acc: 0.9615\n",
            "Epoch 30/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 0.0014 - acc: 1.0000 - val_loss: 0.1785 - val_acc: 0.9615\n",
            "Epoch 31/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0011 - acc: 1.0000 - val_loss: 0.1827 - val_acc: 0.9593\n",
            "Epoch 32/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 8.9941e-04 - acc: 1.0000 - val_loss: 0.1818 - val_acc: 0.9638\n",
            "Epoch 33/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0010 - acc: 1.0000 - val_loss: 0.1801 - val_acc: 0.9615\n",
            "Epoch 34/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 9.7369e-04 - acc: 1.0000 - val_loss: 0.1885 - val_acc: 0.9593\n",
            "Epoch 35/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.0013 - acc: 0.9995 - val_loss: 0.1839 - val_acc: 0.9615\n",
            "Epoch 36/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 9.6422e-04 - acc: 1.0000 - val_loss: 0.1884 - val_acc: 0.9638\n",
            "Epoch 37/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 6.5660e-04 - acc: 1.0000 - val_loss: 0.1896 - val_acc: 0.9638\n",
            "Epoch 38/45\n",
            "2064/2064 [==============================] - 0s 91us/step - loss: 5.8952e-04 - acc: 1.0000 - val_loss: 0.1894 - val_acc: 0.9638\n",
            "Epoch 39/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 5.4827e-04 - acc: 1.0000 - val_loss: 0.1898 - val_acc: 0.9593\n",
            "Epoch 40/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 4.4737e-04 - acc: 1.0000 - val_loss: 0.1876 - val_acc: 0.9615\n",
            "Epoch 41/45\n",
            "2064/2064 [==============================] - 0s 96us/step - loss: 4.3835e-04 - acc: 1.0000 - val_loss: 0.1882 - val_acc: 0.9615\n",
            "Epoch 42/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 3.4904e-04 - acc: 1.0000 - val_loss: 0.1900 - val_acc: 0.9615\n",
            "Epoch 43/45\n",
            "2064/2064 [==============================] - 0s 91us/step - loss: 3.7533e-04 - acc: 1.0000 - val_loss: 0.1899 - val_acc: 0.9615\n",
            "Epoch 44/45\n",
            "2064/2064 [==============================] - 0s 91us/step - loss: 3.5689e-04 - acc: 1.0000 - val_loss: 0.1906 - val_acc: 0.9615\n",
            "Epoch 45/45\n",
            "2064/2064 [==============================] - 0s 92us/step - loss: 3.0523e-04 - acc: 1.0000 - val_loss: 0.1933 - val_acc: 0.9638\n",
            "442/442 [==============================] - 0s 142us/step\n",
            "Test loss: 0.08517042508694381\n",
            "Test accuracy: 0.9819004524886877\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "OcxnmPBgbsui",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 12169
        },
        "outputId": "8f3928c1-fe19-46cf-8dee-7bd96871d4e4"
      },
      "cell_type": "code",
      "source": [
        "%matplotlib inline\n",
        "import matplotlib.pyplot as plt\n",
        "import tensorflow as tf\n",
        "import numpy as np\n",
        "import math\n",
        "def plot_conv_weights(weights, input_channel=0):\n",
        "    # Get the lowest and highest values for the weights.\n",
        "    # This is used to correct the colour intensity across\n",
        "    # the images so they can be compared with each other.\n",
        "    w_min = np.min(weights)\n",
        "    w_max = np.max(weights)\n",
        "\n",
        "    # Number of filters used in the conv. layer.\n",
        "    num_filters = weights.shape[3]\n",
        "\n",
        "    # Number of grids to plot.\n",
        "    # Rounded-up, square-root of the number of filters.\n",
        "    num_grids = math.ceil(math.sqrt(num_filters))\n",
        "    \n",
        "    # Create figure with a grid of sub-plots.\n",
        "    fig, axes = plt.subplots(num_grids, num_grids)\n",
        "   \n",
        "\n",
        "    # Plot all the filter-weights.\n",
        "    for i, ax in enumerate(axes.flat):\n",
        "        # Only plot the valid filter-weights.\n",
        "        if i<num_filters:\n",
        "            # Get the weights for the i'th filter of the input channel.\n",
        "            # See new_conv_layer() for details on the format\n",
        "            # of this 4-dim tensor.\n",
        "            img = weights[:, :, input_channel, i]\n",
        "\n",
        "            # Plot image.\n",
        "            ax.imshow(img, vmin=w_min, vmax=w_max,\n",
        "                      interpolation='nearest', cmap='seismic')\n",
        "        \n",
        "        # Remove ticks from the plot.\n",
        "        ax.set_xticks([])\n",
        "        ax.set_yticks([])\n",
        "    \n",
        "    # Ensure the plot is shown correctly with multiple plots\n",
        "    # in a single Notebook cell.\n",
        "\n",
        "    plt.show()\n",
        "\n",
        "    \n",
        "\n",
        "nb_channels = 1,CONV1_NUM_FILTERS,CONV2_NUM_FILTERS\n",
        "\n",
        "for i in range(0,3):\n",
        "  weights_conv_layers = model.layers[i*2].get_weights()[0]\n",
        "  for j in range(0,nb_channels[i]):\n",
        "    print(\"Convolution layer: \" ,i+1,\" Chhanel No: \",j+1)\n",
        "    plot_conv_weights(weights=weights_conv_layers, input_channel=j)\n"
      ],
      "execution_count": 33,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  1  Chhanel No:  1\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUMAAADnCAYAAACEyTRLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAB0RJREFUeJzt3d3rnnUdwPH3ZSOynRTKRCmfCiwG\nI4xqRWXZA2G6IJT0REtMZkYURYSJ2IPiQWCIjBA1GCQICm2QdmAjykQ6CFRWWrFSKVQk6IlAsKt/\noN928GF0k6/X4W4+13Xv+7t5c8H2+9zLuq4BvNKd8L9+AwCbQAwBEkOASgwBKjEEqGrb0V48++xG\n/9T8wz8sk/FeN5qu09d19gaOs4eWZXS+H+mro/uvz395NN+OHRt7vsuyb3S2Bw58bnT/Mz8xO5pd\nG/zZXZYfjc52/cz9o/v//vvfH82/eYuz9WQIkBgCVGIIUIkhQCWGAJUYAlRiCFCJIUAlhgCVGAJU\nYghQiSFAJYYAlRgCVGIIUB1jn+GRD189uvhvvzL75r0zznlwNL/p3/t3/97ZO3z3Y7P7L6fMfr7r\nesfsDRxHv+na0fz5e2f7DA+OpjfdPbPx3efN5of7DLfiyRAgMQSoxBCgEkOASgwBKjEEqMQQoBJD\ngEoMASoxBKjEEKASQ4BKDAEqMQSoxBCgqmVdt96ptywvjBburS+fPBnv1a+Ztfqll1pGFzjOluWa\n0fk+0fdG999z1myf4pEjm3u+hw7N1lk++aHZX+3a/jGaX9ftG3u27do1Otu7n3hidPuHLpt9bu+5\n579/bj0ZAiSGAJUYAlRiCFCJIUAlhgCVGAJUYghQiSFAJYYAlRgCVGIIUIkhQCWGAJUYAlTH2GcI\n8ErhyRAgMQSoxBCgEkOASgwBKjEEqMQQoBJDgKq2HfXVm26a/Y/s228fjR967rnR/PnrurlfxF09\nsCyj873gn/8c3X/Z/svR/Lp+YGPP9957Z18if+mlt4zuv75x32i+Z57Z2LNdlkdHZ/voo7tH939i\n9+xortqiC54MARJDgEoMASoxBKjEEKASQ4BKDAEqMQSoxBCgEkOASgwBKjEEqMQQoBJDgOoY35v8\nwAOzNUgX7P7LZLw/n3TSaP60DV/h1Y4dsxVpe/eOxpdv/X00v663buz5Lssto7M9fPhro/vv3PnT\n0fwmr0frrLNmn9vDh0fjy/a/jubX9VQrvAC2IoYAiSFAJYYAlRgCVGIIUIkhQCWGAJUYAlRiCFCJ\nIUAlhgCVGAJUYghQiSFAVduO9uJfPj5bqXbwwGzt2Xc/OJs/NJo+/u749guj+ZNPnr6Di6YX2Fh3\n3TXdR3hwNP+Wt+wZzW+y5Y+PjOZf/4bXjubXp18czW/FkyFAYghQiSFAJYYAlRgCVGIIUIkhQCWG\nAJUYAlRiCFCJIUAlhgCVGAJUYghQiSFAVcu6znYGAvw/8GQIkBgCVGIIUIkhQCWGAJUYAlRiCFCJ\nIUAlhgBVbTvai08uy+jXU97aDZPxftI3R/Pnr+syusDxtn//7Nd/vvOd0fh1Fz4+mr/55jb2fO++\nu9HZXnnfBaP7Lw/eOppf13M29myvvnp2ts8+O7v/u348O5obt+iCJ0OAxBCgEkOASgwBKjEEqMQQ\noBJDgEoMASoxBKjEEKASQ4BKDAEqMQSoxBCgOsaXyP9wuMLr3MlwdUbfGM2v6w0buwapall+PTrf\nl9s5uv+rumM0v66f3djzXZbrZuvR2jGa/lNfGs2ftsHr5665ZrbC67LLZvd//31fmF3gttus8ALY\nihgCJIYAlRgCVGIIUIkhQCWGAJUYAlRiCFCJIUAlhgCVGAJUYghQiSFAJYYAVW072ovvHV785Mce\nG82/46pdw3ew2danjnr8x7Sc8/jwHfx8OL/JXhxNr0/vHc3vuvCLo/npT/Z4OvXU2fwJ581WNT7y\ni9mqyvds8eeeDAESQ4BKDAEqMQSoxBCgEkOASgwBKjEEqMQQoBJDgEoMASoxBKjEEKASQ4BKDAGq\nWtZ1thsM4P+BJ0OAxBCgEkOASgwBKjEEqMQQoBJDgEoMASoxBKhq29FevHNZRr+e8tGnZ7/dcsYZ\nT43m1/WcZXSB4+zEExsd0L8OHxnd/99vetNo/oR13djzfWb42f38RbPP7sGL94/mu/zyjT3bm4dn\n+/V+Obr//b1zNP/JLT63ngwBEkOASgwBKjEEqMQQoBJDgEoMASoxBKjEEKASQ4BKDAEqMQSoxBCg\nEkOA6lhfIr9//2hVz41XXDEZ7/TRdF25wSumqpblV7M9Uf1uNH3gwKdG83v2tLHne99wzdTFhw+P\n7r/s3DeaX9fbN/Zsu+mm0dku1587uv36/NtH8+3YYYUXwFbEECAxBKjEEKASQ4BKDAEqMQSoxBCg\nEkOASgwBKjEEqMQQoBJDgEoMASoxBKhq21Ffffjh0cUPvW+2ru9nn757NL/pHmy2l+1jZ545ewN3\n/mA2v+fgbP44ettwftn5t+EVtg/nN9e+668fzV9yyawLR06ZrXo8e4sdrp4MARJDgEoMASoxBKjE\nEKASQ4BKDAEqMQSoxBCgEkOASgwBKjEEqMQQoBJDgEoMAapa1i12ewG8kngyBEgMASoxBKjEEKAS\nQ4BKDAGq+g/7ZSbwPIh+OQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 16 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  1\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFZxJREFUeJzt3X10VsW1x/F5ECnQQqFGGlIKKdWA\ngIBoCxRMKatGrAUtsiwqhpQKIuZG6gtY4CKmiGjBiylXINqWppaqICJgwRQD0qDBYrQoL3koFBAo\nL6KIaCKNnPvHXev+tX+nhO7nYdn7/fy5Z+2cGc7J5qzMnJlEFEUBAPCva3S2OwAA/y4oqADghIIK\nAE4oqADghIIKAE4axzX+NZEwlwB0jMlpNH263fDBBzJna8HDZrxLl5CIuZSf4mJznO/ed59MyXj+\neTNe3W6IzOmVsdduaN8+5eO86qpgjnHVPRUy56E/DzTjd9yru9t0yxa7oUuXlI+xTjyvyZicu6+w\nV7m8847OWbDAjufmpul53brV7PSxrl1lyuaX7XHmzvyezCkZ9AczXlSU+nEOHGg/rxU975Q51SMe\nMeNz5ujrVFXZ8WTyzMbIGyoAOKGgAoATCioAOKGgAoCTRNynp/n59h+Gly3TP3D8eDv+s5/VyJym\nTTuZ8dra9PyRf5eYzIj73+a4iHe/+WaZU9q/zIyPGZOGcU6dat/ojAyZkjO3yIwnh0+VOUXHis14\nSUkaxlhSYo5xyBp7HCGEsGKFfSePHm0pc75wnj2UJlGUnkmpgQPNcR5eu1amnNhp3/52X9ddbvLQ\nQ3bDhAkpH2dRkV17Cgp0Tq9VD5jx/JrJMqfsT1+zG/72NyalAOBsoqACgBMKKgA4oaACgBMKKgA4\noaACgJPYZVOTJtlLF5Ys0T8wuWSzGa/v0UPm9LrY7sPmzWn6Nrq83OzAe1deKVNiN0EQWr74ot2Q\nl5fyca4XS8Ny+/SROQfFh85fiLlOi/CaGY+ib6R8jPVijFnn62f8yJFfiZZrZE40+Ed2w/Ll6Xle\nKyrMAbUvsPdeCCGEvUeamfGlv6uVOUNvsnNCbW3Kx/mxuJfNDx2SOYkvf96M74x5YvuIZ+PwYb7l\nB4CzioIKAE4oqADghIIKAE4oqADgJHay+rnn7HiysETmjBEbapTu2SNzNl9ziWh5Q+a4mjvXDPf8\nqp4d3puda8Y3z10vc7J62BOHGTErLbzc29e+xiszdX8z+/e3GzZtkjkL3vxGg/rl6dwgZoCP/D4m\n6yozGj39ksw4/sMVZlxvp5IeeyvFiRAhhHDidTPcsauezN4t4tmn3aMzV3fUfl6bn9BjjJ6ttBvW\n3CZzPvx1g7r1T/GGCgBOKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CR22dT27X8148cL9Bk9pVXldsOK\nHfpCH30U143Uq683w7vfidkfoeA/zXB2tk5Z97y9FGSITnHz9tuiQWyAEkII+U/YS8PKVuhNY8Zc\nfrloWC5zvGzY0MaM9+t3nsw5FLLshjWjZc7HIp62ZVPTp5vhxFq9Bqg2dDXjPVeulDmP7bnajI+L\n6ZqXJuLcrpJH9RLDVq3am/GR8zrLnIMHG9avf4Y3VABwQkEFACcUVABwQkEFACcUVABwEnsECgDg\n9PGGCgBOKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CR2c5SQm2uvqYrZUGP9mpMN7oTauGPcuBCzO4mf\nfYmEOc52nfWmCmMu32bG5zyuuzx+tP3PWVqahnF2725ePPHWZJkSdZ5mN2zZInMS59hnVEXRgNSP\nsbzcHGOza/JkSu1Re6uTG29pLnPE3iShY8f0PK+vvBLMcX7rKb1p0dax9jlwXeo36wutsM/OCpMn\np3ycicQec4zR0RY6aft2O752rc55SZwdVlFxRmPkDRUAnFBQAcAJBRUAnFBQAcBJ7KTUkFb2BMNl\nU3TO1Fbij9wXXCBzcjP3iZYcfSFH7RYssBsKCmRO9iw7Pnyw3hth+fxToiX1/6+deOstM/6DH/xQ\nJ11qn9gQ9qn7FcLLLw9oQK98VTS2J58uukjntMy0J592xBwwkZm5zoxH0QCd5Ohb74rTDwoLZU7l\nOjv+1L7uMqd4fLsG9MrbMTPavmcHmfHmm98y44Vz7XgIIcxfZk/KnunpC7yhAoATCioAOKGgAoAT\nCioAOKGgAoATCioAOIk/AqW01GysuvVWmdJexLNatdLXGTzYjpeVpeXb6PDAA/Y/Qna2zlHfAMd8\n/x+miPVmJ0+mfJxFRfb33yW36G+5S3v0MOObxJ4EIYRQ2uEBuyEt338/bnZs7NjRMmfehY/YDbt3\n6+v8wv55UXRxWp7XROKo/Z37T2frnAfHm/Goxl6eFEIIeYX2ssXy8jTsWSD2EUn86WGZ8vrrfcx4\nx0t1d1vt2WM3tG/Pt/wAcDZRUAHACQUVAJxQUAHACQUVAJzEzvLfeKM9M/zUU/oHzhKbhgwapHO6\ndq0x41HUKS2zpkmxY3/Ozp06qV8/O35Mz5om6jaY8SjqlfJxLhNj1L0NoUCsvvhY7eQeQmiuVjls\n25b6e1lcbI6xNHOqTFELOVau1JdZvdqOJ5Pp2bH/5En797LJH1+QOYnv2zPgIZyQORdfbG9Esnlz\nGsYpTl8II0boHHFjEpfqDVWi/Z/YDVlZzPIDwNlEQQUAJxRUAHBCQQUAJxRUAHBCQQUAJ7FnSi2a\nudeMT/m9XobQ5C47niHiIYQQ1djLptIlJzPTbqis1Em/+50ZLlo2UKZEjzcTLbX6Ok6W3myvQin+\nrV4dcn1T++yiY1fo65T/uXWD+uVq2DAzvC9mmV/erfb4SzbYS9xCCCFntT6jKB0afU7cs9dflzlR\nzVEznuikl03Nn69/z1OusV2aEkf+KFMerbQ38/lHzCqv6oP270WvrJi+xeANFQCcUFABwAkFFQCc\nUFABwAkFFQCcxB+BAgA4bbyhAoATCioAOKGgAoATCioAOKGgAoCT2G/5q6vtoxaWLNE5M8ba3/8/\nsqS9zLnrrjozHkVN03KkxK5d9jg7jh8icxIrfmPG3w9fkjmtw24zHkUdUj7O8nJ7jHnZSZlz47Qc\nM/7EE/o6zQfl2g3r16d8jI89Zo/xstv1pS8T8c4X6tUvyTrxLO/dm5bnNSxdanZu33XXyZSyB+zx\nTLr7pMy57Y4mZnzevNQfgbJxo30vew/Se0Vc1ed9M77qhVP6QuvW2fGBAzkCBQDOJgoqADihoAKA\nEwoqADiJnZR69107PqPwgE6aM9cM3zl2rEy5s+pe0fKMvo6jyq/bf3/uOHq0zIlqjpjxRCe9WfQn\nQW0wnfrPf/NCud1QOEvmlPzR3sx3ySDd3/qC9WZ8lO6aG7Encfj++bq//fvb8WSfh2VOYuIrZjxd\nH3Enuw014zl79sicAjHvWTVZX2ewapiX+pH2bmtPbic32hNPIYSw6gJ78unAQf3e+Ha9vSF8Xkzf\n4vCGCgBOKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CR2x/5mzeyVILUt2ugfeKTajEdNL9Q5da/ZOdHF\n6fk2Oj/f/kdYvFimrKmz9x/QX/KHsPtZ+zJDh6b+2+iyMvtejhxZJXOiueKc95dekjmJ5x63f1Z0\nXsrHuHSpPcbCQp2zZo0d79KnpczJyTxuxpPJ1N/HEELYu9ceZ/sCewlQCCGcWLvWjOsv+UMovMF+\nXhctSv04E4m/mxffsKGtzMnIsOPXXKOvs+22EruhqIhv+QHgbKKgAoATCioAOKGgAoATCioAOInd\nHKW2rz1rmFhrb5oRQgjRBntTgxP97FnxEEL4y18ujutGyuVUlZnx5M6ZMie5LMuM94nZHf7YsYb1\ny9Obb9rxd0JfnXTuAjP88XPPyZSjR5c2pFuu9u2z4wdW2itPQggh0bWTGY+26NUPyZVq45QJMsfT\nlCl2vKyyUua0TNgz9gUF+joTfi2e5UWp3xwluu1ndsOP7dUKIYQQvvY1M7xl+yqZkrjDXucQFenL\nxOENFQCcUFABwAkFFQCcUFABwAkFFQCcUFABwEnssqkwbZoZjt69Wabs7feWGe8Qsw1DtE5sUND9\nDNcuNFC7dqJh/nydlFlsht+LuU7HH4tlKKNSvwxl1n/Z114Wk9Nu0yYzXvijmP7ebYd/9auYCzlR\ny6Z0QwjR4Glm/ECr5TInK/vtBvTKX8lv7XtZ8ZK+L6daiaVjw4fLnLO4yi8k5tlLFqPvXKuTxPM6\n/j/0v0s05bBo0RtAxeENFQCcUFABwAkFFQCcUFABwAkFFQCcxB6BAgA4fbyhAoATCioAOKGgAoAT\nCioAOKGgAoCT2G/5dyXscxNaxuRktGhhxi/6ynGZc889dnzUqKDPE/F06pQ5zsQ5s2XKL39pd3rU\nwlyZk/iT/aF7FA1J/TjHjTPHWJz5mEyZWjfJjL/74IMyJ2OBfWxKGDMm9WMcZW+KkLVabyRwoLa1\nGR94yfsyp2ytPZR2UZSe57VNG3OczT5U36WHsGWLHe84Nk9fZ+RIO37TTSkfZyJx1Bxj9MG5Oum7\n3zXDJSNekyl33LHBjEdRvzMaI2+oAOCEggoATiioAOCEggoATmI/Pa2uDmbjrkv132vtPwuH0Or8\n82XOx7vtP6Y3b56eSan3xORbsP8uHkII4e3z7K69OlPnjB5tx7/0pdSPc6sY48J7dH/Ffr1hzRp9\nnbFj7XhpaerHmJVlP68HBo2SOSU97Qmryy7T1+nX76gZjyLxUDgrLrbHed99euK3b197KnnlSn2d\n886rMuNR1CcNk1I14sHcI3M+DVea8UZXXaUvtHChHW/ThkkpADibKKgA4ISCCgBOKKgA4ISCCgBO\nKKgA4CR22VQyaS/PyKnbLHPyZ3U342UjynUv/vEPO3711WlZhiLHWb9VJ02bZsdXrJApxw/VmvGW\nLVO/pOg1sWxq2U/1/X/wwU/NePTiS/pChYV2PJlM+RhPiTHOma3HeNdd4tkLz8ucPXuGmfH27dOz\nzE8tKfrkk04yp1s3O578sK3M2bjs72a8d+/Uj3PSJPt3sk8fnbNqlR2ft7CZzOl1kf07WV19ZmPk\nDRUAnFBQAcAJBRUAnFBQAcAJBRUAnMTO8ocXXrAbh9mznCGEEOrqzPDemE7MFzPNM2akacf+nByz\nA4/t2CFTxtXUmPGKTnqmdd9v7HHm56d+nA89ZM+aXnihzrnlFjv+3szShncgDTv25+fbYyzb0Vfm\nTLj8VTPeubO+zuLFdnzVqvQ8rxs32uPsvUWfTBBq7dns5V+9XaYMGGDH07EqJeTmmmPsdWK9TKm+\n7gG74dFH9XWefNKO5+Uxyw8AZxMFFQCcUFABwAkFFQCcUFABwAkFFQCcxC+b2rXLbqyv1zlirc36\n6Xq5w6232vFt29KzDKVSbKpRdEnMeVt/a23Gnzl2TOZcr3Z2ePXV1I9z6VL7fLDrrpMpR6rs8X8u\n5kihCrERyZ13pv5eHhT3cWhffR/VkUJNm+rrzJ1rxx9+OE3L/MRyxopmV8uUe++14yNG6MsUTRSb\nitTWpn6cYoxFL+oxql+v4cP1ZRqtXG43DBnCsikAOJsoqADghIIKAE4oqADghIIKAE7iZ/kBAKeN\nN1QAcEJBBQAnFFQAcEJBBQAnFFQAcNI4tnXCBPtIiW4Py5T8UGbG12fny5zcW3LshmQyPd9GHzhg\njjPxFX1wS3R/uRm/6PdTZc5z2+3hdI6i1I+zosJezjF9ukzZ+GCFGe+96b9lzqnCQjPeKB1jbNvW\nHuP+/TKl7pxzzPiuLXr1S9euh814FLVJy/O6aJF9BMqwm/Tlm4j7PPWTyTKnuL/9jJ/p8SANImpP\nePxxmXLq6Ptm/Oc/15eZ+JH4fS0u5lt+ADibKKgA4ISCCgBOKKgA4ISCCgBO4mf5G9vNI0f+XaaM\nDB+Y8fvv15fJ2LHDjHfRKa7K1mSZ8WjDbplTfsKeHdy2aYjMeXqaPXHZWXfNT2WlGT62dq1M6f2B\nmOUdPFjmTNl/uxmfoXvmZ/RoM1yxTr839BfxvV31JO/OnWd3/4thw+x4k4OzdZJYfVE8bZJMOdTD\nvmtf1lfx06OHGT4YcyLGwXPsezbxiiv0dfqrJ+DM8IYKAE4oqADghIIKAE4oqADghIIKAE4oqADg\nJPYIlJwcexOGTZv0D5w7144XTtbLUD4W8cx0bKgRQtiaSJjjFFu2hBBCaPzss3bD+PEyp1eGvdlK\ndXVI/TgPH7ZvdLduOkfd6FmzZErO6hIznkymfoy7dtnP67XX6pzNd9ub+YQLLpA5x/v1M+Mt0/S8\nzphhj3NS4XGdJJZNNVssxh9CqN1jbwIT2qR+E5jiYnuMBffpS7/6lP2Itx6uc96YaedMnHhmzytv\nqADghIIKAE4oqADghIIKAE4oqADgJHZzlGnT7PiTT+qcSW/faMYT4aTMiV7UG3SkQ4aIN/7JT3TS\nkiV2fPdumfLGOX8VLXpG2ctrX7a3tKicrVd5fLeDPdHZ/emnZc6ghnXLVXa2Hd/cZ4zM+UNGqRn/\n3kq9aUjLmGNj0mFS5ffM+PVv/kHmLF5sb+bTunXMhdRKh+MxqwmcbN9ux1vF5PywtdjMJ0beFnU0\nk179EIc3VABwQkEFACcUVABwQkEFACcUVABwQkEFACexy6bq6+34uDVDddIbb5jhtm3PlSkDZ+aZ\n8Qo77G77y/bSoQ5X6pyCAjs+u+5f708qPPUTe4yPVF0vcw6ohphzfaqqGtApZ+p4oMJCe2lUCCHc\ndPVHZnz/fn0K1sKFdlwvtPJ1cpm9POqZAnvJYgghLH12kRkXx7n9r19mNqRbrhZtElsTqbVxIYSh\n8+2Csa61Xhp4tzjQ7UzvJW+oAOCEggoATiioAOCEggoATiioAOAk9ggUAMDp4w0VAJxQUAHACQUV\nAJxQUAHACQUVAJzEfst/6lQwlwCo4wlCCOEXv7Dj82oG6qSZM+34N79pn8Hh7ZJL7KUON9wgUw6N\nnGDHD+nLdP+2OG/i/ff/5XEeOfLhZ3a5xvnntzit8X+WxxjC6Y3z/8MYQ/j3HSdvqADghIIKAE4o\nqADghIIKAE5iJ6UaLXnGjE9fpjclXr3ajs/eVyFz1nze/jv2kHR9Frt/vxlOTLxdplR92473Prda\n5iSO2W2f6b/OA/g/vKECgBMKKgA4oaACgBMKKgA4oaACgBMKKgA4iV02FQYNMsNPfF+nNB+Ua8Y7\ndlsvc3Z95zux3Ui5sWPNcDTlXJmS+Nxf7JwbZsmcqGZag7oF4LOFN1QAcEJBBQAnFFQAcEJBBQAn\nFFQAcBI7y1/9xS+a8V6ffipzbutqz+bvuvYRfaFl9XHdSL3sbDO892ATmRL1LLAbrv2pzCmam2PG\nS0pkCoDPEN5QAcAJBRUAnFBQAcAJBRUAnFBQAcAJBRUAnMQum9r9rH3aUavdOmdezUC7ocVlOmnA\ngLhupN6cOWa4w497ypTo+fvNeO6sIQ29DIB/E7yhAoATCioAOKGgAoATCioAOKGgAoCTRBTZM/kA\ngIbhDRUAnFBQAcAJBRUAnFBQAcAJBRUAnFBQAcDJ/wAnH0tiKnnFVgAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  2\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFa9JREFUeJzt3X18j2XfwPHj9LDWK+0ejWuEhiW5\nR64Ryx1qtDynpSvEklC0RiI9h9wSklxKFktCbl1JD6LRrnF5bpUWl6diVknD0loeJjvvP+5/v9+z\nTd/fz6vuz/vP7/H67jyO3+/8fV/na8dxHofn+74DAPx+VS50BwDgz4KCCgBGKKgAYISCCgBGKKgA\nYKRaUGNOjhOXACQ/0lbNaV9tuxifscVTcyKUeBvf15MMlZfL47zkEj3np5/k+I8/6jl/Of5vuaF5\n89CP87HHxDF6z96lpvgLNonxv60ZouYs39pQbigsDPkYSzxPHGNUhw5qTrdLNojxNWtWqzl793YT\n402burDcr65mTXGci17Ub76Bd8ldOxFwmVpz5sgN998f8nF63iZxjM8//19qzpikzXJD585qTvJ1\np8R4Ts75fZc8oQKAEQoqABihoAKAEQoqABgJnJRq01n+v2xEdf111bIZs8V48Qd6Tq3WjYK6EXJV\nmjUV41+e3q/mREx4VIzXnjxFzXluYXMxPl4Om/KeHSbGn3wy4LP/QB7julx9Uuq58YVifLx+FTMT\nHpTvsTvu0HNWJcn3eFV3QM0pLa1Ut8xF/CJPPg3M1XPSWrQQ4wUL89WcWh9Mqky3TPlPfiTGSx+6\nXk+69VYx/PAD8sSTc87ldM1RWpL16wTgCRUAjFBQAcAIBRUAjFBQAcAIBRUAjFBQAcBI4LKpwbfK\ny1DKJuhLLcoTMsR4rTjlHW/nnEtKCupG6D39tBg+PXCgmvLrs8+K8WoBa2oKzspLysJhr2ssxpvG\nLVBzyiesEOPVYvXrjN+VprQs0pOMzJxQIsZfXhyl5mx7Ub7H/b6H1ZyMqXI8MVHvm6U+feT4K6/p\nr59rv9j41npOLXnLAFf8lJpiZ+xYMVzjyBE9R/ntTWuWpaYUdL5HjMed50kmPKECgBEKKgAYoaAC\ngBEKKgAYoaACgBHPD5jNattW3sn+k0/2qjnLll0lxu/46r/VnPxej4vxli3DswO6550Tx/lNwCKI\nMbfLn9vytTX165woEuO+Xz3k4yxUdrNv+Ki8AYpzzn2lrGTQTlhwzrkrlE1FfL9RyMeYllb5kxeU\nPUPcyC771Bzvqtpi3PdrhmfH/qwscZzH7pFnrJ1zLmbcODF+Yvp0NadYiTcOw0kanveLOMajroaa\nE6N8mdte1VclffqpHB85kh37AeCCoqACgBEKKgAYoaACgBEKKgAYoaACgJHAzVEeeUSO33mnvDTK\nOef69ftWjPdyT6g5LbW1CyvkzTms+ZPl3S4unqwvKfv0LWVVRatW+oV2nFMaqus5Rhp+/bUYL2nS\nRM3Zt0oef48exwOudEiJh/7csPlvKGegbdumJzVrJsdnLFZT6ta9cGctOeec++orMRxz5ZVqykll\neVRNV6bmDBsm35eZAV2zsmuXvNatcZL+m2wTI8fnK+eGOefc9V+c3yYoGp5QAcAIBRUAjFBQAcAI\nBRUAjFBQAcBI4OYoAICK4wkVAIxQUAHACAUVAIxQUAHACAUVAIxQUAHASODmKKmp8hk9bdroOTNm\nyPH0dD3nmWc+E+O+nxieM3rKyuS1Y2vXqileT3mzjxYtmqs5+THJckNOTujHGRUlj7FvXz0nOloM\ney+MUVNeeqm+GD/fM3oqpbhYHmNcnJpSuLNEjDe8Rj8bbMitP4rxrKzwnIGWmSn/LoeXzlRzCh56\nSIwPuE5fNrm5RorckJ0d8nEePiyP8fLL5c2XnAu499al6heqppTA5cs5UwoALiQKKgAYoaACgBEK\nKgAYCX6Xf8kSuXHTJjWl3sqXxXhurn6ZpnHKruEREWH5J39EhPwP8Dfe0HNatJDjzZ/Q/wFe/s47\nYryK74d8nJ63VRyj//ZhNWf2t/JYRo36Rc3x3/5IbkhNDf13OW2aOMbsVg+rKddcI8e/+06/TOLG\n2XJDRkZ4JlHr1BHHWZhXpKZocy/1ZugTjCNOyZNcc+eGYfJNmyiuL088OedcWld5/KWl+mVW3GD7\nXfKECgBGKKgAYISCCgBGKKgAYISCCgBGKKgAYCTwXX5vYBMxPm/enWrOC53keNOr9FUIs1+UV0hk\nZOh9s3T27GkxPmxYpJqzf78cz0lfoeYkH+tYqX7Z+lIOV/uLmjFqlPzOunM79cv06yfHy5SlcYZW\nxMvLo44V6DkpA+uI8aNHj6o5Yx6U71f9TXpjeXliuOSKyq/0qRewBHJunrKkyIXhh9mnjxx/+mk1\nJeZrOb5oT1s1JzNyuxgfrmYE4wkVAIxQUAHACAUVAIxQUAHACAUVAIwEzvL725R6O+o6Pen118Ww\n5w7o12mySmnpoV/H0O23y7P5b70lz/4751zV2IvF+PUB14moLs8Oh37+27ldu4bJDTuXqzl+ZD25\nYZjyt5xz+UPl0bRUM+zcdtsXYnzrVmUHFOfckJ7yhhqvvXZOzVnVpXL9svbU/IZiPC0gJ/6cMp4b\nbghIiq9wn6x5q58T4378q2rOzFz5LstMz1dzhr9wtdKwW+9cAJ5QAcAIBRUAjFBQAcAIBRUAjFBQ\nAcAIBRUAjAQumypt106M52/Sz6FqEyfHldVUzjnnvJ4lYjzouCtLy48lyw0fP6En7XxRDC+K1jeO\n+HVwJTplrPnkAXLDaX1p2A8Fp8R40Eqbhfq+OSHnefLyqFXaqjzn3Lp1cvy666qqOad7KJuQhOmG\n7fqMfP2lE/Xr990jx5vHxqo5Ja+9JsajsrL0zhnxz/2n3HBM/0122y9v5vJSwDK38nvlD+Z8nzR5\nQgUAIxRUADBCQQUAIxRUADBCQQUAI54frql0APiT4wkVAIxQUAHACAUVAIxQUAHACAUVAIwEvsvv\ntm8XlwB47VqrKf678ovTpbfcouaseF1eaZCW5pSXpm0tXerEDgwozVRzRnw+XIzPff6kfqG8PDne\nsWPIxzlkiDzGrFf0A1hKL7pIjNf46Sc1p2PPKDG+YUPov0vPKxLH6C9eqyelp8t/60TAkT1J3eWG\nLVvCcr+Wl8vf5Sef6DmDB8vx3XdP05PefFOOf/556Me5YYNcFIYO1XMWL5bjGzeqKc+dHSPGx48/\nv/uVJ1QAMEJBBQAjFFQAMEJBBQAjgZNSVZLaivFx4wKSrpdPpq8RkHLsWFAvQq/Zncr/n+fNU3OW\nLJHjc588oeac6NRJjEeH4fXfrCPKRMrUJDXns/Vyvzru2KDmbNzYsVL9stSrVx0xXthB3/W6YbM5\nYvybrbXUnOJV8ueiZ9iqWvVHMT5oUE01Z3eDFDH+YUK2mtN96CWV65ilanJp8vbrE0zH4+XvPzJB\nrmPOOTd+zQqlJVXNCcITKgAYoaACgBEKKgAYoaACgBEKKgAYoaACgJHAHfs97xelUX//u1EjeenG\nVVfpnVjtKUt6PvwwLO9G53ueOM6W586pOTuqyue2F3+sf57J/eRlHa6oKOTjHDFCfv+7bl09Z8sW\nOb4692I157NNp8R4YmLo3+UvVL7HhhMnqjn5fZ4S42XX6N3d/KL8HWdkhGfvifbt5e9yVsBWArGH\n5D43XJelX0hZuuTS0kI/zo4d5Q4PHKimpG2U99dYlL5dv87YsXJ8wwbe5QeAC4mCCgBGKKgAYISC\nCgBGKKgAYCRwlr9OHXk2sWhPsZpTK17eIqL4R33SrFtXuQ+rV4dn1nTMGHmcM1st0pPWrJHjo0fr\nOfPny/HMzNCPMypKHGNKUoma8t5auVs/HdHvmdjYIjHu+3VCPsZateTvsfiIvirFxcTI8fvu03OU\nDYBc795huV8nTZLHmZur50z5p9y1wwHX6aPEq/h+GE5fOKjcZPr96rcYJDfEx6s5GfXlzVFmz2bH\nfgC4oCioAGCEggoARiioAGCEggoARiioAGAk8EypIidv5lEvQV4a45xz67TlUddeq+asbjRSaXlZ\nzbE09YXKnymlHYS14lv9/Jrer7YT49UyM/XrGPnq55/FeGSknhOZJJ83FVldXzbnP79YaRmjX8jI\nPuXee/gJfZnXtJUr5YbBg9WcwvRpYryhmhEepaV62/qp8mfw7rt6TuoNj/3OHp2/o66xGI/p31/N\n8d78VIz3T6iu5nRpVbl+/RaeUAHACAUVAIxQUAHACAUVAIxQUAHASODmKACAiuMJFQCMUFABwAgF\nFQCMUFABwAgFFQCMBL7L7woLxSUA3hUH1BT/xklyQ5s2ao43/UH5b/l1w3KkhDbOtn31t7Nr1JDj\nOYv1QyWyd9YT4ykpYTjqpaxM/i4v+l5N+cLFifGdS/SVIQPiNssN7duH4diMQ2LH/EP6pbd9L3/H\n7bztak770fJ+DZs3h+fIHteypfxdfvlPNcVv1UWMF+7YoeacVuJNw3AEygnPE8cYHbC/RvG994rx\nWnPmqDlVHrhfjJeXcwQKAFxQFFQAMEJBBQAjFFQAMBI8KbVwoRj2JwbkNJPPM/fu+EFNadSobmA3\nQs274nKl5R01x/9O3izau7xczxmUJjekLFJzrGTnRojxDh2uUHP6fCtPPh1Y+Tc1x3vrTTEenjec\n5TG6a5qrGe0mTxbjG9PT1ZzNd9+ttGSpOaZmzBDD39wco6YUK3NPAXtSu+axsZXolK3oB+WJ6s0J\nw9WcOf3ltqVXZqs55er82vndsDyhAoARCioAGKGgAoARCioAGKGgAoARCioAGAncsb9ceZ+2Ty89\nZ8L78jKExIB3cA90kZc7NG4cnnejy8rkNRIDB+o52rHt3XfKZ7Y759yx8ePFeEwY3o12V18tjvHi\ngt1qyunTZ8W4v/egfp3cXDk+fHjox5iTI7/j3vkiNcVvMUJu6NlTv878+XK8qCgs92tEhHy/7jur\nX/6pQfJvduNG/ToHD5aIcd+PCv04o6LkDmv3l3POa91CjB/VltM552I++khuSEnhXX4AuJAoqABg\nhIIKAEYoqABghIIKAEYCN0ep0qCBGA/YfN/t6SdPzg2equfkDQ7qRehFfCufQDDzrSZqTv3oYWL8\nw1dfVXOSK9ctU7NHyLP5pxbLu88751z5VnnX+ilTm6o5jz9+mRj39T0tzER0lT9hv1dvNSfldL4Y\nX/usvpKhQYMpYrwwoG+W3nhDjjfqV6Dm+HFPifE0p5yw4ZwbOjSqMt0y5f38mRj3v9+r5vjPrZMb\nktbrF4qPr0y3fhNPqABghIIKAEYoqABghIIKAEYoqABghIIKAEbO60ypLdP1FG0VQt6X+l4DkyfL\nS60m6Ss6TGU3kZdHpdx4o5pTNidTjHcPWoZxVt5sJByGjJI//x+O6BvdvP2KHE99XP8uh6gtoT9U\nKjJSjnvvj1Nz+veX4wsWNFJzli2rTK/s3d5P/vz1u9U5F7dADI/uo6ckTtXODlsedCUT8+Ypv6Mz\n8jI355zzxstLGR99tGalrz9FXhn3m3hCBQAjFFQAMEJBBQAjFFQAMEJBBQAjgUegAAAqjidUADBC\nQQUAIxRUADBCQQUAIxRUADAS/C7/vn3yEoB27fScK68Uw9mT5eM0nHMuJkaOJyY6/aVxQ553Vhyn\nH11HTxo7VgynrH9cTZm2Vh5OK98P+Tjfe09+mb53UpGelJAghgvz9JyGCcqxGSUlIR9j797yGGe+\nr186/oEH5Ia+fdUcr1MLMe77NcNyv7rycvl32bq1nnPihBheNFE/6iX5Lnk49cNwv7rkZHGMqdE5\nakpBgRyvUUO/zL/+tVqM+3638xojT6gAYISCCgBGKKgAYISCCgBGKKgAYCTwXX7PK1Ea/x3wJ7eK\nUf+mD/WUV5St4Rs3Dsusabdu8uzw6j36ru1uzhwxfLJnTzXlpBKPCces6ciR4hi9uU+qKf7xi8T4\n0jW11JwBC1PkhuzskI9xwwb5e4zrpF+6obIqxe3fr+Z4Tl6x4vvXhmeW3/PEcZad0X/LzZrJ8dyD\nepevcLvEuO83D/k485QxFq3Sx7hnjxwfk5Ct5ng3y7v5n+93yRMqABihoAKAEQoqABihoAKAEQoq\nABihoAKAkcDNUX52/yHGRw7Sly5s3Jgkxrc9M1rNaTcrQ26YPVvvnKFu3eR4yZoCNaeKsjyq6Gv9\ns+nRQ47vVjPseHOHinH/9lF6Uo9vxPCsc1vUlAFd5e8/HDp++ZIY99wxNce/73UxvqHNGP1CnQI2\nlAkDbfndsSN6zoGe8m+s9O96zrvvNq94p4y16dBBbpifqubEPrFCbhgsb2T0f+ZWvFMVwBMqABih\noAKAEQoqABihoAKAEQoqABgJnOW/1P0qxv2bl+hJ98kbitS7tb2acnjdfUHdCLmME5PE+NXNgjZi\n2CvG/d2r1Jzd435QWoaoOVb872LlhiR5MxvnnPO+WSP/rREj9Zxn5M1WfPkjtnXokBjeuvUyPefi\nLmK4YzV9A6C//vXCzX4751yJElf263HOOTft/ffFeI3atdWc9HQ53ru3fh0z2hE09eurKdr4F+7M\nD7jQxxXvUwXwhAoARiioAGCEggoARiioAGCEggoARiioAGAk8Ewp17272Hh69Wo1JXLYMLkh4Kwl\n75bOYtz3LwnLGT2JifJZRJ9tLdOTpk+X4zfdpOesXCnHp0wJ/Tjr1hXH2LL292rKMWVPkcNjZ6o5\n+V3kTUVatnQhH2OZcg5RzKX6PT5rlhxPu0fvbrUzZ+SGiIiw3K9FyjgTauvjLMpVloG1bq3mLF1w\nSowPGBD67/KkMsZ/vK6PMW2HfO8F3a/1/qFswJSRwZlSAHAhUVABwAgFFQCMUFABwAgFFQCMBM/y\nAwAqjCdUADBCQQUAIxRUADBCQQUAIxRUADASeASKS02VlwDcdpueM3SoGH7vf+T3gp1zrndkttyQ\nkhKWd6NPKO8NR53TV0AcqSp3rd6CBfqFdu6U4zNn/u5xHj368x92uUbt2pdWaPx/5DE6V7Fx/n8Y\no3N/3nHyhAoARiioAGCEggoARiioAGAkeFLq4EExnN/iTjWl1Rm5rd8y/TK9R0cHdiPUom+8UW44\ncljNqaecZ+7dc4uac9bdI8arzdQ3wAXwx8ETKgAYoaACgBEKKgAYoaACgBEKKgAYoaACgJHAZVPd\nYj8X42dG6zldusjxpTEZelJPZU1VUZGeYyizX44YH3K5/lqy1jN/4kv6hU4/WoleAfij4QkVAIxQ\nUAHACAUVAIxQUAHACAUVAIwEzvK/uUae5Y4+flzN+fWyy8T4yZX6Bt2LE2aL8eEBfbM0vOAxMT7m\nQb3P6elyPKdAv06yk1cTAPhz4AkVAIxQUAHACAUVAIxQUAHACAUVAIxQUAHASOCyqegGDeSGvDz9\nDx46JMeXZak5CQlDgroRclFzpojxCRP0nMaz5M1emvz9aTVn/fpkMd5RvwyAPxCeUAHACAUVAIxQ\nUAHACAUVAIxQUAHAiOf7+gYgAICK4wkVAIxQUAHACAUVAIxQUAHACAUVAIxQUAHAyP8CuzYHosBn\n5MYAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  3\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFdlJREFUeJzt3W10FuW1xvH7SRQjIipEiFZiigqC\nykuKFQGpRoyBg2mlFCmg9ogGWtAqRwtGpJjypqUuTrCWUFawSFEjUgUKiEpRUQNiioBgEWkItAaU\nlwaFgMBzPpzz8doj0P0MS8//93HPujJzZyZ7zcrcc08imUwGAMC/L+1kHwAAfFPQUAHACQ0VAJzQ\nUAHACQ0VAJycErVx06YgpwC0bn2/mUnefUjWe35UamYWv7Bfb2jYMBFxeG5GjNDj7N3bzgwapOuV\nlXYm+94+esO8eSkf5+7deoxNMozffQih+owzZD3npZfMzJjVhbJeUhJSPsZE4m9yjBkZrc3MgVuL\nZH3t8OlmZtw4Xa+oSP0YQwhhbyIhx3n2Bx+YmZa928r6lr/bh/zoJD0DaOTIGMZZU6N3PneuGdn8\nX/8l6y2P2DOZ0tKNoSSTJzRG7lABwAkNFQCc0FABwAkNFQCcJKJePX30Uf0gY+Q/7jEz9VOnyvr+\nXfZ+mlx0jt6wZ08s/+Q3/wE+dqwZKc4ql/XJk+3drF+v661apf6f/H36GOdypJ35+GNdzxxoH+6o\njvpXWVWV+jGuXKnH2LnzTjOTDM31hhdesHeUlaXrXbrEcr22a6fH+eI6e/djb9XnpfhpO3NpixZ6\nQ01N6sfZqpU84GZ7N5mRnev1ef5nc+MchxDOv/tuvaG0lIdSAHAy0VABwAkNFQCc0FABwAkNFQCc\n0FABwEnku/wjbzamKEw5bGbGPKCnZ5w9zd5P8XvvRR1GyhUOz5b1FSv01KgQQth9YUdZn/DLvvaO\nzr7L2NDMzjjJzNT1Kzrbs0OuuuEGWa/Zak+Bqxqu3+UPYb6Z8WLNgEn+K8MOjdahz374QzOSedNN\nesP81I8xhBA6ddL1i9bNMzNvDdX1tKcjdlRff+wH5cyaHrVggZ2ZMEP/HS25xr5e35y6VdaT9tIj\nkbhDBQAnNFQAcEJDBQAnNFQAcEJDBQAnkU/52/VtJesDBz5pZh675m1Zbzmoi5lJT28p61ELd3ia\nskA/6X7eWLE8hBDC+210fccOO2M9ao/B9B4Vsp74vX28ycP9ZT17xhgz02SFftK9O+LYvLz77i69\nofXldmiXzhyptc/9MmNh/Dx7L65mz9b18eNvNjOTJun6/IgZNtk/yJX1GjPhZ+eHxhXTtauZubZ6\no6wf+Id99ZU8ceFxHddX4Q4VAJzQUAHACQ0VAJzQUAHACQ0VAJzQUAHASeS0qbUj/yjrVYMGmZm8\n6/R0ky09isxMYtTvZH3kyPSIo/Nzp3HMT4yyFw5Z+77OLF9u7+eedOPnRXzXy83evcaGt8zIrJ8s\nk3VrcY4QQtjdyVogxFo0xU9ZWVNZL6n9xMy0+6U+Jz+4Ui+YE0II+7Zt0xviOI8hhKHGQidRBg40\nNtx/v5np1k2f/1i8846u9+xpRg6s7i7rtU3fNDNjrBV1womtjsIdKgA4oaECgBMaKgA4oaECgBMa\nKgA4SSRjejIJAN903KECgBMaKgA4oaECgBMaKgA4oaECgBMaKgA4iVwcpTqRkHOqclq0MDObXtVf\nnKlrbS800umBB/SGxx6zQ46eey7ocebYmRad9aGdH7F4w/rFi2X98mQy9eOsq5NjnLOwsRkZ0M04\nlxfa3+FZb9S7xDDGROItOcatW+3vEGXXrpL1edu/a2b69tX1o0dDLNdryMuT42zzib2Yycbf6m3T\nN9tfwsodoofTKY7rtbhYjrHB5Alm5PPPdd36nlYIIdTX6/qECSd2LrlDBQAnNFQAcEJDBQAnNFQA\ncBL5Lv9e46HUeRl2Zke9/l9u47Iy+yi+/FLXhw2L5Z/8R4/qh1Jpe3ebmUTT/bJ+990XmJnJU/Vw\nGsTwT/5+/fQYpz1v77rJfffpDbW19o4mT9b1889P/bksLJRjTCyYaka+CDmy3tBcyT2Ex3P0au4j\nRsTzUCqR+FKOM7ljj5kpntJM1id0tr6wEEKYPVvXKypieMC4S49xl73rmqb6iw2HP7b71ZQpul5a\nykMpADipaKgA4ISGCgBOaKgA4ISGCgBOaKgA4CTyXf6zjalO9UOqzMyKP+spCr1qy+0dFRREHUbK\npX22U9YfnamnmoQQQkFBE6Nu7+e0qe/JehwfobFmwHSrtve+fJyuN6zdYmZKZpwv62PGmBE/69bJ\ncjLjUjPS8jw9/i3937b3U3lcR+UuedcwWU80v8vO3DxU1utGzTMzdd//vqzbEwP9JK/Ua2Ikmr5l\nZq65Rp/LN56yL75GjUqO78C+AneoAOCEhgoATmioAOCEhgoATmioAOAkcnGUROJPeoGC184yM6Xr\n9Qrg96wvMjOPXjRd1keOjGuxiT16nCs/sjNX5cj6uefaMwNOMeZU/POfqR+nuQDM3Aoz029uP1mv\nmH3I3tG99+r6k0+mfIyrjMV8vnuX/fQ79Oih6+OMKQ4hhLBtm67v2RPL9ZqXp8/lss3ZdmjsWFle\nlHWHGel1ylK9IT8/5eMcMECPcc5f29ih117T9blz7czEibr+yScsjgIAJxMNFQCc0FABwAkNFQCc\n0FABwAkNFQCcRE6b6tlTT11Y3LHY/oETr5f15OunmpmqRt1lPTc3nmlToXFj/Ut46ikz0uahPrK+\n8aZfmJnPf/1rWW8UwzelEolK40RvjkgdkNUWLexpSNu2vS/ryWT7lI+xXTt9vU6aZGd65WyQ9Vmr\n25qZa6/V9ezskzvN719BL9gTQgjW19FyfvMbe0fV1bpeWhrD9fqFnsp460/t0OHDum5NjQshhL17\ndX3ECKZNAcDJREMFACc0VABwQkMFACc0VABwEvmUHwBw7LhDBQAnNFQAcEJDBQAnNFQAcEJDBQAn\nxkc5/lebNvrd6A8/rDczl1ySIevTptn7ycvS71OHtm1jejf6z/q94b9dYmZa9W4l69Z73iGE0P/3\nejh5MbzLH66+Wo5x0x/eMSOthurP2aQtX2ZmDhtDSYtjjOPHyzGuHT3ajLS77z5ZX1rwuJnJv7RG\nb8jOjmftifx8Oc43XnnFjHR/5BFZbzJljJnZ3cj4pEpNTcrHud/4nM3m9+1ZSe3bVxpbTo/YU1NZ\nTSYv4F1+ADiZaKgA4ISGCgBOaKgA4CTyodTG0X/UG44cMTOnD7lN1ttdb/+Pt8qo58b2WmxjWU20\nXmQmOnbUD6X697f3krf5uuM6Kldt9PfM27e3I9XV+uHT5iz7XKZ98cVxHZarsjJZ7qCfb4QQQniq\ng67fNqWXmaldvFjWs+K6Xu+/X5bX/2CpGbmgQNd3p483M4nRC2Q9jlE23LFD1ts2t6+9M8/UR1ZX\n38DMLFty6PgO7CtwhwoATmioAOCEhgoATmioAOCEhgoATmioAOAkctpU+cGBsv7qq3bmwKl6ClK4\n624zU9W7NOowUi55pKusV625xswsXKjrGXopg5OuduZMWb/vwXIz03z8PXrD66/bO/rWt3R9zx47\n4+T0T/U79smkPc3v9tuXyPozBfaUuT+FeF7Ztyy/8UZZ/9kNN5iZxDB9nn/844fMTPK/rb/LiLl2\nTqqaN5f1XGNqXAgh9LVe5R9XbWamDNX1PL2MxVfiDhUAnNBQAcAJDRUAnNBQAcAJDRUAnCSSEQs6\nfGasml31sp154gldn993ln0UVmjVqngepxYX6wFlZtqZJfrpcNi3z4wsqtSPIXvFsZp9s2ZyjDWr\nd5qRtAv1Ya2P2E3B1q16Qxyr2ZeXyzHuHjzYjMwt06e+qN6eeTI9Q89+KCqK5/H/TuPvcskf7L/L\n1at1fe5cez+HDxv735n6cVYaY+zcooUdaqpX3w+nnmpG2tWvkvW1a09sjNyhAoATGioAOKGhAoAT\nGioAOKGhAoATGioAOIlcHCXzgQdkfexYO/P2gY6ynj/7r2ZmacHmqMNIvb/8RdeHD7czM2bIcs2F\nF5qRo8dzTM6qPv1U1nNXzzMz1loT51Ta03MaXKzrh3w/3SNVG9OjbrvGPt43h9TL+twbjIVhQggD\nXjFm1BTF800p61eZe7s90+e2hx+W9dKznrd39PLLxoZsO+NEf7EthFXbtpmZ28/Qi+O8ucb+vVx8\n8/Ec1VfjDhUAnNBQAcAJDRUAnNBQAcAJDRUAnEQujgIAOHbcoQKAExoqADihoQKAExoqADihoQKA\nk8h3+QcMCHIKQOkz9ruxVodeFLGfQT/9qd7w5JPxfAKlTx85zpUj7ffcjxzR9c6d7d0sXKjrhYWp\n/6REdrY+lzWX5puZtFeXyvozz9j7ueX0+XpDYWHKx7hokR7jxcb6AiHY61LMGbfFDhnrOIQJE2K5\nXq2/y1Mi/pqfelofWtqtt5qZxNP600TJZOOUjzOReFKOMZnzazOzqrpa1vu2sGcy1azQ7/+f6Cd7\nuEMFACc0VABwQkMFACc0VABwEvnq6SHj29idrrAzL67T/8uNWl/Y+jJ89zi+Vx9C6NJF/5N/3jv2\n7rNuuknW0xYaD2VCCEd7GA+Ali5N/TjbtNEnbfRoMzInMVDWJ0+2d1M1ST/ICvn5KR/jL36hz+OC\nBXYmJ0fXlyyxz+P48YWyXlyc+oeLIYQQevXSDxin2Y9+ly/X9YKIRambvfSS3hDDA8bw9ttyjNu7\ndjUjjf+lL/HGY0eYmapBj8t6bu6JnUvuUAHACQ0VAJzQUAHACQ0VAJzQUAHACQ0VAJxETpuaMEFP\nQ3noIWuiUwjJ/xwl64tmzjQz28v0MRQVxTMNZfp0Pc6iDqvskPGd+w29e5uRtgcP6g0NGqR8nCUl\neox3/tLetTXVrS5iPz/pqM9lVVXqz2VpqR7jZ5/ZmZLtd+gNEXPDsjs0kfWamniu1wYN9DgrK+3M\nd76zXdbLyi4wM0UFvu+5H5err5ZjXPrIO2YkP+gpe6tvvNHMdLLWMpg1i2lTAHAy0VABwAkNFQCc\n0FABwAkNFQCcRD7lt54m1tfbPzA9/S1ZfzN0MzPGs8QwIKbFUUJdnRzn5rPOMiNXZOjf2756+5Bf\neFZnbrklhqfD3bvrnWdl2ZmCAln+bPBgM1L6sN5NSUnqx1herq/XOzpUmZniubmyPmiQvZ+2U4r0\nhunTY7len3tOj/OWe88zM4la/ZT/iy/SzUzDmb/VG4YNS/k4q6r0GHMzNtihadNkef3UqWZE/1ZC\nKDjB3sMdKgA4oaECgBMaKgA4oaECgBMaKgA4oaECgJNTojZ++eVWWU9P/7OZSZbpH5kYctjM7Io+\njJTbsL2xrF8Wqs1M8uo8WZ/1E3sa2o3XHs9ROXviCV3PzDQj90w6X9ZLFzY3MyXDv21s+LuZ8XLH\ns8Y3uzKHm5nly/W0KetbUyGEMPnwdFkvtyOuWvfXM3oG/Ni+9nY9ozMNTzEW7AkhhLIyXR82zM44\nyR1lnMsXX7RDF+iFXiLWxgkFPXse+0EdA+5QAcAJDRUAnNBQAcAJDRUAnNBQAcBJ5OIoAIBjxx0q\nADihoQKAExoqADihoQKAExoqADiJfIk+L09/hmD+X+yvA5xrfBpkW8SnQTIzMvSGAwdi+aRE48Z6\nnHWrN9mhNWt0vVMnMzJgdEtZnzMnhk+gVFTIMRav6WdG7pyoD8telSGEVi+9pDcUFqZ8jIcO6fO4\n5TR7113O0dfr7l8Zn/8IIcw7T7/L3qdPDOcxhBD69dMHHbEAQVX/x2T94u/Yh3znj/RuKipSP85F\ni/S57PWrq83M0kfekfUVK+z9WJ+6adXqxMbIHSoAOKGhAoATGioAOKGhAoATGioAOIl8l78mkZAb\nJw61M7+bZjwcO3LEPoj0HbKeTJ4Xz1PT8nI5oKLKO8xIo0a6/vjYOjPTIFN/GeDQoRieDh86JMdY\nfdppZiTnvff0hk8+MTP7r/sPWW/YMPVj7NlTPxle/HErM9MmXc/k2HifXpU/hBDCs8/q+rJl8Vyv\nGzbIcSYu01/YCCGE5I9myvptGRVm5t13dX3jxhiu1+xsOcaaFTV25MVSWV/785+bmVqjnp9M8pQf\nAE4mGioAOKGhAoATGioAOKGhAoATGioAOIlcHCV75UpZ/92MIjv0wQeyvD893Ywkr7zS2LLK3o+j\nnYMHy/qMhD1t6milPrbEWTlmJllmTLcJEb9PJ6ef1UDWx06yp8DtmK3rjy9uY2YuP6inTW3ZYh+b\nl8U3PC7riSUvRKT26HJ1dUTEyMQkcZk+lyF0NjM1z/eS9b7GWjYhhDBr0FJjS74dclJUoKdHTa+P\nWLDoootkeeF4+xq//CHfGWDcoQKAExoqADihoQKAExoqADihoQKAk8in/GG2fsy7crC9cMRV/dvJ\n+rpK+0nbVQXnRB5GqjUz6uvX25miKd+V9V277EzLTvpp/pbUP+QP9fWbZf2KKy42Mzv0mjUhlJWZ\nmS175xtbCs2Mmx49ZDnZ2f4Fv/Go/mxG+DDHzNS9/ldZ10vf+Eu+v1/W8+61z2WHNfrvb+H3I55y\n9+yp6/mpf8pvrT+TmWkvdDNhYV9ZX56lZ56EEELxc88d13F9Fe5QAcAJDRUAnNBQAcAJDRUAnNBQ\nAcAJDRUAnERPm1qyRJavWmJPXVj90UeyfqSzPT3jjdf1lI7uEYfm6uWXZXnyZDsybZquN6h8w8xs\nyRlrbFlm78hJ8jW92ETi+ojMDj0RqLr598xMzqWX6g2FMUybWr5clhOV9jS/g9/T12XedfY0v5Ih\nOtMt4vtsnhp301MT5+yz/8Z65+TI+vSIxXG6rPnZcR2Xp7r+xlS3b7U3M2vXrZP16wfa+znat5+s\nn+idJneoAOCEhgoATmioAOCEhgoATmioAOAkkYzpySQAfNNxhwoATmioAOCEhgoATmioAOCEhgoA\nTiLf5a9KJOQUgLM/tmcGtOyg3/8uHl5nZiZOXCrryWR+xPcZ/Gw2xtnyiD3OtO363XjrMxwhhHBP\nwSZZLy0N//Y4P/1039d2usa55555TOP/Oo8xhGMb5/+HMYbwzR0nd6gA4ISGCgBOaKgA4ISGCgBO\nIh9K5T74oKxvqI8Ide4sy6Mn2v+rLja3xPN/64sPHpT1WbPtzKBB2bKetVc/eAohhPqndL201N4P\ngK8P7lABwAkNFQCc0FABwAkNFQCc0FABwAkNFQCcRE6bCp06yXLOZRGv6556qiyfEQ6bkeSDD0ce\nRsq119/6vv3DP5qRIUNyZf3Amc3MTPW+T40tX+vXmgH8H+5QAcAJDRUAnNBQAcAJDRUAnNBQAcBJ\n9FP+nBxZHnqr/VT6saf1DIDkWyvNTJ/JE2R9nn1kruaN3yjrl4yyM5vGVch6+ec7zcwZZ+h6jr0b\nAF8j3KECgBMaKgA4oaECgBMaKgA4oaECgBMaKgA4iZ421bWrLI/94IAZyerwG1lPdG0asaO/G/Vv\nR2T89Nk4XtdzXjcza255RdbveHCNvaPaWl2/pdzOAPja4A4VAJzQUAHACQ0VAJzQUAHACQ0VAJwk\nkkk+vwEAHrhDBQAnNFQAcEJDBQAnNFQAcEJDBQAnNFQAcPI/lE85m/A8f2QAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  4\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFcVJREFUeJzt3X2cT2X6wPHrTJrQeGhCg11Nkp9i\nx8NIxM96qYZKk5SHVS0mFe2YnpSXqLVMDySth5ishmxJszWr+UlKKC8vTSVPU8gOJlnPDWkKJef3\nx/57XYfR9f16aT/vP6/7dc257zlnLuflvs99B2EYCgDgl0s40x0AgF8LCioAOKGgAoATCioAOKGg\nAoCTKlGNGzeKugSgefMSM+dLSVPjzw+xVxPMKG6tN6xdG0R0z82WLfo4q0T8dnr21OOzSuwutzt2\nTG9ITIz5OOcEgTrGge++a+aUduumxuc+bt/LMWP0eEKCxP5eTpqkdmzDtQ+ZKWmvPKo3tG9v5qyo\n00uNd+4chzGKSLlxL5Ofe85OatVKj1dU2DmrV+vxsWNjP86mTfWHbP58M2Vleroaf7SD/bw+8ZE+\nlO5heFpj5A0VAJxQUAHACQUVAJxQUAHASRD16WkQFKmN4chi+yceOqSGj8+YYaZUmTxZb8jJict/\n8o8fr09KjXipqZ20YIEeT0oyU6YsaKTGc3JiP5nxgTGR0eWbb+ykfv30+KxZds7mzXo8IyP293Lb\nNv1hvuYaMyXnpu1qvM9Uu7udcnP1hlGj4vK8SqNG6jinDN9hpgy8X+9azeuuM3N2zHrPuHwcJt8K\nC/V7WVZm5+zZo8fz8syU8rLDajw5+fTGyBsqADihoAKAEwoqADihoAKAEwoqADihoAKAk8hlUwkJ\n+nKiKBMn6vErHrZXIRQM0i+Tnx+fb6MPGUuKaj/+uJkz/vyxanzEu13tC1WtqscXLYr5OINgY6Xv\nZfix/p33ibbtzJzBg/V4PO5lebn+vA4ZYufM/4ferYStW82cDy69VI13Oc3vvystLU2/l08/bee8\n9JIantKl0EzJScrXG7KyYj/OzEx1jMH/ZUcklarRN9+8z8z46Sc93rcvy6YA4IyioAKAEwoqADih\noAKAEwoqADiJ3LH/xHBjN/OIadNFmxur8WsjrtP9nfpGy+6ILD+FL+mTptYeGCIi2zr9UW+I2Ok9\np+IpNT7FvoybcJC+/CKY3cFO2nyeGk5o0cJMyd9pHGUg+kYbnpIHZqrxgiVLzBx9Kx+RUmMmX0Sk\nS+/elemWv5QUPV6tmp1Tqs+A50zbZaZ07pelxlfoYV/GCQNDGmaYKXl5+kkivWbdYOa898CiyvXr\nJHhDBQAnFFQAcEJBBQAnFFQAcEJBBQAnFFQAcBK5bKro2WfVeNVrJ5g5N6x8TG+wlnqISKlxFkwT\nu2uuOt+l74OwKiJnwwJ9qdXRlvaeClMWdjRaboy4ko/rd+sbXXz1lZ2zV181JY8/YOfMjDrzJ9Zq\n11bDe8uOmClLl+pxY5WRiIhML9PjxlYi7vrU1peg/eMaY6cPERk5coMaf7rhQTMnvMw6U22LmePl\noQp986G8vDVmTnjTh3pD7TpmTsaeuUaLsSzyJHhDBQAnFFQAcEJBBQAnFFQAcEJBBQAnkUegAABO\nHW+oAOCEggoATiioAOCEggoATiioAOCEggoATiI3R5Ft2/Q1VWPGmCmHp+mbDaypZW8asuIv+mWe\neELsJEfJyaJ2YN1B+/J5I/U+D3/azkm+8069Ye7cmI9zXhCoHe5vbCgiIrJjvb5xRqPSZfaFrM1R\nsrJiPsYg2KeOsXfvemZOwRBjLBFng723sroaz8iIz/MqnTvrD9/XX5spW4z70nTYMDNnzdSparxN\nGMZ+nMuWqWPMeqWrmZJ/69tqPG2kvfnQ4hJ9KA1Oc4y8oQKAEwoqADihoAKAEwoqADiJnJTad+ml\narze0KFmzpAhenzeI4+YOSuiOhEHCxbo8Ua515k5FRV6/NBWe2+Ehs31+BFr03BH7Yx4zp32ju25\nFxv/L//mm2bO0E+z1PgMPewqrNtCje/66z4zZ+g4fZJjxhF9gkNE5I5B+iTHPvsyvrp0UcMZxfou\n9yIiS8r0+xz222TmfJA6RY23sXvmJylJDb/2mp2Sn11fjXe0DsoQkU4V+t/rNjslEm+oAOCEggoA\nTiioAOCEggoATiioAOCEggoATiKPQJk3T//G/fbbfzZzwi+36g0LF9q9WLlSjxcWxufb6F279F9C\nVJ8/+EANJ8yfZ6ac6H6D3rBoUezHmZiof8t/249myry8w3qDtWZMxP4GfseOmI/xuLFfQZWXX7aT\nDhzQ4+PGmSmXp+hLkDZtis+3/L166X+XF11k56xfr8fnzLFzmk68R2+YOTPm48zM1McYpajkEjXe\n5oLtZs6KtfpQkviWHwDOLAoqADihoAKAEwoqADihoAKAk8hZflmzRm08nJ5upix8Vf95195uT5pZ\nO7Qkx2NncBH53JgdbjFokJmTJflqfPbsjWZO+H2q3lC9eszHOXasPmuakmLn3HtvqRp/4YUmZk6p\nniKTJsV+Bnz6dH2M9/29g51k3eOjR82U8vvvV+Pxel4lLU0d54mSEjMl4Ysv1Pi8dVeYOZ2Mv9lG\ncRjnYeNv0r4rIvVyc9X4rtGj7RwjXoVZfgA4syioAOCEggoATiioAOCEggoATiioAOAk8kypah31\n02OOGMsTRET27NHjxRHXyRw2LKobMTe2t77Uq2C4vQRqdHN9VcXMiOusPF+Pd4pauubkz3/+VI3X\nqHGlmRMea6Q3VDlh5gTn6JutTJpU1e6ck/uK/6g3VKtm5rxeS98ApO699qoZa9FYspnh7Lvv1PCf\nhtjP0f3G89rjWzvHWgLZP6JrXrq01q+9c6eds+/YE2q8wbnnmjlHf/pJjUcWxgi8oQKAEwoqADih\noAKAEwoqADihoAKAk+jNUQAAp4w3VABwQkEFACcUVABwQkEFACcUVABwEvnJ6q5d+pESDRbrx3+I\niAR3NVbj4c+dzZzF55yjxrvH60iJDh3UcQ5t9ZGZMj5P79qs5+xVEw8V99EbCgpiPs6EBP1erl5t\n56Sn69//h9LOzLE+tf5NHO7lZuPYjE9etu9JvwF6txJvucXM2fnPf6rxeIxRRES2bdMHdM01Zkrj\nYLv+oxba+1UEzder8TD8Q+zHadzL8m/se5ks5XpDxO9FfvtbPV5UxBEoAHAmUVABwAkFFQCcUFAB\nwEnkpFSVhsb/y44caeaEQ/VZjoeGdzFzJkVMAMRDUJynxr982c659jP9P8c/OfCYmbPtmQI1rk/j\n+TpuzJcktPrZzAn/3VCNPzTRnhgY/Xx85mU0aefq/TpgTDyJiCQeO6bGg/N2mDk1ahSq8cMRffOU\n81f9iUm5W594EhHZ9sAPesPizRFX+p9K9MrZ5MlquKH+SIqIyJH/7ac3/Gw/4zJtWiU6dXK8oQKA\nEwoqADihoAKAEwoqADihoAKAEwoqADiJ3LG/aVP9++8tc1aZOUP/frUa/4vx7buISL2lS/WGrl3j\nsgYnCIYbv4TrzZy779a/Dz5+3L7OY7P14TSJwzfg06fr99I8y15EJDVVDZc/MNZMWXGhPpSe8fjO\nvVEj/T4uWGCmdB3eRo1nZ9uX6XKrPpTkeH3LX16ujrN/drKZ8sYbenzMGPsy3bvr8TZtJObjLCrS\nn9fMHifspKNH9fjgwXZOnTp6fMoUvuUHgDOJggoATiioAOCEggoATiioAOAkcnMUazY/6NjSzHnw\nQT0etQVDTWNH7aoRKxA8FRdPVONXfTzFzJlXR+9z/zz7ZAJ9axSRJmaGnxv+ZExaNmtmJyUlVfo6\nPb/6qtI5bkaMUMMNeugz+SIiu3d/r8aXL99t5ujnGIjYc+y+2nXXrzT/U3tiuuUz+t+SsTeMiIg0\nSDd+Xhz+LjNHXK7GV9xsV5JUI774Rbu/tWrp8b5mRjTeUAHACQUVAJxQUAHACQUVAJxQUAHACQUV\nAJxELpuSFi3UcHjTH+ycihQ9fuWVZsqjXT5R4xPsq7hq375EjYd7jTNqRKR/nrFBSNu2Zs4rtVeo\n8T5219zk3KQvHSlK6m8nlZaq4dtus1Oysxup8V562NeLL6rhXW+0tnN27lTDMw/Zd6WgVP9d2nfe\nV6GxPOo3EUvgevfW442Pb7EvtO4MnvV2ub5sqvPWrXbO7NlqeKAxdhGRxFrV9Ia+R+ykCLyhAoAT\nCioAOKGgAoATCioAOKGgAoCTyCNQAACnjjdUAHBCQQUAJxRUAHBCQQUAJxRUAHAS/S1/zZrqEoCN\nxYfNlCuanVDjxeecY+a0z83VG0aNss908JSfr45z741ZZspFKXrXxhtHTYiI3GJ8Gt20qcR8nIcP\ni9qxWrX0I0BERMK6l6jxYP8mO+cbYyjJybG/l/Xrq2Ms27PHTGkc6PcrDN8wczp00DczWLUq9vdR\nRGTHDv1e3nGHnbMiV99HQibqx/+IiH08zoQJMR9nUZE+xsy8G+yktWvVcEXE/X/B+HsdMeL07iVv\nqADghIIKAE4oqADghIIKAE4iPz2dPl3/j+FnnrF/4OjRevyeOoVmzpYWvdR4PCZrREQOB/rMRM2X\nXjJzMubrE1avLKl8l+uFYczHmZio38sfB95j5rRZPVONz1lrdzftDE4wzjPuY//Jk82c4H5r/K+b\nOfPnD1DjffvG53mVffvUcW45VM9MWblSj7e9y+7yrGF6bZgyJfbjDIIS9eKPPPI7M6fVs3q3+l9/\nvX2dd15V42F4AZNSAHAmUVABwAkFFQCcUFABwAkFFQCcUFABwEnksqkgmK421qhxn5lzuJPxrW1S\nUuV6JiJSUBCXZSivv64vKep74AUzpyI7W40npabaF7rySj0eh3GWGkuKmkTkXN1BfzaqVrVzli//\nSY2H4bkxH2NhoX4fexU/aift3KmGg9dGminhW9v1hszMuDyvP/ygj3PwYDunZUs9PuL7J8yc6z8d\nq8bfeScOy8MKCvSHr2dPMyXvvPPU+JDPPjNzylPbqPHkZL7lB4AzioIKAE4oqADghIIKAE4oqADg\nJHrHfjmoRr/7rsROKS3V4xE7g8+6+WY1HjFp6apvfX0386BfOzPnKyOeUd+YARaRm9P1+Agzw481\nMf/Uk/Yqj9z2xs+KmOVfvfrcU++Us14Vc9X43ocnmDk1aujxtyN2v5e8UXo8MzMiyU/1gX3UePYD\nBWbOunVGQ7U6Zs7IxdZEt/3MeGnwgD7Gtq/YOfpWPiJD/6bP5IuIzJh/gd5wUK99J8MbKgA4oaAC\ngBMKKgA4oaACgBMKKgA4oaACgJOTLJv6Uo0+95x9rsuuh/+lxk8YS6NEROKz2MS27HhnNR4ufNvM\nSb5TXzpy8CP9dyYismpxfaOlppnjxfqX846I5UFlF+vLZmpHXKfswdgvqTHddpsarnW+vc9F+b/1\n/la/MWJvjEGDKtUtd/36qeGqHe0+pxfr48z/IsfMybKP4oq5lBQ9XrQ40czZaMRn3PKefaHFUU9z\n5fGGCgBOKKgA4ISCCgBOKKgA4ISCCgBOIo9AAQCcOt5QAcAJBRUAnFBQAcAJBRUAnFBQAcBJ9Lf8\nTxrnY3z8sZ3TrZseT001UzZecqMav+IKifig2tHcufo4v/7azrnuOjV8oq19bErC8If0hkmTYj7O\nRYv0cyu6d7dzjE/jJTvbzmneXI9fdFEc7mXTpuoYy/+l7y8hInKhfKvGO3Sw91dYNXGV3nD11XF5\nXjMy9Hu5ZMlRMyf8eIMaL73qKjPncyPeMwxjP87WrdUxtgnWminWKUtd33/MzJmZ+pQav+ee03te\neUMFACcUVABwQkEFACcUVABwQkEFACeR3/J37arPJi675kkzJ+PDUWp87BJ70qz999/rDdWrx2XW\n9PMgUMdZ8Lj9u2nbVo/ffPPPZs63xqKKmnGYNbXu5fLl35g54dL1eoOxY7yISOH+/Wq8VxzGmJam\nj/GoPfktW3o+qjdEHGUwp2VLNT4wHrPfIuaqlGDApWZKs2Yd1fjevfZlytft0BsaNYr5OIOgRB3j\nsWP2aSE9eujxRRG1J/9F/W+cWX4AOMMoqADghIIKAE4oqADghIIKAE4oqADgJHJzlGULDqvxT2qN\nNnMWi97W7DJ7CdKW9Mv1hk2b7M45avHWW2r8dxFLoEROqNGwbkM7ZdrrleiVr4ED9fjy5Xafxn96\nnxofUbWqmdOlEn3yVlKiP6+tW9sbnciQIXo8N9dMGfjZZ5XplrtgQGs1HjbrYyfVrq3HH7nbTNlw\n8V1qPC0OxyaF499R48kp9rKpsoP6SqcqdeuaOan3Gquj7jm9MfKGCgBOKKgA4ISCCgBOKKgA4ISC\nCgBOImf56zXRZ0eTLrFnwFZv12fNtmzWZ8VFRNJa6bP5+qEN/ra1yDRaIo6UuCxNb3jjfTMnaNlU\n/1kRk7NeBgxYo197fIWdVKbP8i+LOBqmfaV65WvQIP15nT37oJnTf3RjNT7PXsgg5enpajw5DrPf\n/5GoRrvWt1fFLGtvHANinXMjIpvvMmb57Y75OXBADR88WGKm1HzzTTW+4NZbzZyew4ZVrl8nwRsq\nADihoAKAEwoqADihoAKAEwoqADihoAKAk8gzpWTDBrXx9U32womlS/X455/bl3n+eT1+1VWnd65L\nZQXBy+o4ww8vMXP2/P73ajxl8mT7QuvW6fH8/Dic0ZNv3Gh745Dw5R/UePmAAWbOaiOeEYfzlnYZ\nZ4M1SE21k959Vw2faKIvcRMRSXjtVb3h9tvjc6ZU/frqOH/YuttMSThf71rVZs3MnIWbN6vxHnG4\nl0GwWx3j+vX1zZw6dfR4g8/fsy/UrZseP80x8oYKAE4oqADghIIKAE4oqADghIIKAE6iZ/kBAKeM\nN1QAcEJBBQAnFFQAcEJBBQAnFFQAcBJ5BIrs2KEvARg82EzJaaZ/Nzt1qn4Ex39cqEbD8OK4fBud\nlSXqOPMX1rOT3tePOglappopx47p380nJv7yPQv27//urF2uUbdujVMa/9k8RpFTG+d/wxhFfr3j\n5A0VAJxQUAHACQUVAJxQUAHASfSk1LRperxtWzNlyp4sNV52U76Zk5IS2YuYmz27WI3nyX4zJ3Hx\nYjXeuvWjds5tmXpDUZHdOQBnDd5QAcAJBRUAnFBQAcAJBRUAnFBQAcAJBRUAnEQum6o3Z4KeFJHV\no0flOzFuXOVzfB1Uo4nDhpkZQ7fry6NWWwfTi0jWYH15lL2gDMDZhDdUAHBCQQUAJxRUAHBCQQUA\nJxRUAHASOcu/b7g+y39iuL0BSELHDmr8qZs+MnNSUvRZ9jC8IKJ3fsLH9b7tGTfVzJnxzRg1vvoc\n/fQBEZGPmp3Vm5QDOAneUAHACQUVAJxQUAHACQUVAJxQUAHACQUVAJwEYWgv5TkUBGrjjxE/8OKq\n+s+rVs3O2XIwUON1wlBv8FZerne6Z087p6xMDc8cvcNM6ddPj9esKb94nPv3f3fWrsmqW7fGKY3/\nbB6jyKmN879hjCK/3nHyhgoATiioAOCEggoATiioAOCEggoATiJn+QEAp443VABwQkEFACcUVABw\nQkEFACcUVABwQkEFACf/DxhlJZ0W9vADAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  5\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFfdJREFUeJzt3XucTvXax/HrRhOlabKFvERUk8Ow\nJTTbU6NNTSVJzsTsyVNsdo1tKJnUVlsHbc0utWUmTULKaTCNQ1OPajo4xFSTU3JKk3NC9gsj7ueP\n55/nj+taG133mlf1ef95rdfXWj/3fV/Wy/qt3y8SjUYFAPDzVaroCwCAXwsaKgA4oaECgBMaKgA4\noaECgJMqgUfLy9UpAMs+ijMjHaqv0g9Ur25mdjdrptbrRKORgKvzk5urjrPd1EFm5JPGA9V6+auv\nmpm4b77RD9SvH/NxvhuJqGNsEZDZv06fAbK+mX25RffqmdxcifkYCwpEPXnXrnZmwQK9PnWqnXnu\nOb1ev37sxygiInFx+l/yPffYmffeU8t7N240Iwty9NMMGhT7cS4zvq8dHnnEzGz6+9/VeuLw4faJ\nxozR6zVqnNUYuUMFACc0VABwQkMFACc0VABwEgl69TQ/X/9P/m5HppmZVs+lqfXCz+z/462bnKwf\nWL48nP/kv+QSdZzVDu4yI82b6/VVG+Pt81x3nV5fvDj24ywoUMc462gXM9K7WoF+oEcP+zyff67X\nmzaN+RgjkVnqGI8f721m4pIS1XruyE1mZu1avT5xYkgPpbKy9B9tnTp2pqxMr1tP2ERk7okTar1H\nCA+Lly3Te0+HEVfbIeNHuWn6dDNS36hXPcsxcocKAE5oqADghIYKAE5oqADghIYKAE5oqADgJHDa\nVLdu+tSF/v3tP7B798NqPXqTPdUmM6lIrWdnhzQNZehQ/S9h5Eg7M2GCWs6oMsmMTCzrph/Iz4/5\nOMuMd6PrjR9vZtaPGqXWm+bkmJntgwer9cvCWJfBWHsicu5KMxIdV6wfaNPGzGy9+Wa13iiktSey\nsvTf5dixdqbSufqlVbn1VjNT7b3Fav3o0RB+l6dO6b/JJUvMSMr429R6cZ1eZubYnDlqnWlTAFDB\naKgA4ISGCgBOaKgA4ISGCgBOAp/ybzaeDF9xwQVmJiNdf8r/9Av2Q7NSo54c0lPTPXv0p6YnT9qZ\njh31+ujRdqbtn/ThNA5hnP366WN84435Zub77+9U63fdZZ9n4UK9HhcXwpPh2bPVMQ55z37K+1Ln\nRWq912v6E2MRkcmT9XqNGiHNSpk2Tf/RGrMyRESkSRO1fMpYyV9ERE7qp6lUKYRxduqkn7xqVTMS\nmT9Vrc+bZy9Y1G2psStHbi5P+QGgItFQAcAJDRUAnNBQAcAJDRUAnNBQAcBJ4LQpadgw4KCucPt2\ntX5ZQKZ8jX6aVq3CmYZSVKRPKQqYoWFuq7R0n33Jrc45Rz9QXh7zcZYbU+DOlYlmJvrB79V6pH0D\nM9OwoX5s69bYf5bW9Ld58+xM2l/0yyoPOE+Nb77RD9SvH8r3NRI5Yfwuj5qZ6JCH1Hq/g/ZiPjO7\nztYP9OoV83E2aqR/ltu2rQ9IVVOr0be/NhNNhqWq9Q0bzu77yh0qADihoQKAExoqADihoQKAExoq\nADgJfsoPADht3KECgBMaKgA4oaECgBMaKgA4oaECgBMaKgA4qRJ0cIWxoEZZQKbLcX0aVsm59loD\nj92iZ5YsCWdxlMWL9YUYWt9mn77WpZeq9ZVzdpiZSLL+57UNYU+pzEx9jCP/aZ+6bp06aj3lyl1m\npvjrS/QDu3bFfIyRSJk6xug6fZ8zEZFW/Zuq9cWf2Ze79WP9+9quXTjf12rV9M+ymr42iIiI9O+v\n1x8M2Ost4059nPn5IYzzD3/QT75li5356CO1vHhzohnptNlYHCgjg8VRAKAi0VABwAkNFQCc0FAB\nwEngQ6lTRr1ggP3+/zRjJfuC6683M6OWWv//G846A51+KtAPGA+eRERkyhS1PGCAHVm6peLWTcje\n2Ek/kJNjhxIS1PL2kXakdPdutd7CjrjJyamn1gc9Z2c2bNDrB9bZn1W7I6uMI23tEznq21evv/rq\nl2Zm4sYRaj3+AnucG+dX3O8y9+7lan3uXDvT+EW9PnGp/VBKWrbU6xkZdiYAd6gA4ISGCgBOaKgA\n4ISGCgBOaKgA4ISGCgBOAqdNtVuzRq0f1GfGiIhIp8ld9APbt5uZQVfq0zA22afx9dNPev38881I\nRmGqWg8YpiQn6/W9e+2Mm6Qktbx68GAzUsOY5vX00/ZpWrx/7xldlqfkwfo0n0E33WRmxhx7R61X\nbxZwovHj9XrbcKZN5d1XotZbtmxlhw5ep5YP3/iMnRl58kwuy1X16nq9qKrRX0REpn+olisd+sGM\nnCr07TLcoQKAExoqADihoQKAExoqADihoQKAk0g0ai90MGSIvgrCrFn2H3j0qFG/0l4eo+xLfVGH\neiGsZC8isn69Ps4+fezMPffo9YzVaWYmMn2CWo9Ga8V+nPn56hinHelmRtIKe6n1Rqtnm5mtV+iz\nH6SoKOZj3LFD/xwfesjOWDMWDjSwL1df418kLqTva1GRPs7UE4vs0MKFanliUq4ZKSw0zx/zcT75\npD5GY7KKiIjMmKHX58yxd5gQqaVWo9HKrNgPABWJhgoATmioAOCEhgoATmioAOCEhgoATgKnTUUi\nw42DlQP+yDZqNfrV1XbEWlEkNTWUaSjVqulTNI4d22ZmFi5sqNa7/Pi6mVnVv79abxvCdJsDkYg6\nxt/Ju2YmepO+CEjknSZmpmfP59X67Nmxn2pTYozxvIBM4y++0A8ErQAz0thUq1WrUL6vxcX69zXl\njovMTK1z9AVCFu+zL/k8Y1+tpk1j/1lKfLx68rSuh83ItAXx+gFr/peIlLdvr9bPdgocd6gA4ISG\nCgBOaKgA4ISGCgBOaKgA4CTwKT8A4PRxhwoATmioAOCEhgoATmioAOCEhgoATqoEHUxN1d8ZrlfP\nzuSN26kfCNhPJPKhvj1DNHpRKO9GT5qkj3PECDtztO9Atb64R56ZsbZomDkzhHejjS1Quky1t0B5\n6633jSMNzEz0pHGsUqWYj3HiRP1znDrVzlhb9gwZYmcyRlWz/rBQvq+lpfo4lyyxM6PW6NvZ3Pqj\nvZ1N3756PS0t9t/XI8a6DJ2ut2clFVc1tt9p3NjMRF5IV+vR6Nmty8AdKgA4oaECgBMaKgA4oaEC\ngJPgV0937tQPtmxpRhpV36vWt2371Mw0b64vSl1aGsLDGhGRggJ9nMaC0CIiD/5ZX+g26x/2JSes\nW6cfaNo09uO8+mp1jJl//MyMZF/+L7Xe9rW/mJmsT/WhdA1hEe1PjAcZ7QYMMDPHpk9X640usX8X\nn+/Sh1IrhDGKiEi/fvrFWQtfi4hcc41aLv7AHmfKfS30A6WlsR/noEHqhZW/mGtG4iZPVOvd3s8w\nM/Pnn1Tr0WhlHkoBQEWioQKAExoqADihoQKAExoqADihoQKAk8B3+ZdtrKvWO2zebGa2vvCEWj84\nZoyZ2fyldSSc3QS6TOmi1t/6cZSZmZes1xMuvtjMFJU1VeupetnX/fer5ez0U3bmqYNqedW+hnam\nefMzuSpXhaP178t/PWV/X1esmKbWa95rn+fPyfp58u2Iq1l3zFTrT6TbmdLx49V6yopnzEzky1fU\neii/ygb6mhCTJ9uRG4cNU+v5OVXNzKm5g87osv4T7lABwAkNFQCc0FABwAkNFQCc0FABwEngU/7d\nu/X6YYk3M/ETJqj1hHnzzEyr7t2DLiPmCo7pK31nDi8yM2vX6vVK+/aZma5v6qv8S6q9yr+bZGNa\nwtixdubIEbVcsn27GTlg1G+0z+LmySv0v8enJMXMXPuV/pS/Tp00M2Ot8h+WBn30dTsCZxnsf0Cv\np6ebkWjXwPYQWwv1XTwyXrzJjDz5hD7/YMR8+zRPDNb/LlsFLRoVgDtUAHBCQwUAJzRUAHBCQwUA\nJzRUAHBCQwUAJ4F7ShUbe/SkfPWVmSm96iq1ri+z8n8KjPrAkPboadRIX+9h27YyMxN9TJ+ik5/0\nqJnp9u5Q/cCkSbEf59Ch6hgfrD7JjHTurNdTkqzJUSLSsaNe/+yz2I+xVi39y/y3v5mR8Uf0/bFG\nRexFQ2Y1eFCt9+4dzh5oy5bp39frrrMzcTfqU8fqby82Mzu+NYYTwu/y1Cl9jIWFdqbzHfplVUpI\nMDMD7/xBreflnd1nyR0qADihoQKAExoqADihoQKAExoqADgJfMoPADh93KECgBMaKgA4oaECgBMa\nKgA4oaECgJPAPQ7eNN7l73PokJnZf+GFar1mmzZmJrvPKrWemRnOu9HStq06zkqr9esSsXeOyJsR\nZ2aKCsvVempqCONMTFTHuPHrr83I3g/0GSApLQ+bmcyx+vY42dkhjHHRIvWCp1qLEohIqy/0MQbs\nDCIlTxtb46SmhvN9TUnRL/rbb83IJ69vU+vtltprT2QnPK7Ww/hdRiLb1DF+/HFDM9Ouiv57jVx7\njZmJ3tlTP5Cfz7v8AFCRaKgA4ISGCgBOaKgA4CTwodQ3Txuvpc6195Gv+cEHaj17tb03euZ9+sMa\nEfsBj6eicfp/ZpfdbP+/9IrOxt/NsR5mZsIEvZ6aakb8LFiglhs/9JAZaXGjXl+6VH/wJCKSlHRG\nV+VqfcPb1Hr6ypVmpvz3+mdc8uyzZmba7ky1nhZwbZ5++vBDtb73O/s18r921esTJugPnkREMsVa\nfNr+LXvZvVt/+DRkiJ3JrzdDrUflWjOz7D7976yDfZpA3KECgBMaKgA4oaECgBMaKgA4oaECgBMa\nKgA4CVyxPxLZpR6Mnqxt/4nG9JwWY7uZkdKPjHfD4+PDeTc6L0//S3j4YTMycfQutX7DMPuSW9x7\nr34gNzfm49xrrMtQa8sWO7R9u15/910zsvapp9R6Ugh7uScm6nu5B8wMkzlz9PqS1w+YmcjvzlPr\n0WjVUL6vJSX6OG80prmJiHz+g35pm//H/v13qLdJP5CYGPtxGt9XGT3azrRurdc3bLAz48bp9aNH\neZcfACoSDRUAnNBQAcAJDRUAnNBQAcBJ4OIoOTmXqPVI5X+YmYYNH1Drzz0XcCJrRY0dOwJCjo4c\nUcsli/Qn+SIiGVOGqvX9QecxZkBIbm5QykWt775T6+161DUz2csvV+vJt99uZpLuv//MLsxRy5Zn\nnlm41HiY+9FCM3NS7jCO2E/MPfUw1t85sNtaZEhErtX/cup/nm1GIh2HqfWAiUFuskbrJzE2BBER\nkdsb6/WmB+3FnGa+clSt97NPE4g7VABwQkMFACc0VABwQkMFACc0VABwQkMFACf/YXGUl/XFUXLs\nzOE+g/QDF9prDcRXraofOMsFCs5U3br6fJedL+bbIWslCmssIiK1jUVlfjBWrnB0+LA+xvh69v5Q\nkp5+ZnURe37ctGkxH+Ojj+pjfLx1gZk5fIc+BSrgU5Qio945hAVgRERk/Xp1nA9ObWpGnikzJgLN\nn29mtq7TpxQ1aiQxH2d+vv5Zdu9+wswsN/agC9qZrvG/9V523nlnN0buUAHACQ0VAJzQUAHACQ0V\nAJzQUAHASeBTfgDA6eMOFQCc0FABwAkNFQCc0FABwAkNFQCcBG6BMnCg/j7tfa/ar7meMuqt9+wx\nM/3+Wkutz5wZ+3eGRUR2RCLqOPevsWdAXHaNfmk1tmwxM5sv17cUuSKMd8ALCtTBzDbeZRex32fv\n8v339nmqV9frcXGxX6/A+BzLAjJLn9U/48JCO7Nsg741kOzaFcr3deVK/Xd57SOpdmjKFL3evr0Z\nGXLLNrX+0kux/12WlOhjrGH87kREVhn1XsOHm5mZrfUtYPr1411+AKhQNFQAcEJDBQAnNFQAcEJD\nBQAngU/5rQeDlbrbj0BvffE2tf5wbfuh2cyePY0js82MpxlP6E9633/IzhTl5Kj1lfsamZk1/9LP\nc4V9GjcDF3RR62U32TMZst7RP7OsCTXMzJP7jR0bcnPti3NiPc1vfNIeY9POndR6ZoK9Zv/G3bv1\n85gJX8nJ+kgvusjaS0DkgOxQ61l99Sf5IiJbVp/ZdXmqU0ev1x03zsz0W/SwWo//p917+r2SZBwZ\naGaCcIcKAE5oqADghIYKAE5oqADghIYKAE5oqADgJHgLFGNBjezN+hQcEZH0EfoUhYSAi6h09936\ngby8UBabsBbVCPrXpvqtt6r1IQ0Wm5njx/V6Xl7sF5vIytIXm3jzTTuz9aOdar1+cl07860+lCph\nLACTmqqOseSdd8xI4WP69//RcXFm5v0TJ9T6DWGMUUT27NE/yzp19Kl8IiLHjw9W6+np9nnS3tCH\nc0sI40xL08c4dqydufzyvWo9um6/HeraVa9v2sTiKABQkWioAOCEhgoATmioAOCEhgoATgKf8jdp\noj9pM9YFERGRlJrr9QNjxtgh61FzCNtmiIjI7NnqOCO97dkM0T/qi2oEPTZfVbu2Wm8bxtPhvDx9\njP9tP83u2bO/Wp/dJ98+z4gRen3btpiPscyYrVHvggvsULNmajluzXIzst94aBwfH86WPTVq6L/L\nmjXtzPtf65dWN2ivF2urm7S0mI9z/Xp9jM2aHTMzb7+tL2jzww/2eb77Tq9nZrIFCgBUKBoqADih\noQKAExoqADihoQKAExoqADgJ3FNq5Uq9Ht860cw83n+TWn+0Tx/7RO3b6/Xl9tQVT2mFvdT6OecE\nhDp21OsBe960HT78DK7KV6+l1h45k8xMkrXdTuvWZqZDQ32PomVmwk/+8/oUwGHDvjIzD1x/lVov\nHzLNzOy88E9qPT5ooSFHB1ZvVeulR+z9zOomndQP3HCDmdnx4YdqvX5ampnx0qxZnlp/9ll7r6fU\nGfp1xS+wP8vDU60pgN3MTBDuUAHACQ0VAJzQUAHACQ0VAJzQUAHASfAWKACA08YdKgA4oaECgBMa\nKgA4oaECgBMaKgA4CXyXXwYNUqcAHHn5ZTNS/dJL1fqeT3eYmdo9U/QDxcXhbIHSrZs+1SEhwc50\n766WU8bfZkaK0/X3k2XgwJ89zn37fvzFTte4+OILTmv8v+QxipzeOH8LYxT59Y6TO1QAcEJDBQAn\nNFQAcEJDBQAnga+ebjb2Ob/i0CH7T1y9Wq9X1ffMFhF7Q/HExFAeSkUi/1bHGW1sL6Q8Pn2DWt+y\nxT5P5cp6/aWXfv5+7r/k/+T/rT/I+P9+C2MU+fWOkztUAHBCQwUAJzRUAHBCQwUAJzRUAHBCQwUA\nJ4Hv8lvdNuvpeDNTs2YHtZ55Q4mZiVylT8MKazOBAQPOV+tNPtWnRomIbOirr03Q5Ob6dkaamEcA\n/PJxhwoATmioAOCEhgoATmioAOCEhgoATgKf8tc8pD9mH3bUztS+Up8BsPXHH81M9PnnjSNt7BM5\n2rdPr28YX2BmhjzVRc88NtvM7Oy9Ua3XtS8NwC8Id6gA4ISGCgBOaKgA4ISGCgBOaKgA4ISGCgBO\nAqdNxR/bq9bnLqplZgYmJKj1RitW2CdauzboMmJuSf/X1Xr+T3eZmZfWpaj18ueLzcy7r/VS62kB\n1wbgl4M7VABwQkMFACc0VABwQkMFACc0VABwEomGtc8IAPzKcYcKAE5oqADghIYKAE5oqADghIYK\nAE5oqADg5H8BRa9ljEFeCd8AAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  6\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFclJREFUeJzt3Wt0FuW5xvHnjUhTORSQk5QGRMhG\nxIAKCgIWKYSDLDa2FKiiRTwUKVJhU7AUA0ZFVHQLUlpZGG1ENkUKCMghtWAVQZRGQIpuVExDpBA5\nhggRNLM/d63rnhJ6v2+W7v/v4z3rysyTmdxrVuaZZxJRFAUAwL8vrboPAAC+KWioAOCEhgoATmio\nAOCEhgoATmrEbbzppiCnAPziF3bmmkvL9IYXXrBDW7fqen5+wg45ysyU40x8+K4ZefnlWlXezW9/\nq+tr14akj7OgQJ/L7PTX7dCCBbpeu3bVM6dPJ32MmzfrMbbtZu+61KgvecCe/TJwoK5feWXyz2MI\nIYREQl+vYacZiY63kPXcp+qamZISXZ8/P/njnDFDn8ulS+1M4X+9qDd88YUdKirS9dzccxojd6gA\n4ISGCgBOaKgA4ISGCgBOEnGvnjZooP8xfKTJpWYm86v3Zf21D+3/8TarV09vOHo0Jf/ktx5mhJiH\nGSeNeu/1683MqMXZsp6Xl4KHGWPGyDH2/2SeGVn7wcV6wx13mJmCzr+W9ezsFIxx0CA5xspVq8xI\npyv0qX/33QozEzXK0BtKS1NyvZ48qa/X0aPtzGMv6ENrOn68HRo7VtdbtUr6OBOJo3KMH39c38y0\nOlYo619edZWZ2b1Dn/+srHO7XrlDBQAnNFQAcEJDBQAnNFQAcEJDBQAnNFQAcBL7Lv8mY9bSde3t\nqVZ7ag+Q9cLFdibtKmNKR8yxeWpvTI/aHJPp98tfyvqXffuambyFC40tN8fsyceUenp61Lp19vSg\ncGcfWU67X0+NCiGE1aurdFiu1oxeKesDBueZmVdv1+f+dNyOtv29Ckflb9MmXc/va7zLHkIot5bS\nKC83Mxk9W8l6cbEZcdO1q54e1WrmXXZo5EhZXvOy3XvadzBmR53jl0y4QwUAJzRUAHBCQwUAJzRU\nAHBCQwUAJ7FP+S8L+2T9xoYxoYdmyXLHy+y1Bs4LB2X93J6zVd308XpPvXvHhCqWyXKNHj3szNy5\nun5z8p/yDx+u6zP+x17oJsz9X1nuXWRHbrhBPwGPIr1ivKfsG/Q1dust9pXU78VRsn5TjSVmZs0u\nvTjKAGPNFG/ZtfX8k6yJ9nW0MoyQ9dpN7bk0zZtX7bg8vbpFn8vVW+zMwC+/lPVB02MG8sc/VuWw\n/iXuUAHACQ0VAJzQUAHACQ0VAJzQUAHACQ0VAJzETpsKQS82sazpLjuyq6csH/jUnroS1SiNP4wk\ne3LqEVkvvPBCM7PT+BZNszd+ZGYa3nNP1Q7MUdbiKXrDo4+amZXf+pas/ymcMjPR3dbPs79d5WXR\n7/U5qYhZsOWmksdkfdfkyWZm+8NDZX2AXhfIXdboa2W9ZUs703Lw/XrDffeZmScftKY6Jn9CY++u\neh8xhxsaG5862/6cPWVzeA+9n9d/aO8nDneoAOCEhgoATmioAOCEhgoATmioAOAkEZ3jUv8AgH/G\nHSoAOKGhAoATGioAOKGhAoATGioAOKGhAoCT2MVR1qzRqyAMKLe/txO6d5flk/WamZFatd6T9Si6\n3F7VwNGkSXqcjz/+iZmJHnhB1mfUyLH382s9nBpRlPRxVlbqMZ53nrFoRgghPf1BWT8Vvm1mEhUb\nZT2KuiT/XF50kRzj/r/+w4w0m6q/KdWrKM/MrN6oh3JBCs5jCCGE+vXlOPOeOGpGjD/LkPm8sWhO\nCGFe8xmyPmZMSP44c3LkGA/+PNeMHD6s6+2al9n7mTpV1+fMOacxcocKAE5oqADghIYKAE5oqADg\nJP5d/iVL9MYzZ+xM//6yfN3gBmZk7lxdz8pKwT+/g/3w7amn7ExBxXV6wxtv2KFnn9X1UaOSPs69\ne/UYL7mkwswcP54u69b/8UMIYcrTeihNU/DAZudOPcaslvZDidLvfEfWGz/zjJmpOfYuWT99OjXX\na1EiIcfZ7Av7b7lmuf4qReLCuEOuLatRdH7yx1lcrAdjNYsQwqHHH5f1ho0amZkNi/XXQnr1Ordz\nyR0qADihoQKAExoqADihoQKAExoqADihoQKAk9h3+Q9+f6isN1mfb4dmzZLlN964MWZPneMOI+kG\ndNJTJwak32Fmrqt4XdZff+JJM5O4vZusR/p1clettrwo6/vCCDPTs6eeuTJzpr2fv3TTmWF2xE3z\n5saGGvZlvni2Pt6RP7Nnzdz7Sz1tKlVa3nKLrK9cZ2fef19PW/wkZnZQy9mzjS3j7B05SbT4QNaj\nRs+bmYY7duif1cEe44kfGNvO8dNQ3KECgBMaKgA4oaECgBMaKgA4oaECgJPYxVGOGIswDOxqZ7Zt\n0/UFC+yD+OlP35T1KOqWksUmDh7Ui2qc39Te/SGj3lb/ykIIIVQWFesNGRlJH+fKlXqMcQbd0VjW\nN332mZkZqhfND/v3p2DhkJo15c4TZw7GhPRXGf785yvNROvWup6RkZrFUbZu1edy/Hg707Spro8e\nbWeyh9TVG8rKkj7Ok0bvueAnP7FDtfViLr0+mm9GNmwxvj5x6hSLowBAdaKhAoATGioAOKGhAoAT\nGioAOKGhAoCT2MVRiv6qp8BsrrHTDr33niyXj7AX4Rh4+NwWIvBSy5gelf8b+7h+/vNCvSGyv18U\nWrQwMskf/6Cmb8t6Wdur7dBzz8nyi6tvMCMdiqpyVM6Maywaq6dGhRBCWLpUltf94CozktGli96w\nZYu9H0fW9KgtW/5uZnbs0NdeVsP99o7Gjq3KYbkq+pv+mxg82M7smblM1tu/FrOjBX87+4M6C9yh\nAoATGioAOKGhAoATGioAOKGhAoCT2MVRAABnjztUAHBCQwUAJzRUAHBCQwUAJzRUAHAS+y5/mDRJ\nTgHI3v6YGfnd73R94kR7NytW6HplZWo+KRGuvlp/OuOdP5iR2267WNbzNup6CCGE9et1PTMz+ePM\ny5Nj3N1llBkZOVLX33nnaMyO/iGrUdQu+WM8ckSOsbi8gRnJaF1T1nOnnjYzOQfG6A3z5qXmes3J\nkeN868EHzUimsV7GoQvtQza+9BLSoijp49xkfALl5Hp7VlLbtrreosUZMxN9Yfy8mjX5BAoAVCca\nKgA4oaECgBMaKgA4iX0otfvxx2W9oP8uO1RvoSwv+9FaO7PcWnw6Na/FNvhIL758/LidqVdP17d3\ntBczHrZc1ydPtvfj5fTtt8t6u7/3NjNvnzdMb7jtUntHV1kLM7ezM072XHihrGf+6ld2qHt3WTYf\nPIUQQmvrcU2KdOoky5UxkQaX1Jf1YzGZtLvvPvtjctb9oYdkvf9/25m1s/fIevT7t+zQiNW6vmSJ\nnYnBHSoAOKGhAoATGioAOKGhAoATGioAOKGhAoCT+BX7ly3TG4uKzEjOsQmyntu9wN5Pb2PqTlpa\nat6NHjVKjzM93YzsHjtP1mO/G967+t4BT0vTc9Aqhww1M99epaeOnPr0iJkp2Kbfm8/OTv66DDut\n979jMl3q1JH1/LllZubWnxpDScE77iGEEMaN09drebmdOXBAlovX2tMZe16sd7N3b/LP5bhx+not\nKbEzy5cXynrU9mY7tGOHrvMuPwBULxoqADihoQKAExoqADihoQKAk9in/L166SdtGzceNjONGukF\nKkrbXmcfxBt61ZAoillO3NPmzXKc27p1MyOd2rTRGxbqxWFCCKH4mmtkPSMVT4eNJ8PHnn7ajNRr\n2VLWh3a2F4Bp317Xc3Kq7yl/1uzZZmbvwHGy3q+fvZ893Y2vHOTlpeR6zcjQf5eb9tm7z3j0UVnv\nv3GSmZm8Tv+8nqm4XnNzdWMyFsAJIYQwd64sZ3z+vhn56CNdr1nz3K5X7lABwAkNFQCc0FABwAkN\nFQCc0FABwAkNFQCcxH5TakPzW2V96I/zzcySdXVlfdFoe7GJaOBjxhZ7SoeneduvlfUVfewpZa++\nquv3rbD3M+PgwaoclqtFXebI+s1P2x/peXn2ebK+pPVuM5M5WH87Kicn5uCcjO2hz9d0YypXCCF0\nvETPjtl2PGbRoJKJVTksd9YCPHPT7WN+bKA+Z2vX9bJ3tH59VQ7L1d5p02S9lTVdMYSQ9pH+ptQj\nj9j7Kf+WPv8N4haNisEdKgA4oaECgBMaKgA4oaECgBMaKgA4if8ECgDgrHGHCgBOaKgA4ISGCgBO\naKgA4ISGCgBOYt/lP2l8UiI9JlNp7Wj8eDMzo+GTsj5lSvI/mxFCCD/8of6kxLJ7Xzczie8fk/Wj\n4T/NzJGP9YyKVq2SP84K41zWj3n/+847dX340/bhdgtfynoUnZf8c/nww3owMddeqFVL1594wow0\nnjlB1ktLU3O9hvnz9ThLSuzM9u2yvHvVKjNi3W21TcEnUA4Y1+tFYbWZiT69Qm+wvnMSQpiyTn+a\nacYMPoECANWKhgoATmioAOCEhgoATuJfPZ00SW+M+Ud2uPxyvaOX+piRTz/VTz+aNUvNP/kTiTNy\nnG3anG9mhgzR9dq17f0YzwXCkiXJH2ci8Y4c4+efdzYzzZvr+u6j9uEOuEJfMoWFKTiXjRvrnQ8f\nbmdGjpTlnTWuNCOZHfRQ0lPxvfoQQjh5Uo6z8IMLzMiV2+bLen76XWbm1qJcvSEnJ+nj3L1bPyi+\n7LK3zMxXX3WR9bQFeuwhhFBzrB7/6dM8lAKAakVDBQAnNFQAcEJDBQAnNFQAcEJDBQAnse/yh23b\ndP0vfzEjBdsb6w0v2e9TN+toZEpLzYyn+vX19Kg928rMTM6surI+5d6TZmbDW/a0lmQ7flxPj1qx\nws707q3rt52wp9o1t2eaJd8HH+j6a6+ZkYJDenpU9lMD7P089FAVDioJystled26mGlT08fKesdt\n9rSp8NBCXc/JsTNOxurDDdE9i+zQsUxZzl5qj/H0TL2OSAh6vYZ/hTtUAHBCQwUAJzRUAHBCQwUA\nJzRUAHASvzjKoEF647Bh9g8c8SNji/10LrrbmE0wb15KFpvYa6wO3qpHDzt04oQsD/reu2Zk5UJj\n1kDduskfZ3a2HGPiT0vNSNeueibD9On2bjp00PUmTVKwOErdunqMJ9aakSjdmMpQUWFmsvvoP4uC\ngtQs5pOXpxcOGVUj3w7Vq6frMeNMDGsv61HULvnjnDBBjnHrMOupvP2FiVffsw+38eHDekODBiyO\nAgDViYYKAE5oqADghIYKAE5oqADghIYKAE7ip00VFsqNmyvs7+2UdtOzDW4MxgeVQgghXCyrUZSC\n6UQhhLBypRznH04NMiOXDje+KxSzm8yvvtIb0tJS8E0p/d2s6MaYKXDLX5L16DZjfkoIoeS552S9\neQq+t5Sfr6cT3frWGDs0caIsJy6xDze6ZZp1AKm5Xjdv1n+0DRuakcJyvXBI66vsQ/5OWC/rUZSd\nguv1PX29Hm9hhwYPluW62zaYEetXtncv35QCgGpFQwUAJzRUAHBCQwUAJzRUAHAS/5QfAHDWuEMF\nACc0VABwQkMFACc0VABwQkMFACc14jbu2aPfjc6cOcrMZJfkyXpB78fMzN4hk2S9VavUfFIivPKK\nHGfG3TeYkX37zsh6nTrnm5ntxnIGqRjnhAn6XD65XK+jEEIIh4qK9M+6xZ4Zkh9uNTYk/z337Gw9\nxhF/sndtHG0I999v72j0aF1v1iw112tGhj4BHTvamXS9ykT2sSVmpOCDDL2huDjp4ywr0+dy7Fg7\n07q1rk+b9paZiX4yR29YtIh3+QGgOtFQAcAJDRUAnNBQAcAJDRUAnMS+y19QoJ+09e1rPzV74IEu\nsj54mv3QLGvHDmNDVkqemiYSn+vVwVu2NzOLHv5E1m/aNcXM7L1jhqyn4il/r176XH75pZ3p1EnX\njx2zMwue00NJS8GK/eWJhB5jTGa+UZ/UubOZyap4W9Z37kzNrJRNxjiv0+UQQgiVB0plvVnHxmZm\n/+hcvSEnJ/njzMnRM4wWG8cUQvjwQz3G66+3x7hx42uyHkU9ecoPANWJhgoATmioAOCEhgoATmio\nAOCEhgoATmIXR5k4UdfPhK5m5vxp+2W948v2lI4RI3R9504z4upUqC3rh4rszIEDul78yCNmZlNb\nc9pU0t27Uc8CaReTaZ3eR2/o3dsOvfnm2R+UszHGoi35s/R0mhBCmDRkiN4weLCZGRwzbSwVut95\np6xX3qGnc4UQQmHJ1bIeN23uyLRpst4gJ8cOOclvradH7fmsvh36Xh1ZTmyca0aeeWZQlY7rX+EO\nFQCc0FABwAkNFQCc0FABwAkNFQCcxC6Ocu21ekGNzYuL7Z+4bp0s919+lxlZ+6yeGZCyT0rMmaN/\nCSUlZiS3tv6ky6ZN9m6sRUXefjv5i2ocPKjPZZPZ9mIuYa5+Opo48U7MnspkNYo6J32MzZrpMe6P\nLjIzM+75h6zv2mXvZ9FTxqyBxo1Tc71OmSLHWRYzw2Thb/QlfuKEvZsePXT92mtTsAhMaak84I+a\nNDEjzY165vfsHrdv359lPYp+wOIoAFCdaKgA4ISGCgBOaKgA4ISGCgBOaKgA4CR22tSGDXoaSq8V\n4+wf+LReuKFNm8vNzK4P9QyFmin4DlEIIQwapMd53yp7993CIVk/HBqamen36N/1nDnJn4ayZo0e\n4/PP25klC0/rDcZ0qhBCyHhqgqwXFyd/jImEnmpzIthTbWpv3SrrJddcY2YaGPULqvl6Xfn8ETOz\nYbs+6pdesvfz2y9G6Q15eUkfZ2WlHmNayww7NHWqrn/3u3bGOP8hN5dpUwBQnWioAOCEhgoATmio\nAOCEhgoATmKf8gMAzh53qADghIYKAE5oqADghIYKAE5oqADgpEbcxkRiopwC8Mors8zMgFm9ZH3J\nxo1m5pOZeqbB5Mkp+NRCCKGsTL83XLfJt81MokK/y3/gQC0z07TpblmPonb/9jg/++zE13a6RqNG\ndc5q/F/nMYZwduP8/zDGEL654+QOFQCc0FABwAkNFQCc0FABwEnsQ6kQbpTVASXz7ci778ry0D59\n7MwVBcaGbDvjyFoveW79U2YmWl2oN/S73czUqaN/NwC+GbhDBQAnNFQAcEJDBQAnNFQAcEJDBQAn\nNFQAcBI7bSp603gtt3k/M1Pxs5/JenqXLmamsm9fWU9L0dcEpkyvKeu/PlNmZobOvFLW+91jT40q\n+93Vxpa3zQyArw/uUAHACQ0VAJzQUAHACQ0VAJzQUAHASfziKPXqyXKixXEzEl1/vd4wYoSZ2TUk\nV9az7CPzddllsvzxdnvF/tov6XqLVfbMhNd+rJ/m59tHBuBrhDtUAHBCQwUAJzRUAHBCQwUAJzRU\nAHBCQwUAJ7HTpnKXtpP1qE5dM7Nmol5QJOM/jIVWQggdwhG9n6h+zNE5+vxzWb4k/M2MRG0Gy/qz\n0+3d3Hzzm7Ken9/NDgH42uAOFQCc0FABwAkNFQCc0FABwAkNFQCcJKIUfWYEAL7puEMFACc0VABw\nQkMFACc0VABwQkMFACc0VABw8n/wYEMHkRBn5AAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  7\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFeFJREFUeJzt3X2YT+XWwPG1cZxJGvLWkMMYk6PS\nkCQlU+RCL6Q5ikc4rinlKRfl6cjlEZGmkhRHb3NOc6rTy6SoRiKcSSo0B2ma5GFMHjHGa9MkFZP9\n/PH8c/5Yax+0fnuu6vv5c93Xsvf6/fZv2dfse993EIahAAB+ulo1fQIA8EtBQwUAJzRUAHBCQwUA\nJzRUAHBSJ2pwRxCoUwD2RuR0NuK1UlLspP799XhubhBxKDeTJola5+TJdk69YVlq/JXBC0/4+IMH\nS+LrbNZMrbF8o/1tzpqlxx999FMzJ3xkuT4wfnzia5w/X5+yUse+zFc10b/HzKeGmjnByxlqPAwn\nxnK97tmjX68NUuzDJ/XoocaD9980c8LzLtMHiosTX2dGhlpj8OmzZkr4H8YFu3OnmXNs5So1XqvW\nyf0muUMFACc0VABwQkMFACc0VABwEvlQquHX+t/4W+3cZOaUnXuuGk+znnCISNaCG9X4iT/eOTlJ\nSXo86jnaxo362Q1+baaZU3X33frA4MS//pv3oP7waUhDO8d6KFdZeZ6dVPLoCZyVr1tW3KDGc189\n3cypV/kHNV4ceaThx39SCXCK8fDpkvPt6+iOm/V4+NctZk7we/0aj+Nl9cOfWg8+W5s5VU+9pMaT\nR9sPGOfN0+Njx5opkbhDBQAnNFQAcEJDBQAnNFQAcEJDBQAnNFQAcBJErdhvveOe85b+LrOIiLRs\nqYbL5r1tphxpq08DaR+GsbwbXWGsWRD1v83O9frn1vmm8+2kDz/U4/XqJbxOa12GehE5TWWrMdLY\nzAnn6VNX5PbbE/9dFhaqNeZt72WmZF+jTyfLHNTMzHn/ff3d8DBsGcv1KjNn6hdfZaWZcnhyjhqv\ne6p9yhPu1A8ze3bi157YsUPvPV262Dl7VxiT3d54w04qKdHj8+fzLj8A1CQaKgA4oaECgBMaKgA4\noaECgJPIxVFyRu9Q48sut5eO6Nv3gBp/ZqV9nJtksxqPYxEGEZGUBQvUeK1B+mruIiL7U/V4ycaN\nZk79U09V46kRMy28tLJ2RejQwcx5Jj1djd90k70CetfnblfjRXo4Ftn5fcyxI8OWqfFVnSJWx2i4\n3RgoOP6T+ilSU9Vw6eDBZkp6v35qvCjiMLMH6qvZi2RGZPloNW+CGh840F58SOrXV8NFU6eaKdZ8\nJWO9pH+LO1QAcEJDBQAnNFQAcEJDBQAnNFQAcEJDBQAnkYuj1Kqlz1zq1s3+B42ZC7J8uT3VZvRo\nfUGVJ59M/CIMIiJSVqZ/CDcbG/GISOfKQjX+wQf2YfLz9Xh2duLrLDYWR8kYNcpOWrRIj/fsaaYE\nLz+gxsOwdeK/yw0b1BqDC+x9iMIfjf2mevc2c/KG6d99HN+jiIjccINe56svmikLFvxGjbdvbx8m\n5Vy9nEYxLFp02FrM58ILzZyslvoksEmv26ebZsRPtkbuUAHACQ0VAJzQUAHACQ0VAJzQUAHASeRT\nfgDA8eMOFQCc0FABwAkNFQCc0FABwAkNFQCc0FABwEnknlK5ufriKLfeutfMmTOnmRp/8kn7OJ+f\nP1QfeOmlWBabKDUWYmjxrT2lbOnSE4uLmFsByaRJiV9UIwgOGMXYi9Y880xHPcNOkalT9cEwbJnw\nGtca32O3efPMnOoxY9T4kYjjVBjxtBgWDRERCQL9wgxnPGbmZL7z32r80kvt4+Q8YJQTQ53t2um9\np3ZtO2fXLj3eqZOdM3myHu/T5+R+k9yhAoATGioAOKGhAoATGioAOIl8lz8IVup//H7H/pP9wb59\n1XhjecfMCaet1QemTInlj/x7jYcZUc6QjWo8POt6MyfYukbPCRvH8FDqdbXG66+/zsyxdl/IK820\nD7RihR6vWzfx32Venlrj2ynZZspV93bVByorzZxJg7ao8ZycmFbsN3YmWHfBBWbK3sX6JX5Vw9Vm\nzo7u3dV4qzgevl18sXrC7Q7ovyERkS0te6nxsr/qOyyI2DsWHDnCQykAqFE0VABwQkMFACc0VABw\nQkMFACc0VABwEjltqrBQf5/Wev9VRGR1v+n6gabaU1dE9Bd0w7B5TO9Gf6VPD/uxgZnTq7f+f1Fh\nirEugYhIdbUenz8/hmlTBXqNC4xzEpEWY7LU+Asv2MfJz9fjubkxTCkypk1JaamZklM/R41bU6NE\nRGTrVj1+9dWxXK9XXmmssbHUPvzA/v3VePWiRWaOPjFQpEsc06YyM9Uay/NXmSkTJ+rx50fa06bk\n0CE9PmAA06YAoCbRUAHACQ0VAJzQUAHACQ0VAJxEPuWXxx/XB6dNs3OMx7z7r7jCTGlkxGvFtAK6\nVFXpdVqrg4hIcYn+f1FSkn2YdncN0AcKChJf5+mnqzUejlgEpF8P/WNZ+r59ur31NS1k9eo4diXY\nqx48KUnfRUJE5PTT9Xh5p6vMnGNLlqjx2K7XU07RP+SI6TdVxljyP/5h5gRXtFLjYZie8DozMvSZ\nDMUDp9hJxvYDrW7uY6ZYMwNuu43FUQCgRtFQAcAJDRUAnNBQAcAJDRUAnNBQAcBJ5LSpCmOvpTZJ\nds53PfXpJo3Wvm3mWFONysvj2aNnh1HnY3fadc6euFcfWL7czAmGDVHjYVg74XVaC900aWLnNGyo\nx1e3tk93iJX01VcJr3HPHr3GM/YUmznHOmSo8dq1vzBzevRoo8ZXrYrneq1bV6/zyDX6YjYiIjJE\nv/Zk6lQzJdj8nhoPw2YxTIH7xNgDraOZM//Zw2r84Kmnmjlrrb22rmLaFADUKBoqADihoQKAExoq\nADihoQKAk+jFUQAAx407VABwQkMFACc0VABwQkMFACc0VABwUidq0HrH/fuInOrP9FkD+8+1X43N\nvP56fWD+/Hi2lOjaVT/pGTPMlKBvdzXetKn93vDNN+vxnJwY3gFv00av8cABM2VHSZUabzV5hJnT\n6K3n1fjBg4mv0XqXv0GKfeii9/SPJbPJJvtAs2bp8by8WK7XIFiinvSCBVeaOVmPZarx6vffN3MO\nGvFmMWz1snCh/l1mfX6/nbRrlx7v18/OWbdOj0+fzrv8AFCTaKgA4ISGCgBOaKgA4CTyoVSrUaPU\n+P6//MXMaTKmlxqfPs1+xbX+VP3vv50jzs1T+RtFarzFML0WEZEf5V01Xnvf12bO/v3JJ3Zini68\nUA0Hr/7NTAlLC9V43Xz9wZOIyP79J3Zant55R49XzrGvvbH5t6nxVUOeMHMml+bpOfapuVq/Xn/4\nlHyB/RzlllH6Z5D7lv7gUURkZ6l+vTaLODcvWRPbqfEn7thi5tw+Wa/lsycbmDkbX9Q/l6ER5xaF\nO1QAcEJDBQAnNFQAcEJDBQAnNFQAcEJDBQAnkSv2B8EBdTC8Z46ZU3LffWq87E37ONde+6Maj2O/\nehER6dNHP7mVK+2cFSvU8I5U/Z1pEXtKUefOiX/PffZs/d3o3v9lHzrja30KWNDgaMSRrO8y8Xu5\nP/SQXuN/TrQPnWTEj0QcZ7w1BSk3hjUZREQOHlRP4KA0MlMa1TcqshaYEBGZOFGPn3NOwussLNS/\ny14P9rGTjN9r9jD726xjTBw92e+SO1QAcEJDBQAnNFQAcEJDBQAnNFQAcBK5OMpppzVW42Ujp5s5\nHYzVsTt8tdjM2SPXGCP2zABPm5YvV+MtInIaVlSo8daXlZo54aiZ+kBubsSRfIy/45gafyLJ/owz\nnp2rxufMGWvmjF2ZZYwsNHO8WIujXBeR065HDzW+81l7qZNqeyOHWASND6vxXbvsp/wy6149blz7\nIiIH//53Nd4oYmaQl5ISPd6rstJOattWDc/4m/3AvsV55xkjxfZxInCHCgBOaKgA4ISGCgBOaKgA\n4ISGCgBOaKgA4CRycZSyIFAH0+bYi6ME40aq8fXr7f2UxozR46tXx7PYRHa2Pj8r7+Pz7aSPPlLD\nQ0fWNVNmvKyXkxaGia+zqEitMbjoXDMl7NlfjS8co+81JSKSdW+GPlBcnPAaCwr073HA3WfbSW++\nqYafWKHvaSQism6dHs/Li+d6DYLdap3t2zc3c/65WT+16/vZv/9Hluo558RwvQbBXn1hpmlPmTnL\nuk1R43376gv2iIj07FlbjRcWsjgKANQoGioAOKGhAoATGioAOKGhAoCTyKf8AIDjxx0qADihoQKA\nExoqADihoQKAExoqADiJ3AJFmjdXpwAc3rbbTKnXVn+fuPBFO2fiRD1eVBTPu9E5Ofo74Js32znP\nz6tS46ecYa9Z8N22cn2gRYuE13nllXqNS+7fYOZUpXdW48mVO8ycstat1Xgc6xUEwU61xkceaWnm\n7Nypx2ePjNgCw9qGIzMzlutVysrUOlftTDNTUi/TT237e/Ysn8y1xpY9EyYkvM5qYx2ROklJZk7l\n99+r8eYR2/x89r3v+hrcoQKAExoqADihoQKAExoqADiJfPW0a1f9QUZ1tf0PbhiTpw/k59tJ48bp\n8auvjueP/G3aqHU2+voLM+Xgdv2hVNDgKzMn/J2+B7zs2JHwOseO1b/LgQPtnF6v3aYPvPCCnTRo\nkB7Py0v8d1m3rlrj3FlHzJSKCj3eoIF9mLtPmasPjB0by/VaYjywabTL/i23mDVeH9i40cx5fqS+\nkPiIEYl/WDx0qH69vtRkrJ20aJEeHz7czklN1ePZ2TyUAoCaREMFACc0VABwQkMFACc0VABwQkMF\nACeR06bMqQs3LjZzDl58tRrv3t0+CWvmwpIl8bzLv2yZXmffvt+aOeGHn+gDUdPD1q7V40VFia+z\nVy+1xop33zVTNizWr42rlkZMXbHq37s3hnf5/2lczL+PyNKnuY0era9JICIy7im9lPYxrFcgIiLT\np6t1Zrym70svItKwoR4vLbUPU976Yn1gzZqE1zlhgv6btGZGiYiMGqXHrfUaROz6CwpOrvdwhwoA\nTmioAOCEhgoATmioAOCEhgoATiKf8r/yiv6kbfDvVps5yw5dosaNxbRFxF4APY5FGEREDh/W66x3\nhfGUU8RcVWPh9u1mSpf/1T/rVq0SX+eePXqNB1LsQ1/eVD/f9HT7OF266PG5c2P4LnNz9ROO2nph\n/349bk09ERHp3VuPx7Vif3m5WufGM880U46t1z+ao0ftw1z0+Ah94PnnE19nQYF+wh98YKYED9+t\nxvv3b2zmWOv8JCfzlB8AahQNFQCc0FABwAkNFQCc0FABwAkNFQCcRE6bkowMffCbb+ycu+5Sw8Vj\nxpgpHeU7NR6GSbFMQ0lL06cU/fa3ds6ozfqpjb/zTjvJmooTx15Eycn6d2nNWRMRSUlRw6X79pkp\n6VaNX3yR8BrbtdO/x01b7UO/9Jz+sYxIt6cGTl+hTw2cMiWeaX4yZYp+0n/+s5kyor++CMy999qH\nsb7KWrViqPPFF9UasxbcaKYsXJGsD3TrZuYEy/U98MKwJdOmAKAm0VABwAkNFQCc0FABwAkNFQCc\nRD/lBwAcN+5QAcAJDRUAnNBQAcAJDRUAnNBQAcBJnajBIDigTgEIfzjNzGmVXleNf/nlp2ZOmzbn\nqfGysnjeje7cWX8HPCnpxP+tcePsscE9yvWBFi1qbEuJhdUDzJSsFP199g1J+rvsIiLWDjBZWYn/\nLsvL9e8xP9/OsbZz6XetfbrW6gfNwjCW67UqCNQ6kz/5xMw51iFDjZfVtk85/bnn9IERIxJe5zGj\nxn0V9qykMx6ZoMZbvDDTzNm9+2k1Hoa38i4/ANQkGioAOKGhAoATGioAOKGhAoCTyKf8773XWB94\ncLqZ8+WXQ9V4UpL+JF8ketH4OHz88TJjpFNE1lY1WrDmUjOj2IhnxLCeQk6J/jQ/asX2I0u/V+Nv\nLLVzpndaaIxk2UlOunTR47t32zNMfvxRvy5rHThg5uzc3kiNN7NPzVXytGlqfHvHjmZO6vDharxV\nxHGq/vhH/fgjRkRk+Vi6WP9NXJ4S8fB91y41PLGlnTJjxq0nclr/FneoAOCEhgoATmioAOCEhgoA\nTmioAOCEhgoATiKnTY0cqcffeGOKmRO2fVGNB8OqzJzvPrRGOps5nsKka9V4+bbvzJwzz9yvxpu8\n8oqZc+TSG07sxBwNGqTHJ716vpkTXKGvKhI+nWsfaKc+1SoO1rSpLl3sKXtHjMVBNnxoT2XbvFmP\nd47nchVJSVHDBXPscx44Tq/T/lWKdJgx40TOylVqqh5/7H67xklDMtV4k9GrzJy98+YbIyf3W+UO\nFQCc0FABwAkNFQCc0FABwAkNFQCcBGHEwhybjW0I8v5k5zz8sP7IPrzuETNn9V36ghqXXBLPFihy\n9tlqQWWLPzdT0h4bqw/cdZd9nN699fiWLYmvc8AAtcZDixaZKfWf1reH2NDlFjOn8zpjBsAttyS8\nxiBYq2/Zs81etqRu+zQ1vuqofboXiz7DIwwbx3O9btig/wC7dTNTKo4eVeMpH31k5gQX6dumhGFS\nwussMXrPsU/s3pNRZ5Pxj5XYBzp0SI9nZ7MFCgDUJBoqADihoQKAExoqADihoQKAExoqADiJnDYl\nc+eqg+O3G1OGRKS6Wo9bC0qIiCxbbsxQCMN4pqEUF6t13jJPnzYiInLffXr8wgvtw9QxlqIpK4th\nelhRkVpjcNEpZkr40BI1HtzdPeJAx/R/K+yR+BoLC9Uakwf2MlOMdUZkyzfNzZyq/9mtxpOTY5rm\nN368WufhRx81U0YP13/na9fah9m6Vd9XK47pYceOiXrCrxmL2YiI3HDPPWq8bKS9B17btvpiPic7\nNYw7VABwQkMFACc0VABwQkMFACc0VABwEv2UHwBw3LhDBQAnNFQAcEJDBQAnNFQAcEJDBQAnxtvl\n/69rV/192tJSO+fyy/V4erqdM/PQbfrAE0/E8m70pk16nVHnXLfj2frAt9/aSQ88oMdvvPEn17lv\n3zc/2+kaTZuedlz1/5xrFDm+On8NNYr8cuvkDhUAnNBQAcAJDRUAnNBQAcBJ5KunaWn6w5ovvjD2\nvxYREX1h3telkZmx3YjfEdcC07m5+ocQsWCvTJ6sx2fMMFMGnPW5Gi8o+OkLE/+c/8j/a3+Q8a9+\nDTWK/HLr5A4VAJzQUAHACQ0VAJzQUAHACQ0VAJzQUAHASeS7/MOG6fHpK0ebOVVvrVLjyX27mTkL\n/7Qm6jQSruLWW9V4yrZtdtK6dWq4bPNmM2VpxD8H4OePO1QAcEJDBQAnNFQAcEJDBQAnNFQAcBL5\nlL+6Wo+X5+tP8kVEvtTX/5CLRo0yc2bN0uNZWWaKq5SUFH2gosJO2rdPDbf/jb3mw5FrrIIW2scB\n8LPBHSoAOKGhAoATGioAOKGhAoATGioAOKGhAoCTyD2l1gaBOtjthx/sf7FjRz1eWWnnpKbq8TVr\nYtlTqtKoMykiJ+mss9R4RtIWM6f4sUJ9oFcv9pQ6Dj/nGkXYU+pf/VLr5A4VAJzQUAHACQ0VAJzQ\nUAHACQ0VAJxEPuUHABw/7lABwAkNFQCc0FABwAkNFQCc0FABwAkNFQCc/B++R5Rvue9CbQAAAABJ\nRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  8\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFchJREFUeJzt3Xt8Tle6wPH1umTcmroEGVV1MnE5\nrhER2mJcSo1LWnEbqmUcqtRBTSmlZXxUidLWaatFtYyG01ZK6tYURzMG1TQMpZGiZHBQl0xi2tRt\nn3/PH8+zP4nzvDsfPb/vn8/6PO/a6937fT778+611wp5nucAAP93ZUr7AADgl4KCCgBGKKgAYISC\nCgBGKKgAYKScb2t2tjgFYMWBeDUl6d9CYtyvclefPFluSEmRP8xaYqI4zhtffaWmlLt0SYzfqlFD\nzTl2VJ5R0bChC/84IyPFzlPfLlBTHntMbvPc3Xo/gwfL8dTU8I8xLU0cY3q/fmpK0vbtYvxE165q\nzvAO8nnMzAzgPDqn/i7Hv6//LlevluOXG92v5sSc3yPGT5wIYJytWoljHNhgv5ry0Uc3lRb9Gt++\nvZoY79Ll9sbIHSoAGKGgAoARCioAGKGgAoAR34dS9R6V/+Re/Hf9/9qozz4T49cefljNScpJEePp\nPsdmafHQfWJ8wldFao6XlSnGy9x7r5rTu7ccz83Vj83KwB7yH/P1D+g5X2sPn959V82JmTNCjJ/Q\nuzGTGZUsxpNeeEFPWrtWDMdER6sp7duX6LDMbT4n/y6L9MvVXf7mrBi/dc9eNWeoz9cWbtnvyg+f\nPmp9Qc25ebOWGG/fXn7w5JxzXeZ0URp26AfngztUADBCQQUAIxRUADBCQQUAIxRUADBCQQUAI77T\npvLqdxTjudt8Vvlf/aIYjqhZU00ZPtzvKMLvjTfkuPeHsXpSuaFy/P331ZRVXbXpZuHfNeHD3qvk\nhr36tJlrSjw7Tp4a5ZxzcXElOChjv/3tMTF+772z1RzteNP7PKnmDFVOfVCysuR4VJRPUtOmYnjv\nX/VrL1+eURYIbdbaO+/IU6Occy4hQY5/vF+f5vmfa+XxD1Iz/HGHCgBGKKgAYISCCgBGKKgAYISC\nCgBGQp6nP+XLy5MfP993n75AwYAB8lO4Az6LcGhP+Z9/PpgV0FeskMfZq5eeU3uwvKjClAR9UYVZ\nC+ThVPK88I+zYkX5RGu7JTjnXGysGM4fNkxNuXxc7iYmJvznMhT6XrmYT6k5f3edxXjkP/Tfxa5d\ncrxnz2Cu11AoXTy4U+4RNSdSiVdt3lzv6ORJOV5QEP5x3n+/OMbQXn1hnuPHm4jxmOXP6/1oJzMz\nkxX7AaA0UVABwAgFFQCMUFABwAgFFQCMUFABwIjvtKkyZeTpRJ4n70/knHPegJFyRx+9ruecUY6h\nTp1ApqG4atXkA1D2x3LOuVBbee+oS66OmlP9yy/lhsTE8I/z1i15GkpZbQkU515/vYIY7zlBP9z0\nhfJXOWlSENOmVsrXa9xrak7GfHnvou6x+i5Y1+rGiPGIiGCmTbkjR+Rz2TRCTZk2TZ4CN/xl/ZBn\nDJDP5YcfBnEu/yJ2/tlnHdScbdvk+KFDej9bxig71yUlMW0KAEoTBRUAjFBQAcAIBRUAjFBQAcCI\n71N+AEDxcYcKAEYoqABghIIKAEYoqABghIIKAEYoqABgpJxva3KyOKcqd16amtLwxhExHmpaW83x\nfr5LboiICGiPniviOLt1q6bm7Nwpx681bqF3NGiQHJ8+PYDFJi6IY1y3Tt4DzDnnkp/+tdywbp3e\n0ZUrcrxXr7CP8WooJI6xzD/1qYFHKsuHtXSUnjNxohxv0iSYxVEuKOOs5XNe8hKSxXi9Kpf1jirI\ni+O4SpXCPs7kZHlhpk8+OarmnDnTSIzX2avXK3f1qhx/4gkWRwGA0kRBBQAjFFQAMEJBBQAjvu/y\nZyt/fsefP6/mXK0tP3xqcq/eT/v2cjw1NZg/+cePl/8AX9z2AzXnx6FDxXi+Tz/r35S/g7Fjg1gB\nXV7l3Ssfp+acPSmv5n/unN6P9sAmMzP8Y1y6VD6Px47pOSmNV8gNTz2l5sQ3k7+X7OyAVuxftUq+\nkGbOLPFHLX7me7Vt7145HsTvskCpPRV+1uvIvHlyfM8evZ8tg1fJDTyUAoDSRUEFACMUVAAwQkEF\nACMUVAAwQkEFACO+7/LH9+lT4g+s0rmzGL96QM/JySlxN6amTpXjoXt6qDmPPy5P31g1MlPNGVtu\nt9LygJpjxTtVRYzvuu+6mlPvHnnmSLzPO+OZ7bOUlrlqjpXRo18S497hvmrOoq0jxPikqspF4Zzb\nv/+/lRZl7QNrhYVieMoAfQrUyAXyuczSTpdzLvVYotKyT08yEjlnjtzwUEc158VOneSGTbP0jnIS\nin1MxcEdKgAYoaACgBEKKgAYoaACgBEKKgAY8V0c5ZyyQME3Ph9YpMTlZ8z+bQmeF8hiE9pK72kr\n9e9m2DB55QivZpKak9TughhPTw//YhNvvSUvHDJ2WSs1Z3bf/WJ89Gi9nw3R8lCeDOBc5ubKY2zU\nKEPN+fnn7mI84rUUvaM4ZUGZ7t0DuV5PK9dr3QYN1JwnO+WK8WXLlB0WnHOjRsk7VixdGsRiPkXi\nGFeuVHYRcM49UXeH3LBrl5qzou6LYnzEiNsbI3eoAGCEggoARiioAGCEggoARiioAGCEggoARnyn\nTc2eLU9D6TlTn1GwaLD8eT3X6DmzG8g5ubkB7dFz9qx4AElP1VFT0jstkht27lRzQp8qi3d4zcM+\nztRU+VwOmVhLT1I2j0ovW1ZNSerQQW7IzAxgqs1e5WKOUXP+6eQ90N5eqP8uJi37V7nh228DuV5P\nnJDP5caNes6ECYfE+IYNzdWccePkeF5eAL/LRYvEMYb++O9qSihUXoyf85mxd0uJR9/mND/uUAHA\nCAUVAIxQUAHACAUVAIxQUAHAiO9TfgBA8XGHCgBGKKgAYISCCgBGKKgAYISCCgBGyvm2TpokTwGY\nOlVNuRUlvxueUVZ/NbauEm8W0BYobscOeZyPPqrnaNsqPPKInhMdLcf37An/OFetEscYOe4JNeVs\noXxYVfr21fv5RtkgJzc3/GNs1Uo+jxs2qCnJE+uJ8bRPfA63Tx85np4eyPUaCp0WxzlvnvZLcu7o\nUTne4z39kAdWrSo3XLkSwLoMl8Qx3rxZQ80p01RZY6FzZzUntf1bYnzIELZAAYBSRUEFACMUVAAw\nQkEFACO+D6VuvfqqGC/7ag81x3MPi/HXe+ivuJ48Kce/VTOMLV8uhgsKC9WUYy1bivFzm/Rx1lD+\nT2+rH5kd5SFaYeFANaVnB3kslX/Su9kS27NEh2Xq5k0xfDBffvDknHPz5ikNreeoORltpovx7mqG\nLa/bCLnheH09adYMOf4bfZzLZ8g5I/VezJQvL/9YypzOU3MijssV42KO/nxpyNWrSsMq/eB8cIcK\nAEYoqABghIIKAEYoqABghIIKAEYoqABgxHfF/oJQSGysXaHkq/z/UKRPXagyapTcsHRpIO9GFynj\n3OqT86j2fvDFi2pO9dMHxfjly+Hf5zwUyhbHePhwvJrTpIo8RSUtS5+GlDy99PasD4W+Esf4pz+1\nUXMmzpQPSz+LzsWU4jvuzjl34oQTxxnzylg9SZk2t+/QITXltcHy7zw1NfzXa2SkPMbCwutqjldV\nXkekKD9fzUnqJo8xI4N3+QGgVFFQAcAIBRUAjFBQAcAIBRUAjPgujnK3Oys3FO31yaosRqtcuqRm\nnL9eXYzX9unFUkUnL5DgrV6v5sw//ZgY//prvZ/L7bWnsPKq4Za8M/JuASt8pjLU/738ND+5n/4A\n9IASj9O7MdO5s/w0f+bMC2rOTOXc/+SqqDkDu10R4x/6HJultWvl+PQlr6s53bqVF+NvHPKZfaN/\nBWFXWHhajHtxym4Jzjl3QH6aryx/4pxz7saNEhxUMXCHCgBGKKgAYISCCgBGKKgAYISCCgBGKKgA\nYMR3cZRQ6LrYePOmPAXDOefKvJIiN/gsGuISEuT4wIGBLDbhIiLEcV6+ri/EoE3EiflZ/z4jZj0v\nN8ydG/Zx7lYWgHlg4UI1J2LqJDG+12fWXHxrZSieF/5zOX68fB5nLVZTImrIh3WXy1FzvGfekRsW\nLQrkeg2FTonjLF/+PjXn+vUCpaWimvPmm/LvfOzY8C+O4pKTxTHOTUhTU7Q1UIYu0A+3pftOjHte\nLIujAEBpoqACgBEKKgAYoaACgBEKKgAY8X3KDwAoPu5QAcAIBRUAjFBQAcAIBRUAjFBQAcCI7xYo\nrmNHcQrAmKaZakobeRcKt3Gj3k1WlhzPywvgnWHn3O7dTn7PvfFlNefgaXnblhavPKHmhP48TIx7\nXtfwjzMtTZ7O0aOHmrLq40pivH59vZuOFfbJDYmJ4R9jw4biGEPf7VdTritbnZQ7elTvZ+JEOb55\nczBrT+zbJ5/LGTPUlNDnm8T42rX6uhyDOihbINWpE/ZxhkIZ4hjnzeuu5mzYIMf37NHX5PD69JMb\n0tN5lx8AShMFFQCMUFABwAgFFQCM+L56ekBZlPiIzwcOmTxZjKcvWKDmPOLkJ1ae1yuYP/nz8sRx\n5hbJ+9I751zDXSvE+I76I9ScLsuHyA2pqWEf507lXG6erJ//lNilckNUlJqT10/+k79eAAtMx8TI\nDxe///4vao73zrdyQ1GRmpPReLwY7949mIeoI0bI4/Q5LS5lawsx/uOhQ2pOZWVHe8+rHPZxjhkj\nj3H7dj0n9+0dYjy/a1c1J2WafP3PnXt755I7VAAwQkEFACMUVAAwQkEFACMUVAAwQkEFACO+7/LH\ntWsnx8eNU3NODh0qxnv47Ff/why/owjAxYtiuKi1vs+5e+YZMVy5qZ6StWaNGE9ITdWTjMgjdC7J\nZ89y5U1uV+fwYTWnXvPmxT8oY6NHy/Fq1TqoORHj5LZr0fqUue5LfqO09FJzLK2Yd0FuGD5czTm4\n+qAYb9lyr09PZYt/UMaWnOopxrvX36zm/NiuixiPvKnXHuvSwx0qABihoAKAEQoqABihoAKAEQoq\nABjxfcq/Yq/8BHDESy+pOTuVeOKv9KfJyvrnzs3Wn85ZOti6tRg/uUHvv0VOihjfuVPvZ10b+fOU\nNe5N9VdmbLjy+ortbutWMVyxhrySv3POTZ4sP02erfdipttU+Rp7rLF+Hq9f3ynGD27MU3Mat5T7\nifBZaMhUo0ZyfOVKNSUhQY57x2vp/Xy8WGmYoucYCW15WoyvW6fnVHpUXs2/Xk6GmpO3PltuiI/X\nO/LBHSoAGKGgAoARCioAGKGgAoARCioAGKGgAoAR32lTI6pWlRtee03NGajEK506pXfk83lBmNVX\nnu6Slr9KzTnSW5468lyRMg3DOTd5qjw9y8nb55ga32aPGJ/0H/p0tiM75elRP8Xdr3dUW14cxzl5\nGoyleQPk73HdLD1n6tROYrxFlrxnmHPOjXlK7meJ3o2phjWviPHvHvlezfFeeFGM/xitT2ir9Oqr\ncsOU8E+buusueaGZBx/Ucy72+1yMV27s09H69XKcaVMAULooqABghIIKAEYoqABghIIKAEZCXlAL\nOgDALxx3qABghIIKAEYoqABghIIKAEYoqABgxPdd/lDoujgF4IMP9G0zOnWS49u26f0MGya/m+x5\n1fQXzQ2lp8sv0ye1u6DmjJ8jbx2x+OoINSdvlvx+eL16LuzjnD1bHmNWlp7z6aeXxLgX95CaU+f8\nfjF+9mz4x+hq1RLHeO20fh6ffVaOLz6ZpPfTWHk5PCUlkOvVXbggjrN6Y307kyNX5EOLHjxY7+fY\nMTm+b1/Yx7krFBLH2H7OHD1p8mQxHPpVoZribZS3eXK9et3WGLlDBQAjFFQAMEJBBQAjFFQAMEJB\nBQAjvu/yR0bKT4ZPFOoPwC4clj8vOlo/iAMH5HiXLgE8GXbOuYgI8aBvFV1TU0aOlOMr1lRUc7L/\n+pMYj48PYJxJSfKJmThRz3laWWV/5Uo1Zcx7iWJ8yZLwj/GBB+TrdffbB/WkqVPF8O4tW9SUKkq8\nhecFcr2GQlfEcXoL31NzdrebJMYfeNDnkLt1k+MZGWEf52rlKb8y78A551z8BvkST1qvz7wJvTdB\njHteS57yA0BpoqACgBEKKgAYoaACgBEKKgAYoaACgBHfxVEKErqI8Zz/0nOafPKSGJ90abqas2ie\nNj0pQu/IUIvGcv+7y+ozJ4Z/oUw3q/AHNSe6tfJ5AWxDkz0rXYzHR+WpOXMf/1aM92+rfy9n+pTe\nljozZsjxSe+3UHPaj9wsxhO36GOs26ZNiY7LWqtW1eSGjRvVnB6z5GlTBdOm6R35LUQSZsryMy77\nGf36Sir8QIyfe0+fTubN13pqqeb44Q4VAIxQUAHACAUVAIxQUAHACAUVAIz4Lo4yf7682MRzfxui\n5hxbs0aMx375pZqT37atGK8a0GITm5WFGM69q383OTlyfMoC/ZCjvvhCbujYMfzjTEyUBxMbq6YU\nKeeyQoMGas7O774T452COJcVK4pjLDgvL0rjnHMnT8rxfJ+1Ma4q8Z4BXa9u3z5xnL+bKS9M45xz\n726VD61OhQpqzpGv5e+tSZPwL3QzcKBce578SO9am8uR5tNPgha/zXPJHSoAGKGgAoARCioAGKGg\nAoARCioAGKGgAoAR32lT2nSiSj4fmFxN/rwEbX6Ccy5jwia5oVevQKah5ObKUzQaxt7Sk+rXF8O/\na6ovNrLljDKx4+DBsI/zonIuW/xaP/8PPSTHh/xZP9zES/LnVa9eivtmxcXpOUrbvn791JQ5ygIw\n6enB7IF2WTmXzXzO5dnfy4ujzK+9SM158005npcXwDh79pQHExWl5/TuLYZvDRqkpvTvK3eTlnZ7\nY+QOFQCMUFABwAgFFQCMUFABwAgFFQCM+D7lBwAUH3eoAGCEggoARiioAGCEggoARiioAGCknF9j\nZKT8jnt2of6aa2zfvmK81i59I4KtP8ifFx/QlhLau/w3bug5UU3lQ5sxSp818eIyOaeuwTh/+KHw\njp2uUbPmXcUa/508RueKN87/D2N07pc7Tu5QAcAIBRUAjFBQAcAIBRUAjPg+lOrfX45fGKn/nxzb\nrECM5/g84Kl++m9+hxF227aVLO6cc58ou7N7z+aqOfnLSnJUAO403KECgBEKKgAYoaACgBEKKgAY\noaACgBEKKgAY8V2x/4Sy/7efmFOnxHhks3pqTn6+HC9TJph9zt2mTeI4v4zqpaa0bicfWnl3Vs3x\njhbKDQ0b8i5/MdzJY3SOd/n/t1/qOLlDBQAjFFQAMEJBBQAjFFQAMEJBBQAjvoujxEybJsYzXn5Z\nz1FWVClYMkHv6ME35PiePXqOoSP/Ij/Nb7sxRU9q0EAMezM+13OuNivJYQG4w3CHCgBGKKgAYISC\nCgBGKKgAYISCCgBGKKgAYMR32pRr2lQMd//HP9SUE3ffLcb7L3xMzcn+o+9RhN3y5XL8ueem6EnD\n5LbaWZv0nJMn5Xh8vJ4D4I7BHSoAGKGgAoARCioAGKGgAoARCioAGPHdAgUAUHzcoQKAEQoqABih\noAKAEQoqABihoAKAEQoqABj5HxBlSIkpM/2EAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  9\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFbFJREFUeJzt3X2cz2W6wPHrN6vJU5HEJMfjhCyT\nkGaLCaGJjlpJNXlNcoaePK8iWkWZzaRJHkqUNsdOhK2EiHAmCSuPsdKEhB2jhzGnZZqm+Z0/zr/X\n9T1m9vp957T7ef953a/rd3/v+f5+1+v7mvv+3nckGo0KAOAfF1fZFwAA/ywoqADghIIKAE4oqADg\nhIIKAE6qBDVGInuMJQDLzJzoolZ6Q0aGmVNYXKzGa0ejETPJU0qKOs4R7XLNlMxZ+qX17mKvmmjY\nUI/n5EjMx1lWJuqFxb08x8wpHDZMjdeePNnuaMcOPb5iRezvZVGR/sc/ftzOSU1Vw8c2HzNT8hrr\nQ+ke0ve1IBJRx1kvOdlOWrJEjy9ebPczbpwarxfCOBcs0L+vg0ddbCct0+tSzje9zJS0xO16Q6dO\nFRojT6gA4ISCCgBOKKgA4ISCCgBOIkGvnhYV6f8YrlXrpYCPHKJGo2fOmRlxtfV/NJeVxX6yRkQk\nEilWx3nZZVXNnNOnPzc+q6WZY8zxyMyZsR+nOZERMME07cJJavya8fblNtyvf59at479GDMz9e/r\nhNIpZs4U0cf45JN/N3O+lZpqvE5Ik1LHjXvZu639W66pX7K8+qrdT91f68MJY1JqszHGE4vtMXa5\nW78sY+giInIuX/+8+vUr9n3lCRUAnFBQAcAJBRUAnFBQAcAJBRUAnFBQAcBJ4Lv8eXl6/JprHjZz\ndnYcanzYg2ZO2dPvGy0TzRxP0a8K1PjqzxqZOd376HsWVIueMnPGj69XvgtzVNtqmD7dzBm3TH83\nvNO19tKVNcZSGwnhZIgJhY+p8chz9rIpkQNqNLpol53yWrdyXJW/74wtNvZW0cciIiKjRunx5K12\nzhB9CWQY2hvxzr8tMXMKjXjdC+zvXkmTanrDOXuZZxCeUAHACQUVAJxQUAHACQUVAJxQUAHASeDm\nKOnp+mYT77xjf6C1AbixKb+IiFx8hz4z3COkzSZycvRxpvW3ZxTja8aXu5+S6TP1hhEjYj/Ovn3V\nMUbee8VMSU29XI1fcondjbVp/IgRIWx0c+CA/mU+csRMmfllHzU+dqzdTcnBw3pDs2YhbeZzxPjR\nGrvPi0h0Uan+WQObmzk/y2/UeFwYv8vsbH2Mzz5r5xgnMzw00v6tvjxZX+Ej9eqxOQoAVCYKKgA4\noaACgBMKKgA4oaACgBMKKgA4CdwcZWHDCWp85jOZZs5WY6+F5KftVQjNvoz9xhlBrCVdJRdeaOa0\nMzYIMVZuiIjIkvoj1PhddoqbvrJCjV90kZ3z4ot6vGXL582cnGH6UhuR6+2OnEx7r7UaP3pUj4vY\ny2YGDrQ3svnsUn2pUZsQNoAREYk++rIan1Aly8yJDJyvf9YZ+28jR/eU67o8jTk+Ro1nbNLjIiKD\nOuvx7aeb2h1ddKcez7L/lkF4QgUAJxRUAHBCQQUAJxRUAHBCQQUAJ4GbowAAzh9PqADghIIKAE4o\nqADghIIKAE4oqADghIIKAE4CN0eRoUP1NVU9etg5/fur4aR2du3eO3ah3pCeHsoZPZKVpY+zSRMz\nZedd+pYmdb+yl6EdPKjHe/WK/XlLRyMR9cKanDlj5kx7+WI1Pu55e+OQxwbpm41kZcV+jGlp+tlg\nxldSRER27NDjmcta2ElffKHHQzoDTUpK9C/ZfH0DFBGRtI8fUeM5ycY5ZyKSO3KkGk8JYZx79+r3\nsk0bOycjQ48vqG1vqCJPPKHH69ThTCkAqEwUVABwQkEFACcUVABwEjwp1aqVGl7wwwAzZXDGYL2j\nKgvsfoYN0+Pp6XaOo63jxqnx5G7dzJyEE/q8QIOnhpo5jUpL9YZeAX8bJwlGPLdWLTNn3JAheoM1\nkyMipTPKcVHOFr6pzyNU6fqKmdMuw7hfb//KzDHu4v/xY3L02Wd63DpiQURyOn+qN2wqNHOqluea\nnDW7Wr+XqT3tSd81a4yGDhvtjkaN0uN16tg5AXhCBQAnFFQAcEJBBQAnFFQAcEJBBQAnFFQAcBJ4\nBMqhQ/r7tEeP2h/Yq2uJGs+eHW/mjHnwrN5QvXo470YvXKj/ERYtslMGfqDG+91nX3LW7/VupkyJ\n/Xvucviw2vnm5s3NlOpGvN3P9ncmbmCa3pCTE/Mx9u2rf19nvmd3XWTEk06dMnMWrtH3MkhPD+E+\niog0aqTfgLFjzZQphSPU+KR2K+x+Vq7U4/PmxXycOTn6vUzrr9cXEZFGiXqNOXa0zMyZOVt/phwx\nomL3kidUAHBCQQUAJxRUAHBCQQUAJxRUAHASOMsfibxhNOq7sv8vfXv0c9LMzMh5Te9m8OCQZk2L\nitQLKKmq71gvIhJ3obERR8Au/zJ8uB4fMybm4zx5Up81bfBgXzMn8t7Tajx6zzS7o0GD9HivXrG/\nl1OnqmPcZO3KLiJdu3TRG6xd+UUkLz9fjSeGtGN/JPKhOs4rr7zJzPniC302PzXVvv/T1ujDSQph\nnJGIfvRF06aNzZzERD1et67dT87Gy/WGv/2NWX4AqEwUVABwQkEFACcUVABwQkEFACcUVABwErhs\nasAAfanN9On2BzbabWy2YJzbJCJy/OBBNd4wpGUoUlCgjvNw/fpminWuUHFAN/oJXSLxIYxzcySi\njjHuY/v+33DDJjXes2dXM2fduu/VeDR6SczHuMYYY+qePWbOlquvVuMBK22kxfLlekO/fqF8X48b\n4+x3rX0vt8/dqcbLOnQwc6zveBjfV5k0SR1M5Gnj/DkREdGXOXbpYp+OlTtuld7Qpw/LpgCgMlFQ\nAcAJBRUAnFBQAcAJBRUAnATO8gMAzh9PqADghIIKAE4oqADghIIKAE4oqADgpEpQ417jneGg99U7\nPf64Gh/6TaaZM2OGHq9ePZwjUFav1vcsyMiwc5YZJyRY7+uLiNSZPFlvmDQp9uPMytKXcxj7KIiI\nRF4fq8ajp+w33SP19fepo9GqMR/jtm36fayVbHfd6sMP9Yb1682c3D/8QY2nhLX3REqKOs71H31k\nplhPTk91sVf55I76s94Qwp4FRUXGvax1ICArXo2++65xNoqIFBbq8fT0itUenlABwAkFFQCcUFAB\nwAkFFQCcBL56etVV+j+GL7jA/sBNm/T4DTfYOfsOGmfch/RP/vbt9XHu2mVvii3SX43+LJ3MDGPr\nbbk9hHFam4UvXZoXkKVPACxfbp/lnnKHPpS6IYwxN1cfY/GNdte93nhDjZfdd5+ZU6Oq/ps5dy6c\nSVTp21e/gLlzzZTDV1yhxpvLJ2bO5Zcnq/GTJ2M/zmnT9Hs57reHzJzVeS3UeO/1Y+yOVq7U44cO\nMSkFAJWJggoATiioAOCEggoATiioAOCEggoATgLf5d9oLGdKOHHCzIlPaKDGf/pJP69dRKRKsr48\nIyy7dn2lxps2nWbmHDmi5yQHnI0+a1b5rsvTW990V+N792wwc5Ju1XMajbKXTR278sryXZgja8ne\n3QE5kfvuVePRLzubOcXNC4yWegE9xd5iY2mUiMjdjz6qxr9/7jdmTu3G1u/SXmrlZdyJEWq8pMlM\nM6dPS32XkehrbcycsunZaryiT5o8oQKAEwoqADihoAKAEwoqADihoAKAk8BZ/gRj44gJs/WZfBGR\njh31+JbEkWZOr3x91vAD+9JcRbvdr8Z3TrdnwNt/87keH9/YzLnu79bn6bPpno79Ue+7uLG9B0Q1\nYxOQgEUeIjU/K89luZp0t7FxxiB9RYaIiDQ+rsePG3ERiQ5ZZLTMs/vxlJ+vhhsFpKQdz1LjOcsD\nVtgkJJTjonytMZbE3DLreTMn2tbYmGh3VzPn7K/073/NgE2jgvCECgBOKKgA4ISCCgBOKKgA4ISC\nCgBOKKgA4CRw2dQW41ydzJWX2kmpF6nh/Bv/00x5TKy2ii1dKLfO+kYYo0bZKQs/ulmN7xw+3MzJ\nu0lfCpJYwSUa5WIsj+r0yitmSpdlevzopfZSqzaX62M5edK+NDfjx6vh0rffNlO+NOLXj7fvyZaM\noHO4QrBMvzGHG9tL9sa/adyz/svNnPiu16vxkhL70rxYJ7NFe/Yxcw6u26fGq+zT4yIiH8zR7/PD\nZkYwnlABwAkFFQCcUFABwAkFFQCcUFABwEkkGsYMMwD8C+AJFQCcUFABwAkFFQCcUFABwAkFFQCc\nBL7Lv2KF/jJ937xsO2nxYj1es6aZ8tLGjWr84WjUfmncUb165d80oKB2CzWeVNU4hkNE9j4wR294\n5JGYj3N3JKKOsd1y+11uOXdODU/58l4zZccOPb5ihcR8jFuNMSZfe62Zc/Yvf1Hj1d9918yJ3Ka/\nzB6N9g/l+yrGODOn2l/j2yfql9Z69Gi7n4wMPd66dczHGYksUQcT7fmamTOmjX5oUnZ+mt3RoEF6\nvFevCo2RJ1QAcEJBBQAnFFQAcEJBBQAngZNSffvH6w2vv24nPfmkGi699VYz5fYTlfv6a/5p/f/P\ncZ9+auaUtdMnnx6cG9DR7j3luSxXmXfqf+MZd9j/e2/w889qfKxxlrmIyDt/qrx7mVy7tho/u2m7\nmVP91ZlqvPi228yc0aMr+XXttWvV8ICb7fuSaEw+ZTe0J5jH3HCJ3vD99/a1uWmtRiPrXjIzoqXd\n9YauXc2cHTfrG8V3rOAr+TyhAoATCioAOKGgAoATCioAOKGgAoATCioAOAlcNiX9+6vhyMCrzJSp\nU9ur8YnynZmz8Qp9uUeDkE4TiEtOVuMFHTqYOfX271fjD68ca+acff99NV593ryAq/OxdGmRGp/7\nbcDfuEY1NfxEwLKh7PWD9Ya0BXY/TnYUFqrxjr9uauaUfXlEjVfdutXMyR522GhpZuZ4itxcQ41H\nT52yk+bPV8Pdfxfwyvo995Tnslx9/nlbNd6y5XE7KS9PDR839goREekYsDSyInhCBQAnFFQAcEJB\nBQAnFFQAcEJBBQAnwbP8M2bo8Te/MlPmGpuDXHutsdGCiHTd/GPgZcTazjmfqPG4DvYMaD3jBII/\nZ6w2c/odsVdHxNp+qaXGq19q55zK12fz/xgwjOxhDctzWa46Dh+uxnOS9Q1QRERaGBu9dGzXzu4o\nIaFc1+Ut2vYhNV5cf5+ZU3X2bDUev99esbEhX48bW5C4MhbeyP799ver/cBjarxuK7uf6UYFTLJT\nAvGECgBOKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CQSDdqAZNUqtfFstz5mSvWqZXqDsXGBiMjJli3V\neINoNGDnBj/p6aKOc+F79lIvaatv3iDr19s5112nx3ftivk4V6/Wx9isj911q8mT1fixQZPMnG8a\n65/XPox7GR+vjnHMsBIzJVvGqPGVL7xg5nQ04gkhfV+TkvR7uW+ffgaYiEh07YdqPN84U0lEZPu7\nem3o21diPs4VK/Qxnjtn59w15GK9Id9Y/yUiO2voG81U9PvKEyoAOKGgAoATCioAOKGgAoATCioA\nOAme5QcAnDeeUAHACQUVAJxQUAHACQUVAJxQUAHASfARKG+9pS8BKCw0UzY98IAaDzo0op4RrxPS\nu9Fxcfp7wwcP2jktZjysN1hnN4iIvPqqHs/Njfk4D0Qi6hh3/8le5ZH23DV6w7Ztdkc//KDH69SJ\n/b2cN08dzGN5Q82UrLt36g3PPGP3Y93HMMYoYu5ZsO0je8+C61YZ+y/UrWv3Yx0Dk5IS83EOHqz/\nJo2Th0REJHOWfllTHrW/47feqsdTUiq2XwFPqADghIIKAE4oqADghIIKAE4oqADgJPhd/jlz1MbS\nYcPMlCq//73eMGuW3c+QIXo8KyuUWdMiYwa8ltizptH/+kRvmD3b7mjTJj1eUBDzcebm6rOmKfc1\nLfdnVcs/YradKdaHEh/Cio3Nxn3s/OKLZs7ZkSPVeOLl9u/i5LML9Yb09FC+rzk5+r1MK15gJxlb\n3R/q+YiZMneuHs/Ojv2O/dWq6WMsLi4wc05JfTWeeJF9L4s699YbVq9mlh8AKhMFFQCcUFABwAkF\nFQCcUFABwAkFFQCcBC+b6t1bb9y40UwpOqUvzwhYaSULEx7TG0JaNmVtHNLwjP23ubjxJWo8pe33\nZk7u1ni9oaQk5uO85RZ9GcqgQXbOXR/qm4oUz59v5lT98Ue9IT4+9vdyyxb9hlmbfIiY3+W4f+9j\nppTt3qs3JCWFszlKUpI+zmXLzJQBT7RQ428V9rL7KS3V4xs2xH6c2dnqGA+kjjFTWrfTf1+NEuzl\nj4u/1odyfQWX+fGECgBOKKgA4ISCCgBOKKgA4ISCCgBOAmf5Dxqz36169rQ/cd06PX7qlJ1z4416\n/K9/DWXWtHt3fQZ8Q+1+dtKuXWr4wNGjZkodI54QxlEvBQXqGBt1tA6gEenfX49n355r5hw07mWr\nEMa4YIF+H1NT7ZwGowbon5X6lpkzuM12vaFTp1C+r5mZ+jiDTKg7T2+oUcPMafT4vWr82LHK2xzl\n3Fr7uzdlU4oan/R6wAZAa9fq8RYtmOUHgMpEQQUAJxRUAHBCQQUAJxRUAHBCQQUAJ1WCGlvdc48a\nn9c1x8zZ0USPD6tvr0Kosl9fBdLazPC14bi+cURk48MBWXep0VWr9LiISOuJ15TnslxtO6Ivj/r6\n64/NnBdeeFuNT3/heTOn1Z13lu/CHC1dqsfz8uycg6X68qi3/+MnM+f2bzupcWtZ3P8HuQ88oMbL\nAnKOXTbaaLHPdfIyfLgej9x4LCBrhRqt/aJ9BtpTyXr8u+8CugnAEyoAOKGgAoATCioAOKGgAoAT\nCioAOAk+AgUAcN54QgUAJxRUAHBCQQUAJxRUAHBCQQUAJ4Hv8u81jkBpGJAz9n591UDAySCy4aap\nesPEiaEcKSFTp6oX3ey1iWZKQoIez/nEvuSmckaNR6MX/8PjPH36v3+xyzUuu+yi8xr/L3mMIuc3\nzn+FMYr8846TJ1QAcEJBBQAnFFQAcEJBBQAngZNSV8s5NR49U2LmpNXS/ye993n7f9CR3+kbOUft\nOSFX3z2kd/TUv9k56Yt7q/GI/BDQU3w5rgrALw1PqADghIIKAE4oqADghIIKAE4oqADghIIKAE4C\nl03NmVNVb+iYZOb0GK2f5d3j9sNmTnFxs6DLiLnp0/V45g8j7KQmTdRw9JkZZsrJ+0NaBwagUvCE\nCgBOKKgA4ISCCgBOKKgA4ISCCgBOAmf5d+82GhITzZwNt2ar8a7N7Y2813TRN06ZMMFMcdWjhx6P\n3NTNzIku+UmN1xs2wMxJWKLH9+41UwD8gvCECgBOKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CRw2dS8\nTS3UeKPiQ2bO1zd9b7SUmjnRr5saLUfMHE/dE4+VP2euvjyqYPdJO2dgg3L3A+CXgydUAHBCQQUA\nJxRUAHBCQQUAJxRUAHASiUb1jUkAAOXDEyoAOKGgAoATCioAOKGgAoATCioAOKGgAoCT/wGViyb0\nmArnQQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  10\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFeRJREFUeJzt3ft3V9WZx/H9hcikgCkiYEDEkAYI\nFGi8I7URYxvDgMgwKtZLYKHG1ivGC8pY0FSkLRpaFl4AixozFhFdiOggg6EGTMGCpmghIlKEgIiI\nGLlEhHznH/g8p4R5viej8379+Oz1ZO+dc/Kss3L22TuRTCYDAOB/r1VLDwAAvisoqADghIIKAE4o\nqADghIIKAE7SohprEwm5BKAxImfpA3rVwKRBS82cmosukvHByWQiois/JSVy0NVXzzZTrrtOx/Py\n7G5eeEH/5pLJ9NTPc+JEOcfE1AfMlOTfNsh4zb6BZs7gnF26oUuXlM+xqSnIOba6dJSdNHOmjo8f\nb6YkXiiV8WRyUCz361bj7/L3t9srdsprC3TDyJFmzoHbbpPxtjH8XSYSq+RkunYdZOa884keVmZ6\nut1P42YZTya7HtMceUIFACcUVABwQkEFACcUVABwkoj69LRvX/1P/pfr7P/XTv+F/nmP37vVHsXe\nvTo+cGAs/+RfY/yT/8yoN0zHHy/DdStWmCm9j+jfTatWIeXztF4w5q1dayddcYUMN374oZmS/swz\nuqG4OPXX8tFH5RyzH7nJTNk8/FYZn5s3w8wZ9+di3VBREcv9utO4lplvvWUn5eTIcP1JJ5kp2cfp\n+/XQodTfr4mE/mP5IuI9eoe77tI/a9pUMye5eIluGDaMl1IA0JIoqADghIIKAE4oqADghIIKAE4o\nqADgJHLZVJgyRTd27Wqm7CgaJ+OHT7ZXIfQYOlQ3vPZaLMtQhg7Vy8OOHLFzlvbX33OHRnung/z3\nH5Px6urUL0Oxltrsjsgpu0xf/jVr7JzFi3W8X784lto0GjfzITPn3nszZLxTJ7ufIXfoqZwe094T\n+4xr2b5zZzupdWsZ3rr6EzNl7Fgdr6pK/bXMyNB/kw0/OM3MWV9bK+P1r9s1rjCtSjcUFLBsCgBa\nEgUVAJxQUAHACQUVAJxQUAHASeSO/Zt//h8y/uSTds4yYwPwtx980MwpfFP3Y+/x7ysrS8f//veI\npO7dZXh2e+Ptfwih+uoao2VwREc+Mv/2Nxnf+aMfmTnznz4g49n925o5X33VvHF5Sg66QDf06mXm\nJKZOl/GPg/2af0ezRuWv/a9+JeMTD5eZOQ/tLpHxZcvsfpYvt1as2Dvge2nYrVdmNPyLfpMfQghZ\nRrxf5jozZ2sHfZJBDzMjGk+oAOCEggoATiioAOCEggoATiioAOCEggoATiI3R/n0U71BwRtv2D/w\nyjV62VBi+o1mzrx5+ryb0aNTvwlDCCGE3/1OzvPAhAlmyhOP6N9baX3EsqmR5TKenx/DPEtK9ICX\nGGfqhBCatuhzwBpa28Ptmq67OXgw9XPcvFnfr4cP2zl9+tTLePLld+ykDh10PD8/lvu1Wzc9zyFD\n7JyiIh2PWgKZm6vjs2fHcL+2aSPnWHafvdHN5Mn6WvbsqZc4hhDC5vo2uuHQITZHAYCWREEFACcU\nVABwQkEFACcUVABwEn0ECgDgqPGECgBOKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CTyTKnycr0JQ+m0\nrmZO3w6fyHhdnXU+TQjJyhd1w1VXxbM5yrhxeu3YggVmyo66BhlfuNDupvAmPZ2cZDLl80wk/irn\nmNz/QzOnW44+O+rhh+1+tm3T8QkTUr+hRt+++n795S/tnIMHdXzClxPNnI1Tp8p47xiuYwghhIwM\nOc9W+/Q9GUIITT86TcZXP/GumXPOlBG6YdGilM8zI0Nfy4av7K7n/lH/GU+bZvez4axi3VBRweYo\nANCSKKgA4ISCCgBOKKgA4CTyW/5EolE2XnZZupkzf3yNbhg/3sx5/o63ZTyuHfuLi/U/wCtyyuwk\n48XEnu3GW44QwoknHpHxZDJiC3wnZWV6jllZds6gQTree1WFmZMYkynjyWRhyue4JpGQczxzwAAz\np8vOdTL+/mf2cE9twVMJQgjh9NP1tXxn7Aw76amnZHhLbW2z+8+K4+XbpElyjolfX2umJF//QMYX\nNRaaOdb0J006tmvJEyoAOKGgAoATCioAOKGgAoATCioAOKGgAoCT6CNQ5s7VjRFLLUbV66UbL63p\nYfczfLiOP/ZYPN9GNzXpebZrZ6Y890e9POrKK5rMnIbWrWU8I4ZlKL1766U2G8+80sxp+tOfZDxv\ngH3P5Obq+Pz5MSwpys+XA9uzYoWZYi0ArJxlz7Hk4d66YePGWO7XQ8bysDZH9LK8EEKoWaWfnQZX\n3mh3lJen4yUlqZ9nTY2c46iHB5spL1UekPH1W/SeFCGE0O83fMsPAP8nUVABwAkFFQCcUFABwAkF\nFQCc/JPNUT4xGu3NUZJ/eFY3bNli5sztXy7j48bFs9nExIn6DfiqVXbO8uXrZTz5b/fZSd276/iM\nGSmf5+rVeo5nDbK7bpWpNzqJ2rK/9uqrZTwvllMJ1utTCT6y79dwn3G9IjbzMZ19diz3a36+vpbV\nC3aZOdV1XfTPuuh7Zk6rr/VKlqam1P9dWnNcEbFiw6pL34SzzYy7b9clrryczVEAoEVRUAHACQUV\nAJxQUAHACQUVAJxQUAHASfTmKF276sbGxub39OmndtucOTp+003xbI7y6qt6Uw1r05YQwonhQxlf\ntSrHzPnySx0vLEz9MhRzc5ThpXbSPffIcM0mvQQnhBAG716kG0aMSP21rKrS9+vu3XbOkCEyvOqk\nk8yUQbfcohtiWP4WQgjrjc1R+r35pp1z/vky3i2inx1/17/Ofv1Sf78mEv+QnW/f3tPM2btXx3fu\ntPspyNmqG3r0YNkUALQkCioAOKGgAoATCioAOKGgAoCT6Lf8AICjxhMqADihoAKAEwoqADihoAKA\nEwoqADhJi2qsqdHff3f5sf2Za0cjfiiiH+OgjRBiODYjhBBCRYWcZ8HTxWZK1T7jWAXrSI0QwuFL\nLpHxtDjmOW6cXs6xcqWZUv3kRhnPOt8e7qnGHgfJZE7K57h0qb5fC7P0PEIIYVWfPjJ+90/s1S/V\nV8/WDSUlsdyvicR7cnBFRQPMnP96RB/Zs7S+n5mTY2xLkZ0dw9FEU6bIOTZF/H21DtZ+IRFHNj3y\npG4oLeVbfgBoSRRUAHBCQQUAJxRUAHAS+enp88/rf/KPfn2c/RM7dJDhTdOnmynWS6n2Mb2UqjY2\n7A1v2r+b/Fx9BnqrTHvz5b/8RcfPOSeGf/Ifw0upMHKkjrdvb6Y8lDZJxidOjGGOxkbh3a4fZqa8\n9IkeVm5EN9b26pkx3a+33qr/LmfM+Z6ddO65Mty0rMpMaXXGabrh3XdTP8+CAjnHXcuXmyldZs2S\n8b7TS8ycV+r0VHKO8VryhAoATiioAOCEggoATiioAOCEggoATiioAOAk8lv+0V/qb5a33j/XzOlx\n5+Uy3m2/vQSp7W7jbOyY5M+cKeOTlkXkbPtvGU8mjaUmIYShQ/V303v22P24MZazvf+h/vY+hBBK\na38n4wsW2N1sm9CsUbla3Ukvj1ppLI0KIYTsZ56R8c1jxtg5vXo1b2DOTj5Zx6sbrQVdIeSn6+/Z\nN22y++n9wAPNGZarwjS9nGvpG/Yyr8ufKJDxqMvVq87Ye8JOicQTKgA4oaACgBMKKgA4oaACgBMK\nKgA4idwcZbOxacigzhG7mX+m36iau/KHEDpcdplumD8/nh37q6vlhHacf76ZUjRA/w5q37OH3OqC\nC3RDVVXq51lTIwdctmywmTJpi94E57VL7VUeOcP0VHrHsHFIfr5+Obt3r53z3nsNMn7WWRlmjrWT\n/XPPxbABTAihoUHPM+37dvf33a7v14em2znpixfrhmHGRXZkbsy09m4zJzFtsoyfcko7M2f9Nj2V\nY92YiSdUAHBCQQUAJxRUAHBCQQUAJxRUAHBCQQUAJ5Gbo2Qfd5yMv2MsjQohhO5ffqlzNtnLUObM\n0fHH7aG5mrspX8bz1trLw9rfrONNEf20spahxGD2+3p51KTu9hKo3ZOfkvHMp3Q8hBDqXta/s94R\nY/OydIW+Lwf2sq/jNdfo+7Lir33tjobdZzRcZec4qq3V8ZmX2fMceaaO79lu5xj76YS2Zoaf0W/d\nqhvuucfM+WCaPuus905dx0II4e679Pz1tkD/HE+oAOCEggoATiioAOCEggoATiioAOAkcnMUAMDR\n4wkVAJxQUAHACQUVAJxQUAHACQUVAJxEfsufSCw1lgCcaubMmtVHxs87z+7njDN0/ODBeI6UCCec\noOeZm2vnGMeZJKba3xonf/WwbigrS/k8y8v1kRJj77C7ftA4NmN8xLEZPa6/XjfMnp3yOT73nDHH\nsXbOocweMl5StNXM+c0cPZWOMRzzEkIIW7fqefZI32UnGRsA1F50kZmSd/HFumHRopTPM5Gol3P8\n+c+7mzmZxjlL5UMW2R0dPqzjo0ZxBAoAtCQKKgA4oaACgBMKKgA4iXwpdc01hTL+9NN2Tn1r/b/c\nU4O9uXJy5haj5Sa7I0eJvbtlvOenrc2cG76v4z/7md3Pb9uVyfgEO8VNaV2JjB/Yb396XP6LYhkv\nuMDO6d6o4xX20Nw8+6yOZ2XZOesX6pdPS4rsnNlDhx79oFKgxyWnNTun4IR3ZbzqllvMnDZPzJDx\nQ83uvflef12/fLrzTjvnttuMhiushhB2vPUPGe9mdxOJJ1QAcEJBBQAnFFQAcEJBBQAnFFQAcEJB\nBQAnkcumZjyrl0ClVdrLZpJBL0F69dUTzZwdeTp+rEsXmuuuu/TyqBPtIYcBA3R8wh/tE+jHfbCx\nOcNyVTtnjoznWWuNQgjlUw7K+PJn34ro6SQZrajIicjxsWTJFzL+Reho5nSoe1HGH3xwlN3Rsk7N\nGpc3awnU8uXGmrUQwqxZOp644Q4zJz29WcNyNW+eju/caeec87pelhj27zdz0k42Ptk/xpNMeEIF\nACcUVABwQkEFACcUVABwQkEFACeJZMTbrKYmvTP4MmMDlBBCKDzlFN3RttVmTvKRP+mG0tJ4duwv\nLJTzfP7apWZKr1463vYMe8i51gkAGzakfp49eugLHbHTTeJCvZv9yy/bb+ytkxk6dkz96QsVFfp+\nHTPmPTMnuV0v5cjItdeYNGzZoxs6doznfh0xQl/LqKMJduvVN2HBAjOl4mp9/xcXp/5avvaavpbn\nDbO7zqislPGyj64yc0on65/X/hhPX+AJFQCcUFABwAkFFQCcUFABwAkFFQCcUFABwEnk5iitpk6R\ncXsLhhB2bdsm48m8fzVzXsvVmz3YGb6KM/XykIpz9XlDIYQQRo/W8d/+1ky5tf5uGdcn9zhbs0aG\nu/TvYqasXavjnSL2Bum4cpFuGDHCTnJSbJxcNfMsfTZWCCEMNM6Oaii63Mx5bN58Gb/xRntsni5P\n17/jF/79m4gsvXFM8pqVZoa13Ky42NgZyFH//jr+/bDPzDn30XYyXvNn+xSs4k16BdqxnoHGEyoA\nOKGgAoATCioAOKGgAoATCioAOIncHAUAcPR4QgUAJxRUAHBCQQUAJxRUAHBCQQUAJ5Hf8peU6GMI\nIk7NCN98o49UyM291MzZsD1DNzQ0xHKkxIEDep5tK2fbSfX1MrzozDIz5cxL9HS6HeNxC80yf76c\n4+UL7G/WX3jhYxnv3PlUMyczU8fXrUv9sRlh0iS9ZKXI+GA/hHDgxz+W8baff27mdMntKOO7dsUw\nxxDCwIH6fl35nt39wmf0r6Z4m96vI4QQwu2363jbtqmf5/r1esD77G/5w969Mpy4qKuZkpur9yXY\nsOHYriVPqADghIIKAE4oqADghIIKAE4oqADgJPIt/5w5n8h48mN7Z/DEqRfK+JEjER0tWxY1jJSz\n3uYvzSoxcwbeoF8CjnhjiN1Rhw7NGZarGTv12/ycHDvnm5Al41tX2fs/ZC8sN1pK7Y6cJH59p4w/\nmmmsIgkhDFqr53L6haeZObs+qzVa4tkXY12nAt3w0UdmTv8f6Pu17AF7zP2X6PioUWaKm00//KGM\n5wyIOC3AOErixRerzJRRmTVGy2C7nwg8oQKAEwoqADihoAKAEwoqADihoAKAEwoqADiJXDZ18cV6\nU4HC66Kylsroxkv/bGbsPGeqjGfGdTzL44/LcG7tDWZKZmWljCcuNHYHCSEkP1jdvHE5+v3vdfzm\nm+2cpq/1779xk51TWq+XR1mLqTwlF6+Q8Sv/c5iZ07+/0bB/v5nT8QT9e9ljZjgbO1aGJz2dbaaU\nGbvWdJ9s7wHS+HHLHY9kLUzLGT7cTjr5ZJ0TsTQwVC7U8cEsmwKAFkVBBQAnFFQAcEJBBQAnFFQA\ncJJIRrxJLyvTuz38IuLNYBdjg4b8sfYbyOrFDbohIyOWIyVqEwl9BMoH9u+mdyf9TrdNpj4eI4QQ\nZs7U8ZKS1B+d0WDMMW2/PceGdnpYG9+0c/LvNzbuqKpK/bUcOFAPrF07M2XjqlUy3iccMnOSP9Eb\nAIXq6lju10PGtbz5evu6WMcW7fvGHnKbF1/UDaNGpX6e1dV6MvPmmSnlOY/JeOkgawOUEEJjo44X\nFHAECgC0JAoqADihoAKAEwoqADihoAKAEwoqADiJXDa12FieMfzjj+2f+NOf6o4+XGem7A/fk/G2\nyWQsy1BCQYH+JWzYYKa89Kg+b2vUmol2P7m5Ol5cnPp5bt0q5zju/h5mytwN5+qG7dvNnMQ2vTYs\nmRyR+jmefbac45U5b5spRUU6PnKk3c377+v44MGpX/4WQghDh+rljH9YYndvnWbW5bjjzJw9O/XS\nsY4dY5jn7NlyjgtusDcsuvTzz3WDdZFDCIm/LpfxZNJYM/hP8IQKAE4oqADghIIKAE4oqADghIIK\nAE4i3/IDAI4eT6gA4ISCCgBOKKgA4ISCCgBOKKgA4CQtqjE7W38zvPmLE8ycLsd9IeO7Bo0wc2ru\nWSTjcX0bXWfsWfD2M/YKiCvG6KH95gE7Z6JxdEyaw54Fn3321bd2uUbnzscf1fy/zXMM4ejm+f9h\njiF8d+fJEyoAOKGgAoATCioAOKGgAoCTyJdS99+v44kx+izzEELo2VPHl7zyipmT/4rxf+yYPout\nuFf381BdxGbRq1fLcFadnZJ2/PHNGRaAbxmeUAHACQUVAJxQUAHACQUVAJxQUAHACQUVAJxELpsq\nzlun42/sNnOe/6yPjBd1fdPuaLf98+LwUM5c3bBkk51UWSnDxU+cZ+ecF9EG4FuPJ1QAcEJBBQAn\nFFQAcEJBBQAnFFQAcBL5lj+kp8vwpgsvNFNGX3+9buje3czZPHmyjGfHtDlKuPZaGb77Lrv/m6fp\nDV0uPcvOOS9Px8vtkQH4FuEJFQCcUFABwAkFFQCcUFABwAkFFQCcUFABwEnksqk9nXrLeM7XX5s5\nv7ytjYyfm2X3U3xvY9QwUi67p17qtHK8nbPvOp0z5Ek7Z+FCHS9n3RTwncATKgA4oaACgBMKKgA4\noaACgBMKKgA4SSTj2oAEAL7jeEIFACcUVABwQkEFACcUVABwQkEFACcUVABw8j8TlUINolxRfAAA\nAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  11\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFeBJREFUeJzt3Xt0FtXVx/EzEGMQwYDcGmIEpCEg\nIAVCI0UE5OWNihRdXDRolqBGqhY0JMjNiJVStJryUq1cJCoKCCKLIiCLS1SUFBAjRG5GqhhCiIBc\n5RYC8/7hv3tPCd3PZNF+P3/us37MnMzz7DWLOc8Zz/d9BwD499Wo7hMAgP8UNFQAMEJDBQAjNFQA\nMEJDBQAjUUGDJZ4nLgHYv0FfGdA8xRPrjT75RM2cufVWsR7j+/I/ZmzYMCdOKO8frdXM4V27xPqZ\ngOPULJf/bo0bu4jPs3t3eY7rzt2sZrwN05WRCjUzdGiyWM/Li/wci4rkOS5bpmf69pXr7X/bXM38\nLvU7sf7aa5Gfo3PO/aR8L5fO1b+XQ4Z8Ltb//nf5ejnnXL+UA/JAo0YRn+cLL8jX8ndj9ENPypbn\nP+LPeibtFjmzbt2lXUvuUAHACA0VAIzQUAHACA0VAIwEPpQqU+odlAdPzjkXM3u2PDBypJ4ZODDo\nNCJuzBvyfPLX6v/JX14u1+8Zov9tyk5W6bRMrdsQLQ/85S9qJjX2JrGena0f57PPqnJWttqvfFGs\nl3cerWeW/EEeeO45NXNyTZVOy9xV5+XP5ZCaR9SMn/y4WO/3+iY107t3I/n4Aedm5a675Pqy6/Tv\n5MMB3z3Nuje/VUZaVPnfco47VAAwQ0MFACM0VAAwQkMFACM0VAAwQkMFACOBy6ZSjh0T60V76qqZ\n9k3k3/8mTBymZkrGLgw6jYjbrPwGOrWDnrn3XrmeNnasmmmxc7kycKd+ICNnzp0T609tk5fTOOfc\nzcrP/FNT9eNUJLWXB3KK9JCVpk3FcuL/Biyn6dlTLHevzFcje/ZU5aTCc9999dSxw/Pl3/Jn6Vts\nuNq1j4t139e//1baTEqT62f03TK0kZjYWDVTecMNYj3qEt9kwh0qABihoQKAERoqABihoQKAERoq\nABgJfMo/Z4n8NG/RIj0TGytvqLB373k1k99gkFjvpR/GVFKSXK+fpa9MWDV9gljvM3yymhnQTK5n\nqAk7p36Un1omL9Ez6Q/JT8dzGjZUM7u/OijWW+qHsaM8fm92++16ZupUsbyhrR6pmJ6njOifF0ul\npXJ9/vzdamak8paNzgEbHQW9mSHSKubPF+tXur1qZuzYxWJ98v071EzUoUNVO7F/gTtUADBCQwUA\nIzRUADBCQwUAIzRUADBCQwUAI54fsAmA530oDvqTCvV/UXsZzIABaqT8m2/EehPfr/pLYi5Fero4\nz66756iRggdnivXSRx9VM/FDh8oDeXkRn2fHjk6cY+HOWnpI2TjEbd6sRkoPysum4kO4lmlp8hzn\nz99f5X/LX/+dOpb4YFexXlzsQvm8Dhokz3PKFD3z5ptyfcwYPaMtz0pMjPw8yzxPnOOhrXq/ysqS\n66tXyxsD/UxeGub7tS9pjtyhAoARGioAGKGhAoARGioAGKGhAoCRwKf8AICLxx0qABihoQKAERoq\nABihoQKAERoqABihoQKAkcB3Srnly8U1VYPeulONLJxaJta9po3VjL/vB3kgLi6UzSYWLJA3m8jO\n1jMlHfrJA0ePqpnMzuvEem5uCJtq5OXJ6+Pi49VIYYM+Yr1Tpw/VzN13y+9vWrw4hDmOGCHOsfKv\nf1UjUdr7ppboL9saNzFarE+eHM7mKKNHy5/XF396TA8tW1bl45R8ViLWExJCmOe0afLntUkTPVO7\ntlju/oLer/r3l+uZmZc2R+5QAcAIDRUAjNBQAcAIDRUAjAT/lr9uXXlw0iQ1Ep01QqxX7PpWP06P\nHnK9pCSU/+T3vOPKH+G4mvFjfikPDByoZkbEym8AmDYt8v/Jn5srP8gYNUrfzdw/dloeaNtWP9Bn\nn8n1hITIX8uCAnGOFZ3lHfadc27RIrn+5JP6YQ4sKZAHunYN5fNaVCRfy0M36YePVeodAo7ToZ38\ntSgqivznddUqeY7XXKNnPv5Yrj8dP1fN9Jo9RKzn5/NQCgCqFQ0VAIzQUAHACA0VAIzQUAHACA0V\nAIwE/pa/T4q8bOh15fevzjlXUZkr1g/cMErNNHrhhaDTiLgjTl6LEbt2rR7qdkyul5aqkW8er8pZ\n2Zo+Xa5fd90VeuhheUmJt/dLNeL37SkPFBXpxzEybpm8PGryhF5qZtBHH4n1tPffVzN5u+4R68P0\n1VmmysvlelJARv5VvnM1Apb5db76ok/JXJ+VmWL9by3l/uKcc0//M0Osz6w3U83kb2ukjBxQM0G4\nQwUAIzRUADBCQwUAIzRUADBCQwUAI4Gbo7RoIW9Q8O1EeZMP55wrbJsu1hs00E8i7np5H4Io3w9l\nswm3dKk4T++3+k7fJ5UFEocDDhOvrWYYPTry8+zeXd445NNP1UiDOvJn4/jTf1Qz9V8eL9YPH478\nhhqet1U8Yf/lgNUa2gdz2zY1Mjn2RbE+blw4O/a7sjJxnoebNlUjG+SXb7j2d+qnPOhmOVNQEPl5\nnjol957evfVMs2Zyfd6N+ufVvfWWXC8uZnMUAKhONFQAMEJDBQAjNFQAMEJDBQAjNFQAMBK4Ocp3\n330lD5w4oWY6LsmRB1q1UjOek99dFPC2K1MVqf3k4ye11kPl8lt6So8e1TPau7PCoLwHqjJg2dSY\nMcrAFH0zmzknJigjYVzNI2J1R6q80YZzzt1444difehQeWmUc8698eczYn3cuJiAc7NTpCyPiv1e\n/xsnVcr1zIF6psANUkYWqhkrffvK9YJ47ZycK3tJOa811+kHeuWVKpzVv8YdKgAYoaECgBEaKgAY\noaECgBEaKgAYCdwcBQBw8bhDBQAjNFQAMEJDBQAjNFQAMEJDBQAjgb/ldwcOyK8GaVxTjWx38isl\n2rRrpx8nPl6ur1gRyislli6Vf2j+5pt6ZvGaumLdO7FDzZw9K88zOjryr5SYOVOeY0btuXporfLq\nkGXL1Eh66gGxPmdO5OeoXcf+/fXMKeUtO7VchZrxn/uTPJCTU62f136H8tRM+UMPifWhqfoqnw9r\n3SMPLF4c+Xm++qrce55QfuTvnEtOvl6sT5qkH6bP4HrywJEjvAIFAKoTDRUAjNBQAcAIDRUAjAT/\n9LR1a/ld7lt3qpEYZY/dCz16qZkVWfli/Y47QnrPeU6OOM9V3f6gRvo8kSjWvW+K1Iw/9DF5IC8v\n4vM843niHEu+1q9/pbIpcZtOtfQDHTsm16OjI38tlysvn9++XY10fHe0WJ/3pX66SUlJ8sDOnaF8\nXj3vpDjP3/++tpp55x25fnhAhppJPzNTrIfxgHHYMPnB2+tv6IeuMXu2WD917zA1M2qUXH/ttUub\nI3eoAGCEhgoARmioAGCEhgoARmioAGCEhgoARgKXTdWqJS9dOHPmRzUzcOC1Yj3nPX0VQtuzZ+WB\nMJbaOOcOH5bnOWuWnpkxQ67v369nzp+X6xUVkV+G4nm7xTk+9VTLKv9buf3X6YMpKXI9hGvZooV8\nHb99Xt+vYObJIWI9o6W8lM85p+89kZgYyue1Rg15nlEBO3NUuGixvuncOTVT+r7cG+65J4TljPXq\niQevdeaIGmndWq6/9JJ+mDvvlOunT7NsCgCqFQ0VAIzQUAHACA0VAIzQUAHASOBT/o0b5aeJN6To\nD8AabNwo1nuN6aJn5E3+3cKFIW2O0qWL/EeIjdUzW7aI5clPyjvWO+fc+PHyE0rfrxfxeWrX8tcP\nyJu8OOecy8oSy9FP6BtqbDknT6WNr2yNbykjQ5zjD8/Lm3w451zjGfIGOFuefVbN5L8sf1wyM8P5\nvHpeoXgCa9d2VDO9Ps4R6yUP6xsAxV8vT6dGCNdSm+MXX+hz7NSpVKxv3aqsynDOtVQWuVx1FU/5\nAaBa0VABwAgNFQCM0FABwAgNFQCM0FABwEjgsqkS5T1ECe3aqZmCr74S6121l9o450ruv1+sJ4Sx\n1MY5fdlUwK4KOxp0F+vduumH0TavOHAg8sttDijXctcn+vWvf6t8Wu3cITXzySfy5jjdu4ewpKis\nTJzMhaZN1UgNbTOX5s3VjDf/bbHu+zVDWja1QLlo+tLE1FR5Pk+v1E+5x9dfywMhbAKzY4e8zG/P\nHj2zcqVcnzZLfwda8dbTYj0xkWVTAFCtaKgAYISGCgBGaKgAYISGCgBGAp/yAwAuHneoAGCEhgoA\nRmioAGCEhgoARmioAGBE+XX5zzzvc3EJgF/nNj1z4nNlRH79h3POzZgh/546IyOcV0qUK79zv7BP\nXwERNyZdrHtvPxpwJHkPBN+vG/l5LlwoTsYbrP9m/YEHksX6nMo0NZP/8Dyx3qtXCNcyJ0e+YFOm\n6Bllv4aikSPVSPt9++SBuLhQPq/r1sm/c2+k7L3gnHOtXYVY99dr31fn3O7dcj09PfLzzMwU57ii\nd64auaNJoVj3Ol2hZsrL5e9k48b8lh8AqhUNFQCM0FABwAgNFQCMBP/0tLhYfpDRqqEa2evqi/U5\nf9SPM378x2Ld93uEs8H08ePyPK/RI82b1xXr06frmT4blHeg5+REfJ6FhfKDjKwsPbPmI/m0arof\n1Iz/f+/KAyNGRHyOp5SHi1vW65+9RYvkeu7ufmpm8wcfiPXOYW2IXq+ePKEff1QjxTVrinX5UdXP\nFj8nHyYnJ/IPGCdPlj+vmzfrmW3b5Hrxkh16KDZWrl/iA0buUAHACA0VAIzQUAHACA0VAIzQUAHA\nCA0VAIwE/pY/rkeiWD8fsGpi+CPyUouZvTepmT17egSdRsSdipKXQN13n56ZFz9aHug7VQ+98UYV\nzspWZSf5mlXeoi8pqum2V/k43si7xLo/osr/VJUNf0Cey5xdeWqma48G8kDb/mqmc9++VTovcz17\niuUyZWmUc86VrpX/Nr1K56iZTZVVOy1L48efF+tff63PsVUrednYqtI2aqbP0QJ5IC5OP7kA3KEC\ngBEaKgAYoaECgBEaKgAYoaECgJHgzVFyc+XBli3VSPsJ8qYS48frhxmcnSAPlJSEstlERYW8EUP0\nrFf10CuviOVNu3apkfZKPSaETTUOKBuHLJutX/9hSfIT0H5TuqqZDz4oFeu+Hx/xOXreOXEyJ1y0\nmqnj1oh1v8n9aqbi+/1iPTo6nDdMuE2b5IumbfThnLvQUl6x8957+mEGr1eWZkybFvF5rlghfyfv\neLCRmvEObhXrjzzyCzUzVVmUc9VV7NgPANWKhgoARmioAGCEhgoARmioAGCEhgoARgI3R3ErV8rl\n1avVSN+x8oqOBQv0wzR7r0Ss/1qPmNLeU9P1iy/00K9+JZYrApZNHVbql7YNQ9Vo7w5aI68acs45\n9/jj8vKoGTP0TFRU/MWflDF/7LNi/dCf9Exy8m3ywIZ9aiZ6/lx5YMgQ/UCWlO9l4bPy/J1zbniy\n/L1c9rm+OmjjBjkTxveyRw+57h1cqma+/15eHpXQTVmW6Zxz/ZPk+qpVeiYAd6gAYISGCgBGaKgA\nYISGCgBGaKgAYCR4cxQAwEXjDhUAjNBQAcAIDRUAjNBQAcAIDRUAjAT/lj89XVwC4L09WI34V9wt\n1idP1H5N7lxlpVzPyQnplRLNm8vz3POpGvGb3SLWT23/Ts1c9cQweSAvL+Lz7NhRfqXEl19+rmbq\n1EkW69reB845F9dKnsrVIbzmxfO2inNcv/4mNVOzplyvl6KfbqK2McWgQaF8XrVXvbz77hVqZvD/\nyDtJbLr2WjXzygPyCqA5cyL/vUxIkD+vq/bqh85/VT7fx1IK1YzX6aRY9/1beAUKAFQnGioAGKGh\nAoARGioAGKGhAoCRwN/yFxfLT9patdqvZvyBI+UDvTdGzcTEdBTrp0+H85Tf8z4U55mdfbua6dZN\nrk+cqB+n8Ik8eWDYsBCegB8R5+jHttBDR4/K9dhYNTI5+4hYHzcu8tfS89aLc/zii9+omdhO8mnJ\n75D42dVKvXMIKxmcc+4zzxPn2e3sWT10k7LSYf16PTNggFzPz4/4PDcoc0xp0kTNLCovF+sDtm9X\nMwmpbcR6ScmlfV65QwUAIzRUADBCQwUAIzRUADBCQwUAIzRUADASuDnK8OHayG41037XQrF+7Jh+\nnEmTgs4i8ubOlZdHpY1J0EMPrhTL/aYe0jMr9b9bpDVsWE+sx0XJy5ycc67smVx5QFtO5ZwbP36D\nWB83LkU/OSPPPCMvj+q4JEfN1JBX57gLV9bSD3S3vAFQWLS7oMIrr1QzHbduFesFu+qrma4TJlTl\ntEz1jJGvy+k6iWpmQHa2PJCUpGbG6Ks5Lwl3qABghIYKAEZoqABghIYKAEZoqABgJHBzlAvKBgXv\nvKVntAeN+/bpJ5F59Ux5ICMjlM0mjirzjE2WXwHinHPu4EGxvGqG/gqUrCy5XlQUwiYwyhwXvKtf\nS83gu/XX2XhXfizWfb9P5Oe4bp04mWlbuquREQPKxHp506ZqJlqp1w9pc5QS5Vpufl+/lvf0vyDW\n4+L1e6qyJZvkgS5dIj7P7t3ljZlGfKofesAzz4j1ouefVzNrXpb/ZpmZbI4CANWKhgoARmioAGCE\nhgoARmioAGCEhgoARgKXTQ0aJC9dWBiVpmYym8wT6w8+qJ9E+1vljTvckSOhLENxubniPPNHjVIj\nvWJixHr+8tNq5rbbSsW678dHfJ6HlKU2DQLet+OaNZPrUfqeOmWH5EVFcXGRXxqmLfNr2Vz/jBd8\nJ59WQdASpHcHyQMLF4byef1JmefV2vVyztX4Xl7Otztgv54WlcXyQGJixOe5SZljlxR9k52Cl/8h\n1rds0Y/Tu7dcT0xk2RQAVCsaKgAYoaECgBEaKgAYoaECgJHAp/wAgIvHHSoAGKGhAoARGioAGKGh\nAoARGioAGNF/lO2cW7xY/i3/b36jZxp3+IVYL1y+X81s6yT/bDY9pFdKuIwMcZ7HX1JezeKcq9u7\ni1gfkaK8NsI5N211a3lg585/e54HD564bJdrNGxY56LmfznP0bmLm+d/wxyd+8+dJ3eoAGCEhgoA\nRmioAGCEhgoARgIfSk2ZItc3TS1QM/2S5YdPqRv046T+s3r/f7py1iyxXnf4cD30zjtiOauV/n/y\nib+U56ls4wvgMsMdKgAYoaECgBEaKgAYoaECgBEaKgAYoaECgJHAZVP33ivXVxztqmaaNJHrPR7X\nlxO1OH9eGQmn30c1bCgPDBmiZs7s2iXWEwLec198m7zPgXP6PgcALh/coQKAERoqABihoQKAERoq\nABihoQKAkcCn/Jm7HxPro8v/pmZmzZJ3QdnQTt8ApaiyQh6IjtZPzlKHDmL5p9Wr1cjVSsY1a6Yf\nJzu7CicF4HLDHSoAGKGhAoARGioAGKGhAoARGioAGKGhAoCRwGVTaUfl5VFNYvTMWXezWD/6lZ6Z\nt0heUpWWpmcsTeu7Sqz3Xq1v6NJm40axPmy4vtQr7/Unq3ZiAC4r3KECgBEaKgAYoaECgBEaKgAY\noaECgBHP9/VNSwAAF487VAAwQkMFACM0VAAwQkMFACM0VAAwQkMFACP/D4dtN9+U+eFDAAAAAElF\nTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  12\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFdFJREFUeJzt3WuQVdWZxvG16Ra5iQSVAmQQQbBB\nBEQHMAgohV1euUkiIYQxPS0Th0sQQYUAQhsQjGGMQkIgEIoCJIhcmjYgAhKQyKVRbBCaqy1BpgOI\niiiXhN7zYebDVM377NCd9xzLzP/38V31sPc65/TrLvfaa0dxHAcAwN+v0td9AgDwj4KGCgBOaKgA\n4ISGCgBOaKgA4CQzaTCK9phLAOIrOujMFx+Z9bhuC32gyy6z60eORDrkZ1EUmfPse9ddMvNSz/Vm\nvaREH2dqldH2wKRJKZ/n1q3BnOPZDvrQF0S9VsJx2op6Zhyn/rvMyzPnGD2jv8fS0k5m/eOP9WHa\nFs60BwYOTMvvdYP4vY7rpFfsbMzsag/UqCEze1auNOst0vFd7rF7T/Yw3UemvWmf1txR+nOZlHvY\nHmjcuEJz5AoVAJzQUAHACQ0VAJzQUAHASeJNqbFj7f8BXNTntMycz7LrX11eKjMH37f/p3ErfWqu\nvpptH7/dDJ1p9LZdX/wb/dnMWz7JrA/Qh3HTtKldr/3GGzo0ZoxZ/vPKbTJy7Lxdb6iP4qd/f7v+\nzD4ZmT7drucdzZGZhb/9rVnvN3CgzHgSf2Lh/vt15sjTb5n13QnHKf65/XeRcHvZz8GDZrm0VB/9\nRnEbNc4cJzOnr84z6zUTTi0JV6gA4ISGCgBOaKgA4ISGCgBOaKgA4ISGCgBOoqQd+6Nok/0s/w9m\nyUzN5fPM+u4v9KOxI75jn8PixSEtz0aXimej64WdMrNjR2uz3nbvAplZKpb19E7Hs9GjR5tzrPyC\nvZQrhBAufPaVWe/dv5rMLK0hFoHNm5f6OQ4caM7x2Hjx7H0I4c477fr+5XtkZtJye+nO6NHp+b1G\n0UVznrNnZ8hMTs9T9sDy5fpAq1fb9cWLUz/PqlXtpnDunIxEYYdZ37dP7TARQuMb7alUdO8JrlAB\nwAkNFQCc0FABwAkNFQCc0FABwEni5ihxgb3RR78F9p38EEL4vbib37BXL5mZ86q6oaZXIHiaOcE+\nzmstdeZHP7Lr2/r+WWZ6z55dntPyde21Zvkvf5kvI0tX26sS8pbpG6D7Rb3ZPP2b8fLXWfbqkz67\n9V3+4mK7XpBxk8yMnjJFjDwpM57isRPM+uk+9kYfIYTw1ZVXmfWed+u/sTWNtpTvxBwd2XfWrF93\n3QaZiScUmPULjfRd/uMf2/Ovr08tEVeoAOCEhgoATmioAOCEhgoATmioAOCEhgoAThKXTWX/wn5J\nzaI39bKZo+L9UJ+11pmNK+xM94Rz8zTu3Gh74KHnZKaPvZ9K2LP9CZlR//XKytHvL/Iy5cwgs75i\nhc5kiZcXNatVS4fef78cZ+Urs1Mns/7CJv3b69bN/h5rPKiXE52qa9fT8W6wEEIIbdqY5Suv1Bu6\nxOKzefPN7TIzdIi93OylhFPzct119iYo69bdqUO7i8xy5b/am/yEEEL9wrX2QPeKdR+uUAHACQ0V\nAJzQUAHACQ0VAJzQUAHASeIrUAAAl44rVABwQkMFACc0VABwQkMFACc0VABwQkMFACeJm6OcOmW/\n1Kn2TfV0aPNmu37PPTozY4Zd79pV72rhqGtXe55vvXVRZnbsyDDr48fr4+Sr7V7y81M+z3fftefY\n9qHrZWZ/SYlZ75Gll9rdcotdX7gwpHyOrVrZcywav1SH1A4w6qVhIYSQKf5s1q9Py+91wAB7nvN2\niQ8/hLBnwXtmvcWddWRm7YkTZr1bHKd8nkcie/ehhp98IjONb6tt1g9nNtMHeuABuz51aoXmyBUq\nADihoQKAExoqADihoQKAk8SbUhs22PXeEyboUGGhWT5y4ICMzFjb1axPssvu1j8yz6z3q6v3YG9b\n95hZz82trw90w+RynZenttPstwLMHPWhzAwsHGjWNzyrj/Pll+U6LVdFdbPtgbU36NBk+zvJe2Cb\njDwnXuRwVh/F1XaxyX6lffaNpxBCKMvcbw/cdpvM3L1qkVlPx+4fZz6wj1J0NCFzxq7PmSzmHkLI\nuc3e5b+iuEIFACc0VABwQkMFACc0VABwQkMFACc0VABwkvgKlCi6aA42bWo/xx5CCPsLT9sDJ0/q\nszh40K5nZ6fl2ehQr545z2OlpTJS/9Ahs/7L1Y1lRjwaH55/PvXPuR8+bK92aXzrt3To1782y+ce\nflhGqqxbZw+kYV+GNWvsOWY32CMzv9vVwqwPGaKPU3DCnkq7NDzjHkIIUfSiOc+77homM+uDvQYx\neutNmYnHiuWReXkpn2cUfWjOMS7Q32X44Q/N8vD+x2Vk6tNirE4dnuUHgK8TDRUAnNBQAcAJDRUA\nnNBQAcBJ4l3+vDz7rum4nb31vyh2M1/76qsy0lDUm6Xprmm4cMH+ELp00RmxC8iFQr3ZQuUtG+2B\nzp1TPs9TYgf02o8+qkNi44zuBfamKSGEMHOlPZW6afgui8Uc/zhb/8ZzWtqboHzVvr3MVBb1zLTd\n5T9uTujQIb37/tVX2/W9e/Vx2jc9ZQ/Urp36eQ4caM5x4Z0zZaRf5mKzXpawKuX+e+zfxqpVFVt5\nwxUqADihoQKAExoqADihoQKAExoqADihoQKAk8RlU9nZ9rKpNUvEBighhN+tqmnWH75sqczseegh\ns94iTctQhg615/nSlnYyc0S82Gfwg/rzzN8kNiL59NPUz/P55+0T69BBRprldjbrapOXEEIYPNiu\nT52a+g1gQuXK9hzVy4ZCCL372ougdu7Uh+nWza7PnJmGOYYQQteu5jyjt+x3o4UQwo7wT2Z97hD9\ne1XvlCsqSv08y8rsv8lKW/4oM1FHe6lb/M+36wP16GHXf/ITlk0BwNeJhgoATmioAOCEhgoATmio\nAOAk8S4/AODScYUKAE5oqADghIYKAE5oqADghIYKAE7s95X8j86d7edpN7YZKjPRy43N+nvhcZmx\nEyHUTNsrJT415xn/4Mc6JF71UvabOTKSm2vX58xJ/bPRRUX2d9m69UcyE39npD0wZozMbGvd2qy3\nS8d3KZ7l37rpgoyofQnEG25CCCHkDKpqD5w9m55n+cW+DEOPPikjL7+8z6w/+uiNMjNr1vtmPY5b\np36er79u71fwwFUycj7Yz+wnXTXmjbVXOeXl8QoUAPha0VABwAkNFQCc0FABwEniTamNu+wNkUff\n8anMfO97dr1NX3XrKYSwa1fSaaTcunVi4+cXTsrMsVWrzHr9YcNkZk7mNDGi3zXupXXr1816PPIP\nMtPvqP2e84XDusqMvb14mtx6q1l+7TUd+dnP7N9yfI2+WVNw7pxZf0AfxtWaNvbNp7k/TUotM6sz\ne9wsE9Om3V+Os/LVfIR97OnTdaZygxX2QK1aMpM3N0eM6JvLSbhCBQAnNFQAcEJDBQAnNFQAcEJD\nBQAnNFQAcJK4Y39pFJmD9UKxzMTnr7cHevbUZ/GpWIb1zjtpepb/QXOeW7aslJl6HexTa5jwEPjS\n6tXNeu90POdeVmZ/0S++qDNqrGVLGTkjlpPVSMccJ04051iWsPfAoB/ZH8tzM/TpFol65zTtPRGa\nN7efcy/emhC6aFbjf7L3XgghhOhP9rK5OBY/fkfHRO9pUkX3q73n7NMa0ElnqlSx62vW8Cw/AHyt\naKgA4ISGCgBOaKgA4ISGCgBOEjdHmSDugN68OSF0ubg5drPehOGc2BxF3IBzF//ibnvg9XE69JG9\n0/0fd1aTkQ7lOSlnuzMyzHrLpk116I477H/rlVdkpH65zsrZhAlmuXrCneHxjez6ns068+2O6bmZ\nr8x8fK9Zj6svkJkpR79v1o9874jM/OU6NU/92XipL36XZ4vLZKZqdfu8mp/Rxzl4sFyn9TdxhQoA\nTmioAOCEhgoATmioAOCEhgoATmioAOAkcdnUo2KDiJGHEpZNZF1m10+ckJHud9v/3hp9FFfRjx8z\n63GbdjJT8OyzZv2BrCx9oIKCcp2Xp3x735Cwra7O9PxX+/tv+cEHMtPukRb2cfRh3BwuvmDWN+if\nXmj/u+Fm/WTH/5CZzJEjy3Ve3o4etevRs31l5sEH7fpTtyT8lZ0/X46zclZYaJb3iOV/IYTQ9Gb7\nN15Sog9zqkErMaK2wEnGFSoAOKGhAoATGioAOKGhAoATGioAOEl8BQoA4NJxhQoATmioAOCEhgoA\nTmioAOCEhgoAThKf5Q95eeYSgPxnnpGRnRPsVQPjMibq44waZdcrVUrLuya++137nQ6L59vPhocQ\nQp0Glc36kiX6OF26nDbrcVwz5fOMoovmHONGN8jMBfEQdOUpU/RxnnrCrMdxRuq/y4n2hgXvjhkj\nI22nTbMH3nhDH2fRIrterVpafq87o8ic575FesXO55/b9YEHn5SZ6GcjzHoc10n5POfMsf8mc0r0\na4lmNsgz66Wl+jjz59v1/ftDhebIFSoAOKGhAoATGioAOKGhAoCT5JtS4n/YJ717vfvO3vY/tWyZ\nzAxWGxYvXJhwJD+LZ5wy6zWvri0zpzO+ZQ9Mvl1m4tl9xEiOzHiJR401621Xfygz/YfY9eE1ZsrM\nx/InlYZHnD/5xCxXS4jk7Bhk1uc8fYsOTZ5s1/PsmyLe2lxxhVmfs1lnqlQRA599JjNxwXYxcr8+\nkJOc/uKG8Ah9vj3srzJUraqP8/bb5TipS8AVKgA4oaECgBMaKgA4oaECgBMaKgA4oaECgJPEHfvb\ntbPXumzrNlpmTo2YZNaXX6UfjV3+oH0O+fkVe5623F5/3TyB7r/Wy0POnLHr6xcdl5nfF9Yx6/fd\nl4Z5NmtmznH/gQM6IpYhbbzqKpnp3KmTPbBxY8rn2Ly5/Xvd+7he5lXUYaBZbzWmu8xEK0ea9Tju\nlJbf60HxLP8Nf/iDDo2wn8tf+vQ2Gbn2Wrvevn0afq+3327O8fSWLTKyW9S/rZZlhhCmrm5h1ocP\n51l+APha0VABwAkNFQCc0FABwAkNFQCcJG6Osn17X7NetkXsWB5CuCpD7Eq/davMNGyvbqilYUON\nEELjIfbd/MyET+fAAXE3X+xyH0II9z3S0h44rlcGeGmesd+sv5JwM7N3rr05zNJ775WZaNWrZj0d\n3+TeWvbGNGsavSMzJeKmcebkfJkZ26Zcp+XuhhUr7IEvvpCZM9vtjU5aPKS//3+/y/7W1q/X5+Zl\n3mP2d/bi+YTMe2IuCRvA1K1bnrP627hCBQAnNFQAcEJDBQAnNFQAcEJDBQAnNFQAcJL8TqmQYVcz\ndsnEJ5/cbA90/BeZqZl8Eimnlkct0qvDws6d9kYnUfuTMhOv+E15TsvV3un2Wpc6ffWCpjtEvdXR\n38tMfLGsPKflqvln9lKbx4p1ZujBoWZ947+9LDN5tWqJgU/1gTw1aGCW15xsKyPZYtOaaps2yczc\nueU6K1cDltib0/R9b6XMqK95W8eOMtOvVy8xsFRmknCFCgBOaKgA4ISGCgBOaKgA4ISGCgBOEl+B\nAgC4dFyhAoATGioAOKGhAoATGioAOKGhAoCT5Gf5q1Y1lwC0anpWRnr2tOt5LyY8sb9zp11v3Fi/\nn8FRYRSZ87zt4kUdOime2U94b8rpTPuVIjVrJryHxMk2McdpP9CrPOa9WtUe+PJLfSD1udSpk/I5\nTp1qv2ll+IxmOlSlil1/+20ZmX/llWa9fxyn5fcaFi+2v7T582XkpW72K12GPldPZh7r+Z9m/Ve/\nSv3v9Ze/tL/LvvZbmUIIIQwbZtfnjT8sM283aWLW76jgd8kVKgA4oaECgBMaKgA4oaECgBMaKgA4\nSb7LP3KkWZ4r7uSHEELtWytwc0zdaU2Tlmog6byqV7frK1bIyPEuXcx6zTTsp3D1IfsY82qd0qG5\n4m6+upMfgr4Nu95+Y4Cn0lIxkJsrM4efesqsl4g7+SGE8O7j9mfZXyacid9etFLP87VHxMCoUTLz\nq7X2rvkh2CsGPA0YZPeRAWv138rSDs+b9eIm9nccQgj1y3dafxNXqADghIYKAE5oqADghIYKAE5o\nqADghIYKAE6Sl03NmmWW2yZEzol62UW93KFSx9vtgXfeSTiSnyqff27Wh4/XG7qoPVCeH99VZpoG\ne7lROl5C03jwfWY9WrVIZhYssP97229GH5kp2bTJrDfSp+ZG7kuTlSUzfW6xP321X08IIZRlzRQj\nA3XI0b3T7jfr11+vM71f7GwPPPKIzJxeudKsJ2xz5KZGr15mfdkyvQFMyCw0y6cTjpPUyyqCK1QA\ncEJDBQAnNFQAcEJDBQAnNFQAcBLFSRtz9OtnDn71yisyUu3nP7cHBg/WJ3G5vQlHHH8rPa+UWLDA\nnOeaa74vI9kvZNsDi/Rd80pX269AKStL/SslGja0FxPUqqUzRQfEK1DatNEhtUPJhx+mfI79+tlz\nXL1aZ07lPmkPJL1rQ90ZLypKy+91wAB7ngUFOqPmeWSwvaFICCGUlNj1zp1T/3sNZWXmHKMM3a9m\nz84w6zm3FcnMu39tZdbbtq3YHLlCBQAnNFQAcEJDBQAnNFQAcEJDBQAnNFQAcJK4OcpnYnlUwhuF\nwsknnjDrH107XGbiISPEyEsJR/Iz9c/28qh7bkkILV9ulvPXVpORssJ3xYj3Fg3/15/+ZC9n69nT\n/r5CCCHatcus3x7dIDNrS+zVJvpT8bNwSWV7IGEDkPDTaXb9nNrmJ4Qt4nPpoI/iqrjYrouf5H/r\nYW901PDoURk5p5ZHpuEdaGGa/b1MnDhURnIaifeWbdgtM3MPymVTFcIVKgA4oaECgBMaKgA4oaEC\ngBMaKgA4Sd4cBQBwybhCBQAnNFQAcEJDBQAnNFQAcEJDBQAnic/yh+xscwlA/uA1MtJ910Sz3vmN\nn8hMt252fdy4NLxqIYQQRcfNefbqVUdmli27aNYXLbJfwxBCCA+fnG4PDBr0d8/zxIkvvrHLNa65\n5opLmv83eY4hXNo8/z/MMYR/3HlyhQoATmioAOCEhgoATmioAOAk+dHT/fvNwTp3NJORJUvs+uDB\n+jCNGtn1/Pz03JQK119vzrNq6YcysnWrXVc32EIIoeiEPZ26ccxNqUvwTZ5jCNyU+t/+UefJFSoA\nOKGhAoATGioAOKGhAoATGioAOKGhAoCTxGf5S2+80awf/+ADmTly001mvWjzZpnZmvHtpNNIuXuz\n7OVRZ9cdlpljVRqb9eNLNuoD5TYt13kB+GbhChUAnNBQAcAJDRUAnNBQAcAJDRUAnCTe5a976JA9\ncPKkzMydYO95UDhZHyc3N+ksUm/VY/lmPWrSQGbij46Y9eIuXWQm6/z58p0YgG8UrlABwAkNFQCc\n0FABwAkNFQCc0FABwAkNFQCcJC6bCjVqmOVjTZrIyLj33zfrUy5vJTPd+1S2By5c0OfmKOphbwIT\nD5muQzfOMstZTRM2QFm92q53764zAL4xuEIFACc0VABwQkMFACc0VABwQkMFACdRHNubmQAAyocr\nVABwQkMFACc0VABwQkMFACc0VABwQkMFACf/BWGUPyPdtn05AAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  13\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFYtJREFUeJzt3Wt0VdW5xvG5GtCoATEol4hALWK0\nHhvRYuCgYlo4qBAhCDUoERmWWi8RkNZisfWCiNQqItUDWkSkkQIiRESaAqIHI4qkWBEig0uaKqIS\nTLkUjMA6H87X91kl9N2boef/+/jO8bDWZO/9sgZrrrmiOI4DAODf961jfQIA8E1BQwUAJzRUAHBC\nQwUAJzRUAHDSJGkwiq4TSwDyZKa4+GdmvezgYJnpXT/XrFdUhEifnaPycnOe7W8rlJEePez6Iy/o\nU8758kt74LjjUj/PBx+0P8uxY2VkaUaGWW9YpFeGFI7pbA9s2pT6OW7YYJ/YhRfKyPYt+816u3b6\nMLtjeypZsRjw9oc/mPOcUnedjJRe+5lZ39S6tcx0zsy0B/bvT/k8V0WROceqx/V3r3SZ/Xvt8lG5\nzLz6ql1v3froeg9XqADghIYKAE5oqADghIYKAE4Sb0qF0MWsxs+dJhPRDV+Y9bKxnWSmYvH5YuSv\nMuOpItP+z+yDB3Vmkrj5dHM//Z/m5TcPtwdmzNAHcrJz3DizvrzTL2VmkKj/ZqM+TuFFFzXirJzt\n3GmWN6y1bzyFEMK5syeZ9TgeIjNZzZo17ry8/elPZrl0ZrHOzF5qljs//riMrLzjDrPeUx/FTY/X\nX7frM8VvKITQarV982n8eH2c1vfdYg88+aQOJeAKFQCc0FABwAkNFQCc0FABwAkNFQCc0FABwEmU\nuGN/SYk5+OlvZsnI735n12tq9GE+/9yuv/pqep7lj6J95jyLi0+SmY4d7fqE17rpA/3M3ucgFBWl\nfp6tWplz3Kv+8kMIDXX2d2PixMYfftKk1H+WUfSF+DJvkJl4wG/tP+ulMpnp1ct+xj1de09EUUWj\nX7MRD3rGHli4UIfUHghvvZXyea4Wz/KfmZBpdeON9sDUqTITnbTLrMdxO57lB4BjiYYKAE5oqADg\nhIYKAE5oqADgJHlzlDx7Z/5hw3TkgaX2zbGLtmzRIbVtdrhVZxzFy9+2B+bPl5noIfsNBJn3vSUz\n46+16w0NMuKnZ0+znHXZZTIStRxl1uvCZJnJbtrUHpiU+kl+ErLNepvbb5eZ5jMXmPU47wJ9oPx+\nYuB+nXHUrFlvs75nzzaZiea9YNbbtrXfyhBCCC+Jj/lifWpuuh6yFzIkrRaaLRYsjL735zJzzz32\n5jhHiytUAHBCQwUAJzRUAHBCQwUAJzRUAHBCQwUAJ4nLpg7feadZf/Vjsf4nhBB2rDXLu7/zHRlp\n/uKLSaeRep98YtcTNlX4bSf73yKx0iyEEMLer9R+C43e66LRznl/rlmvnveczIwa9ZhZz85P2AAm\n0944JB3aqM1n5syRmc17nrAH9p2lDzRzpl2/Pz3Lpqqr7frpp+ulaYsW2cujrr56jcxc/PBD9sAC\ne6mZp2XL7HrvdXqZ0/pqe3nU9vE6025xo07rX+IKFQCc0FABwAkNFQCc0FABwAkNFQCcJL8CBQBw\nxLhCBQAnNFQAcEJDBQAnNFQAcEJDBQAnNFQAcJK4OUpBgb1rx7jX1CYfIRSojU7atdMHUmM5OfpA\njnr3tudZMbFKZkpndjHrS5fq42zKs99DFebOTfk8//hHe44/+sd0HfrqK7O87rbbZCTviivsgSVL\nUj7H8nJ7jkkbgOTmft+sb7z8FpmJnrrHrMdx27R8XwcPtudZNk8fvkl+vlmvXb1aZm7rZy+pLC8P\nqZ9nFNkHT9pI6eBBu3799TJS0MPeUGbFiqObI1eoAOCEhgoATmioAOCEhgoAThJvSi0RN5/Kfq+f\n/98+0M7kNGsmMwf37DHrTdK0z0DfvmJg506Z6djRrrdooY+Ts8reNX+7jrh5+227fsW9I2Sm+cn2\nZ5l32mkys3vOEvvP0qfmZtgwu15XZ994CkF/XlGG2P0/hPD6620bcVb+Wra0603DFJkZdMbtZn3e\navvGYwghPP7DRp2Wq0j8KoYu1H/369fb9fp24mZwCGHrX04RI1/ITBKuUAHACQ0VAJzQUAHACQ0V\nAJzQUAHACQ0VAJwkLpvaK+rD39XPOYdFi+x6Xp6MLO3Qwayr1Uze5OqolStlpvSh/zLrehFSCFde\ncuxeNyOXc4mlUSGEUPs3+3ybd9CZJYvt+pAhMuJGLWXLrtF7Mqi1VvF918hIl5G/MutVCYfx9NSD\nu+z6WXoJVHSnGtsqM6UZy8TIrTLjJd53sj2w2F56GEIIod06uy7XRYYQ5t945Cd1BLhCBQAnNFQA\ncEJDBQAnNFQAcEJDBQAnUZy0AcnWrfbg1Kky8nDrR816TY0+zKhRdr1z5zTsDB5CCA0N5jzf/stx\nMrJ2rV2/5ekL9HHUbvYTJqR8nmVl4u0L43Rm27b/ESNJ27nYO2rEccvUf5ZDhtjf18xMGSnvP8Os\nFy4cLjOLn33WrPeN47R8X6NotTnP996zd+UPQW9m3+W6c/SBLrnErk+fnvJ5XnGF/X09Re1lEkKY\nOdOuH3/8AZmJh4p1ObNmsWM/ABxLNFQAcEJDBQAnNFQAcEJDBQAnNFQAcJK4bCqKXjAH27Ytlpkf\nivfQzOq/QGa2Dhxo1s9M0zKUHVFkzrPNoUM6NH++We79jH5/zcQ/29PpkoZ5bhdzzGnaVGYqVzaY\n9Xy9OidMnmzXR49O/RK4wkJ7qc155+lMVpZd7/tLfbrDLrB/M1VV6VnmV1Rkz3PBxE0ys/nss816\np7/9TWaWrG9v1q+8Mg3zrKw057grt7uMZC+zN04559f6N7lli11vaDi6OXKFCgBOaKgA4ISGCgBO\naKgA4ISGCgBOkjdHAQAcMa5QAcAJDRUAnNBQAcAJDRUAnNBQAcBJk8TRDRvMJQDbv/tdGflBrr1q\noLr6CZlp2/Z2s759e3qejV6yxH42urpaZ7rcaZ/a+XV61US1eAtI9zQ8yx9Fb4oT25yQGmJW6+r0\n8/87dtj1c89N/We5QOxXUJSbKzOV4kPO26c/xw0n2VO5KE17T8hXE61aJSPRDfZ+Ga+8cpLMXHXV\ne2Y9jr+X8nnW1tq/yQ4dvpKZbt3s72Vl3E0f6MUX7XpODs/yA8CxREMFACc0VABwQkMFACeJN6VK\nJp5r1mcmZKqrV4uRG2Rm6tSks0i92bPtep8+OtNz6FCzXpvw+vlTG3NSzuIWfc16VK9vSv34x/Z/\n8md3bC4z2TffbA9MmqRPzkmR+Eyi559NSG0zq/FUfb5P3mjfE5qRcBRPb3x0plm/dIe96XkIITRr\nZt98uuqq52SmXz/9m021zA727+jQIX2z8Fur3jDr0WWLZWbQyJZmfa69V/W/xBUqADihoQKAExoq\nADihoQKAExoqADihoQKAk8RlU7NOHW3Wr+ijly7E02rNetThI5k5cMBenpUuL7xgLzcp2ztLZqKX\n7zLrb76pM3v/014K0jnh3LwcrK836/GHdTIzYb69pOSEr3bLzEr7kfFwsT41NxNy7b/7+IMNMtN1\nmP3di+46K+FI9jPuM2Z8LyHj59J7C8x62U0rZGZ3fm+z/mT/Cpm59dbPxEgrmfHS6jmxnGtdlQ7d\ne69Z3hdek5ETO40VIxP0cRJwhQoATmioAOCEhgoATmioAOCEhgoATqI41nfsa8UO6O3VLtchhKqB\n9m3eR4r1cTIz7fqMGenZsb+83N4dvHB+iQ4tXWqW35iv7oyG0OUyezpZ6djp/fBhc44LFup/Uy+6\nSPxRYuOKEEK4W3zOZWXHcMf+Dz+UmUtvstdYtGunj3PHHXb94ovT832tFPPsvlhvAhLGjzfLW1er\nzYxCED/LkJOG72tlpf2b7D6wrcycUP+JWd8/Ta+8Gb7S/o0fbe/hChUAnNBQAcAJDRUAnNBQAcAJ\nDRUAnNBQAcBJ4uYo6s1BpSuLZGZKXp5ZL3s3YQuQxx4TA1fpjKPC1Xeb9a336uUW/dfZ9fliaVQI\nIVSLulid5GpnRoZZLxo1Sofyx5hle/ub/7N3byNOytn6++wlW0X178jMG52GN/5Ap/xCDKRjm5sQ\n/j7HnueCL3Wm52r7nWK7Eo6TJeo5CRkvh8VGQknfvTVipVPXqXrJ5jvL1EY/+r1pSbhCBQAnNFQA\ncEJDBQAnNFQAcEJDBQAniZujAACOHFeoAOCEhgoATmioAOCEhgoATmioAOAk8Vn+ggL7NQQrfvCg\nzJR++kuzPnmyPs66DPsZ3C7peDVICKGkxJ7nrMn6Sef6li3NunoyOIQQlk6zV1SMGJH6V2dE0W7z\n4B9/rJ9ZzhkzxKwX7CiTmbfesuv796d+jpvEq0E+Wq5Xstx0k13fujLhqfFfiGf5y8rS8n0N3brZ\nE3rlFZ1Rr0epqdGZMfZeDuHEE1M/z4ICc4675q+QEfU2l/ff14f56U/tevPmvAIFAI4pGioAOKGh\nAoATGioAOEl89HS7+E/+Awl/4JlnnGEP7NkjM5vr6816pzTdlHr7bfum1Cn5+vCtRL3FgAH6QD16\n2PXRo1M+z13is8zOz5eZ6Tfad5hOPlkf54QT7HphYepvSk0WcxyZmysze6vtbb83rdW/iwsvfM6s\nx/EN6bkpNX26eXLTwwgZ+clP9pn1s846SWbUTZ7s7NR/lpdeav8mk25uq69yw82lMhM9Md6sx3Fz\nbkoBwLFEQwUAJzRUAHBCQwUAJzRUAHBCQwUAJ4nLpqLoJTGol9rU1bU163/+sz6J719rr1A4M03L\npqZMsZdolPbZJDPDJ9rvYB/zrD7ljqJ+YjrmuWGDOceHXz5XRtRzzlnqhe0hhM/Evgxt0jDH2lr7\nc2z/8u9k5u6PbzXrL72kj7PxAnuPg3Q9yz9ihD3P6ZsLdOiTT8zyDrFsLIQQ2vTqZQ9UVKRh74mv\nzDnuD8fJTObYsWZ9wUMPycw19kq7cPgwz/IDwDFFQwUAJzRUAHBCQwUAJzRUAHCSeJe/a1f7buKa\nNSsT/sgMs7po0SUyUXC1fUMtK013+UtL7XlOefnbOvT443Y9YbORLn3sLVWqqlK/2UR45x37g54z\nR0Zm5T1q1kt+nfD3ojaHefTRlM8xO9v+HHcdb688CSGEUFxs1xM+R2nw4LR8X7t0sedZtbpBZnYf\nf7xZb7JP//6feMKu33VX6r+vO8RGN0lvxNgg6v3H2xughBDCqnHjzHqPo+w9XKECgBMaKgA4oaEC\ngBMaKgA4oaECgBMaKgA4aZI0uGbNq2JELVAIIYQfm9XCHdN15OOPk04j5aacer9Zj2r05ihx7jZ7\nQL2IJ4RQtf4aMaKXu7hZt86uv/aajExeadfrR4m5hxBKD9pLrdJh4UIxUPOwzFTfcINZT3pvWt7a\ntUd+UilQdb39d1x4zWgd6mcvjyofqd9D9R/9E36zKTbkcvt8V/TV36+/nG7Pv1ZsvhRCCKO/bx/n\nnYRzS8IVKgA4oaECgBMaKgA4oaECgBMaKgA4SdwcBQBw5LhCBQAnNFQAcEJDBQAnNFQAcEJDBQAn\nic/yh7lzzSUA0Y8KZSSu+6dZX7EuW2YKRp5vD/z1r2l5pcRm8bqFTkOHysyu558368PEM9MhhFBd\nbdc3bUrDK1AKCuwTO3hQZ3JzzfL6p5/WEVFvko7X2Wzfbs7xny1yZES95qPXL/TpNnnP/qs8//w0\nfI4hhAkT7FegiK9kCCGEjcX2fhVh5EgdUpsjlJSkfJ7332/PsfOvG39o3a30FWUmr0ABgGOLhgoA\nTmioAOCEhgoATmioAOAk8Vn+ykr7Tlv3cQX6T+zRw64/8ICM1Ih6x3TcGQ4h7BJ3+bNbtNCh2bPt\n+pdf6szAgXY9HfPs2tX+oOfM0ZnNm81y2c7eMjLkgXPsgY0bUz5H9TmGOv0dz2ppn1bSjv3Ne/Wy\nByoq0vJ9VZ9ltOYhGfn2t39g1qu26VO21+uEkJOG72v37nbvSfq67upgn9au5frzF1/xMGLE0a3Y\n4AoVAJzQUAHACQ0VAJzQUAHACQ0VAJzQUAHASeLmKN3z7IUT3Q+skJnJD9irDc5NOM6vhtrLGmYl\nZDxlDxhgDyxbJjMH+/Y161sTjtM5P78RZ+VMLAGLvvOZjMT3rDLrQzp+JDO1YgeY9gmn5mX1K2L/\nF3saIYQQCpcvN+tX/0YvDdyyxa5v0odx9fDAd+yBNfpz2dqjxKxH2z6QmV697F9thT41N5XnjTDr\nBzrojXnaT5tmD+x/RWYKHhtjD4zYKDNJuEIFACc0VABwQkMFACc0VABwQkMFACeJd/kf/e8Tzfq7\n7+rMmaKeNWiQzNTUJJ1F6pW2W2DWp/ywSGY+m2pnzj69TmbimvMad2KOZlxr35v9/bUJoaxauz5G\n3BkNIcy8z77T/quEw3jp2dOun7hXr2SIWtvXFIsW6eNMndqIk0qBuw4+aNc/1L+x+rPt96PE48+W\nmaK1SWtzUit62n41y7Rp02VmxLPdzPrdl78lM+M/uMqsH+2VJleoAOCEhgoATmioAOCEhgoATmio\nAOCEhgoAThKXTY1uMsWuz26jQ7P7meV/zpsnI2+MGi1GHtXHcaSWwTwRl8rMIPE3F+87QR+oZX0j\nzsrX8Nb2BhFR3z4ys7DfYLNevixPZtaPa9x5ebrwQrs+YEArmbn9dnussE+DzBSGpXIkLc4R7+3K\nypKRzz60l7MV36EPc8YZjTkpX/GXneyBDm1lJtpRaf9ZBy7QB3pEbA7ToD//JFyhAoATGioAOKGh\nAoATGioAOKGhAoCTKI7tu38AgMbhChUAnNBQAcAJDRUAnNBQAcAJDRUAnCQ+yx/at7eXADz1lM4s\nX26WP71LP5f/5pt2vagoRPpAjkpKzHlOyJ0lIwsX2vUla/Qp7xX1jnH8b8/z88/3fG2Xa5x2WrMj\nmv/XeY4hHNk8/z/MMYRv7jy5QgUAJzRUAHBCQwUAJzRUAHCSfFPq88/N8o6+fWWkzaFDZv34DP1/\n1YtvtP9/uqgo4dwcRc/bN9n27dOZu1ddadaHFOv/ay9rUtKo8wLw9cIVKgA4oaECgBMaKgA4oaEC\ngBMaKgA4oaECgJPEZVMVi/ab9d4dN8nMRxkZZv2M8HeZiU/9uRiZJDOe4rEPmvXDmRN06LzzzHLZ\ngVIZeVLsDXCLPgqArxGuUAHACQ0VAJzQUAHACQ0VAJzQUAHASeJd/t7PDLYHHnlEZpr/w94cZIe9\nYCCEEELUxr7LHqfnJn8IYrOXjIwPZaS42D65sp7TZaa/3lMGwDcAV6gA4ISGCgBOaKgA4ISGCgBO\naKgA4ISGCgBOEpdN1c6bZ9bb5+fLzOY77zTr2QnHWbtWv4cpHVr1727WmzbVmbLbKs16zjUjZOb6\nzXZ9UrqWhwFIKa5QAcAJDRUAnNBQAcAJDRUAnNBQAcBJFMfH9g47AHxTcIUKAE5oqADghIYKAE5o\nqADghIYKAE5oqADg5H8BhtcLt2R0vvAAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  14\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFadJREFUeJzt3Xt0VdW1x/F1eBkgRrTIRYSIkIaA\nIBGR0sijIFIRpBToRasiQot4RWpj0YBAFSNYH1ij1wFoeVqL4yKlCFYB0UahiBgxchFTpBApUgQu\nRkBEZN8/+u/87SZ0ns2Qfj9/zjXm2Wvl7DPHHllrr5WKoigAAP51tU51BwDgdEFBBQAnFFQAcEJB\nBQAnFFQAcFInrrGgIJhLANY1HayTZs40w6MnNZEpRU+nzHirKLIbnG1Kpcxx5r/6ao0/K3XFubIt\nmvA7u2HatLSPc9o0+7scMEDnzJtnx4sf0909KOLNEvgu27a1x/iHP+icoUPtePmwB3TShx/a8QUL\nErlfw4oV5jgLX+0vU2bUucuMH3r4YZnT97v2CqB160Lax7lP/CYbv/KKTjp0yAwPX6rr1byF9lBq\nneT9yhMqADihoAKAEwoqADihoAKAk1Tsq6elpXbj8eM659577Y964w2ZkvM3+zLNmqX/n98hhJBK\n7TI7EP1mpcwpOTTSjI+blCVzqnZVmfGsrPSP8+9/tydsLrlE5zRubMfLF1fopAcftONz5qT/u8zO\nNseY+lhPvLRoMcyMqwm5EELocYU9lDoJTaKGhx4yx7n17rtlSt7hw3bDpk0yZ+Pll5vxzgmM88QJ\n+37NydE524faE29h61aZ02XPMjO+YcPJ/SZ5QgUAJxRUAHBCQQUAJxRUAHBCQQUAJxRUAHAS+y5/\nVc+eZrx4vF5qdc4bV5jxu77WOQfVC+AJiW6dZsZ3X/WUzMl82Y5nN7KXRoUQQuUd9lKrMGeOzPHy\n0Ud2vE7MHVA+r8xueMTeryGEEMLmzdXvlLf1681wdMMNMuWcTfayqS5iaVQIIdTp1atm/fIm1rPF\nrCgKYfVqM7z7Bz+QKZcF+934JM74qF17l2gRy79CCD3WP2TGS58slzlvd3xetNj3xT/DEyoAOKGg\nAoATCioAOKGgAoATCioAOImd5b9K7di9KmZHDWFTbT1ruk3Eh8Zt3OJo5SB7Nr9vnb0yp2FD+wSC\nyry+Muf43FVmvE4Cs/xqZ/4DO/SqhPr/0cmMf3GZ3mwifPxxTbrlS2zmsWHHDplyYPIUM/78Rfre\nG9ZhS4265U6cinEiJqUyf6AZPxqT807IFC3p/11GxfPthn79ZE7b6+34r/54scy57z7ddjJ4QgUA\nJxRUAHBCQQUAJxRUAHBCQQUAJxRUAHASu2xqXfEaMz7l9XdlztRbZ5vx9bfcInPGFBfHdSPtOne2\n472H2kujQghhTX6hGd+wyl4aFUIIQ1vYy00qddfcHBgz0W6YZG+AEUIIX3xUZMa7DCqVORvus7//\nJOwTy6O6ZGTopPvvN8PfCnY8hBDUoql2CS3zu+t7G8z4M2r9YQih21g7vqxpU5105pk16JWz/Hwz\n/NIeeylfCCFs3fqVGX/nnboy56H/Ecs5p5zcd8kTKgA4oaACgBMKKgA4oaACgBMKKgA4SUUJzUwC\nwOmOJ1QAcEJBBQAnFFQAcEJBBQAnFFQAcEJBBQAnsZujPPWUfXiM2LcghBBC48Z2PLONPlOq2e23\n2w0lJTrJ0dZUyhxng516SVnGBXbXGsVcZ/kL9ucNHhzSP87du+2Lt24tU6r+/oUZb99eX2ab2KCj\nXr0Exjh6tDnGvjv0hi0rD3Yx46m3/xxzIXsTjijKSOR+7dHD/l2+8cbkmKwLRVyfgRa9WmE39O6d\n/nFOnWrfr5deKlMOfLe/Gd+8WV+mZ89dZjyKmp/UGHlCBQAnFFQAcEJBBQAnFFQAcBL/Lv+KFWZj\nakBHmRK1KLAb7r1X5mwbNcqM50RRIv/kHzfO/id/yaq2Oql7dzP80iA9AVJkb4AfysvTP2GzXky8\nxcwvhe0i3jEckznRk2L8t92W9jFWVNjf4+LFOkdNWEz6ne7uwbX2b6agIIGJtxBCeOABswNPnX2P\nTFGHFowYoS9Tu/azZjyKbkj7OFOpLeYY69ZtJ3Py8ux4+aAp+kKvv27HS0uZlAKAU4mCCgBOKKgA\n4ISCCgBOKKgA4ISCCgBOYt/l7/Er+93Y6NEZOul7S+34M8/IlJwOHeK6kXZTnxArJPbvlzk/HnuO\nGT8+T1/n/ferREuWTnKy7lF7qc/8v+icli3teHSrGkcIYcSrdvy223SOE9XfRx7ROR98YMcnZ+rl\nhLOvqG83fGHvfeAtNclefzdhgs6ZNmiD3ZD/E5mzYkV5TbrlKtqZaTesniNzuswcWePr7F5Uasab\n1fiT/oEnVABwQkEFACcUVABwQkEFACcUVABwErs5yujR9mYTMZu8h58W2TPmdT7T11H7psyYkcxm\nE3372uM8flznrBm7xG7o00fm7DjrLDPeMoFNYAYOtMf44ovzY7L2mdHDh++UGQ1eW2E39O+f9jH2\n62eP8Y9rY1ZRrF5tho/l2zv5hxBCvZkldsO4cYncr6nUYvFjOk/mRDfOMuMvXbtA5nQRX1njJDYt\nGjnSHGP93+lZ/vfes+N79ujL3HGHHS8rO7nawxMqADihoAKAEwoqADihoAKAEwoqADihoAKAk9jN\nUR552l45kPWsfdZMCCGEDz80wyPF8oQQQpizb6BoWaaTHK1addiMX3NNQ520fr0ZLh8yRKZc/Pzz\nNeqXp2X59rk6Wa9PlTlV67eY8bKt+jqdfv5zu6G/vdGOp7feEg0xu6Mc+M53zPg5devqCy1fXoNe\n+Ys62N/Z7LF6M5OSo5eb8Z/13yZzevWyV2etiembmzffNMM33qhT2rT52ox/ElPmVsqWmLP2YvCE\nCgBOKKgA4ISCCgBOKKgA4ISCCgBOYjdHAQBUH0+oAOCEggoATiioAOCEggoATiioAOAk9l3+UF5u\nLgFIdTxfpkSP/9aMp35mH/8RQggdOtwkLp/MESjqeJBGjXROfr4d73Kn7nK3M8+0G6qq0j7OVOp9\nc4zRYX2eTarhp2Z8xYoLZM7VORV2Q25u2sd4NJUyx5ixc6dOKiqy41276pzate34bbclcr+q3+WJ\njh1lytIX7NU8Q4bot9lD+MqMRlH6j7PJzbV/k6NG6Zy7bz9ixquON5A5WS/a9Spcfz1HoADAqURB\nBQAnFFQAcEJBBQAnsZNStfIvFi36bOwZx8eZ8WhnpcwZp/f/TcSLL9r/fH/lFb3JcLdudrzBostk\nzriuG8y4OOXd1YQJHcx4quHbMifKG27Gn+uvd5g+9qU9+VEvpm9eMoqLzXjqgs9kzvjxz5nxg5v1\ndWYX761Rv7yVismnsR30a+TvD7En5qIPW+oLDRsmGtK/WXjjxnb87lf76qT2PzPDG+vr/vbuYP8u\nThZPqADghIIKAE4oqADghIIKAE4oqADghIIKAE5il02NGGHH584dKnMKxx6zGzbvkzljxmTHdSMB\n9nneeXl62dTBhvarvg2+tj8rhBDaP1OzXnkaMMCOTxuh91goGPGBGV/3whKZM00sgZs4Uab4adnS\nDEfnXiFTeqy3l0AtX64vc6ROEzOu3xj31WPCBDNeMl2/fl4xSyypeuYumVO5aZMZT+LXui6jt91w\nr700LoQQjlx+uRnPibnOErHHwWC1YvSf4AkVAJxQUAHACQUVAJxQUAHACQUVAJzEzvIXz7VnDecG\nvdlEEDOD4ZZbZEq7664TDXoG0tOVV2aY8exGVTJnl4jPULu5hxByVcNovamFl/bt7fius9rInD6T\nRb/OOEPmLF1qxxOZ5V+71gw3CXozk72/LrMblurdUXrPszeNWbNGd83TlhummfFj37PjIYTQ9fv2\nb7lyp773srdtq1nHPM2caYZTbfQxGvPn22OJG8b9Qz4041GkfxdxeEIFACcUVABwQkEFACcUVABw\nQkEFACcUVABwkooivWxiRyplNpaJDQVCCGHIEHupUbRWL0M5KjY1yIgivduDo2VinM1icraLeGZM\nztWPPmo3FBamf5wLFthf2rx5MqXtJ/Y6oBVbdXf3rLUvU1AQ0j/GOXPsi8fsdLKl2N7opV3YInPW\nXXSRGS9I6H4NvXvb48yMufsOHrTjj+gD3aat7mLGJ05M/3d54kQwx1jr/PN0UosWdjzm71LvTfse\nP3bs5MbIEyoAOKGgAoATCioAOKGgAoATCioAOImd5QcAVB9PqADghIIKAE4oqADghIIKAE4oqADg\nJPYIlEPiHXdxykUIIYRsEd8X8/7/4E1T7IapU5N5N7qszO5c06YypeL8881485jLtL/Qvsz27Qm8\n515YaF5832OPyZT/7GX3d+Vrurt1une3G0pL0z7GzeJ+bRCT01oc59OrV5bMee01sV9FlJXI/Tp8\nuP2e+8MP6xz1tRQV6ZxRoz4x41F0XvrHeeSIOcbnlupvU42lcl7M2TR5eXa8WTPe5QeAU4mCCgBO\nKKgA4ISCCgBOYielMtU554cKZE6Pm+wNYLfnx1xohz5rOxE7dpjh0TM7yZTZt95qN7z7rszJPFyT\nTjnLyDDDjWMm3p4Tk0+9u+sJxqNH7fgG3TM3u0R8yU9jXq9+2u7woEE65bXXvqp+p9Jg4UK7zwsX\n7pM50X57Mif1rSMxV9op4jGbPDvpO8ju7z49xFC5ca8Zz+3WW+Zs3WrHT/ZJkydUAHBCQQUAJxRU\nAHBCQQUAJxRUAHBCQQUAJ7E79rdqZb8z/JOf6A9ctMiOb9qkc56tbS/PGZ7UOeeXXGL/ER5/XKaU\nN+phxtt11F0+IOJNkhin2K9g3VG9NKzT5Xa3Mn74Q32dfLE+bsqUtI9x+3b7fm11dItOOnTIDE9c\nap9JH0II06fb69+iqGEi9+uMGfY4C4dWypzUBfZ6o+j2eTJn8K4SM75kSfr3ntgl9mVofvPNMmf7\n3Llm/Oj/6hrXLlP8zbKzeZcfAE4lCioAOKGgAoATCioAOKGgAoCT2M1R/vpXewvwe+7pL3O6d29n\nxkvFTH4IIQzv1y+uG+l34YVmONWzlUyJruxrxsXeICGEEOrVpE/OZrxuz+YXdovZtqS42I7Xry9T\n7tpTaMYf0ldx06C1fY+lwhcy5+ab7U1j5rR+QOZMDzHb3CcgJ8eOD75DnZcRQlRXJH3/9zJnya3q\n8/RqAi9X5tkz82vn6joyc7ydk7lYXyc/3x7jQP2njMUTKgA4oaACgBMKKgA4oaACgBMKKgA4oaAC\ngJPYzVFCebnduHGjTKkaNcqMj71RX+fqhfZSiGsT2hylpMTebGLbtpicHHvjiJdyxskcdX5NYWH6\nN5uoFJtNbI/JaSLi7e67T+bs/uUvzXizJL7LigpzjFmdc2XKts/tbjV57z2Zc6RjRzPeIKnNfLKz\nzXE+/7BezjRshL3ULXX0LzLncGhhxpMYZ7Nm9m8ypvSEQ+fb3cqdPFknTZpkx+vVY3MUADiVKKgA\n4ISCCgBOKKgA4ISCCgBO4mf5AQDVxhMqADihoAKAEwoqADihoAKAEwoqADiJPQKlbVv7fdoPPtKH\neez76isz/psH9WqCtm3t+MCB6X/HPYQQwsSJZue2TJ8uU7qdbY8nL09fZt0uca5CZWX6xzl7tj3G\nbqNlyq6L7G5lxVym66xZdsPo0Wkf41tv2ffrd/57uMx56doFZvzqoov1hTp3tuNz5iRyv1ZW2uN8\n802d8+MBVWZ891lnyZxru9v3eGlp+n+Xm8TeE/m9eumkRo3McNmkJTKl05Mj7YaT/C55QgUAJxRU\nAHBCQQUAJxRUAHBCQQUAJ7Hv8m8TM23fDh/LnGitvWt49rUFMmflx/aEWl5SO6CfOGGOM1X7kEyJ\n3rG3809d2lznzFpqNyQwA35cfJf7YnIaiHjWhAkyp9PL08x4WVn6Z4YLCuzZ765ddU5z8XW1b69z\njn/fHsrVCd2vM2bY4yxsqWezU0N+YMajK/vJnKpVq8x4VgLjVPdr3XBA5vTqdbYZf/llfZ16ncVq\njvJyZvkB4FSioAKAEwoqADihoAKAEwoqADihoAKAk9jNUbb8wV5SFWWslDkz1vc145VLy2ROxaVx\nvUiA2FRh/nx7Q4kQQkhdep4Zz8trInOWNbU3IhkY0zUvdcNjZjzq+rzM6fL1n834vOl6RUnZ+OOi\n5SGZ42XRIjue3fyETrrjDjteNFPn/OlP1e9UGvziF3a8MHOEzJk82b6XK27Qv+UtbezveZDM8NOp\ng117rotZzlZUZMc3btQ5m95/34z/l06JxRMqADihoAKAEwoqADihoAKAEwoqADiJneU/eNCOp276\ntsx5V+2Bcc01Midjp96gJQmpz39vxv/WR+dE+88w4/2u1zlXXVWTXvmK7hMrFjJ/JHNeHmHHz7mo\nqb7QBRdUv1POsg+W2w07xI0cQkg9UWzG9+8vkTnqmJu9e2WKqxMjxLEdVz0jc4YOs3+XFffr6ySx\n+kQpb2qvFgq/f0Pm1Fr0hRk/sfC3MqfgR/r+Pxk8oQKAEwoqADihoAKAEwoqADihoAKAEwoqADiJ\nPVMqTJxoN+bkyJTcB+0lHatX68tk98m1GyoqEjmjp149+4yeY/lddJJYU3bOvgqZsvr/7OF0SuCM\nntJSe4w9mm+XOcdbtzbjcauDmt14o92wYEHax1glziHKqltXJz35pBmeusfeyCYmJezdm/5zs0II\nIZSXm+M80V6cjxRCqFVbdG3WLJmz/JZbzPiAJM7OOvtsu/bs3y9TRo+xnw8HxezmIvZFCgUFJ/dd\n8oQKAE4oqADghIIKAE4oqADghIIKAE7iZ/kBANXGEyoAOKGgAoATCioAOKGgAoATCioAOIk9AuWt\nt+z3vy+7TOfsEO8Mt/rsM520eLEdHzkymXejc3PNcdb/WL+Xf/vtdvzOO/Vlmja1j2+Iou7/8jg/\n/fTzb+xyjXPPPbNa4/8mjzGE6o3z32GMIZy+4+QJFQCcUFABwAkFFQCcUFABwEnspNThrvb/l2vN\nny9zWo0fbzcsXaov9Mkncd1Iu9Rf7L5FXx7TSWPG2PH3rpUpX34pzhoHcFrgCRUAnFBQAcAJBRUA\nnFBQAcAJBRUAnFBQAcBJ7LKpPb+1X7cty9M5GTfZS62yYq6z4QX7OoNjcjxF1xSZ8XG/WCZznph7\ntxmf1bWNzOlxhv23yePUBOC0wBMqADihoAKAEwoqADihoAKAEwoqADiJneX/9a/t+FNv6025D4j4\n3pjrDP7gAdFyT0yWn2ld7dn8ohE6p+QJsdSh4bMy58B+ZvOB0xlPqADghIIKAE4oqADghIIKAE4o\nqADghIIKAE5SUczGHLm5wWysmLlGf2IdeyXW8p49ZUpTEe8cRXp9lqdx48xxtlpeIlNK/2p37a7r\n9N+zTx87PnJk+JfH+emnn39j12Sde+6Z1Rr/N3mMIVRvnP8OYwzh9B0nT6gA4ISCCgBOKKgA4ISC\nCgBOKKgA4CR2lh8AUH08oQKAEwoqADihoAKAEwoqADihoAKAEwoqADj5f9uGF5sYg+mMAAAAAElF\nTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  15\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFdlJREFUeJzt3X2Yj2X6x/HrK6RiTJqGZtF4SGTT\nE7EqdahFtmZr240DTTVaSw/W7g8VkjhqhZYVeQiLPLbWz5YyzbEJYYeV1SRpPORpJ48bo90dQ+7f\nH/v78/zcGZ3fr6P2/frzvI6z67q+9z1n9+G67utORFEUAADfXKVzPQAA+K6goAKAEwoqADihoAKA\nEwoqADipHNe4KJEwtwC0+FTvDBg2zI7PG1Mic5rclmXGi4tDQo/Oz+nTwZzQpvN090ufs3+Dds/q\nnHZf2TmVKqVgnqWlZufrPkmTKVEbe1i7F1T8+n/ySfLnWCruV33nhdAsvCNaPpc50dUv2Q1FRSm5\nX0NmpjnPN6YdlCn33GPHT9+VI3Pe7v2GGe/cOfnXcudO+2+yUaPdMuerry4345WaN9MdrVxpxzMz\nz2qOPKECgBMKKgA4oaACgBMKKgA4iV2UKp9rLz4MGaJz/vCHLWZ8/nz9j/x7w/dES2pei90qFp+u\n//BDmbNvlx0vf0ePudLjj9oNr7wic9yIi1bj5ZdlylWzZpnxH3R9X+acCO1ES/KvZVqfPmb8cH/9\n+0bDcu2Gu+6SOWu7fGTG2+qhudp66JAZX71a5xyN7Hu8/iZ9XTb/SKzLpOB19X377Pi2kC1zKqXX\nMOO595TKnNdq2/dyFGXKnDg8oQKAEwoqADihoAKAEwoqADihoAKAEwoqADiJ3TbVvbva6pQhc6Iq\n15rx3K7lMqdunQFxw0i6qx5+2Iy/sauFzHnkETteOeYXLRncvCLDcrVabI86HZNz8MEHzXj0zDMy\np88he0vNpJh+3Myfb4YbZmfLlMz82Wb8vot0N5NajanIqNw1veUWMz5ytH79vHED+7osWaT7qXnD\nJjOeis2M7SZ3M+PzYnJ2Hj9uxnft0jnRD0eIloKYnjSeUAHACQUVAJxQUAHACQUVAJxQUAHASewq\nf1SvtRlP7BWnXIcQDuy1V/PHVdH9bNk/yoxfpVN8bdhghtv9Xq+aDvmdvdZZvXpMPzMX2vHHHotJ\n8rHqeXu8PXronMwl4+2GwkKZM3m+faDMpEnX6I68XHGFHe/USaa8easdb31xscyZsXq9Gc+TGb6W\nD1tlxttvsP+OQgihbJwdX7FC93Mg2Dt2UrLOP3OmGd6crdf5+/3G/ntdNXKt7mdpy4qM6mvxhAoA\nTiioAOCEggoATiioAOCEggoATiioAOAkdttU6NrVDBfe10Cm1F75uhnvu/p+mXP/y+fu2zUhhBDG\n2IddzNveQaY8/pg95kriu0YhhBDy8ys0LE+D6sywG8Ztljn7xo4143VbtZI50YC5oiUF26Zaii0w\ne/fKlD7P2AfgrP7blTKn8Of2fZmXon1T199u33u9xLhCCKEkQxz0c88S3dFDRyoyLFeZdaua8YPP\nTtRJ4tCYMGGCTHm7h70Nq7PuJRZPqADghIIKAE4oqADghIIKAE4oqADgJBGlaiUdAL7jeEIFACcU\nVABwQkEFACcUVABwQkEFACcUVABwEn84yo032nuq0tN1jvhIUYc5uTJl6VI7XrVq0B91cvRlImHO\nM80OhxBC2BLZQ2u6Y4fMmVfY0Ix365b8ec6ebX8I6MEHS2VOVCXDbog5bKLkrl5mPCsrBdeypMSc\nY69hWTJl6pA9Zrz9Q/Vlzoz37KlkR+KmcDZ1qn0tew3JlDlN0g+a8U2bdD8X9rOvZZg6NenzTCQ+\nNOdYWKgP2Tl2zI7HfTft0CH7AJgouuSs5sgTKgA4oaACgBMKKgA4oaACgJP4RalFi+x43boypW8/\nu0a/9pru5uj59r//ZqbonIFHH7D7Ob3tBzKnuFA09O8vc6r1WFyRYbnKrVNgx4+IU+5DCKs2l5vx\ndht+K3OyynaKFntBzlW/fmZ46kcf6ZxdU8zw5Ml6USp76UsVGpa3BQvseMZke+EphBCKv5xtxg9f\n9KDMWfGW/XdxtqfZV8SUKfbi04kTOqdD4XAzfvjwUJnTtOklFRrX1+EJFQCcUFABwAkFFQCcUFAB\nwAkFFQCcUFABwEn8J1D27DEbm3XUW0patbLjLfXunND3tiK7oUWLlLwbHdauNeeZN62tTOnxe/Eu\nf0w3VUU8IwXvgC8V5xWc/pO+/jkLulW4n33z55vxuql4z71XL3MyX776qkx5a4E9/w8+0N2MHG1P\npVKK3uXPF9fy3mr6WpaV2fv8jh1rI3PS7rjRbli/Punz7NbNPq9gXpvxMifnz33N+NGjup9Vldvb\nDcuX8y4/AJxLFFQAcEJBBQAnFFQAcEJBBQAnsYej9B1jr+avW6dz0raut/9bc8SKYQghtPwybhjJ\nJ06gHzf/JpmStnu3GR84Qe+AuPZaO17xtfSKUwezd/pxzGLmFVeY4bT9xTLleLBPeU/JMTcZ9hcG\nut2te89/wI6XF26UOdtH2/HGMsNXyXR7Pv/uGXMt773XDCdq3hHTk72inoprqc5fSvxSH1j08cd2\nvHnzr2TOusLlZry1zIjHEyoAOKGgAoATCioAOKGgAoATCioAOKGgAoCT2G1TQ162t2HUfPmAzHnp\nJXt7VMz5FKH/y/b2pPop+qZUOHzYDKfVqydTEpenm/Gnn9bddPtiomh5TCc5GSLmUrZ3r04SbaU/\ntw+hCCHEfG/sNp3j5b33zPC+mO8QnXeeaFi2TObEnLWREnkjGphx+wtg/3H+/9rbo6J1MacW7dol\nGvSBKl5Gj7a3OkW7a8ucQZPtePTpDpmTuNL+O46iTD24GDyhAoATCioAOKGgAoATCioAOKGgAoCT\n+E+gAADOGE+oAOCEggoATiioAOCEggoATiioAOAk9l3+GTPsrx3kbf61zCkdO9aMD3lC7yZ4SpwZ\nkBVFMd90cHTBBfbgjh3TOStWmOFaXTvIlA1f2NNpmIp59u1rzvH0OPszFyGE0KmTHS+4ebjMefH8\noWb8ySdD0udYWmrfr2mXXyxzio7ab+a3uOUWmTP7kVVmPDc3+XP8/37Mec6eUCpz5tSsacbj3ljv\nGIrMeBRdnfR5rltnz/Hdd3VOS3EsQYfV9j0ZQggDy+x7edSos7uWPKECgBMKKgA4oaACgBMKKgA4\niX31dHkiYTaeekfndOz4uRm/7rrLZM6TT9rxLl1S84/8YeJEc0KJx+3Dsv/DPpT6xIk7ZUbVli3s\nhqKipM/z7bftf+RfvVrnLFhgxz/77KDMie7tbTcsXpz0ORYX23NcfKXu+ulgLzz+O9iLOCGEkFnD\nvv9LS1Nzv/5D/F1Wj8mxvz4fwr/+qP+W77uvzIxHUbXkX0sxx5lP6/G+sD/Pbvjzn2XOVnGIetOz\nXCjmCRUAnFBQAcAJBRUAnFBQAcAJBRUAnFBQAcBJ/In9s2fbjZMm6ZwaNez4tm06Z+5cO962bUq2\noSQSJ815RtNfkzlNRtpbNIq3npY5h8VH4DNS8C5/IvGVOccdO9SH6UNo1GijGY/WnZI5WffYW81K\nSpK/pahcbLWp+ve/y5yB47LM+JDRerib19h/Fm3bpmbb1Gkxz/UxOWrb1KAPP5Q5ZddcY8arpeB+\n3bPH3gJXf4k+e+LoL39pxtPXrJE5JdltzXhWFu/yA8A5RUEFACcUVABwQkEFACcUVABwEnti/9Sy\nXDM+ZIcdDyGEHj3s+JLtup+d08ShBm3tFThvv/pVFTM+9ZQYVwhh27YjdsOct2ROxoABFRqXpyPi\nUtfapY9AnzKlvRnf1FovgM6MOTgn2f5WaPd95Ht6vKOuvtpuaNNG5oiPNaTqdg2Vjtj3XpuRI2VO\n09GjzfgpsZIfQgi/6i02+cSMzUv9fWvtBvXjhxDU9wouvqlZTE/yAJiYHI0nVABwQkEFACcUVABw\nQkEFACcUVABwQkEFACex26YaN7bjN9+sc8aMtbeoNLY/2xRCCGFjmxlm/HrdjasJE+x4+aI3ZM6p\niTlm/P6lektZerodnyoz/NT62c/M+Krbb5c53US88y36WubH3BvJ9vHHdjwvZgvU8Dv/Ysbj7vHB\nt39kxgcNEluwvC1bZoaXiK1RIei/pXR1U4YQ6tWryKCciWt2YNJimdJ1vx1/9y9621z7554TLUNl\nThyeUAHACQUVAJxQUAHACQUVAJxQUAHASfwnUAAAZ4wnVABwQkEFACcUVABwQkEFACcUVABwEvsu\nf3j9dXMLQKJLJ5kyfXqaGc9bYr/7HkIIC7vb78x36RL0S7iOhg4N5jxHjCiMybLn+cQTV8mM8YfF\n2/Hz5iV/njNm2Ns5FiyQKTceLTDjb76pu6n9QAe7oaAg6XMsKrKvY4tTG2XOhhtuMOPVY/q5UMTr\nR1FK7tcwfLg5zz3PPitTJgywL/+vR+sh16lRw24oLU3+PAsK7NrTcYtMiWrY79/vOn5c5mSrd/mH\nDj2rOfKECgBOKKgA4ISCCgBOKKgA4CR2Uer0T+8344UxazWtLy4244vT9WHNzw+z41266H5S4brr\n9MHEGxvbv83wjNf1f7BynW86pLP36qtmOFH4J5kS/W68Ge8zrK/Mmb7CXsgqjxmal+pqJemR/jJn\nlYg3iemn1hp7gad+TI6nErH4VH/hQpmzdY4dPxjTT52TJyswKl8bM+zFzYcfFoueIYTwVGcznD1m\njM6JK2ZngSdUAHBCQQUAJxRUAHBCQQUAJxRUAHBCQQUAJ/En9qelmY1D+5XKlBEj7I0Y0YszdT9q\ne8bgwal5N3rnTnOes1c3lCm5T15mxmud+FzmPP64HR8+PPlnFuTm2u+5N22qc/aL75yPT9ffLE+M\neNiMR1GD5F/LRMKc4/KYlJbH7Pv/wpp6uJVnzbIbcnNTcr+Wl9vXcuv5uvvNc+15bt+u+xmaPdtu\nSMU816+3B/yLX8iU7Zs2mfGqu3WNq365PZVaZ3kuA0+oAOCEggoATiioAOCEggoATiioAOAkdpW/\nfXt7NTFmoS1ccIEdzzk8Q+YU9+xpxpuk6AT0jWJ1+Po+fXSSOnChWjWZ8spk+/9fjz6a/FX+MjHH\naq1ayZzDf/2rGc+YMkV3tHmzHR8/PulzTCTeFzfzlTInuvoOM56TXSRz1BR37kzNFyaKxLWM+8pA\nw3r1zHitL/fIHHWL5+WlYJ5Nmtgn9m/7WKZED9h1JIj7OIQQ1s38xIy3bn12c+QJFQCcUFABwAkF\nFQCcUFABwAkFFQCcUFABwEnsN6XeeM/eOVC9p/hATQjhX3d0N+OJi+zDREIIIWqjv92UCk/90N5t\n07Wlzml6kf3btF2zRuYcP962QuPyVO3FF814zuqBMqe/2DmScXMvmTNugx2fqofmyP6q0xNPZOqU\nR+x7uavYGhVCCN27q++j5egkR+op6I4GegvkZ5+9b8bnztX9dBt3o92Qt14nOTm6bZsZ/3eoqpO2\n2XWkaOtWmXLvvXa8pER3E4cnVABwQkEFACcUVABwQkEFACcUVABwEv8JFADAGeMJFQCcUFABwAkF\nFQCcUFABwAkFFQCcxL7LH0pK7C0APXrIlPrbl5vxxo11N9Om2fGGDVPzSYm1a+1PvTRtqnNq7dpo\nxl/Iv17m7N1rxydNSv48O3Sw53jqlM6ZJ85yWPtHvTPkvvu2m/Eoapz0OW4Snwa5duFCmbPu8vvN\n+Fdt9HAb7bfnX7t2au7XrWKeVXdUfMdOo0bqXIIQOnWyzyZYtiz58xw61L5fr71W5wwbZse7dtU5\ngyqPshsGDuQTKABwLlFQAcAJBRUAnFBQAcAJBRUAnMS+y//CC/ZKW5zBg+2Twf8Z2smcJXPtbrp1\nS82qaXj+eXMAJUOGyJSslSvthiVLZE7Z2LFmvFoUJX+eb71l/8gxXxgouO0FM96hcLjMSTz7tBmP\noirJn+OWLfZ1bN5cpmTNmmU35OfLnMR8e/6p2MkQQgihRQtznomPFsuUDz6wt9n07q27UQfdl5am\n4O9y4kRzjn0/fUymnDxpxydPLpA5V1zRwYwXF5/dHHlCBQAnFFQAcEJBBQAnFFQAcEJBBQAnFFQA\ncBJ7OMqECXb8oYd0zkmxPapKOCBzRopDQ1LmgQfMcNadd+ocsaVqaMu3ZcrwdTGnNCRZ4V13mfE2\n774rczoM/oHdMHeuzIm+/6Zo+YnM8bJUbI86GJOTt2mT3XDTTTpp/hdnPqgkKJpTZMZr3KxzbrjB\nPgQlOtBGJ7VuLRo+0zlOfvKuvT1q5kydk1b5X2b87rvtrVEhhHD0aEVG9fV4QgUAJxRUAHBCQQUA\nJxRUAHBCQQUAJ7GHo4RmzczGVerUhBBCuxdftDt60l5lDiGEE8Fena2aikNDQghviE9KDLtO/zaV\nxf6I9dsu1v3MsleHc3JScNjE4sX2ZMaNkynLh60y47ffvi+mI3v+UXRR8ue4c6c5x4LtDWVKRkd7\nWC1iuun8Q/unLChIzWE+Bw7YhxbVfmmgzEmMtg+t2b9f36916tiHikRRh+TP87LLzDn+4+PPZUqt\nn7Y34zN62J9lCiGEnj1LzXgUpXE4CgCcSxRUAHBCQQUAJxRUAHBCQQUAJxRUAHASezhKGDPGDNcV\nB22EEELOanvrRvSO/q7LnI52vIcematsEW9sf4YnhBDC69lii8quKjIn5zfisJGcv+iOvIwcacd7\n6F+5/W2nzXiDBnVlzqlTFRqVq1fy7e1RP3lM74ARR6OEKkGf2PNMzHkiqXCx2OnUcNGomKzdZrRO\nnU9lRrSyWgVG5axZMzPcvbtO+ecpe3tUv3Sd06BBWkVG9bV4QgUAJxRUAHBCQQUAJxRUAHBCQQUA\nJ/GHowAAzhhPqADghIIKAE4oqADghIIKAE4oqADgJPZd/kRimbkFIFp5kczZcuutZvzCmH5qiXha\nij6BsmWL/UmJ5s1Pypxo+mtmvP2cPJnz3nsr7P9WdNs3nuehQ8e/tds1Lr20xhnN/9s8xxDObJ7/\nDXMM4bs7T55QAcAJBRUAnFBQAcAJBRUAnMQuSj3//J1mvPhW/e/OVw0YYDd8//sy5+2MXDPeWQ/N\n1VXdrxMt02VOWc+eZrz/W3pRavmiuK+9A/i24wkVAJxQUAHACQUVAJxQUAHACQUVAJxQUAHASey2\nqUGPl5rxzHH6NdyDQXyvfto0mdPi/QfthhR9TWDhU3+zu796i8z5bb49tv/50RcyJ6pSx24oL9eD\nA/CtwRMqADihoAKAEwoqADihoAKAEwoqADiJXeUvr5Zmxnv31jmZk0eZ8VWH9IEqmUfO7eHdCxfa\n8S5rJsucXxcWmvHCn62XOX0usVfzJ+mhAfgW4QkVAJxQUAHACQUVAJxQUAHACQUVAJxQUAHASSKK\nOYAkkSgzG6NW7fR/MT/fDP/jkktkiqrq6VGk91o5Op1ImPP8USf92yw70d6Mly5ZLnNq1vzQjEfR\nNd94nocOHT+3e8++gUsvrXFG8/82zzGEM5vnf8McQ/juzpMnVABwQkEFACcUVABwQkEFACcUVABw\nErvKDwA4czyhAoATCioAOKGgAoATCioAOKGgAoATCioAOPk/YGI5dRvUJroAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  2  Chhanel No:  16\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADnCAYAAABBu67aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFYJJREFUeJzt3Wt8VdWZx/F1AGMETBEvTSMyUa6G\nNAUEpJIJF8NFwHCxOkIxMgyDtFgQSpXSQhHpVC1NHUbHAlYRlXaspZFbKdKURiYiog0BETJUARGj\nAoZgIUXN6Yt5+/y3JPOczcfO7/vyWZ+HvdY5+zzsT9baayWSyWQAAPzfNTvXHQCAvxcUVABwQkEF\nACcUVABwQkEFACctIltPnbKXANTUyJREh51m/MSJMTKntNSOFxeHhO6cnyOJhDnO/RE5mfsavzqi\npos9nIJkMuXjrBNjzPj972XO3RsHmfEHSzvrC1VW2vGWLVM+xvLyYI7xrrt0Tm6uHV+Zv0wn3XGH\nHY/hewwhhDLxXfaMyGnTt6/d0KOHzNlz53+a8Zyc1P8uG8QYmw0cKHPq/vAHM57RvbvMqRD363VN\n/C55QgUAJxRUAHBCQQUAJxRUAHASPSml/OIXEY3pZrS2VmcMHdqkXrhRXSuI+AN4tYh33r260Tlx\nOCLiFddfL3Me3GlPMIYwWuaMndDSjK/WH4sbNR/29NM6p1u3Y2Z85Zx8mbNdxPvoy7gatHSpGa9T\nk2UhhKyDL5nxx+bp61SKyeKcHJ3jpdnrr5vxPd26yZycffvM+NWj9CTqp53seFN/qzyhAoATCioA\nOKGgAoATCioAOKGgAoATCioAOIlcNvVmq1ZmfM7NUe+xf2hG2z9XIjOO3Dorqhsp99y99njmT31f\n5nR+eL4Zn/XRQpnzxjD7OiMj+ualq1gC9mB2mcxpL+6OnHR7aVwIIYzWK6pSbsUKOz5jxn83+t/K\nKuwn28ob/a/5umDGFDN+uu8TMufdbXvMeHq6XgM19Xvidfa5qT/l403Rr25yAWAIoUu9GU4+/YxM\nyXvg643q12fhCRUAnFBQAcAJBRUAnFBQAcAJBRUAnETO8rcT8YgNsMPoX7W1G57SSRnf/rbdkEz9\nbGIIIcw/MMlu6PiczEmcPGzGf/1rfZ2SiVWiJU8neVmwwAy3iNg4JGeivd1H4pXNMucZPaGacq+N\ntldYlC22V2SEEMKgjXeb8f+6Rs/ydzz4QOM65uz0I4/bDc9dFJFl/5qnTdMZ49Tql4ireOnQwd60\nJvkTvTFTVaG9WmjJlit1Ti/x2w/iM/4MPKECgBMKKgA4oaACgBMKKgA4oaACgBMKKgA4SSSjliad\nOWM2bjj/fJmitlrIiOhEixN2HzIygtidwVdJSTA7kP9tffm9T9p9Hn+7ztkm4vnJZMrHuWGDPcb7\n79c5aknNxIk6R7U9+mgM32V5uTnGo/37yxS1/U3pD/Xv4m6xaUiLGL7HEEIoKrK/y7Vr34rIelPE\n9fKw5F/F81ZaWurH2aePOcb2NepErxAO7T1lxhOtDsicZPYIu+Gtt5o0Rp5QAcAJBRUAnFBQAcAJ\nBRUAnFBQAcBJ9Cw/AOCs8YQKAE4oqADghIIKAE4oqADghIIKAE4oqADgJPJMqQ2JhLmmavjSpTpp\ns33e0KZf/UqmNIj4sJg2m9gqxln1iF5SJo5oCosW6et07WrHCwpSv3HIe+/ZG2rs26dzMvrb3Voj\nzhoKIYT5tfa5PqGkJOVjLCiwx1heelzmZOXaZ6AdGTlF5iSW327Gk8l+sdyvVVX2OPPy9RZEdYfr\nzHhGvdoeJoRJcy4z448/nvr7dc8esWFRvs758MOdZjw5cKZO+v737figQWyOAgDnEgUVAJxQUAHA\nCQUVAJxETko9NNiefPgkU+cUrZ1hxiP+lhxajhsX1Y2UU8PJn2jvAB5CCN9ckG3GqwfoP/KfS+dl\n2n9jL5g3T+ZsFfHCwogL7e9+9p1yVv6zPXZD644y59ZbRcOciNnF5fYET1zytiyxG3bskDlf/KId\nHzzYnngKIYRt6oiJGOQcLTfjxxdUypy6idPN+Huny2TOmDF2vKJC9y0KT6gA4ISCCgBOKKgA4ISC\nCgBOKKgA4ISCCgBOIpdNqfdmizZ+UyddeqkZLmx3SKZk1tvx1foqrrJVw9SpOkm8mJ+bq1PS0+14\nXQyrcNSn37ZLF5mTL9aUlH+ir/PJ7fZ77i2Ki3WSkz3dupnxnO98R+aU/PTHdkP+r2XO+vVjG9Uv\nd088YYbLcu1lQyGE8Pzzdjw7W19mxYqz75K7e+6x41deqXNm2Es2f/+M3nuiIvlV0fKSvk4EnlAB\nwAkFFQCcUFABwAkFFQCcUFABwEkimdQzYGH7drPxgv59ZMo79fYmHHfdpq+zcuSzdsMtt8SyA3qf\nPvbu4O3a6Rw1m7+w0N7UIYQQLvtagRl///3U74B+XJxK0FYdIxBCmH/zG2Z89259nd/85pgZTyYv\nTvkYly2zv8eiO/SlM7/8ZTO+bdcumVP2Q/tenjs39d9jCCG0b2+P8+237R3rQwghOe4BM/5vuatk\nzrDv2cPpGcNJGg3iftVnL4Rwyb33mvE+6+bLnHWv2EO5rIlj5AkVAJxQUAHACQUVAJxQUAHACQUV\nAJxQUAHASeTmKGH2bDNcX/9DmdJ26VIzvnJyg77O4gOR3Ui1p8XSidaleqnXhAmiYf/PZM7mD/qL\nloila07UsrUFC3TOfR3+Ilr2y5zkbT8RLSv1hZyoM5BmX6g/37oa+0ylvgMHypzxj9nxuXNliqtD\ndz5oxveMvFvmJLo9acaTV7SXOfr0ptRrduONZjx97VqddM01Znh7uv15hRDCAzfZ94bYmuUz8YQK\nAE4oqADghIIKAE4oqADghIIKAE6iN0cBAJw1nlABwAkFFQCcUFABwAkFFQCcUFABwEnku/zTp9sv\nmZeW6pzsbDv+4oufypzksRN2Q9u2sRwpESoq7KUO6eky5X3x3vDGJ/WqieKf9rAb/vSnlI8zkTgs\nOvZiRNYtZjR54xiZceqXa8x4y5apPx6kvNy+XysjXkqf/lie3VBYqK8zusSMFxTEcwSKvF+HDdM5\nj9kbEFR1tb/jEELIu/YCu+H06Rju1w/F/bpP5uzc2deMd/2K7m7ahRfaDXV1HIECAOcSBRUAnFBQ\nAcAJBRUAnEROSo3/D/vvsks+1RNMYepUO/7wnTIlcfHVZjy2t2L72n/MLtui/78Z1Lu3GS+4PeJv\n2evWNapbngYObCdaxskcOS+zYq/MaTlnut2wZInM8dKrlx3fsUPnJHa9ZMaP7Wotcza3lpNS8Vi8\n2AxvPXlSptS1tiefhrc5JHMS9avNeBw/yyefvMiMF+/fIHOuGm3/jvf+NaLHXa5sVL8+C0+oAOCE\nggoATiioAOCEggoATiioAOCEggoATqJ37B8yxGzM2LZJppw8+bEZX7r0PJlz9Kgdnzs3nnejq6vt\nlSBdujwkc5Jhphmf8q/681TLeqZMSf04q6rsMeY9N1/mHLrvPjN+fo0e4xf3ldsNBQUpH+OGRMLs\n2PCbb5Y5RfXPmvE1mVNkTmL5vWY8mfxSPO/yr19vjvPwyJEy5YrwkRmfN6+VzFk49YjdkJWV8nGe\nEd/l5Nv0vTf7Kbtbea++qi+Um2vH09J4lx8AziUKKgA4oaACgBMKKgA4oaACgJPIzVFCx45meM4A\nndK1qz2bv1fvpxHu+p6YUJsbz+4oXbocM+PJf9f/31xwj923cZ/o60xZVyQa7F3uPR0Qu5bfNVB/\nxmXP28sSqjP1BOiFf7H/vZYRffPS/R372jf8i84ZMMCO131jmcw5uVyNP5779fH3RpjxSfPmyZx5\nwZ7Nr63V1zlzSZYZT9MpbtJuvNGMryxcKXNWFtqff96wy/SFfvADOz5tms6JwBMqADihoAKAEwoq\nADihoAKAEwoqADihoAKAk+hlU0JlpW6b+9FcM179ox/JnJa33daUbrj54x8vthtqs2XOl75kxx/f\nkSdzDuzaZcb1VfxcJ+JFYZDM6bOozIzXXKGXB5WK5XE9e8oUN5mZdlwc/xVCCOGecfaZSoNGt5c5\nj4u4PoXK18aNdnzSthUyZ9gvF5rx5s31ddK2yY1udJKTTXfaSwl7DdVL9op/Yu+y9N6u92VOZqbd\nlmzaqimeUAHACwUVAJxQUAHACQUVAJxQUAHASfQRKACAs8YTKgA4oaACgBMKKgA4oaACgBMKKgA4\niXyXf9Ik+0yHkif0+7SqQmf8/Of6Qrm5drxPH30hR7NmiXE+p9/nDps3m+EbZnSWKb+tFBsAvPtu\nysdZV2eP8QtfeDciq96MJtftkRmJkcPsnGTz1H+XmzbZS1buuEOmbHjkLTPepo2+TL9+r5jxZLJ3\nLPdr27b2dxm1x0b7LeLokJMnddLs2Xb89OmUj/OGG+wxnjihcypuXWLGEzNuljnJgV+3G8rKmjRG\nnlABwAkFFQCcUFABwAkFFQCcRE5KLVhgx+9uoV9XXTZBbErbWm+/e+Caa8x4dkyvxZYsOmXGV/Wy\nNx8OIYTxW+1thu/Z2EVfqFOnRvXL07XX2vFk37Eyp/rJl+yGSntSJoQQDh6M2LE4xTYMHWrGh0ds\nYD481/6Opy/WE5IXXRSxY3UMjvcaYsaL7twkc55de7sZT//ud2VOov49Mx7Hr3LmTDu+davOaXbX\ndDMeMcQQ5pSefafOAk+oAOCEggoATiioAOCEggoATiioAOCEggoATiJ37F+92l4hMXaLvTwhhBBC\nba0d79hR51x8sR2fNi2Wd6PD+PHmOI8sXiVT+va141Vv6y63ef11uyEnJ+XjrKiwv8vruh6XOa+J\n78VeZPa/hl9o3091dSH132WPHvb3uP5PMiVrh33++4FRo2TOkE72GKurYxhjCCFUVJgdKLr/Opmy\naJEdz5vcR+Ysm7zdjE+ZkvpxFhXZ9+uaFy6QOVvr7b0n6tbrGpczwh5KdjLJu/wAcC5RUAHACQUV\nAJxQUAHACQUVAJxEzvKH4mKz8YFuYvfvEMI9M8/YDWqaMYSw9b77zHh+E2faGkudTDA/4mQCMcrQ\necwYfaHu3e34/PmpH6eYGa6+RM8Md86ssxsOH9bXUd/zqlWpH2NVlTnGWxblyZSuXe34wjYl+jrq\nhIkhQ2K5XxOJ981xvvrqZTKnsNCOHz/aoC/06KN2PIbVNw0N9m9STOSHEEKoaWV3a2/EdXJEnFl+\nADjHKKgA4ISCCgBOKKgA4ISCCgBOKKgA4CR62dSbb5qNZQeukilqWcOIEXtkzoehmxlvE9OyqTB2\nrDnONxevlim7d9vxUaP2y5zk62KxVQyboxQX28tQVn4yXieJc8AOLV8uUx6bZ99PCxfGsHGIWBp2\nqF8/mVL5vN3fkaN0d5ups8Gqq+O5X4uKzE4fX2Fv9BJCCG1HfNWMv7Ztm8wRi8NCWgy/y6ws+359\n992/yJxvfatVo69z4IAdX7OmafcrT6gA4ISCCgBOKKgA4ISCCgBOKKgA4CR6lh8AcNZ4QgUAJxRU\nAHBCQQUAJxRUAHBCQQUAJy2iGouK7Pdp1/zTMzLn1IQJZrzl4MH6QlOn2vGxY+N5N/rqq81xpv35\nDZny8cfHzPiJExfLnIwgjhTJyEj5OLckEuYYj0bkFP3VXgGS1k4ftbH7gw/MeG4M73/n5dn3qzqx\nJIQQvvY1O150k+7u+Jvtz+XZZ2PYryCEcOSIPc6szfpoorzFxWa8KujjYYZkVpnxTZtSP85Zs+wx\nlowu10m7dpnhhm9MkymnmttDac0RKABwblFQAcAJBRUAnFBQAcAJBRUAnETO8q+ZbO8Anhg1Wuak\np9szoKdr9Gxi7U03mfE2Me0zsGqePZt/6Ot6ou/MQbtvvXrp61S3KbQbtm/XSU7KxE76I0bonMxM\nO358or2SI4QQcidPbky3XPXta8eXTayQObViN/+W5+l770xpmmqROZ4uv9zetX7MGHsmP4QQqhZv\nMuN7htoz4yGEsGmXuv9T/7s8fFg0jBwpc5YttlfRtBUz+SHolSxNxRMqADihoAKAEwoqADihoAKA\nEwoqADihoAKAk8gjUOQmDDWvyZyiBT3N+Kq1eulC69/9zm4YMiSezVEuusgc59iBH8qU1Tva2w0r\nVsicuuuvN+MZMWwc0qyZ/V2ef77OOX1FZ7shO1snvfCCHY9hjOHUKXOMDa1ayZTZM+37v2Rkmcwp\nqRxkxmfNimdzlNC+vdnpshWHZMqwYXb8zNPPypyCh28x4+XlMYxz2TJzjOVdp8gUtcyv89Ar9XVU\n0ksvsTkKAJxLFFQAcEJBBQAnFFQAcEJBBQAnkbP8L79szwxf2zdiAkztUNGpk0ypeeopM54Zx8xw\nCGHhwsYfnXH55Xb86qt1TsYXxHDiGGd5uTnGZgMKZErDgoV2g9y5IoSty5eb8fwYxrh6tf09du+u\nczp0OChaGmTOO+EqM54V0/2qZvnDli0y5Rs/tvt83nn6MoViL5+iohhm+Tdtssf40EM6Z/NmOz5g\ngExpEKtSmnEECgCcWxRUAHBCQQUAJxRUAHBCQQUAJxRUAHASeabUyy/b8R4R57CkvbDejO+IOAum\n1+DBUd1IudJSOz7/Nz1kTqJymRk/FvrInBuG2Z/bb3XX/GzbZoaTyf0yJfGDSWZ85sx2Mqf2n+3P\nJT+ia14+/tiOt2kTlWWfz/TOOzkyY/du+3vMirqMo21vv23GL+nQQebM3Gf3uUUXvTroqvAtu6Fo\nie6ck+Knh5jxpyJ+LMkb7HjdLzfInDfs4+TCtfoykXhCBQAnFFQAcEJBBQAnFFQAcEJBBQAnkZuj\nAADOHk+oAOCEggoATiioAOCEggoATiioAOAk8l3+PYmEuQQg59NPZc4FrewavXOnvs7kyXa8vDyG\noxZCCJMm2UdnqHf8Qwjh+MbtdkP//jKnsr7ejHd3ODrjgw9Ofm6Xa1x66YVnNf7P8xhDOLtx/n8Y\nYwh/v+PkCRUAnFBQAcAJBRUAnFBQAcBJ5KSUcrR5c9nW+x/tvzV3vt/erDiEEMpnjxYtRY3pVpPV\n1trxdet0TkMveyPp5vUfyZw/N+3jBvA5wRMqADihoAKAEwoqADihoAKAEwoqADihoAKAk8h1PDm9\ne5vxQ6+8InMeflG8yrv4ZX0htT6pKJ5lU6t3tDfjiX7VMifZKc+M9+6tc64qfadxHQPwucITKgA4\noaACgBMKKgA4oaACgBMKKgA4id6to3VrMzxBbIASQgjlYpY/o9DeTCSEEOr2tovsRsqlp5vh5Kdp\nMuVQ8/8x49sPHtLXOVxjx7OydA6Azw2eUAHACQUVAJxQUAHACQUVAJxQUAHACQUVAJxEL5vq2NEM\nl3/lEZmy+0U7XiNWDIUQQs98e9nQa6/pHFe7d5vhnr30/zeffNleOrbkH8TmMCGEU+vtnOERXQPw\n+cETKgA4oaACgBMKKgA4oaACgBMKKgA4SSSTeqMTAMDZ4wkVAJxQUAHACQUVAJxQUAHACQUVAJxQ\nUAHAyd8AbVUFpvmLY/MAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 36 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  1\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX1YV2W29xfqEJmRkSURMURGRkYM\n4RsZQ2SkZmSMhZE5DmOMbzEOx7fIYYxjpAyDxpgaGTlkpB4j4/gWY4yRQ2pGRqTGYRgixZchJCIz\ncuD88czstb638Wtmc/s813Nd6/PX2n3buLh/+3ez99rrxaurq4sURVGUf59e/68dUBRF+f8V3UAV\nRVFcohuooiiKS3QDVRRFcYluoIqiKC7p40ksLibnFX1yxCHQ8neFOfa0aXje2rVsp42qQnHrVrYz\nM73+VUe/j/nz2decHz6H4p13sn3iRPf++PiA5J2b7dgdHWTN19RU9rVgQAaKwoe05kyQgoPZnjoV\nT/N7VfzOs2ZZ8bWxkf3sY1wp69axnTG3A7SAYG/HNpdb/g719fbWlFJTHV+bX3gBpAGvvebYLT/5\nCWh+Dz7o2J0bNoHWa7FY/6wsa756eZ11fH3qKbzmZs9mu7kZz6u8kV0Yb/zMAfI6vvdea75mZPA1\nIH0jItqwge30LTGglS2qcOw9e/C8rMWdfNCrlxVf8/LYz/RBpSgGBjpm2223geR75ZWOXbr2FGiH\nD7O9YMF3X6t6B6ooiuISL495oFlZjhi0Fu+GlixhW95VEBHFjPflg82bUczNZbuszNpfylWr+C/Q\nTP8SFMWfymW34V3GgnNP88+4/EnQzp1jOy3N4t1SWRkvev/+qMk/1xddBNKMmlmOvfoHaaA9dCLf\nsTdtsuRrRwf7efAgan/8o2PO/wLXTd7kHTuGp8mnlZYWe2taX8+f/yWXoDYw4mrHTn/4OGh5wbxu\n1NoK2r57+JofPtyer97e7OvevahFHizkgwkTQCu/4grHjhN3zkRE84P5us7JsXitpqXxNWA+Tgwa\nxLZ5uzxggGNWTcwGaeVKtgsL7fi6bx+v6fvvozYzar9jH+o3DLSPPmI7aWQjaPNXBjl2d2uqd6CK\noigu0Q1UURTFJbqBKoqiuMRjDDQzk+MKZqhOxrJ8+3Wi2Ls32+vXozZ0KNuhodZiNQEB7Kv5T466\ni/+Z9s/x9/32W7Y/+QTPkzHQuDh7cSXIGBhfgeKQIWxPnw5SfCvHubZswdP6tos3iFddZcfX+npe\nLPnanYhqJ2c5tnjJSUREo0ezXZlbieKIEWxbegNLhBkD8nMjIup7Pf8zTe/j5x85XcTEzp4FrXRJ\ntWMnJNj7/JOT2dfcV/HHBjz+uGO3/v73oPX/wx/4wIjXZrVyTDwz056v5eXd7wHy3Yff2SbQymoC\nHLuhAc+TcV9bMdCUFPazcDZm/qSti3Ts/IhC0Og4xsSBX/2K7b59NQaqKIpiE91AFUVRXOLxEb6j\ng2+Ljx5FTaYiLF2KmvfUZMcunVQMWsLudD7Iy7OXbvHKK/yLnDyJmkhjannvPZD85HPJG2/gefKX\n3LTJnq+VlY6vWbuiQZo0iW1zXQvveoUPzOeiefPY9va24+uhQ46f+74MA0nkH9Pu3Xia9Lu2P6aN\nQHjn3XftrWlhIX/+MoZARFMWcTpK0UIsCIFUoSNHQJoxi+8vVq++MKlBCQ35IE2cyPaUEbXoz/JQ\ntmfgjzxwgO2UFIu+dnY6viZOxPutkuMj+WDbNtCyVvo5dmZwEWi+s6c4dlubHV8PHeK9KmzlTND2\n/XSVY3/8MZ4XG8u2+X2T13VtraYxKYqiWEU3UEVRFJfoBqooiuISjzHQwkKOK6T0wTgG5NGYnS3u\nv98x277An+/7ey6dpCeftBargWYCXz+N4ldfOWb5aCwrizuQ49jRW+aDdvo024cPX5jGF+fFMhcu\nZNvMVRKlc8UDsJQz+aDwPSfHjq/x8eynER8sWcFlb2Ypb+RaEYO6+WYUZa5Yfr69Uk4vL8fXkAce\nAO3kai7tHfimcR2LUuOmNdiE4pprOB+uq2uyNV8rK/lajV6P8bozuRyv27ULz0sI5rQq8vcHLXz0\nVY5dXW3xWj11iq+BNWtQkw4uWgTSQ2vjHXvTHExlW/YOx/27a9Lx75KV1X0aW1YDx1zzIvDzT6c8\nPjDKUeVe0V0ao96BKoqiuEQ3UEVRFJd4fISXVQgREaj55Yo+luYznGyH8/DDqMlHwbAwa48aM2aw\nr6+8gppscCSaxBARUVQU203Ts1D8zW/Y7uq6MJVIhGEDqDC59VbULr7YMdsmpoC0YgXbtipRCgrY\nz9Qh+BgWt4gfw+65B88TxTTUdy4+orYt5UdUX1+Lj5ptbY6veWt9QUpfF84HZncwURYTs3YKSLJo\nymaHo9BQXtfaNeUoinzBlvHoj98isZYy340IQ0FTpthbV9GRzfye145g/9rb8TR5Gf/tb6glvX8B\nwk1FRd36mX+Qe5Wm9TZ6BT/1FNtGrmbZbu5rGx+vj/CKoihW0Q1UURTFJbqBKoqiuMRjDDQ7m2M1\nRtYEpex8yLEbc7HLe9CcRMf2243d4VtqRNeWgABrsZqiIvbV7A4kQ7JPPIHaM8+wPfzX8aDNuL7M\nsa2W8lVV8aL364eaSKUwyzwz+4uyP1nzR4RDiyx1Y4qL4zUt39wCWgtxqZ7fknTQZGqIjDETESWv\nEKWd+/fbW9OWFl7TOXNQE+MTmvoEgRQwl8uOzTZeV/nz/cWpUxY//6uvdnw9eRC7AQ38i4g119SA\n1jkt1bHNTvZyDpmtDkdERFRezutaVwdSXjv7Y4wTo5ldHGtsemAWaLJCOjv7AnRjug3jnB2PzTrv\n//8n3nNEXNmIna7qx7HamTM1BqooimIV3UAVRVFc4nmonKIoitItegeqKIriEt1AFUVRXKIbqKIo\nikt0A1UURXFJH09iejrnVi1f/jloS5de4dgjR4IE0/vCPzIK0+++m21b0yOJKCODfR01CrUR9/I/\n42f09N/ewKMqRLogEREtXsx2d7Wwrpg5k9/cGT3LytfwGAezE5zRpQ2Q3cTGjbPj66pVvKZXXIHa\nfZP4nzBSAKnXW285dsziONBkXmhenr01lXX7l12G2qXC13E/+AGKr7/umCmv3QuS7N7m7W3x8z9z\nhj//5ctRGzvWMQPGR4LUVHfGsVvO9gXN74jIH42OviDt7BKnXwXSmDFsp+5MBK1qEed/Rw4+A1rx\nFvY9OdnOum7fzp//uGajZaGc22GOFpW9OeREXCLa9xH7OXy45oEqiqJYxXMa07Zt3Q5qy2/nbkAD\nB+JpH37IdvafjNtTWUJhscNRZCT/BRIz5IiIKHS0qD6RLXaIqGUNV1GZFTVp57iiJj/f4h1IRQWv\nq9nK6Npr2TbuTuvP8e8R0h8rg9r6cGWQrS5HV13FazptGmrZt/MQseIv8M7txAm2RQ9oIsKmQWlp\n9tY0IYF9NRsueb/AlSl532BViryLMm9OAtrFULfQUHuf/0MP8ee/bh1ItUf5rueDD/A0eWlE9zeG\n48lSJJvDGkWXq+17sMuVvHkzC+NkBzTziTCooYIPYmLs+Fpfz2tqTsBcsIBtszucLLE8eBC12bPZ\n7qZqUu9AFUVRXKIbqKIoikt0A1UURXGJx7fwdOWVbBtt3nP3cAzUbEhfsbXNsWecfhe0pzl0Jvr5\n9Jyqftx1mvYaATsRA2m8D2NgDaLhTYwx4C0/t14chfTQw+/G9wdfw/Ec0Wh8z1T8f8sHc+eYzAGr\nQMuKEgPREhKs+Hbqipv4wMeIHT3BgcbknT8CyesaDop/8UVv0MwZerYo/Yx9yF+DwcOoKP7MB+Hc\nMIiXm77FxoY6dkoo2UPG1nJzQQoVAdxQIz4KX7TZRsrIjh1s5+WRLWTcc9xZ7Kw2jhr4oHU0aLt2\n8RSA5BH1oEGsMSaGrCBa4J+Jwp+5+A7eg3L6G2/oZRspI2CfODvAsUvwV3fQO1BFURSX6AaqKIri\nEo+P8F7Db3Dsp54qBm2vePIIWJwKGh2c7JjPPYe3071eFaGARx75V/38fmQah5hLT0TQRTmotRqk\noF38yBTfjvfpZQfFcYi9R/haf16Tti8xO+LMQs7GkL8SERFF8bpm+eNjUfx0fmwvs/MED0ndMuGc\niCBXqawmAKSurSJOM+hnoIVDk2BMzO4Rjz7qmGkTGkGS6V+3334WtDfe4Ec4M41JZtyl4Ay/nvHl\nl2yPH4/aq6+ybaSxnfwpN/i9dC1+H/uusffYLpF9uptGYLJ8wBxe14J+mAJ44ADbG9/D706S0Sja\nBlNWcNGB2VB98GC2zxvUJ1IX8wJxDUvmykGK2Nz8n+gdqKIoikt0A1UURXGJbqCKoigu8RgD7frq\nIsc+1ICayBqgAHPC1dKljinLvYiIwuSJFincw3kmR+47DFrO5E7HbuuNaTW+orlIWXAh/tADYohW\nIsZ/ekLo8Mv5YOhQ0PoeqXLstK0L8cTZOx2z0/g9yh58UBzhkD+3ZPbjmFDWsjLQik7wAL7+GFYk\n2voG2+Y0Qln3a3MaghjGR9OngzTh6HbHfv99bH0SOcZDHBaaS5T3xDvkq68c88xgbBjS95ZbHHvG\nX+eDNlSEln/+8zZCrnGsrnSyRvxETmN6aAz+m/4i1jzGiDueFddE0os4rJEWGte1BYrOieGA7QNA\nW3WWhzF6X2FUZD72mGOm7zZeHkxd973/rt6BKoqiuEQ3UEVRFJd4rkQSLVXCzBY3kzmlpu2jj0Bq\nEs0jw775BrQWf64KsVmJJLvqmJ2Dcg5wlcTmF/GxMaVZdIYx+gGac7ltkfboaceWKRZERDPXi+ev\nnTtRFOGPXi++CNKM9zjPZnXPXSQio8POAFybYPEkHDOoCbS8ugLH9o/Fn5ncx0544Tyu4UfY6N3Z\nIMk+r81GJVLH3/7m2N5mr9DjOLPdFquaH3LsmYvweTtjEK/P6mmYqhYwitOBuu4w0p9k81KbiHU1\nozH5S/iRfmwSdmqqXSu+V+eMR3ZZYRWH/WJdIxriZm4IAylrkAg/Pf88njd3LtvG9z1tMe9Q+fn0\nnegdqKIoikt0A1UURXGJbqCKoigu8diRPj+fu3ybTZ5l2duTT25DkURAknCW0rXXctpIY6PFLu9Z\nWY6vMbsyQapYyiVZWbuwJGvqVLaDztaCRklJbH/wgTVfN27kdTU7AB07xnYfI0KdRxwvq5+NZWch\ndSLOEx9vx9e4OMfPsRdhGs/jj7N9772Y4nTttZy2YmasyEY8BQX2Pv/OTl5T2RGfCD/jskCsyYw/\nyqlrZb/E67jiUu60HxNjz1cvr42Or48+mgSaXB8z5iizsxJjcSIBzZnDdlGRNV+DgnhdG3caXfDF\nwsb12w9S+VTR9cgHU8cyDnIMODvb0rrOn88bmfEuo+Asl2+mbjBirqLu8+zLL4Pks3IlH8yapR3p\nFUVRbKIbqKIoiks8D5VTFEVRukXvQBVFUVyiG6iiKIpLdANVFEVxiW6giqIoLvFYCy/zQNO2Ykuq\nvDGc+5c+pxM0mZM2pRWLSF9++e+O3dXV21q+mrc3+2pOSSgZJNqCGYmJKXO53rW9Hc/bNEa0t0tJ\nsZez+vTT/Obuk09QEzW95yWJynw6c96HzFnz9bXia2Mjr2nQOWOyouiTUOaPYxLi+4lRCAOwtdiy\n17nt4IIF9nIrZ8xgX+UwWSKirAbhnzlCVl4sZj25THbOy7Pma1UV+xq50pgVIgv3zRkj69c75k3L\ncYzOvHlsp6TYW9emJvY1YLNREC56M2y8EXOvk8Qon/yJFaClTRVt8Sxdq9TS4vhZ24xdNkLnjOMD\no6dH4yWXOHaQ0V8CavYrKjQPVFEUxSae05hKS1k02ti0TOC/nH633wSabBhLEREgVczl+eU2qzso\nOdnxNZlw4FbxHh5+dd7t6btibr0cokZEHYu5q4+3tz1fCwv5r/poHKdNQSQGopndob79lu1f/Qqk\nvAHsa3q6JV+Livjz/8UvULv0UrblkDQiahTddHHcHFHcHfwjKyouzOdv3mW2zOW18XvXqJq7+GK2\nzTs++UgSE2PP19pax9eWG28EyU8+kezeDVrKXr7rNBt1NW0RlUDDhtnzNTSU1/U3v+n2f9t+OQ6I\nHLeOq43MJ6nMMexrVpada2DZMv5OLbjamP0+aZJjrlrrDZJcR7MzWs7E719TvQNVFEVxiW6giqIo\nLtENVFEUxSWeY6DizRa8kSKCLiYtox8C6Y9/ZNt86fnKK2zn51uMgc2cyb6aLYDk0Dvz7bVsXy/b\n2hPhG+SODnu+ytii0almYxevZdItRvcbEbBJP4qdzFesYLuz09K6Xnyx42fFm193+7/FNJfgf7iI\nhxFu97oXpH79xHkWY+Dl5RwDMwcJpPV+jg9uwnh98QnuzvPII6dB6/pcfDf8/Ox9/tu2OT/40HW4\nPnIIY2IrDjmsHcXvHcwEjQMH2M7IsLeuMrvl22/rQPv440GOHfan50CjJ55g+5lnQJr/KU+lyMmx\n42tREfu5a5eh+XDseOxnBaDt3CknIuK7k9de4/VOTPxuP/UOVFEUxSW6gSqKorjEYyL9qg2ckDp1\nOj4yyma/WzfgeTIfWT6yEeGjpk2aFq1ybGMsOJXmitt0MUSMiOjkj/mR+UrD115mrogtZKfc994D\nKWntdXzws5/heRMmOObgvSjV4dOVHcRjWExwI0hjf8GpYREbE0HznchFF+MGvwla/iBOxo6JIWuc\nO8e2OVSwqZUfGeUjMhFR8oQzbK/fjuKS99nOwwbWPeLaax0zbA8+UoaJZHnoBE34aGpI8PvbRGZy\nefcJMUROiG+8bxZIQeJ3rA7GeeuBfyfrxMaybaYGZq/jNd4xClOc4r7hIosBA7CoIfFAhjjAQYX/\nRO9AFUVRXKIbqKIoikt0A1UURXGJ5zSm6upuU4PSB3O8yOgXISunKGRFGooyKJqdbS81xIOvtEEE\naaOiQKrawIPkIgNP4XkyV8RieVx8PKdclO00GrFI3w1f66M4Xmumh/XaLYa+xcVZ8TUkhP00G63I\nCl2R0UZERg+Ou4zSSTk17cknra1pRgb7etllqMnmIsaSUrgPf/5njLLKzX/gS2rKFIspd5s2ceOL\nCEwBDN3JMeLMZvzuZA3kVKH6sRhzlN9BX1+LvspSztxc1ER5b8enx0Hy7iOu64kTQcuK4LS3zEw7\nvl51VfdDBWUGppniJl4rwKVJRDR3LtsdHZrGpCiKYhXdQBVFUVzi8RG+rY1vi2V2BRHRzLMircO8\nLxa9IuF5nogyzmU5trWZ0IRzwXvVVINWdiLcseN9sDchLVjgmJW/exek3r3ZHj7cnq9yXc2Ui/0/\nFRUd24zH3y1b2DaeU5a9ymlFtvpswkzwzTj3O2vnMMeWHzcRkRyvPfATY71lv8uyMmtrmpzMvpop\nPjL8YD7CB43na8OMi4TUcOew+voL8wgfvxYf4WH2e59S0OinP3XMomexakqmMdnsBzpsGK/r/snY\nD3TsDg4x7HgQq6YgrmO2ORJ9RCk83IqvxcXsZ3JwJYp//atjZnyMXaOy94o58WYsUnQVo9JSfYRX\nFEWxiW6giqIoLtENVFEUxSUeSzl9d3MMpn9/LMeiWBHbPHoUpKaXXnLs3PYs0DCtBTvR9IReZ7kk\nb9mOcNAW3MExkYIarB9c/CnHPV/vDRKkPwwf3nMf/8ns2Wzv34wlklQnugU99hhIy5ZzN+1rrw0C\nbcGVMgZlzNlxCZQHGjW5mWv53++ow9/Be49IqTK6TZ0XTLfEq69+5Ni//OUtoL3+Ottm+leQmIlj\n+lq/yP6aEhGdSUpy7LK7sTvYqhM8a4x8cApE2qMc98zFVwu0fLk194D33hPzi8a3giZjzRuN9UmK\n4JTA1oEDQesrbG9PaZT/BsnNHJ+tDMb0r5Xboh27eGoZaOln+VqV30siDIGGdfPv6h2ooiiKS3QD\nVRRFcYnnSiRFURSlW/QOVFEUxSW6gSqKorhEN1BFURSX6AaqKIriEo95oDR/Pr9hGjUKpLGrOS9U\ntgsjIiq6h0dvZn+Ktafyx9icynjoENfChk3CPFBatIhtOb6QiOidd9g+dgw12d/K5lTG2lpeV6OF\nGj3wgGOWTcdpl/G7xYgBWVNOROER/LewutrOunp5fer4OXLkD0Gr3N3BB7/9LWj7xXoP+7sxv0HW\n8AcEWFvTVi8vx9f+d94JWuM6zvXr80P8JwP+8Ac+EO3ZiIjKt/Ek0rg4e9fqTTfxtXr4YcyThhpy\no7/aoemc62gOl5UtBG21iCMiqqpiX1sxDZTuuotb2N1999WglfmIvPH//m888dFH2S4qsuKr7C9h\njhGSLesWL0ZNlr8HnatHUeYsZ2ZqLbyiKIpNPKYxNTXxrm7u3AXTq/jA+NNUPYA7nPQx7nHDYq/i\ng1OnrP2lbBJ3IAEPPwzaslt53vODD+J5IdcLF/btQ1H+BcrPt3cHeupUt4uePIfXZ9Ag1GTBV+HZ\nZNBKJvLv2N0M63+b/fu58XPrMJDiN4jKEzlFkIiOiLnwg+XdBhE25b3qKntret113DnKGJoe9NVX\nfCCq5IiIzojyk76ff44/c+VKtru5A3FFZyd//sY0OFltJh5GiAiHyk2ejJpsiBYdfWHuQCO3ZII2\n429897xmzaegzZvHTyw5gdjFCcrBEhKs+NrYyH4GbchBUbTjkj4TEa1Zw+VGXR/WgkabN7OdlaV3\noIqiKDbRDVRRFMUluoEqiqK4xHMp57ZtLI4fj5rsMm10DdryH//h2BN+9zs8T74SCwmx15FexEC3\nvIa/k5xpZSQT0IoVbEdOxbf38f7c2b6szGJH8vx8x8GTSdg5ZuCfxZv3r78GLf4PnNFQNiQdf6Z8\nK9+3r6W38HWOn6fpBtD6f/ihY7cE4rr5NXMsqc0/FDQZ/mppuUBvtj/sAM3rIu4WtWEDBpYnTTrk\n2D/7GfbcKVwrBqP16mXv809Pd3w9syQPpC+/ZPv55/E02U3fHJwmX97Hx1u8Vj3FwVeMY/vcdtBk\nloA5rE0OJAwKsuOr7Jx/222ovcJJQedNgChZwdfGxnexw1nSV6IbV0qKxkAVRVFsohuooiiKSzw+\nwp850/2s5ZBz/JhW2YyPadGDW/hAZvgS0bLf8p5ta/gZEWFyupHGkrkn3rHlMDQiguHP2XUPdSeR\nt7c9X+W89SFDUCtd2f0jhcyyMud0pU67AI+bI0fymsqEcyJKWcqfudmkOHMMD6DrjML1lv9vY6O9\nNc3M5DXNWuGLouiMvepEIkjNomfxwoV4mvfAy/ng9GlrvmZlsa9bt3b//+2PmgnHkXtXObY5x1Fm\nQ3V22lvXjRvZ1927UXv6abZl2IaIMAfPmDqYup6bmhcU2PH15En2c+CzGSjKptnz5qH2X//F9htv\noCb3kf379RFeURTFJrqBKoqiuEQ3UEVRFJd4jIGWlHBcIXE8poaU7uSSs/vvxzKurm+wsQD8gxdx\nWV1X1+XWYjX19eyrWT4aFMjxwYK1+DfjssvYNnuJyMyt0NALE1cyU1XKpxY5dufkKaD1OsCxxfMC\nj7JhSkGBHV/Dw/ni8PdHTQZhX34ZtZMn2ZY5ZESUFsyDCvPz7a2pjCtm7sLBgdBdwojHQX2sMRwR\nSpSjo+3F6xMTeV1jY0HKJ05rS/PfhOdt2MC20U0kb52fY6en21vX2lpe18Ab8cf2lUF5OYGRCL+E\nxu/Y9pOfOLZvV5cVX4OC2M+lS1GTw+9k2iIRhmr37u1eS07+7jXVO1BFURSX6AaqKIriEo+P8F5e\nLzjihg1YbfTJJ2wfPw4SrR7Ps98vnoiz399/n+2wMItpTB0d/IsYuSHxazh1xWgcBE8aZmrIvfeK\nTi1dPhekEommTwfpUB2HRswnSllsVNEnDrSjf/qTYwdaeiySoYakfUblk+yqZDyi0d/+xraoWCIi\n7Mdq8bE4PZ19zTuK6Whn1vGjsLmmoQv52qhejP1Xb72V/+eurkBrvq5axb7KyiMior/8he2CsxjC\nkaGIZT9cBZJMMdqx48Kkh5kdoORH+cgjp0G75RZOATO7isnMxsJCS75WVzt+Fh7Ayri6OraPHMHT\nZMOlXrvLUZSLqt2YFEVR7KIbqKIoikt0A1UURXGJxxioTA0ysxSy1ojO8rLDEhHWxMlYGWE5WlWV\nvVhNQgL7aqYjnJqQygeG+NBg7ri0aQmWo3ndyGvT1XWjvRio6J5OTzyBmvBv3y8KQZIhmaFD8TQZ\nZ7LV4UbOROp6/k3Qinx4Tc2P3/eekY7d9Nq7oG3ZwvbMmRZj4BkZvKZm0E1cvOWLK0CKm3UTHyxb\nBlrqVp7rY6vkkIgwBm4E3jP9Cxw7S3SKIiLIwWnLLQDJl9rEga89Xzdtcnz1SkoA6e23fRzbfH8w\ncwRPrIieHQmavI6tlUg3Njp+lhzAEujEKC6PNvcj2SqqXc5HI6J+33zDB97eGgNVFEWxiW6giqIo\nLvHcUFlRFEXpFr0DVRRFcYluoIqiKC7RDVRRFMUlfTyqIjUkyycbpEwSA+plW28iaF/fIDs+E1Hw\nU0+JH5JpLd2ispLTmGR5FhFR3i4u7apeXw1a+F6RDnLNNXjiiy+yXVJiLzWkooIDz0ZLeq8rDjv2\nG2/cDppswCTL6IiI2tvZTkuzlBqSl8d+DhyImlibgklYAnfrrWwPfzYZtLGnix3bZslhWRl//vH/\n8xxo+6JmsT91r4BWfjUP6ovzx7Shwr08ZC4lxWIa03PP8bpeeSVIxee4DDU5tgnPu5fLopdN+gCk\nBXdU8oHNzlFVVeyr8cU698wzjt1H1qASUdqKEMc2O9lX/0J8PrNmWfG1vJw//7jBxrq99BLbF18M\n0vwTXKL80Ud42o5nRVpjaKimMSmKothEN1BFURSXeE5jGjaMxfvvR+1TbqLc9sILIPnKZ80HHgBt\n7GGeg23zEU4OlVv2Og65W3CD6LKzcydoaT78CJ9/zzbQ6Nln2S4rs+drUBCvq+z2SoSD62VDXyKq\nS0pybCNoQiP+haqJfxvR4SZ0Ina4kRVFYa2VoMlYQ96GAJDSvxaTyJ580tqaFhfzI1zyHhzG1rSI\nq98CGtDXYXOiHXv/dKz8it+EBDLYAAAcRElEQVSQ4thlZRdmhr35eDvwz3yt5jXgADwZYbrjDjxP\ndhyKibHna0UF+xqTi5VIssFz+d6+3fqT2h8bQ6fu4jCFrQqvmBj2U36FiIiyF4oqrbNnUZSVSYGB\nIK3qw82tu6ua0ztQRVEUl+gGqiiK4hLdQBVFUVziOQaakMDi7NmoyUFdIm2JiIjGjHHMzKUYG5k7\nl21fX4sx0JtucnyteuUwSDLsERWFp3k3c8qD3xCM10VEsF1ebtHXnBxeVzmcjYgKmznOlFKDXeAr\nJnD82Izz9BotOtSXl1vx9ZCXl+NnmBHL9np9o2N/8cUPQPMdL4a6GY5WjOF0OJuxutRUjoHJz40I\n58gtX47awAeNAXSSESPYzsmx5mt1Nfsavn4+aLXTchw7tE89aGf8OTWobx2m4208zDHqpCR767pv\nH/s6vNl4R/Amd+gK2pIP0mefnXLsrscWgQbd2kJCrPgq/TQ7x61+VgzENCbOZVGmY2cGYgy8bSLH\nwLvbq/QOVFEUxSW6gSqKorjEcyWSxHxmFI1/vSdhukXHUn7U9PHBx9A5c9guxDvmniHyOiJnjURN\nTpL69a9BOjSG/TN7rTY02HIOSa3jx7a7fojae++xPWtdHmg37WZbphEREW2dyNVAmMTjnjBZNWZ0\nzO16mxslpy/Gx+A8OQv++utBi3lHpDHFPNlzJ/+BD/f2Pe8RfuZlovrobmyaDP+zuahmSZslwrdw\nFd+hqTmgLVnMdvHZuaD1lWltxlz4t95iW2S79Zg33mB7uD9WGyUe5cf2xoZO0AICRcN1s8G1mUpk\ngeGTrmP7pptQXMMhRbP79yJRCJi9NAW0jIXim7QKh/j9E70DVRRFcYluoIqiKC7RDVRRFMUlnmOg\n8pW/KNsiIioL5HhBx6g40GgDtwbKGHUUtVyZ0uD3Lzn5LzF+PNtGahCUb06aBNI5URNphmayBhWJ\noyk9809QECg6WV07GrSkpzhedOWVV4GWtfAMH2zdCtrMEzJGmUU22Hgjp3g0XITar0SGT15DEYqT\npgsb15sGDLDim8losYxmczB6+GHHrLrpEZAi53D8dv70NtBy+nfQBUHEXY8aX4/YWHGAVcdEixc7\nZurSEJBk2NkmsrNW2eVpoJXU8GDBij045K7pIo5J0pxP8IfKvLKwMLKCSKnadxpLuYcv43c0y77G\n32FBYItjBwfjfpTawHFP/O0YvQNVFEVxiW6giqIoLvFciZSc7Iilk4pBkhVF5lzw6eIJTqYtmZSW\nXqCKiQ+NG275SN8HoxbZu7kbj1GkQG0Hvr+hqhuSk9nX4tZxoJ3ZvN2xRUEXEcEIaygEI8KMm+ho\nO+taUsJ+JkZgVUzmOn6EzFqEj7qdfbwd2+w2FNcqOmMlJlpb02XL2Ndjx1CTzcLgEZmILr2UbbOC\npe9e0Sg6Ls6ar1OmsK9mM65FIsK1fj1qIRO42qhkMVYiJdaJdKj58y/IXPi0PQ+BNG0a2+a1KiNM\n336LmuwhHRJiaQ+QjZ937ACp6FpOl5sSXIHnybZRRpmi163c/qqr6wqtRFIURbGJbqCKoigu0Q1U\nURTFJZ7TmNasccyEtVhWOOp//sOx/ZZ8Axr9+MeOWfrgg6hB12eMqfSEW0d4CKXMm8e2Eeic0J/t\n3r3xtMSFnA5RUkLWKK4bxgejMY1JxjkrfOLxxBOi1NAIPBfVlTl2dDRZIXHW1XwwdChoi7eUOnZ9\ngzdoshz16qsJucjIh7LE3XezHVmHHdCbm/k6M+OcEu8lmXBcPJjTwZLN/7kHyCpM7zocZFe5jr+S\nGWsxHSdb5Nkl9isDrcify4PtJdwR0S9/6Zj5y4w8v7187OOTCpJc5/wT+D1vlYMmPb2D+XeQQVej\n7DzKXxzkrgMNpjMuwq5RI0fiFIbvQu9AFUVRXKIbqKIoiks8pzEpiqIo3aJ3oIqiKC7RDVRRFMUl\nuoEqiqK4xHMa03XXcYD0hhtAyojiNIrsaVjmJ9OfZAcZIiKaPJntkhJ7JWc/+pHja+f7H4DUa7BI\nR1paC5rsqr19EHZqCQ5mOyzM4lC5khLH18Yo7OYfNFV0tjI7GcnaOXNdZfv8oiI7vpaXO37m12DH\nrbTlotuOMXCuNJZT3sxm5DfffNyxu7qutramq1ZxeeTMPUbSkeimP/YaLIH8i2iybi63JCvL4udf\nW+v4uvEDTFVKmnoxHzz9NGgyVadjZzlI7dwAjfz8LsywPnOuZHiz8GHIENCCoriTmHmpyvLVXr0s\n+Xr55bxXPfYYSPOJy1xz+mSANuM0DzlcPRRHZIQs4Y5z9fU6VE5RFMUqnt/CNzY6YkhsEEj1SzlZ\nOWYlJspWrOM70pQl2Lew8Lbn+GDWLGt/KQsK+C+l0SrzvKYMEt+D3FzA68eXg9b1osgIT0mxdwfS\n2en4mrkY/4bJHqQz3sWUaFmTsGQJ/sjyNfYbn8imFzLBn4hoxQq243biaF667DK277sPpKpznJwc\nGWnvTsnL6yvH166/nERR3IGm7UoAKX82r1vMNLwbrBgCM3Hsff5Tpji+dqzFXqrea8R4YKPJ577P\neOz28NiLQaPPP2e7b98Lcq2W7cJr9Z57/u7YX3yBVSiXXSY7iHwKWtcxMeo8IMCKr5mZfK2avVEH\nDmT7q69QC3mV7/JDXsQZXbK3yKZNegeqKIpiFd1AFUVRXKIbqKIoiks8voXvDOS4Z33NGdASJ3Pc\ns+IXr4BWWsNzZwqvxzeJ0a9wnKFy1r/h6fcgGwyLkfVEROS7ht/CtU034nXvvCMOjOCJ0ZTAGmJ+\nU+CE7aiJV8G/M9yR4+3L+2EsL2UpN/coxJeJrik6ym/eHxqMb33jRnETZa+7sAnD55/7OrY5AumZ\nZ9iOjLTgpPNvXsIHO95F8ZZbHNNsRE0//aljVvz976hdc78l75DdL7/s2LH9+4NWGMEx0C3TQSI5\nFr7/3V+DVtp+ig/69iVriGs1/vbbQep6XMSafXJR+wPPUKsdYbQ32SoanqdiExK3ZDWIf+Od4SjO\nmMGm8c7h8895PzI+Ctq0Qc66/+57Tb0DVRRFcYluoIqiKC7xnMa0f78j7usaBtJrr7GdMyAHNLpE\nPE7dcQdqMuG2V68LMxPJaz9ocQvZ9/JBxiOD6AHY4Y+pWnL6alycvZSboiL2dacxuvbECbbLdxpj\ndUWBQrvo00hE1G/lSj6wlB52wsvL8dPfSJYvmsANUs0E67Z1rLWNxkIB2ca0vNzemra18ZqaM7pk\nylf0ImME95/+xPbHH6MmByidOmUvNai+nr90u3aBlN3M12dGg3Gtys9YxnOIMM9syhRrvpaW8rrK\nZH0iTBcyk+V9fNg2Rg3RuBWiz21ZmR1fMzJ4TeWIcyLIa3yoLhukTT/mtMqyGzCmKL9ihw9rGpOi\nKIpVdANVFEVxiW6giqIoLvGYxlRwkGOHsjqPCOOD1I61kmf2csOGvq9jihMETmqxsUdPGP4ix4vG\nfoZz4cvvEqlUN+AMovI6jnvG3f8j0CBa9gE2KOkJU1o5VeXV09jABGb2mPOD3nrLMfvdeSdI+6I4\nfmMkcbjG7xsRH1+aBdqU8S2OvWuXH554nBuG+A7EksM5GzH9xha+uzjuGhGBcde77mL72WcxHWuA\niN8mBmOqXtVOTg2ymHFFoWO4vHnnToxzPnn9646d8bgPaDInrHJnG0jRgc0WPWRk3DO5y/guN/Cc\nrLlzsQzWr6GKD+69F7SiZXx9WJvfJOOexmwjGRSfY4RHE3P5e1PyNpakz5uHs7W+C70DVRRFcYlu\noIqiKC7x+AifOopHrp68Igy0Dz9kO98feyymTRP9GI8exR9qjPG1xty5jvnFVJRWXc7VBoHGU9EW\nEX3YMBQf02UVDSY/9BBRDvPssyjJqc+Vf8YUs+h+Yp23bAFt3zq2h1t6hpftR4uasbxr2UU8Arho\nQDqeOFQ01jx2DKSEMSIdLgHTzXqEiCnFxuIjvFyPpGM4npsiuNpsWCym6u1fL0NM+IjaE2RI4frr\ncVTwo4+KdLEbm0CTj+3RPlWg0V+P04UgeZ1IObofK7MK9/Ca+Bjfq/Z2DnrsvhN9u/8CTLZe9g7P\n8l5g5lSJdmxbjO0IMp624GeRckB040pZ9Z3/rt6BKoqiuEQ3UEVRFJfoBqooiuISz6WciYksGjNP\nsn04rcWsnFq6lO21a1HbvZvtceMszplJSem2PK6zodGxW3vjP+kt7H6fYudsaH8THm7N1/JyLo+T\na0VEVDabuyqFzMGOS/XrKx27bUg0aLKcsqjIzrpKP+Nq8lEcMYJts+XSu6Ib0t13g9TLn2fldHba\n+/yrqthXOXOHiKh6vYgdG+2Y6olTikLmYuyUxoxhOzXV3rWalcXXai52MYJyTXOglGgz1jgR485B\nuSIdLj/f3rqKct7Ik9jpv/oEf5bh47EMmubMcczOOehrryP8boXCwqz4WlvbfXl02iiOF7fedhto\nh8R7hugDeI1XRvGaRkdrKaeiKIpVdANVFEVxiedHeEVRFKVb9A5UURTFJbqBKoqiuEQ3UEVRFJfo\nBqooiuISj7XwFRWcWxUTWI/iWa4bzduJdfLpe7ktVMd6bAm1fDnbCxbYywPMzmZf5VgMIqL8Vm6a\ndWhhEWgyZTRt9CHQoJfXsGEXZqRDQwNITYO5iV7v3t3/iF//Go9//nO2hw+3tK4xMY6fVSsqQJL5\nq2YdtEyffOSROtCuu45zG+vrLeYBb9rU7dvQ+ii+Ho0WApTenOHYjdOx44G8NlJS7PkK36sj2HpR\nfq/o+utRe/hhto05GZmjuE1fVpbFdT11yvG1vv0qkESq53nXgL8/2/mTKlGUrSEtjZ/Zvp3X1Eyf\nDe3PbQlrW/F3CD3CedfUbLQEnDyZbW9vzQNVFEWxicc0Jjmoy7fG+CtSJ+4szmIXEznbnH7/e5A6\n5nFnJG9vi38p09P5FzGniokuMvlPnQZp8GC241eMw/Pkn9WSEmu+xsXxupZHYJVG/WzuFhRyAtd8\n42dcfXTllcbPlJVCaWl2fBVVKGZFUfnCMsf+7W/xtB0P8F1VwlZsGCxvuKur7X3+xcW8pqNGoRZ0\ngrs+HeqHHZfCXudm2/UPPwmarKLLzrbna0wM+yrmBP4ff5rFnf7mzSiKtlLZnz4CUsZE0TkqNNSa\nr52d7GuvXWWgNd1zj2MHGLegM6Zy4+wfYZ9yCg5mOz7ezrqeOUPdbmR9p4pGyUYlWvHoQsdOHmR0\nBxMd3qiiQu9AFUVRbKIbqKIoikt0A1UURXGJx7fwovkLrVmD3X++/pqPd8woBY1qatj+859B8j4m\nujyv+u4uz64QsY2Nx2NASnr8ccdO2wKj4qAbTvHk7SDJeF0G2aP852I415v45i+khtdy7GrsxrTj\nCY6PnbwRf0eKmEy2KX2Dw0oJnz0HWlwgx9x2DzW6tR854pgyjESEb2dtknyCY8fx0zCuvHAhxz3j\n/vg0aC1iAFmIGNpHRDRpBQ6gs4V8gW7Ga2Nj+XNduhQ/4xtv5HcNP/sZnpe9mT+DDIsXq2xI5rdg\nAWgB77/PB8YH2yCyQsaOxZ8pG8bHx5MV+h4RHfplyzciSjjLmUCjjfUOliFRI0Uj9AR/37obf6l3\noIqiKC7RDVRRFMUlnrsxjRvHopFvkZbLDVS3bsXTnnmGbSP7hfwWwSO8tXSL6mpOYwjPxWnTeRGc\nPP8IZn/QwMs7+GA9zrdvmZDi2H5+FlOu2tq6TaSngwfZlqEQIjo0Ncexw1ZgehAMlO/osOOrSA2L\nOYDD2GQiffRZ41FXFiB8+SVq/fuzfe+91tZ040b+/JPuPAXauYEDHbvPE0+A1iAu1mAR6iEiyujH\nqWE205hOnmRfB3qhr/IxMq0GP+NrrmH7+efxtPoj4jruJunbFeJaPXTUF6SwtRwqKRyC14e8BGSP\naCJMHSwttbSuFRWOn0UNGPqQDZaLB2eBBmlN4johImoZy5tFd99/vQNVFEVxiW6giqIoLtENVFEU\nxSWeY6BnzjhiU2tfkAKaxaCuPpgNVXyQm4uYpWoyU8BmXDEhgeNKpevbQDvTh2M35hA3mUby+uuo\nrR7KZV6UknJBGjScFyAaPZrtwEDUbr+d7UsvBSnGnxMtKirsrGtTE69pwEuY/lN9H5c9hq9IAU2m\nhmWv8QNJDr/z9bX3+R86xL6GkdEURpZEyvUlwlw9I/0lM4JTymw26KivZ19D+mEMtOooN7uI3JUD\nGjS7MPPBJk5kOyjI3rUqGsqcNyFSxrONPQDyn2TeEhEln+N3EsXFlta1spLj9Qsx5bJihUhxMvPq\nxAaQWIPx0a+5GpV27NAYqKIoilV0A1UURXGJx0okOnrUMdvJqDYRLVUylmJ6g5zLXbG7E8+TTRZt\nlSGQ0RDKeNTY4s/pFrKHIREUzUAmEBHR6pGel8c1MnVCtqYhwpiCfEQiokN7OTRhPt2vM1oZ2kCG\nX4KDsVPRe6vZfr+mELTxIiqRORn7yHb4hNCFIGwAPwqX7MH+tD/5zXzHvmE9dg1qbeXHvTVrsIKp\nf4NFBwUhC0V3oI8+Ai1y3jw+MK6Njjn8e3hTB2h+/t6O3dLScx+780HSLtJ+qt7GUGBdHYduNpzA\nHrxlk+Uxphy6RoSNKpYaj+nnxPfY2Bs6g/l6HLUCT0vvJ3u1GmmD/0DvQBVFUVyiG6iiKIpLdANV\nFEVxiec0prw8Fs16TTGEZ98grI98RTQbyr8Ru/hATMViKR8dOuT4euTmm0EaHBHBB7KDDBGWb8bG\ngnTyIi5XHTjQYilnWZnja5vo6k1E5PvYY3wgOukTEdHHHzvmTS/NB+nwn0Xgy8/Pjq8FBfz5G1MH\nKqPSHPvAATwtbZJIzTEH1Mg6X0vzcIiIKDzc8bVyTTVI0YPF2hgDs0qOcLx0/Hj8kbLJemenvc9f\nzu+RMXgiovQ14l2Dmaokrs+ORZhy4z1EnFdba83X0FD2tXZDFWgnr4l07G++wfPk5WKmB8p3DYcP\n21nX5GT2U3aZJyJK2MJpdmZapcywkplgRETxK0U3tNJSTWNSFEWxiW6giqIoLvH8CK8oiqJ0i96B\nKoqiuEQ3UEVRFJfoBqooiuIS3UAVRVFc4rnYOzOT3zAtXIjauXOOWVWHtfCRB0QNqTmyQuaTVlfb\nywPMz3d8LR+SBpJMp7v55m9Bu/zyHzi2D5ZJ0/HjHzp2V9et9nwtLXV8LTiBkzdTfbhOuGk01gkH\nbBXrKuciEGH7sIQEK756eVU5fnY9uwe0kkBe48Q+OJW1Oph/J9ktjoioro7tnByLubVFRXytyn+E\niOqncs5kyMESPG/ECMfM2xAAUnofHulBaWn/V9oZtv7nfzp2fzNn2dOolKuvZjsy0p6vYqzLxuE4\ntiPpBpEXanzPZ/wx0bGNzouQB3rqlJ1roLiY80DPn3TKtpyYQ0Tku1b8TmYisNyr0tM1D1RRFMUm\nnu9AX3jBMfP6Y+WDnG29wuhikpTEnUs+N7oGDV6R7djGhPaeIf7s3HwNSh/yjSQdO/YD0GR/1QED\n8Lzbb7/VlneIqH5KHdWA2lFuq9Q+gv51jAobG7z9Nlea5B2IBG22/GN9IgK0r4+znbplHP5QKAUJ\nIltkHOG79ezROOQupLXK/N8dxv6c7zrvuw+1on58l22pZxAREZ3s4qbJA4cMAa3/X/7CB7JzGRE8\nSjVF4ZNLwEoxDD4SP6uekB/Md2iDL0etug//O+HUANrqx3jNK9rRn5yoTeLoIbJBcrt4OmvHW9Co\nKK42852aCBrcrpoNoydN+t5/V+9AFUVRXKIbqKIoikt0A1UURXGJxxho0/sczEpvxg43nUPCHVu+\nHCQiGlcjhmGZw6YipooDHDjWE1JWdh/3kS/TTi3EN4mBgdyF/Cc/wfN+9zu2k5J65B5QNo1jQPGL\nhqH42WeOeXYixp1LBnBs+ZqL8LThZLT1sYD3j/nFY/onn6BYIz504w3sa3s5tjl8xw7Qtvzwh449\nwWIZcba/eGM+xIhdiUmC9bPx87/lFrbNz9+YMWeNgbtEu7IHHwRt3wfcWf7BJdgFvXEu/44BR4yB\nc2ZLLEuIpvMwSIGIaMwYto8fDwft2We5C5ccJEhEVF3DcU88qweIjvRlwbhumwbMdOz8wZiFkRZR\nwQfmGi5ZwnaJkb3xD/QOVFEUxSW6gSqKorjE4yN8wAZ+3AlZiQO36o/yo8Y48xn+EW6am3DHaZA2\nTGcbJ833jMmT2TZHP8tk7uRF+HvcKjKVhl+MYYrcXGsPGIBMAavI3Q+afNypJvQnfDwnz8eN8Qat\nfNc0ew7+gxEyA9qcuCdnlBvPujmxO/ngzTdBCzMaSNuicQKnHB3/K2rDRfqPOSNNNv5dtgw1s1bB\nFtmfcgPyjCWZoA0Xmd6//S0WKNANnHKTuQVDVkcDucE2thPuGW+9xXbB5ArQbr01xrGPH78ENHl5\nTJ8OEtXUsF1Z2WMXiYgoZVStYxeONgZZBvMkybQ+OOSwsQ//DkGiOIiIzivI+C70DlRRFMUluoEq\niqK4RDdQRVEUl3gu5RTlgfW7G0Gqau5w7EgjjiO7B8hUByKiSy753LG7uq74V/38XuJiOe4xbRr+\nXQh5ZKRjF5vNTY7ewPaHWHcaJAM5ZWU99vGfbN7MtjGrjaoniLX8b8xVSl/HMdnyCIzl0kERBLZV\nyieCVdtrsOxynD+X6kEZHRGd5kws2vE/OFQw9ORJO74ZyArRqVMNUQwZ7PXqKyDlL+H6zeyV2BQn\ndYgM0EX30EMmY4iIbUZhgHDjO1xamuS1CbTOCE7/2Wv09jFD1LaYw+FDKj8RA5rsX9L12rugtcRy\nyaTfdKNcc6nMa8Kf6ZbCZlHaOicYtNCdnP5Vu7cFtLPiKy5ToYiITr603bEH0nejd6CKoigu0Q1U\nURTFJZ6Hyu3f74hZO7FiJpNElczRo6B1rORHOu/FGaAl1HA3ptJSi/0gz5zhX2T5ctTefpvtX/4S\ntZH8eN90FiujAiK4aw6dOmXN17Y27l24aBFq8pHeaBUJc6tL1zSBVlbDj37x8XbWddky9nPfPtRk\nj8W0KMxFaRvCj7u+Ph2gUaAIk1hc0xkz2FezaKp8Dj8yF7ViFyNZfCLTy4gw5SkmxuK12tjo+Hqo\nHUMjYYFtjj1/CYYUJkxg2+xrOXOQCDHFx9vzNS3N8bUkNh8k2T7TTB3MnyhSnow41fZz8Y49bpyl\ndd22jb//xgVQNoTDXfE7MfTVKfaKqY/iXijDQn37frefegeqKIriEt1AFUVRXKIbqKIoiks8x0Bj\nYliUtZJEVNyPO54kjz6F540ezfY0o8RQ5pj4+tqL1Tz9NPt6ww2oieDRydNYAunv/3fHfvvt3qDJ\nOF9np8UYmIgtn9fyRwaWZM0bEW3s4nSQL77A01K3itheaamlmUgf8kykoY+hKFrzFE3FDvBT+nHn\nmrTd2AE8vz2FDwoL7a1pSwuvqeyiQ4R1hXJAFhHWaxrthqZs5fUuKrL4+eflsa9miyP5+cscIiKq\nnMNpTdEfYHpY9R2zHDs83KKvIgZ6XlslOQXBGOdQfoK7wMcNxng9fB7h4VZ8LSykbjeylHYRuzW7\n/IuXEAUH8T3PHjEGrLvPX+9AFUVRXKIbqKIoiks8P8IriqIo3aJ3oIqiKC7RDVRRFMUluoEqiqK4\nRDdQRVEUl+gGqiiK4hLdQBVFUVzyvwrE+Yuu0jnYAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  2\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9YllW291cOMUrGEOOIkTHEGCEZ\nGZkaGTlkjBJDHnKU0DgOFeOvGA7H0NAhhqOMOkYextBhjOGQkTpGDCk6xCGHzLSIiJTMfIkh80dD\nZGToEOH7x5nutb7beE7dbK/3eq9rff5az7V8cHE/97PZe91rfdcl58+fJ0VRFOXbM+j/dQCKoij/\nv6ILqKIoikt0AVUURXGJLqCKoigu0QVUURTFJV6enFVV5DyiDwhA34TalY6d/fky8OWPKnHsqE2p\n4Nu8me2QELrkm4fqmZkzOdZtH9wKvvRbXnXswtxOfOPixWxPnw6ugqMJjp2ZaS9Wys52Ys2mfHDl\nn17ALyZPxvft3s321Kno27OH7aIiO7G2tnKJxq5d6Js2je2DB9HX2+uYvnMTwZWby7bVa7pvH8cq\nbzIiSjlT5NhlwzLBVxxW4NhpJ/PwZzY0sF1VZS/WNWs41vXrwXXq9XbHbmvDt313Iofw2u+xeibt\niyf5xcKF1mJNSODvVVgY+u69l+233kJf2hm+ru0z8JoHbVnDL7KyrMSaksJxzp2LPj8/tiPH9qFz\n3TrHTG/DOOVXLC7u6+9V3YEqiqK4xOMOVP4FvOeej8F3/r95l5e/F/9yx2zOcey1awcQ3bdg7Fjx\n4twPwDdlCtsVe/zBlyj+AlFTE/gyZ7SLV0EDjJApGsm7zvxJzegcuYLtu+9G39VXO2b7xJngCjK3\nBxboCw5x7EFDhoAvexP7kpJCwBfh1eLYchNHRBS6KUu8WkO22PpBlGMPmRoFvrIGvh8bpxeAL20V\nX8fOjdvA578YT0+2KBvB1yBl3SjwBRyqc+zS12PAt+RnP3Ps8Ln4MxsPLnTsSAsxfkXV4nrHLj8W\nDb4PP2Q7baJxH+fudcymUcYOdOJEewH+k7IJvAPvm7wQfH/6E9uRY3rBR0lJjln4/JPoO/qleJH+\ntf+v7kAVRVFcoguooiiKS3QBVRRFccklHnvh09IcZ+bQYnANHsx2/hkjP5CRwfbSpeiTCcm0NGtP\nC6ur+Snc3r3oGzqU7exxNeCbuSnWsbctbcQ3rlrF9rZt1mJtbORYI8/tQ6fMycr/n4ho9my2RT6U\niPCaR0VZiRXibMDPnw4fdszmuZhXlNd/wWG8N0rGFjp2aqrFp/BDhvCN/Omn6Jswge3589H34IOO\nmTYP9xPFS1v5RUiIvViTkznW4GBwnfol58fffRffFr2cc5B5U+rBl9Mkqh0qKqzFWlHB90Di6RLw\nZR/lHPG4cfi+xGEivnPn+v8PYmOtxNrZyXH6r8Cca+Mcvj8jh7WDD557yO8eEdGcOWynpupTeEVR\nFJvoAqooiuISj0f47u7+j8XHjrG9ZQv6aqbylnnai7id3jVavC4osHcsam/nX0QGR0SJa7mspWLj\nR/g+UYDeMx1Lg+65h+1duy5OIb0saSIi6uhg+8QJfNuGz1Mcu3lxGfgi/MTRJCjISqwtLfz5hx+t\nAl+1FzcZxA3F42TJUT5qpnphnDRjBts+Ptau6b59HKtZOjVrFtuiEoiI8AT99NNfgO/TTy91bF9f\ni5//M8/wvWoGJJolSjoSwJU6o8uxyyp9wTdiBNuxsfZiLS/n65pcGgu+xKGcDqu49xl8486dbJu1\njPJIbys1snIlX9NHHkHfyZNsG2tD91heG/bvx7fJNS8nRwvpFUVRrKILqKIoikt0AVUURXGJ5zKm\nvDx2msIWO3Y4Zr4ftuRlf0+0RN10E/jSt3DOobDQYl4pM9OJtd5o14s+yuUXkeuxPU9WLnz3u/gj\nJ9wihAcGDbIXa0xM/xddJj5vuQVcOcGcT8zbi21+IKARGGgl1pgYzn+Nwo5D+s532N7wIebq6IMP\n2H7jDXAlTOe/2VVVFj9/mQN79FH0CSGUlmuwPTZ8IucSE6d0ga9ikriPMjPtxSpFWqS6ChEdWMif\n8dat+LZJk9h+8UX03XAD2wsWWLyuBQUc68iR6JPJ5vh4cO3z4jx41DFskYWbKTLSTqwLFjhx9q0v\nAtegJPFsQ7RuEhHR6dOOWTMS14bYoaLEsJ/SQN2BKoqiuEQXUEVRFJd4PsIXFrLTbDWQ7T2y9oaI\nMnfw8dLc9c+bx7aPj8WjRmqqE2tFPHZMyK6IzjGoKOOfwaVBPZuw5MZ7hjia2tSDrKvrPzVSWsq2\nPLMRYb7h+uvRJ0UPZ8+2Eusll3zixPnpp1eAT4bW3NDT/w8x699kvU14uL1r2tjI19TQdU2fziVe\nhWPx3qBlQsv2uefQJ2/W5mZ7sY4fz7EuX44++YUxNVhFeU7+Wm9wZS8Wn4G3t7VYy8o4jeNlaLfJ\n6qAVK9DXuU58lyor0TlmDNt5eVZibW3lOOUtRkTks1yUTr70Er7vuTcd25S1lVmxbdu0jElRFMUq\nuoAqiqK4RBdQRVEUl3jMgUZFcV7BTNWBwtE8Y86QzIn2GgrQUmGorMxarub0JZc4sf5+Vf+/05KH\nu+F1ziofx84biuVYqYdZObykxGK+tqbGCbC4DdvjZJ7JvHRpg0VeSSrFEBGdOcO2r6+VWNvb+fM3\nqm2o5E5u3Ut8bjb4oF3W6PPtfpDVmWzmwLu6OFbfNkMd/YUXHLP5pzi/K2JpnGNXPFgNPjkTx2as\np06JWWOnjFjlbCsjf7wvg8uBYAIDEflMHs8vXnvN3r0qnoNktqGyVsFk0d5rJh7ljWxMejg+lcuF\nAgMtXdcnn+Qv/ZVXok/egzKvTUQtI/h5Tfj7O8FX9DcueeuvNEx3oIqiKC7RBVRRFMUlnsuYFEVR\nlH7RHaiiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSVeHr3NzfyEyajnSznGoyjkQEgioshNCxy7dTFK\nS4Us4ro7qq62Vq/W3My1dUePom/iRLb/4z/Qd//9bJulla3bxZROW7JbRESJiXxdzX53qal36BC4\n6mbwtYyZhP3nqfO4N9pWzWp9PV9TOYmDCIZZXtBDXDWZZeBWf4EjXaAO9yKN9KitRV/WY/zfFD2O\nD00zD3JNYqYf9sk/8cTbjn3+/A0XpbYS+sKJiF591TFb78OaVfk9k2W/RER1k3L4haX+ciKiujq+\nrjF788DXs5T/T3OsjxjaSvkjCtH52WdsL1tmJ1ahLxG7CqUe77yT7SWVt+L75EiVuXPRJxeEftYq\n3YEqiqK4xPMOVKio9OTi8LOyk+1f+++ICP48huw1hoqFhX27CL8hESd5wFXAbdjd89RTbG+4FLsp\nChv4r2PrAyvBd+oq3gEE2Ajyn+SNrXDsNmP3VvKgEHHdiZ0RIGpsCMMmzasg20Tvznbsj+JPojOe\nt6Ch26PANf8q3nXKxhoioocf5s4vH7LHsGFs5/wIB5yl3M8bvj3G6O8do3jX+dJLL4PvkUdutxeg\noMiL78EFDdj9Vncr33MxwX3gmzuX9zuJlSngq57I37M4sofczceM8AOf3AWbJxR5e6Z14HdO6jA3\n4ibbNZGLeddpbupHj2b7+P2vgk/ulGM6joCvczN3pvn38//qDlRRFMUluoAqiqK4RBdQRVEUl3jO\ngQrJJe/fYn4w+RAnL8pnGLLzIgEy/7Hh4NrwpPGo2xJFRznvuYBqwJc95hy/qNwPvvTrxAC8++4D\nX8DjrMZEazBXNRBydgjlHFPmqlbIXBnKMVJ0PjsMc55vPsF2LKaA3TNlCtvmY1YhR35khTE0TCjC\nF5eicrqY4UU+FpOgn3wiXsikNxHtbWO1qPa1GGvnFB445j95IfjSThtKSZb4/vfZrg7OAl/cWs5g\nZteiOpSsJoEyCCKK25wmXhQPOMavgKf9hgSU/3Se7pAzuR58X3zBtlloUrxKqrf1l138djSGJfOL\neYvQKaXzG3DJC5RJXuO76O8lEqQJxuDEf6I7UEVRFJfoAqooiuISz0f4p592zPkT3wRXWxvbnZMT\nweffxgXod92FR/ieXl6zvfF0NyAWhNU5dkETnmEzO7gcJ33ia+DLFad2/4N4DAFFXYv07ecYBg3G\ni5CVwQXya2qx/OP0WD5GBAfjzzRnk9kgu5ZLQ/KnngZf1Fr+zPf5YeFM/Qg+Fqd98ST46M1gtgNx\nRvtAmPAhpzSie+vA15ohStXG4TUNFmmRxlI8shcvl78XHqcHwqyt4vtidm8sXuyYvzTmBgZ8ymU2\nl1yHhXXvvsvH9tCBh+gA9xnkEIhaS/n70rsJ37frPi6rqg/GkqsLlMItMP975Y79q2D0Bcq59MbA\nwfEr+Dv12ioUW4fvvx7hFUVR7KILqKIoikt0AVUURXGJR0X6bjGo7bOT+O8C7hd5RtkPRYR9XIuw\npGD+b4Ice8MGe4O6Dhxg0QOpD0CEbWYFvZgDkzmRnD0oQpC3SAxHGz7cWqwFBRxr5iIUBYE6nwDM\nc1Xv5M8gbouRV5L9a1lZVmKVw88efxx9m0TOq7OhFZ1SzeX118G178dc/hYVZe/zr6nhWGP/jq2c\nPT/jMqbnn8f3zToqyvPefRedMrEcGmot1iNHONbQGRHo3LHDMcfPCALXflGBZwqmyM9j2zaLAxDL\nyvimk5MkifBzlg9FiKjxQRa+idyBIiTpHSxCUlhoKdacHCfO6on4/8WNEW3nS5fi+2R/tOmTC4eK\niSiKothFF1BFURSXeCxj8hEdHW+3oS9APuI31JhSF3GLyVzjfbfc8q3i+8ZIXU9T1i8vgzsf+vxQ\nm3ChaD7ZcDl2hdBeUbaRiKVaA0HqZ259HsuYZn0qruU//oFvFMe2rvWociXHcNtq8Al4l8tUli6N\nBt+aKaLbqzcY3yjbUD7+GFxRteJ4FZVDtpAKP7GLfgo+ebq8PQlPYlV/5hNq05f4M+cOZhsP0wPj\nTVERGGqUBgVN4v/JbP4aNJaP+8Pffht82waLYOnsgGP8is54ThX5N2F5WPUY/r70GiJrCbtEakR+\nOERUuFQojhEqebll2ut8Xz1nnMQTkviaLlpUDr7YkS38wui0OvA0l41N6Of/1R2ooiiKS3QBVRRF\ncYkuoIqiKC7x3Mq5fbtjnhqWij7ZgnbsGLiSkriZLNoP2+POjDDKNizR1MS2qYIem8SKLzVLMY9z\n++1cutQzAxWXvHO5BdRmDhRU5438UN8iLrMa9CBe8ziRPG3dgi2pIRNFy+xHH5ENkjdy3tNsFfXf\nvduxD8wqAN+Ethf5xUhDqSs+3kpsJlKRHtR3iCh0Md+rq1dhOd4V4p+eOIE/M2i7+L0ycbbTQJi1\nk/OKLUsxl339B2yPGGG8UXwIY8X1JyL4rtpE5tbNe/WwF393MufgPdcczOVqEa9gq29hA+c90+2k\nQGnXh2JdWY/tsbNnc642tnIB+KTiWM9774FrwudyrcASx6/QHaiiKIpLdAFVFEVxicdOJEVRFKV/\ndAeqKIriEl1AFUVRXKILqKIoikt0AVUURXGJxzrQkhKW3TLaRCnyxE5+8YMfoPNf/9Uxqx9/B1w3\n38x2QIA92a2qKo41oQnlrEAHzJyCKQsIS0vxZy7mXvCEBIsSYd3d/OTOkAGTsRb3Yh1obi7bx5uw\n7m7rS1wHOmuWpVgbG504C/ZEgku2uy95CodI9Il6ukFGLzxIonl727umM2fyNb3xRvRdeSXHNhev\n6bp1bGfOaAcfSAtGRNiLVVzX6pN4XeP+41bHrlv5Kvg2bmRbKskRETWOEfKGZWXWYs3L4++VOUYm\nZQ9fy1O/KQFfwENiBIZZRLx2LdvbttmJNTTUibPv8BFwDZrBNdwpQ3GaLSgWbkItjJltXBfen0Sg\n7kAVRVFc4rGMKSeH//qYc6DChPpKyvd3ovMZFrTt2ojqJ75rhQJPXp69v+pVVfyLnDvX/78zB8Vd\nd51jJv8YW1HKR4juk4ICe7E2N3OsZkeJGP5+yS/uBdc11/BA8WefxbfddRfbXV2WdqBBQSz8bOzO\n5EYyLwAHx5UMYYmr1LB94Evfwq0n1sR0iYiysviaSiFcIipqGO/Y5oZ/zUTekVQQdptJgaO4OHux\nSqHqhx9G37YbhYrR3/6GTtnVZW4HpaB2ZKS965qY6MTaswV3b94bWdmsbgwKlcf0CrUuKT9GRHRW\nqEUtW2Yn1uHD+fOfNw9caSf5RFq8sQ98sVN5D1kzLht8dNttbN99t+5AFUVRbKILqKIoikt0AVUU\nRXGJx6fwGRlsS7UjIqKYE2Jw15eXg+/4Ws57HkYBF4oxB9DZQkgw5fmhOpB80L7gIObk6OqrHbPc\nz1BqGTmKLgbpm1g5pvD1X4Bv5tX85PX8I4ZCvkjKjX8YKw1WrbIY4FeIgYBH96ILihneegt8l90p\nXhj5r1GjLMnvmLz8smNme6Gqlhy4JgsyiIgSMjjvWTVhJTrl7xW3bcAhfoV8Qp27qgp8FYdZxejk\nFfi+BZ9wfPnHcKhg9lHxbCESn+wPhK5Sznv2nkHfmFWc9zRFt7Zv56GTQebiMXq0tfgc/vhHtocM\nAVfxKJG/T1oMvpoPWNl/Xy5WDElRr/602HQHqiiK4hJdQBVFUVziWY3pySfZOX8++uRR3JziJqqs\nZ177Jri2rRXb6aAga+UWsujfrFQK3FHMLwy15ZblnG4IP4liy9N+yyKqu3ZZLLnp7OTrKo7JREQk\nh4wZ5Ti0V5yjRbkTEVHJMT4ypabaibWoiK/pgw+iz7tUXFNZQkMEJTadgwPBdUYcA4OCLF7TtDQn\n1gMPFIPr00/ZNsuYZBWZWRlUMBIEle3FmpLCn785i1zWC27eDK6YBk5N1K1vAR/dKfImJ07Yi7W4\nmGOdPh194v6cdlk9uHbtFOVCK1bg+2SZ0fDhdmJNSOA4zZtVXlOzHlNU0mfGYwF+wY9Eed7ChVrG\npCiKYhNdQBVFUVyiC6iiKIpLPA+Vu/RSxzxyFNfaPXvDHTtsLQ44iz7HbVzbDmJJEW0ROYgso0xn\nAMjhV2ZaMTg4zbELzmHrZPjgVn4Bk8mIbrnFWnhA92Aecudj5pVEfVDR9uHgWjBYJBCNQX7X3xZL\ntpECMt5N+BlXjeBrmrDWKPIQ19H/jjvA5f/GG/yiwLg3BoKoOZnwVyxjglzy5lxwjVvOQ90im1AQ\nI3YLt/LW2Jsphz2ihipI+1gucXr1Zvw96saJUqoRU8DX8zduQ/a2EKKDrOUxE8izZjnm1VjJRuVb\neL3YcywHfMOEgEt+/kAD/B9KpnM5WO0WI5bbRC7TLKFazGVNY8zVcOS1/+v/qztQRVEUl+gCqiiK\n4hLPZUxSt7KjA321tY5ZZcyMlzKKKVOO4/tkC8uRI/bKLdas6bfcwncc61V2tXWCb+Y8Pk6bv2Jd\nmOhMKiqyFmt2NpcH5e/HedOxXlxKZZZjZU4Sx2gj3QAai5ZilRqrcffgj/R66inH7pqBn7/vFFY/\nojk4o5vGjWM7KsraNT1+nGMNXIepIf9NfBTujMcOHrgfTa1Y2V5jU7tUfK/q9vuASwqJffYZvm3W\nPzjd0DIOf4/wM+LeGD/eXqw9PU6sZVswOSArGfN78ZqndvA1L5mD5YFQSmhLkW3lSv7+G+Vf9Je/\nsG1o/sq58LR+Pbjq53GJY3S06oEqiqJYRRdQRVEUl+gCqiiK4hKPOdDubs4ryXk8RKjOZHZyJg8W\nytVmPkL+44QEa7mazk6O1b8DW7JSVnAO9OmnvwDfNddwqdb77+P8nvMfi/D8/e3lla65hi/6o4+C\nK2EHlwdVrWsFX9qqEMcupjTwQV7JUm5Ztsem7sU8J+Q25XgCIlDGST60DFzlw4RyeWGhtWva1cWx\n+pYWolO0mh64DHPO06ax3bkf7xsgNNTe55+d7cTauRjreGBk1Aos/1l9GStwXWtU2DQI1bP8fIst\nsq+95sR6xG88uELPNDp2ZzAqQPk/y6VDBf9YCL7M2jh+UV1tJdbWVv78Q0rxulFAgGMWX4qxfPIJ\n22J0FhERVVayXVGhOVBFURSr6AKqKIriEs9lTIqiKEq/6A5UURTFJbqAKoqiuEQXUEVRFJfoAqoo\niuISz3J2iYnOE6aKORXo2jKTX5izEMQkxs7N1eDyJ9GLbrG28sgRrgOTEwOIsP01aPFM8BVPYYkw\nOU2DCGtdU1Ls1db19HCs3hk4CbRrVZFj+8ZHg699M49NCPqJIct1++1sFxdbiXX+fI7TKFeloGNi\nuqkxsmH1HfyZP/QQvs//nNBGCAy8OLW1sveZiNqvu86x2/6KD02lZJ/vGdRtaDzJ40giIy3WVs6c\n6QSR7IXTPuPj2ZZKckREmcO4F/7UT7AXPuA+Ud9aV2cv1iuv5Av23HPgipjHE1bffvsc+KZOZck+\n422gxBgaaum6LljQrxbGvqEs9Rh1pgZ8yaXsK1/3Ef5MqdvQ3q51oIqiKDbxvAN94AHHTHwOO1G2\n3st/Oc0N6ASvbMf2z01Hp+yYaW7+RkF+E2RXRJ2fMcRKzLeXQ6SIiM6JOW0Rp3Ew1uaDuAO0hfe5\nLn4hW08I52E1ncR4jhwVqjaff44/1JRusoBsGgv8ofEH+NQpx6zJwFPGku3cJTV/GQ54e/dd3tXV\nGSI9A6Hxufcd+9hh9AW/xZuTow3oWyfEfStQjId27GDb4qh1+O6U9z4DvuIzsx3b7P4rDeZd56hK\n9FVs3GgtPuBj0Z1ndBU2Z/CF7pyO64O8dqbAuRQSW2NoX7tGij0biktRpZMdO2EGCo9XbRSnjnjc\nuaZM5gGYZfT16A5UURTFJbqAKoqiuEQXUEVRFJd4zIHmHLjbsafMvRt8s0o551E0DodxnZrICjN+\nfvgzo88ZKkK2EInYoilYMXDvvWwH/BlzcvHxnNzKXI85TzN3Y4uySl/HTklKAt+2kfwksPkkDpWj\n3ZzAm393O7g2TO22GOH/IIfqDXrLmBomPtjYKX3oe+9GjmsaKkrBh0FvDjBC5qqr2I6cG4FOoSwf\nYSQWa2uFwtA5fJKckUEXhR/8QLwYdTv49uey3ZWE35W6JL53K40cKPX20sWganuPYwtRIyLC+8P/\nWczlVlZyLrdiJD4H6c411LJsIHPAxnMF+WAhNxezmc0dnJMP24uDE8tK5Vrx9euW7kAVRVFcoguo\noiiKSzyqMbW3cyF1g1H+IUdbx+3NRucZnl+++ircri8ZIl6np9sr+N22zYm1eigWy0+axPb+/fg2\n+Xts344+8WtQSYm9Qup9+/i6btqEvpKpXOJS44e/R+x7Yr71pZeCD+a0J9iJNT2d+r05CsfxUej4\nFCzqDtzIgrZ9uXngG3RQlK5FRFi7plu3cqyzfmqkM+SwMPNGFhMQqxZhkXXCMNEsYHEAXloax1rs\nhY0UkEYQM8uJiKrbwh1bDm4kIkpuEIPrCwrsfa/i4pxYu7ZguZrv71Y6dvopFM6WmSn5PSIiig0W\nwtW2hKozM/leNTsQ7hbpR2Mu/JDbOIX38MP4tjVTRZ1dTIwW0iuKothEF1BFURSX6AKqKIriEo9l\nTLIda/Jk9MkcTNdSHIwl2xHHjjB+qEw62kTkjj4zMne+I7lsqG1tF/hkB+Qf/oDv+9WvrEUHRB3l\n/GHUzZ+B78APeehV7CEsD4P8zUIcjpWwSA7LQ59bCo8lOnZ9BpaGRS/nvGd9fCf4ZP3X3/+OrgCz\n79cSUj9k1pVGnlMm5My6OpEgTziDZSx02kjeWeLOO9nOfqsIfPlzWvjFm1jmFfel+L2OHsUfKr+s\nBQUDDdGhZ9cux/adgPnDY4e5lbNw2iv4vnGcL/X+w5Pg6xzH96e/lSiJep94wrG9vvwSnSLv7TsZ\ne3JFRzL5bjT6SneIXGoMDiP8Ct2BKoqiuEQXUEVRFJd4HirX2cnO669H34EDjlnREASuxImscNJy\nOhB84R1CYSg62l65xejRHKuhuARamVJ+hwhmmNOvfw2unnncQeHtba+MqaqKy1gMgRvaFs/H+zLC\n8qCUqUKvUKrPEOHvXFNjJ9aqKr6mRpfO8UlcYmU2wQRJ1ah33kGnFAj19rb3+aekOLFK3Uwiohkz\n2JbpEyKigg6+xpmTG8EHskFBQdZi7ezkz9//wUR0CgW0U+Ow+y/gS6EcJEU1iaiogTuqFiywqF3a\n3e3EWrbdB1wnTrC9pNTQp33kEcdsn4JKTVKDtbPTUqzjx/O9KoV8iaj7NHdT+SQl4PukdqipaCa/\nnFlZWsakKIpiE11AFUVRXKILqKIoiks850Dr6x1nz0RUKvI+JlR2jBkkyWO4XW+9ofLtP8KbX/T0\n2MvVDB/uxNq4G2ebRCaF8gtD/UjmkloWY9lQbS3b6ekW80rFxU6s+R2o8iKFZNI3jwff1n/nMptZ\nV2DbYfMIVtqOiLATa2sr5+pCpqPCUdZU/ozDwvB9qWdEu+5jj6Hz0CG2Lc5EkjOxRhilc76bRFmP\nTMARYfBbtqBPllwlJl6UVk5T8SsiQ5TLGHJQZac5f5eyGZXVae1a8UPstchCHtxMdosLPf/pKHBt\n+HX/qmITJrB99qyl75Wc3XT55eA69957jj1Y5GaJiJKPcelS+Qws1YPnJfX1mgNVFEWxiS6giqIo\nLvF8hFcURVH6RXegiqIoLtEFVFEUxSW6gCqKorjEoxoTBQVxgtQYVl99jsstLlDH/t2tjh17+avg\nkz8mMNBiadCRI06sBz4JBdcVV7AdugrbyiriuXQpsQGV9Vd/j1WmliyxGKsoufD9/AS4RMUFvYIC\nN5Q4mVWPSipRx0aqHtmKtbuby23M6q+qVUI1yCj/KQlmFfrUSUfAV7CDP5vMTHvXdPRojtW8bgcP\nsh19GIcKyrKmzlFYNiZLjMrL7cWaksKxlpXiQL72Y7ynCcrFe1UO5Av9N2zzPNIkVPh9fKzFKqdS\nDP0h/lj/++5z7IJx5eCTimymylHrjCzHDgmxdF1fe63/ciupXCX7eolwRIU5HkJSXq5lTIqiKDbR\nBVRRFMUlHo/waVN59njxjkzwHQ3mI3x6Enb+tE7kY3v8DnBR4BbRFZKJP3NACOWUCUuXok+8jj2G\n3UZzpchQfDy+7TY+Xi9ZcuVy2G0aAAAcI0lEQVTAY/wKMfSq8r/RddddbMtjEBGBykzqfjw2h+7h\no+mSJQOO0Pzv6LbbDOfu3WwbgaZu4qFyrZNxqJwpeGOLp55ie+5c9MnYo08dRqdQCvefjN1WpQ3N\ndDGAWXHGgPcgkW/oXIv3qqncJWlpY6Wk8PD+/923JaiDFaqmTcWSx12lrHL0hxvxfVK3OtVQcgs5\nKYb1hWAHk2vEzdo9B7v7fOQxXeZziIjGjHHMZMI0hFxG8M5gdAeqKIriEl1AFUVRXKILqKIoiks8\n5kCLt/AwNvMR/1QhapO3EdVWHnvsfce+4oprwJc+r+PbxvjNGDmSbSOX2bqJFdJrmgzFldxctqUC\nORGdXyGmf9GyAQYoEIow5mwwkZK5YJBfZinnnSfH45CrIzfKwV12hspFrWL1n9PzqsCXVsn563V4\n2ah2HOc9O/agL7WJVf6psJBsIfNV9XONYXxScSnXyIH95Cdsr14NLqnGFRc3wAAFEVtEudxhzMlW\nzOH7s60U3/fii2wf2d2KTpgYYDEJeoYH682fj67QMays9qMfoS+1Uii/m2VFUr0tylIOVMi+HZ2I\nOdAIma83Su6K5rLCWflp/JDrOqrpf0N3oIqiKC7RBVRRFMUlHo/wKdN5hnrZxHbwvSkajHIacFDT\n9hv4uGdq1NL7Zj2MHapH8rY9biwei0LW83GzMBhnZk/fwUO9dhglV/J0Ze+wSTAQLi0JB5lNmsRz\nq01h4HHj2DZFjCNz+djeaOcED8fbuLHHwdXQwMMCzU60wYPZNhs/fDP4SnZZvKj1O/hepY7J4Jv/\n2xDHDr4ThaiXDEvmF174dYjbkyVeGDPDB4JIG8XGe4OrZijHVz8ORZMhwyRK4YiIYnP5KFyDv+LA\nECVAHcNQVP3Ig+KamPmm5SKlINNrRBekLWxQvpRLzpqMcq81Mk23EL8cc+aIn+GHR/bkd0RaLObr\nv1S6A1UURXGJLqCKoigu0QVUURTFJZ4V6WNi2GmU+Eh5nsy9ieB65x22f/97fJtsD0xIsKhwtHKl\nE2vLv2DJUXiYULwxSypkyZPZAvqqSPQuW2Yv1tZWvq7GVLH5P+Q8zIaf1YFP9vLlBWOpjgx11y5L\n1/Waa5w4p4W9D65/+Re2ZaccEVYGPfQQ+jZuZDs52d7nn5DAqkHz5qFv+3a2Zc6LCKvzzI8/wkso\nToWHW4s1K4tjfftt9F0pOoZLRuagUwyZmzkP1bi2nRPPIaqqLooaU9AczIHKnmHf+1AdqmuGUJIy\nc6ByEbAUa08Px2mmY/fN5TbnEi8scdqzh21zaZDVT52dX3+v6g5UURTFJbqAKoqiuMTzEd7bm53G\ngPdpz/NWeNcNWdQvco9MRPnTufI/O9veEa6mhrfwRjUKxZSmOHb3xjLw7d3LduzIFvClruWOjpIS\ni+mGzEy+rqbkkqz7El0gRETHF3MJVmCScZySUj1BQXZiLSx04iwenA6utHNcg1TkhT55LJajtYmI\noqlevIi2d02fecaJNXnnbHCVnxHHW+MMXz10Zr8/sqGB7Zwci59/c7MT674zqPMTdVAIPsu59ESQ\ni2hehMLQsnQsNNRirMXFfK/K/4QI0nhpi7AcS5avPf88vk0KnOfnW4pVpMWi5oSAa1+SqJczuhSl\nGlbkZlSH27WL7YAAPcIriqJYRRdQRVEUl+gCqiiK4hKPOdDCQs4rmu16OfuFcomUECIiOnbMMZuX\nospzxB0iAfLJJ/ZyNe3t/IuYkuQi71E8FPMcsuQh9J7R+L6//IVtW3lFImpu5utqpDmhndQsuQl/\niVvLUt/A1jKZovbxsZNXkqUh3gex5bRvLLecDtqE+bjMw5wfLwg2+jVlG19RkbVrKgfg+eRiTr4o\nmFsOzfs4+7T4t0byvHs5DxW0dU2JiCoqONbEs8+g88ABtl94AVxV/8mlZFOm4Nt8loLKlbVY8/M5\n1gceQN/nn7Md4oWt3nBDylZKIqLly9kuKLATq68vf//NsQdSxurLL9En4zRyzuXH+DlDfyV3ugNV\nFEVxiS6giqIoLvFcxqQoiqL0i+5AFUVRXKILqKIoikt0AVUURXGJR0X6vDwuYRg1Cn3Jk4VCuSmd\n7mFQW98vf+nYg86ft1fGVFPjxBqzCpW85eA2s8JBKvdE1qLqeHsSl7gEBVlsj4uL48Szee0mTXLM\n2C2p4JIlOGblWEkGK3JTRISdWHNyOM4//AFcXe+ecGzfOTiRQKrt7NuC5S1Rs8WQwffft3ZNS0r4\nXjXVoaQY0Nix6EsYto9fmOU2suSqvd3e5x8by9fVCCjbi+9Bs8s3ZEQ3vzCnEcr7aPhwa7HW1fF1\njRmBrc700kuOWfglltWlj+TheMUdqNaWdvAilFyJltP5b6LiklQOMz/ifXt6HLvlKLajyu7o/lpO\ndQeqKIriEo9P4eVfn8suQ9+EIWLHYypGyEJZ88+oVO/o6bH2l7KoiGOVcoNERKtWff1/T4Q7OXPn\nEjubwxtmcbcshU9iaw0hlu99r9/3Vd/EOqdxk7rAd8n3+AM6f/47VmI9cqT/gv+rrmI7oNYoBhei\nlvP/hOOXN3wqZhCVl9vb1QntUvr5z9Hn58c2jP8l/EV+/GP0yblDkZH2Yu3u5liNGzJ0EZ+epB4l\nEVHIQZ41tvUs7vpn9YrPYPbsi3NaMo9vQst2yGW4FxNjv6A3gAg3z5mZlk52XV0cp9GAkPkGi8uY\nv0Jsqbgfr78efGVX8/ctJUV3oIqiKFbRBVRRFMUluoAqiqK4xONT+JizOx27NRhnnhzpZSHYUHNe\nkhyKJJ4qE9GFj48tIVNJptCC/1B+0pawzkiCTJ/umCFy8DoR0dattsIDYpfc5NhHtr4JPjkzSKbu\niIhyxn3k2OnLh4PvrrvsxfcVoW1iwLghtFD9Rqhjx5nXSaigXH218UPvX0QXHWPOFKj73nkn+kaz\ngMyBDwLBddNEzo962+zYE6UfW+9Gge8j37+VX2wycrJ//KNjfvprzIEe+wVf85GzUVB6QEgR5d/8\nBlxbA/hp+tn/2obvu5wFfBKG4sOF9hmYF7dBz2Bfx/Y27seCeFY9WW08oY89eJBfyMFiRJTy8Wrx\nAp85fIXuQBVFUVyiC6iiKIpLPB7h6a9/dcyQN94AV04vj1zNCwvD98lykEcfRZ8xW8kWMjOQ2maM\ng/1DgGO2l+Ko4KDeVscu24uzVFImtdJFYSenRmor0VWwlkcw9/Ti37fy7XxsLzyDRfYxvTjm2Apy\nuJGRT4iTn+OIXHyfOKJmbzLujY2iOjkqaoABCkS1dJcXjvyd9V3+zHc99BH4pADr5RMjwdXwCh/b\nLUYKzSVyjDERUdoNfIwsHoFaqnXPcPNCmpjzRURE8+fbi08iShKbvfD6XCGqvGLXGrOlxK0TFoZH\ndpnxyzG+qm6R1WneRnNC2WA+ti/5mfGdvo8//9beIHDJ6kxD1dZBd6CKoigu0QVUURTFJbqAKoqi\nuMRjK2fvJZc4zpa38N/J2T0dHfg+2b0Z3oBlGj1JnLvx9rYn0FFczG2HYlw1EWFV1YRDRq5QlNyM\nvhHFBN65UuRu6uqsxdrXx7EOOtcNvuQHfRy7fDqWhowXeabf/Q5/5p49bC9ZYum6irnwF8wo/+wz\ntqVaAxG28hpDiPJH8fXPzrb3+Xd18TX1fXkn+FYf5BK8Q4fwfTI/VpeEs51igkW+LCTEWqzHj3Os\ngfsr0CmH0ZtldaLkpn4yJg+j14qypqqqi9J2bIyMopixnY7dehrzznJGUlUT5hYnTGC7v3nr3xb5\n/TdbYCseEPeDeQNMnOiYdb3R4IrZIkqeiou1lVNRFMUmuoAqiqK4xOMRvk8c4QeZupVSYuXtt9F3\nBY8ururAApCEWUP4xdmz9lRjIiKcWMuXNoMruVekEUxhU3EsCszFLgV5FIiIsKgHWlHhxHrgKtRK\nnDaNbVMB6YsvWI/x9tvDwVf/sgjPknJUVBQfi8RJh4iICjaIz9G8N9591zFr9mBaREpspqdbvKYz\nZ/KNLIUciWDM9r6TWKoWNVTcK1I4lIgyV/CxtKDAYqxPPsmxmukPoQB16iosGwp4hNNfqV6YGpNp\ntKoqi7Fu28axGl2FNQe5cyt2PXZGrb6NlaNMNaYVK9gOD7cUq7ym8j8gwvvzww/Rt2UL28bacNyL\nUw+BgarGpCiKYhVdQBVFUVyiC6iiKIpLPM+Fl8rZRq1SYSXnB9LXh4IPWgBNmXepjGOxNETmFS/4\nP+U8n//zf8DVPZjzXGZp0Ny5bNsqtyAioqqqfi96czDnkuRlJCIqXCrmUG3fDr7jYtZUoC31/J6e\nfvOKMZu5lbQuowp8II0lS5qIcDxAfr61a1pdzfnauPNYxpT2Zy5jKl6KrXw1RzknGlu5AH+oVKtf\ntuziqOebclUiD9e4CEvuzHlOkkGVohwqMdFarLKU0UvWLhJBCSD9+tfg2jeOlZqefhrftnIl2/7+\nlr5XV1zB1/Shh8DV/dvfOnbTK/jVk2JMaX9fCb7O+axI31+cugNVFEVxiS6giqIoLvF8hFcURVH6\nRXegiqIoLtEFVFEUxSW6gCqKorhEF1BFURSXeBzpsXUr19bNGoq1dVvPcG3drP+KA1/jimrHjqxd\nA77oHVmOXV9vr7YyPZ1jNadynj3L9k78NWAKps9JrBFc/SeuEbQmEUdEdOutTqypo3ESoJyU4XPn\nreCjW25h2/wl5UwTW/W1aWlOnIVjUOpNSpJdIBEoi+tuvhlc+X/jiZE25eyGD+fP/6PNNeCr84p1\nbJCoIwL5uKIOHEshZRltSi/KmuXYjaiFICenbBuKY1tgoqgxYqX+cv4+RkdbjLW4mJ8ym3Wgvb2O\nWT6nGlyyFNuc+CPrq318LMUaE8Nx1taiTxbQyt53IqKpYkpvbi648o7x9c/J0TpQRVEUq3jcgc76\nnHcWqX/Bv4ZinDoFNuFfn+OvPskvxIAxIqL6jB7xCpV6BkJhcAG/2G8oPL/0kmO+cgvu+Hwa6h17\n/rMoqLrhZ3IAncVZ1k1NjjndmLnn85LYIg8Zgk4hsJtaieo3GcFsRww0vq8Qu9z0/Znomyo+V1Np\nV3aoHD0KruzB4nMi42cOALnRjV4RC776v/Psd7r9dvAdeIB31knGpt57t+iwSsDrPRCKO3jXGR+P\nPtCtHoeqQkWVrH7kZ+yHkptEF030MrLGZZexvXQpuLrHstJa8gw8hQ7L4DUhNqwdfLRcTGsrKCAr\nyHtQLk5EuLOUR04iqt/MsUWP6QQffYP5l7oDVRRFcYkuoIqiKC7RBVRRFMUlHnOg5YM571nShjnA\nxpGcHzSfsnn/20LHnv5X9Mkczxp8QD8wRK61bLsPuCaLdN2qYcb7drAC+P33o6szjH9nHJk1QD7+\n2DET2lrQF/xjtkePBlfVQa4KMMTBTTF1O1RW9u9ra3PM7MMp4MofK1TepfoWESXP4b/Z5QMKDikt\n/XqbiIh6OSebfAjzg+VPiSkE69aBr+Ao5z3tZWuJBg9mW6aLiUA8/wKlf/mZm4MVYqfz71VjMQXa\nOJqrJiLDcACiz15R7bAeE4bD5CzBoUPxh5oKXTb44APHLHjoHXDNEw/afYwn9NFhHzn28XPDwWde\n469Dd6CKoigu0QVUURTFJR6P8PIolPzv/w4+OfDs3Dl8X0YG2+Z8J2+vPvHK4votzj6VlSjwLMdr\nG1UMlJvLxdNHjRrbqHWisHobzmgfCOWVnGIYOxaHw4XP4+NwCuHgMJkqyR6JPjoszhtROMjPLatv\n5EP2kn/rAV91LZegDTPSIq1DuZBqZC/6yifLgnwc4jcQAn7OZTRLjNRD+0k+047AUzq1PMjxVBo+\neR/bJGWwuJcW4RDztiQuHRwxAr8fER+IErftOKmtxk9M6yN792rkMC7zyVuL890zMrhczKhWgzQF\ndCQQYTnU+PEDDfF/eOopxzTmH2KVnTmp8cUXHbPjhtngOn2a/ld0B6ooiuISXUAVRVFcoguooiiK\nSzwr0vf1Oc6SUlxrU+P58X/BZnz8v3Yt28dXoNDE1su4NGrWLHuiBy0tLCYR7nccfFUN3AKXUJsO\nvtVXFTq2MW8OykZSUiwKNKxc6cTaY5R0eD/yCL8w2mChrMUYnJewjkuuqqosxZqYyDdHUhL6ZJ7R\n9MmkuCFA0bWec7e+vhav6bZtHKtZ4yVLbGRCnIjoxAm2n3sOfTIJmpBgL9adOznWV15B3/XXs33o\nEPpEMm/+3/PAJUvwoqIsXtebbuJYH34YfUKII2djILhkeZap7bEgTLRIx8TYiVUI9MDUOiLqmcTf\nDe8x+Hwka/oRxz55ElyQqg0PVzERRVEUq+gCqiiK4hKPR/jGRj4WR27PRufkyWxL/UciitrOfRtG\nIwqc7mzqQdLo0U6sfYcPg2uQPBZDfQWhjqY5iF0emcvKrMVaUsLXNfW32G1E117rmHnjcN764sVs\nm6FKjUVrR2OhBdk5A0uO/Dv46JO/HY9F2T98hu1DWBoiMxbWtCCJqK+Pr+mgOcng61zP5ViG5CMV\n7ucymvbtr4EvaKhQ5/H3txZrczPHGjEKu3vge7V5c/8/xOzmkefNyMiLkxq7GdXB6nay0G5MKXaj\nJfdyqsbM8CSMFepMQUF2Yp05kxcyQysVvsfXXYe+3//eMZNH1oOrfK7otIqN1SO8oiiKTXQBVRRF\ncYkuoIqiKC7xXMYkSgO6/9tQck9ipZquzZir850hFMGNpFNnGLcZ+vtbzIFmZfEvYvaVyV6u118H\nV/Of33dss9wi00+UYKWm2ou1p4djNfogG/d0ObZsoyMi6vLjVjpTKCklTOTvxo+3EmtNDee/Yg8X\nolPm53ZjO2LaUtauKh6Hs5Rozx62y8svzudvtA4e+IRztKD4TkQBz7Aieudc1Fy67Ta233nH3r2a\nlsbXtbjXmHsk83Wm0r/M3wlFLyLCnumPPrJ3XWUpm5lAFn3RfeuLwDUoQ5QLyrwuEX4/s7KsxJqf\nz9c0e6hxr8prIxX2iSj7Pv7+//KX+LaADxv5RT95Zd2BKoqiuEQXUEVRFJd4PsIriqIo/aI7UEVR\nFJfoAqooiuISXUAVRVFcoguooiiKSzyO9KCqKq5XO5kArr172TZa4aG00ayt7Dsjen99fKzVq2Vl\ncR2YWa7mMzXasdPCsN9VthQHbcExoS3xWY7dn5yVG4qKONbvfx99t97KtjlpU05sDKrEWrfWeK67\nCwmxFGt9vRNn9ZlocDU1sZ29G31nXn7ZsYea/dxvvcX2mjX26hUbG/lpqKw1JcIb0tBJqJ6U79hx\npTPBR3fcwfbChdZizczkz79gBfbCb32Bx72YSndjx7JtqARSRYa4r6Oj7V3Xri6+ruaMC/E5d/0U\nNQ+k5ISphyF1GxIT7dyroC8xowt8UVN9Hdtcj3zWi++8mDRLRNhTn5+vdaCKoig28bwDFaX5Y57B\nHajcHcWdRNFk6uhwzCEvZ4Gr+Sj/hY2IIGvIBo7PPkOfjxDR7WhD37PPsv3wwxhr+JxEflFRMcAI\nmQXHWNmqWeyAiIgaGtgOmoEDt777AncbyR0n0TcbgPVtaRzKO0svY3Cg+IgvkIYaKjtoenGqXLMY\n3GXx44ft+darsKNoVseT/MLo/IqbIobljTWmykllcIsEBLAdO90HfEKj2NTMhl2nORzxotwAxn8U\nW4vfj5rtP3VsuB8IVdfkcEoiIv9N8qSHP9MtqV6s/nTqLCpD7dvLgyxbDuOecUUT///x8fgz5S46\nkb4e3YEqiqK4RBdQRVEUl+gCqiiK4hLPrZwtLew0HvutPs+5g0eW4gOqQY8/7tjTXsR81NatbNsc\nKpadzU/h8nN70CnzcBMnok/8XinLg8Aln3pmZlpUjhJPNgs2+YIr80/iMfxDD+H7pLT3OUxKNrax\nAlJkpJ1YKyr4mpoqRpGvcl6x6/6F4PN9gRXpL8gjyqfgZ89elM/fEIeiXbvYDhiCT2ib2/j6R7z8\nJPhotJgWYGv4GRFRSooTa/uKMnDJ6oaEcTgckdZxjrZnBVaMeB9t4Rfh4ReluqHVLxJcshIn5STG\nI2+YsnNY3ZDy2DX84v33rcTa2cmfv/kVl0/9s5/GCRDVj7/j2HFT+8BXtJH3lwsW6FA5RVEUq+gC\nqiiK4hKPZUwl+8MdO/U0FkQvOb2AX3z5Jb5R1AaZtamzZrEtj1YDJX+GED/NMCauicr6grnN4Mq8\n5ybHLrviCnzfn4SIdOZZssWRk3xsNKpqqH0r/59BfnjcBIHdDRvAFSkFdiMLyAbyKBQ4uBOdu7hs\nxiyUnj6dS5UW/Ppy8BW2cTkcFmINDFk7P2EC+gJqRUphCA5GOz2MC1Q678NUhCwVyo4ha2y9m4/t\nwSfQl+DHBfE9V90BPu9f/cqxn3gC3/f44/xd/egjC0H+k5ImPrab8xhTVrBQdeGiI+CbMYntg0Z1\nGD36qK3wHGQV15HDeBSPnsz7xOyf/7zfn5G9HPeT8p5asIC+Ft2BKoqiuEQXUEVRFJfoAqooiuIS\njznQ1IUiX3TttegUXfk5ubgO5+Xe59g37cS3lfvJZAIOohoQd9/tmKeaMLH0nyIHk38Oy6rkwKnW\n0XeDK2SXUdZiidARnNsM/exp8BVWch4ufZ6RdBItqWYvX85uHtaXZyFGIqLAYVwOVrPHH3xjfr7M\nsScbBR4LF/7Nsfffjy3AkybRRUGWqqR5Ga3Fr3B/bHU83nOytVeW5RBdmPOzxaFDbM/KxbKaxme4\nrObcK1hiGLWcE7E7sUOWPtpcI17Fki1kHrBsFZZVVazivGewsZIE1nKet6kJWytpSrCl6Bg5p27k\nSFyPQM9mtx/44ibxd3HqVCwplFWD/aE7UEVRFJfoAqooiuISz51I+/ax09B1bFnER6ELlGEEhSuM\nUhw50DwlxVrHRH09dyJE34PlSMcPfeLY8mhBRHimNHUkZfuNxU6UxkaOVXb0EBHO+zbi6autc+xB\nU7CupmIR+2xpLAYGcpzH16MaVc1QLv8xu5RCT3IpTlkbaoWmTBHHwMBAex0zyclOrGVTy8Elx6k/\n9RS+rXiU6KCReQAiKtg83LFtdqK1tPB1DR9pfD+Exmbqc5hSKlnB165kdyD4ZOiDBtmLtauLYzWE\ntcj/oNAgNRcBWQM3ZQr6pHSav7+dWKVu6apV6JNn8TFj0CfO/q1eoeAKObmPX0RFaSeSoiiKTXQB\nVRRFcYkuoIqiKC7xnAPt6+Mc2He+A67AH//YsVOD68BXslgowxjSOClNXEZUVmYvV9PezrkaUwE7\n5/ucZ4z9M7br1QSnOXZLRjH4ZM4nIsKiGtOQIXzR778fXH0bOYZB8XH4Ppk7MmsspFpWYaGVWHt6\n+Jp6TzV6GUVJVctcVOIJX5HML6SkFRHl97KKV3a2vWt6/DjHatyqFPBfIj6jd/bU3amObXwUUDWW\nn28v1tBQjvVHP0LfrsuFctF776HzjTccs/sc7n186OLMGquu5lhfeAF9//gH27/4BfomTBXPIczW\nzXnz2Pb1tRNraqoTZ9c6LGObM4ftqik4SyzvNDcU54zA7z/0h2ZlaQ5UURTFJrqAKoqiuMTzEV5R\nFEXpF92BKoqiuEQXUEVRFJfoAqooiuISXUAVRVFcoguooiiKS3QBVRRFccn/BYMqrnZeHVjYAAAA\nAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  3\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9Yl+XZ/0/JiMwxJaZGjIgRqRkZ\n8fiDHHNkzMwRMQdGRowYQ/NhRk6NjC9jxtARI77mD+YYmZKSjxmhGXPM0AytiJjz1xwRI6dljMgc\nY4TPH8+z+zzfV/KZ3Vwc3+N7HOfrr/M+3t54ct/35+K+zs/5Y8iFCxdIURRF+fJ4/b92QFEU5f9X\ndAFVFEVxiS6giqIoLtEFVFEUxSW6gCqKorhkqEc1P9/5ij6tNRek3l628/LwtN272V7QW4rixIls\nR0cPuSQvL4G2NnJ8Ddq7EbQjkSmOPf6hqaA1r3/DsVeswJ+5bh3bfn5kzdfaWvY1dumtoJ3Y+o5j\nh7XW4omdnY5Z558IUsxhcZ2zsuz4WlXl+PlhUhJIo/7zP/lg0SI8r6bGMXsys0CSz82wYfauaVcX\nX1PffTtBa7v5bsdeuBDPq24Y5dgZ8R+CVvamuDfvvGPNV2ps5NSXPXtA6spc4tj79+Nps/bnsG/B\nBaDdcw/bo0fbu67U0dFvmk7bOT/HTk1FbcMGtt98E7WkGxr5ICLCiq8FBXz//f1R++pX2b78ctQq\nKtg2n43YbRl8UFZ2UT/1DVRRFMUlQzzmgR44wKJ4qyAi2noL/wU8cwZPy2rnv6J0yy0ofu1rbMfG\nDs5f9cJC1NLT2R47FqTExUGOXVXYAlrBlhDHzsmx+Ff90CH29cc/Ru0rX3HM7An4BhocfHGbiCju\n0818cP/9VnytrOS/6snmj7z5ZsdMi2wGafFitsefrMbzNm1iu6rK2jVtbGRfQ0NRKypiOz+vD8WS\nEsfMbs8GKTKS7eRke/e/p4d93bYNNfmGnhJYB9pdv4hx7JEj8byK59k97wsXrPm6dSv7mjS1DbTo\nefzZmTkTz2tt7f9nlp1N4IPt2634CjvQ2eEoXnYZ29dfj1p7u2OWZx4CKS1VPCteXvoGqiiKYhNd\nQBVFUVyiC6iiKIpLPMZAjxzhuML4w1UovvUW2y+8AFLfn99zbK/4ONAa8zgmFhFhMa4YFOT4ur0E\nYzUjRrAdM+U8aHUNwxz7jjs+A+21165y7Ohoi75OncoX/ZFHQGoey9+uh5/FGFjOHo6Bmd80yphT\naaklX48ccfzsvukmlN7mX0HGGIkgrET1P9qM4g03sD1p0qDEQCM68bq1BPN1C2najifu3cu2iIcS\nERWX8PtFdrbF+x8T4/han4e+Rk/scuz6Jl/UOvmzc34Gfq6G9fJ55Otrz9eUFL7R06ejNmOGY8Yt\nDAIpM5PtY8fwNJmIExNj57qWlvL9j49HLehbHPesf/Y90KL35vOBdJqIGts5Q6O/tUrfQBVFUVyi\nC6iiKIpLPCbSNzWxXdGEidvLl/MxbjSIvNLT+GDOHNBkznV9/aU5eUn8/OeOefo0SvI4pnULaCd7\n2dctW64CLXqTSKSNLhu4j/9L2jhO3h+KedS0Wm4/5uCWsqAk2LGzSkJAKy3qEUfeA/TwfxE5NY9k\nYqjnqdt4R1N555143ggftj+YBlLjuPsdO8KCi87PqhAJ+/v2gRYyVRRP3H47niiqJxLn4vuE2KHa\nZcoUx4xePAmksvRDF/tnRETUNZG37a0nUTt8mD+FyckWfPxfcoO5KCW/sxhFUVzRefkbIEnfZwVi\nmlvlYSPNyAJZqSKEYaROdr3L2/bowwdAKx3BBUL7jUT6qtWysGIUXQx9A1UURXGJLqCKoigu0QVU\nURTFJR5joMlzOK6WfK4CtL7hIj4o81aI6FRRpWPLKioiohmtX87BS2XXSI6tLbgSU1V6ZnPpWNiE\nNNBkharxaxB1d1vzrz/KUjEmk5Ie5dgbjXrNnkCOe37BtV/8gu3HH7fiW0oRx6p8fFDbu5NjorOm\nY2oYvfgi26I0lQgbZETYDIKKFKRm46EL/+Y3Hftg6P2gTe7klLeqKRtAoz0NbGcYaXwDoC2Ty6CD\njBLpjLHii4Ede/HEs2cdM3z0aJCSNvE9txkDzZ93wrGH3Ihlx489xqWv9cu6QIuJ55hs3UN/AC35\nrkBx5EdWEClIPccxVWm4WOXmPxcF2lNPsZ21B1PDCjZw2lhODl0UfQNVFEVxiS6giqIoLvFYibRm\nDWf3T5iAWnQvV1CUnYwBLcOHUx/mv5EC2vr1bPf1DU4l0um//AWkMaID1Jk/YM/Hl15iO+Mqo2rm\nyivZTkiw52tGBl/0wECQOhZyWoUfdeB5y5c7ZnLnGpAql4lUkfBwK76WlfH9zyBM4xr3Sw7h/Nd/\n4Xky8mAUd9Bzz33s2BcuXG3tmkLVXBGGaWjuXMesPBsLUrIPh3sStySAJitompstPqsjR/L9N5vQ\nrl7tmG2vHgUpKFV8zoYPx/NkeU9+/qD0Az3zT9xuf8y38gvX/MjictbMKsYdO9iurLTj64IFfE3H\njEFN5jGeO4eabLkl+u0SERUP589if5Vo+gaqKIriEl1AFUVRXKILqKIoiks8pjHJhkuyUzYR0bSF\nHI/JCMXuR/QcxyDXbsHW2V9f8bcv6eIl8umnjjnmgw9Qa+B0lNHBV4I0ZuvfHTujBlNcZPN67FU+\nMLbP5HhiQiuWx/nN5NK+/NnYITtXdNavnGh0Vp8rYmlVdlJuIFWqqQG0o89yzK36JJYjjm/g+FdF\nBcbGPvroaiu+mcjO7ot/8xvQhv3+946dvHIlnvgzLgGuOjgbNZE2RBQwUBcdGn/Hn4GITLx2Ofdy\n3HMPVkHToU08pKsvNAw0r+X95NkMkLTFHPcs78XvMz4vFLPHZuO1Ex85+sNVWAaeNNZoz2QDGcsU\nMW8iwnJyI22sbAO/Q85OB4nGNtG/Rd9AFUVRXKILqKIoiks8D5VTFEVR+kXfQBVFUVyiC6iiKIpL\ndAFVFEVxiS6giqIoLvGYB0qlpc43TOd+jK2sKtf3/+WTTLvyK8L8tBOp3MorLMxiffGHHzoOFWzA\n9vs53VzTun1iPmgJY7idXEYFtrqSNd05OfZ8zc/num1R+kxERCfFqAbfFUtQlOMGjQmS8INGjbLj\nq6iDpsJC1MRxTy/+HfbuFe3tmjCZbskOvsarVtm7pnIq57JlqMnUP5nbTEQUFcq9EXpG4HPzN5Gy\nPHq0xWc1IYGvq5GXSN/4hmP2/RFr4b32c6u7/L3RoM2bx3ZIiD1f29r4upol5vKROHy4f22D0SWw\noFtkVRcXW/F1yJDPHT9vvhnbGaamsi3TRYlwKmfPslzQvPeLiakxMVoLryiKYhOPaUxBQfzXp+0w\nNkzd+go3TJWjtYmIZLGHb0MtaKPmcTecDz+0+Fe9q4t/ka9+FbXLL2fbnDgnOgVX7xkGkuxZO3my\nRV8PHXJ8PTIcK1HkDPuAFQuoXzHdKJt4Qwz1uv9+K77KDkdhN+GP7PqYL7ccFEiEb4DjV3jo7mur\nEw8RnTjBvjZg0RRUKa1bh5p8ds0hbiEV4o3EZoejsjLH17rQDJBiHr2VD0ZiFV/LBn4j2oKzEaFq\nLD9/cN7sI9qrQcuo4QbEZd/CTmZxW7mqb+ZM/Jmyws/WXHjZjS0qECsjD0TywMG0c6WglS/iLmZZ\nG3DYndxJR0drNyZFURSr6AKqKIriEl1AFUVRXOLxW3j4Zs0IdCZdw/G4pGnYAb79q/yVYN4jGGP9\ncKLsCI7x0QEhnTU77shpcebXsOIrwhkV2MVIftE9efJAHRSIyWoBj+IPHiG659PixaAV9PK38jl7\ny0HLbeWuR5hn4B749tS4j+kilDx9Op43PpXjuh27saOU3xycXmCLsN4jfDBlPGgzZrBtXFLQQoxr\nChPwbCLi8NNSUVo59x3HvuYa1B78BreAf/ZZ7Gr14IN/dez8fOPEARDxkIjJ3nsvaGXdIrj8bczS\nqP6zeAojjSDo7t1sx+A3365Zu5b/u1cNTawN5e9dj9q644451FgN5bCA2n6WKn0DVRRFcYkuoIqi\nKC7xuIX3/qr45v7rX0dRZJmvvLsepKVvj3Ps4qOY3tCcyu/CmDQwMOp7OUE7dR0mxLcsFE2LjaFS\ndZm8bY9pqAPt5MnB2W4emcmJxOONtKqOZascu6gIzysI5S3mqZnYqDj/mPTdjt/+/mznZOKAu6w8\nbrRrzqjvTuVt+4jdqCVDk2J7lDfwtv2qq1D7/HO2zeGIaXNEel6rkWVtDm6zhBwc2G1cjqlT2TYz\n1T7/nLftZtjk1lvtbdsBMTGwrjUEpJhOkRAvw2RElE/8O+bux6bhX8hrssHbbztm6cQzIHmt5s/G\nMaOXc7uI0hTH4zrWsRyLFS6GvoEqiqK4RBdQRVEUl+gCqiiK4hKPMdC6nZy6MisPSw7po48cc+lx\njMcVX86xuuzpeFp4t0xrMX7mAIiexkPWrrgC/y7kilhNuhHmimkQqUtGfFQ2E7HJ+Pd28oHsdEBE\nPldz3Llg/nw88WevOGbApk0gVaZznMdD8eSXYuJEcZCXB9rcuVwSFzXiCGj04otsz7wPpOoVXDoX\nR/ZIy/Rme14PaPI+5sY3g0bzljtmeTyWKs6Zw1F6X7JHaCjbZhmsrMg1M+68NvEQt/ptRhxR1h2T\nvSkTLRTSv3jbbWxPmwZSbmsrHxS2gvaFjh4WODKHY67jf/8MaFdcwbbZECWshMuluwrXgObXLp5r\nP0yN+xf6BqooiuISXUAVRVFc4nmo3JIl/bbcKavhOdlmh5vGeK5CGPJ/cEN54RPRc9HX11rXmI4O\n3rfI6hIiosbd3PPxwEns+Rg1poUPzLQV2fImK8teN54rr+TrKrpBERHRnXeyfc89qN0ntsNGk0XZ\n1cdah5vrr2c/v/1t1Jbz1vf8GNzmye5HZtZS9gyxhQ4Pt3dNjxxhX/fsQU045HfYSFU5KdKzjLyx\noE3cu7atzV6Ho7o6flan3YE/1nv9esfObcdOTfnHeL561wasmusVKYd+Fy7Yu66xsY6vPTVYjrNw\nIdtlI7B3bdtCTscL8j8P2vbd3PUsIcHOdZU9dnMvexLFzz5zzMSTBSBV3SPSLGW3MyIiGUJra9Nu\nTIqiKDbRBVRRFMUluoAqiqK4xPNMpMBAto1SrQwfjjP96J3vgZYzk1MKXn8df6SM1Qz1FH/9ksj0\nBDMERm++6ZhRInZHRFg7Z+SNJAZzylVVFtlDxOR2DbkbpFnfu5IPZJCJiOgVTmMyO+vHTJHpOXaK\nZA9sfs+xjQwvio3n/2OY0eLo+edTHPuVrySCdl6UzmL//wEi29DPnQtSWzzfvHRjBhXMmTI6js0w\nhhfYIlrEPYfKmDcRNf7oR46df3AiaPR/f+uYcnYWEVHEDTfYc1DQtY3jnoV5qJVdJ2KNr+NQpOef\nZ3vkSLzTZmjfBvAI1uC16E5Kcuyqp408ps/4O4iWqfeDFGLGRC+CvoEqiqK4RBdQRVEUl3hOY1IU\nRVH6Rd9AFUVRXKILqKIoikt0AVUURXGJLqCKoigu8ZwH2tLifMOUswHrneXAQiMlEUqK46Z8iKIc\ndVlQYK9mt6+Pvw2T4/SIqGcZ56V6dxr+yLxQ2YKLiGjOHLYzMqz5WlDAdbtmfqVMvd1tjMP45z/Z\nfgY7dsF53t6W6rbFNS0uwb+1UNNu9P3r6OXmb341G0GrHcM5orGx9urLW1r4mr7wAmpLrxd144av\nu85yS8XvYTozDKGsrLTnK/X08LNqtIGjBx/k/3PkwyDJ3E9zYKgcq1Jfb8/Xri6+rkbnRdpeJPpI\nGH0EGtO5NVxE63Y88a88QZQeftiKr2fO9N/Db/Rjot1mZiZouTV8//PPLgAN+n+EhWktvKIoik08\nvoGmreC3zvLFRtPcYPEn0PjTVFDEzW0PH8buRznmxC9LtLTy34Idw41Z06L6pKEB/Rk7tsyx89+8\nFbQvdEqyhCxwyDmXA1p1IHeLMXoYU00N2+Z8c/mHNTZ2gA7+C2janAJSz1iuRPKeh9VG6b38xrdl\nC563N49ta34SXtObb0Zt/svs3yef9P8zzPNmz7bg2EW46x7+fPxj+CHQ6n7AnYv8jbdMWShXOwWf\n8ZbUfBoM5P8pm5MREXWc4/Xh8FxsRhxdKJ4J80GW0wotMfr7PABu68PYcStJlkWZw+9k13BZ6UeE\njcHlW7NA30AVRVFcoguooiiKS3QBVRRFcYnHUs6ICP5ma+1a1DaLRs63345a0gfFjt0Snw2a/GZ5\nwQKL32yGhzu+nm/AwWHDhvKQsbbT3qDJGM9hbChDud0iPmkxY6C2tv/u+V4zYvjA/Iq+ooJtI660\n9Xscd0xKsnRdi4sdP+sm4n2MmSYGt5nZCzt2sG3Gu6ZPZzskxN79T0tzfK2OLwcpzv+AY2/9SxRo\nSTdzbL/jpptA2/8Sfzbi4iw+q7W1/XfPf/llth95BDX5sKang5Szg79NLigYnO75MTX4DMjns3J6\nGUgyM8d8jHMXiw71w4bZ8bW8nK9pZydq8vmcaHS4kt+0G1MeYEHIz9dv4RVFUWyiC6iiKIpLPKYx\nydSQKVPaDZWzugsLr0cps8kxp5egJHPTrTKT52T39qJ0op237WGbMP2jdQanf9x4I553VwWnFBkJ\nDgMidgWnXBwJxJSL8fKim5ndsgjByLF59VW2Rf/YgdHE9zEmFGem0y1L2ZbxHCLMsTLSRmDiXLax\nJRwAtXN52x63F1PD5HY36R2jAmHKY47ZsBPDWZ3GQDxbrDnJ+VsLmjABnR5jf+K2YQpY9XTeCzcO\nnQSaOe/cFuIRoJhjx1AURQnJ53ALP2kLD8Q79GPj+dj/NbZt5bLJbbusKiGC+1++zRekF27nJPvN\nRjjNz/w5F0HfQBVFUVyiC6iiKIpLdAFVFEVxieeO9HFxjhh1FmNghYVsRx/D+MfWr3L8I2lqG2iV\n+4McOznZXrpFWxunW5gxUJmdYPQZgX9rDuoanyriTIcO2UtjeeYZvugPPICavLDmUCuZjrEap6N1\nneO/hb6+lq7rgQPsp1nWKrpZLGnHiXurFnPDlqh4LJ2Vc/Js3v81a/j+i3A4ERGF5IlYohnXkkH5\nN94AqeATbuaRk2Mxjam52fF1YxMOAJQuPP00nuadLn4Po9PMxiK+5ikp9nyNjubrum4dauP3lPKB\n0UxEBk9PdfuBJOO1Xl52fN2+nf1MGFGHonx2ZYodET4PZocWOZwwIUHTmBRFUWyiC6iiKIpLPPcD\nFXvfxcbbrRyhHT0Ts/tfF018Nm8OAu3aa9lOTr4kHy+JoMWi+4sxF9zfP8GxL7usyzjzMsdavx47\nRY03qj2sIRpNVtZgWsWEuZw6ZYwpp0yRxeS9AcMmvrJqorSUrCDb78h8FiIMIWxCSW6L1r3VA1Jo\nqB3XTGSGzYLrdqIoqk8yjmHq1Drx6K6oiQAtd4y8xhlki7ZbbnHslGefBS3lVtHYc5pRGSMbwsoP\nEvXbLGjA1OzjnavvHiOmILbDW3+BobqkZXy9AsyYmuzJmmt0TnOJLHg7c2MMaKM38Pz6XdNX9fsz\nSmowFFW7XzwrCQl0MfQNVFEUxSW6gCqKorhEF1BFURSXeIyBZiznFJT4eNRyh3PHJd8ZGFfqivTQ\nUWiarOVccmleXgr33OOYKTswXrExlMs1fZ7BmIusiAyKxJQbM1XIGqLTdfLHH6M2g1vLh7djakji\nPI7fTJyIMbngKWzbCi1vjORYapPxpBS3clrbquXBoHX/gmN14ecOgEa9E8QBxn8HAjTgMVvJz5/v\nmEZ4HDr5ly3ELl5HhvI1Hj9QBwUB8kCOGSCi8xXcVWuYcd6uQPZn1jtPgvbrX7O9dClZ42gDZ7JN\nzsSJDfVPv8P/v5EemHS6wbGjhuN1HSrSBevthEAh/Sv6D0a57te/7phnjfLclJmc/rVnAn7+80fw\nGtefm/oGqiiK4hJdQBVFUVziuRJJURRF6Rd9A1UURXGJLqCKoigu0QVUURTFJbqAKoqiuMRzLXxG\nBn/DtG8fauvXsy1rW4lg0mDIijSQZM3qoUP22m4dOED9tt7rmx3n2LK8m4go+T3Op/N64nHQ5GSK\nVasstjPLz+frOmUKSEv28IiDZcvwNL8Noo7XTPb79rfZrquz4mt+Pl/T3G3Ydg3alw3FxyhrB+cB\nP46XlD77jO2QEHvX9NQp9vXaa2tB+9rX+JrKoaBERJtEHf/y5ajJtmvZ2Rbvf1UV33+z955IaJ00\nB/tIyBzGlm2NoEWkcx1/Y6NFX2NiHF9bfv97kHqP9/sYw+NhdmWULSVt+Vpfz/c/+kfjQMu686hj\ny880EdF1173v2Bf+cQ1oQ674gLUL12s7O0VRFJt4TGPKzeVVPf8k1rckU6VjV57G7idQwWP8+Yma\nw3UYBw5Y/Esp5oJnDce54KWnuVPTmulVoC0I5bcV3zk44Kqrs48PvLys+XrkCF/Xq69GbfRj/Mae\n0Im/x7x5bCeMPQIaXOeAACu+Njayn2ZxT/Nf+b/w/+lPQQup4LqNlkexKqRuHDcpjomxeP87Ohxf\nUxZhA1/5glw+F99OS4/xPTcbTpUvFtd4/HhrvoaH83VtXoT3+MQ0vv/m21J1sOgWZNyQjG38e5SV\nWbyudXW8QBhVU3THHY5Z/5W7QZJdtwKCvUGDcrCNG634Om4cX9Ojj2CnMpo2jW2jujCte41jl9+G\nz2rtDfysxsZe/JrqG6iiKIpLdAFVFEVxiS6giqIoLvEYAy0r47iCOW9p48JDfNDdjeIf/uCYfXKK\nGBF5PfEEH+TnW4vVyHjtTTehlnScuzGZvtbN4A7wInmAiIj+9je21661F1c6eJB9nfxHjIFBmoDZ\nDUp0nW8Mxo5TEdty+KCgwI6vYvhZciF+Cz9jBttpefhtMbSH34Bd1U/M5DheWJjFWF15OT/I5vQz\nmfpx++2off65Y8bux547tRWn+MBSXJmIaNIkvv9mh/7KYL6P8tkkIooJPOHY838ZBtraJwbH1yFD\nqh1fLzyFUxebHn3UsSceP44nysBzeztqcnDirl12fO3rc/zMXozvhcXfELFN0ZmJiOC7g/nPR4P0\npGh45eenMVBFURSr6AKqKIriEs+J9IK8PDzuC+aZ6S+8gFrSa7z19DKGW8sZ4v2Pd/ry5DeIFKS9\nRkihRExjS00FKUYUAcSMxdnnWW+l0GBw8CDbkxeiP1lNnMay32j+27iIm9RG+OMQry8MtbdArxh+\nNvclDPXIGXZfyMWSx2KAHhGRTzwO7rJFXypfN6+33gLtxCJOVTFDUYkP8c6s9l3sGj4pnsMWhw6R\nNWRUK2UMplWlbeFte/k5LAjZ+g4XhKyduhG02sP8rMZCx+aBsWUL/5/0RwxxTPzHPxz7wyuuAO3Y\na/y85OWFgFZTw1tls2m0a0QVRHFTA2qb+GE9sf9DkGTCf1lhB2jh0zkdrhl7QjvoG6iiKIpLdAFV\nFEVxiS6giqIoLvEYA5UNAkKKFqAo0kGSZGMRIki/SSvB9JfydlkuifGfgSBL9K66CrUzIu4VvAKD\nGXHL2b/5t6N2DfYWsAbM2TNyp0ontIp/iLGclX/llKefBOLPPLmCS1QxwcU9p97nOJa/kYkCIdff\n/Q60PhED9TLK/2aI8OSJE2QNr9YWPvDBWHbYXi7t2z8Uh/ENF2WopXvxWZXZNjaRGT4ngrF8WIYS\ns/fGgVa8SMS93xoOWuxEGdszhiMOAJh5aDSNkSWSo4xy3lFbeL2oK0zF886KLi1BRgqcS1rSOXY8\n6ueYcTT8vvscO2whXu+5y8Qa1NsL2q9+9e//X30DVRRFcYkuoIqiKC7xuIWXM71XXrcGtKUHRTqK\nbJxIBHvU4bjT+GJHF0vIVCojc4bmiFH0Dz2E2sQa3ravbcK0EaqoEAfbB+SfJKeXK6PG/RhTQ47u\nFFvRa68FbWmrqKiowYqK4ZG43bNB0HBO69jWgB2OIiPZ9h6D2ur1vPXP2I0VUycW1YsjrPwYCF3+\nIlUmrxg03718X9P2LwFt4wROpptghEXMKiFbJNeIzmaReaCtfYb/0+IS4/3m5ZcdM+v4wyCVBov+\noKPsbeE//VQcyA8SEdGECWzLxqpE1LicPy8RgZg6lLKY/duI2Viukf998LOYcpeyibftzUUYNowp\nEqmKgfgATJZxqirs4vYv9A1UURTFJbqAKoqiuEQXUEVRFJd4jIGe+UaUYy+tyQFtY2Qp/xAzu0GE\nEkp7jfSnPNE5vQC7zQyE736XbXM+S8Ai7kj/yk+NNt9zRF3dxImobdtmyTskp5vjnkdfx/Kx4gqO\n5WUvNIJyu3ezLTseEdHJERwDDbBVyieG12S/8gpqjz3mmLftw5LXyQf52fhCINEckGMJmRr23HOo\n/fCHfG38jOsmzzPD80YjMXuIgF3tHnyHKcxk23yO6fTbjnn7dwxtkAK2y5ZxWXRr63jQnniCjwOM\nnK+INzhe33IXxmvNTvs2eP55tsWjSUREXb/9rWPLsC0REaWnsy0D+0RUUMKFprj6MfoGqiiK4hJd\nQBVFUVzisaGyoiiK0j/6BqooiuISXUAVRVFcoguooiiKSzymMeXk8PCrguXnQctYxF/xi6buRETU\nIJoImR1tZLPwlBR7Q8Wqq9nXuDFG+/CPPur/xD/+kW2jVG3UFE4p+vBDiwPQJk3iwLPROahsHpc6\njh2Lp8mUGyixI6KkIaLULDHRjq+33sp+PvAASNWh2Y49ezaeJjNDzFSgiBGiVDUkxNo1nT+f77/Z\nrT2ihNOsTH/S/EX5rjnETx6Hhdm7/0eOOL72GBMQvWX7I+PDUzeTy06hyphwdp+3t71n9dQpvq5z\njQkJM2ey/fjjnxvaZY5tznGTl9War7W1/KwaZaXZ/vw8FP/+VjxPpOod9L8bpMkfiPLthAQdKqco\nimITXUAVRVFc4nELX+Aj5qn3LgJNvr4bxR0wM9wcGZ/SKapUyN6AsbhA0Y1m0xbQ+oq4O49XJ1b+\nLHmNX9tXtdeDVlKCw7CsIfcwxv737Fm2own9oW4hnsEOx5M28bU8lEh2uPlmxyzozgYpZ4rosDMX\n98V5RRxOWISPDbW28jVtbCSre+62AAAb6klEQVRrrH1/Fh9cgyU8jXPF+MIdxlS5zk62jWqeNXu4\nNfUCW12qieBD0f0JphF694rnc9ky0GJuu96xd3//PdDkZ67eeGwGgiwc24IfKwpo5W5tj1MEaFOn\n8hbebOLUd4XYDdtKoxTxrhPLMYST9De2s3rfAa10JP8Ok8d14c98ScQbE7Cr2L/QN1BFURSX6AKq\nKIriEl1AFUVRXOKxlPPgQU5hmLzZiFce5mH1lJeHmmgjM2maN0iHVosUo0mTrKVb7NrFvpodV2TD\n/NRU1CoXCX/efBPF999ne9Uqe2ksXV39XvQu8nVs3xXYPR2CSTJvhYiaF/LgtPBwO6khBw7wNY0a\ni7Hj+Y9zF/rLL8fz4uPZjgltQ1HmEVVX27umS5Y4vq68ehVIS9/njmAHH8TJCpMv50DsgW6M40Wd\nE93LY2Ot+ZqRwdfVCHNCeLw4/Ui/P6OyaXy/WnKyxZS7tjbH15ZeHAAXslx01jenUojBgm0PPA5S\n0AgRa/T1teJrczNf0/A9OJFgjQ/H7xfEnwLtFHHrMjPlUv5KOTkXv6b6BqooiuISXUAVRVFc4jGN\n6fXX2Z4s0z2IiHbscMzSCl+Qsobztig0FLdFXlMmOXZf3yX7+W+ZFclpNZNm41AtOe5ZjLL+H+bN\nc8zmbTioPPzjfBoMIqbz9WrcjQO3fHeIXBEYvk7UOJSvXYQPVlvInbGtNJaoDWl8UFQEmixMigo0\ntunyIl92GWrG/HBr7NvnmEvvK0XN398x330XpVdP8/OZexIbQ38hNGWJsnX84BcU4jsMpH2tKMHz\nIjlMI6u9iIi8lolwTzKGMAZEa6tjhizGfKS2bRz+MiJKlP819lXOuicionaRgje+/1DElyH8GKfO\nnZiNKXcLDouKok34mdrtz9ftn//Enykr//pD30AVRVFcoguooiiKS3QBVRRFcYnnjvRBQSwa9Zqx\n8dyNySzXmxXKscS+UKyB85rJQ+6pttZeukV4OPtqlOSdWcsxkNE/wThX4yIu+zKb8ezdy3ZLi73U\nkNJSTrnImlAHWldkjGP79mLqEJ0+zf/O6OKz8AH+9TdutOSrt7fzQzuNAFHVev7/zPjXoYWilE6m\nuxFR20KOzwUF2bumMuXuqadQq9rU49j5hZhWl7uIU2rySzCWn3vbTj64+25rvkJ6WGY4iiJV7VR6\nLkgBqfzZ2fpQLWhJIwcn5Yrq6x1fD3/rWyBNePZZxw5ajp8rOf9w+nT8kR+u+/ddjr40ws/qzmiQ\nli5l+2jnNXje1q2OOe5HeN7Rl8R3Iv1049I3UEVRFJfoAqooiuISz1v46GgWzffwpia2je39qb38\n6huwuxy1mZwaExBgsWIiJcXxtdsYDO7zySeOvX0PbtMSJnKD3y5/7L7ku1BsSzZutOfrzp2Or+Vn\nsIlr2kyulNi4Bwe8p8wUKU/GDGvIa8nNteNreTnf/4ceQk00ou4JxVQUEWmgoHuMBra3iuPycnvX\ntKODfTU7/4ruwy3deE0DA9n2fusAaDRxItvDhlnztayMt/Bm2KiZxJZe7oOJIP0nf/ckkHLnDU6j\naqqqcnzdegHbfCUtEtvhDz4ArbyC383SzmJa1fZQTh1KSLCzBqxcydf0u99FbXyDWINkR3ci6ljB\nlWl/+hOed+YM23FxWomkKIpiFV1AFUVRXKILqKIoiks8x0CLix0xpQnLozZWiDpMo66sq4RjDtu2\n4Y9MO5nDBwUFg9KNScbgiLB7fsCKBShmZrL98suoyfyc996z5mttLfsaOxFLOemFF9iWQRgi+MUK\ngstAkh2Qxo+3FFsWsVq6916QVv6MU4OW5l0JWv2rf3dss0lP2Ajx+44aZe2ayhiYCHkTEdHw4Wyb\n3Y/uFiFoM8wvqhhp7Vp78fqODvbVb+2ToO26lTsXzfI3hiMuXuyYjSVYrxvRJOJ8aWmDksYEF4QI\npimcOOsHUthvn3HsXdc/DJq8zsOG2bmujY3U70IWsUWUuRqpWBC7NX8/OS0zI0NjoIqiKDbRBVRR\nFMUlnrfwiqIoSr/oG6iiKIpLdAFVFEVxiS6giqIoLvHYkZ42b3YCpAXv3w9SzljuqFLeiUPn9+xh\nWzR8JyKiESPYjoqylxoiB3XJDvRE0JD8C2k1MlMhYQR2RoKcl0OHrPna18e+eq19BrT6mznlQ1YS\nEuHv1dCA2qwRogwxKsqKr1lZ7GfpFuzynzid05HMxu3jd/NQLzP9Tf4OlZUWS3mffJKD+b/7HUjN\nJXxf9+/H0xaUcLewM/twIsHor5znA4ulnJSYyGlMe6pAks+jmQIYso1LIkt9cOCgrOy1+bmSw9om\n3II/tuQpvuS3347nyYygpFfTQFt5I6dcLV1qx1eZGmimMaacFUPmzNZx0vEf/hCklR+x3/35qW+g\niqIoLvH8LbzosdnzVjNIss2j+TYEo0PN1xP558HmWFvRTCJjGSb1lvmL5P0VK/A8+SdfNgAlIvLx\nYTsgYFASqU1kc4ncc8ZYY9EUA0YcE+H8JEt9VsPD2U+jBwN5N4hE7k8/RVE05Cybi2/1sj/G9u32\n3pTmz2df1z5gNAWRr71DcdNV2Rrl2ObYrwUVomGHxR3I9u3sq2xmQ0SUkscNbZ577jPQLpzh4+g5\nuCOoJ9HLsr7emq85OexrwZxG0I748Dwp881eHq9bh9qwBvFMxMTY8XXWLP5MleAsqSUbeJdhLkfS\nt+x4vBfj7uZ7cfSovoEqiqJYRRdQRVEUl+gCqiiK4hLPMdC2Nm5SfN11IPnIr4jlkHAiyjjG37ya\nfXgvpUmpK2Jj+RcRTQ6IiBL3Zzl21SIjPibm2++ajo1fB6PpARFR+5Ahjq8tr+H1jw7kOEwLYYPn\nYd9gF8Y88QRoKa08w97WTKTKSo5/JU/AGDg0WrnxRpB6xZD6oX/+M54nMxuqquzdf/GsLlkdBJJw\nh4LOHQEtewM3g16+HH+kzBjx8rL4rDY38/yeVpyJJPqF0ImFxnx72bjcmDUF8XsvL2u++vnxM1BT\ng9qE2/m/8TW/W/jJT9g2ukYvOc3rw6pVlq7rqlX8QZKddYhoYwPHQM+exdPGjmX76qtRm3ymmg/i\n4jQGqiiKYhNdQBVFUVzieQs/cqQjtr37N5CCVmTwgcxUJ6Jd0woc2xx5u/0tsb1qa7O3LSorc3yt\nHJ4BkhyR8zC2JqS1X1ly8X9IhI0k+xlr6oaeHt4WmXN4kldzWo2ZOiS3H9OmoSYzN0JC7GyL7rqL\n/XzsMdSi/cVWWDZcJaLKwjbHNsZlUX6oGHmckmLtmk6axL4emluMokxdMvNtCgsdc+ubGDJJek30\njl2zxt6zmp3t+HoiE32V99yIRNHRo2xPXonFK7WZXNgSG2sx3CDWgPlzcQ1Yu0PMRHr3XTxPpI6t\nfA7nUH3zm2xbS/o/coTXquE4oytoB4dCQkqyQGsp4W361r/HgZb0UjIfVFbqFl5RFMUmuoAqiqK4\nRBdQRVEUl3iMgcqSs+5u1JJLRJnbli2g7TrGsSSzyu/mm9m2NruHsOmBmW6R0ypioqmpKMqODXfc\nAVLiszwwp6pqcNJYVr6CaSzy+pgxUJni8uijqK29XqRgLVlix9cDBxw/TwVHgRTQyrHbNU2oLXhL\nNI+Qg9eJsENKQoK1ayobn5i3OGK4aBJiPBwdqZxS45eJc88PPsqNPiZPtnj/e3r4Q2eW5H70kWPW\n/vQNkIqK2DbLI+WvlZVl0ddTp9jX225DbfNmx2wLjQFJ+mo28Mlptx9bhlLeJztAy8rj0u7S03iP\npXM9RZg2Jr9zCAjQUk5FURSr6AKqKIriEs9pTGFhLJrpH3IPYew1Oyo4NcCvEzucGHsNa1uNU6f4\nFX74tfhjfT/jLjYd3cNA+9Of2H4SJ8xSdeDgpLHIlBuz+uGV9ZwCdPCvWFEzeTOnYGyM7H+7kZ1t\nZwsHXYO2GFufW25h+4YbUJO5S2arLpkaZrESqU9Ud61+Gp/prOen8sHnn+OJM2awbZapyFwxiylX\n1dV8XeMiT6HY3u6YiUWTQKp6cKdjFx+/G7SmJrZtVaIREYy2rvwE/8/kv4letuYIbhGaSFyBYaqq\n1fZHW3eL++9jjODufvFFxzZaBdPw117jA/P+y7yxxx/XLbyiKIpNdAFVFEVxiS6giqIoLvEcA+3r\nc8QzH+FaK5utbOzEEiiZivGF+Ni+fWy/9569WM327fyLyDgbEe3qjXXsWe1leJ6MycpOQUS0/TSn\n5yQk2IsrJSZyDEx2fCIiWnCS02rO//KXoA07fpwPRKyMiKhPpGB5XbhgxVfZOd8cJSMb4BuXm2rH\ncqzW7CgU1i26OoWH27v/o0bx/TeH4sh6YjM3TF5HOYGACEuUy8rs+Vpdzb6ata4iJptfEwFSbrqI\nl5rfSchyVYvpYZByZaSAHRnL5aTjx2Dq0HkfTh0yL6vX3kHoSH/lleynMdsIamKNrlEnNvBkBdPP\nTZvYzsnRNCZFURSr6AKqKIriEs9beEVRFKVf9A1UURTFJbqAKoqiuEQXUEVRFJfoAqooiuKSoR5V\nMekQRhQSYb+q3/4WtWefZVtOCySiU7O5tVx/LaLcsHEj5yym/AWL2s8/8rhjywmNRETlL4507Izv\n48gCOeEjJmaQ2pnt3o2aTEY7dw6k4lbOu8vOPI/nyURNWzmLpaU8emImjkKoqGDbbHVYHMhjKmS7\nOCIivz3cIo4SE61d05wcvv9Gd0Vob5c7w5jKKmr14/air/ffz3ZSkr37L3shzJuHWla7GDGTl4ei\nbL1ojFHZuHuUY6ekWHxW6+ocX7sisWWdr08PH5ht+YKDHTOhHXOBZVqun58dX+X9N/OSJ0xg2yx3\nT+vlvPDcdhwFlH+FWEe0Fl5RFMUunt9APXXVEURfjo1f9wSz7d25AzT5IwNw1tSAgMIco/pp2EJu\n8NvbWw7aqT/yW2cZYWecux5iB2Pwj+/AkK+28lWOiFau9XXspddXgQa9iOdhV6mzZ/kvaT1ZQlTF\nhG3JB6ngWtFG6s478bxuPs+PsELlQCB3dcI2zAOjoGkW20XpKMpXkD/hLmPXWH7rLMSXOk+P/IA4\nNIXf5suHG7PfRaXMxi3eIKWItzookyGilNZWcWD8zAFwIpAf/LDIMNCyZ3Oj6mLztU+0h9oenILa\n7W+yLTseDQC5WSsIxc84FVWwbXbbFtVm+WRUKe5++9/+v/oGqiiK4hJdQBVFUVyiC6iiKIpLPJdy\nJiQ4Yvns7SDJMN6w2RggPPhz7rZy1134I+WX+S0tFr8tlBkDRqci2sFx2F3TV4E06y0R2zNbI40d\ny7alztlEROfP8zeGnZ2oyTin+W3y4cMX/3dEmF3Q3GzpumZk8DU1vvWNq0joT4LYYboRjpQNjmwO\nFZSd08vPYOf0tL+LzulyMh8R0SOPsC3vNxENeZBjuxcuXGPP15YWvq5GTO78bo5gv/wynpa0k2OJ\na6ZsBE3Oe7M6AC831/G1ZznGwWXc0c/HyAqRotlxSnbEys6246tYq8xUm7KTvD7JAQRE+Dz6bjFi\noHIdyc/Xb+EVRVFsoguooiiKSzxv4Ts6HLFsmx9IMnk6K74NNLllPpOECdiS0aPtbTWKi3lbbCbL\ny/l3cvgWEVH5wkY+KCkBrTSSt0k2Z23LAXgB63JBK/DhbVLOsj7Q5j/Mf+/+4z/wZ6aNFQniUVFW\nfF2ypP9rGjSiy7FLK3xBy5oumiYbBRi7DvOgvFmzLG416+v5Qd6zBzU5m95stiybVpsDzL/7XbZX\nrbLma24uX9deY8qZPC4sRM3rpJhvb1zXlnOcSB8SYvG6+vr2uzXeekuBYyfdielqUEAjM+eJiKZM\nYTs314qvjY3U70IWUSgGIhrxpnLiFMe0ERimhKbVxcW6hVcURbGJLqCKoigu0QVUURTFJZ5joM3N\njljfGQ5SdK8YDGU0DDkxj+N4YeuwQQNU+veTGuAKOajrnntQe/99/mdNQSDFnRapC7IcjghjIPX1\n9nwVseUvpFyFhrJtBMGa5/B1NWNnsiK0tHQQ0pjMqXLiP8wfjqlhMnUpIA8bNECcedgwe9d0yRKO\nK/7iFyANfewxx873KQBNNpA4+BCmsUz+bBCGnxERJSfzdTUahqQVcrmkGXeOOFvLBzuwRBrividO\nWPM1Obn/OPhf/sJ20nFMcdoVybF92QOFiKg8T3xnEhRkx1eRbkWTJ6M2bpxjltaEgCTTmszQucww\n8/XVoXKKoihW0QVUURTFJZ67Ma1e7Zjt040s/XM8GLz7Zz8DKUxuoYxmkVu38Jt20qV6eSmIkp5T\nH2BYIuB7Ux07ziyNevFFx2x76R2Qgs4a209biLKRIzvfA2n8BtFJZyjenvBznKpU34u9jMztlQ2y\nh/M9jzf6KEbv2+fYnVNRExIlGV168ou4i1QuZnANiLqZHEaImTYNRZE2E4ijzYnmcmXS5BXYNch7\nC6ex9fSQPZYtY9vIqysvFOlJRj9YGsppVrXxa0CKvekZGgxkFEkWEBHhtr0tFW9mhSj4io83fqgM\nWwUFkQ1K/dmXrI+xSmvrm7xtzxpbC1rZ/ljHNnf+svIvqp/WYfoGqiiK4hJdQBVFUVyiC6iiKIpL\nPMdAxZyTZMLYQc8cjg/6yNQbIqJHH3XMUzsxrvjnii/p4aUiUqn852Is69R/ccf8gN9vBq3uKfYv\nZh9qX6j7tETlkxz3TF4Ui6Lonp7YXgxSuxifJKsTiYiqQnP4oABTddwixzNF7zEClpv5WmUaKVWy\n4VHSHGwblRt5RByNH6CHjOyqc+amONBeF9loaVOOECI+ApmZoKT60OAg2mwlHMN7tUGk1UyYNgo0\nOT9pVajxnYRI1bGJjHsmBB4CrU2kKgUtSgBthD+XRSbP+BC02iYOKBpPv2uyRnDcs7QTP/8Qhv91\nEWjds9mDd9/FnymbSGkMVFEUxTK6gCqKorjEcyWSoiiK0i/6BqooiuISXUAVRVFcoguooiiKS3QB\nVRRFcYnnPNCcHP6GycdIihM15D0HMdfTezXnLyY2YDs72VE/Lc3i6AHRes9sEUZnRSG3yLMkIqg3\nLp+ONbRpvxJF3m+8MSgTRPMrsBY4t4nz6Q4sxhEDUafFsSzUJTJ6yAVY8bV7yBDHT58f/hDF665z\nzBPffxyksC2itZk5QkNOPk1MtHZNDx7ktmvBwaiNfpXv69YrMEdQjkYxJ6RGnKziA4u+ynZ20e2V\nIF11FduvrMdROQWb+FnJuWUnaHHreRJpdbXFz1VdnePr1o9w+m7S18UYGdlPkYjq53GeavRYzAPt\nGMr5rX5+lnxNS+PPv9HrsT6d7//zz+Npa58Uo0hk+0oiHJsSHa3t7BRFUWzi+Q1Udo2Rk9mIiO67\nzzG9I7HZskzhPzkB30DTJoohbhRxSU5eCuVvsQ/HQvHNbbboBWzODQsr4oqqtBqsphis6o7K/fwm\nkbvYmKedzm/6UTU5ILVlctXK839CX5eutl+JBH/Hjdnesvnwf84DiQ5tEO13zGouWU6TmEi2+OQT\ntj/+GLWtojIl6xv45kYlrzpmc3oparJpsUVfZdnUR7h5w5lnRlepnMhIxx7yeAVon31myzkDsfN8\n+mmURubJiiL0JzpSPNfHsGm43/dE26P3sBuZa+Rbp3Hd5GF0E97jnCIeerl4MVaw+Z3EyquLoW+g\niqIoLtEFVFEUxSW6gCqKorjEcylnVhaLN94IUuPUhx07InMSaus4dhBRg8OmZOfqoCCL3xb29LCv\nv/oVaiKW2eyP3ySGz+EhXl1vnQDtlVfYTkqy52tbG39j/POfo7b2+zzILHkD+lo5RcRvjEF+tHw5\n2xERdnwV38AOueN6kH7wAz42ms5D6DygF79Jbhff3gdeuGDv/j/5pONr412YFRDhIzowGW3VC9o5\nPpoTiFkY9OmnbD/8sDVfKyv5/k/EZlUQMk4eWoWiCOBvPxsN0j//ybbNZ5UOHOg/E0cGbCF4SzCg\nceXd9SDJoRDh4ZZ8TUx0/Dxfgddt2Gox9PA3v8Hzfv3rfn9kx1iO8faXLaBvoIqiKC7RBVRRFMUl\nntOYTvLgONgiEtG1YuefMwO/7k8X+afjnsdGvC/N/XIOXjJia5gw9a8gbT/DPoR3GvO0xeC8Iuy1\nSvmHRapQEqZGDYSgs5zKNX26kcolhlP/8pe4hafjvN9bMzQLpAXDMfxgBZFZfvo0buFl2lBYaB9o\nHZ38dzliBhYKbPvzIHX/uvdex0w1nrGSEm7cHNOJw79ldl7OTCOReqjnj4dbxO6W5t6PO8M9T/P1\n6ZiHqVN+Q7sce4xRRyFzvm1S3MDbWOk3EVFhKyfInzWGDgb1tjj20ruNdMAfvi4O/Abo4f9QPpO3\n7S98D7VXNosiE3NIvUyeb2hAbcO//8zrG6iiKIpLdAFVFEVxiS6giqIoLvEc5JFDtgoLQfrHIm4Y\nUhCPMdDEZZzWdHRrM/7MdhEsCTNifAPhBz9wzHmRKJW2cypVoJE2Ei+GeM0wh4iNmEaDQXU7xz2T\nzhjlg6LUcfT7eF3LjnHqipk1Qpt4UBnlGgPgXNI1g2PAo1vxPo5+8EE+WL8etLxNfP/NFKeQGvH7\nZmEcd0DU1Dhm816jXlfkVfWsxmFsG8ayvasXtVlbsPGILWTqktdPfgJaVlMaH1x9B564cqVjRs0z\n6mdF7JxqcQDkQMiewg1D8s/hZDWZSWc2YkkOFk1kRHyaiKhyN8c9k5MH7CIREaX99UnHfjMY09ho\n7VrHLEvHz1RGt3gejeGY5rN7MfQNVFEUxSW6gCqKorjEYyXS+fNcMTEs09jOzJ7tmFn7Md2i1J+3\nzLH7cTtZO1PMOs/OtlcxsXMn/yLHj4PUPIM7Qo0ejaeN3lnOB8Y7e3E7/17Z2RarO8LD2ddFi1Cb\nMoVtc/h7SQnb7djh5sRi3n6GhVnyVfZYvece1KaKXql7MDVIpr9lLPYFqcxHbNtLS61d0+xsflaL\nb9sM2on/uN+xjUgUXG5pExGFHxucfqApKezrxtQ60M7ewdt2f7NMSWzhzRSr4iYOh1l9VsvL+Rkw\nqt8OZHLllmirS0REscs5jJM/G7fNuXNFyl1YmBVfW1r4moZMGYXiFhHe2rABNVldZeQxlm7iUENW\nllYiKYqiWEUXUEVRFJfoAqooiuISz92YZAzsO98BqVvMuvF5/XXQZJ5Gn88wkOJFs3Krs1ukr5GY\nx1S+rsexdxiVnNWhomO+WcspZyvl5w/KnJnqc5jKJcOwMuRJRFRN3DF7zcxq0GSZ3apVdq5rTg7H\nlQryelCUNZAy3Y0IOnedeh07jst0l/HjLd7/hASOK8ZjCZ6s3pPhMCKiYdtEByajHvHAFH42oqIs\n+nrrrfysPvIISGe+w981vP02njZrB09PoMWLQVuzh7uKLVhgz9fkZH4GNm1CTYbvS298BrRT93K3\nNrOJk9+8WXywa5cdX+Pi+v1eIXEdf8YWLsTTZPg+f4cxWUOWdg4bpjFQRVEUm+gCqiiK4hLPW3hF\nURSlX/QNVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEl1AFUVRXKILqKIoikv+G2zmy6A04tXNAAAA\nAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  4\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnWFYVWXW9xdEREZkRGKEZGakZqRk\nauTDGBkhGmOMqUOO4zBGaEZGpkZGxiipGZljYk45PmSEVmSUaGRkZqSlaIyZEhEPEYmRY2RKhPB+\neN72Wv9bOU2b2+u93utav09rtzrHdfbZ52bfa6/1X17t7e2kKIqi/Ha8/18HoCiK8v8ruoAqiqK4\nRBdQRVEUl+gCqiiK4hJdQBVFUVzi49Hb1MSP6P39wZW3ltfeSVWZ+Drx/ybtnQWu/OGr+CAlxes/\nDfRXiY3lWIOC0Ne1q2M2PLoCXMFPZzi21+MzwNd+UryPt7e1WNPTyYm1sRF9vXuznXnWAnTedptj\nRqVGgGvYMLYXLyY7sVZU8DndsgVcLdPTHXvrVnxZ7MIYPliyBJ3yA8fGWjunO3fyOR3Sox581c0h\njr18Ob6uf3+2d+xA36qxJXxgMdaGBo513jz03beS/5k+t9yCTnEdV7/8Mrh6DRjAB3v2WIu1qIg6\nLNNJiGvhg5oadG7YwPbateibPZvtO++0EmtKCscZGoo++ds47zz0XTeU//ni1/GjJjSv54Nx404b\np96BKoqiuMTzHWhBgWM2/D4FXFddxXZOYxb40mvSHDt/+RF8z9xvf2OI/xlhB/huYeJE9GVXjXPs\n4I2r0Sn+cg4c2A1cFfvYjsAbvk4xfDjbCUFl4Gu78UY+eO89fKG4XenevRBcr7zC9uLFnQzwF6qq\n2N6+HVy+4s96bHc/fJ24jW6+7jpwbXuL/8rHWgjxF4bsXObYxd+lgS9+C98t5/gYl3zw7xwz+bK9\n6NvwNdux9qJtaGBbXgtEROErxYHcjhBRdW6uY+N+kKhy3R5+j86FByRMDHDs5h9+QOftt7M9Zgz6\n5PUyZQq4Bj99p2N/dCdZQe4sfKv2gy9hTj/HfuONw+BrHznSseVuhIho1kpeNxaPo9Oid6CKoigu\n0QVUURTFJbqAKoqiuMTLUy98YSE/2Tp6FH3JPUsdu7xrDPgi/UQOYt8+8GXs5WRCdralp8VERDk5\n/EEmT0ZfXJxjHv/4Y3B1EXnGyu7R4AtfLnJpy5ZZizUjg89rds9V6HzzTcfMn1AErrFj2T50CF82\nZw7b+fmWzmt9vRNn8twQcK0ewDnHhvGYc1y0iO2csZjjLaMox46Ksvj9X345f//334++mTMdc9KE\nFnBlvcAhlL2Iv4Wk1jw+mDTJWqzHj/P3X1eHvqeeYvvee9HXbyjnI+mll8CX9OIox7b2/RMRlZXx\nSZFP+omo+lAXxzYrMfxEWjypeyk6ZSVGB0+3fyve3nxOjZQrrbr2Gcdum3oP+ObPZztzmBGnrDwa\nPFifwiuKothEF1BFURSXeNzCU0oKO80q472i5MMsYRBbJvj/iGjqZ7zdy821t9XIz+db+KT+FeiU\nlbXG1odEsXJTdywAueCCHx27vf08a7FmZnKsf/vbj+D74guu9O21D7fwUFZkVAs3/E6UagXbOa9Z\nWRxn5qFp6JTbOfPaECVODaOSwbVxI9vJyfa+/9pajtWo+YdQI1s/Al/bkCGO7W1s/YtH5Dh2fLzF\nbXFeHv+uzjoLXCPXcl3PprMT8HXvv8/2d9+hT35oi0X/dV5eXKB+8iQ6u3d3zOg+WB4kl4TRo/Fl\nMk1haw2Qv38j0wC9HKtDjaaf4GC2Bw5Enywj69ZNt/CKoig20QVUURTFJbqAKoqiuMRzDrS8nJ2G\nWMC4gkTHXj/RyNVJ8YARI9AnS4x8fc+MmMQlteiUSRCZnyWi2Clhjn3gAL5M6jUMGWIxB1ZZ6cTq\nddXZ4Gp//l2OrQDzhyX3iQTi66/je4p8FGVlWYk1J4fPqXx7IqKkAVyqNmtNP/AtninyYbJOhIjo\n1lvZHjXK3jk9fJivVT+jtXTXLscsacWSu9gDXI5l9vJ53cwfur29n7VYw8P5vFZuReGT0gNcLvbc\nc/i6/PnVfLBwITpnCCGcfvZihecgl12Gvp07HTNvLK4B8nqJ/fZF8C37jvO8aWl2flfyuYLxE4fW\n7qK1TegU523qOdjmff31bHeUr9c7UEVRFJfoAqooiuISz2pMcpvw+9+Da+5ctgdPwXKLjyZwuU3b\nFFRx8n5T3OonGGUanWDoUC6lOXRoKPi+nszbtA3Gtujtt7k0pP1e1FgkufMYsoxs4XXV+Y791luX\ngC9x5eWObe5E6emnHbPhhRJwBTcYpVsWkBVoeanYUUQ9uVZk8dtG+Ye/UOkxythO6RKzRMUhVtIy\nd7eNjbxtN2RtKXYhd6lVNGMZW/s7sjMF0xSd4dgxcWAEGyNa/hY25oGPmpvZNjrqThHBtES6P3fK\n5XyBKSWp1rbZ6P557TW2Bw5EyaWy+fK8YkrFLUPFTz6gFRXgpkwJdOyw/gHgqx3NP7Lco0ngq4/L\n/9V/V+9AFUVRXKILqKIoikt0AVUURXGJ5xyoUDEqPBfzGP5CDeijHW3gq61jBfCxmI6k557jvKdF\nkXd66y3+h4LH3IC+qR869t/+hmUM11//X3zQew/42qZz26ndvzTcvie7M4mwI6+pzii5mMdlNsHf\noep22Gg+m7VGFZdbZBlN0eYo8HXlyiCK/uAD8K17g1V6zu6PrXMblrKdZ6T4OkNEKOe9liwJBJ+s\nYsuZgK2cx0MH83sswckKZSM4dvz0naN+uMi1Tcaam5ytkewySsdkbdCRd/BaDUwV75n/67m7/5Sc\nKvGcwuzJFBMShg/HMQgrhbJ+QIGhOHbM/GCd54032G5sxO9f5r3NNk+QOHv4YXCFHBW/sZDT58D1\nDlRRFMUluoAqiqK4xHMnkqIoitIhegeqKIriEl1AFUVRXKILqKIoikt0AVUURXGJ5zrQigp+wmQ2\nEfuIl5paZ1LCbPp0cJ17GfcsnzhhTyJu6lSWs8q9F2skW66+2rF977gDfKvj1jt28oTj+KatrWwH\nBJyRSYetN94ILp8HH3Tshgewti74YlFvKyTaiIjo88/ZvvNOK7EGBvI5PbKrGp09e7K9fDn6xGRR\nCgpCn6y7S0y0dk6LizlWs/0+/WH+ZyqN10U89BAfGNJ7Xmc1OHZ7+yXWYk1P51hzxmxDp2jqLtnq\nCy6Q3htqFFhLLUaLE0TlqJSwGYnolDGYY32kbGGPHuBqFaNJfNrbrcQaHc1xSp0OIqLYY4WOPfIf\n+Bluu43taa2od+E9g+vA29pUzk5RFMUqnu9Av/rKMWuvGQUueWPRZQTOU5dDy5PrsLvjmWfojJB7\nUqg+HYgDn+/tQh1owgTwjf0D/2FZTVjSldxb3B1EG5+xMwg5Hh8pPk1Ex2/njq/guengk3f65SNm\ngWvKk9xRU45NY1Y40rUXHAfWiXYnqRJERPTnP7P9Iw7NO6X1yhJy1HifPujbv5u/V2NDRGUDeAeS\nPhPvJ774ApWybJGzhHcSZTvwuorayipbu3bFgi92irh2ly4FH+Xmsj1pUueD/L8MGsT24SXGXaZY\nH2AAGxGteuhLx07xQaHiA+IOFCWs3bNtLV+PMZPDwBdLvEM6PwjvQNesYXvacryrb9tVLo4i6XTo\nHaiiKIpLdAFVFEVxiS6giqIoLvHYyrlsGScF0yaiyrNU0g4rwKfFtV2FztKGDeCLTeVcWkmJxUFt\nCxY4seZfjqoqceKhtJn0lX9B/P/nf9B51VVsnzhhLdaMDD6v2YMK0elJOkaouU+9rBhcud+DGo+d\nWF98kS+OL74AV8scViqSxQpERF0msIJP9VIcNtarDvLK9r7/6mqO1Xjy73XBJ4794ov/RR1hpnJl\nMUFhocVrtaXFibWpGZ+0+17A/4yfGNpGRJCQbDvrLHB5y2qC7Gxrsa5Ywdfqjh3oy6sR+duuXcGX\n5M/fu1TDIsK8an29pfOans7fP0j+ExWNZjWoYcPwZYHP8doVuwWfK5SsFcMRu3XTp/CKoig20QVU\nURTFJR638EeO8O27LBMhIgrvKm5vhwxBZ9++bPsYm2ZZNxAYaG2r4evLsbb0xOFgUGRsVlnLeIxS\nDNibpqefkUJ6uucecJUsYqFcc751xeQcx17hhyVOcmsSEWFnW1Rfz+e0pgZ9UVVCDVnuyYiI7uQ6\nqpHdUfhXzpQbP97etjg7u+O54HI430svoe/gQbbNSzVj7zg+WL/eWqxeXt85sbb/dD74jp9zjmMf\n2I2/zchjIv1h7qflh/b2thZreTmf18g6TMfARWFcIDvH87U65IMc8LVM52vX19fSNXDDDXyyxGA+\nIqJm8fs37xjrvuCXGVkIeRnTpk1aSK8oimIVXUAVRVFcoguooiiKSzwr0sfEcLnNiFJwZUwROVA5\nQYqwxMV3TDz4oo9x+c22bfZyYLLcwtQ2kZVBsUsxHqhdMUquaN8+tqOi7OVAAwL4pBs52ewCLvNK\nTcWXBfoJsRPRLkuErZaBgXbOa1YWn9NMPyxVW+bHJR/9jX68mEZuj6Rvv0Xne++xbTGvSJdcwufU\nLEeTZS2GYIhs7T3efzC4Zsxge9Uqe9dqVBSf17KxmB+kBx5g2ygdk7k9r+uuBVf72gI+sCQmQ0S0\ncyfHarZh5y3noYdeF5zEeD79xrHz9+JAtiQZniUxEZo1i79/cwGQZW2bN4Orch4P4NuD6Xq65Ra2\nO/pN6R2ooiiKS3QBVRRFcYnnLbzsRHnnHfRJyZsRI9AnNC69mj8H1733hjr2smX2tkUJCbzVkKUy\nRETDh7MdmDoOfImtvN0s9EFf2Qz2RUVZ7ETZv5/PqyyxIsKSIGObvq2Zt5jRNThUPauGFXgyMy3F\nevgwx2mUeEUP4O2b3OoSESX2Z9XNI0FYUlZXx7atcisiwjKW668H17obWedx/Kc4p57ihHJXQQG4\nEmr4dUVF9mINCOBrdcoU9MmKwLfeQp/MMH32GfqCrxcKRLW19s6r0ATedjQCXNGzb3DskV0/BB/o\nbBYYSmZSSzYvz06sbW38/ZutT2ILX9ozGVyydCmyez2+7tJL2e4g1aB3oIqiKC7RBVRRFMUluoAq\niqK4xLMi/Q2c46CbbgJXzMQQx353NraV3XTTCT549yD4/v73dY69bNn4/zTOX0WmK8wut8QRnK8b\n+cN68MlSBSJUpI4aw/Ob6PBhskXDRVzW8chmLPEYINKe06ZgOUb0Zm6lqx+BquOZPjK+bmQFOddm\n+3Zw+YnOwcQ4Y5ZUH86JB8oZSES0oT+X7URgSq1TVDzLObiIldPAN/4nzhcXDcIJCWOHs91S0xN8\nQcZsHVv88AMrsudchDORvCZwQrm9AdX8V/cU5YIXG8GZF70tRNlPdLNR5idyzSeNVP40P6FCb8pc\nmfJdFqjYx/eCjYNQVUmW1ZmnKSOIlZpyjqWA785DnFYN7uDf1TtQRVEUl+gCqiiK4hLPZUyKoihK\nh+gdqKIoikt0AVUURXGJLqCKoigu0QVUURTFJZ7rQJOTnSdMi65aDa4nn2T7229/Bl/7oqccu6gP\n1mRJ6bNevSz2Qh8/7sTa8EMXcN11F9tmn/zSpWxvu3UB+NIaeLqnzb59OUHwyFyUMws8VssHRm82\nyHRt3Yq+V15hu6nJSqzJydyzvXofSr2RqO/0mj0SXO23P+rYR157DXyBJ4XsmcXRExQRwU9D5bkg\nInr5ZbavvBJcLeO5FhkHQRAdE+MebF6rMTF8Xk11vaiFPNF02QgcoZFWx78lryduA1/7e+JhsMVp\np0VFHGvCTNQ1OL6XNQ+6PLcMfGlVaY5ttqb7DhIFwBUVVmJNT+c4c4bjeavomXDK//8LUuqy13bU\nlwARjbAw7YVXFEWxiccyprY2XtUNYSAK2bORD4whTvTpp4459d/Z4ModKf46JCRY+0tZXc2xynne\nRDgQb9489D33HNsp88PQKcWOLQ7Ay8/nWI1GHfIdHevYy0aXgC+tWYgaG7OvfRdyh01Li527pcNe\nXk6cX+7A60QK6gQ/gh0cIDFkdDCV9OeBYrGxFu/q8/KcAEu6Y5fWXNG081Gz0f4ku2SkgDYR7a/i\nme39+tmLtaGBv//gnueicwHvgsqG4uDAKL9yx/a6LhR8773H3WfR0Wdmhj0MYCSi6LX8vW/7GD9H\n+QfcjSj1jIlweF9IiKVYhaDyuutQ/Hv899xtlLILr1W5IzbvlD/+mO3gYBVUVhRFsYouoIqiKC7R\nBVRRFMUlHp/Cr13L9qS9mI+BJNjEieDKO8kT6S80VFrkU8ayjh+O/WbkA+sBA9CXtk/kPfZNB1+z\nzIlJSScifApXUdG5AAVz5rBtDmSLEAkj80F7WjP/h8qlxeA7ZKjC26Db/fc79oZP0DfkGqHAZKjV\ny2RS0URUv8rlAg2KjSVrHBnNec+n7kSfvI6PBOH3KPNxF5yDw+jav79QHAV0NkSH3bvZjn/wQXSe\nc45jRu0xprjt3OmYAwfiE+Por14UR8YJ6ASVNZwHDh+KamXDathOG3ACfMtWit+cMbFi1i6e/LAY\n05XuEV/k2Weja1YVx7JqnqE6L17Xvz+qmP3006//s3oHqiiK4hJdQBVFUVzicQt/1VXiYBeKoDaM\n50LZ20fj67ZsYbtL8xF0TpT1UCgm3BlCRVVHfHMhOqWAq7GdmHhACBHnGuVYl19uKTpEli7Jc0VE\nFLFrl2MXbq5G5wSux5pr6OmuL2gTR3b+LtbO4CL/KaGGs1VcOrJOjIhoJQv/nngbXTLzY5PADdzo\nsWlgFfgWvcaldLffjq8Lryt17PYek9FZJ2aI97N3rcoqr127UOA5xJ/Fv81SNdkEUN6MxeJE51uK\nDgk/xILPWVtxOFz2gUQ+MC7I7M1cOnTzZfiei4eKZhEySgfdIn43iTduBFdinwY+qOkDvpwdUY6d\nPr0FfOte4/RFWAdh6h2ooiiKS3QBVRRFcYkuoIqiKC7xmAMd8iLnOSumoFhAxI+cnxs7thf4ZElR\n8mhjgFR3HJRmi0ndRdvj/KXovPtux6z/5z/BFbI007GPfPAZ+AKXY37KFidExYfZIgvthJCEJkie\nrf8Oy8qKN3O+Mj6+sxH+LzU1bJslVTNncn5oxgysRcnoyvnY8f6Yjxr/9bPiyMzjdYKuXR2zZDi2\nD9MeNs22Qlq71TGbv/oKXH6WQjOZMIHtkAIUk4F8vVlWJ3Pyw4aBK3MhC+hkWSwPrP3d7/jfkApC\nRER1dWzPnAmuoXM5tzzkUxQiKvw62bETLaVAfbfy7/+oMfuuy1AuVex1DMvYqocm8cFCzI+Oh4Q9\ntgf/gt6BKoqiuEQXUEVRFJd41gMVYnkRjaXgKm+Ncez0c7BjomXiPXwwYx6+54c8v5v27CFrzJ7N\ntqH5SO+955ghX38Nrnri+fZrVoKLMvzOzCYu9y5W1TG1K6vrePsZJPfQROT/EOuTek/H2efxm9PE\nAaZb3PL442ybOqqH94qODkO3NHMepxey3jYEL0eidqg1xLUaOxE7SpYP5VK12T9mgk92ouQ9i4pT\nKb2xrMUWo0XZX9MgTMUEiwHkJ26IoQ4RKQsiom+DCzv4HzvH3XF8TiYbGYXxI7h8rW0+pk1i5ggd\nYLnVJ6KVjWILn0hWaLl6IB/cbPxuReqr2h/TCTRiIb/HZUa91U/82X3p9OgdqKIoikt0AVUURXGJ\nLqCKoigu8ZwDlfUWRvnRLlEqEHnNNeCTivCJhlITKBxZJHkg51Nl7o6IKPg9VgSKnRwCPlk1YoZa\nO4LzOJaqLf4X2fooFdGJ6Ntv2e51xx3gaxGx+hqzhspe/caxo8gOYrAAjb+hFnzFe/mMxMvBMkSU\nNUDky8c+C77YmVxSgnr7nUTWg6WmgmuoTInFjQFfdddIx772W0Jkz22RvZIrqQAVcKgSfF9/zXOH\nWvzxuYPvm5znPDIck4e37bAWXoeMfw/z7lndVzh25ow08DU8zHn4P/4R30dOgbDGunWOmb8LZzfJ\nn1vaGGwtP3zRRY7d7eBBfE+fX2+P1jtQRVEUl+gCqiiK4hKPQ+UURVGUjtE7UEVRFJfoAqooiuIS\nXUAVRVFcoguooiiKSzzXgU6a5DxhOvLCC+AKFP3l2dtR6j9jeJljJy3HqsT8fWIKZkWF138eqmdK\nSsiJtdVQ0Iv357EEUIRHROmvcHw5M3FiX0Uj14xGRJC1WKmykp/cjR8PrnVzuJ713HPxZQl9uGYw\nbTnWuv38M9u5uZZiHTiQ4xQTIYmIwnpzd3BtQRn45BjMptxccMXdwG9ZVmbxnCYn8xsvX46+efPY\nNvqyt7/0kmMPM+Ta8oK4T33SJHuxlpbytRoz2agwlvXWK1GcYfVerlkNNUasyI9cVGTxvJ57rhPr\nMaNmOecxPuW33oovG3L+fj4w5rgkTGDpPWuxNjVxMMZ3vGIrj2PZuxdfJieRCNVLIiLadLbQBSwq\nOm2cegeqKIriEo9lTJWV/Jcy3A87UQp38V/OxMZV4IPBbUbnUa0QrQ1rb7f3l1LcLdP774PryO4v\nHTtwLnZTlIzhborYNUng67sn37E/+8ziX/XExA7vlop28V2v0VADAseyK4WI8G6lpMRKrOvW8fdv\niFhR+i5xrq6+Gp1SKci4+8j7bpRj27yrq/bycmLtddtt4Avczl1ER+qOgy9tDt8NLasylKjld9Or\nl73vf/16/v4NhefVNazAZA4clF9xQFU5+Eoa+e40NtbitbpqFcdqdhGKTq3CeShUfFTMZzTv+uRN\ndkaGpVjFb2rbDPxtRC/k7zXqaDH4yubwtTFuLSpRz5nDdmTk6ePUO1BFURSX6AKqKIriEl1AFUVR\nXOLxKTw8dPv8X+Dr3Vs8PRw+FnwkldylUjwRdf3TPXRGWLOGbaFATYQp2Q0bVoAv9Jg4GIuf47M+\ncqicoWTeGcQAruK9qA4lxd0XLgQXfMSUiXHofOIJS8ExQuCGCr8ciM6HHmLbUNUH+ZsBA8DlP2wU\nnQn2vc6puube6Pv31Vsd29t/OPi++UYcLMAXVrbysESseegkomSilFB1PvkAK4Bt98NhfQEzWMm9\neCwqq0uFo9hYG0H+X2QC03gKT7t2Oea8QeiqmC6eiww5D3zbetxpKzpGyPybueOr/sl5z/6PoC//\nGOc917ca8vibrmM78mE6HXoHqiiK4hJdQBVFUVzicQsvSxGKvXDrFb9SlAOZw+HuussxV5+LW/a5\nYvRyPdatd46zzmL7p5/A9abYUZpj6b3n8zY97Dncps+Ywbf0OPqrk7z7rmPGn8T9Rp/5HEOv6VhW\n0/dL3opMntwFfL7Tp9uMkIiICkeLbWINlgZ5je/r2I88sh58x0RaJGdTX/AlQnqlH9kioZFjbRud\nDL72x7iRYkXQcPDdfjvbvXvjML4pQqM53OIevuh83sKG4mw46raGt+2HL8Jzl/XHzxw7sys2L/ik\n2pLRNhBi2eHLUTR5q8h4mRVOTRNSHNvnAqwAWvMX/vzR2IPjmqw6/s7vMbKEwX/kNMkqQ825aB+n\naU5pwDBTU6dB70AVRVFcoguooiiKS3QBVRRFcYnHHOiSJWwXjcGyicgdXA5UvqMFfNV1LDSxfT6+\np1EpZI9PPmHbmA4XItoJV/TE0pBpQnhg82Z8y34HZEuYUeLQGU6eZFuUXxAZWidGbvn2v7DtW5CH\n7ylzO3daKhN54AHHTLnj3+DauJFtM1W0ep5o+73ImNRnKr1YYjVxDiz5FczJyrKxaddhXnHa1Kl8\nMHQo+MInDnbsSpz91ink0MW//hV9svO1fOVn4Lv7UnHwBb4udsSvD0BzQ3Uq/15SjecHcpagodFD\n27ezfeBJbBdfHfyiOLJzrYqKKlODherH9ucD2Q9NRAld+fefMg8TsqvmT6BfQ+9AFUVRXKILqKIo\niks8qjGlpLAaj9x2EBHV14ht+7594KvwEbO2r8XuhfZnxdYzJcWaakxDA3X4QSZPZnvTSCxVkcKK\nbWNwm750Kdvp6RYVbqKjWQ/SZxu4St7lf8bHLKuQiG0pERHJrWhOjpVYi4v5nMZvnYVOobHpdR6e\n+va77nfs5FZU6lo9WXze6Ghr57RAqDGNM3wHPuX4uhplQyE385b+2IED4HswlV9nTWOViKqr+bzK\npj0i/CnF/vkS8OU/yW1TSXE437yiLtCxbWrXenk1O7EePIjBbt3KdkpNBvga7st27DvuwPfc9sph\nPujWzfq1Gmc06XkfEvWSxlrldevNjt2+tgB8xRdyeiE+XtWYFEVRrKILqKIoikt0AVUURXGJxzIm\nKaSzqquRA7vg74552FBpiRD5uPblhlr5oe9+Y4j/GXJ+kBQDIsK8Z2UctqOFj2BVKW8p20RE6efI\nOVAWVaREzYcc10NEVLGE826RwwPQ+cMPjrloIeYdZ/ffSLaJ38FtpUcMtadAkVi++GJsycwK5bzn\nFDylRPfcx7bZAtwJJjQ08EEB5rL6zWf1/JxB+eBLP/tsx/YXLchERMaIJGv0+oy/q9prsEU6NpRn\nCTXs/QZ8SQdF/tgfS66Cgy0GKHj+ec57VlWhT5b9HRqQDb7+H7Btvq50XzfHjkExKteMGsV51e+/\n7wa+AFHjFLscVedff10crHwRfPE9xYeIRxW3X9A7UEVRFJfoAqooiuISj2VMiqIoSsfoHaiiKIpL\ndAFVFEVxiS6giqIoLvFYxlRS0nHLWfR9YsjYM8+gU0pC33ILuLK7srpLRobF9shp05xYj8zHkoO3\n32b7NhRWp0NCdbzXFmw7PHT33Y7dvb3dXqzh4Zx4NlrLAruzktWRA4fBR/OFtJVRG1KUymr1CQl2\nzmtsLH//JfM/At+k5axUZCqAD7lDDBw0Ph9MxktLs3dON250Yq3ogaVBEUe5/Mfrd1eCb8cObpfc\nvRvfclqqUDjy9rYX6/79Tqx5u7AEbNIBbomsnIylQbJ1coIhFCRFvbZts/i7qq52Yt1/xRXgkvpP\n/f/0J/AFbOCWbanaREQ0dy7b06ZZirW+3onT69JD4FqwgFvL338fX3aluBxMVf3EVqHqNW6ctnIq\niqLYRBdQRVEUl3guY6qo4G2Eb6HpAAAc6ElEQVQRRYAropm3dGWtg8HX80a+2w2Zbygqn38+2za3\ncIWF/EGEEDAR0WEhotrtv/8bXye2wgl7s8BVtJC7QqhfP3uxlpdzrFK1mogyenKnTHZQDvhqx/Jo\nu7BX0AdtISUldmJNTnbiDNyAgtpSRDnmG+zgoEt4W9wyDFtN5I4+MtLiVjMri8/pa6+Bq28zdzxd\nfDG+bFt31m6CLRuhGldY2BmKtU8fcJV05XhiazCltO4CHtRmfo6Y7mfoWl22zIm1+b77wOX3/PN8\nYHTxwQx5Y5Bbpph3n5Vl57y2tHC6ybcG1a8bLuCJgPfei69bv5JVrSobA8EnRZqTklSNSVEUxSq6\ngCqKorhEF1BFURSXeMyBVlZyXsEcGtVrLivceL30D/C1v/6OY7fEofqJzCtERdnLK9UJRfJQU0bn\n76wclX77l+B66ilWhxo48CLwydSNzXzdMRGr/0MPgS/xAJeuTJ+Or0tNZdsc5Bbxuwv54N//thJr\nrYiz6h28TqQ406Zna8FXvI/LmOILJoEv2YfLW1avtphXzMvjAI3JhV7n8SC7L75AhStZDWbOu4t/\ncxofrFhhLdZ6cV6DfsLzCr+P/k34QjmFQNYCEREtXMi2xVjpo486XCAiU/nZR/lmLLnb38iKSIZY\nG0UeLeWDmBg7sUZEOHG2/etf4PIW6nAlY7DEsd+t/M+HmmM3vhCT+zp4XqN3oIqiKC7RBVRRFMUl\nHjuRZAdByFqcp149n8tt2gdhSU1LHJfb+O7FDpaePbHkyRahUgxXDqUmIvqOt+lmVdXcubxtDyQc\n1IUTyOz9rfEXbV35/bHbZLiYvb1hA75OphQiNmDJVcMBnttuS1s3THSXhB0tBN/eW8QAvkPY+RG/\nh4Wo143C+fXDfrQUnEG+D6cKGrFqBrpN6urQF+snRIqPHkWnufe0RIg8qNoPvqg6rvOq74nj8UJE\n8KVVYeC7513emuI0+U4iBtW3dEWh4vI1FXwQ1B98W0WKadoILCva78elbdiH5Z7qDRxLrztvQKdI\nd8TGYTkmiXUj4VnsYCs6Jkrw0lCI/Rf0DlRRFMUluoAqiqK4RBdQRVEUl3hu5XzmGce57CRK7qSN\nrnbsFkOlxffppx27fBjmDmRez1YbFxFRXh6XXE0aexydYjpeWhzmY5aNFTmwoTioCyZ1WSoNIiKi\ngAA+6bIFkwgSncmE7ZMTJ7ItulOJiKi7yJ3Gx9s5r2VlfE5NUSX57yXsyECnGDh3StJZqjFZVDiS\nsUbdMxCdO3eybdQq7a/p4thTpuDL5sxh25bCFRGBchQdPAiuthn8/GDGDHyZVAtK7I/Xcf4ublfs\nqO3QDenpfF5NVaVjx9g2v+YtW9hO8C9Fp2xfDQmxE2tiIpcxGa28e3eLQY09jeccBw6wLb9wIoom\nXhs6UrjSO1BFURSX6AKqKIriEs9b+IEDHWfxgo5neK9di8f5jbGOnTWsBHyZo8v5IDLS3rboyBH+\nIHKbSIS36b17o++llxxz29P4GaPnRvPBtm3WYl23jrdF4z8xtr9yn24iymz6/jUKXJ/9UZQ1ZWZa\niVV2TJW+jtdJQqj4Hr/B+eXQJXMlChjTsGFs21Tjio/nAL/EbrOwH7mwx6xwmzePbdnoQ0QUGsp2\nQIDFLfz69U6sfR/FUqWRI9nOecr4Jx95hO1Bg9AnFc9jY89IrG1jMVbvOu5AS1+KZVUFBWzXF2wD\nX14N/64mTbJ0XhMS+Ps3FqTBI7j77KOlZfg6mWswFKVKjvFvLDZWt/CKoihW0QVUURTFJbqAKoqi\nuMRjK6ccCBe/IQV9QhoofvgucB29m6e4NaLgNkoKffQRWUO23ckJW0Qga7Rzjy+4Pg2a5djJK5PA\nRz/8YC08yfi+3HZWciG2cq4U6cPCmUa+RtS1fHboc3Al13ArJxY/ucf/1VcdO+FRozRIKNyAhBAR\nUY8ebBvtkek1XNZmaOp3DlGDFD4nEVx797JtqootX862qcbkfYFIe3l6VvBbiYtzzFuMnKysnGtD\nF3nLc9nYiE7zmrdEWSjnPb96GX3jq7hlt0+fh8EnB+DRhh3g29cYTdYRkx1ix6LilsxlU1AQ+EqH\nZTr2ZqN1evF0qTKGOd5f0DtQRVEUl+gCqiiK4hLPZUyKoihKh+gdqKIoikt0AVUURXGJLqCKoigu\n8VzG1K0bJ0hXrkTfmDGOOfUeXIe//55tQ+CEIqafmfZISk7mWE1pGKmYLhS2iYgafg50bFmZQ0T0\n2musZN/efpG9WA8f5lgNWaW8A6zYb3adRlWxunvLBBzW5jtWDO8rKrIS6/793HLab9968LWOH+/Y\nPs8+iy8U0k3FccvAFd9bqAiFh9sb1FbPsYaszESnbNHbgSU1TalcxhYwIR58Df8sduzgYIutnKLt\nsGhKEbik4lHMPX3xdQsWOOb+Pliq1e/LjXwwapS1WHNy+Lym70sGX4oPF8yZM+7kZW0K/cuKK29v\nS+dVqDFBqSQRLdrDreXPPIMvq93KqnJRE3uBT3YdL16srZyKoihW8XwH2p/nnCz6HP/i3Sb0OXIX\nGeNX5Z+fPlhJXzyHhQXw730nEWKJMRNh6gzNncvHL2O9r+wVoNmz0Vc4/RNxFEPWkGN3jfPT7x9D\nHNt7N1ZIJG3mu8784ThK2KMIiUtkAbrfUBSS6HWT2JEYhfTl/+Ax135j8A40JpV1K0sNmcjOcOml\nPzv2q6/ivKhDQsv0jXexiHtTkGg7kDqmRBT8tRBMCY7sdIy/ULuc7zr9DqDvZVGsvrAHTjcqqeHW\ngyrjl1vjw/N8bP6uYIaUMSNqjtjohfnhWOMwvxo+OLAVfMU+fNcfbynYtFCe2fX3W38GX/sX1eII\n7zKlmNCcObg4yEnRHaF3oIqiKC7RBVRRFMUluoAqiqK4xGMnUnk5P4F78030ZY5goYv9XVHcVzyg\nP0VnoqqK7chIe082vbyaxAc5F3ztjz3u2Mu64hNaKSDxwAOfgO/77691bKuCum1tTqy1dfg3LKxG\niM8ajzYbXmZf8NnGbBc5QCcvz06sOTlOnBmN6eDKTuUcrNdlJ8H3wQeXO3bUGhShWXfzKsceP97e\nOc3P52s1aYIhw7F0KdvmI2GR5z+l0uQVMdw8MNDe998krlUj0Ra7i8Vl5D9PhJrJ55yDItbtn7KY\nDPXrZy3W2lo+r2ErDfFv8eMpjVsMLqn3vMEQ6Zj0uKgu+OwzK7HOmsVxLq4zRIGEgEhOT8zJp4eK\n6hIjxxuxhJ85VFToU3hFURSr6AKqKIriEs9iInLOzKhR4Ip5lccc3303vuyuu9g+YJRphGwXt8zj\nxtnbFpWWcqxCb5GIQA/UnJfSVMXlF2aaQkoupqVZ3MKnpTmxZnfHLUVGKm/Nm3wCwRcwiEuATtmK\nygLxXr3sxBoezufU3IeJ+hY5A4uIKGl4PR/InA0RrTrAZUQpKRbP6erVTqxTP8aC7w8+YNuQg6TS\nzS18YGpsyoFJq1bZizU6ms9r167g8npjhWNffnko+KpD+dxlDsc5Q1nHRIolJ8derCUlTqzJBfg9\niwncp+BdI0qHjLWD+ootfGGhnVhra/mcyrQMEdF557G9ezf6hCBs0xzU5g3wEePRu3TRLbyiKIpN\ndAFVFEVxiS6giqIoLvGYAy0q4tIAc17M5s1srwrF1jmZ1/GekQautiqRG7GVqyOitjaO1axGkWmm\ncXfiPymbUAMfewx8x2dyyVOXLvbydcePc6xd1q4C34pWLvuZFlcNvmrRhibbLImIEoeJVrpu3ezE\nWlnJF8ef/wyu/c9/6Nj9rjb+OTFLaVsQtgBLnZeSEos50LAwjlWImRARZS/nGTlmekzmRL/6Cn0b\nhT5HXp7FWGfNcmKtTsXyH/m9Jo4wWqRFC3Dj22+DK2jRIvn+Z6bkCvo6Cb9MQzVo5OwIx37wQXyZ\nfNaQk2PpvB4/znHKOkoiyhhU4thGpRLlzOR8/fGu2AIuO9L79dMyJkVRFKvoAqooiuISj2pMCV+x\neF7lLfeAL/EVrvavGJMPPik2ZFRpoDZnL0MZpRPItzWnEUuhot07MGUx5EmhMiQDJ6IuK8Xg3XTs\nxOkMXY6J7bYxjrZVdp8Y+40rruaOnwcfPAt8mzd3c+xVmBVwj/j3V/zpQ3BNC+LPYGQTaID4TIOM\n1E/J0cHiyOJY6wEDHDNlJo61XfEP3n35GBdk9W7u4JENS0REL7/8pWPn5V1OtvB6gjvM2vehHFGv\nggLHnjobP0fuxx87tvmzMpWkrCFbCY3UCMyINuZFb7qFfzuzNuNvR0wgPiPsX1oCx9l14tgU2d3D\nileN1+AWvp98XT8s4foFvQNVFEVxiS6giqIoLtEFVFEUxSWeFel79HDM8PEDwVW5bo9jDx+KL5Ol\nImYO9EgfVm7CRsXOIVNAZqlKwBsvOvaQvsacmZUdK6snbufcTaG9FCi0DMbO6Aeukj9zrNR6DfgO\nHeK8Z/C5WOJSuAXzZbaZNqYe/8MBbtGcdA3mlSsWclnbvkcfBd/g+++3HxyhyvuqGVg6JcuqCgl9\niX18HTvlZ1QyX3/woMUImZ9+Et+VD/YPF73J9zS5UyvwhaO5DbnlJmyPbDuP87y+ntqzfytbt7J9\nzjngKp/BM7oi/bDkTk6I6IljqKjtLI7V21asooyqn2zdJqKMrZy/rMNOblq6VJQGbkffAT9+3ekz\noHoHqiiK4hpdQBVFUVziWY1JURRF6RC9A1UURXGJLqCKoigu0QVUURTFJbqAKoqiuMRzHaiQ3Tql\n11bq+ZvjA2Wz6+zZ6JOScZMm2ZPdWr+eY5U6VEREw4axbc4YETp94UtwgqSUFrMpZydHelROx5Ee\n4UE80uPcS7FS9pFH2DanncqW+uRkO7E2NbHsXsBVl4Av/0meCpnUswx8ZcS1vlEDjoOvW88ujn34\nsL1zum0bx2pMEaFkH65XNEe6UPfujhmxNw9cFdtFrW1AwBkZPyLrJYmIttVxXWJ0KNZW1l1xhWPn\nLcCHvxlx5XwQGXlGrtWGh/FalaNSzDb5UDGNxByjktC4mg+Sk63EWlzM3/+IEejzLeDvdXXrJPBd\nfTXb8vMQEaWPruSD8HCVs1MURbGJ5zvQ1FS25VJNRDkLTjj2nR/ngO/ii9n2Fio5RHTqcDJLZFeN\n69DXs4bts87DGfYXXsh25Vy8A6HRa9guLXUfnEHZBP5LPqgn+mbN5bvOE3MXgM/r4VmO3f4dSk4l\nz+TXJeNMNdcEzBVi2AOxEy3Jnzt/vG5EhZv2t1jFJjoOezgM8SlrSD3fKVMMp/xHpRI4EeXH8Xe+\nyxyS1ur55+GWjCr+gqYb8w+hi24X3kof3s13nUcLwEW1QZGOHdbpCAVCyix4Hd6BDrjvPsdOvP56\nfJ2n3/naxo59LunZk+01a9CXEjfcsf962Y/ge+YZHjjnY37dc1k1i9avp9Ohd6CKoigu0QVUURTF\nJbqAKoqiuMRzK2d4uOPMGFsJrux3b+CD22/H1+0Q8ivG47n8efw+SUln5ils9CHMV+S3cn40Ke4I\n+ORT0HF9UP2mTx+2s7LsxVpSwrFu2YK+xa1C9skY4pU9gD9Xxgx8ut3Uyk+3AwIsxbqAH/VW//Fh\ncPVayBULOX1QAl9OBzBznrJAYtIke+d0/34+pw88gL4FIpUcOaANnUOFlJiZt5PXbmystVgrKjhW\nc06bTLv5+6NPPtk2kXnfmBh75zU2lmMt+Rbz4FDRYlTi5Bxktaj0VhycB1Pltm2zEmthIceZ+M0z\n6Bw5km2jfCVpA68N+SuNIX7vv8/2qFH6FF5RFMUmuoAqiqK4xHOdxnn8iF9WNBER0a7z2TYqV1tm\ncLmN7xNYimPMbbNG9A9iiLdRuZvks40PthwCn9ynr38Ob+GLt58ZkeLXXmM799Vu6JSivg0N4Mrw\nZ/Ff8pkPvgD5ph/iADjXXMLF8726GqkPUQ6UPgcLvnM2cDG4LC8hMtMrHZee/VYmTGC7Im4WOt/k\nvfDR61DgWe6SfQqM2iCzBM8SETVcAubTOwF85Qu5BCxnH5aApfdnn9etqGIeFMTXakyMlTCJiAhO\nyd4n0SnU0pOWRIJL6pTXHsXvI+yUeqHOk9jIaaTyG3AApp+YzThmLg6ynDmT7fpj+HsP2b2bD0ah\ngPUv6B2ooiiKS3QBVRRFcYkuoIqiKC7xXMbU0uI4C9/0BZccuGaWMNRur3VsU9hhvkjdlZZaFOio\nr+cPssOYYjVmDNvNzegT/299H0wehUwXA8gKC63FWl7OJReRc+PBV5Ra7NgJ07Ep78hXXzl24I/Y\nkrbo71zGNHu2nfPa7OXlxOnn54dOkf9q2PsNuIIvFqVCMjlJhLU4OTn2vv+NG51Yk1/FfNXq0YV8\nYObfhGLMzlszwfX002zn51u8Vg8f5mvV7DuUeVezxu3aa9k28uPwHCIiwlqs6el8rZplVVmtGXwg\nlXeIsD7r8cfB1TCIv5/gYEvntanJiXP1K5jLlGuQzM0SYcmduWxEb+XhiJSZqWVMiqIoNtEFVFEU\nxSUet/BSD3L5cvTJIv1NlxjyPwsXsj1vHriOL1nh2DY1Nr28fhQf5N/ge+st3jaaOpoZGwbzgZyB\nTUQr1vC2eNo0e7Hm5/N5TXr4cvC1iFadFuN1/l9/zQfGeYUvyNfXTqwVFXxOTc1Xca561W0Dl5SK\njbwZQ+l65ZV8UFlpb1ssuqbaHsKuKXlqzG4euaM3pULXLz/MB9262Yu1uprPayMqExU38vUY3wfL\nw1qEHqhvjx74upWcNouPt3et7tzJ1+qQ51Evl2bM4P/vh37gGvJgtGNPvRqvD3kJpKfbiXXWLI5z\n8Tzs0stZyb9js/Pr6FG2zeo/2WCZnX36OPUOVFEUxSW6gCqKorhEF1BFURSXeC5j2r+fnWZJhUgm\nHl+JSu5S1MYY+QJlBDYVjry8fnZi7dHjbPDVPv4iHzz/PL7wD39wzHVB2ALWYwKHF9Xebi8HlpLi\nxNq0BJWMAiZz6dSKEYXgmxYk2iBBupxoxVbOQVnL1+bl8fdv9uDKZLKh8g4KR+Z1I/PjXbqcETUu\ns1Ip6hUuuQt4DqcnNNWJ9t0XXgCf7/18PbS0WCxjEvna0hswXxvzsFA5M6WsxKyxJpm8I6KABx/k\ng8WLrcU6eDCf14+2Ym4RxgCYs8ZEueDqyZgDTa779fKg30xtrROnWf4nu6M3rcN27RY/LnnyNZ46\nZM7n0s2O1iq9A1UURXGJLqCKoigu8byFVxRFUTpE70AVRVFcoguooiiKS3QBVRRFcYkuoIqiKC7x\nqK0PPdtjsAZs3GTuLzVK0mDonlkHWja/lA9iYqzVqx05wrEG3tgXfPXvfObYl15q6OsR14G99RaO\n1/j979k+ccJiHaCQCaSlS9E3fbpjRgztAq5//IPtIRfilNR6/3DHDgmxFKusAzZmc0THcWxPPIEv\nW7eO7dSnMJR/7+C3HDLE3jnNzOTv3xgES8HBbOf2XQa+RSfSHHv2p5PAJ+ub7eo2NDuxfvABygRG\njbrQsadOQE2H3KliaqypyyZ76tevt3etxsQ4sRbPLAXX9u1sZ88xJlqKL2HqC1HgOvdctnNy7JzX\n6uqOJ53KUmRz8GrFCCHLmZsLviNfn3DswECtA1UURbGKxzvQuDi2pz6Ad0Ny2JT3lhLwtRAPw/rw\nw3/hm5q3q5YIbBXKOX3xDlT+BXryyd7gk3q2pvbv669bCs4gfQ53OOT0xwF48s6+4rmP8IWff+6Y\nO3vfCa4h+0TXUmIiWUGKKBsyVgUFrLYzeTK+7Kyz2A7/5BN0VsnuKktxElFWDd89Fk/Bzjh587zo\njTTwScUd+rEn+KT4d3Z2JwMUtL8ufi+7atD53nuOmdsHO2MqayIcO/zSS/F1QuDaKuLHE1+Fu55h\nw3jXc6QVRYzX7OC7ztwb8PvY1hPv9G0gf8fDhqFPzoM75TRN5864tiXYpRY4FgTVT/vv6h2ooiiK\nS3QBVRRFcYkuoIqiKC7xmAM9dozt3JvWg2/1mnGOPXlyLPjWCEXym266BnzVA/gYR9x3EpGvizmK\n+YrSR4Xq+3/9F/jqRnB+Jmee8SRRqN9QbBbZAp4Sz0HFnfVBRXzQtQ/4pm7nvGfuHYZe/ffGxC8L\ntPXkb8jbyIG+INS7S+7bCL5iL5F0MqsMzGNLNDzB3+PfJ6Pv2WfZnn0lXhv5uzjPtb0nfsfZA8rF\nUWRnQ2TEtZpxCHOyQ2vYTpibAL5woXA09Qp87pAbusBefBKRXPT661BwtX9d3+HLDh0KcezsZsx5\nDu9t/t+dR4qFRRjnjebOdcyhD5wDrunTeVCf7ya8jk9Jpp4GvQNVFEVxiS6giqIoLvG4hQ97n4WI\n872wbGbQILa962rBl0IssFtAOIjqiis2OXZ7+8j/PNJfQ2wxS4dvR1/j+Y7ZbIjm5hAfV09HZapj\nY3lLF0FnhrIqLN5f8yZvPyYaJRd33SUOZs5Ep1mDZYHDZ3HtcMVbeG5mvyPSNrfhtjzeX1wP27vj\nm8r55R8ZZVqdQOoJb3oWr8fjQSyw2zIaS6eS5s7iA2PAW0bVasfOtriDlxXo2VOM/axopDilPkyI\nFh/ciq5tf2Rh5miyx4pmHhgJJV9EtE4Mlhx/NqZGVq7k8zxmDL7O/Fg2CL9W1Lnv3Am+1ft4UJ9Z\nVScHDqYHfQe+xO1cZF+YTqdF70AVRVFcoguooiiKS3QBVRRFcYnHHCh9/bVjJk03BkqJXs7aEcng\nChO9c92NFFhBgcW8p8RflPFsN3KgoifP79FHwdW6d69j93plMb5OBh9hr/3sq6/Ylm2PRNh2aqY5\n5QyvQn9siS0jbp1D6Qb3/I8Q/oj9EYUkFt3MZTQ754ILNBl2D8MeyPgzkKslIsobINrw/CaCr7WV\nbZliJCJavVCc5EOHwJc9T+ZLT9/K5wr5xcpaQSJaMbrYsac9h+WBWcP4nA8YgG9ZJTRyoi0mQcfd\nw7nFf6ViHnyjqPqZ8MJ14Dt5ku1vv8X3DL5StH02GaWDLvH7y18c+/iQIeBL/vFHx5at0kRE6/dy\nO2rtFmxVLez/62VsegeqKIriEl1AFUVRXOJ5qFx1teMceQ/2DW26RGzbJ+KW6djNNzu2/6uv4nv2\nFmUbERHWdAtHjmQ9wEsuQd9q0WFSOzkTfHIHZY62/sMfvnTs9vbLrcXa1saxnnce+k6s406ksiDs\nqIi6Z6BjV/z3HvBFHBWzt6OjrcQaG8txmjqKUo0reTumcBZdxeU/W7fi6zY9JkqXBg+2dk6zsjhW\ns4Ekhjj9cHxoDPj+8AcR24VJ+MJ589gOD7ensVlSwj86KflERCl9+HtcNRO3lCu28HZzmt9q8NGO\nHWyvWmUv1rw8jtX4nXv78P2XqftbuqWND66+GnyVr7M+b3i4JZ1VsVadIrkkUzMyR0ZE9WO5Eyxk\nH3Z30VDReRUQoHqgiqIoNtEFVFEUxSW6gCqKorjEcw508WJ2GoNmEo6y+k3R6FXga5nM7Zu+wReC\nD9qsbOaVmpqcWE117EA/LsFasQbLGKaNZSV7r+BvwPfYY6zUkplpbybO/v2cr7v66pPgO3iQ65qu\nuupL8H3/PatKBTQfBt/IP3NL6KZNdmINCel4zoz3MVF+MhfrmPan8twhqRRORJSaynavXhbnTC1b\nxteqUTsX+xwrhw1FQSHKmtlxGU1UHF9HZWX2Yq2s5PMahAMJKPAYt6HKFlQioi6Hqh27cC8+k0h8\nReRv8/PPSL7ePHehoWwXDkM192U+3Pto5kflhICAAEvn9YYbnDh3Lv0QXG+9xXbmDOP7Fn2mqyZg\nqV6Kj8gzJydrDlRRFMUmuoAqiqK4xPMWXlEURekQvQNVFEVxiS6giqIoLtEFVFEUxSW6gCqKorhE\nF1BFURSX6AKqKIrikv8DRqHSD0Poe9oAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  5\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/X1909mTB0RORIjxxgxMueI\nyETJcRMR89c+M3Ji5JhjRmqOLxGhQ8fXmPJFxpc5MnWMyDFj6Bwz5q+ZY46I1BkZkRkZGSNDI2fE\nkBGz+497Xee83san7y7e3vfjfjzO869zPQ7Xh8P1uT5vrvf5vM45V3z88cekKIqi/PsM+38dgKIo\nyv+v6AKqKIriEl1AFUVRXKILqKIoikt0AVUURXHJcG/OtDRyvqKvKD6HzqNHHbMtLBFc/v5sP/ss\nnpa8O5UPKiuv+J8G+lnU13Osvr7oO3WK7aQ44+9YtYrt4mL0zZ3L9p491mKljAyWPpw/D6621ZWO\nHTriNPg27gxy7KVf2o2veeedbI8aZSXWggK+ptOmoW/HDrYTEtDnOZTLB+I+ISJqKtzv2FFRZO+a\nlpXxNS0vR5+4xlmzW8G1cCHb69fjaRVzavnA47EX6+nTHOvJk+DyFMc6dm30WvAdTljp2M8/jy8Z\nFiZew2PxuiYmOrGeq94PrtGZ/Fn2nK8EX23y03xw3XXgawrg9cLWPdDUxPequeYsn8iflfqrZ4Ev\ndnU8H6xZgyfK9aCm5lPj1CdQRVEUl1zhTQeak8OretH8JvDVnY9y7PiGfDzx0CG24+LQ19fHdl6e\ntf+Uqakca+WIdPA1Lytz7Ii54Xjirl2O2R+CPvkgs3Spxf/qS5fyRR8/fvCfMx/7VqxwzMbV+DQQ\n8zfxRDprlp1Yb72Vnz7++BK4RhfzU2bMwQLwiUsKTylERDRiBNtlZfauaWysE2vZgnpwDRf7rLSA\nWvA1h3gcO+JoBfhqA9Ic2+ZT3f79fK8mvvEE+CqvfsixBwbwvLQF/Y695D98wLfpgxQ+qKqyFuvp\n0xxr0Ko08HWv5+vlR914orjo/cNHgctnVw0fJCVZiRXijDM+4/KDPGUK+uRF7ukBV3vfGMcODv70\n91+fQBVFUVyiC6iiKIpLdAFVFEVxidccKOTqCgvRl5nJ9urV4GobCHbs0PUZ4GteVOrYEREW84rb\ntzuxdk+fBy6/VRzDjDdKwXfffWx3deFL3nAD28nJFmPNynJiTe8pAZdMEVcuO4LnVVezLaUFRNRa\nyHml8HA7sZ45w3mlbdvQFx3NtryGRERtxzgflrTQD3w1q5v5ICLC2jVtbeVYAwLQJ3OgZkq+KSHH\nscN3FuFrHhQqiKAga7F2d3OsW7ei7/HH2X7tafzegV54ge2330bfli1snz1r716dOpXXgAceQN+F\nC45Z8MFD4MoN4O8d6Ngx8M3r2ujY27db+lydPctxTpoEroLF7Y49cSKe5vmryEGbf5/8jIWHaw5U\nURTFJrqAKoqiuMT7Fl48FsfPHwOuukwhBzHEwClHsxy7av3ZwV9/zBhrW42ICN4W7duHvunT2V62\nDH1ySxd+CMXAIHLPyLgs6Qb66CP03X67Yx4fQDmG1KSfOIGnyb8jMdHStqi52Ykzb0cEuKT6o2B4\nHvhST7GsrTLu/440SKZF6K67wLX/KhZPJ773NPjS/ni/Y1esbgcfyPHmzbMW67lzfK+OXo/XLqmF\nr11Nx2Q8URZ9mLkIqaS3uYWvrXVibRrnAZe8B83P3Pz5bM9M6AffngMswZo509I9kJfH739nJ7ga\nF3I6YfNmPE0ey7ebiCgkhO3QUJUxKYqiWEUXUEVRFJfoAqooiuIS7znQL3+ZnS++iD6ZZ3r/ffSJ\nrgwpO5LAVVXeyweWml4QEdHMmU6suZF7wFWwin9n0gIsK6v5HYfQR8iIw4f5YPJke7HOm8fXVTYs\nIaLWSJZgGakcyIFmHUKpFpSh2Wp80t/vxBkTh6WDMh038y0sR6Tf/tYx28rrwCWVIfHxFnOgIldX\n1YO5Olk9KtU+RES1GzjvWXssGHwyB2ZTcidLOY1eK5Q7rd78cUaWJG7YgD75R/r4WIu1vZ1jDd5i\nlGxfeaVjtt23ElzZ2WzXzN+O5x04wLalct66Oo4zfhw2jJGJztQulA1WfkPkxG++Gc+T3+0MkgPX\nJ1BFURSX6AKqKIriEq/9QOnllx2zrQsrSkJ3c/efbt8g8Pn1cAVHVVcZ+ArWc6ek3Fyyh9jCFsxv\nRt8irqJqaakCVxQ3HIJelUSEZUE2kQ00/+u/wNXzJG/NDXUYVEo1rcBtUdRJY5tkg5/8xDEby+8B\n17zVExz7WCRWoSzYwsehz6FsaNYalg299pqVKImIaNsF3ranfH8k+Op2c8WMWaVEHR2O6QnDbjxY\nmhZLtkhcfqtj9/wIu1zRokWOWbUat6Ip1Xzf5Ieh5C5vg5AZnvUiHfw3CV48kw9kToOIaqdzRZFn\nC8qxiot5u59bjummW+7i42QLMRIRxb/L91lpy/3gyxCaO7PlJ/3qlGNuG47nJX/xsz//+gSqKIri\nEl1AFUVRXKILqKIoiku8ypikhMEsgZINT5IassDXu4alAkajJvr979l+7TV70pDS0sHn90TN55LI\nmkLMK0n1j6yGI0IpRmOjvVjldZUNdoiIkl/k7kCXdMASA3ziOzAHJv+OI0csxZqayh2uNuDv8+sU\n19HotkOzZztmxgqUjcl5NTbffyjlNFu5y9k2xg3Zv5q76Zv3eMavp/LBCy9cFslVeyRKroIH2vhg\n8WI8TyRw88Iwly/T6rGxFq9ra6sTa+84LC0eNeKiY2/cjM9icmZX6Zs4hyijQ9zjRUV2Yn3iCY7z\ne5iTl2vOSEyPk+cEd+A6/L9ywBf9tc+WXOoTqKIoikt0AVUURXGJ90okRVEUZVD0CVRRFMUluoAq\niqK4RBdQRVEUl+gCqiiK4hKvtfCdV1zhfMM09h//AF/aYm5vVpF9HHxNfVwnHTW+F3y0Ywfbqan2\n9Grnzjmx1jaMBpcnjqdExs7Gmn7Ree8Soo6KOv70dHuxVlQM+s3dnrE88mJmF2ov2+NSHduMu2SZ\n0A+GhlqJVepV5dtGROTrO/h5soQ8d8VF8IWP5//Zra0W9Yri/YdRLERUcTDUsdNOYc120xyu2b7t\ntr+B7+P3xds0erS9WMeM4ReWsy+IiBYsYDsyEn1CmHxmJU6XffJJtnNzL4++2t8ffam7uKY9axz2\nYihZwBNFj4+IAp98naAgS7EWFTlxnvku6jk/+IDt8GqjJd+NNzrmnmuxFn5miFjXJkxQHaiiKIpN\nvMuYPB6eXz62FlxlA/yklD4cB4eVFfMTX1QcPvE1HRIDpiw2fqWaGv5DWlrAdXEVP3UMO9SI5731\nFtvGrHV6/nm2bTUpJoL/lpN34H/L8ePZXrECT5PhzZyOT3Z+/vy/sLvb/lz4wMeWolMMNbs4F7vt\nDGvhblipxTiMTlawZWTYe1LqFrslv5//HJ3iqW70OKyMko2hzebGVYViyFxwsL33PyWF71Wz5Zbs\nom1uM8Q2IG0EViI9+CDb0dEWn+xzcvjJ7pEicAX+ko/PLcL7eDSdc+z6FtwRyt1MaamlWI8c4Ws6\ndiy4Moq5UXbp6nPgkx+y/g3YOc5noqi8am3VJ1BFURSb6AKqKIriEl1AFUVRXOK9I734FrCM8NvL\n2kmc98weT8hzzznmzp3YiSW/kL+9z8OXHBrim9cSX3zhO/4iDq6MAV9IAh8H3o5DxXIXcA6sgCwi\nvnmtxplydPAg2+PGoW/Csng+GFsMvq1b8ZtOG8g5gjONvFJlH+c94zrARcGik785xK3rSpFKyrBX\nRuz3zW/ygfEtfPcA5z3NNLffNSKer30NfE1dnMuNwltjaIjrMy/kCLgWiY7p06fjaf7+ScJG31NP\n8Wt+/PEIskXbYs5zhl6HeXfZVal0FypGlrzAipGf/QxfM7ZTfmNvDEd0SdmxyY5tXjcYLGDckPEn\nOe9ZjF+d0CnRuQ1HYzL6BKooiuISXUAVRVFc4n0Lf+iQYzYX48A1z1gxuEp2HiYCbUhDA7ry5suG\nxtigdSiMzmZZlRnO7bezbfba9Rlgof+Mr7aD7z4zNWEL0Rj3xEF0yfHeFy6gz6+62rHrWsaAb9cu\ntj3Yo9c1cgz54xcwLXKrmLdljLYn6hr8thojZsZbRQZhCNCTxeSyvVcbW8brrmN74kRwRTUIsXpU\nxlAjZISOZ/v0RHBNXsWfsw4jNXLDDa849vTpmG743OfsbdslMobPfx6ft2QD8oqBVPBturvGsWd8\nCzfAe7cZe2wLXHMN2+b9CNknI/exbx/bPiexIChqq9C4JdXQp6FPoIqiKC7RBVRRFMUluoAqiqK4\nxGsp50VRHjfs1VfROVzkucyaQ0lmJhzWDcQ6dny8vZKzqCguO9y7F32B63joXc7wEvDNmcN2zHoj\nPybzJWVl9srj9u93Ym30xRxYzGaRS5KaJiLInUnZBhFR+ntr+WDlSiuxdnfzNTXnm8n86L33om/v\nwyJfbgycyz3P0peCAnvv/+HDHOv116MveJyQ3+zcCb6mEM7PjTdy3qM+L8L7+GNrsZaVcazps0+D\nLyU7yLGrVjSDD5K5990HrqbZnKOOiro811XK2oiIlv7iVj740Y/Al3GQr2vpX6aCr/WXPEkxPNxS\nrN3dTpx5xVg+fuIE29vHGrlsIXnLGYtSrKJbnuaD++/XUk5FURSb6AKqKIriEq8ypmFrRFmE0QCy\ndCeXZnSOx6/4pYxow4bBXz8+fnDfv4vs8vPOO+gLFLPAi/Zh38Jc0dMwxtinNgdwgNhTaGhUdfG2\n/eQh9P11Fm8jkjvwArUF8LY9/VAa+LL8uTIMkxTu8Uvg3zdiIlbMjBrgjlt7HzXaGGWKG0D2tySi\nglWyPyx2RhoK0f8t0i9m+dN//ZTtN98E14kE3mpGjTsLPs83Ob2FvciGRnpYHR9k4jD6KpEOyzGq\ny1aLveioL3wBfFEtYvsZhZKioSDbAC8dgV3XSFR/lXWhVKm0Qxw/9hj4wg+JWMPtxNo/grft+ZGG\n5GiaWLtaQtCXkOCYi40etwXV3B80d5Dfq0+giqIoLtEFVFEUxSW6gCqKorjEe0f6ixfZaciRGudz\nmVtMCEoxaNkyxyyNw3xETw/bNme3UG8vS0MyMbdW9iWW+PQ+vBJ8oxqE5EZqc4gw71tRYS3W2lqW\nhniWYZufi6e4nNRUhxURS4DSurA7eEWhyN+NGWMn1rNn+f3/xS/AlfU+X0dRmUpERLmLOJb2Piw5\nDV7PkjIqKbF2TXt7+ZqOOlqPv3MBS+dMqZKojr1EqiV9w4ZZvFeFPLDJcIUIe8UD+NksyxSlhuZF\nv+kmtv/2N3uxCnnQmQsoDwp8lPOXueNQAiRLphctwpcMPy/y6ZMnW5cx7WnAOGfef61jb9uMc6+S\n/8DfJbSuwByvnFCQkvLp778+gSqKorhEF1BFURSXeN/CK4qiKIOiT6CKoigu0QVUURTFJbqAKoqi\nuEQXUEVRFJd4rYUPDmZtXYsxsU7qOY2OZTRztWi1ZkxzzAjhquLS0svTduv99414TojqcGMsY3of\n61mFfJWIiAIDwbanrWtvZ83qGtSBlm3m1msXjf9vYpjnJdq6xPc+u/XWvwu0XZuO405AFyx6DRAR\n7engzgEffoinvfwy2zbb2VFqqhNrZQJqEuXoiZijpeCjK690zJy3HwJXURhPbKT0dGux9ggdaP1u\n/BJ35giuk28dh70QpH5S9ikgwnujrMzedU1L43tAtn4kws6AFcXn0PkCt6yjZ54Z/BfYahO5W1xI\n2cODiOiBB9ieNg19sm/CwoXoky07Q0NVB6ooimITrzKmPXv4v48YZU1ERElx/B9nycrR4Nv0Q/G0\nIss5iCjtBFfTVFRYfALJy+M/xJgcF3OQp7qbT25pCRxr2wA+DYZuEYPU8vPtxdrayrF+4xvo+/a3\nHbN+NlYbyQFYBV99Gnyebdw5prbWznW9eJHf/2Fb8amu9DxXoWQMGP2fRCPoFF/sYySvv82G2rR2\nLV/Tf/4TXCkn+H00GzWJuYkUuzUdfKl9/ARaWWkvVqiaWp0Dvtpp/J4bs/HgQb9imtEZ6XOfY9vS\nDoSI6PRpjjWorw1881aEOra501gr+nuLnsVERBTfInYBGRl2Yp061Ymz9xC2OPt9Nd8ayc8bDZUL\nC9m+6y5w9f6Rn6JHjdJKJEVRFKvoAqooiuISXUAVRVFc4vVb+M2iWXbtjn50/mSTY27674fBdfgV\nziVGD8dfUdEjB7dhd/gh8eyzbM+YAa5G/5l8EJINPio/6Jihxjd0h2flO3b0kAMUyClX8mtpIujg\nHnsec3KxMglWeBh8mzffT7YZRqwIqCTsHJ7xazEo7Oab8USR967ahe9xlpgAYHMiQeOd3B3qxhvR\nV3WV+IZ42nTwxcqRCYZCo3yXreiQxx9ne7mhUrlwge1dxu+XucTmSTiRIKJ6sJ7pQ2PECHHQgJMH\nEhI4B2rmlqOqRW73mmvQ+ctfsp1h5CRdsudHnK+UsyCJiO65g9OXzS/jdz6BInd71e4XwDe6WuSZ\n0/B6f4I+gSqKorhEF1BFURSXeN3Cy0Ftk6f5gO9IOQ+U2t+ADYwTv8uDuXO+8y74pgjBL46hGiJC\nBV8zErezSXNFI9qXXgJf7wreppsFATHXS/E4SpyGwploj2MHbkapUtlslv2knzK2ZWLrX5uAgvBx\nnWwHBZEdNnGaJvXrXwdX0xO83SkuxtOqTonrLbVXRFSSKTsa2xvVFzNCtCZeuwWdMvUxeza41v2J\nBenL33sPfLK/9tKlQ4tPcqsYp560OQt8skDFvK5L53MqouYgSgcjbrjBWnwSmcbL/f1PwZf+NC8Q\nXV2h4KNlqxxz3iJscLx9y532AvwXcXFsyxQJEdHYN3nbvnAu+po6RMNvMWCOiIjuuOMzf68+gSqK\norhEF1BFURSX6AKqKIriEq850AcfZLurC33xmYPnrxJvv92xJ05En/k6tsh6kfOeJbdhmSN1fdEx\nI9ZhfrT5KpbZxIBmg4g6RP1qsL0c6JIlbNdM7AFf+iRuJjHjdwXg23vHbsc2pRpmuZwNSv/JzTUy\ntmLJYZSQp1UF4N/QH8b52V2zseQw6aQYMhhhLwcqS/Imn0Lp1IcilfXaDLxQy+eIAXRf+RH4FhvN\nM2whK41r1htNWkS+9uJEo1yT+E2X308QEVHx61ZiM8lNEAPgdmKJ7MUQznuaAxDLyjnvuX2z0Wjk\nQIe1+D5ByqgOo8KPlv+g17GbqvF3N/WcpcGIGnt6UN8n6BOooiiKS3QBVRRFcYnXLXzgdxId+47v\n7wdf6Wp+LPcLQUkFlXM1zTFsjHKJUsAWJVN427bfH7fpDQfYNlQ1RC993jFvzp4FLtlRxqbkqia7\nkQ/GZ4Ivbz1fy5//HM9rJ45v1wb0Fe0T2+Hm5iHHSISKn4qDKLdKWyAq04xGkaIZEyWdMjo1mS2G\nbCH0P0c+uhV9f+TUR3MXxhPx3BN8MHUq+IbNFhVse/YMPcZ/AZ+BRavQKdpVDbvhevQ99phjBhtl\nSue2sPzN+DQODamrMrocDbtNXOcf/tA4jSvOzhkR/eIt9i23ECIRUfpDXG0U9ypWG3UPsMzSz9Aq\nRm0Rn7/16/FF1wsdWxHe/5+gT6CKoigu0QVUURTFJbqAKoqiuMRrDrS9nPOeyWTILU5y7eDmzTif\nRbaRyVwzD1zBmSKbOLOGrHGAE537fPF3liwSpYWbsUO+1APdfTfmQJP868SRxdZBHSylSN0cAy7Z\nECoT06NU08HXucgcETBlirXwPqFTlIemBWBneZq/hW2jo1DcN0Tz7vHjwUd/+IOd4EzkPBtTO9fQ\n4JgRxnVb18NSrZEN4KKMbKNzlyV8fiHyrq+8Ar7G4bGOfWAJlkHnEXfIl7PFiIgixXyiQRoHuaJX\ndGkfZcwa6v4zl0UbQyDoDW6ORaNPHgHf8g9EsIRSPbfseYbzniFGLEdFE6l4497Y9l3ObT9gSMPW\nrOG852A9o/QJVFEUxSW6gCqKorjE61A5RVEUZXD0CVRRFMUluoAqiqK4RBdQRVEUl+gCqiiK4hKv\nOtCaGnK+YUragDrI4xtYIxkWhuf5NLBvyW/wPDnOID2driBbJCY6sfbuxLp9ORrBkCxS+kesyQv/\n2UPgE1NCKCPDYqw5OfzNnah9JiLK2hzu2CdP4mm1cyv54LvfRefDYjJqSYmVWGNi+P2vfwFfcvhv\nf8sHpu6ypYVto+9a83luCxgRYe+atrZyrMZwTSm7pbSTxpiUgAC2zVkQsi/amDHWYl2yhGPd9O06\n8KWU8+dFjhQhIhp1UvQ48PUFX8VBbi2XlmbvujZdcYUTq6/pfJ1v45tuOg6uDz6Y4Nh+j68FH4l2\nl5SYaCfWtWs5mJ/9DH1C0Jy6EJ8Z5dDgp55C3e3Ha0Q7wZUrPzVOfQJVFEVxiXcZU34+O8eNQ59o\nuXP4oUpwRb/OxxUDOE9cFsxMmGDxqc7jcWIticMqjcWL2R61EKuU6FvfcsyRi7CL04VX2/ggNPSy\nPC2JAioiwpHx5pC7euIqld599eAbdUD8zR6PlVijojjOpmJ8UqJ3+b916ft43WTDpdj12Meqai5X\nn6WkWHz/m5udWCMWYKPmnaLwpcGoNpIPy7IKjAgfTmNiLs8O5Mwj2OUn8FrucjVvAQ5y3N7HwwjN\nnQtUfIWH24v16ad5Dfj739EnKg7zIvEzl/+rLzv24eq3wCe7nNXW2rmuQUF8r54eGIPO6dPZNpum\ny+tobqVl9/dBrqk+gSqKorhEF1BFURSX6AKqKIriEq/fwodvzXPs1h3Y5Tx2C7d8qV+Hea7SOM5z\nZVAp+MhXdi+3N6itYg7nYLL2GXnO9aKTdlwcuHJf5fzdO+/gaTGz+ZvNxkayRrgvD6tqGRsEPpnK\n8jW/9rwh2THNTk1l/iK55/GQDZbLduEvvAC+bWHcbifjxt3gy93HXa1i770XfGYq3Rqic3rzIuOe\n64lzzNCdq8HlGeB71fzWWzYoj8GmWUNDyAQCD+AAxIK3+X7cvsEYeLaYP657huN77C/SdTHhZA35\nvcCF64zPq7hB8kcaA/Duvtsxo59B5UPtTtnVyc4z3On1YpBgmDF2QuRqy8bmgSt9xODKhnmLuZP+\ndpxT6KBPoIqiKC7RBVRRFMUlXmVMhw+zNODFF9E3fz7bo081gW/JL6Ic+5578LxEX7EXjomxJ7e4\n+Wb+Q9aicHfdG5xiWH4dbjXa4jgVERrQja8ph2jZEvwS0ZkzfF0DX0bRP4mmtUEnUap0+gCLlS+O\nnwA+KYdKTLQjDZGC75tvRl/GFNEkV8xkJyJqK+ZtcUgInifvm+3bLUqDamudWBsDcHsb0yUkNrKq\nggi2oSWvY0Ntme2JirIYa2oq36umdEZo7vr9UY7j0yFkdVKaQ0Qpk1odu6rKXqx1dXwPmIUdc+ey\nLcbZExFRabRITXz72+iUlQ62JFf9/XxNq42m6aJ6JiI7EVxyZt6DD+Jpyx+9yAfDhqmMSVEUxSa6\ngCqKorhEF1BFURSXeC/lbGwcvJTz/Hm2jWYS637C6/Lyr6P+x1PIehBbZVxERCUlnKvJ2mUMgNu8\n2THbhqPGQ/5ZPs+iHIe+/nW2/fzs5cCWLuXragxda53O46vCGwxpiKgtnLcV83zb54sBfUlJdmLN\nyuI4ZY0pEeY9V61CnxjUt3EKlvnKZi5JSfbe//p6fv/NhjHh2eJaDTeUe6LTyJnf4/Cz559n22as\ntH8/l3Legjm5wMeWOnau/0bwFewVnXj++U98TZmQzMu7LE16+ndhvl5eSqEUIiKo9IahbkRE9eWc\nr7WWA62s5HvVCObwI6xBiv5tDvi23caltMmv54Pv+FyWPA1Wdq5PoIqiKC7RBVRRFMUlXiuR6G9/\nc8zSo1iKkVE+mw+MBozLN2xw7I3HsBuTOSbcFrNFOFTYAr7ecbxtL8fR1lQwwI/0Sz7EzjjbvsP2\nuXNDDpERepCoQ7hNG39IHuGAbykVuaRK5aAxDNsGsj2RbGlFRKX7+JpmREeDL+cDrlLKnAOuS7Zz\ntoglIfkKM9oqib3mjAs14No7l9/zwPexp2VSyw5xgBUsQyGvgbftCw0VE81iKVXBVbhl9rTwHPaF\nC/G0pLEWS+UEh3/MMUR3toMvaz1XJgUG4nk7xKWT2T4iwnRQuJ2yqaAVvM6cHr8FfFKC17saP+P/\nHcf2mQX4HleLRk2DVSLqE6iiKIpLdAFVFEVxiS6giqIoLvGaA807zPmYfUaDkwypUzCTHKJeL24L\n5kAnZErZhlHGOAS2bmU7X8iWiDBFW3ACO0e1FnJObCSeRufmyBykISkaCkICtKEPXTEn+PecmYU5\n0MBH+Vp2b0B5kJ+p3bGBHCY0gDnWSZM4d1XTuRJ8RS1CDrIYk54eWbroKRl6jJ+wYAHbsiU+EdGK\nFY65d81McB1dvtexJ5nt6v/yF7bz7OVA+8R7bk4dCG34Ix/MwQSyLItNOm/cj6+JeT4WW0c9+STb\n0RvwHpM5+ddew/OWTxU5aePeoRBjhpYF4CPvi7I6v/Ocu23tw45S8ppmdBrzsuYXfObv1SdQRVEU\nl+gCqiiK4hLvlUiKoijKoOgTqKIoikt0AVUURXGJLqCKoigu8Spjkh3JzabS8ZO4e3tblx/4ZNVf\ndjael/gX0S1+5UprXWP6+zlWUYFKRESBIznWbsJYpQIr2B870tcd5Z+Nj7fYjcfPz4m1div+TtGQ\nngw1FkVlxvKB0R2ptYFLO8PDLcWal8cJctFhiYioMiDLsT/3OTxNTiHwWYPyn/oEljjFxlq8ph6P\nE+vG6bXg+sIX2P773/G0NDmA8FvfAt/pO3mgWlDQ5enyLpViRESpB4TszxiAWHKeZW1ZRok0JSSI\nF0m1Fuu2bRzryJHok+WalXOwRLayh+WCqXOMSQ9SVxgRYSfWtWv5Xp06FVzb3uPubMmHs8AnhyU2\n/xwHJ0bsFHK8QTpc6ROooiiKS3QBVRRFcYnXLfy117K9ZQv64sfy3uMvr+CAM9lxyRwqRjuN4euW\nkAO3AuVAbyLK9eU54QVrLoK/Pz1QAAAcdUlEQVSvs5P/h8TOxu29LEy5iKcNif4PP3RsY5cGRTRm\nk9pdCVzdEYbNkahapEpqcQfrHjlF7P77wRX5RbbNQjSfBE41zBuLg/G2T5PVZ9hMeChkhfEfXRJp\ntM6RXbNfeQVcbYXcbDd0OnYGCpJbzZVYbTUU4iNFa6/h2DmsfhFXmO3cieeVLBaNiCMXgi+xkLep\n+43d/VB44gnxK40CLzkgMGMfVviJ4i8svSLCdMNZo6uYS7p/wO+P32bsuJTcJz7ILXi96ZlnHHN4\nF7ryBjj9hK2WGX0CVRRFcYkuoIqiKC7RBVRRFMUlXks55aCu2OUoDaC1Qo4Uhm21Tw/njidBf3oa\nfGcSOJcWGGhRxtLdzX+IqZ2aMoV/bC52OJKDsYZ/HsPx+aJI9LW324u1tJRjNVu0i65CsnM5EVH+\nuDLH3h+SDj4518+a5CY11Ynzil9tANfVV3O+uPtgE/jydkY5dmcnvuT06WzbHNTW3s73ak8P+mTH\no5QQIz/aJRJfxnC8smXNjp2ebvFelcP6DHkY6JrMAXgi1oLI7eDKPS+GpRUVWYs1Pp6va90ylCrJ\npOjxvlBwlZezbX4PsmwZ28OG2bmujY0cp68v+vZywy1a/j0j5yo1lzKpS0T0xhtsDyK51CdQRVEU\nl+gCqiiK4hKvMqbYiUJucfXV4JOz182R8VlHU/hAzg8nHPBkdVDbgQNsrzEmx4ljv55ScB1P4Dns\nE0aMwPPkftMmYg9Tsh7/hy0W89Dy12Pz36Y5exw7cafR4DdsoTjA7ZRrxN73462/B1fGYSFrMvQ2\nq1fzFt6spvroIzuhmcidsFlRNkHcnzlrsNlw0Srxs3K2Ol16X1tDanyMJs6eo/y+1vqmgC++i7ft\ndXNwAN7GgyzdWUr2kI3K97egVOmnD7G99zrUTnX0sRyr5BSeR3OEzDAYGxy7RUqsHnkEfZve8fCB\n7zfAV7uQ0xKek0aD70cf/czfq0+giqIoLtEFVFEUxSW6gCqKorjEaw5UfsVfvwoHwJUcE+WRPRng\nAzmA1DMQUXb2YEVRQ0TmkgxZ1bY7ONbktRHgeyWQY1/9zQvgqxb5O5v/aZpb+NVkLpmIiPaJt0TW\nxBJRZibb9XQQz5PanRJLw9o2sHSp2T8WXC1i2BjtyASfVAMVTMdSzv19+Dq28DtxhA8MHUvuVi41\nLgorAx/5LmLb6HAVuYguD7/5jWNmvfkQuGrn8LC4+rAq8P36JnHwS6zzXfq774sD7Co0FIJ6uHw0\n6DxOwEu8mtsxta9BWdX2g2Lo4RT8HqRkB+c9s4zmSG4ZdQPXnd/3DLZj8xRzmW/tiyhjjBZp75Rq\nDCZbVH1GRdGnok+giqIoLtEFVFEUxSVet/Cn1/Njeey9WImU83XeJhRlngbfnmMsG5h5FHUsIxLo\nstC7hretZncgIDkZDmU3pFdfxR8d1sHzpG3JLYiw2CTi+99Hp+xaa1Qp1Z8SMRjSodNjeY8RNOQI\n/4UoIekxGv++K8aQ5xSOBp+8/vkHccued1CkLBLrhhohI9qF1c/fCK5Fciv+2g2DnkeGjM0sErLG\nP/7hmNHR6NpGvMW82fj9MtSHH84Bn88Nxt9lCzn8/Y470CcaUMv7gYiobwrLmsJ/sxZ8WW+/LY6M\nlIpLzr3J2/YtRiGilM71bqgAX2AxpxSvuQalgf+TS6pPoIqiKC7RBVRRFMUluoAqiqK4xGs3Jmps\ndJxnbsQSuMDrRIt2mSchwvY3sqs3EXZKsjj8isLDB+9wI/OFZltt2aF6YAB9so4tJ8darLLLlTmQ\nLfoKluOcC5sMvtF7RWcrM2Er/2ZLsebnc5x5i40uNqIcsXs95pX8Zou8pzEdoLKFc7WpqRY7HJ09\n68RauW8MuFLHCgmekedc8muOddPVmFek555j+4UX7MWalubEGnUMr13TMnF8AWV19PLLbJuJfvkZ\nnDDBXqwpKU6sveUoq5LN/aOfycXzPv95tiHnSXQ8k/OeEyZYugeWLnXiLB2POXDZAH9CpA+eJ8qq\nZ7yG8r+93xPSrHnztBuToiiKTXQBVRRFcYn3LbyiKIoyKPoEqiiK4hJdQBVFUVyiC6iiKIpLvHdj\nSk/nBKkhR4mdPsqxxcw2IsIm9KLxDBERJRfeygcvvWRPblFRwbEeOoQ+0ZG+rgUlLgEBbEdsRRlL\n72ru8j1qlD3Jzbp1LA9a/nVjyJmcDmd2yBelnRuPoaxMNiCyJg9au9aJM+v9leCSFbHRV2N3dCkN\nyYrEck05w62y0qKMafdufv8Nide5Rfy+ji40pEpS42JK7mQt36xZ9mKtqXFiTdmB3dr/4z/Yvu8+\nPK1touis/te/olPWqz70kLVYL17ke3XYr3FAZN7rPJUgPwAnPeR0cJezomxDAlddzXZGhpVYW1s5\nTvnyRER5i7jUPGc9FjpPExMgPFfuBl/VB7McOyXl0+9VfQJVFEVxifdv4eVTnSFOL+3g/5ym3nf5\n2zyVpX89ilpbsMeetf+UV1zR4cT68ToU/EKvTNmRgYjyF3HDkASj0UlMofiPX1tr7wlk5ky+roaw\n//C3Chw7ercx92jOHMfsv+02cPkcPswHkyfbibW2dtDxy20LuQlD6Hkca3z4IxbLX389vmRxMdul\npRafQFtbOdZj2LeS/vM/2X7sMXD1z5nn2D6rjKfTgwfZPnLEWqzHj/PTktHylWbxQw/tfaYfnaII\nJc2Y7bVwIduxsRava24uX9exY9F3442OWfn+LHCl7uDPTvOaWvBF9Inerbbu1bo6J87cA9hjtyBO\nFFJ0GF1xxIWrb8DnydhIMS/Lz0+fQBVFUWyiC6iiKIpLdAFVFEVxidccaFMT52qiTtWArzmMc6Bm\nX4PYcjEj2ugYW/tFngHj8djL1eTkcKxmTxD5TVvSDpy1LfNKbf44+CSU2sRBqL28UnMzX/S+PnA1\nDecGIlF3XQs+euYZto3kWcUuVhekpVm6rsePc5zDDcGGHPhu3gBCEtD9+OPgmns3v+T+/RZzdSIH\nBl/1E9GSP3Ge87rr8DQ5vstEjvMqKbEXa14e36s//vFH4PvOd65y7Mo3sIl59x+4ibnfYuM+fust\nti02Pmlr41hDs4357rNnsy07kxMRdXZ+emxERLvFt91VVVZi7e3lOEd1toGvoDrUsXN9MXcs793u\nTPzOwW+nmOs0SOMjfQJVFEVxiS6giqIoLvEqpI86wEJyc8so5UjGeB6KHRCyIUPU7HlebD08htxo\nCBQlsFQhfUci+JIm8mhWGocjeOUwl9CjOJ+ldmy6Y3tCyR6ykeIf/gCuwj7eNvjeg+NZVwgVyWrj\nz7jlFmvROaz7PY8DfvNN9PX1ce9EuVsjIto/nX1+xok3/sRefJKcfSxdKboFBd+bfshStbYBnG0l\nlUrmdt5QblkjfwvHkP+Pk+ArlSPEduJnx2+VGB8u+rESETUN8LjuQSbwumLfPrYXbsU03qhF4rNs\nNLbtvYdF9vMLseijdse37QX4L6Q6KbwFZWx33SU+vEevBJ/ctl+SFpGFLKmp9GnoE6iiKIpLdAFV\nFEVxiS6giqIoLvFeyikaNDRdj6VaYWFs+/leBB9Ic373O/T97GdsWyyPo7Y2/kMOHECfLJc0a+dE\n4itxYA+47rqL7eXLLUpunniCY/3e9wb/uZ/+FA7z/8kNPeS4JiKMddMmO7GeOcPSkMB3sFxT3gCN\nLX7gignh5g301FN4nsyJW5KwEBGWnZpzr2Tnkxkz0CeacKSuwEYTsjwyPv7ySK5k7pYIK43PduLn\nKj6Bn3cyjRy4rFYerPGFG06f5ntAjogiIho5ku1Jk9AX1CekRKtWoVN2H7LUTITq6/n9DwkBV/oa\nzjmbaquU8XxfV53A7HHKMVHaW1SkMiZFURSb6AKqKIriEq9b+I0b+fH93nvRJyesJvoaPS3/9Ce2\nv/lNcFUcZbmFtYoZwn6ApvwkpUWMXJU9Holw5OpJlJRASZPFbkxlZRyrlIMREU2fzvbMl9aiU15L\nszOO3G/u2WMl1u5ujtOcXC1brjbuOI1OKbEx9pobD/E2aelSi9vic+ecWNvOjwZX6C5RfSLL0oio\neTjHY+z84Haw2TlMbouDnsL3uG7q4GmaikLuq3l6APvaSoKC7MUK1YgB7eBr7eOt8YkTeJ6UhxmF\nYXCPW0s35OXxQmZUxtXP5fff/Iin7RLVVaLbGRERXSkkT/ffr1t4RVEUm+gCqiiK4hJdQBVFUVzi\nXcZUWTloh5uczizHLjqKUoy8aTgHRyLL5SZMsJgDi4hwYq3f0Ayu2G9xV6P2l7E8MniikOAYcott\nX2IZQ3KyvVjnzeO80vbsI+Cr7eRuTJ7vGt2Y/vxnx6w/HwEuKSOxNr9Jvv/jxqFP3A97fOeBSzbL\nD/w7dsaBFkcFBZclB7qxGnOgMrcpR04REQVXi3JlQ+OSuIrfC5udo2DO0NZK8BV0cMlg7gqUMfX2\n8fOOmZMuWijmUk2YYO+6dnfzPWDqmK7izlHmpAf5PqdnjgJXWZi45jk5VmKtq+NrGp+Jn409hbwe\nzCw3OkpJ/Z9Rdt64gKdpxMToTCRFURSr6AKqKIriEu9beEVRFGVQ9AlUURTFJbqAKoqiuEQXUEVR\nFJfoAqooiuISryM9pLaudCtq6zJI1Bcfwxb69QsrHNvo9E/RT/KYDCors6ZXkzowIxyaO5ftBx9E\nn5SvnTqFvujrRe1vcLA9bV1srBNryZx6cMm2ZHmRteBrHe9xbPk3EWH5ubX64nnz+BtGc9SpHHcQ\nEIA+KUr98EP0+fuzPUh9sSvS0pxYj2dXgGvCQtZzli1C3W36wn4+MGqoUzK53ryq6vLUwpt6zrIF\nfD9EZcaCr+n7Tzj2/q88BD7Z+XDvXov66qIiJ9Yz380BV+DIbse+pKXhI2KiqJzCSYSa8vBwK7Gm\np/M1Xb8efYsXs105Dcf2SGH6uk34Nyz/8nY+mDdPdaCKoig28Spjkh2OwodjRUnNMR7UtGEDnlcX\nl88HRnPbmgF+ikpKujxz4cVYciIiuukmtpOf9qCzuNgx+0PCwSUbHNl8ApFdruQwLCKigsX81Ft7\nDAegNTSwbY5pl39zbq6lWGWTWvNNFnPhj3fi7kSOgt+0rht8UM0ya9bl6XAU0I9OOcNePgETUcq+\n1E/9MSIiv0LRxcti1VRWFsda8qdbwbdkykuO/ZWv4HmyA9b2QqPCS5ZbDRtm7wl06lS+B26+GVzy\nSb+6Gk/LPyGq0woLwZdbzmtHQYGde3XbNr6mshMUEdEPf8h28OZcdIqG2r1jcXKk3HT5+WklkqIo\nilV0AVUURXGJLqCKoigu8ZoDbW/nvELwMfxGuD2Sc4nBa9LBt+RK/qZr09014JMdoCsq7OUVKyo4\n1rQ4Iz+0bBnba9ag7913HfPMJBycF7g2gw9KS63FOnkyx7pzJ/qys9muysRvjGVyp20ufiMqU5Ql\nJZaua3y8E2fNMuywZQ7nksgcVFL5TPAd/k8e3BcdbfHb4tZWJ9a6Dsxly9yxHIZIRJQSyV2Mqo5N\nQF+ImLQQE2MtVtnp3+w6v3RnIh+Y96rESILHLOPO+o2Nl+lzdQg/55SQwLZxYVt9OZ5wX2NigWzX\n9e67dmIV3djKlmE3NjnDzmwqJr4CgZ8jIvL4C4VMbKzmQBVFUWyiC6iiKIpLvArpg3cKsbyhDdq1\ni+2ucShO3XQbC2ejfoQNTDdt+ndD/J8ht41pwxvQKQaw1ffg7OfY63ibvG0bnpYh9U8WORIntt+7\ncOsTEMDbpNQNk8GXnc3HuwzZSMldUqyMqQi37F/B2/akg4b8o2e8Y0opEBFR1Xnettev2AO+4f+0\nEtqliC2tvDeJiEpC+D5uGp8BvopDvG1Pa0gDXxqxTKcixkaQ/we/X7Egfumdd6LzBF/XS6RjUuhv\nDMcbNw7va1ukTeEUR10Ifs7jdyzlA1kBQkTh7+517JKRK8GX9cQTZB2hQZtubNODCwePs0Ds6fOO\nFoDPk40SzE9Dn0AVRVFcoguooiiKS3QBVRRFcYlXGVNBAUsY+vrQl3+MZUwzPkKJ0wMPsJ302lo8\n8Z132N640Z6M5emn+Q8xk5nR0WxPnYo+kQM5cw3KX+TMrNGjLUputm/nWI0OJuknOT86ezae5unk\nHNTxaSgpkaV0+fmWYpUDxYxGGxUHuMw0LQwbokBZoZFzgiYkoaH2rmlNDcd64QK4mm6+37HNtGLF\nHL53PeVY5lu7SNzXHo+1WJua+HMVdaAInXPmsC01NkRQdtgfiflxeZmt3qupqXxdZW0zEdHJk2wb\nsW77catjJ3+AudPeBXzvWhuAeOSIE6dnDV6bHTvY9pmOAzDpkUccM+fP+N3BggVsR0RoKaeiKIpV\ndAFVFEVxiVcZ09GjbJs99qicv+LfewLngucc4j56SV1v4nmRny0NcMPGD3ibNm3N/eCLuIWfvs90\nYsoicDp3w3n0ay+BrzJZSINm2ZEGERGdS+DrNXpEL/gCRPGJ2VVmTQNvfY5MOw6+/DDxZhHKitxy\nuof7IxYWY69E2M3tNeaFy8BlM0Yi6vfnHps+Q4wPEI1ne6ejdC7qEMuxpk0ztnCi/GSsIX+6pGzF\nEvJzFWXmxkRKp2IKbn3T/sLyH5+WFvCNHi/kTzH2NFc5Y3lufZF/Ezrfe49t2ZCWiK6+mu3912K6\nKfEApEaGHCMRUUULb9uFapGIiHwWszwtPw4r6vKe4dji5uBnPOKVp8UBrimfoE+giqIoLtEFVFEU\nxSW6gCqKorjEq4xJzu6pWoxSFTn2JnwBygagi8xHH6HvySfZrqm5PNKQ85jnqOrkvFfKISzlk/qf\n1oaz4ArvE11dIiKsxZqayrFKVQ8RSidiT2AOrGI452tkd3KTsjI70hDoxBOC17S2h6+pJ7IdfJUH\nWeKUOh47SuXu5HvFVjdyImN6gj++j9CF3rxwsu5TSoiIUKaTmmot1sZGjtUcNRU78dyg8WRN4s+g\nOZFAqHEoMNCijKm93Ym1+TxOSJD3bngH3h9nvsr3R+BhlDmSzNdamolEublOnDNewpLMvf8QeW8x\nA4mIqHs+f6b8DmKc/dM5P+vjozImRVEUq+gCqiiK4hLvW3hFURRlUPQJVFEUxSW6gCqKorhEF1BF\nURSX6AKqKIriEq+18M3NrFeDulAiouuvd8zWcUZ9seDAATxeGidquCdMsKdXq6hwYm0cj6MZYlbE\n8oGpS/3jH9k26nnpN79h29b0QCKipCQn1pwwnFpatIC1p+3+EeCT8tqyk8Y1l9o6S20Cm664grW1\njz2GTnmtOjrQJ1rfVbbgqInU+f184ONj7ZrK1osBAehLP5jCB3JCKxHtOc914zMP4qTTxjncai4m\nxp62UuqAzVtuwgrWHib2oS5RylLbivG+aYvk+v/QUIs60LNnnVhz148BVwGJMS+mMFXeE089hb7X\nX2fbkg60ro6vafwU7C8h+wuUNeDk1fTz/B73LsP3X7aITEtTHaiiKIpVvMuYZOPfuXPB1d3Da6/f\nfJz9TeXljplRGAQuOQe9vd3if8q6OifWJb/BpzNvM8y/+EW2Yx66FZ2yo/KRI9Zirazk/5ap1Xjt\nEgf2XPLznyCfrMQMLSLCopW6OjvXtUY8gSYdPoxOWYby17+iT1zUpltuAVfA23xLBQdbfP/PnXNe\nuL1nNLjkw1FQTyv4jg9wE23ZB5qIaNRTYvjZQw9ZixWelsZhPLDr+fOfwbXkxv2OvWntOfAlzue/\nef9+e9dV7kLNQi35WTb6bVPsLn6aq4rEptHyOlt7sg8P5xtLNJ4mIrqYzbEMO2lc78JCxyyZWAGu\nrJugG5s+gSqKothEF1BFURSX6AKqKIriEq/fwsM31nIyExGVd3BX9SyzBbTosm186ek1HzkUcvZx\n3lPmNYmIkm9vc+z6jlDwySFjMS++iCeaX5FaIjVSdHna5w++SSFsm19s5k/jHBhtOQG+uoAGcbSd\nbJD0gx84dvMI7LgVMULkkm6/HXxlO/nb2vStW/FFV4lu+ZWVZA1fX8dcYdxzsul7TWQ1+CaIhNz+\nDuzk3zHyIcdGXcfQiJ/UzQcL8R7bv5i/XU98+23w3SpT9CJ3R0Q0MGAMp7OEzFfKTvpERKMXsmKg\ncYXRcUl8dlKOYacmahAvFIPffLulchXfj8eOoW8xzL7DwZE0nPOexZg6pYxV3KG+dJCBFPoEqiiK\n4hJdQBVFUVzifQu/bh3bW7aAK6slz7FbV+DX/+E9vEVdYDwWnxA7zySc/TUkilazePZc3yh0lnP6\nIdZQWceOEFvfuJPgu1z5hhnLWSC/99YQ8IkZZ7Rpk3Hi4olsGxUK6f68bcc2zO5J7yt17B7cMVLV\nBnEdV60C34ObfuLYw5/EYVxpA7vpcnD8JI+oM3rmwmy4MzfkgU9mbcoNaVhysq3okKpdPKDvgD8K\n4itGiMblJzBNk/7sl/ng1VfBN9uI3RZ+vxJSruuuA19GCG/bS1uMu27XKceMP4QNjg8c4HSbrSe4\n1KPcKH3KslLwhY/llEnZlx7HE995xzGbT20EFwxOHAR9AlUURXGJLqCKoigu0QVUURTFJd5zoJ2d\nbMtEEhFRWJhjhrdgHociIx3TLDmM2iEaEBDmRoaEkE30rcAcCOgvzCluQme1/zxKdRIXiOYJ+flD\nDvET9j55mg92hYDPs4UTw56HF4OvPyDRsX93G8pWMr9mLTyHK69k+6c/Rd/FL3zBsbf+EsuBP+4R\nciB/rP/r31Ll2D5kjwlvcW51wuwZ4Mtbzc8J06bheVKdV40KJ/LpEu8TYUnyUJBp+Iryi+g8IDRX\npgYwIcExuwcwz3/HHbaiM7jnHrZP4ncEzz4rDo4ZcrU33nDMut/ORl+2uOglJUMM8F+IfLERJoUv\n5nuwNhMlVZ7iax07wtQNymGEUZ/++dcnUEVRFJfoAqooiuIS71t4WcJhbOHTFnBfx298A09LHsuS\noqh7scPRnrUvObbRw2loREc7ZlBnE7jSfFni09AALjoo5DmJLSjHChrO88VPkz2W/Ji3g0uWpIPv\n2Ag+Tk3A7Z1PJ0eR7PsS+PJ3cKlEHip1XPPww2x/YSw2oxkmSrhSDy0F38YpXGG0dBrOaPcpFFsh\nW4ESEV19tWMmzcXngkmT2BYFS0SEt7Wh1KOWFn6fSo2s0FAQ7SmJfv1rdIqL3nYIr13oKb6v/cb2\ngS/6gOi5Gb1yqCE65G7ga1CQjemva3n3S/0H6sHnM19oFF/Ce/WSN8EGH37omOZn/OQc3rZnbJ2H\nTpGiyPXFN7lgGV7/T0OfQBVFUVyiC6iiKIpLdAFVFEVxifccqEwmPPccuCru447Y/b7YAbxXSCw6\nf4v5j5kHZMkX5v+GhGyJ7Y8djioGWFZz+FfYASjoNp7tRH//O/hOr+oSR3a6xhARbbqKy876x2Pe\nJaLvCB8s2wK+/vVcauZzJ/6NebfLfA3OrnFLdjbbtVLOQkT0wANsyy7qRLR0HZeqLnmlGXyPPsp5\nT+yLNTTqiededXWhL7eTr/fhK/F6Q4crgxm/SxzUNxTSd/Dr1i7D3++J/KVjy47vRERZF/bygdEB\nK/YPnPest5cCpdlCgVS1Dz/nUtrmQ/3gk2tH3TKUOca/mWUtvk9YN+cFxy5401hXvvq/Bj9RShwN\ntRWsf4PUnesTqKIoikt0AVUURXGJ96FyiqIoyqDoE6iiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSW6\ngCqKorhEF1BFURSX/G+0Nc1ZO811FgAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  6\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/X1949EfMkckVEyYtzMnJEZ\nMzMlYmTkCNEYkakjxxwZoRYZM3TklzFmDJlfcsyUiBxfMlMz5piCeRtzZIQ/ZkZMicgcOcMiY0TG\niOD+47uuc15v9bPt4s19P+7H4zz/OtfjcMH5XJ/r8+Z6n885rzNsYGCAFEVRlH8fr//XASiKovz/\nii6giqIoLtEFVFEUxSW6gCqKorhEF1BFURSXeHv07t7tfEV/NDgWXA0NbJeV4Wnjx7NdGleJzj17\n2F63bti/FuY/p6uLnFhbW9EXGsr2yD1b0TlzJttTp4Kr7+BBx/YeGLAWK3V1cenDyZPgyt8+zrGz\nF3yI5y1Z4piZgZvAlZvLtp8f2Ym1vt6Jc/9FkeB68022L7sMT/va19iOH1GHzldfZfvxx+1d0w0b\nnFjrxqSCK3pHFh8kJoIvazu/rsK4WvydR46wnZlpL9asLCfW4+mF4BrdeZgPgoPxvPJyx/RangWu\ngYEvhX2RvVgvv9yJtff0J+Dy6Tvr2GlLhoOv9GQ8HyxeDL7Gb8xw7PBwS/fqjTc6cS6MeANcDzzA\n9kQ6DD6aO5ftBQsu7AsJOW+c+gSqKIrikmEe60Dr6ti5bRu48gOLHTsqCk/btUv8XOtsdK5Zw3ZQ\nkL3/lP39HKvxJEnLljnmmVtmgGvk6zsdu+Jj9E2axPa4cZb+UxIRVVQ4sfbPSwGXV0M9H5SU4Hm+\nvucPjoiyWtMcu7DQTqzZ2fxUn79nMjpXr3bMjG3R4Cou4CeToDH4ZLJ8OdsZGRav6YED/P4HBqJv\n2jTHrFjRAq6UUH5CPjUGX0fQ9ZfzwSef2Is1Pp6flv5XNbjW/+cpx960Nwh8cpfxzju4cxl4jD+P\nVFhoLdaFC/keWD+9Cp3yg29uQ8U2sCisFFyZ43fzQWysnViLi/n9f+EF9N1wA9srVqDvttvYXroU\nXHU38JNzdPT571V9AlUURXGJLqCKoigu0QVUURTFJR5zoMePc/5j9CHj22uRA4O8JhHkGRZei99s\nrr9XHMfE2MsrjR3rxLp7Lea5YvfwN5bVU/Fbz7feYnvZXUfBN/3H/I14TY29fF1KCl/XioJT6Lzp\nJsfc/d8fgCt20hk+kN8QElH1Es4rxcfbibW6muOM7zGqKUSOK7MdvxEuShfXX3xzTER0VVm+Y3/4\nocUcaFsbf7PdFwKu0e0ir9zUhOeJXPKGIxPBlXoihw/y8uzFOns2f+ji4sBV3M0VBGPG4GnxHRV8\n0NyMzpUr2fbyshdrcrITa+lUrPyQXzWMHWHcx4cOsS3LYIiINm9mOz/fTqzf/CZf07Vr0ffyy46Z\nF1AMrogItmPHHMfzTpxg+wJrlT6BKoqiuEQXUEVRFJd4LKSHot6eHnQWFFz4RFFuI0sviIiSH41x\n7E0xZA+x34ltKgJXVRRv2xPi+sG3axf/D8neOA58NT87II6MMp5BULGyjQ8CjJIbUXIR24lpk9Nf\ncEnY38t2gy8+WL4uO/8XJ0xgu/pIEv69uEbHLtqL2yLyFcXqRknZh90Z4sg4bzBs3+6Yo80CdG9x\nm3/0EbgqT/C2fdYs43fmdtuKDhFbWrPov3sf2/EDO8FHn37Kdl8fuLa8yO/5nDmDjpDp6HDMtI+e\nANfIiMcde9YsLLkqPSlK8GTtGhHVTuM0jrUl4N132f7FL9An/n7OGkw3VXbz2lC8YzT4MuRriDl/\npPoEqiiK4hJdQBVFUVyiC6iiKIpLPLdyitIgKFsiotoRCY4dszkNfBm+3Lpl5kBHpovWzq1bh6Y0\nxN8fXJOPcDwHpmXjebJWRJZeEBGFhbGdkWEvVtF2VjchA1yvv872sq9XgC/jELd9Fntngi+TOO9b\nVGSpPEi28sqEKBHRvHmOeaYcW/xGbt/AB0YLMJS0WBSTkeU2lbOw3CZp8df54OOPwVe1rdexpc4N\nEVHxrrF80NJiL9Zhw/i6vvQSuPZfzblmI1TonJRdvUREPiUin2zxXo2N5VI2kWYmIqLh7Vz20x+K\n+UNZZTUuuAtPlPdEaqqdWHt7uYztpA+4Rufy56ZoAn6mMvew6MnhldhWu0/koy/UdqxPoIqiKC7R\nBVRRFMUlnvVAH3nEMesDEsB1Umhu5gSi2krxEu6Y2f/OSPBNEZqWVhHdDZXb8f+Ct2g+id6XD746\n3zw+ECUbRHROKsAWaU28bS9tSAZftMx5HMF9GlQElWBHTVGcLN3C7b1b8vayOlGOdz34ssJ4216Y\ni2mILbeK7eQPsUznrrvYRp2mwbHwMt62Tzfu6saXuaPLbJrb0MOlYgmzjJKyvmk0FHT9jXfwfts2\ngO9GIU/rsxm3m3lreCuaE4Udfvun8HswxUaQ/0CKfg1fgqm6mFb+3JsCWFLmtm6moSrWPQTlYdde\n65h7fvIeuNKEL3NaI/ioiQOfWLYIXOPXrPunf1afQBVFUVyiC6iiKIpLdAFVFEVxiecc6Jc8ZyVy\nDM7nuf/+qxz72PfzwFdUnkMXYsohoZQSGXnBn/u3Ee1aq/eh4pIUmk4qiwcfidlOULZERBv6OOeE\nmbzBAcLXm/Fv1ndw6UzkVMzBJq3kPFfjamzllN2LmHV2Tw7x+7rlfXxPCzv4itQvwDzelyfYNkuD\n5nwmfjbV3lVd/yPRdmvMmSJvvsYb0jH/tklMTEhuxlz+ub2ddvCbJMqjfvpT8PlM47xz/16cJ5Uo\n0t7HR2Br4cWd9uKTwNcCZktmB1/z4gZsdc646CnHzv8btk9mz0O1NCtceaVjpvli7ph+8hPHPNqM\nz4zjZK2SnI9GRG+I0UpTLpBY1idQRVEUl+gCqiiK4hLPnUiKoijKBdEnUEVRFJfoAqooiuISXUAV\nRVFcoguooiiKSzzXgcbE8DdMRg/7ls+5N37O34z6OTlpsMTog5XTJMPD7UmElZZeUHotYyPXqN13\nH572daF0FhCAvuErRE95UZG9WE+dcmJNSMdRCLIVfuJq7JNf9W3u9152C9YI9kdx/aCXlx05u8xM\nljIz1exkfWDm5zjqYffNPOohNuos+ELCuAO+rc3eVM5eIRHns2oVOkU957Br8E2Oi/NzbE/ycdYk\nAomoq4uvq9+dt6BzJ4/xMHUk3nyTbbP3PCGOZfnIx8fevRoezp+rsjJwVbXz58r87Mhpl2br+7Jl\nbK9fb+e6ZmXxNZU1ykSE40+EDCMRobSeMSYF5C0bG1XOTlEUxSaey5h27mTn9OngCgrmtffUHpyn\nfvoKHs42fz7+yppHRQdNbKy9/5SHD3OsnUZbxpEjbE9DhZ3esHDHNhotqGjH0AjqZmfzf8v8BTiL\nurGbhWnD54WDT3ZK5Y3HgXM5v72RD954w0qsRUUcpzGGHjYZ5tNHbRir2mT7o6JNfo39OImIqL7e\nibVxBHa4SSHgXbuM09K5ayW7OQV8sovqwAGLM+zPnOF71Ri613uI1YJ8ThpzykUL2+n1leB69FG2\nN22yGKu4rlUdeF0TDnF32qYw7EZsEl1T8l4hIrrtts8ce2DgUiuxnjnD96ocO0+E76O5k5LLQWQE\nDpxcV8Jr3KJFKqisKIpiFV1AFUVRXKILqKIoiks8fgu/qmmGYy+7GdWYTgUL5RJ/nDYlhFGo5puo\n8kw9RkLEFkKOqL5nIrikqlH1Scwrxq/hb+zmPYSqQuvGsGqM8SoGRd4vRDplPSoujRf528Y3MT8d\nHsjvQY+hrE4vv2wtvq+Q8/aCbvo6+Brl32ttBV/vPesdO4vWg48efthafMAnnzhm+BtPgWuv/2LH\nNvNjMfM57/kf/4G+gwc/E0eXDjpEhxUrHLNrHyqk+zXzcf94vFfL4jjv+WDgQfA99tjN9uKTiOqb\nEQUHwFUdwXnP5AD0UZ+YKhccBa6BX+0QRzjNwC0jD/F3K4t6cFpD4Dyupknqw+8OKoQaV+R2/BJk\nkfwWfhFOAPgKfQJVFEVxiS6giqIoLvG4hX9kudhqfvaf6NwhHsPN4e9rRemKUf/SFsoF3yH/Uoj/\nIhs3OmakWcYkJmMFBuP2Xm6nJtbg1i/uZ7z1W2RxD+/97LN8YFQZ7x3PW5qYMViEXrWHRazzf4Nb\naqIfsZmfTzZob2d7939/AL4OsUt6/33cal78X5x6yNwVC76FX/DAOWNzPzheeYXtEyfAdURs4eVY\neiKiF15g++230Vdz9/PiCAeqDQpRsL3euAg338zX8o6LXgPf3XffKo7w/Zf14IWoJz44ROG5t7Fa\nxO/hrfGqUUXgW3avqG2TNxIRVtlbInUz32crVuA9l3SPKJ2T9wkRjRGZBtprDJUUa8OF0CdQRVEU\nl+gCqiiK4hJdQBVFUVziMQfq9XdRRtNsDKQXAg37f4nCFlNuFQIJRvN+yKefioMZZIvZDZkX9N1z\nPdsPTEXf6tXcOpl2Cwo7RGH1hT1EydVuwnxN7BKRT5SJLSJK2LGaD371K/BVj+ByDGNsnmvSiEVi\n6kdgDlAOsUsuwwFntFrE2Y69c+tbk8QRtiMOhi1TOAd3x5PYdbdSdOEFHboBfPuf4fs6+nuX4y/9\n1rfYTrOXA03p4eu6diH65FyzgXvxPaYeFkk59dcqcDVh5Y49xHcY0SMwJ0+53CK9rMxoOxU93BkT\ncH0oniJyy5NxGJ1bNvSw8E5XwCZ0XnedY+atRYGWnA5RRpWYiOfJvt8Y4x7/B/oEqiiK4hJdQBVF\nUVziWY1pwwZ2PvMM+h54wDGvWo76ex99JDtTsINjYNVzfJCVZU81pqvLiTVntR+48nJZZWVyBP7P\n2HOQQzD/m4z4THSiDB9uLdZ161g5xhhFDVux+E+eR6cszxLbEiLCGpPoaCuxStUoU39SKjAlNxjd\nJKJMp38tqjF5LR0ijdW6Or5Xe3rQt2CBYxYvbQNXRp8ov9mOHXVntvPWc+RIiwpHjY1OrMkFWAL2\n7W+zDWWERGSoVQJPFfDLX7bMYqxCu3b2EtSulcpG2e14DxSFcrma+XZkP9TFB35+VmI9e5bvVXMn\nvjudU0VbvkgCn9QyPhqFaRop4pacrGpMiqIoVtEFVFEUxSW6gCqKorjEYw60qorzClOmoC8w8C+O\nPfAAzsShtWsdc/deH3DFFohygNpaa7maSy7hWD//CypHQSmVUZvU+dOfOvbwv+O1kJ1chYX28kqn\nT3Osoz7D8o+UXC6rqlhqlI6JgCI7sIxl7162fXzsxJqfz3G+/z76vvtdthsa0Fd4Gd8PmR8/Dj6Z\nV6qttXdNR47kWM+094IvO5fvwV/8AqcnDDy9jw+MsjFZqkdpadZiPSLmN00w+0ebubewPiABXJHd\nrDhU2W20KwbWix+MtBZrWxtfV2MsGq1cyfY47xbwVTbxNIek7grw4UCtTDux5uVdcCHL92bl/Oyl\neG/A3KP0dPTJLyjy8zUHqiiKYhNdQBVFUVziuYxJURRFuSD6BKooiuISXUAVRVFcoguooiiKS3QB\nVRRFcYlHOTv68EP+hskYPTF9Mdcr1tySBz6orRJ9yEREbRO4ti0kxF4d4NGjXK82bq0xf0M0mB8v\nR2mt0YEs0dXvOxx8XivF68rJsddffPasE+vRE/g3y8rYLppv1IHKwjuzZm3qVLa9vOzEetVV/P4b\nTftn1/IE07OX4p8LeE2MopCjPYkoZi6PJbFZB0otLRyrlCEjojPzuE975MZi8LXEse+RR/BX1nxL\n9HcXF1uLtbGR79VwX6yfTFrO9ZOVK7FmtWjXOMfOnHoYfXt5VE1mpsXrWlXF19UclSNGp5x+MAdc\n+/ezHWcM4vVZav+6dnXxNZW1xkQ4NDZ1I8rS1a7gaZtiKtA5v+fwYe2FVxRFsYrnMqbZs9lpPEmM\nLOHBZcYMLynGQyNnoEhx5WOvO3ZS0tCoxhzvQdWY0XJY3Jtvgm/hRazGMn06/sqEgKHp7tiwgf9b\npvqjqPDuEawWE3vQ6PCSgs+GPNKZQH46saUclJLCcVYswCd3OWC9Kg4VlxIu2unYXnehaLa8N7y8\nLL7/kyc7sSYE4ozyW8UstiuvxNNS57NSV2MTPk+ELxBivwcO2Iv1llucWIc17APXwPd/wAfmI5Fs\nN5O7PCLcIeblWYs1NZXvAfNzXrvxlGMnpONnTjZ1ybCJiGKn8TW3tlvq7+e1Sr7hRLTpYV5z+gxJ\nK6koFV5i7FzlNa2o0CdQRVEUm+gCqiiK4hJdQBVFUVzi+Vv4ESMcc9Vl+eCSijeVO1BxKWmaUJw2\nkk5Jh7LFAf7OQSGkYkZHRIBrUyCroG/rABdVLuU859kJkeA708PHOIpqcKT+ktXk214+Br4oofRO\nX+BANvL1ZVsM7SIiGilUpWiGnWF9kPZubwdfXiDnPXOmdoGv8QT//ddfBxeokw/HAoRB0bWH856r\nMVQQ/3nuOfSdOMHPEHmzjKqHpUtthYfcfLNjDjzxR3BVnOSBaCnlG8BHYWFsnzyJPlmFYRFZ+BFU\ngKrzZ3y5oqEqF6sCaAXnyGONr8XzGlhVKge/vHdNTq54H195BXz+e9mOD8b3uE+MADj1V/w+SH7c\nLvT51ydQRVEUl+gCqiiK4hLPW3hROLvQmF9N+7j8IqmjFX0juHi+fzsK/3rt2U1Dgiz5MKZYdZSz\nXRlqzI9v5W3y8Pfew/O+c59jj7S5h3/oIceUI9SJcCCWOYm6tIlTCu0zsVRnkiiysDUXXg6Om7x6\nNvgO9PAwtMMzcVs08RCXhpmD2qDE5HEUWx4Mfs18PfwOHgTf5o8XO/YtWFVHKXM5FbXltzjgbc7v\nCvhgNr7+wbApgre+r76IvvWXc4pr03hMcSVPEHPZDfHnUxFc/oYFRYMjqEO8t/KGIKIdO6RrIvji\n54mlJTcXfDlx0eLAKI9zSV4rz4Wv3otz4eP3ibShVEknorQf8bZ9QwOWFBKkAs9/VfUJVFEUxSW6\ngCqKorhEF1BFURSXeG7lTE5mZ3k5uOoPcelS5CEUaCB/f8esDkgB11tvsb1smb1WvpwcbjnLm+dh\nwJUcvkVEY+dzXlGkJomIKKOnkA+ysqzFmpDAsVaVn0Gn6HtrHJMELik8Eb1gLPgKRLouMtLOde0T\nw8+85RQ5Ijr9HOeyv/99PK/2Ic4lrXoHX8N3vmM/TiJjUN/ThriNuKYtJbXgGtvB90POLixjk6k7\nm22nnq5rRhhf1+KTeO3omCh5M5Pnq1axXVdnr+00LY1bZNtLwSWHzJkCHpkdIu9oCBFBSdzWrXZi\nratz4rxqVjS4PmwSQyblgEnjOO8ErlWyzTMhQcVEFEVRrKILqKIoiks8ljHlj+dygGt+i745r6Q5\n9u5Z+GgvyxvWrMHz4svktsQoGxgEeaHctTF5Xir45Nzy667HbVrLcj5v4lo8L6NsmrX4JPdxdRSd\n6sH6qCAhF1NTg+eFf8alWnXLpoAvfy93/0TiS3SN9913O3b9UnyvIh/lspHaScF44ufc3bHsLtS0\nTClg1ShbcRIRjTrEClB00UXgy5vK2/ZDRnNRezsHYc499+oQW7+rriJbeD/9tGM3RqSBr1gqAgUb\n11WUDjZ+A7vNwv2fpqEgP5Q/27Oi0BcTepztMiwPWngZrx033IDnNQvbSP65prqbt+2m/ijkYpqb\n0SdEYK8twS18whGRCko4f8uUPoEqiqK4RBdQRVEUl+gCqiiK4hKPOdD772fbLA2pjOPcSJI3loZM\nXc1NiF7TjIZEo13SGt78UqKMXI3XmiLHPrYfZzT1+nLe83AD5qPaAvg1htiI8R/MuaWND+Jw1pAs\nufmOka6hjkls3347uII/thMbIHJukWtPoU+UqtFtt4Grehjn5/aUgYvKnxPVIBUeSuj+XcTsrewf\nfQAucWtQ1Zrj4IPXYUiur/oNtycuWzboCB1apvJ91mGIKqV0s8pVRWAW+NISOSc7qQFcFD5EakxJ\nj/P75fU2vl9VTTwXLcFo1/wujyGTwwuI6Nxcsw3i/bkcLb4gFHy9AXxNfYw2bxnMnA5cx/rv5bzn\nhZ409QlUURTFJbqAKoqiuMRzJ5KiKIpyQfQJVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEs8jPQ4f\n5m+YjMbs0wt4HMOon2AP+ZY7ub98zt+wT56uvprtGTOsyW4FBbGc2QcfYFHku+9e4dijQ/vBt3Ax\n/w8xe3Y//ZRtm9J7u3dzrLEncfLi9Bf5WtbcjddO1g8eOoS/M3mueF1eXnZiXbTIifPs6nXgGt7J\ndaFFm3HcQWYTvwapUUCEkygaG+1d06IivqbvvIO+63gIqiyzJSKUARy7Efuds3q49rmw0F6sVFjI\nn6uZWAccEsdaAW25eO2CVvB1PTUPa0RhSuu4cdZibRLSez6Gb+yjjzp2ZEMR+MSwSyopwdrLgVWi\nA96STOSWLfz+z/kWTgjd3cH1vLGEI4WueyTWsY/djL3wMJI0JETl7BRFUWziuYxp5052Xn45+tLT\n2X7/fXAdfuUTx55I+N8gexv/N8jPt/hfXTwtXbUNn5Y+3Ndyzo9/xZkAFibetQt9UmD5zBmLsSYl\nsaDyfFQ5EmJM5mw8Sk73c+xTzTiLPahdXOeJE+3EmpPjxHl6MXaijbqE/37qEj/wyaaYlCbjSUm+\nqOJia9e0v5+fQH75S/QtX87349tv43089uDzfCDUp4iIGlt5cH14uL33PzKSYzW75uTMM78mFP9O\nK2flqNKoCvBlN/PTk83P1RHxBHr8JVwrEu8RXUqnTxsnCoVlQ1D5aBgrso0bZyfW4mK+prNmoS8o\ngAcHmjdH9Y28k46PQHHzYVd8zbEHBi7WJ1BFURSb6AKqKIriEl1AFUVRXOLxW/isP7Kqjin24l/S\n6NjXXIO+ib8T3x53doJv6dKJNCS0tjpmSYnhE6pCVQFYMTBNiM6HheFpDYbizVCQ0Ic50K5pnB/y\n8+3FHz7JCTJzptj8+Xxdwy3FVjmB857TAjEFlPYA58MWoMAVjR/Pdt8PMecU/10+D78PHRxeYZzL\n/lYB5rwH/vNJPtgXiifKm+V3vwPXko6tjl2LQj2DIjCQ7cLmBHR6C+mi5cvBVSoubHQZ5vnlVxI2\neTpdfA1iVH4kybKVtWvRKW8Kw7f5CN/jecb8P7fIyRd79qCvarkIXKpvkZGDTsepknffvYn+GfoE\nqiiK4hJdQBVFUVzicQsvd9/xAzvR2fC2Y2bvyATXpElc8J0UgFtU+WRfaW+mHJXO4g1hWiiWTtHi\nZxxzz824hU/o4W3axEsvBd+wmVyeMzDwHbJF3RJ+4dGhbeALCGB7/nwsXS6NG+PYRYdmg29TE7+O\ncEt7+O3b2U76y18wll0iTTN+LvhGT+DrdvyvfwXfrkAaGhITHTMiwvCt2euYtbl14CoP4/uhYuZW\n8LUaA+hsId/jrtVV4PObwKkI2OsTQY1TXScO64NtcjJu7wfD+seEALXsOiCis2+95djD5RB1Ipz9\nbsxizyuX6wUW4LvleCs3kqQuwOfChAIu/5o6FScZ/viyLx174DXcwnfn/vO/q0+giqIoLtEFVFEU\nxSW6gCqKorjEYw60dLNo0etG0YPuF15w7PlvYw50bJlo35OqAnROFYE10jbz8Lq2OKw5CRD1SMU/\nw+KZhb/lXOL6t3EAnq+vxdoVgai4omhj6tqrr3Jdh5E+JPr5z9kWQg5ERMlN2eIof5AR/g8VU57i\ng45b0Pngg2wb/YjXXsuCGPSb34DP6+KL+SDLaPMcDEL4IdC4q9PCOO/58+vRB2nvuDjwlQ3RvSpT\nm2bJTWA5l2DJcjAiIr/VQuzErB0zc5C2CA5m28jJwtNXGd7HpeWcv5ftqUREH/7mDkvBCUSLcGDg\ncHCNGMF25hIUE8rsfoIPynHC325/URtFmB//Cn0CVRRFcYkuoIqiKC7xrMbU0sJOcz8hpYpM+ROp\nvmJ0IZwq4bKNoCCLCkcHDnCsJ41h22IweEIZdn7IHzW3U1dcwbqiAwNXWIs1O5uVY/JnouLOqVAu\nswh6wygdu/lmx+zyvQpccvb58OF2rmt4OMfZuAPLraY/GOLYNcPi8UTZJlVejr4XX2T7vffsvf9b\ntzqx9iZiiZfPkkV8cL2xh9+/3zFn96DC0dZpolQrLc1arMeP83Ud3WOUI4n9ZmNnCLh8fdmWpVBE\n2ImTl2fxc/XUU/y52on3Y8uaasceu6sYfHJLvSEAUzUyVmuasNHRHKcUnSWC9M7RdIxTXtPRLzwB\nvrYfsFJTSMj549QnUEVRFJfoAqooiuISXUAVRVFc4nkmkpzX8hC2OYE8U2gouJIe4hk5lbuw/El2\neAXhKJ3BsVT03ZlSRQcPXvA0WaUhWxeJcJaSTfJzWWWpuARbyzLmct4rOQrzjlGim9LbLNWZcIAP\nJk8efJBE1DiGVXPCZ2LfrXzLZ/tWg89XdPxVFCwB34awQsfGptpBIoYd+Ug1dCKi9evZXrgQfR0d\njhlnpPJp1NU0FMi8G63F8h9Z43ZkFrZ5yiqisUewrCY4GPO+1pBlZ7m54BrbxPdE1skM8Ells9Rn\nsAQu9UHZ2rl4sBH+D6++yrZR4tW4kq/jEUNRSn7+R2/ZAr6Qhx8WRzh14Sv0CVRRFMUluoAqiqK4\nxHMZk6IoinJB9AlUURTFJbqAKoqiuEQXUEVRFJd4LmNKTeUE6T33oE+0R637wevgWjRNDPUSA92I\niKivj22L7XETJ3J73OH7nwJfzEtcKrEEq2roe9/7wrEfe+xi8BVGiTKShARrsdbVcazR3tjKCa2P\n5lCxPaMde/58PE0KCdXWWmqPO3rUiTNtzThwlXZwiZNU2CfCllhzUJ+sfrPZyltby9fUEIeCqjZz\nOOJzz7F9113oa25mOzPTYntkfT1/rsx6tEmT2DY+OwtfiHbs9TOxrbLuazwAMjraXqzyXjXnxsmJ\nFbvnYRvsqg9SHHvZsELwNcZxa2d4uKVY5VpllFudGcGlgSM3Gi2nn37qmEWXPA6uTG/xsxkZ2sqp\nKIpiE11AFUVRXOJ5Cy+32191LX3sAAAceUlEQVT/Oriu6+Rt+7HEU+CbvYQHY22dZXSFGF1LtoDt\nxYQf4Z/8E9umONDAXz5w7EuuRfWbwpUosGsL2LW98Qb4ZneyAtCL13SB78or2U5L/BB8ra2ozmSD\nlALetlfMM6a4/5SvW/RDOMUuWlzkDUcmgk8OfGvDRqtBEdPN6Zbafai4lb2Lt750BEWBI4X6UcuY\nDeCTW1SrSIVhI01DTU2O2RsRDa7rxEep9pIZ4IvZJQS1o+0IahMR7djBttmp1/skp8q85mNHUecA\n73jPfoalkuEzhXB5rSXR8ptuYnvXLnDd91secnnvvdgxlZrIN2F3ufE7Z037p39Wn0AVRVFcoguo\noiiKS3QBVRRFcYnHHGjbSi5NCJmFCj/z57P6T2UDyiptvY1zI41hmBsJDz7z70f5LxBZxto+4Ycw\nl9VYftixM8oxJycVpz7veQt9U8SgLiNXORgic2Mdu3gm5ha3RnHpRFEE5muk0D9MyiKijRuthedQ\n8Q6r6BwOwFI176f5NYQfwRKWyel8jQsKwEVtifI1GSUlg6BrKuc9YzqOo1Oqij35JPqEyvrYAtSH\n6liA95E1RDzrWmPBNU/kiPcZExIy5oucuFn+ZPysLYRYFQieERF1/YA/28uNAYi+uZz3NO/Nnlmc\n91xEdsh8l2Mxc7XH5/EwvsZJeegU0v6JicYvLSlhu/j896o+gSqKorhEF1BFURSXeNzCvy52bSGG\nSPGycrHd+VM3+Pb/mMVev2EMv4I6osxMsobslDJEU+UeorjAaI2JE8O/zUHs5pQ5SyT48ra9qj0b\nfFURXIKSGYXpjuOdIx27sRVnX0fn2i8NKf0R3wBpY7CkqqVdCMzKfR6hnq3Z+dW4ZGjml8umnfiG\ncnR6Cki0dGWHbgJX/iey2wfLhgZDyhG+7yvG4JZy3Ubebi6KM1IRvxcfSKPGauEnfN+sJ3vI4XWi\nwoqIUBjaHFPvs5RTNalGa9jolSz+vMjSHr7Ilz9Hq1uxjGtDOV/jVGrEE+940DE3fgfTVMFjeNuO\nyTRGn0AVRVFcoguooiiKS3QBVRRFcYnHHOicp7iVLCuiDnyb97CvLS4NfM8+y7apjLOvmfM/pWSR\n2293zHO6RU+ccMyzhLnDjfP4daW1H6b/G1T5cg6oOBCHg2V0cklQXVMK+KIL4vnAeJFZkzjvido3\n7hn3ILfjJe3CdjyZyj48FXPZU2/i89L+9CfwDbvpVscesDhVLt5fqFoZJV5Za7lFt7AT71VZu7LU\n6NzLyOW8Z7G9FCgqaeVinn1RKA+Voyijbkj2K3/jG+Baf1B+R/HeoOKTyFmSISWYr58cxbnGA2F4\nr9I0vphdcTjwbmUfWSflJMey3R99+PexPbvlvznvOb7h3/+7+gSqKIriEl1AFUVRXOJxC58fx9vb\nm65BX4N83DVK/0tJHK85Ab6URPn8fv5Zy64o4/naVSsi0Deey5jOmad+kstGaLtR/2TWZthCqAyL\nceZERJRxBwu8BqJwENSNNKavA9feIQjV703etgcYYrpyN2nGmSqcyaux8+uBB6yFh4h7sGUBJjEK\n13CtTPF4TBzNEimmznb8lRHGbWSLmM+5PKp3D6bGfF58ng/uvBNPfO01tqWiExERzDC3R0g6p42i\nu6vB9+tfsx35KHajfXKQ7Z1GGi+5QKh3JRtlRS6RXVLPPYcld2defNGx14RhyqxEiGHNnYu/szhY\n3kdZdD70CVRRFMUluoAqiqK4RBdQRVEUlwwbGBi4oHP2bB4otbUTVWPObOZ2RKNqhHyWiP4sY6rY\n8ZncFDV6tMVBXZWV/ELkYC7z2GjPPOrN+Zhxt16O5/3kJ2xnZVmLta2Nr2vI73EAXt7HrCpjqt/I\nbtWaJ4ySK5ncDQ+3Emt9PccZ2Ye5Olnfsns15rFG38l/foxZUyZr3GJirF3TTZs41uTmHPBVR3Ar\nX/wEnJ4AA8jS08HVO57ztz4+Q3SvdmMbtMxt1m1Eyf7oVqEOdQQnPXSt5LZDPz97se7ezdd12zb0\nyXKsyBUx4Ov6wx84HjNJLkvbgoKsxHrmDMc5krAFuu6KKxw72t+ocVq4kG1jOsDCZfwdzfr157+m\n+gSqKIriEl1AFUVRXOJxC68oiqJcGH0CVRRFcYkuoIqiKC7RBVRRFMUlHls5qaiIE6SiHYqIiC4X\nJT8rV4Jryztc/jHnsRDwrVrMpRnLlg1NuUVsTxU6W1nh5rpnUDlIVtWIHyMiopQRlXyQlGSvjCU5\n2Ym1dgGqoMfs4paxLTdhS+K777Kd3YmtZbLtLCPDznVNTuZrumk1lv8UbeZBgpl9GGepP8eWFoel\nOLRmjfglRdauad+wYU6s3n/7GzrbuUczf9tYcEkxfbPCJSdCDPyLjbUW6/TpfF1rftUCPr9JHJ8Q\nESMiopEnROmaebP+8Idsf/75kFzX3Tvx+xJ57dYarb4Hyo/ygXFhu0bwvWOt5GrrVg7O7I+W5WlS\nRp+IYtL5etdOwLVh+rEix66p0TImRVEUq3h+ApVF0Oa8IElNDRx+7UZ+Am3Zg08gy5rl02EC2WLq\nVLZj4vD3yoL0Y98x9CDDeO5uZKIxL0mONbVISy4/dcY8hA0Ks/35qWfr/KPg6517PR9ceSX4Pv+x\nLRVQZtMMFrY4RfeBD0bAlmMxeJ9orKg7gTuQaDm8yCIft/MDyMWG3mR7HxdEZ0cZDQFytlCDIQjZ\nMzRqIvKp85Jv4xPxo4+yLTVXiYgyp/HHtbQTNTbT3jUUOyzR8me+rukopQkzklKCjTlcO1iYJ6sD\nd0tx4vfEYP29e2RDgtFIA80yob3gqw1mHdO0bhREqblSapyi7yv0CVRRFMUluoAqiqK4RBdQRVEU\nl3jMgVb7Jjl28I4k8G3ezHb+dBS22CdEB/qMfNRYmZBMsJcDfeQRtmtX1qNTfmNpfCO4+xDPWo+V\nA2CIqD+RX7PN/zTymtSt2A2+rQ9e59jd1zeDb8SOHY69qgmH9Nx4o8UAv+L0aceU7zcRUeYozo92\n/Pzn4JtNfJz/KH5zuyb4gGNXkj0uCeQvSdvfxr85brMQFzFEOOijjxyz6F6cC565mud+2bxX5bD1\n6dPRNW8e2+PSo9FJnHielx4Onp5Lr3ZsX4vdhUKHg9rKMc+ZnM4JzO5uTGZWTeFrWbj0Q/ylMGDe\nUhJUfK6LTuBadZ94DVA6QAT3Q2kn5uvPuenPgz6BKoqiuEQXUEVRFJd43MLHvye0Kk9eDL69gaIc\naPx48OWvEON3NzaBD+tf7PHll2xfd38k+I7dzOVIq67HcoRXxDTY2JJ54PMqE/Nz0ozyp0EgdwbT\njFG6tU8dc+yYbYvAl/Qsb9vNou+hGImTcYILi4sTjTKV+zgVE2CUVMl9qKkVa6Z0bOEnSu46jLt6\n+kHWAzVDXSAySpntOC9n3VwuecJ3YnAcPsFpI1Pzddwe1vWsWoolVwn+fDz8t8+Dj55+2l6AAlnM\nP6oJP8sBAbz9fuMN48RgLns82nEVuOYu4fMa7YxEopwjvG0XWRkiIhq1X5ROGoX0WXEcQOECbGqo\na+cSMzOZ8hX6BKooiuISXUAVRVFcoguooiiKSzwLKmdnO84NY/LBJTunMiZh2VA9cQ7S1DwYM4bt\nyEiLc2akmICpwiCPjRwIlDWYs7bl8dat1mJNSWExiYoxeeCrmsAlNwUF4IKXceoIloaUbuc8U1qa\nneual8dx5uzFcpMWMfNm7Le+hScK8Q5zBhU1i9KslBR77//Ro06sedvGgStnH7fLFsVh2ZgUQklt\nxpbDDRM4H0kZGdZiPSMEOvy/xM+frLKaeAzznNl/5nZa8zaW51VWWvxc9fdzgBFGa+tFFznm0Wex\nBGxcE+eTq0dg22l8hJhZNHKknVhlnOaiI790kD3fRHR4BGc3J97zTTzv9tvZ3rBBxUQURVFsoguo\noiiKSzyrMYm5pan+RjeB3N5uw46ZSKGGErq0CHxBJaIrJBK3r4NC5AaOT8Itgyxr+NrX8DToUjFr\nboKDbUUHVJwQRRHle8GXLv7kqbXYq5PXJDos7rwTfFHPm3UkgyenT1wb41qMlaNpjY6NDWFiW7wD\nRwxf9yK/58dSyBrVJ3jbnnONUeLTwSpb5ta3P5237WOMlEnmCR7BjXfx4Bj5gx/wQSuWzkw8KT5L\nUgCWiPKXd3E8ZX7gq+yTnVKGHu5gWM11fv0NB8DlVbPTsY0mPkpM5M9gxklMjVCHKHtMsXQTSJ1Z\nozNO1jjWTcX7MfqE+IyZqSijbOt86BOooiiKS3QBVRRFcYkuoIqiKC7xXMbU0sJOY+5Rbxm3RPp0\n4Lycxg6eedKNYuWQSgsJsVhuUVzMsZr9cV984Zid6KGXN/Npc17LQOfvf8/2e+/Zi7Wqiv/oxo3g\nOrWGyz+C9mFrIT35pGM2Gerp4x94gA9KS+3EmpbmxLnljlJwybEzL72Ep8lKpXNU1UOHaM5UVxdf\nU6N0KnoN546vvx5ctP5HIq938CD4Si9e7Ni2SsOIiLpFGdPhP+LnL/ohobL06ad4ohw8dDG2Vst7\nnGbMsBbr7NlcymZ2YcuKILNFVwhOnfMyRv1N5H3HjrUSa0YGx1lMxuf41792zN6/4/X22SdalCdM\nAN+G7dxym5qqM5EURVGsoguooiiKSzxv4RVFUZQLok+giqIoLtEFVFEUxSW6gCqKorhEF1BFURSX\neO6FlxJRZWXgOv09HnEhawKJcGxCTB/Kh235hKXF5syxV1tXXc11YPFvPAG+0isfd+y0fdh7m+HP\n9azFK7Dfv76VJeKsSu9NnszX1WgiriCOL2UH9vTnjee60Llz8VeO/R5P86Rjx+zEWl/PcS5Zgj5Z\nk2iMdIF6uu3bwbXpCPesJydbvKayZtmokU3exdc0Lg5PS+kR9a27doGvIpFrVlNS7MVaVMT3amY7\n9olvuYl1BOZ8E3vP4ZqXlKDvmmvY/uADe9f11Cm+rvJvEBHde69jnv4ljsoZ9bC4d8PCwAe6jBUV\ndmKNieE4778ffXL+zX/9F7jqcrkONCoKT/MKFVM629q0DlRRFMUmnp9ABZPLcKjagQX9jn3xxbgO\n//KXbCe+Fgs+U+vYFlKktarvcfClPSKEUletAl9xAw9Oq2tGzZ3oTqlqY3EuuFCOKurAJ+LMa1nh\nxrxYAVPZ9jbfuccesxOboLKdhbGTpNoNER32nuzYE2+6DnxSePf0FShunNyULY5QpHswFO3gAWAB\nAWPBJx/cRvqexRO957NtPC2nrBBPICltgw3RATp6CrA37q9/FQd/2ga+4kn8lDfJGG8f+bvfWYrO\nQLaV3X03+sRT8Ki1heCqmse7JXOHWuRrb0Cjg9zJGd19oKr0yCPgil4p1icxmPC8x+dBn0AVRVFc\noguooiiKS3QBVRRFcYnnHKiYVHUgGNWYqIa/6Uqa+V1w3Xqrj2M//DCeNnMm2/U4i25wyCqBMEMB\nW37zdt994Kp7+XPH/uADPG3hXs57rreYApVSNUL0/39Y8Czb2zAHdoWY2zX6CKrVn56R6tijBhvf\nP0hqFXmtfe3ga5/G+dG87x8DX05zMsfyq2zw9a/kvKfN/94yz2Z+6SuLAkaOQR/ICJkTCYYoYT96\nJb9XZOSWSdzGWYR5xcI+kaNfvQ98cnpBEFlEXrxOzNemLRnu2KVrsJpk/T1s1/wKVfcp15Bos4GQ\neatfip+NyFChFjdvHp63fDnbR4zEsnk/nAd9AlUURXGJLqCKoigu+ZcFlY/2YWmI/IZfzJ0iIqKc\nbrGFNvaoOZu5rCUvz2Ih9RNP8Av5LqYUYHtvFn2fPMmx+eKWKW/UU3yweLG1WLds4ULqOXf3olNW\neps5hZ/9zDFnb8Mieyluu2iRnetaVcVxJuwxRGpFLU5LMM6Mh6J+OVubCLdMISHWrml/P8fq9YIx\nVO5ZkRYxGwJEmU6RN6Z+Mk9yiRsVFVmLNTmZYzU/OzJrYFbRBPWJUqpmHORIPT1sJyRYi/XUKY7V\nnLEmqvHM3gXasYPtTXFYZN8SwaV7Y8fauVfz8jhOI9NARbk8jM8cxghTJo2UGb36KtsXEKnWJ1BF\nURSX6AKqKIriEl1AFUVRXOKxjEnmPQ0tESqa3+jYc+eGo/PFyxyzz5jilSfzUZRK1hCCAccDJoNr\ndDq/zP4JE8EnKxfyTmD5Q34zDxXDYpzBMefPOY7ddkse+EJEzvjsLGzzFLOx6MUXe8C3dc0ZcWSn\nkAXKgZai0AZNm+aYYwPOoE/mPccYdUNvvcV2SAjZwiuOW/Kql6CATfs8Ll1LfQuFZuiSSxzTTI+2\ntHLZEH4DMDg2dXCsGQUYa7GvyMNedhn4aPr0C/9S+QFNsFdzF5TOv6t1aRX4ZL5WCrYQETUEcN6z\nyh99k/55ddC/jay2MgdZ7j/m59hToFeWMHkr8/NE5wzSPB/6BKooiuISXUAVRVFc4rmMSeiBbijH\ntTa1iUs8egtQxchn1OV88Mor4Ks6yVvohAR7ZUxnz3IZw/DlRsnNM8+wbZYqvPYa22adhpwvHx1t\nr+SqttaJ9brFWAJ07Ok6x+6NiAafTzuXsWSX4PZXduLU11u6rpWVTpyVlASufaIRpmhmLfjgGi9Y\nAK6c7fz+Wy1jq6tzYu2PwuvmtUIkYOR7SkT9/jz7ux2brShorTgvP99arJmZfK+aVXWpG/l+aCnB\n6zo2XdwrpualnBM/e/bQlIe1YkdR9AJObJgNPqI6kPKWGCme9HS2t261E2txsRPn8Zn4+R993y0X\nPK1uFbf3mR9/WRmWmalz4RVFUayiC6iiKIpLdAFVFEVxiccyprp9HtbXm25yTJ/mRvRJCaaODnAN\nlSL98CdFeYrxN+lPf2LbzB3JxJfRdrj/PziXNmWwAUpEfPv3oyu7gP/mUiM/VrKR856myreZv7PB\n9Gc471kzD9sjuydwaVCdN+ZxoztYqVzmvImI8vqGRpFe1lx5zYwHV8uaasfeUY6nSSHzoJIcdMr+\nWIusWMF2bq7hFGVsQmCIiIgq5nNOtOcz9KV5b7ASm4nXFfx9Rt6jn4BPVvlElySDj3x92Q40FOKN\nOWBWEAONpMAWEdHRZznPOe4PT4FP5vKzE4+CT87vuhD6BKooiuISXUAVRVFc4rmMSVEURbkg+gSq\nKIriEl1AFUVRXKILqKIoikt0AVUURXGJ56mcISH8DZNRu9UYx7Jb4eP7wbd7D6/LsQ0o11YbxbV2\nMTH2eqGrq7lntweV3qD21Ow9lr65c9Hnly5q2zZtste3vXWrE2t9MI7mmHwr/5nq3+EXfAlCXq1/\nSSb4vHx5Eir19lqJ9cywYU4A25/FWFJ3cI3oljkoAzjnYnFsjsiU9YGjR1u7pgkJ/P5XPbgTfU/P\ncOyqOVjPmrGf61nN+6Y0V0xzDAqy9/6Xljqxph1KA9cuoRoop7sQ4ZDIop5F6JTN6JGR9mI9e9aJ\ndV35cHDJWuStaz/E8+QHzdBDoKuvZtvSqBz5+ZeKiUQ4tWNRA0rrUUEB26YOnrdYHi9wr+oTqKIo\niks8P4HKiVebN4MrfAd3zBxeUwe+2DBWDToajN0dm8UY7BhsYBkU8XNZNPWcf91iDvvxxHXgOnSI\nbb9Rl4Cv9Fc8Mx6fEwaJmLgVWTITXBkP85NesT9e18NT+amzG8eCU/RGo9vDAiNFZ9Y5nU5iR/Kx\nMd+Mmvey7Y23WGMoC/QaMtyDQgrqtt0wA3xVfdyZVPFlNfiK5x/mg9ZW/KWrhdhuESqODQrxRDYr\nFF1S37fUF1WF8vyLHXv/nXgffyY6kyx+rEBxfNEsFMdelChaftasBd+mNfxEag6cK35N7OwWLyYb\nlHDz2zkCzrN7WNx5UUEunriW4174CXbG3XUX2/Gjz/939QlUURTFJbqAKoqiuEQXUEVRFJd4zIEW\nneRviDPv+QKd777rmOYspoYGVg3q6sRv6Ds6hmjNFrI21WH4DXX8fawos2cC5o6yO7maoPqlz8GX\n5isVwS1mlrZvZ3st5o6KE8XfLFgNvi9+ynnnaN8D+DtN6R4LDPsDx/kD89eP528sr7jC8Imcs6mM\nNcKogrBF3ihW2UlZgXm1ClFeIdLPRERUVjbxvDYRUbMv3//2xrQRSJ/HTsIL27ishg+ex5xsTi4r\nu2cVjARf4ZhSPoixmLGXQwGljBQRVc3kvxkwE/OHyWM4B/rqq1fh7xyCe1V+BVC1twJ8W+N6HTtj\nKSYzi0dd6tjre3DdoHQxWaGtjc6HPoEqiqK4RBdQRVEUl3jcwsvBUNTxZ3SKUqH5xujvO+5gu3I7\nrtGV3rJwfOu/EuO/hCwsj19dCL7Uu1kItsmYbz+phH82IhR9m3bxtt2Qix0cn37KtqmM7KGS+oYb\n5M+dBB8o8zYaAtcuGfgjl7Dk7cVBbVViU/v003jeJUu4dM3Uzr2Ud0x07NjgY3RYuJD/hjEcTHZI\nbPXFe65/Ft+P8tIPKWu4lu/0L1AIedQtYgDazTeDLyOXt+1m2mzddt62GyX2g+PgwQu6EtbyfPu8\nKJxvHxHB2/b1t+M1bwzjz5ytUjZ5n1XMwvn1k6P4Xj2w9yyeeKvYpv/xj+iLiPinf1efQBVFUVyi\nC6iiKIpLdAFVFEVxiUdF+owMbtBPTERfTKcQjDAmxZ1N53ykTPcREY0aJkQHrrrKnujBokX8Qsy2\nRiFgkb0ARQ+kQEP23ON4Xo0oKbEkekBERPHxTqxF07C1UOoumMOxRsZN5gNz4JkojaHqaiux+vnx\n+28KrcjZfBdfjD55OyTtM0pDJEVF1q7p9Okca830YnSGhrJt5JwXfs4tmuunY+4MrrGfn73338+P\n79Vt28CVf4jzitmX4QA02ilEUsbgFw8pnfyaKyrsifTk5/N1zR6P1+eMyC02GXnn6FfFkMe//AWd\n/v5sFxZaibWri+M853PjL0op5d8mguTp4VlYijUxTORLhw9XMRFFURSb6AKqKIriEs9D5W680XEe\nff4NcI1r5i1878wk8Pm08nzlthE4W1mK8wQF2dtq0IcfOrE2tmPng9yJf2bM05blIIGB6JNzrzMy\n7MVaXMzbjYweLLmC0iVzu3HttY7Z9jZ2TYXsEeUwqal2Yj16lG+O995D30svOWZvCZbi+DzEJTVp\nVAq+0tuEHud999l7//v7OVZDOqpoc5BjZ0bU43lCKmjhO5huOH2a7cpKi/dqdjbHamplirnwkHog\ngg6v2CZUh5IplTlz7MV6+DDfq+Y2PWW1KEIyWrwq9nI3olmpJ5vvhg+3E2tmJsdZ1IFqTPlh3JmU\n3YQFiQndm84bFxHRgw+yXVNz/jj1CVRRFMUluoAqiqK4RBdQRVEUl3jOgWZmstPDbJvdgZhzkGm8\n/hWoSN+2gGckhYRYzCvV1TmxLnwB2w6//JLtqCg8LeV9UW4hk15E1PnrXzu2/8CAtVjb2jhfE7LS\nUM753/+bbSmJTUQ0aZIIrhN9snbIVnlQbCy//0KZnIjoeAOXgzUbivTxYVwO1huM6jdysEFKytDk\nwM3ZNvs/4himvJQFPrrtNrZ34iwlyEdOnmwv1tpajlX2PRNB++b+X6Pilrw95SgfIqL6lULFKybG\nXqwpKU6sW2agytGcG1v4QCqMERFNm+aYp69GlatRC8V3JpWVdmJ96iknzugtqMZVNyaV7fmYr4/e\ny+uRuVbtE1MfoqM1B6ooimIVXUAVRVFc4nkLryiKolwQfQJVFEVxiS6giqIoLtEFVFEUxSW6gCqK\norhEF1BFURSX6AKqKIrikv8D88KK5CtKKyUAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  7\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9Yl/X1/49mhnwcETElc8zISMnw\nxyyJjBER81dkzNTQOTPl46+YkRNHfogvGVPnmDHyBxkzM1Iz5pipY8bHGOGPMSRmikTMERGaETlG\njAi+f2zd5zxfynvt5uX1vb7XdR5/nfs6vN8c7vt+v7hf533O8/Tq6uoiRVEU5T+n9//rABRFUf5/\nRRdQRVEUl+gCqiiK4hJdQBVFUVyiC6iiKIpL+nj0NjXxV/RlZcYrxUs3bABX8fKCbl+WNLOBDwYN\n6vX1wvz3jBlDTqyrVqFvyvf51/R97jl0BgSwvXUruIpWFjp2VBRZi5WKi/m8fu976HviCcfMCsgA\n19SpbJ88iS978km2T5+2FGtgoBNn5wcfgKv3u+869sXBIeCrqGA7on85vqe8OPv32zun58/zOfX3\nB1dTMz8n+B14BV+3fLljXjzzEbj27WM7Pt7e9d+/n+/VSVWZ6IyOdsyUnaHg6t+f7ZQJeF4L6sc4\ndmysxXs1NpbP6+rV6OvoYHvoUPTJ6ywDJ6Km5Xxf+/lZivWVVzjOL79EX00N29dcA65z859y7IHP\nJuLrxL1BgYGXjVOfQBVFUVzSy1MdaF0d/6c8cgR9n33GdkJ0LTrFih+3OQZcY8eynZJi7z9lfDzH\nmretHZ3iP2VljTe4Bg5k++238WXyIdvmf/Xg4O6fluV53vTocfDt+sudjj3jngbwwSNpTIydWAsL\nnTjTj+J1THmaf8UDE/Aeioxk+7rr8C2HDGE7JsbeOc3K4nMqfwcRXuNxj9+JzqVLu33PwoA5jm0z\n1vJyjvWpp9D3j3+wPWIE+kaNYnuefwH4ah580LGHdnXZewKNj+eLK3drRB7PXfqOIMeur0ef/LsS\nE+2c1/Z2Pqd9f/YsOu+5xzGj0iLAVXSf+NlPPgHfos95d7Bp0+Xj1CdQRVEUl+gCqiiK4hJdQBVF\nUVziMQdaW8t5haCWSvCVd/A3hF5e+Lrrr2f7zTfRJ3N+tbUWvy1saOA/xPjWj7ZtY/vQIXDtmsW5\npBkPd4Jv+G38/8XaN9tERK2tnK/diznZ+GvfcOxzYyeDb+Db+Xwwfjy+59GjbMfGWok1J4evf8LU\n8+icP59tmZwjoriT6Y49Ywa+bEav3Xwwfbq9c5qV5cS66DR+m7pgAdtGqPTxx2wP/EYr+PwG87Vp\narJ3/TMy+Lym9M9Cp7g/F92Iec5Ni8RnMDsbXzdsGNtJSfbO67x5Tqwbx+aCa/Hsi46dsNwHfDmz\ni/nAuFevxOdq1y4+p9/4Bvom1YhzfNVV3b5Hbr8lcDxvirjnBwzQHKiiKIpNdAFVFEVxicctPBUV\nOc6Mo1HgSlkptrtmVbfcp+/ZA67a+r6OHRRkcVuclMR/SGMj+kSBfOJK3DKnpbHt9+rz+Dq5F5gz\nx1qspaW83TBqvik4Ld6xcyLzwJdwdB4fTJgAvuFPT3dsa+kG2UhhpD6KA/j3mSVuyYO5WL32rlng\nW7iQ7cJCe9dfppvk7yAiKhzPKYX8Eangk2V1fYy2kkElVyjdUF7uxJq0Ywy4Mofl8IGZb2hpccy6\nofh5LClh22bRP82Zw/fAe++h76abHDOiHu9VWXMf4X8KXyfXhNRUO7FWVztxJmYHgyurmcvRaNo0\n8BVQrGPHVq3D95Q/GxSkW3hFURSb6AKqKIriEl1AFUVRXOJZTET0XPU30pxZ2bz2Ji4chs5ly9iW\njfxEtPcgC08kJX3NKL8GTau47cpvGuaHZL7wYGMxuGTeKzPsm+CrFTU4QXPmkC3CSzjXEl+xAnx5\nM2c69rWfGy+8cMExj317OrhOvyPbV/uSDUqr/Bx760H8fbnrmxz71Vf9wEdv73LMoPXrwVW4ZYs4\nMtoqe0DQYS6xKZzQDL72pZz3jG7r/j18vncXHFe/xMndYPOHe0Dq3jHdO5tF7AcPok+UA5muhIrF\nfBC/sQfRGaxZ061r1x8GOfbg36APBGWW4voQV8HXI58scfasY/r7G1fr1nGOub05FlxzqlLYNwzF\ne1aK6qsGo3P6K/QJVFEUxSW6gCqKorjEcxmT6O7pDBgErt5zeUt7bMl28I17jktxYDtPhK0fkyfb\nK7dISHBiPf7CC+DyPcN/Y3AbdlT1HsUdVc248yOfC0JlqpsyBjesXcslN++8gz4pq7gEGyNo4B5R\nZvXww+hcuZLt3Fw7scbE8ImT9T5ERHff7Zit92LH1JQpbJsNU7LcpqjIXrlNayufU++jRegUkken\nXsSaK3l7Fq7He4MOH2Y7MfHK6IFGG8phe/ey3WbkG6qq2Da0a8/9mbtmBg60WMY0aZITa8PW/eCS\nTT0DH8cUj7zwCSexM0ye85AQO7HKrjmj4o52r+HPceq2IPClTyh17HKvcPCN8f33n399AlUURXGJ\nLqCKoigu0QVUURTFJR7LmOKWct7TVNX5JIzznhUvGi/8Ebd1jRt2EX2+vv9ZhF8Xka+600gs5osS\nLP9InDMjRxL5TEPV9c6DPBPJ5n8aqeY/eDD60tNEi6zMaxJhQlHWiRBdmmu2QVhY979PDGjyrq8G\nV9EGzt1l7MPzbeZEbeGdzaVhifVYGrbydc57hvRBVanx4wfwgTHb65Lzbwk5SmhMGJaclW9g1ffc\nGlRPPygqAhuNkpviT0S75ECcUdUTipZz3nNwC/qCXxNq7ua5E+pQOVc9jb7ZsuYJ/0a3SLWwhCqj\n9KqNlcPSfXEG1f5mrqUE1SYimlPGudvt+DWPgz6BKoqiuEQXUEVRFJd4LmNSFEVRukWfQBVFUVyi\nC6iiKIpLdAFVFEVxiS6giqIoLvEsZxcYyN8wmXVeQuruklkIr77qmPtHPwWuSeNFXaiPj72e3fPn\nOdZ9+8CV58WjMOInNIEPxo+YtZRymmdGhrVYY2O5b1eocBERUWUJnx+/ITjpsKmslrqj181ce9nV\nFWIl1qwsjnOYoVgoW7F3zy8E38YarqddXIOahXeWcB3e8eP2erYvXuRYfXbmoFNMEI2KxmeGokge\n9+GxltbmvXrTTU6sLcYNIEpEyffRR/F1cnSOeePceCPbJ07Yi7WykqedbsKa3k2PHnfshK0oTZgz\njK/zxfl4D/hEi589ftxOrLm5PEFWjr4homeeYVt+pImIkh+pc+youYHgE8qSlJBw+XtVn0AVRVFc\n8rWHyiXuRZFiOXo9Y0op+FpHsaqJ90FDMlXK8WRmXpFBbS+/jL5nRcOEXxXGCq1AZWXgqhsb59iB\ngfaelvLyONadO9H3+9+zPWQI+n7wA7ZT/PEpa8CqBMc+f95OrMeOcZzjyoyBe8OHO2a5L94bUsQo\nyRdnie8P4KeDSZPsndPOTo61d5gh1CyHs5mqUlKCSz5yEMEQNwqx81RPRKBwZHbmNYjdW/O7+NmU\nt6oxq5Hm+YsZ8rGx1mKV94CpHJbgK4bumRJIoott4mv4RHhgNIsYW9vZiaFyxz5FQeVxF97gg/ff\nB992X+42uvVWfMtxLwmR6o0b9QlUURTFJrqAKoqiuEQXUEVRFJd4zIG2t3P+w0wPnT4t7DeMb4cD\nWFGm4JA3uKTiui01aiIiKi52Yh2zDBVeZs9m28zJyWqCgkbMnclvnoODLcY6YACfdCPR2fzHPzr2\nTxbitdn0E/7GsNUfvzGUwkFZWXZihW+2f/ksOm+4wTHrojHHFbiTlZGKxqIyUlSzyInHxdk7p1FR\nfLKkqjsRFR7lagajQANS8uU7TqHzvvvY/ugja7H26nXRifWll7DSQl7HFkP96GIZq171G4l5vra2\nLx27q+sqe+c1P9+JNWh5HLhq9woF/8ZGfN0XX7B99dXgyqriKo3EREufq+nT+fqbX7WLwYbtT6My\nVN8zZ/hAJu+JUIFMc6CKoih20QVUURTFJR4L6fuu5vnNO379DPi8jx3jg4p68CWV8KP+SWOevEwF\nhNjTfaXUQ7xtF+PTiQifzEv64HYzfzxvi8qM7V1ss1BRDbY3F14WdpsnyPeRRxzbnBt37hretg80\nRIzXrLE5ufyf+Czlv3nRf6Gi7NxotsftRSHajf152x5gDOqjmhq6Isj3lVPtiGjYjmLHNns+0tLE\nQUt/8NWIbelQskfX61zyk9eG22K5+zS38Oeu5Wv8+d870Xm9vzj4tIcRCsSHp6wMY6X1ogZv6VL0\nycH1Rq1e4rSz4iiBrCBTCMaJK43mdeyZI6nge1fcx3XTNoNv4l82OvaBbn6tPoEqiqK4RBdQRVEU\nl+gCqiiK4hLPrZxSTMRo1aomzseYLYdrxEwns+XMX6RqiooslgZ1djqxZmXj/4XEEUWObbYdymqL\ncT+fju8p2/5WrLAWq58flwc1lWDpTOcwTgz3PovlYTELgxw7MhLfU+Z5CwvtnNemXr2cOP2eew6d\nN9/smFnvTwaX7E6cc8jIHW8WeSZvb3vXf/FivlenTQPXotf4mm/6MBZ8BfO5BVLq4xARvfYa28nJ\nFu/VN97gWPv1A1f4Ko61tMTIc9aL7xqaMbncMXKkY/fp6royIj1mUvbuux0z6ycfgWvpjziE3vff\nD778hSw+Exdn6bzm5DhxpjdiXjV1GLec5rbgZ1yuR+bcxNSbX+GDWbO0jElRFMUmuoAqiqK4xOMW\nXnaimHKgshwp+L030Cm6VGAINhFllnC3T1KSxW1Re7sT6/CROGt77ly2k4cXgA/KLQylnqapXPLk\n52cx1ldecWK987lZ4Dp+SOilGuU4IIEltk9ERPTjH7Pdt6+dWBMT+eYwB7qL/W7sSqxHK9gh/gZ5\nfolQx9JiWoSOH+dY67Gsbr8Xl98cPYovk0JNcYcT0SljLSiwFmtGBn+uEp/Ct+3/u9/xgejoIyJK\n2sZ6nJk3G+pYCxawbev6ExEVFDixnhqK6Y+Q9fz5KJ6LHX5yO5w4vxV82/dwd+KcOXY+V1KNLXyb\nURq1ejXbsi2RiMrXcDphzA7ULb2YxpqmPj6qB6ooimIVXUAVRVFcoguooiiKSzyXMaWns/M73wHX\nrhYuXXngAXyZzI/u2IE+r2s5ldDXYrmFVHk3Wzlll5lZGtQmynG8DLVqqMfKybGXVzp1yol1zhrM\nHwohb1rcZeS5zHoxQcRavh7FxZbytSL/VUCY/5LneN6ocnydlxfbpoyX/Bss5hUbGvj6D6o/jk4R\nT34NzvWJ6yNy4oaKU3wb5/Xy8q5Mvh7qaIio/QLnj/vWGOpQQh6s8BA++8hTHhFxZVTOLlHzl58P\nKZdPhC3KRn3QijBurV23zlKso0c7cV586wS4fLZyLhPkt4ho+GlWBzv9inEfy/shPV1zoIqiKDbR\nBVRRFMUlnrfwiqIoSrfoE6iiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSUeR3oEBXFtXe0zr4BvUQn3\ncH/yCb5u9zbufS0swamcMfPFNMm6Onv1ajfd5MSa+oO/gCt9KI+jmHcY5dVyR+E4CkDqm0VF2Yu1\nqIi/uZNjGIlgNEHMsDpwyXrW2PFN4Ovt7+fYnZ2WpnIKObvmv+KXjd/+NusAdj2RjC8UczJyduLU\nSdlenpFhsV4xJcUJMH9sBrikpIBZylg5myeI0m23ofOOO9geMMBerJmZfDJfeAF9f/qTY+buxM/O\nvCox4VSeSCKqXs2SbVYnyIpplw0bdoPrqqvY3rIFX5Y6WPTGb8ZRGfDCI0fsxDpnDn/+h+D4mfRl\n4rNiyHLKOtxKf5S6HDny30861SdQRVEUl3h8Aq2qYjt9DaoGyaYdQ+CEEpbxf84JE4w3NVVrbbFr\nl2Om98GOgrwqfuo0m3lSGlmB58EHu3/7cT0KDul1Hz8GPfccds0k+vJ/z8Kr8Kmfxt7rmHUtg8Bl\nqmXZwOehhxx76Sr0vf8+z/pe9LNM8G1axio9CXKAHhFF7Qy3GKFAtOJIhSUiFLFqb0OR4qTl/FRX\nYQhHFa0R12bAgB6H6DB1KsezFBWAZHPP8qeNh57sbMesXbgOXMH7xE4q2FCV6gmr+MKbn+V9Ygjj\nkSPG617nDrTaSBzkGLTPw67PLaITSnbzERF0cNV9/DG4Al9/3bFPo4u6/s+z4giH0X2FPoEqiqK4\nRBdQRVEUl+gCqiiK4hKPOVApJi8HhRGh2MqcthzwzQkTbzvFSJAuQaUUa8jk0bJl4IovWezYd5Zt\nBN/xzSJf6umPNNSIesLrr/M306AGRET0wd/Y/sY30CeS0oGH8ZvNpWnp1uL7ioZsVqrpY+RA5RC7\nTd9Ygc67Ih1zew3mPIsC4sVRXs8ClCxc6JhBazCv+NhjIkcrxxMQUerLLzu275kz+J5eqAhvi2Mf\n83DAcV4NGM8IIZl/7hz40jdzHnZsFbgoSORVbVLYyOpVlc2B6Kza6pi33BIDrtAw/h6kcvAk8OXP\n3+/YcWQJUV5RU4OunNXnHTvhcDw6Z/F3Ow+0taHPLC+6DPoEqiiK4hJdQBVFUVziWY0pK4tFatdg\naYQcEW3smCn993fxWzyC9Q1S+DUhwWLB77p1TqxFY3FLGbWj++FXEWW8vWuYiVu/rbxDodRUi7GK\nQuqNXvg7F08Qgs/yZBHB9jNrSiG4ZF11ZqadWGNiuJGicGUR+BqGcdHxoKP54JND3MyqNZkl6W5Q\nlxvS0znW1ABMKcXs4SFjZolL+hBxP8i6HCKibdvY9vGxd/1bW51Yp8/FYvnd0SJ2YzhebAWnaWBw\nHxGmm8LD7cUq1gBMaRFVL+dYg9OMrbEoni+uwGYKWUoYGGjnHli7lq9/8gJsMoHreOut6Bs+nG0z\nhbdnD9sJCVpIryiKYhNdQBVFUVyiC6iiKIpLPOZAL17kvILPemxlqpzG+ZgDB/B1yW9zyU/eTCzT\neewxtj//3GJeUQxAgxobIrqYxnlOc+Bc0AVu14vfcCf45Ns0NNiLVQ5AM9OcsholMhJ9smU2eMNi\ndAoREsrPtxJrr16fOHF2vYslNdSHS9VOdQSDK6Q/i6DMWYWlL9vnilyqRYGW8HA+p2a7rpwjVnfS\nyB2Kv6O0AvOR4SWiXXLFCnv36nXXObEmPfopuETX4SW6F7vXiPy4ma+VtTtZWfZivXiRP1erV6Pv\nqCi5MoOVecc+WC2ZS/ydxLx5dj5XRUV8/aNajNJAkY/NmbofXPIz5T0Ny61AeUaHyimKothFF1BF\nURSXeOxEkk/lcUYJQyQLw1xSqnJHGj9Cx59E5ZUp5ywqxUhEzVHTNnyE9yvjbaOPsS9O2crbdlm2\nRIS7YpsM+s4NfHD11eCbsJC3v+PH4+tkZ9glwcm6MmuI8pO2v6JLlHiENDeDq3nTJsde/o6RIjoq\ntppRqL/YE379a7YHPoElNe013PGUuBxLarKquIMmYDOWhrUu5XI43Nz3ELFPz/zVdei7lxW3EgyZ\ns+kruTysowM/R/l9plsMUCBjOGjIVcnPknEPyHqx1D2h4EqfXS2OMP3jlqhRonRp8k/RuWCBY/ob\nlUryz5s6E7f3M1lQivp283v1CVRRFMUluoAqiqK4RBdQRVEUl3jMgb73njiQ9UdE1LiTbVP9JOQE\nK6lnGrka/71sz8HxRD1D5OT86mu79S16DfNuQnSdvKegb3Yb505LSy3E+BWizmb//2Cr6we/ZdtU\nVl+/nu20Pdg+KcfOGAVOrul6+4+OvegFVFXadC9f9KZozL8dHM+KV/EHUTn93A85rzjQSpT/RIxh\nok3R0eCTba5mt56U8pc5LyKi34pr4W0xCXpsA1/zcf8oBl/64QjHXmUKLInP3K9//SX6/rHDVniI\nrKubNg19ItcdvwwV+yMj+dj4+oRySzjvOc9OCpQyNvNMsMY78DM1U5SG+XeAC773kCVkREQ//OFH\njt3VdQNdDn0CVRRFcYkuoIqiKC7xrMakKIqidIs+gSqKorhEF1BFURSX6AKqKIriEl1AFUVRXOKx\nDlTKrg1qLAdfdf8xjm3WecUFcNFkzkmsH5TttPn59iTianr1cmJtNfqvs0Xffs4I7M0/Fc11qnKw\nJxHWDGZlWZTeE3Jm7UYPcd933+UDs7945crufVJ7z8/PSqwbN/L1LytDX4AYWJnRhmNJgClT4LDc\nl2ttx4y5MiNdeiUvANfzz3O/+WYcZkqVJSxvFzsb++SlCpvNe5UCA51YY4bVgeu++9hO/nEnvq6i\nwjEXvTAGXP36sW1rpAsREd11F3+YqnAUaN07LMVnTB+hu+8+5diffRYCPp+Xn+eDJUvsxFpUxJ8p\neRKJqO/ttzt2lH8l+OQgztJt1eADfYkxY1TOTlEUxSYen0AH9ef/zuZ/vCeeYFt2gRARnZzGT52m\nzqqpyWqLoT//OR+0HQdfQMCd8gB8ITtZKHrqVJytvnMnXRnuv98x+5oqSmK+uXnyUiO5awWGoRER\nHRHdF5Mn9zhEIhTbueTJbbNozTpktPfcfDPbsn2KiCqmwROoPUQbyQ9+gApHS5b8xbG7tvwefJVn\neeCcKcRsPlVZY/58x/zgVXQlDxdKYqsr0Cm6gh5+GF2Ghrg1eh1lNeozZ64CX/DLzzr2wW8+Bb6u\nt1i5fH8JuOhsryWObatrTrab9TUXmccfd8yiDfgZ7/U0q1/1unWw8abXO1Z31Z76BKooiuISXUAV\nRVFcoguooiiKSzzmQEPH87eSldmoGkNDWS79qadwHZ7Rj/M4qc2HwVf73V/wgc02UpEDOTUBvxUW\nKSeq+PYM8A34kGOYiulRivOXf3MEWUMM4yrdid/Chvfh/O3GraiDDQPoDLn66atY1ma3nRQohQzj\nb4ErszGRlVXG56OlD1ZapNzAKlZZE4whXqbCkCVODeVBhttHoALUZkrmgy+ywRfawrncWbPw77jO\nEIu3hlAH+/JLHNbYOYX/jt6GqlRTG0tCeRmp8/SFDeJoUM9j/BePPMJ5T7MSI/jvf3fsYfcYLxQJ\n5WYjB7r4UJw4QFUx14hzeskXLS+/7JjxVXi+u/7R7tgpafh5+zrfgegTqKIoikt0AVUURXGJxy28\nrNuu9MUtbOhefvS+5ZY48NFgHigFs5WJKMhUCbZE6UwukPdqQ5+cv4abNKLe/mybM7Mmdf3NTnAm\nohwlfEgD+tJY4bWkBefU560URcAluJ+qr7ekTCsRpUENh7HIeNpQtge1GAXIQyMdc7xR4eS3J4cP\nEhLIFiFt3OhROGoF+GLu5Qt7YelS8PX9jFM4t12LtdJx97OvEOfN9YwJExyz2h/TDXk7Ofb4vXPB\n5/fBB47t+yKKBsO2deNGsoUsUewwxIipjW+CiI4i9L3M8W34DZY4RYq1w1qyQVbE7zDEpcU1X/MA\nuoJH8Lb9vfdQpPqTT7Bs63LoE6iiKIpLdAFVFEVxiS6giqIoLvGYA90rBsDF9y8AXz5x3jPu+zfh\nC994wzHT96CQQGqAkaC0RLgYAJd6EIfDyYofL6PEoVOcgUmfvgK+tfWzHDvZUmkQEYFqSdIqnFaW\n+Yc/OHbeW+fB12sgD856//154Ds822J8/6KzinObg2bHg69gZp5jL1+O+dfqX/D1v3Esnrhe3+Ee\nxC57KVDKq+K+0PgLhmBMNt8bcuAhERHJvKcUciGiRmPInC02DuG8p1kaNFN8RdC+Yzf4+h7lsroS\nozQoxJyIZongW8X5ueUWdMo2XaNFWk5EPL66H/pm3sF2sVEe6ZYRIxwzZ1gmuOJv5r8h8O23wVc9\nRZQ/LVuG79kh6wZxaN5X6BOooiiKS3QBVRRFcYnHoXJFRawHed99X4Cva1ioYzcZOoH0Cb8ndM8Q\nkXcHKzyRj4813cLWVo41LAx9lYd4K1w3EKeR9xex+q1PwfdcleHY3t4WNRZHj3Z+6alXToBLZhjy\ndhh6kLJUowKVeuoGc4FWYKClWFNSWGNVnAsiIu+Fcxw70Xc7+LJmczdV/AYsxZIlZUVFV0YP1BSo\nrVzO8YU+aKSbvhSlK8Y2tHwz/x02tUvlvWpu4W+9le2Bv8PzuvYjPufJT7SDj0aOZPv0aWuxjhnD\nse7bh75B/hxDawd28fz5z2yP+7HRxSc7rFJTrcQqz6kplStV5WovoOarvFVOn8bXJfcTqaDERNUD\nVRRFsYkuoIqiKC7RBVRRFMUlHnOg7e2cVxBiR0RE5C9aIP3O4ryk9H1cUmLmeObOZTsuzmIOrLaW\nZ+Lc/C1wdT0kFJiMREf+s3xsiN+AInt5ucVYd+/m+S1Tp4Pr2mvZ/vzcRfAVV3D+JmJsK/g6vbgc\nqndvO7G2iDlT/X/wA3RKqRqjda50MP9Nsh2YiKh4Wy0fBAVZO6d5eXyvmmVMdBW35F00Wjl9HhC9\nffKCE1H1FFb1Cg62eP3F/B5ZfkNENG8ll8vkhuWAT7aAJm0IBNcMcYuPG2cv1mPH+LyO+5bRdiyG\nhq39JZbjJa8UIbz0Evg2tnAud/FiO7FmZnKcQ4eib/lytp95Bn0z3mJN/P1TsAV28mRWTevqCtMc\nqKIoik10AVUURXGJxy28oiiK0j36BKooiuISXUAVRVFcoguooiiKSzyqMU2fzqUBCxeiTyo1ZU1D\nRZUxy7h1y6gaoRYxDCsx0WJpSHo6J3PNXi4x4MosVek18hrH3rLlVvDJl8XEWIw1NJRjlb+EiHbN\nYtWrq6/Gl8WNEMrvZs2VVPovKLATa0MDxznZUFWqYOWarkd+B77WrazUZKr8yw7U9HSL5/SuuzhW\n46ZLPcOqWsblp6g00Wb48cfoHD2a7bw8e7EOH+7EuisNy+pmjBbXWAwfJCIq8OXyH1lGSEQUfhKU\n/u3F2trqxCpL5YiIeu9htai6MCzHq6lh+777PgLfli03OHZCgqV7oLiYr/+0aeBqqOBW7kFphgTY\nH//omE1vYlu1vHfj4y8fpz6BKoqiuEQXUEVRFJd43MLLbbspuJQ1nwecDYhGtZXzZTzr3OyY+MUv\nWFEoMdGQauoJUmH2978HV84WfrpP+OAN8P3pT7w1HXMWZ1SnHGbR6JgYG0H+C7n9NqSjPqxn2+zi\nunCBhYsTjG2KmQqwQfONNzqxg4aiAAAcI0lEQVR2wyXeT9lswSHlU6awbXaFGDMGrdH0Bg8xE3rV\nRISKYEaoRF8IlbEFC9Bn5q1sIYSIZ9yD3WZ5+/gax5/cCr5xT7I9cJfRbWV+QC2Rt5e37fETmsDX\nMJ637YGHUDkqUKiYb9kSBL6EHwmB5YTPbYRJHd/9rmOfNHw+QsSseDZ2d40SmtB+aUng8xqPwsyX\nQ59AFUVRXKILqKIoikt0AVUURXGJ51bOqCh2PvYY+j78kG2jpqIumgeeBZ41hkbJpNigQdbKLS4I\n5SD/b6EaE23lXFLtUExmytTpnGxUT28XJQ59u7qsxVpdzeVhwVU4rK9ySGy3rwslzjs3+IeCTyrO\n5OVZKg3JzHTi3OiF+aElS1hyvOt3WKYiS0P2j34KXJPqr0y5zYoVfE6NuYHUdwMPccsbvAJ8UoQ+\nKuAUvlBKSdkqDSMC9fzaaRhPvciBmwrwMrdrqlxdfz3bycn2ysMKCvi8xo6qQ6fMEcsyOiK8IWXN\nIxGWGdmaSlFX120ZW+0G/owFlWCuVtZbpXSkg2umGCoYGqplTIqiKFbRBVRRFMUlHrfw8+bx43vu\nskp0ii6J5v/+b3D5ikFd5RW4Rssyls5Oi50oK1Y4sWb4rgNXymyx9Th0CHwTX+N0w4Hna8HXdvPN\nju1lcQtPpaV80o1apfLxiY494Dv4KwfLUqXbb8f37N+fbVtdM52dHGdaGriCd/J2xyxNGjyY7XV7\ncWa8FDe2OfysspLvVWNuIL3zDttmGZOs/klpwaGCMCd8wIArIqht1nkl7WAxcuOUwyWWW30iosCD\nV6gT6dlnnVhbVq3CeB56yLEzxmIJYEcH26nji8DXNCrKsf38LK0B+flOnOVD4sAlMwZmtZcccmh2\nzcnzrZ1IiqIoltEFVFEUxSW6gCqKorjEcxlTTEy3OTA5VCx3FLaVzfv8eT5YtAh8u17jNXvGDHs5\n0M5OzoG99hr6zp1jOzFgN/j29+d2tElVRuvW7NlsW8yBpadzrElP49v+vZFP+cCfY4mLHCpmloYU\nT+NrEBFh6bzKXJ3szySCJFd1ow+4greJXKKRN0taxa2BmZkWc+Dx8Rzr/PngmvgzzrkduB3Pae1C\nzpcHncY236J+3OYbFWUv1sREvv6yk5SI6I472Ja5ZCJMl540+hUnPMjh2Sy5o+pqPq+GOlTrNFaH\nkipbRJgX37wZfYnXv8IHs2ZZibW4mM9pH6NBXQ6yrB4chU5xX8eVYKle/jJRghkRoTlQRVEUm+gC\nqiiK4hKPW3i5LTae3uGRfXENPvrSq686ZuwdRpeKoKDA3rYoIYFj9VT+YSr1PPgg2y++iL6cC6Ic\nIj/fWqypqRzrbbeh7wbWmvU8+73sOPhKO7iLKjzcznnNyeE4E2qMdMLZs2yLziMiInr7bbZlOwcR\n1pGcP29vq7l9uxNrTtsccCV8wSmlS+bCv/kmH1y4AD5I70y6Mt09ycnoO/0m617lHhwEvnlPXsf2\nQ5+CL3e9UEry87siZUztRjqm7z338IHRNpW6ntM6huAYiJH17WvpvIo4p7+D3W/y9ycNxc4/qbB9\nkTAVJW9x7URSFEWxjC6giqIoLtEFVFEUxSWey5jOn2enUTcRvJDLAaoDUJEekgdm+YtMSK5bZy9X\n097uxJqS1hdcGfNFi6aR51qxh3OH68KwHQ3Khry9rcWaktJ9vvbwYbZj/MvRKfJMTUtTwSVLNazl\nllNSui0NytzLKuNm2UjiwUmOvejb+8G36X5xjuPirkgZW+/D2DqYcojv1YyVqAAv5epztuF9kzDt\nyuQVjx3jWMcdehZ8Od/k/J0QdSciopCp3BZ7am81+GRVW0qKxfIwWcpmykO9/LJjlr6N60j4Cc47\nty9YAr6+ZaXiB8Ptl9yZNV4y6TpsGPrEzybuxRKnrFtFOeaSJZoDVRRFsYkuoIqiKC7xvIVXFEVR\nukWfQBVFUVyiC6iiKIpLdAFVFEVxSR+PXqnEYkjDZG3ltkJTHVuKGIV2GKU4vr5sBwVZK7eQ6vkm\nuWmsSN8eEAg+OXBsbRe2KybfcmVKbqi2lmOVZV1EKOVtnNj8ei65ituApWPth1g5xlZ7XGsrn1NT\nyXvECLb7Np8HX1OfAY7tV4ElRb2juVTE5kSCjAyONSUMf2dcNv9OUzVIDgQwhgNAeZZNNaaiIo41\nqqMQfNO38tDD3duwlXfXb/kzN3Mm3htdO97iA0sKR0RE7WJYo1EARv5yet9dd6HzyBHHXNsHWyuT\nP+SpC5SVZSfW8nL+TIn2TCJCSXqjNuxUGE+kkAMIiIgKV6kak6IoyhXD8xOoEPKrXYpamYkzxVOH\nfGoiosAwFkGoSz5C3bJkSfe+/xD5ZFG+GYU2aC8roXw6IxFcA0UhbfIInKVU0IefSLsfNuyCWbMc\nM/EOPD9S6+Lab6OYxJhx/E+wgZA9QnMxMZGs4F3G/4EDhuITr3wizc4eAD75N/jJR1Ui6jwpRweH\n9DjGr4AHeaNZQupo5q/HuVfUh0dyxzTjUJxTI6bTlSDKV+zKDuEjcWQkP4EWlniD709/Yvuvf8Ud\nYWk931PhFmL8ir733+/Y/mZTjCxY//vf0ScaFL5xHbpMjVgriGveUIXPyoMW8qc3fOs88C3lMCk7\n23jPlRvYjjCahf6FPoEqiqK4RBdQRVEUl+gCqiiK4hLPOVAxFz1orpEDkKoXK1eCa+xYkUtcsAB8\n8XNZsCHPXgoUxDTMZMa8PtsdO7c5HXygFC1FB+jSL8itIYRofb3QJQWeH3kEfamPP84HckY8ESVu\nDRUHlT0M8J+0fPe7jt32PhY5SL2YnNnFhHClRXVzKHjqGzlfGmUvBQoCJgmDUcAkZxjn7/MrUPxb\nCmz/9reY87wtgPN6XV3/ZSPMf1JTw/bUqeAqSWMb7mkiimkTYsDNQ8DX/+6RfGCzu1CU1MQfRKFq\neQtm3I3zpGj0aMdcPPVO9P3sY7b/8peeRvhPxGd+kP9O9IlyitLD7eBquMDrkVmhEWxcm8uhT6CK\noigu0QVUURTFJZ638OvXO2bdW/ioHXhBlDEZFcj5vmKW0GosY8mLHiKOsKSgJ5SUsO0/dTv4quSO\nPnII+DqrWFexdyMWB0W1SM3FYLLGtdc6ZvoNueA6/E0+J6lTcSteSTy6ODQAi9fniK0p/vXu6f8W\nF2cXGtubuA4eDx27Hre+27axvXk1uChzqSwjCiJbVK7hbXvOetxqUvRyjmc5uo4f7eQDQ0dy9GhM\nP1hD7n0NMVVZm27qgW7bxuU4oWV43zS+y9t2vx4HKBD6mds8jLeamDwZfAd+wmmdY7/EssJxzxvX\nxway0Uc26xARbeBypKIS1HyVFVVGNSbVzOY4u6sM1CdQRVEUl+gCqiiK4hJdQBVFUVziMQfa8Dbn\nPQN/hbNbVnzGAgHrzHqLtja2jdKgorOc98IJJD1j93jODxYFYMZClgbR3/4GvskidXPwINYt/fzn\n3EqZhNUvPePhhx1z3hrMrRaPT+GDszhQe08Z5+RCV2Gep7nZYnz/oqiDS9fidhptjaJspGA5CrQU\nn2TxFlkmREREfYbYCg8I/YDLaLZHYxb4mtNsF85GX1Mz57m8R44EX7mcGW/zbhU5uXjKA9fWrWyv\nNvLHwKhRcBhyKEscWOrlJYJ27r73vQeu0HvvdezXX8e2Y/r1B445bmIT+syWUAss6tro2D9ZiL7A\nKs7BLlmCJVWn70lw7IiqHPAltsnWbhQa+gp9AlUURXGJLqCKoigu8TwT6fhxdopHeSKiqLNcRlG0\nuhR8UomlddgYcMkd9MCB9jQWS0tZYzF8x2J0trRwPJtxC+c9RWzNduzA1zU2sj1mjD090MpKJ9aM\nfVgqI0tXzOmscnSt2SWV30dssXfvthJrZiaf06RmHKMsS3F6PfYguLr+3s+xi8tQUUhOxl23zuL4\n3bg41gMdhuOp5VbYHCOdfkHcK7IWjgj303feaS3Wc+f4vA48Y3RxhYm0jdkaI4I/tR67rWQVj4+P\nvfPqaVz09M382fn+9/F1n3zC9mL/3eiUo4VDQ+3EGhzMa5UovyQivAG++AJc5S+ecOwx+7BL0W8D\n3/NNTZc/p/oEqiiK4hJdQBVFUVyiC6iiKIpLPOdACwvZKZNXRERjx17eJsKaGiMfkTOB81MJCRZz\nYDfcwLGKFkQiArWoeC/Mj8muOkPgiBI2saIMnThhL9b2difWtb/A1rLkh7nVsbIFWx1DR4oQnngC\nfNULWXEoONjSec3J4XNqlJ4UlHHZSmwJlnjULuTyj52GMI4U7urd2+L1l/eqmTyWGK2TcNGN0iBI\nmObm2ou1uNiJNbcGVc6kylX62ALwxW7lVk7zvB46JH4u1t55XbSIc6CbbsGpFHTNNfCDgJhD5HMI\nP3Myl29r1lR7O8dpCt7L/Oy4z3AG1YpDPAFg3dI68EFLqI+P5kAVRVFsoguooiiKSzxv4RVFUZRu\n0SdQRVEUl+gCqiiK4hJdQBVFUVyiC6iiKIpLPI/0iIjgb5hkXzARVYsRFydOgItmvMkSUaglR7Ti\nLdaPs9kLnZjIdWBDhxq+aTyqI+8wym7Fh3Hd5f4qrLuc1F/0KUdEWIs1JoZjLZyGElogBSh7homw\nZlFOEyWic99jWTZbGgMZGRznQkMizG816/ttHIr1gYujxSgUMdWRiHCaq7e3vdrK2lon1vhVeB3z\nIsU5NgooW//3fzkcsw70xRfZtqmF0NDAnyshbUdEREJSr/3hWeDas4dtOU6DCMu0y8st1te2tnKs\npmylvB+9jPGy4j6ed2EduOQtYasOlJ5/3omzfQGO+5VlwXffjS8TA3Kp8MHn0fnoo2x3c6/qE6ii\nKIpLPJYxgWrMZ9XgK27kJ9AILxwaJf8zbT84AFxzOsQwrHnzrP2nbG3lWL3bUMC13408Zsto4KGM\nZqHGY0ocTZjAdlSUvf/qUuXK7JqRT53G08mKIaxq8+ST+LKBH5bzga2nJdExJednExENusAD73KO\noqJUghcrXhUG4ACxsd/j0Py6uuyd09hYJ9ambdjB47dPKHBlZ4OPRvDQw+2ROKhNiiFlZtp7qktN\n5Xs1MhJ9UXv4fjz2w43gO3eObWOOI6gx2ezwKyzkWGPeM57Q3n3XMfOjMda4HTxYcu047ET68Y/Z\nttWNFhHBcfr7o08+8cZdwB1fUhXvlmWHFBFR7WbRtRQTo0+giqIoNtEFVFEUxSW6gCqKorjEcyvn\n7t3sfPpp9N1+u2Oe+yUqTstcjfklY+4E8bPTp1vL1QwaxDmQSwaZCcwvWkOHXOQD4+v7ykPn+edC\nLX6zKb+FNRI2lVWcawwdjLncogrO5S5fjm8pU6d5eZZivekmjtOccHbLLWxL5X4iWnuaVYMeeQRf\nFlgh8pOxsVfkW/hFP8Nv4WUMEWdxIkHteM7RBq3EwXk+B/levXjR4vUXn6vUk/g70299hQ+WLsXX\nya+M5VfyREQdHWxbrG6YOJE/Vwce2d7tz6VUYa47YylXvhTXYOVLxOZ4PsjLsxNrUlK31QIxyzlH\nL4tciIiKR3DO+dzTmMcdWMaDCmnyZM2BKoqi2EQXUEVRFJd43sKLrWZKNj6GZ5TFXPLjDrIewBBU\nTice1JSaam9blJDAW42c7HZ0btvmmOVjE8A1fz7b5q4oyF9s77sRVHVDSgp1e9LlVjwMx8KDFrCp\nCyxLNYqLLZ3X667jOL/5TXDFj+WytrxoLP+J2jHPsYs+HQ0+krPW/fyuzKC2PVhu0/ooF1Z7e3Xi\nC8W9YZaUJRE3CNgsY6KiIj6v8vcTEb0nZq8bzRK17/PLgubjnPo4Xx74lp9vL9a6Oj6vgY1Yrtgw\nmGesDzqJQsWd0bw+GPMooQQrN9dOrCD8/AmmRWS+a/gPjbnw7/BaMfFBLNU7sJZL9bobfqdPoIqi\nKC7RBVRRFMUluoAqiqK4xGMONC+P8wpml2PsVfwV/7zXJ4NPzpgz83he3+FUQojFVj7ZymV268kq\nm5iTxmCs6Gi2W1rA1RkW7tg2B6Bt3MixGhotVL6QW81i9mC+tnC5yDMZ+bHQPZxbrqy0FOvw4U6c\nne+eBlfvNP59CY3p4JPtiXK+IBHR4vH/Pq/kivPn+UaWiW0iqlzNpVOhB1HYQt6snZGYV5Sx+/lZ\nzIHedRfHumAB+mQ5kllzI1qLC6qCwRU7+Aq08hJRURHfq+Zn2XsZ35/5E7BF8osv2L7/fnydvD+s\n3aulpU6cE58JB9eBN0TeW041JKJFf+P7YdOCcvDBpL4VKzQHqiiKYhNdQBVFUVziuYwpMdFx5kdm\ngSvuoNheyvnJRFinYDwyw9YzNdXetqi8nP8Qo8anvIM7EUwVm4RsoSRklpRI7cqkJGuxZmbytujC\nBfRl+K4zf5yRIpBmHZOU47F0XsvLu0/hyN1laA2q7Ux8gZV4zFMq556PG3eFym3+/Ab4msVM+/Nn\n8H6XOpovvIDveewY2z4+VyaFs7gLS64Sz3DJVdYULA2SpYMpkaX4pjt2yF9g73NVWMgnzOjUa/Ll\nji95XYkwGxYx3igdO3CA7W46fP5jcnI4zhtvBJdMMeZ+x1CUeughtuvr0Se7BIOCdAuvKIpiE11A\nFUVRXKILqKIoiks8z0QSg3DiVsWBS6pMJ5+ZBz5onbwQCK4xw4y6FktMXzPGsXfPxJzchf6c5zRG\n4lCCUCTfeHQM+Baf3WYvQEFSGavRpA7NA19mnxWObaZk5i5j2yx/GiVSoMbVcI0sRTF/nznqSHLg\n9VbHXpHmDb5Vq2xEdinLxLnJn/sl+Erf4PTYKCOXe/Ag26Y6vFQSS00layzuEN8nGHOv5t7FdnV/\nbJduFlU1ZsndJUOrbCFy7TLnSUTkNzXCsX+/pBh8//M/bDc343NaRQXnJLFB3D0NU/g7GTktgYgo\nt4OVohadREWpTQ/U8YF5k4u1gRITL/t79QlUURTFJbqAKoqiuMRzGZOiKIrSLfoEqiiK4hJdQBVF\nUVyiC6iiKIpLdAFVFEVxicc60Ph47tmdORN9EQ9ya6jvt74FvpYPPnDsjJ/gl1Sy9zsnx6JEWGws\n/6KKCvSJgr58wnrWuCFCwsrs6f/+99k+ceKKxNq0rQBcfiXi2KgRDJ3GEmYBAfiWhb5ijMHu3VZi\n3d+rlxPnpN/8Bp2iGb4uDEco/PSnbG+aiH8f9PN3IxHmCjGVcc4FlCyULc2mhICXF9vpc2vBd+xj\nrnu02bdP27fzBNEjOM3yjjvYNifIjlk1ybGn998PPvn5jIuzGGtqqhNrpi/KFkq5v/RVOEYnYSmP\nxzBrhgd/l8MLsiVpKadymkyd6pjFFAGuiEaevJpehfexlMIoKrr8OdUnUEVRFJd4fAKVT4uxh5PQ\nKZ+OPvwQXP3FDPGMz1aAL2uEB7WhHlC7gZ90fvYz9G3qz6o2cQHYpUCz57It/lMRESXcccKxUS62\nZ2RFc6wlRgPJ7mhWfz43LhZ806axnboUZ8bTUs9NZW6AifU1NeCrjOb7IXQPPvFt3syPHJsO/gjf\ndMsWW+Eh11/vmHOnoCuKeOBaYQeKJseEicGBK3EA4vA1OCfcFvEH+anTVLmaRzygryHA6CkTgspH\nMVTavVR2AuFTVk/I8uenzqTB2OGXeZZ3c3WNOJAtZ7zo+PHCnRQoR9lCPA7H1OOQw5s/Z9vsNpu4\njZ86pTDT5X72cugTqKIoikt0AVUURXGJLqCKoigu8Zg4KxzCCicr+mAWcN1vOHl3MQAHXNVey19Y\njXr8cfCNG/efB/l12LyZ7U1nMM/V8b3/dezWz/DLuvqdnBMNWYPfiP7hjxYDFCQ2c15p4PdR5idq\nC5/za36NrzswhdW0Y2YuAV/hXkNJxgJ3TpzIB9dcA76TJ9kettTIjz8pFMffegt95pQ5W7z/vmPu\n/Cu60qr4frgk/SbloQxFI58KkVeMsJdXzJslFPP79UPnkY8cc9Bt14GrUZy7unv2gG/FPo51nb1Q\noYJhewtWsCSN5d+5/yT+0vVl/FnKuh4nBCQem8W+WWQH8VV/4V5UTkrpz+pXb2AooBoVPqoVfKaS\n2OXQJ1BFURSX6AKqKIriEo9b+Ikf8Lb9wPJqdAqxUR+pZktEo0R1cuBeHEY3TfxGm9v5dUd5C1G+\nAcVd33uP7Rlt58EXsnWNYyf5o9iq+bhvDVH1/Js0dH3EOzh6+GHjdY8+6piP+aPr1FneboSE9DC+\nf7H2u1ys/bvX0Td+PNt9G+vAd/XVvPUfg5VhFBnJAtuZWP3UIzaO5dKVnJlY4nWq0c+xzSF3qeu5\nHmjFKizFkXP6Ei1ui4v6saBwVAs2GlQ//JRjBz/yCPgCTp927KYpWKu1bv1xcXSnhSj/yZAhbJsD\nGZtG8Em5sA99UBG4703wZS2/XRyh4LpbqgdzmiY4EtNEGWENjp13GCWcw09wWix8OabFSic/K46e\nosuhT6CKoigu0QVUURTFJbqAKoqiuMSzIn1xMTvnz0efaCuDZBERre3i9s3kB06Bb+NhTtAtXmxR\n9KCw0In13EgcxvW6yN8dPYovk5UrZo4ncb4oa/D2thfrxYtOrBnZPuCS7ZppafiyvNs4J1N8D+Zk\nIvqU8kF4uJVYe/WqceJsbBwKvoGPC+EFox+x+le/cuzgL3HAG919N9tHjlg7p3l5LHwjS9qIiIqn\nimSrKTTT0cG2odCydiC/LjnZ4r2aksKfK9kvTUQX1/P3Dj71+NmRAi7V/XEAYnCH+NmQkCsifHKJ\nKogsSVu+HH1nzzpm6eoicMmXTZpk6byGhrJAy93Yri1FQU7fgCWO1Zs5NnkrEBGFDBZtvj4+Kiai\nKIpiE11AFUVRXOJZwudHrKRzai+WMYUEiFIRqfFIRA+JEpsmf6yp+eUv2V68+GtG+TWYs4O37dub\nd4OvTx/ebm5fVg6+nDLeCvkbpUGhYVwaVGmIOPWE9A28bTclSE+wABTl9U8AX+I53t7NwsYgah8d\n7thYjOOet98eKmz0xYlte7vYshMRBT/wAB+Y88vvvddSdMg+UUZTDCU9RLX+3CkVNNTQJ5UqU0Zp\n0HWHbUXXPbJUkIjowFZOG7Q++ST4vLOzHTv4T9nga83mMq5/3z/zH7BHdDwZn3MpV1S5DBWQQqv4\nMxge1omvgzQKpiJcI87N7SfRNXq0OBi6CnzBI7kTbM7Dn4Nv+ypWRiMfTLV9hT6BKoqiuEQXUEVR\nFJfoAqooiuISjznQi29xQi5kA85DaXz6af65M1gKJdNKwUNwVsrp22UpBOYqe8L2lVzG0RSAs00m\nyDRcfRv4ZOWKkQKj+Aqppm9PSV+2x80ZWgq+whbOZe66D/NjWe+yctPaw3g9brmFbT8/soI8H0a1\nDdFgrv/qa8xuIpkT/e1vwVU9N8OxUcOrZ0hRJTqEtWpBbYf5wCjFaRrPqv9+rz4PvoT3ZT2Uxb5T\nkfg+8E1UALs4n9uJferrwXfqXm41DBmCfcZ/+xvb3jaToPImkDcuEVFYmGOGjrwJfaKMKeZ+XB92\n7uS8p6VblUr7cFup+TmWymF08CA6X3rJMbdnY7/urhPcEj6jm5tVn0AVRVFcoguooiiKSzx3IimK\noijdok+giqIoLtEFVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEl1AFUVRXPJ/AQZu4LpkLah8AAAA\nAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  8\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXFclvXV/4+OCImIiIWRMWKOkDlm\n5MTIyIiRoWPOWBIyxsjxqDlyzCmR8bj7IR5lxoxMHTlmzJg6x4gZGj9yjAzFnJnzIecYM+YMzYyI\njIjh749nu875fJN7dfH19Xv9Xq/z/utcHu+bw3Vf95fre65zPmfUhQsXSFEURfn0jP5/HYCiKMr/\nr+gCqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVxiY9Xb3ExP6LPyUHf0qWOeWRlLbhiT9Q7dubWNPDV\n5DTyQUrKqE8Y57+ltZWcWCdNQp//Go9jDxQWg2/GDLbXrsXXxS5J4oM9e6zFSpmZTqw1s2rQFdHK\nBxMngs+zNtCxp03Dt+zrYzstjezEOmaME+fpEx+AK3RMLx+89BK+rq2N7VmzwLX6d1Mce/lyS3ES\nER05wuf0aCy4MmdxrNt2BYJv7jOpfLBlC/iS0oMde88ei7GmpPD3KjkZfSdPsh0aCq6aGx9xbPk7\nERHR2bNsR0Zai7Wzk79XkSW56IyIYHv2bPSNHeuYC//zWnBt+Ja4xhMSrMTa28txLl+Ovm98g23j\nI6ZqyuZQOqrBt3gx25mZF//89Q5UURTFJaO81YFeey2v6mdWVYHv3Gz+axS8qQx8RT3LHLv0isfA\nV30D/xXNzrb4V/3QIf5FNm4EV/HYSseeOhVf5iPuwVPeehadEyawHRdnLVaPh89r8a5bwTf08j7H\nNu+I5SYgeN/z4Fu4c6Zjb9hg6bweP87ndO5c9N0q4jZPakYG28YdaGU670Dy8ux9/uXlfE4LHhmD\nzrffZjsrC1wtS3j3dNNN+LLQ00f4IDbW3rXa0uLEOjA1EVxyZ7FpE75M3pzOn48++X9TU+2d1/p6\nPq9pO/PQOW4c2z094GpNL3fshCYP+KrG8S4wN9dOrENDHOdoGkKnvAaNXV1pEK9d8iaeCHenKSl6\nB6ooimIVXUAVRVFcoguooiiKS7zmQKmxkfNKu1PANX062wcP4ss88SI/d8MN4CvYzE9Iy8st5kBl\nvm78eIynhP9OdHTgy0pK2A7vPw6+UwFRjh0WZi/WxkbO12zejL6aJQf4YO9e8A0sLnBs3xKsJoDf\nOTvbTqyjRjlxnnsbr5PgFYscu3fVevDt3Mn24CC+5d13sx0aemnOacoOzNUVBHAOvHzpKXzhunWO\nmXe2FFyVK8X/DQu7JBUDlfuxYuAnP2H79Re68HVBQWz7YAHN8ZP+jh0VZe+8RkXxeQ0JQZ98CG9e\nx77jwx27fh3+HmmfEevDzJl2Yi0r4wu0qQlcLSs47544zciPigWhfGcUuGRa1+PRHKiiKIpVdAFV\nFEVxifdCelGmUJ5xAFz13VwQvWABvqy6iUtqJuEOnnbsYLu8nOwhy1PeegtcGz/8q2MfPYovE/W+\n9MADeAu/4U9QSD/iEP/F5Mlsp/RhEwK9dTnbdXXg8pUHRnlQ6yB/HgkjjM/h4Ycd06hSoS3RvG3P\n78EtWuZBrr+S5SxERH/4A9upqWSNlIliu92Me825XxcHsjqaiGI7+PwbGROiY6JuKCxshBEyR4i3\n7XmHF4Fv+nMiHdLdDb72Pt4Wb92K7wlps6iZZAuZnjNr/msiihy7YiOmP/KPHXPstB1YoF41yMXr\nRmm+e8RWvCqjEVy5E8+J/2fUKq1c6Zh1J7GppWXqMnGEpZr/Qu9AFUVRXKILqKIoikt0AVUURXGJ\n9xxoQIBjJsyPAVfrTG7RTNv0CPgeEYexW5aBr2t2vziq+IRh/nvCuzlHKzsJiYhOzRD5y30oijGw\n4x98IH5fIiKKMHrpLBHctN2xGwLuA19qszhfRjkGnTjBthBzISKaWldP1hFJr8g1mKvLl/VJ0zGv\nuGcW5z37jJRT2g7Of1Eq5sZGhEjWFRHm40pf4zKmga2Ycw4Seb3Dh/EtE5t388GUKWSL2Jee4oOZ\nmK+Up7WlH39mYkC7Y/v54fexuI3fx2MvBUqBAVz2cyBrHToXcw1g9wp0Ne7lsqoUQ90n99h2cYTX\nv1tku3bOdMMp+lwzD+N6VCOS+y1bjRK3xUbN40XQO1BFURSX6AKqKIriEu9beLFNbJ13B7jO3c/7\n9PqvYolT1VHeejx2DB//18ejOpMtupK5IKJrMSpHURDXDbUeRT3IhMEWxy6oQ2UcKXGYGGkhyH8S\ntYK3LcdXGWVM/ZziOHQUCpeosJDLrBpDMN3Q3Mx2UhJZYUohv9GBvShAWrWFY8s9iOc7aZLYh37w\nJvjKJ/G2vYDssWwv686WRRuff1OzY/p+9BG4kpMfdOzEcZ3gO7+Uu738ySJi25j7a9xvp6ezLRuP\niAiujaIvoxoXPfGEOMAynpHQ9grfY8VLOSgiuOhKS6aDS3b/7R3EbivPjD6yjWe/6JRMX4PO/fsd\n0888p7JUUJReERH1bubvJq4ajN6BKoqiuEQXUEVRFJfoAqooiuISr2pMeXmsxFI5DlWlqyM4P5Td\ngcpAE37F//f11VheU7Sfc1WlpfZUY/bs4VhNgXT/u1g9feD3+8Dn28GlITBYiAiV7auqrMW6bRvH\n+pWvoC/yLOeTG85iGYtsp5S5MiJUmYqJsXRe6+v54jDyQyC5ZPYVivY4czoA9M6eOWNP4aiigmM1\n6tjq9/NMnrQOo39Yyvx7k4CvqLAXa36+E2t5BJbyFZzI5wPzehS/l6mOJtXUq6stqpxVVzuxtk/O\nBlfMJpHF9vMb9i1OLcayMlktGBhoJ9aqKv5OmS25VfN5BlPbZ7DROf4ZLs/L7UdVsaqJ4lopKFA1\nJkVRFJvoAqooiuIS74LKiqIoyrDoHaiiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSVee+FlbeU0bIWG\nMR5mTaIcEBlxE5ZP+T73HB+kpdmrVztzhp+GPf00+saMccxl3diB/YMfsB36stGXLusCGxqsxXr+\nPJ9XQ+mLlixhe9HJIvANrOR6Ot/+XvBVbuVu3bw8O7V12dkcZ/WmAXTeIbQRfvQj9ImawDlrUV+g\ndoeYijh6tLVzevo0x/r3v6NPXqsTJ6JPTK2BklAioshm0VOfm3tJalaLuvPBVbpYSKoZtbenv8ja\nBI8/jm9ZFiI0J5YtsxbrwACfV0NBkf78Z7Z3PXsOnWJRaF+H43BkaXBFhaWaVTmV16hL3nYT16mf\nPo0vk/WzHjIm3crRw0lJWgeqKIpiE+9lTB4Pd0wE4OosBE5o+wlDbFa2zBhT3Hr7WcXHVhcCEVFr\nK/+lTJiId2fwZ+aWW9AnhltvK3wVXHdlcHghFy7YuwOprXViXf3nOeBa/k2hCHTvvfi6++9nW96q\nEuFg7rw8K7GOGsXD4N944xrwyYYiOXiMyBgceBDvQGGiXnm5tXPa1saf/3e/i74tW9iOHTwEvlG3\nfNmxt279DPiuvprtlBR712p1NceanX4efINXXOHYPm1t+EL5XZLbPCLK38Hn2dpdHRG1t3OsMXsr\n0Xn99WzfYEyPlMrQ+7D7r/g0K2ANN2/901JZyXHmdaBoMkVHs/0mqoPJLWDVaVTGks12tbU6F15R\nFMUquoAqiqK4RBdQRVEUl3hXpN+wwTEnPYs50IJB8dQvYjr4Vl/Dvj8tABcoJeXlfbIgPwkJY0Xu\nsM6QY5Fy7V/6ErhWz2RF+suMp7flD3N+GPVkRohIGi4/uhlcPYW/deygH/5w2LcoWolq9TNm8MlM\nNP+zSy68/CfHnrMEVWxkOs58sr1CDhgz8qPeVHtGQvwbPKjso49wUNn8+Wy/8grmcl98kfOeSX2o\nHDYwPY0uBdlB4uf85j3w+cgErqHGlLSFpy6YKfA1hgi7LWKWsOrTwE5UupdP5cX8QSIiSvPj/3vo\n1gfB95ZRJGMDqUb2sZIh+UzmjTfANfQwT9bIbcLf79h4VLy6GHoHqiiK4hJdQBVFUVzifQv/zDOO\nKaor/hdxm1zbjdu75T+4kQ8MxeBlHdvpkiDna8tyHyLqXcsF0abY6vJ5olbFiDWhz95wLknnfE4I\nRO7AoXu+v/2t+d8dKoO4PGO+0bwQ2d0qjvDzcEvBDn4fc4tWu1T8PDHsjIiIfEIcs3RGC7iK5p+x\nEptJ0WHetr9+O+aGrq3j8psvfelz4JNVVTR7LfggSZJmbzuftonfy0x/lK68kw9exbI62bCSNtmY\nYb5R1I7lY3H+iNi92zF967DRpOLuy/ngnnvwdU1sxo3FWDecXiyOjOYVl5TdwUP2OifgZxW5koWg\nC0KqwVe+VogmG40Ls3N0C68oinLJ0AVUURTFJbqAKoqiuMRrDlQOrirPOIBO0R93dhLm3Ab+9FfH\nlmINRERnSmQ7mMU6pm9+k20pAkBEgRs5z5gqe1CJ6Nxf3nHs4BPY5jd9B10SIj8vusI+/BB8/kFB\njp13EM9P5WEegDVnNw7AmiQ+g2I7KVD64AO2ZTcsEYEixKElmFeKO8FlOkUBzeC759ucn9u1a8Qh\nOpQWivbd0F+A70z0K3xgCJ/0XvV1PjB6QBPXcC6txWJFU3c32/U7UKSlZX8Y//zbA8B37AW2zweF\ngc8f6njssX4j32P5+GDbsczJBi8wvsuiXK3tKswlxss2T1t89auOud/43kaK3OYa/PrT6h+zuNBy\nP8wdy1bOhGG+U3oHqiiK4hJdQBVFUVziXY3p2WfZaZT4BE+NcuysLHzZk0++7Nh/+ctt4HvrLbbj\n4+2pxmRmshqLVN8hwk4UQxyKGl4Riks/+xk6ZdtUTIw9NSapXShnjxNB2cjHBtzPmMG2UXKx7c9x\njj13rqXzOjTkxLmsEP/Wym6jwJWosQoplBMnwHXPLtjCWzun3aNGObGOleo7RNQtztXYdevwhb//\nvWMeL8ESuyg6Lg6i7H3+VVVOrOv7c8GV8yD/GP/XXgNf35dZOSrgzjvBJzU3Y2IszoWfMIFj/d7r\n4FqUITRAjRxP8RZeHzw5neAr2hTp2KWllmI9dMiJc8qCOHCVlLCd0o3ppqEsLnEa3Yy6pW1XsP7q\ncGuV3oEqiqK4RBdQRVEUl+gCqiiK4hKvZUz5bfMcu+L714IvNJRb8mRZBhHRhWhOOlbsxLyJqNKh\n+PhPHOe/pSaEc2ttr1SAr2qSOA46gS/MesIxzXzUJpHbPYQVTiPi/DjODyXnRIGvqYnzLv6/ex58\nSbP8HXvnTszzvGuqHtlAzIQqm409h2ev4tz2nhcxj57UIUrVjPKa22+3GJ/g0PMcg1k6F7sqkw/+\n8Q/wDfzqV/y6zcabbhR1LAVGnncEHH7gAcdedCXKKg18KM7l00+BL+DFF/mgqQl8a0UXaqUhHD8i\nvvENxzS/57IOrW38PHB5Mtodu/5oDPhKfaSym2fEIRIR9MQemGZ8VsksVVWwNBtc5Ue5Pfr4fGyr\nju+WbcgX1zjTO1BFURSX6AKqKIriEu9lTIqiKMqw6B2ooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUl\n3kd6NDbyEyYf47/W1dGwPjmnwOjZ7lrMtVbh4fZ6doeGuBd+dAZOZSyO5h7nB3FAIIU+xTVped1Y\nk1b5ZVGH9+CD9vqLi4r4vMJMCaKigywZVroSpc7oxz9me9Ik9P3hD2wXF1uJdUD0l+81aj1lPW/c\njiLwHcngkSWbN+N7lmeJgtq4OHvn9HlRCGrUeoKGgDmxUZ5Hc77GAjFS1tfXXqxRURzr1q3gOuLD\n9b1mOPKc96ZjzXJNMo+tycy02Au/bBnHanyXazJYtnDOPPyRfuIzKFiK92lyPExqqqVY8/OdOAfW\nYB2470ExfsbQSZDjaGJnoETgkb1CIjEwUHvhFUVRbOK9jOnAAcd5z39OAdeuq7m7oz6jBnxSYGgt\nzumi4//5LB/Mm2fvL2V7uxNr7hrsfJDKQZEHhx9ql73zvmF91dUW/6pPmeLE2rAShapTo4VyzevY\nxXXoOh6cF/f6s+Cj06fZLiiwEmtKCt/V5+SgL3NLKh8EoPDvqF/xHeiFdS+AD1qRYmPtndPWVr6Q\n33kHfWI4onkH6ruUO9hM8Ss5SNGmchRlZnKscrg6EVUd5jtQc5DjZZexHRGBvuuvZzs09NLs7Mxr\noPpwrGP37j0CPvm9N25cqaZHXDsNDVZiTUjgOFuXGoPqxAebuRTvMmtKxPfN2C4Viy4pj0fVmBRF\nUayiC6iiKIpLdAFVFEVxiden8Mt2cN5z1xgcKEUZOY7Z04Oua65h+3iWqbby+U8T3yem7T3Oe1Yt\nbUdnnVB5nzULfYcPO2b19CpwmepM1hBJ2dTp58HV2c1q3ZFfwdzipBC2G7pR/Sb1tWVkG/nU15xZ\nVpPV4NiZZ/Gp54WSIT5Yg6rqJBWFao1c1QhYVjf8JL33ruHc8YbJreAb+I1QvDLykZT1fXFgcQDi\nbWJKw113gWv2X4z87TAEz7wVjpfdvs+xy8rM/+0eqcAkixmIiFoXcN4z4ipMERaLzzl2RxL42p7m\na8eWIFtrtPiubjYmII4f75g5OcaT9j7+vsUaclOeP4pz7NlHF0PvQBVFUVyiC6iiKIpLvJcxnTnD\nzr4+cJ0fy7e+5ly0qDW83SmPRnVXWTd84IDF0hBRxrL6JdzOLb+/y7E7B8PBF9kjCrvFrT4RgaCw\nrdIgIiJKSeFY72oE1/JbhYirqQwst5hG6RAMb2tpsRLr6tVcGvKtb6FP6vlmTzZSJmtYwNYc/t7+\n4puObXP4WW0txzpn2hl0inNzyAfL8WTlSsUqTKd41rCAdXGxvVgHBoYfgJj7ATdvZLdh10f1WJGm\nKSwEX21zsGPPmWPxeyUGC5q5us4e/pkbN+LLZL26MVeQPEvEMLrgYDuxtrQ4cZ6fjOLHsozKmH2H\nQ+beew+dY8awnZurZUyKoig20QVUURTFJbqAKoqiuMS7mMjTTztm5/2PgCtyJedjoszcoTguOIbl\nHwUbhUAD4WC0ESGSScsLMXeYtpjznmYLXEUGiwkc7w4E38qDPJwKm1VHyODgsPHIupHqE5jLydrB\nZT/iLYiIyDf54kOvRsLy60R+qCMCfMni51U3Yevs2AwuBxu/AlzkY8RtC6EJ8TGqj3He07xUK+JF\nS+zOy8BXWDh8a+9I8N3IZV9ZC/LROb/NMavP4lBBGhR1ZUYyb87K6eIA2ypHxP79bPv5gWvLTs6B\nlk02WqTT0x1zT7NxnzZ7NtstLWQF8YWQKXgiTBeb3xv6nai5NH6/j10sF0HvQBVFUVyiC6iiKIpL\nvG7hY7fxtv3I14xtgaxHGjsWfeKeOa8DO2Qqo7FUxBbb7ljv2HPX4c88eJBbM+qX7AHfwGTukoha\nibqWNft+KY7+aiHK/6W3jmOYOxHLqmQb19Gv4hZy9BcnOLavMWC9fDZvhaxNMJear0YZW5jwZY/b\nDz5Zt9I+Dru5brmF7Q8+GHGEDqAOtR+3Xtlyfx+A7TRVH3JHV8R1+J5HRWlOvrHTHhGixcu3xyi5\nElvzznUN4Iocx/qw237jC765hq6sNdatc8yKqZjIKs5iJaPslXitls/lqp+Q17BU8lwdX6vBZImj\nRzmuBSik2n95qGP7P/EEvk5ovt7zdTynX/gC2xXDZBv1DlRRFMUluoAqiqK4RBdQRVEUl3hv5ezs\nZOfOneCq9OOk0Pz5+DJZKuA7OxV8A3Wc1/H1vTTtcTADhYjag7i1MyagC3wgN2O2R8qyhshIa7Hm\n5nKsVeOKwVcTzepVmUcxJytrdSoiysGVnyFyaddeayVWmDN1EJXzZQ/kwIYN4Iq+cVjBdZovRkv5\nXrhgr+WwrMz5oV0ZmAPfJ4R0jNQx/e1vbMd/E/PRx5v4WomKstgeOWcOnyBDBj9tL8dupjWLk8V1\nvR/zzsU9nPkeTj3dFXIuWkgI+mSPptFaSosXczw9mEAuDhLqXfn5dmJdtIjjNMuRREv0sm58QiDT\n/CLdS0TYyb19uyrSK4qiWEUXUEVRFJd438IriqIow6J3oIqiKC7RBVRRFMUluoAqiqK4RBdQRVEU\nl3jtha+p4TpAswQsJV1Iv8mCKSJaf5b7Yk0J/YMH2a6vt1ivJurA9qSvB1fSblEXOG0a+EZ9nevw\nnnjiWvBJWayuLouxnjvnxFpQgt3AUt5O1qgRYSmufx/2UA8Ecey26mvj4vjzN0tkW14R4w5uuAF8\n1SuOO3Z2UD34YlekOfaRI/bO6bZtHOvcz6LeAciSlZSAa2Adj5wxhjJS4Oc4vCCLNavnzw8/0kN+\nlSZNQp+8HlauRJ9UiAsLs3itdnU5sVbUYZ1sfvopPvj5z8HXeifraCSMM2qvs7LYtjR+Bka6EE57\nrTzLE4VFyzwR4TnO7Skf3pmUpHWgiqIoNvF6B5qZwfO9PyaKKu/k3noLXDPuYTvydUMUtkfMBSdj\nxR8BrVl819lj3EmAktB//ze4Hn2U21TijSHVXdfL2dsXnwvthsTZfNcpB14REZ1ZwyLG+VMNZ0eG\nY1YfjgVXcjLbYTj62jWH7n3MsXu/h4LatOAbbJtqXBJjoLwpdmuL6dPZPn8lziH37+chZikncMhh\n4xYWfw43FKfo/vutxQfxNPFdeV4QKkFP3vjJRJxNIW55R1qJv+LIWMGK2CvqqsE1dy5faKFvvw2+\nhL1iOL0PLjP5k1iNqYLsMGc3C7dn9uEJqJkn1qB1D6NvKqvMTXgau5S+9CW2t+Ml5aB3oIqiKC7R\nBVRRFMUluoAqiqK4xHsrp68vO5ua0CdVvo0n29I3ZQY+ZZ4hBMGtqsaIp/CnVuBT+MOH2TZScpR/\nUjyhnzULnWIwFp05Yy3WvDx+YliZ3ohOkSTMi0BfTg7bCZtQ6R1+MUtPNiktjT9/mWQkonM5nC8K\n7j8FPqnS00oJ4JKVBKWlFj9/qRy2z8hXf+1rbP/iF+i7RyTs5YVCRLR3L9vl5dZi7ezkz38czj8k\nXzkV4bbbwDflRzMd+8DmdvCdG8uD/YKD7Z1XUA5bij+zeCv/TDN9LDGrG2pue4oPHnzQSqyyYuil\nl9AnvzfxC25G5/e/75iNY7PBdffdHzn2hQuX6VN4RVEUm+gCqiiK4hKvW/jVq/m2ePnVWBqQvZfL\nBqr75oBPbumPJGNpQHMz2/n5Frdwt97Kv8hlON97oInLJmQNLxGW/+SFYAFu12T+vcLDLcZaXs6x\nZmSAq2uQS0PCxw2Br7eP/94FZqWBr34+l8akpVmK9cwZJ86wSdhkcKqZi+U/VsYkqu49Jfg3uvjz\nYg77vHn2zmluLp9To8Zn4ZssWv33v+PLrr+ebbNqaaMYKldTY+/zr6ri71Vuei86e3ocs3gTFq57\nksUMdWPAefVJrrPJzr5E16qJqOyvzML57jI1YWZGis6KNcFWamRoyImzfC1ec/Iz/ulP8WWykWHV\nKvTJtERVlQoqK4qiWEUXUEVRFJfoAqooiuISrzlQOVTMbDmM2c8tcNU+WFKT/bfhWwADB7mtjoKD\nreVqCgo41nI/HMbWnlXq2DF+neA71BPp2HFHsVWtPojLGqzlFckY1nYMS0MKNnFpSPnRFHyhyO1J\nEQwiIt/5ogSjutpKrEVFHKfMFRMRJf2Ay0EK7nwVfOUBYlDek0+C79T/vOPYNkUvQEzkRmMAnky8\nGzlnmehq7YkBV8LkAT7w9bUWa1sbxxr/OLZuHlmx3bFjm41GR5FbrhzE71xecyYf1NRYi7WlhWNN\nnDoAvsRkX8c2rw85TNAUTJFz9GJjLV0Dra1OnBMewNK5L3yB7fqNWHKXuZSfOZg5UFnFlpmpOVBF\nURSr6AKqKIriEq9qTKOzeFswdl0N+GqDeAuRvdPoihGtB81fQld0NHcmRWGT0oiQ28bE5lLwtSxh\n7cyWY5HgS/QRs7aNjqq0o1LLEsuGRoIsj1n09DzwlT8s1GJ2GHkToU9o6hqOX8fph0Cyg9RyTeow\nJH6+wWpM5d2LwBXbxJ1gB097wBd27Ig4QEWpkSCVc2hGOjqXL2fbEKgtrotzbKPZio5dfrljR1sc\nvnj11eJg4kTwge6u2TYnu9R2Ysld+WT+fmLh4Mi46Sa2Fz7kC76XXnpb2KfBN1Z0RkVHWwxoOLZu\ndczXg34Artoc7kwbdX0o+F5+mW1TuzhzorhW6eLXqt6BKoqiuEQXUEVRFJfoAqooiuIS72pMsbGO\ns3XjEXDJXE3UWsyBQTLJSIAMRHMuwdbsHiKiI0e43MLMufj2i3Y5OZSJiPLruAWu4phRNiSlowoK\nLslMJHOeFJTZGO1663dz/lZ0/BERUdGPRWLtnXest3K2dmArp/z5qfuLwdc6g/OeCTswI9cym6cQ\nJCba+/yLi/nz9xw28tVr17JtSAN1jeOSlx078GUFcmKCxc8fSq7W3gq+zBs5X1eTg2pcC3/D16cx\nhoqK9ovfub7e3rVaXOzE2jAV89kzZ/7RsS+cxtyiZyNfL//xH/iWoR+KGUnh4dZbOcPG4X3h5MkX\nt4mIiqfx/KwWH5SdT9wvVPWXLdMyJkVRFJvoAqooiuIS71t4RVEUZVj0DlRRFMUluoAqiqK4RBdQ\nRVEUl3ht5aTGRk6QfvQRuHpv5wFXH3yALwt9l9XKByKiwAclRYGB1sotKiu5NMQcxubZn/Kx//8v\nZMWVUeFEf/4z2xs2WFT5Pn/eifXQMX9wxb0uFNtfeAFfJ8ua5KQsIhp1952OPdwArE9Nfj5//iUl\n6Fu50jFlaRIRUWKJON9f/zq+Tg5xi4y8NBMJVq9GnzhvmZuwVKWmRKhz+fnh66QkeVTUJSm5KixE\nn/8SnvRQMRHbZ/N7RBnRLbfgC2V/aEKCvfMaFeXEGt5/HFxyuoM5lOChh/7h2Bd+9Bj42u7msrf4\neDvfq2XL+JyuWIE+qQa1KOMcOk+eZFsMQyQiqunj0jBVY1IURbGMLqCKoigu8bqFr+/nrdi6dehr\nPMy35QdvRdHkx3fztt0UYq5fJW6ZY1DAdiT85Cds5/0I23TkjDEp5kqEd+3mbOsNE6Sgbf5IwgPy\nlvC2vXJFFzrb2hyzdQEKPCfkpokrAAAcYklEQVSs4SF3NWcxLXHh5Vb5P0ceJBHVJ/Pvf2Iz+vLF\nns08b1N6OIVy4B+GKLDZQmULMS3s3DhUzgkm3rbV9OMAxCN9rGoU62N8FlKeJwpTUSPB05zIByGo\nHCWFskOMzig6weeuc8JMcMlr3OZd0dAx3rav3Iw+kcWRQmFERHThpz/jg3X4i8TL/X58HtlAaE1T\n4BrsjAuKFqkPo/Oveuwyx84+iL7Mwd3iYD1dDL0DVRRFcYkuoIqiKC7RBVRRFMUlXnOgPsLbmFwG\nvmVnOe9Zdu/V4HulkAeHmZUhNE8osL/6Ktniq18VB4bijkgdoeI3EaX+F6vhpNx5JzozlliKDpH5\nmva+cPDFiMRSwhocjifVoUxFekoebyk6Jm0tl/zkRuxB56ocxzxmDA27915xYEhjVexlBfj8OLJG\nZwDnPSON89Y5nycURC7Bz3TcOHGwBOtfKiZzDjrfTlqZiIjaN7Y49jXXoK/5N2ybueXWdC4XS9iM\neT74shYbvhEweidPZcgNQnWw9KOcTzaEw2gggHObvlLVjIiO9/M1byuzXDyDBwlmr0PVqOrQpxy7\nYeIy8EWI7yJFZ4HvY6V7F0HvQBVFUVyiC6iiKIpLvKoxnTvH1f3BKwzRZLH97nx2H7jkDjqhDm+Z\nYUuXm2utY6K3l2M1h0PJUqWkBcamQQoYx8eDK3E1l4q0tFjsROrq4pMuxX6JiObPZxv2lwS/WNtb\nOBxPYqu7gyorOU5z8LesYRlvpA+amtiWA8KJiL79bbZtCT+Tca0uzkSn7NqS9T5EkAvpmowlTuF0\nCYR/iYiefZbP63XXgWtoOqdNRp/oBN/pK/gzf+45fMu8ZPF/LXZ4VVTweTXm38HcdJmWIsJM3VNP\noc8T/zwfzJxpJdZTpzjOsJ52dIrSpZrJ2DWX2V/FB7Nm4etk/nGYrkm9A1UURXGJLqCKoigu0QVU\nURTFJV7LmILThXKN0au1bQnnPeeG9IJv585Ax37pGix/Wt6DOYhLQSRh7ujauz7PB1INiIi2fZFL\nHubS8+AzBI+ssX4nl3FcE4/nY+46zjWP+Tm2j504wef1K5/HlMzon4nWufhcG2FCbtM3GnOuA2Ob\n+cCQvzk1n8to6urwLRc9+qid2AxkPu7g+Brw7V/DduMkzMmf/gFfn2OxGo9obwfb4eFkjfff53gG\nUR0qhYb4wJAHC+3h3HKemZBcLEpuGhpGHuM/kUMXt4ViKVvxLjEQ78or8YWzNzqmJ/519D0rFMdm\nYkuqW8JCBhx71PX47MDPj79j3/wmvi5zlkjeGnVjcjDecJVhegeqKIriEl1AFUVRXOK1jKmhgUsD\nzI6iH/+Y7V1vT0GnKA3adj3OBX/5ZbYrKuyVBrW3c6xmSUX4bla4Ke9D9Zf+fraLfDDdUBXC273c\nXItlTBUVLFK7BlWeupqEaK2hXOTZzee5OAKVmqA8bMoUK7FOmcLndIvRbRS1WKhBmeVWssPs5pvR\nJ9uULJWwEBEVFXGspR33oVN26axahb50VkPyzDoAruJmsb3es8fe55+Swl86U+ZMXJClO1FVavFi\ntgNzsOQKPiB/f3uxVlVxrKaS1uWXO6bn7QfBVdwvusGCgvB1ss6wrMxKrKNG7XDifPxxVLgq+C+R\nmzH28AUBYm0oPAO+bb/jLfzcuSqorCiKYhVdQBVFUVyiC6iiKIpLvOZA6cABx1nfjXlOWUURWYJl\nM0eWcHuUj1EoFRMtyjRGj7aXqzl+nH8Rc8KVTHR+7nOGi31+3/8++DK7ufyhpsZiDvT55zlWmRQm\nItq/n21DyQjyZfL/EWFeKS3NTqyPPcZxGqVKx//ErqizreCTOdHTl2P5jxCOp+Jii+dUXKvQDksE\nCfzaQsxzylmJc08b6vlSRcjiULnOTs7XRp7FeGgjl//0rq0CV+CgGIhmlNxIVa+YGHvndds2jlUO\nYCTC2X3lswy1rp07HbNzMZbqya+nv7+dWLOzOc7q8ajGJMdQtPjhJIfEgEMcZxDKgz0o0rq7dmkO\nVFEUxSq6gCqKorjE+xZeURRFGRa9A1UURXGJLqCKoigu0QVUURTFJV7VmM6f59IA/xmJ4OvczIOx\ntm7F13UIERtz2FT17Fo+mDPHWrmFbDuUguhmDNdc8wb4Xn6Zy5pMgZvAk0LZOibGWqygnj0D2/VO\n7T7i2GGDXeAr3sSlKh4fo1RDqmnHxdmJNTeXE+SGGtf5hx5ybH+Y6EdEa4T8kTmYa8ECtpOSLk3L\noaksLtTzF15AhasN3+UyFrMltWIrt/Ll59srDbrnHv78dy1GBTC64Qa2f/tbcLUl8yBHKWhERFQx\nn68bio29NG2nBkWTGx3b/M7J75JsQSUiihsUpVuW2o7T0vic1k/Dluzso9ySbVY4ysvauMSpuZnt\nRYu0jElRFMUq3p/Cy9ktf/87+kQh96l1teAStcBQw06EoiQej8VC6qEhJ9baOvy7IG96zvwc/+KX\n/4n1CAtC8c/6td/nwS5nzliMdft2Pq+TJ6NP3gUZt/b1QdmObd5kyfNsqzgZ7pSNu+F7/oPvhk2N\nxdyN3HQx8Mor4GsSPQSpqRbPaWcnv7Ex87ktNM2x330XXyZPf3DQEDrlHCiLYiKHDvF5NUdiFRay\nbd4RDezmYvXj41BHVO6ybBbSV1VxrKZ0p5R2rVyDmsBVO1i7NnfGKfCtrwtz7OHu7D4tQ0Mc5+ie\nc+Cr3BHs2KK+n4iI6qeLIn9TFOfYMbaLi/UOVFEUxSa6gCqKorhEF1BFURSXeM2BDgxwXsHUZ5Da\nqvVZ28G3+q8saPu1r+HrYraK4SIez6V5Wmg8ahvazOLDowtxJk7leH5iJ6sHiDB3GhlpMV935owT\na1f/teAK7+GnqQ0n8Ql9ar/INRvzzVv6WAghMdFSrJmZfE7lk3UiWv0LzmMt/xArAkp9+DMummqI\nTEiBlLAwa+e0tZWvVakBQoQ6K745xsx4OUxp925wJS6IceyWFoufv6wYyMpCnxC7afjZm+A6cYJt\nMa6KiFC0Jynp0uSWl22MHPa/lU2rx3+YO5ft//kf9Ik57VRaaidW8QwkbwHeF1aWCKFkcyG7+262\nn3sOfTInWlWlOVBFURSb6AKqKIriEq9b+OJi3hZ56nA7SZs3sy33SERYU2NW2cstU1fXpdGDlOUH\nRFA7dfoOnJcT+ijPSDq0oBJ8cQfFcV6etVgTE/m8tqw7gk6hu1k0EbdFpdc/xQff+hb4Tn/AZSOh\noZa2cAUFTpwTdqGm4wvH+EeE33kn+FJ8eNve6JcGPkg9VFTY+/wHBpxYfQN80ZXB5V+0dCn4Wvv4\nujZ28LAttqpdWlnpxHpoMs7o6u5mO/UCltzV/4PriNIGsXSw8izPSMrLuzTpprwVmG6qLOTx4UMR\nuL0f3X+eD5YsAd/p/+LvlbVrddEi/v4bM5jas0odO2bQ+L6JteJcMq4NO3awPdw51TtQRVEUl+gC\nqiiK4hJdQBVFUVzivZVT5GrkXBEiwn5NoxTD05Tg2B+bXy7n+hw4YC9X09g4/EwkKcrw9tvok/nb\nP/4RfW1tbPv6Wou1vp5zoGmTsEWyN4hbJM0R5r/5DdunT6NPlu7Ymt8k4zS6I6nox2LWtjHbvPof\n3AIruyGJiMLmp/JBQ4O1c9rYyLHKHCwRYc2d2csnB/0YajJdIVwaFh5uL6945AjHGru1CJ2yls7I\n18rjhV9sAdeGJwb4wOK1mpTEscrHHkRE4WsL+MDsO92wge3HHwdXK/H6kJBg6bzKtSonB32iX3Zo\nKZYxytMdtQDbY2HNG6bcSu9AFUVRXKILqKIoiku86oHK7c3Q+Chw7Z7FuoqpG7PBd/eDfIve+Vn0\nRZrjeG0hyqNakrEz5uSNXKoyGycXk383l2JA6xER3t/HxJAt0kiUJx1G39Zu3sKXFqLCzTvvcKnS\nrbfi67LTRdkI+Y80RCIiSithVaU0UzXqnnscs/hP88B18qSIqx9Lw0qnNTi2sXkdESnJQklp1wfg\na4/mEp8YM6dQVzfse8rOn/DwYf/bpyb22zfzwY03gq9qFpcn5fYZqQhRcvOuIRwE29aamhFGyOxZ\nzPEs/O854Hv/fS5tq554CHxFd+5z7K9/Bt8z4fdCrzMBt9RuyWzmcrCa3RhnbRb/DrM/gzvxce+L\nFKZRcnnoJJdt4cBjRu9AFUVRXKILqKIoikt0AVUURXGJ1zKm9eu5hGHRWWMGjygVap2I7WgyrSQV\n6ImIZs9mOy7OXmlIbi7HWnUXKsvP+TXn6GqjMfO2+ipu83r/fXxPWbpTW2svVmiRvfwx8M35A8+9\nqZ1YDL6BFfwZ+K7D1koKCWE7O9tKrBMmDF/CEv+UyG1LGXUiaN2rymgEV+44cZySYu2cNjRwrGZa\nU1aj5DYZakzyQ16+HFytN/J1Y63chgjaI2nLFnAVneXSoNIgnO0DLdLGqIf6qXwdp6VZjPXQISfW\n/M2YCZTCRrEvPQU++stfHDOvD69VOSMpNtZSrLKMUao9EWGZnWwlJyJ6UyheGS2gdN11bA8zv0vv\nQBVFUVyiC6iiKIpLvHciKYqiKMOid6CKoigu0QVUURTFJbqAKoqiuEQXUEVRFJd474XPzR1Wzu7U\nLK79DFuCUvin1vKUzrC9OLHzvh38f7dvt1evJmsWf/1r9MWE8FS+miYcSyBl4KSEPxG2wpeVWayt\n6+3l8yqktogIJwG+iVMZl73LNaKzZuHLEjuq+CA310qsCxfyOd3wMMruVdRxc3h+NNZ60re/7ZgD\nb+DvsHIl26WlFs9pUZETa+LeUnC1+KU4dvkMjLVgv7h2v/xlfM/772c7MtJerLW1/PkbH+T6TTyO\nZFE09sIPTGO5Nd/9KGcHtY/V1dZirazkayAvuROd997Ldno6uCqu5Gs1fyyuASA3mZhoJdauLo7T\nLAN98EG2Q3+PseTv5c+/Igf7+WH0aWCg1oEqiqLYxHsZ0/btjjNuFd5lHhorhHGNoVFSxamxGQd8\nybHgNkVqT5/mv0ALF6IvNJTtDbcaAs9Ccuf8Uuz8kbPpbHZNyb+W4btRrai8j+/sb7sNXxd/sxDN\nPWzIOEnpoPvusxOrvFM2f960aWybCluy/UxKMxHRwAweMufra/EOtKzMibV12vCiuWazyeAg20ZT\nEOgrezz2Yt2zhz9/c7677KLKfw+71JJe5Lu6PSvxDrSxP9GxU1Lsxdo/apQTq5/plOLksr2ICO8y\nMzLQJ3dZYWF2Yp0wga9VMZiRiIhee43tkhL0ieuzk3Awnuy+G+7z1ztQRVEUl+gCqiiK4hJdQBVF\nUVziPQcq8h/0zDPoE4PkTnXjOhx2TDw9NAZ1Qb4sLc1eDuz55znWyy4DV8Fu8RS2Jxd85RP56XUB\nGQpHcljetddaizU7m3Ng1SEF6LzlFsdM/CkqvbdMXOTYeYPrwVd5h1CgmjfPTqxDQ3xOZUKYiIq2\nsEK/OcMv/+esuF7/o1fB19TEdkWFvVxdWxuf0/gvnEOnUGtP6a8HV+PmU4697aUw8N1+O9thYRbz\ntYmJfF7NnJxQDqqehU+MZSpRDhgkIpr7olBEq6y0F2t5uRNrZQBeqzJH+NBD+DI59NCsGInM4EkH\n1gZL5ufzOW1uRp+odFl/DAfHLXpygmM3PP46+OTSNdzzGr0DVRRFcYkuoIqiKC7xXkj/7rtsBwSg\nT8zX3ngwDVyem0TxtCyvIcKyljR83Yj47GfZNippy/s280FEBPigjCQa9xqVdVx0n4ea0SOiukf8\n3nfPRecLLzjmkiW4hadm/rj+9lfjTeXsc0ts+xX/fZ07pgN8hYW8hQ+cjyVunb/mbXtaHaZF0haI\nzgWyN6gvvolLfgZufgR8vn19jt04HYXB19dx6ZqszCIiCrtXTO7bt4+sIbaY5z+DE9f8f/hDxzZF\nrOXOtGrjADrvNFIBthANNHlTh8B19ChfH1dfjS8TlYz0hz+gL9KcIW8Dua4Yc+Eb+nnbbn5NWn/G\n2/bUaEz91OwOduxMQ4f7X+gdqKIoikt0AVUURXGJLqCKoigu8VrG1N7OpSExM28EX8E3OAlXvsIo\nG/nlL9k2EyCybMNWGxcRUXs7/yLzMHcoc3KR994MPrrhBrbNkivZvtjQcEnERDIXBIKrxk+UWRkJ\nmwmv1zr2o4/iW8pu2jNn7JTcDA3x5797N/qktoyZHvc9fIAPNm5E5yX6/GUr78MPo6/qYCwfGPnx\n9gAuqTErimQVW2qqxTKmqqphxURk4rMzHVtSr7iC7dDv4vODgd/+1rF9L1ywFuuyZcO3neZ9JAbJ\nfeUr6JRlbxs2oE/+zo88YiVW2R5r6B6Rfx+LCRWsQjGh8rNiOKJ5rUp1oWEGNeodqKIoikt0AVUU\nRXGJ906k+np2Gtvb9n5WLokZjyUV1VtZgSl7M1b+yy6lU6csbotE10zrfvy7IDtlpB4lEVF1P5fg\nnH4SOz9CR/Gtv81OpIIC3m6U5xwB36FB3m6aW8raLN7Cm1qhIIK6Z4+VWMPDOU45Pp2IKPAOkQp5\n+WXwVW7xd2xzh/rAA2zv2mXv85dbzbLZreg8eNAx847mg0umH8qvQfUjuvJKtvPzrcV66hTHevYs\n+mK3iG27oWLU0M1z2VN/MAF8A69xOY5VlSuPh9cAKaVGhBeFlDwjovPfYRFO/w68xik5me0zZ6zE\nWlPD57S7G30LFrDtX1IEviMZrB0b24fXTXtQgmPHxGgnkqIoilV0AVUURXGJLqCKoigu8Z4D9fV1\nnPkLMM8py2YiX38eXyekWA5NQvWjuJNCDcemGpPM10rJHyKY17J6XyK4lo+pcOz8DsyPidQZtbZa\nzCtVVHCsUp2bCFpkzYQtzCFKbsfXrVnDdlWVlVhXr+a80vvvo08quRvjcOC85aV7bY+zdk4bG4fP\ngWWnn3fsrrP+4JOnzczXpjSJfGRZmbVYt23jWE3hIKkAZVbVyPZIz2RUlZLtwdnZ9s5rby/HGth9\nHHx7TkY5dlL0KfB5NrGyVfGCM+Ar3cSlREVFlmK97z4nzkOF+CxDViOZY69kleWqVegbfVCU402Z\nojlQRVEUm+gCqiiK4hLvW3hFURRlWPQOVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEu8jPU6dcp4w\nnfPDiYXBt4le3NWrwTcwg2vSfE924nvedRfbf/3rpZnK2PEs+FKeYXm7xmk40oH8/Ng2Rw3IJvrY\nWGuxgkzgbcYshO98xzFXh+I4jOXfEfV0soCRiHpXlDl2YKCl2rrHHmN9gTtxTEaCGO9wvh//Dr/3\nHtvf+x6+5fZpXHdrs78c9AW6cf5CY06NY6esTQVf8eQGx/YUngdf6VquGbVWr0hElJ3NT26NYs89\n+/lnmtNwcrO4FnvhQ77g23DlpalZpe3bh+2FL29i3QazFjg8RJzLFSvQKWenzJljJ9YDB5w4i3dO\nAZcnVMjuSX0DIiiurWoKB5fsoR8Y0F54RVEUq3i9Ax24/nrHDjZVauUd0ARUhlm8mO0FCyLBF7dw\n4acM8ZMhZ8q1fIiCyvKml/6O8jct6XxHlLjGGHIn220aGsgWMScb+cBUuJnBQ9e+Zeg7t3ZwB0fC\nVVeBT3Zb5GLzl2uqb+C7zh1Gl0b9pJWOvcYH7+qDgtjefjgKfKWTuJsFdXFGRvlU7j7J3V0DvqqT\nVXxgqIp5csQOaTAEfEU+ZeIIxY1HhNzZ7N8PriSpBrzvJ/i6DG6b2WB0sLXdy9dx/MgjdBg1917H\nvv12HIDX4pfCB6sOg69mLe+WesbjTmrR5C6LEf4TcT48S7D7LXMxK0MZAlfkJ3Sfc4NqwdeUPuff\n/li9A1UURXGJLqCKoigu0QVUURTFJV5zoN1v8AO48KBe8HX18DA0mdIhwrTO5z+Pvrj3+z5liJ+M\nyBxWWYo08lyJ4ul69XUV4MveIRSY5BN5QoV61NseGZ3jOXe0d2EK+PpPsJ0XdAB8a+v46eIv3sOn\n4o9dgtRy9iDnDn/5kZFY7ehwzIgZ6MrO4if0lN4MvpceoEtC11SeLFBoFFPQbr7m2nPKwLVFzJgz\nlZFaxxsy/JaoHM8x7FyLPvlQvvlG/IwzX+PfEZ5kE9F111kLD3j7bc57BjdjjpC2CDl/qSJGRJnj\nhDqTkeelEOOCsUBCOlcJzTDevqZbTMX4413g23Mrn+P8Zsx5mhMhLobegSqKorhEF1BFURSXeFVj\nqqzk4mQ5I5sIK3wCf/EU+NaPevCi/4+IaNpDXI8aZ3F+dXY2x1q95BD4zkXwMK7gmbeCr3rhPn6P\n3ViADYOwPR57xcnnz/NJN2a/D4TwVsS3DoVhae9ex2ychakIuf0sLbVU9C1EqqOWYonX0qVs580w\nylKEs3UJ/g6ySmf0aHvF6bW1/PnPGcSfWe/HW19ZYkVElBjA10rS0jjwydlnVgvp8/NZ/DcHP8e4\numI+MAa1Jf2av1d7lqCgMv3xj2xbmrVOhPPWkz5A4fQ9Y2Y6tjmsca1ITcR14OdRM8ifhzVR7dra\n4Rcyke44NYhz4cM2cQnesr5i8JV9WTTkzJunhfSKoig20QVUURTFJbqAKoqiuMRrGZOsBvK/7Wbw\n1fzwVcfONBJL40S/floHtnGR2RJqiS9+URwcxfKT4K1b+eDxx8GX3S1KM/r7wZfZwfkRbA4cGY17\nWTAiZflt4MuZwOe1Zt4V4KuZyvmyzB154AtZUGkxwn/+jK2c9zyevAh8265a79imCMMV93LOa+47\nxsDBdX9hOx+H+I2EkyfZrgm5D3x+gxf/f0REdJR7YFeswByoTIFbJYRbRs0BeNAHbQjGyJxs6VHM\nSRd91agltERdHdtJAS+D71fvcA7UHMgWt47L3mpnVYEv88+PiSMs1XJL2/VcgnQzLlUgaBS27/+g\nUyTly45hPppKNrA9D9vD/4XegSqKorhEF1BFURSXeN3CJ0Szqknuza+CL0SIr2ROHQO+tJBWx24J\nKgBfYgl23tjiMbErWJ6FnQ8103i7udiY/S3LLbJXRIBvKV0apM5j7+/xvPqIHRzdcAP4Jn9BHIyf\nDz7ZCBKHO1HXlP5SVG4Yg+GvbGZ77nNY/lUzixMeR26YCb7YMXvsBGeQf0ykGObjuaE333TMc9Mx\nHtp5wjGTNuHvkR/Cv0eFsbsbEaK2L3XGEPrShQjl7NngKjohVK/MIfYlYg9da3QMjYCKCE7BefpK\nwffoo2yHLcYunuwAjqH6ckzjnFvI2/ZgG0ESUfxlXI52fhC/AM0drAiX8gTKMdUWcrdftw+uTYML\nOcU0XLJJ70AVRVFcoguooiiKS3QBVRRFcYnXVk7yeNgpyyuIaP1Wzl4sykKlpoa9rNSUMBM7oIK2\nbeOD++6z1nLW28stZ7JqiYioqYntJ59EX+g3WcWJ7r4bfN1ilstYi22nx49zrK9iCpTm3s4qNsUb\ncQ6VJ/3I8G8qpWO2b7cTa0EBf/5yQAwR1Lecm49q7XI+zlpDbSh2vyi3ysuz1x65Zw/P75qUBK7g\ndZw7TNmL7XqN0ZzdOlWIiU6pXt7SYq+VU16rgasMXX4ffiwhy+iIiGoWtPBBQAD4pDqWze9VZyfH\numQJ+uQlZ7Z6797NtiFyRsFb7M/FglbuaUZJnwzAHDQlazUjIsA1ejLnUoeGdCaSoiiKVXQBVRRF\ncYn3LbyiKIoyLHoHqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSX/F7/2827v\n4mRWAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  9\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztvX1YVWUW978ghpQYMrN8yRgiI3UM\nXyI1MiIiUjIyMiUjLiIjMmOMTA3NMUbxZRxyyBeGjBxGSc2IcXwhMmLI0MzIGFMjM3LUpDFyGCMj\ngueP+f32Wt9bOVObm+u5nutan7/WbnWO6+yzz82+117ru7za2tpIURRF+fl4/98OQFEU5f9VdAFV\nFEVxiS6giqIoLtEFVFEUxSW6gCqKorjEx5MzIICcR/TR0egbMoTtRx9FX88/L3Hs1ukzwNe/P9u1\nteT1UwP9n6xbx+UEDz2EvoQExyyMLgRXUt9yxw5JiwJfjx5sV1XZi7Wpic+r36mj6Bw0iO2wMPR9\n+CHbf/wjuLpPS3LshgZLsaam8jkdORJ9dXVsHz6MvuRktufMAdfmOXscOy7O4vff0MCx3nYb+i67\njO3SUvSdPOmYR872AVdQENve3vZiHTCAv/+DL1WBL2NTuGPnvD0UfOFd+fuXlwIR0XfvVvPBsGHW\nYq2q4ljDR7aCL2M633/l9FoCPpo2zTGHj/IFV2Ii2+npls7rihX8/Q/F85a/n89p6sKrwFe17nPH\nDu/3Fb7nli1sp6ScN069A1UURXGJxzvQxoUrHDvjs8fBN7dbLh8MWYgvvPFGx/Q+0wiuceMCfm6M\nP41nnnHMxlPN4ArwaXLs0snG60bzXee4cehaMl++D/4V7Qhr1rDdrVsg+PpX8PkaNgg/B1VUsF1S\nAq6GZfIoiWyQ4Z/v2Dnj8XvMmMffY87SE+DL3cR3cumzzoAvriRFHBTYCJOIiGYs6u7YS86eBd+p\nN9907BMXXAC+0PnzHfv9frPBF3xS3B2Gh5MtDq7gXc+EZbjr2ThW7JCmbwVfVd5cx47vlQW+CYuG\n8XtstBHlf9m/n+2SErzfyonc7NhN0bjT9Euc4Njz52NA8j2tsWED2/fdB67Ue3vzgVgnzuHFF+Ew\n4g2+HipTzP/5v+gdqKIoikt0AVUURXGJLqCKoigu8fLUC19ezk/govrWolM8oj576aXg6vLRR3wg\nn9YSUUBinGM3Nlp8CltT48SaVRIKrmuvZbt3b3DRqFFsmw+a95SI3F6fPtZiLSri8yoKBIiIyPsm\nzh9Xr9gFvmFBDY6dMr07+AryRL7U19dKrPL7P3YMfUmJ/ES2cif+HY4YxHFueBPjnLhAfDc1NZ3y\nZPvQoS/A1/YtP4XPyfMDX0aC+I6N3Gn89GDHLi62eK1u3Njuj+70xImO3U0+BSYimswJ/Nq/fwmu\nkF4iRx0QYC3W+no+r2PGoG/mTLbFY49zmDcPj78UoW/fbum8LljA5/SDD9C3aBHb/fqh7/Rptrt0\nAVdRCV8rkyadP069A1UURXGJLqCKoigu8VjGFFXBZRM53bBsImP9cMfu8vHH+EJxKxyzPA5cU6f+\n7Bh/EgV7eWs4twsW9VZdySUWZjFwsyhr2WNsmVaW3OnYU6ZYCZOIiK6+mm3v67Hol26/3TGHHduM\nvk27HbNg9BD0rRXlQint1Fz8TKIixbmaPh2dkVwoXVeHpVh1dbxt79bNeNOLLrISm8mf/sR2Scmv\nwFdzEe++QswXBr3mmF73/hpc339vKzrEO4FLfFpPNYCvW329Y89dfjn4pn3Me9+1ULZGFB3NZWUR\nETai/C89vbi43N8f47nuOrY3bcLXZVzLJVgLF94Jvq+/thefw623sv3cc+DKGVXMcU3D379kQjKm\ndzZOk00O5y9j0ztQRVEUl+gCqiiK4hJdQBVFUVzisYxJikm0Gm1O3p984ti1RmYp5AwLG8TMGgY+\nKdBRVGSxNCQ+nkUPThaDS1anVAfF4+tkQO+8g76topUuONherLGxfNLT0tC3c6djVo3DXG64Dwtx\nnOg7HHyyUiM319J5LSx04jwaie2hMpe9+VFsOQQWL8bjH35ge9cua+f0wAEutxnoY5TcffqpYzaN\nHQuu0tf4q4iPxnbVuUs5r5iVZe9albGeOoW+iE3pfGAo+Bzox88TBj6MdUOFj3HJW1KSvVjT0znW\n3OkofJOxjHPfUiCECEvu6E7MgdKVV7K9caOdWJua+IuUYjZEROvXsz1rFrhWBvFv7Prr8WUjPuJW\nZkpN1TImRVEUm+gCqiiK4hKPZUzU0uKYv1+EW/2Zu1k1ZscZYwt/eK1jlyUa0iviPYnslNsQEdya\n52FDAYX+k7eYG87g9l4yz9jBH9wBt/AdCk/SumWbY7/6KvomDv6PY59TAiQqlXbvRldutCx5wtIx\n1/j7O2ZkJLqOzGElpdBn8HusKTni2FE+leDr1Zftoo5H6CB3bXu6GJJbYn956gu8jiP5I5LXxT+C\nb/RoW9EhA6cKBaYzqFZFq1ez3asXuFp78i7ykPGeSU/L69pIU3WA3Gn8XdLd94IvR7QfZaxdCb5h\nfdfwwbp14Cuv4w4v1KJyj+wwOzsE1Z8y99c4dvFITItNObiADy5BFadzUgHnQe9AFUVRXKILqKIo\nikt0AVUURXGJxzKmqCguYTDV2lN+w/kYszkq4IYbHDtj1B7w5cxndXjy87NXGlRbyx/EUIAqPBnj\n2Em9yvB1QuU95WQ2uAoOi564ykp7sVZWcqxLl4IrPYhzmbmjDGlxmZQzyjHoppvYfuABK7E2Nrav\nxjRwlsizjhiBzrfeYttQuKFdQmHqm2+sndPMTI41+/mu6HzjDccsOoZ9jrJy7dln8WV9SoVifjsz\ncdyQlcWxzu1vfMeyzEvETUQ0bD8/d6hOzgWf129Y1qut7fJOOa8LF/4Avkce+YVj5/9qAfho+XK2\nZdkSEZTq2VIOo969+Td1zz3o277dMcv+9Dm4Ynx4OgAtM/pj5W8sPFzLmBRFUWyiC6iiKIpLPHci\nKYqiKO2id6CKoigu0QVUURTFJbqAKoqiuEQXUEVRFJd47IXf6eXlPGEaZU4IvOoqts1+3qAgtu++\nG32yRmvGDHu1lUJ6r3FpPrgC/EWl6tq14CvrxTJtMdFGRaus0bQYa2oq19bl34J9wnT//Y5ZI8aN\nEGG9bdHT+PBPDGykkBBLcmatrc4/kpSMf2v/8pf3Hfv++28AnywBNAZdQt3lxIkW5Qxlba2hEed1\nr5R+w5EibVs4oKJ/o+za737H9sGD9mLdLX5XI+8z+q/lybvlFnCl3HjQsc0Jsn2FxkBsrMXzmpLi\nxJrqUwCu/LNC4nAIjpgp6Jbh2LK9n4hov5DHsDaZNyKCv39TROLNN9n+97/Rd+GFbD/5JPqk9GFU\nlNaBKoqi2MRjGdOGDXynNPHUCnTefLNjZq7HOezZc7jbqIlwUJPfSaHuYlGk+MgRORccfbHdxHAo\n4w4U5kIbnQi+fXmIVnOzxb/qgYF80q+4AlzlC7hTJ+q0oRwl1Hnil+KQq+IW0Rm0ebOdWHNzOU5j\nalhTKassmU1RuafFnYm8NSIi2reP7W3bOkX410SOAv/Nb1Bxqe1ZHkBWMx4HJ65aBba971+c11xK\nB1f6f7ijJ6frbPBJ7e9p08BFe/eyHRxsL9bKSj6vxk0m7uxMhOJ2Tj9UapI3hNbmwt94I3//jzyC\nPnnNjRoFrqaJEx3b7/hxfJ08qXFxegeqKIpiE11AFUVRXKILqKIoiks8PoWfeBUrKUX96XHwld96\nwLHNwVh08qRj+plPxGQOcu7cnxjm/yYvj+0lF6MyTOsznEvyNh5fZi/ivyFdjPSoIZRkjwRWzjFP\nnixgyFqLyuJz93OOrnitkZCKPEnWkYro8+eDy+/0CcfOPZSMr5N5T6NC46hQxgkke4SFsZ3kj7nj\nlC18Htu+wDxX06/4UXuXRCMHenvnqLxLef/0QZhHjBvH16rMeRIRvfzy14798ceXgk/m/YODyRpr\n1rBdcDX+rhoe41hl8QARUdhYzntmtGwGX0bP/4ijBzoa4n8R+cvheTghYc8gcSwT4kR0fX9OnR6c\nZ0ydEBMZKO78Ux70DlRRFMUluoAqiqK4xPNQObHd3rED55A3twx0bLl9IiLKXM17CLkFICI6sT7y\nZwX4U7lU7GiO3GeUf4hd5MUX45byoYd49nfBWNz6NUZb3LYJJtTxYKuNCfhvyoJ4c9b2tl6c8oh9\nHrdTjTs43RJAdkgpneDYL798AHxtb4k9ozG/fO6ZGY59Edat04C/shCwzS180qkcx44vyQAfVFLt\n2AE+v88+c+yQeUng2/OXvzj2cJuqZSLFFZ6GJYBVozmN0HUhprjaLhvAB6ewrGzgIVFyE4ufvyMU\n7Offfbo/iqPnLs107LOEYuSxu0XsxvXRGVSu5Zn1JbhLp5pT3AAwePA34PvlL8WBkYdoavF1bCzG\nZPQOVFEUxSW6gCqKorhEF1BFURSXeM6B+rDbexMOv+oxmfNjjVsqwUfRnHQ6dgxrKk7046FefX5y\nmP+bmb/gHFjmaswBXXwx222GlgD14DwHjcoDF7aq2ftbM2cO26nLMc9avv4rx27udjn4ZGfZyksw\nzzulpUEcde9wjEREBddz+27BIkP04phQCTHaPGe9P7Pd91yzopMmILz4omMGjcHvP6cL5+roUAu+\nbv16tsePB9cwkQO1SRnxkMOqLQ3oPMkxfHeBMahtqRjqJloQiYhaRV7VO8NeDlS2ZJ7G9DGdmMV5\nz8j96KPfin7NQYPAtfhzXjtmnr866GcTsZd//3FL8fOXlrKdlnYJ+GSpWrNRquZ3qJoPhg0777+r\nd6CKoigu0QVUURTFJR7VmOT8alMOVDYYSUEjIrjrP6fESZYb9expTzXG15djNSpVKKKFZz8Xn44C\nX/zYZj4wuhTgQ4eGdop26TlqRVID9Omn0Se7lvabeyZBTIydWIuLnTgXf4rbmyeeYBsUtoigTGfD\nP1E1autWtgsLLSocNTc7sWbM8gWXvD5feQVf9u67bJtff8BZTqfQ5fZmrdOKFe0qB6VP59jN305d\nHdtzx1ajMzmZ7Zqazon1wQfBFdCXC+ZGj8aXbVwuzt28eeBL9+EupdxcO9dAfDz//ounV4HvSC++\nBoO7nAAfCKsaymhH1rEyWnsKV3oHqiiK4hJdQBVFUVyiC6iiKIpLPOZAKSvLcW64FtvK5PiQ6dPx\nZQlPcbpgt/GW8c+xAjjNnWstV1NfzzmQDRvQlz661rHLr70WfFF/+AMfmFL2Milmc37TiRN80k2F\nfDlEyFCOquzC5S9ffokvg4kBjz9uJdaVK/mcTgnDNj7Zo5vRBRXHc0aJ9lQzkdciyogsTiSgggI+\np+PGoU9Iy8f8Hcu/yuZxvqyhP+ZrS0rYTkmxmK/dupVjlYlNIqLevdk+dgxcDYmsXm+qw8uPbCuv\nSEREAQFOrDnzGsElxYpS96KS0cohPJfMjDX8cCEfJCVZifXECb5W+/hjnEVbOFc76eKt4CvvynOw\nonyMckxJRITmQBVFUWyiC6iiKIpLPG/hFUVRlHbRO1BFURSX6AKqKIriEl1AFUVRXKILqKIoiks8\nytk1N3Ntle+afHRKbbX330ffM884ZuqOCeDKn8PS+xQYaK9eLSnJiXXlyEJwTanjERNzuywBX9ao\nMseOWhQDvvKH1/HBAw9Yi7WwkM9ri6GulrIp1rHT+20D37RpbAcfLgPf3J0ce1aWnTrADRs4TqMN\nmprzeExC7cMPgy/oe34weeGFWHf32mtcdxcfb69e0cvrG+cfPX4cJcuuvprt7xbkgA+auE1RB3mN\np6fbu1ZjY51Yi8SUUiKiSfX1fGBMQq0cz+NQzPLaZcvYzsy0WAean+/EOuZ1rPXcvkJoIBifg+66\nyzFP+ODwlj6HWJuCoqLs1IF6eTlxGnOAyU+eU2PUaf2/+B6yV69vwffggzyPpj3dBr0DVRRFcYnH\nO1Df5eKvtWw7IMKZ4bK7iIhSSlgltSAZq/sXv8KCyjPb1939+Qg1mrP7DJ9QLgoab/hEJwjccRIR\nDR1qJTRPyNNIRDCMfjaO/qaen3HXzJF+eLectV7Owi4gG8iPL2/GiIhoB9+tFRmuefNYwPiuu3DY\nmKnaY4uhQ/mu09B3RlErqa5LRLRoEdtS0YiIFl/KuxWbl2r4ad5ZLPo7+o705Bud4PtQxFp2n+0z\nrvHVq9nOzCR7iIFwpY+iAlTmahYZzl7+DPiqhSRbjy+MUkn5BUWhOppb+ixezAdyMiMRHREScObd\naU8xT/74cZR47/Oh3D3dSedD70AVRVFcoguooiiKS3QBVRRFcYnHHGiuDw9nSu+CT7ZBZdpQvym4\n45+O3RT2OPjuwodg9vjuO8fM2DsJfWlpjhltKMPQYVZcOhKE+ZjgNUKBKiurwyH+/8gn77E++DSd\npnEOtO3NN9EnniYGmedRJsEsETI+lA8SE9EpkrcRZCCedJrCSDIHWulB/Obn0r8/26ayfPo4Ufkx\n2ThP8rwZskH34Cw0a1RNF2pV83GQId18M9ty+iARJQyWT4nfAt+VV1qazmbQJEoY2j74AJ2rp7Bd\nUQGuYYcP88ExVIh/rI3Vu1aRJUQFRcZ8HKqY8+yzjl09Dn/Hb77D9sT7WsE34c+c99x4/hSo3oEq\niqK4RRdQRVEUl3jcwsuZar95E+9hR7/Ca+8TT2wGX2Qk2089he85YADbAwf+tCB/El27OmZWfyys\n6XeG7UmlRkOAEDQedRi38Cei66yFJ5GlSw1hWI7Uvcty/v+MLdOMpTwnfkm0sfWXs7f7YDmGa5Zz\nLC233AIuH+GLCgrC1736qmOmbE023tTOzHqTLl3YNurPKTatgg9EmRgREV3ExdIwKZGIlouX5eaS\nNTJ28oC+yKk4rE+cVko0SpV+8Qu2m+uwkn7DO9Qp7PgrlyDFlaCoemY33opPD8LXbdrLJU5nUBea\nVqwg6zSKGfXfGTVnXs+L//C7r9BJfFIvuQQbMMRsxHbRO1BFURSX6AKqKIriEl1AFUVRXOJZkT4+\n3nFWTisG14UXtv+yEZ+IkqfxRu+kbJ3LyrInejBlihNr7TQcchZSwXnP4EUoiHDkKZGQMcUkZA6y\nuNherMOH80mXQ+SIsGdyN47kq/LhgqHw5BB8nRyI5+1tJ9arruI45fA9ImqI5Nxd91O14IM6IiPn\n6DXzJsdua7vJ2jmtrWXhEzPNKU9jTTKKiVSGcalexDLMR84dxNe8LYEWIqLyco416jDm5Fsn8/Xp\n/esB4Fv5xEHHnjIb83WyxI18fe1dq5mZfA1ccQX6vv7aMWsTMD8a0ksMdjP6gMta+FlDTIyl81pY\n6MRZf0cSuHq+K9Yuo9wKkueibZWI6MQgfj7Rp4+KiSiKolhFF1BFURSXeNzC19TwViO0BZVYjvbg\nMoU77sDXSfUbqW9JRHibnJFhbasRHs6xipHl5/yTR+cYZUw+XMlVE5YCrtD5Qst040Z726LUVNaD\njMR4JvXg8qQywhInKWVoztr2nsYzwyk310qsERF8TisrsEsDZtYb8kfZa1n/UQhhERHRjh1sf/WV\nRd3K4mIn1iNDcCsefErMtDc7thISHLP1ttvA5b1hAx9MmGAv1tBQ/tGZ8Tz6KNs33ACuVOJrxWhS\nAgGisjJ75/UrobN5+WWXoVOm49avB9fR1Xwd79yJL5t0CDr8rMQK2sXLUPM38zTrAWfvNzq2xo5l\nW9ZfElFZHafJ2ks16B2ooiiKS3QBVRRFcYkuoIqiKC7x2Mp5kKsmKO2Pw8BXlcC9bd9/nw6+lL6c\n/zhlzErp0QmqQUQguGSmY6Allf5xEfha73/AsQ+X4Ov2j9vo2Ia+U8cQbZF/+Qu60t7lvGeeIdQT\ns1TkRI22ww33cqwTOx4hEaFq1PCR+Ld2jyy/OnUKfJmTRWmIURpWPd0ov7JE0VnOe/7OUM45OEDk\n6kxJfBG7t8zrnu//tUTrvhrHvuCCL8H32WcfOrZUmCIiGjWKbTFIgYh+WtuhGy7/4gs+MNp5N/fg\nZwZx0/uCb9cuts3PQauNpKgFZBp+0ssvg2/OB5wDzV+LbeepZ3kd87r2KvD93ZgWcD70DlRRFMUl\nuoAqiqK4xHMnkqIoitIuegeqKIriEl1AFUVRXKILqKIoikt0AVUURXGJxzrQqCjuLzXLN2WNYl8s\nAaP0LqK/W/QaExHlrgng/y/dYi90RoYTa35/lCxL/dcCPrj/fvCFjA527NqdKPe/chOP0JgyxWKs\nQnovtz9K76UnNvDB9On4OqHTdvTSS8ElxOwopq3NSqwZGfz954xCOcMTI7nu0ihJJb+pQlPg+uvB\nd/lzPKXVZi/8hg0c6wBUgSN/f7bNWGU795JFRr+/HCm6ebO977+hgZ/cyoJJIprxdy5iNX9zsi5X\njv4gwpbu7t3tndeGBj6v3UcaNbyyxtdozq+fyLXhpoLcxN5iHGtEhHXpxexHPgdXcjLb+4wxKfKc\nxnXDMbFet1zg2O1JL+odqKIoiks8ljF5eX3rOL/9Fjt45Kq+9lVcnH2feIIPwnD4VSGx2GlSksW7\nOvEXKPN+/AskR9hDVxLhgLfwD41pV488wrZNkdqvvuKTPmsWuOb2LXDsEqMzSqpK5aQZIsbygwQE\nWIk1P5/vPlKTm9H54ouO2fTQ4+Dy28dzwDf8Mxx8d90l/j8/e9//KaEaVPkaXtPxB3kH4v3sbPDJ\n03ZifwP4SM42Hz7c3vff2soBSnkqImjbmbE8EFxLSsQdoCFS7HUx221tdr5/IiIvr91OrG0f+KLz\nAe7io1tvRZ9sjXr9dfS99hrb8fF2Yq2uduLMWItdk3LmYXpdBvhyg3i3mr4b+w3Lknk4paoxKYqi\nWEYXUEVRFJfoAqooiuISjznQEyc4B2YqYEtF9PRXbgRfg5jideoTfP+Qs6xEQ6Gh9vJKR4/yP3Tm\nDLiO/PrXjp1wA8azdq2IbX0W+OSgrJAQi/narVs5iJdeAteRpfy02/gYFHqSVa7GPI9q9dt/aV89\nPyCAv//G08YTaikHZDxJhkfE774Lrm2l/Dc7NtbeOT0rcqBdDLn+CvHodbjxOj9x/psTcSKBvOaX\nLLEXa3Awn1f5oJ+IKOeY+B6l/BIRlQ/iJ9tReRPAR8uWsd2nj7VY09M51hdeQOWotv48HG7GXQfB\nt6ROxCel0ogofA6/rqrKznmtruY4zdmQEqMoCKZX/OMf6LvmGrbj4zUHqiiKYhVdQBVFUVziWY2p\nuZlnrddhCUNIP7GlM++LRQVw0tQAcMldSWqqxW1x7978QcxKaokxAK2pS3fH9svDAnwoFSkqslga\n8g8n1kceuQ58sqzG3IrI4Vw9e6Jv+9PlfBAVZSXW997jbdGYMeiT1TfDzlahU0ySi1qfCi5ZyF5c\nbO/7HzOGY91+3QzwNc3jIWOm2LYsrDaLrN955xvHbmu7xN612tjoxFpTh7+P0FliCKOZGvnrX9k2\nKukz+7GgdnZ2J/2u7rkHXAVh3ATy8MPYhNL2Bp/M6h6Ybrr++k44rxERPBf+VSyIl1WVGxNRUHnD\ndzxkbt06fEvZZDFwoG7hFUVRrKILqKIoikt0AVUURXGJxxxoayvnlbxX54Nv76OPOnbY7beDr2oe\nl9uUluJ7ShESm2ISBw5wrF26oC94DZcj5fbAUiXZrZe7DEt1Mqbz35ecHHuxNjVxrH7zMF8nWzvD\nx3YHlyy5Mgm8msPzsSQmQsXFLCZSFw8ueY6nDDFyoHeKqW5Dh4KruZRztb6+FnN1Xbvyhfzjj+B6\n7x1uQx2RjPnxlU9w+Y05U05eu5mZnVPGVnUJTsCTee/YU4Xgi9vEbdCmmIj8XdnMgZaX87Uq5wgS\nEcXu59wy9esHvrn7+HrJGrEVX/jBB+J/nGsl1sce4zhX7cOyyveWcS75vffwdXIeYlZLJjpl33dN\njeZAFUVRbKILqKIoiks86oHKmdVti7Gm5ivRTFNklNv0EB005na6s+ZXT57MdtVsY8sg9mJrCbfw\n77/P7QcvvHAN+J54wgjeEi+8wPaNY5eAb78os9m1Czs/evXq7dh/+xu+Z/ANN1iLj4PhcqSMOUbL\nzPbtjrn4HdyGfnYfl6nkjy8Dn+9o7kKh8nKyxlbxnQvdVCKiy0by7qvJeNmU9RGO7fX42+D7/vsL\nqFM4fpztS9AVu5evzyyaC77NJZxiKi7Be59syoQjW0QNYYWqlesxpRS3k9NPP+CpAyGz7g/i9VFX\nx8dYxOWeVU8f4YNNWG61QMgBbz4TBb6iyXwNztiH523UfD6Oo/Ojd6CKoigu0QVUURTFJbqAKoqi\nuMRjDnToUM65FfbCcpuk2VyeUrb4Q/DJdjlzrI/3SKGHs2fPT43zfyLnMhV/jzmX+OnfOvYcI605\ndiy3Ur76KvqMahhrREayPWIxlgf5TGc1pn//uzf4/A6zktUbb4SCb+KgQfYC/P84MJ5zcAPHYRbo\nRB63xH1rlIbICQB0yLjEpk2zFJ2BbLu96SZw+eRtc+yzv8JqFD/Zr3fTD+CbN49zoNn20opU2Z/b\nW5cvQ9/Uw3zODVEpqj3M9zvxD2PytGwD552xcbKDjB7tmFOMmsRNm7qb/7eDSJ/TqlXokxVPX2EH\nqGsOnOXZZpFLca2SneYR+zDvLnWizDZfKTgW104SVO9AFUVRXKILqKIoiks8qzEpiqIo7aJ3oIqi\nKC7RBVRRFMUluoAqiqK4xGMZE9XWOgnSo11CwJWYyLYsISLCds3yqcXolDIy5eX2FG4yM51Yh5Vi\nzUn1Dm5Hm5CGpRevvvq+Yz/4ILZDyhKs0FB7CjcbNrByzMTrDqBTTpLz9wdXxuqBji1LoYjw+2hs\ntBRrXBwnyMWUASLCOH3wMopIDHTsykWo1FRUF+7YkybZO6dSPX/ElSfQOXUq21Jhhwi+5NqFC8F1\n9iP++Da/fzkAbdicWHSKMq+oRViQJEP3mzwJfEcXFTl2YKC9WL28ypxY33gD44mJ5tbSxx7He7FV\nD4kSxU8/xTeV0/o+/9xKrMfEUMG+5vgEIWPW7I+/f985XPIUfxjbquUlXlamivSKoihW0QVUURTF\nJR7LmLKy2p+1nDOfdW0KN/k01gY+AAAc0klEQVSBLzqa7T7TcH5163oefuXtbVGkNiTEiTXgZC24\nYKb5sWPgKz/M200prkxEdOgQ2zYFlSkri0+6PFlE5HUTC/62vWdsfYKC2JbbUiIa8A8+rwcPWopV\npEWy/TEtUlLCtjlTUA6OS9mfgU75GdLT7Z1TkW6onI6Dw155he1VDxriz/JLlt1MRLiHKyzslFjn\nDsFYW1rYzt6P7S/V8/j/HbYDt5tVo3grGh7eSeLfi1AdisLCOJ55GKts8IrpgkPe3ruQFbBGjLAU\na0aGE2fUPhwOWb7mqGOHRAeCTwpR9++PbylTeEVFuoVXFEWxii6giqIoLtEFVFEUxSUec6CNjZz/\nCCjBAVcyB3fqP/8BV48rr3TszMSj4JMlT1OmWMwr1tQ4sXoN/jW4rrmGVXXS0sBFY5/iEKqNt0z4\n5BM+CAmxF6sY1gZTrYiIKiocc3NCEbikOkz6IFSVSVnLStsFBXbOa4soDTnyCV4n37D4D40Y0Igv\nlImlK64A10lRb9XL1vA7wlydzM8SEU3qz99s65Bh4JOD+pIi8VqtOsb5Mpt5xfp6jvXJJ9FX1J8V\n6TcPwZxjXDfOJVb7R4Bv2ANiWN7Bg9ZizcnhWDPmGfrxUmbp1lvBdbSlj2Mb6Xp64AG2J060c15X\nruQ4QQ2McBhe46lm8HldyP98WxCWatIf/8h2XJzmQBVFUWyiC6iiKIpLPHYiyYaB3Jbd4Ctew9u2\n+NMF+EJR/pF9zJh7PlLWvOB2qiN0HcECw8Yocmh+MrumArfw1iNEqsASUeu11zq2t03VKjmAXJbK\nEFHSThbbDavDl6UfmsIHF2CaoiBvlDjy7WCA/6VB2Nde+y342urF8V48b1A3ZEwRTL+Pz+NGsofM\nGmRswcFhZbM43RGzF0W8W1qEwLfRbbXmJG+nw8PJGnKLKVMhRATXRtymVHDl9M93bPMz0scfW4oO\nkWmjDS9iquall9g+uRhfV7Oaz/POncPBtzlZdieioLhb5PBKUxh5mRStNpxtb/GCEL/8c/AdnCls\nFVRWFEWxiy6giqIoLtEFVFEUxSWeFemrqx3niV6Yr+xDQvFmxw7wTdiS5NiyTISIyHesUHQpK7NX\nGrRkCX8QQ6rovTbOwYzoWgO+CfM5d3r99fiWM28ULWgREfZibWjgWG+7DVxN7/KAPnNO3JFkzsmR\nka/dlswZxdjYTlBjevRRcIU8yYP7zBY4yHGZPcCyXzY729o5HTCAy1gOPmOU3Il2zYJ+2JI6bhzb\npmiQzPHl59srY9q2jWONPZyLvn7pjh1xJ/6T/pddxgddjOmIsqTozjutxXpIlLL179ULfNlPfOnY\nmZHYIpuzm5PGGceMdl5Z1xQcbCVWWXJppN0p5G4u8WqSrbtENPpmvsTlowkionvvZbu9llO9A1UU\nRXGJLqCKoigu8biFl8KvplBN6mmhBiNrHYioJm2lY4f2QHHbRn/uUAgIsLctysjgWJcuRZ/3KR4+\nXbbvcvD1v4NDCDS2Ra3ffsfvYVM5KjXVibU6LR9cwwaJTokePcBXsIzLSIQQDhGhis+wYXZiLSvj\ncypFlEyefx6PV93K6YTmiRPBt1PYURY7kTZv5ljj9mWBr/m3v3Vs3z/8AXwxpby9PKdLbSzbvr4W\nv3+hclUejSmFqG6iH84Qqn5sFaebVnXFbXHhEFYgSkqyGOuMGbxAzJ8PriPHuFzu11hVR9/9UVzX\n5gXy0Uds+/paifXoUf7+ZVqGiKh6vyjrE4LVRIS1msbeP7eUO5PS03ULryiKYhVdQBVFUVyiC6ii\nKIpLPLZymqomktR5QkndSB6F3n2VY+c8ge1RsvqmwOgA7Qg5Ptwyuq0U1borKjjvuSQMGwiLX+MU\nTx2mHCniav4c9Dl+jo4QU8f5obLDRkPjdlFLM2QIuFLOcMmL12BUsr/9dh44V1ZmIUgiivHn0pSa\ns9jLKNNFqz4x2gpL+Vx9cxJz7FFP4jA0Wxw8yHac0R67RXzHRvUXKDf5HcNJBpQo8mMbLTaeCqnz\nqBLjRzB7tmMeeOtLcIGa/n6sHZMD55KSyB7yizZ+58Gif/a7x2bh60rr2N6wAX3JyWwXoeKYWy68\nsH3fpPH8XMHfqKobLSow4/PGg2/QrP/9Q9I7UEVRFJfoAqooiuISz51IiqIoSrvoHaiiKIpLdAFV\nFEVxiS6giqIoLvFYxkSNje0OlOrXj+0p/qh+UxnEdRSmwokU/bY5VO7IEW7lCo4MRKdsQduNyvqy\nlaupWx9w+e0Wg9uiouy1x2VktFtXE+/PpRPF964D34lbeRpXn0hjAJY8sZaUo7y8WI3rySdRjev5\n598RR3htLFgw2LFnz34XfG2v1fNBfLy9cyqUw2jXLvSJ4YBVCah+tGkT2zkJqFYPrZTDhtmLNT+f\nr9VFqDr/+efvO/Zll90APqmsbqqub57WSdfqnj1OrIvfRmX548fZzk3GkYy1/ny9hNRhOVDOflZk\ny8iwtAZs3Mjf/7Fj6BMnqyANv+OUMFZni5oWCj5ZGrV9u7ZyKoqiWMXjU/ijQgsw0HTec49jNqwu\nBld3MU2n/ofu4KsXNyChofbuQKWYQOA0Y86KHB1sDkUSd4C5k1ErVMqcbt5sL9aaGo41dFAr+Pr0\n5b9pUjqTiMhvNI+yPf3OO+Dr9sEHfGDpbgniLEGBDlBsGI8FyI/dxgXpeXkY50sv3ezYKSn2zmlR\nUftjjaU87JREYwSz+P6bw7BZwHdw54wKTknhWF9+GYvlr7mmt2PXVqAQD40ezfaoUeCa4c8CPkuW\ndI5Ij9lY4+/PtvfCBej8/nu2xShrIqJa4t1TSIilWKXGrqkmJP79AfcOBNdiMcvJFKEB3dLu3fUO\nVFEUxSa6gCqKorhEF1BFURSXeO5EOnGChV8P4RNqOR5lYDcjVyOEiVu7YQ5U5qMqKy0Kv4qKgXOS\nNSIHUm3Mot+3j+2U6KPgK6zgzK9VkVpfX6FgUoe+t99m+4030HfHHWxfeSW4mkdyftSa+G9KCseZ\nkACubS38JDX28avAd0h8pv4PPQS+rCAWz5g71945nTSJc3WvvPIF+K666leObQqDS9HkXbsOgO+e\nezhfVlxsL9b0dI5VaIcQEVHPp4USiCGKUvr66449+rnn8IXyg23e3CnVDa1D8Ldz9izb5ogm+SA8\ncCw+3Z40iJ81FBVZOq8izsozGKdM0UejBg8VnY7lA2OWGiwORUWaA1UURbGJLqCKoigu8byFF8Wp\nSVsmgKswTWgTLl+Or5Nb6FmGTqCszampsbbVqKribZEsjjbDkcXIRHjXHtENy5i8Bl/h2G1tl9rb\nFmVlObEGLJ0LrtJStoVsJBERVS0XxcrGvKQxj3K6ob2i359L9+58Tr/5Bmuq2j4Tf3vlQCYiylrP\nZSpGhRMNXC8+b1aWtXPa3CxjRV/PvVsdu/KXd4IvYjVvmcsSsSFkmJiX1cPi/KbhwzlWY8wQ6Hrm\nLsMSN/nbOdCCjRQDe/DcL7r8cmuxNjVxrEL+k4hw226Otpbb+9gtU8DntepZx25r620n1spKJ06v\nW/Atr7mGS+cqKvBlMhXpfboBnYsWsb1kiW7hFUVRbKILqKIoikt0AVUURXGJRzGR8h6c95S5AiKi\nwsPc9vblYGyBm1khZkIbqgetPjyj2ebqHR7Gc0/y8nzBJ1vOPM03vzwayy2uu85GZOdBzDoy87W/\n+x3bu3Z9jU5ZViHb+oho+4oj4ii4gwH+l4anRHveL36BzkUiJ9qtG7jmrlnj2PWPfgW+c1ppLSFz\nW7IDj4iodg6fx4gVsegUSfGY6XHok31+FtnzL1H21Xcr+KaWculU9iL8haSlcd6zwhATGThS1A1d\nfjnZQuY5f/gBfRmJ4ruV89WJqDVPrAHzsHas7ZkXxFF2ByP8Lw2DuIyv7Q0ULykSndx93kaBHnnt\nto7B/Li3MSf+fOgdqKIoikt0AVUURXGJxzKmlSu5hMHs4JAlNuadrixpMLf+srzBz69zFI78BuPb\nNn3EnzE0EbfpckuZOWQbuO6+m+0RIyx2IknlGJNXXuF4jj8OruzRlY7dfMst4PO97z4+2LjRSqyZ\nmXxOzW2x/F4vuAA7f9qeXsEHUgmLiGjtWrabm+2d09BQ1q6NxnK055//lmP73khFiPxOzd5mcMlr\nvKzM3ve/eDGf15l/x5RC5Sy+Bo3qMIpK4K356X/9C3zdZMdXQYG1WL28uMPvz39G3VcpCBW8BXVW\nadAgxzzaD8deB84So63b6fD52YiuybL92DUZc3azY6fvwDRN7hAxVlrETEQ0aRnrn7bXMaV3oIqi\nKC7RBVRRFMUluoAqiqK4xGMZ06WXsm2KBg08xqUCA83SFB9uM9xWiiUVsctYxYfKsNygI4TWcZ7j\nsTRMMX4rBKoTl2J+TKY9sg9Xgq/s3xHUGUSNZ4Uqsz0uRCTesjcFobOOy3F8P/4YXA29uPwF9a/c\nI9OXovKKiFD1ve2zH9HZV/Qn9uyJvuuvtxOciVDITxyHrsjIixz7gKHyP1C0R4bu3gi+spFyXpWh\nVt4BZl7CJT5e2/8GvqHieYI594iu4NbibuYXYpS12eL4cc579umFraXFJXz/FWyuAWJG145ozIGW\nthQ5Np7xDiAe0sTIgW1EFDON856mahS9+Xu2n34aXEX+Ys4Y5dP50DtQRVEUl+gCqiiK4hLPakyK\noihKu+gdqKIoikt0AVUURXGJLqCKoigu0QVUURTFJR7rQOWkO9qxA31paY6ZuwZ7ZNMPCQl/oxm+\nNoFHOoSEdE5/8Y9GWWLmxaI3+89/RudSLhLtk4B1n7LXd+NGe7HOmMGxLvnVCnSKGQ9HDZGBY+/y\n1xG+Owd8zVMzHNvaVM7UVOcfDKnAOrja5VzDW3AsBnxygKff+gLwHY1OcezAQIv6Ak1NHOsQP3C9\n8w7bPZ/D8RJNq1Y5dsk6fKA6aaf4f1eutBZrTg5//6OfwrcdeM01fCBHhhJR1Xj+zlevBhctXMh2\nz54Wz6sYlbHW0F9IfO01x26IjAefrG82x33s3Ml2To6lWDMznThze6FE3sSJbH/yCb5ManyYpbTS\n195UXr0DVRRFcYnHO9Baf56v/Ju3cdbyAjFfWer8EhHRZJ7DLoWXiYiS+jaJI7xT6Agze4uBYHIy\nFxHR6dNsm0PuxB2yFAoiOmduW6dw4FZUXBq4lQV2A41hfXniriN8fCT4ZKdYCM4bc03xaL7r3G/M\nDSyr4LvOsDD0+a0WyjzGZwiUtyOBeG10hMee4mupdj+qKpVVsMB2jDH722/kSMc2P0fKjpWOjffR\nHSNjP9+Ft/5olhFyt09SMt7fFG7JdOzdg/Au66OP2I7BDUHHEHfBowxXTh3fdS4zGqMmT2bbx1hl\ncpbKjiY793CNs/h8pBuDGueu4C6yrBJUY4sQO75aH1RqkgP/kpLovOgdqKIoikt0AVUURXGJLqCK\noigu8ZgDlU/LXnoJfX2WzXDsgiB/8BUc4hxEcrLxpgniP2y0psWC0lFvvom+zz5j26gmaOrLCcOd\nhvrN3LHV4ghzwB1Bhmoq9r/3W1YkvyEIfVIhnV7ZBb5TQzk+WzlQkR48R8XmwgvZ/vZb9NFpToil\nj64F1+yr2TZ0mjrEqtuLHbtqLz4Rjul7gA+OncEX7t7tmCHR0eCaNQuVzW3RtJwzqn5TsSpATj28\n6KIZ6BNfQsaQcnAtfp8Vj6zmQMVFFyQqb4iI8kRSdJSRIJXXqikcFR3N921+lh6DzJvHds4rL4Iv\na4BYyMzJeEL231ScMx+lnA+9A1UURXGJLqCKoigu8ajGlJTEBb/mVlPeMh87hr6QsyxafMAHywYG\n3nQJH3zzjb2C3xUrnFhrb8fSoJBPxeztrl3xdaJ25cQZbAiQYssNDRaLk8UArNR5uE2Uw9vMbbOo\n+af8u3GeOF0izmt4uJ1YDxzgi8PczwgBYzIEbGHKoDEzvnw379mioiye0/h4jtWYgFdOvL2NypuA\nrxMneeXIQnBN2SSEgMvLrcVaVMS/KyjWJ8If1vvvo6++3jEzD6eAS+z8KTW1cxoUzsnHyY6JRYvA\nVf+3PY5tpnjkx5o40U6sw4fzOd2z5gD4ItJYbPxxXBpo4pVVfGDULeZs4VxYRoYW0iuKolhFF1BF\nURSX6AKqKIriEo850OZmzivI/BsRprlyKR18Z154wbFPERIkE3vffWcvV/PVV06sx4xBZjJFO/Ky\ny/B1sufMyOWNeZXzTNu3W8wr5eSw8IFPBri++45tM9SUU0scu7gflrjEb5rEB0VFVmKtquLv30hl\nQvqrJnEJOoVAx+K0z8ElOlWpstLiOS0u5rxyKZYxye7NSXvxfEO/nrSJaMNgbg+0lasjImps5PMq\nu4yJiALzuF2TjLIqWapkdKTSiD+I3O7GjfbO64wZvECMH48+0fvctCgXXGfPsl1RgS+LXzScD/bs\nsROr+P5j8vD7LxvJZZXx+3E4oGzfNsutavc28kFAgOZAFUVRbKILqKIoiks8diL5vsn7rcyKP6JT\niueNTACX/7JlbItZ1kRE6fd96dh4099BxPbL+zimJUKu4LvvI7u/Al/waNG2Y+gv3nCDxfgEhT14\nG5lszDCXHRxyfjgRQavEuJm4oyh7gz+zrUYUWboWfLoafDVr+dIJTcR0Qs18/s7vGorv+eyzloIz\nEW1T+b+/EX3Jf3DMmkGooxqaLLa+xn56jCHcZQuZpjFTY7nL+Dqu2Y/3NzNf461vYe894BthzmW3\nhbwgBw8GV/5z/Fsea6QipAiXqXK2czzHjt+GeyZtim/fOWeOYxbvrUJfApdf1eZNA9fcpZwyycKd\nv4PegSqKorhEF1BFURSX6AKqKIriEs8zkT74gO3ERHA1jGWJ5u63YaLryGsfOnbwgw+CL7dClDAQ\n5nE6Qu1UzqiGGTNYDomcaPAZVAeStQv1MzEjk/VnWZ5jKON0AJlqC/BvBd+hQ/w3bdu4VPDF9mMF\nHm9DOiamV404wvZZt8iKswNdUI1q4Ns8y6lbN/z33uv3gGP/aOTGmtcXiyMPeaufyzSRvxozBlz1\nV7Pyfbfv8WW+JawIZnYq5q8W10OGUf7UAXrexb+BXKNHuvHM5nZf11DKv5eksyfQmWgkUy3RJEoC\n/W6+GXyylKrPqRrwffghXxNHk1Eh3iwlsoFIc56Tc138PE8kqKjAKQhr1vD5fu89fF1WmjzH51fm\n0jtQRVEUl+gCqiiK4hKPnUiKoihK++gdqKIoikt0AVUURXGJLqCKoigu0QVUURTFJR7rQJuaWHZr\nzUXYez2lvyi2/OtfjXflt81YHgyunFGiDjA+3p7s1rp1/DTsySfB1VTH/e9+S7EGbVsY16jF7jBq\n/YQsm1XpPTF+ovH118EVIIsvV6/G130vihhLSsB1Io/r2fr0sSO9ts/Ly4mz+iV82Jiyl0dRBJeu\nBJ+c2HlwBU6PhPkvSUnWzqmU3gs/WYzONWscM38s1lmWlrIte9SJiIaK8ubsbIvSe1VVfDLl6FMi\nLGg8hWKQK4ewNsKUsUfRtyWQfVPsxSrHj8gRN0Q4faR4uVGXKq/rH39En9TRCAmxE+uRI3xO5Tkk\nophTRY5dthrPW2M3Pm9dLsZQ5j3Db9ne9693oIqiKC7xXMbU2MjOa68F1z6hqDykP7b+jAk62O5b\nHj/Odk2Nvb+U9fX8l3LDBvSdOXN+mwiFoXfhqHW67z62s7Is3oEUFvJ5TUAlK/izLm0iKlzPHRVJ\nO7FLKe4k351s3mwpViFSe87thxSf3rcPff7+bH/6KbjWC8WrhLY2e+c0NZVFqgehilV6NzEszhyA\nJ2MVKmJERPGneX57cXHn3IHm78fOmNRDYhdkTnIUM80Lr5wNrqQL1vHBAw9YizU7m39Xs2d/Db62\n57gb7RxlaCG+XH3TTeAa9vHHfDBwoJVYGxo4TrMTKX0UK4klLcOOOik2FboDOxGPjOPvIjhY70AV\nRVGsoguooiiKS3QBVRRFcYnHp/BFWwIce9L994NviMjPle0OAN/QCrYXLvwWfG1/FwpPFPHTovwJ\n9KxvX40o82KRq4k0JNJ79HDM1n4h4PJeuEAcYc6pIxS0sJJVSvIk8M3tx08Mk4+BC/KehaMwz3fa\neGBvhVGjHDM+7XJwSQH0sWMxrxR8PaeL+klFLyJKkFLlNhFSSulvLwDXhJ383W1c2wy+GXM4r7zE\nmJzX1586B5GITx3fAK6jZ0Qe7leYdgu85hrH/vJh43p87C578QkyW7hqJfPWCvBlEVdYrN6Er5sj\nHoskm29q5kst0D2B5zD0n14Gvvor+PosnIoKcNlbWBnrTCRW4YTvFLnz4CQ6H3oHqiiK4hJdQBVF\nUVzicQsvZzvTbbehcxxPQ4sxym18onlrvnDhP8DXJ4F9J4za2w4hSj62bEFX+nTe+ix+B8tGxK6I\n4ucbt+mvvsr2bHtb+JQLueRk8eAi8L26hm2zOmjzZC4BSvLHAvUdQVFkm7jJvG33Ma6U3Dt44GAZ\n3Qm+/Ke5+mlJEG5RaccOewEKVu7j73XKE1hytXFOumMnTcZRhoVrhKD1LPyQuYlykB6mKTrEzJmO\nWfzsh+DaJLbCeGUQFN3ffrvhkw0KAwd2LD6B128fEUfGXPi3dzvmdddhQ0BqkNhG19eDL6AfX1eN\njWSFzDD+90a1oK/nJSJt89A88IVN2+bY4aUo/Nw4ndMXmKRk9A5UURTFJbqAKoqiuEQXUEVRFJd4\nbOVsFmISvmL4GhFR07ucu/Hbj6UBXW/h0oDrrsP33NNf5BkLC+21x+XkOLFWhmE5QkQ/kWyVvZtE\nFJrMua2dO/EtpSZBbq69Vj4vrx+dWB988ALwicohj12eOVOPoFMGb0ukIyWFLw6zz3Ur50BNX300\nD5Vbtw5cMLite3d75zQmhlv5DJ0V8kvjay7+TCH4imfxtVvtMxx8srOzsNBerFlZHOvUqejrflj8\nloxrVSb3i0djGVv8YTEAccYMe7+rrCwnVq/fYp7zs8+4dEg+LiDCtGfOTjyvKYP4MxYUWDqvAwY4\ncW77A7aSx37IZW25v8RnGXIwXugtl+B7vvUW28OGaSunoiiKTXQBVRRFcYlnNaamJnbOnw+uzSOz\nHTtueQz4aKmYUf0PLGOCWfM5OZ2icBMwGkuVXnyR7YkDcH41/e1vjpnthbf3YWFsx8TY28KFhvIW\nrubRFeCb9O7jjj15cvvvYW6ZunZlOyfHTqyVlRxnxCHcMrY8+qhj+9x6K75QXCuTluN3URQp3ic1\n1do5LSvjWP2NDiLZYPTCC+hbgE1LQPfVnbMtrq7mWE11sIg1KXxgaIVmHOJONEPyEqRDQ0LsXavH\nRBqv9QtcKwJ3sFpVc2IK+AYPZvvgjeiDkquyMiux1tTwOQ1tqUanXI+mTQNX1CxOL5SHzQDf0an8\n/QcGqhqToiiKVXQBVRRFcYkuoIqiKC7x2MpJL7/smAcWLgRXXP/Xzf/boXAfqyElLcdEXnUelzBY\nbI6jMb/jXNusWej75S/Zbu6PSk0kjjP7ouIQJCFjsskWMidLX1wGPpnL+v3v8XXbu8Y7dlReHvhq\nThqxW0DmPWsjUQE/5D0ua2sahGUqUhH88GHjTT/na4pSU8kWMWuEqlVaGvgKdnP78CVGpYrMl/qe\nMnqLo6NthQfI6iSzXTeihfsQU3a3f366r8WW1O6XXsoHIQ+QLfpextdnRCL6du7k3GarEesHh8RF\n/jVe43QBlu7ZINSfy/qqTuLKsqyFm2I3bsI85/z54to9g9+3LGPLQbF6B70DVRRFcYkuoIqiKC7x\nXMakKIqitIvegSqKorhEF1BFURSX6AKqKIriEl1AFUVRXKILqKIoikt0AVUURXHJ/wGGW82gu3hz\nawAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  10\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9Yl+XZ/0+MmBIxHyI1MiJmhMwY\n43H+YMZj5pi/IkdOjYwcM1IzMmbq1xxjzJE6H1Lmr8iImDI1IyMTImNGRmqOjEwdQyMyJEdERMhD\nBt8/nu0+z/e1+KzdXBzf43sc5+uv8z7e3nByf+7P5X2d9/nDq7u7mxRFUZR/n37/rx1QFEX5/xVd\nQBVFUVyiC6iiKIpLdAFVFEVxiS6giqIoLvH2JC5YQM4r+nvuQS2GKh272i8GtMiV8Y5dsaQYtMce\nY7ukhLy+uav/glGjHF9TxxwFKSSE7bRzaXjenDmOWd4SDdKEqGY+CAiw5mtwMF/X+tKToEXOjnDs\n6s9vAK3hjfcde/Vq/JkjR7KdlGTnusbGsp/z56OW+Lvv80H//ijedRfbc+eitnUr20uXWrum8fHs\na/HfxqJ45oxj1v/tbyAFb9jAB6dP4888t9mxi4vt3avV1eyr+TkWhmfywVVXofjaa2zL60hEtG8f\n20lJ1nxtbmZfvY3Vwr+xxrHbbroJNL+BA/nguuvwxA8/ZPvTT+342trK6US1tai9+Sbbb7wBUsO6\nQscOogY8b+dOttPSvtZPfQJVFEVxiccn0F/+ku2guXEoDh3qmOFb8QmUJk50zJYWlEp2iKc6CvhG\nTn4jxJNkzuwLIKWsHMQHA40/uanJMa/4Nkqbd7J/Cxf23sVvQvWxTseuqXsftLCOs4597FgoaDlL\n6sVRsBVfKrwn8MGJMSju2uWYxafDQFq8mO19E0GiqJVLHbtzKVljjHCvcvyboMkdSHBdJWjyya11\n9WaQtttyzuDwYbYLR2ajGDKC7cBA1NatY9t8yjp4kO2kpF75J1m+nO3cO15CccAAx/R75hmQivzY\nB/NhOUMcGyuHazZv93fshY17UZwxwzFzvnoApGPi7ytYh2vDhH28Wy03Nq7/QJ9AFUVRXKILqKIo\nikt0AVUURXGJl8da+PJyFk+cQM3Pj+1Jk1CTr+vk62EiGjWEY3VHj1p8C79wIftqvvnNz2d79mzU\nRHyE9hqxkzvvZPv8+b55Y7wcY3J5pzkqNHUqnjd5MttViwtAi17PMaeqKkvXtbKSr2lpKWqHDrEt\n31YSUfFhjjmbYbyYP/2WDx591N7n39zs+Fp+HGPrEw6JN9tbtuB5Mq54882odXSwPWqUNV+jo/nz\nX7kStYSf/wcfvPACaFV+sfwzhuAb4/pLQY4dHGzve5WXx74mR1WhWFLCtoiHEhHGZIcMAalsRq5j\nx8XZ8dXL60uxkH0M2s9+xu9rxhih/OefZ7vk4TIU5T/299e38IqiKDbRBVRRFMUlHtOYTg7hNJYX\n35oA2nViaxZSh+fBNm3aNNCGGWlNtmhfxykovqvTUdyzh+1z51CbN4/ttjbUjKRbW8htbVV/TOSQ\nLgy+vJkQ3pouPYGpKhkZlpyTjOCUmrND0M/QSyscO231INCyT4iUt2HDQGtYyZ9TENmjsJSvjchM\nIyKi797P98NgmUNERMVX3u3Y8S0VoO06z1vmWaNsePm/XLzIdoI3FprE3/Ip+3Y8BzTv8eyPuffv\nWJ5nz0EBhJE+uARaygePOraZqrQ3hPN+EoZgmCru3G5xNLO3LhIRUfc7p/hAft+JaFQph3Bkih0R\n0bdF6uLmWkzVXBgl0iH9/enr0CdQRVEUl+gCqiiK4hJdQBVFUVziMQYaEd7F9iUjjUmm/LRhmoJM\nv9ifgY09Hv/Pf9PDb4gsGfVtbAStUTSQGFJXB1raMI5BZQ+pBm3pVi6XXLvWgpN/J29aER/sw+sa\nLdI/KqLKQZPxm6RfYaMRmviEODDKbt0iUr7eunc/SHsDsxw7uxFrMhvyOR1EZrsREQXt5BQWSkmx\n4OT/ktgk4oWLFqE4fTrbMjWJsAdHfAbGa2c1ic+JEnrpIXNqjYh7SgeIKCODG/EkrEoFrSicr+uo\nExjzPHpO3Cth+L6iNwz+itOlsg5gIDh3HKfS5eV7KB89ts84Psb2TDsxUFmvu+BvmSAdzeeGPeWN\nEaDJ5WDZDbtBqzrHvkVjmN9Bn0AVRVFcoguooiiKSzxXInV1sXj8OGqyxY1s2UJE9OSTbMvyGSIq\nmM1bQVt9K4mIKiq4YiI2HLsx1bTw8/enn4JEa9awfQmzNCAbwsfHnq/FxeyrUahFQbWcStMaFQua\nf3/u1JSb7wNayk6xbSsvt+JrQwP7KQt2iIiya3mraf4RlRM5bShmZCdoEGsZNKhPKtESW7CrUuFc\n3vrmnMbwRurcVsdeswVTVeS90dxs7/P/+GO+rp99htqBA2yb96NMfzL780Ivy6Aga77u2sW+zprc\nClpOPl+vqCg8T/4dmTuxWxekYNnqXZqXx2uVkapWNZ/DRtHHckGrHMFhpNdfxx+5bK/oK/vmm1qJ\npCiKYhNdQBVFUVyiC6iiKIpLPMdAjx5l0QxyiDSmhJ2YijBrFtuvvoqnyUba5eX24kpBQRyrMSsy\nZXOo5pEYA2vdw/Exme1CRLRqFdsxMfZ8ld2Y5OgYIqL169k2Rw35HhclcWbnKDm0KDTUiq8xMeyn\nGTt++WW2g2dgekv5ak5dm/CoMZ/okUfYTkiwdk1TU9lXs1wvtD/HB4PHYAFp/UoREzPKTlP3clw5\nJ8di57D0dP5eGWl1hZM4Nci8j1PGiDQ7I863oo5jeVlZFn3dtIl9lTOZiGhUHaf9/OIXeNqs29v5\nwEgdgw5oluL1VFbGfhpzr+jWW9mW7ZeIiL74gu3wcNRkTXByssZAFUVRbKILqKIoiks8b+EVRVGU\nHtEnUEVRFJfoAqooiuISXUAVRVFcoguooiiKSzy2s6OUFOcNk9eTa0Dq3sc5iZs/wPGRspucmT4q\n097S0uzlq3V19ZwH6p/B4wXaV2WDtm0b27LWmIjok0/YXrvWYm7dzJk8lXMOttCKPy5acRlJoulN\n3N4ss9FoBScnCPaQs/bvMmAAX9NbbkFN1sZHbsO2a2cXc2u50FMvoTac75XQUIvXNCGB34YOHQrS\n6d//3rF9P8CXpsHEU2LpxRfxZ37wAdtr19rzdccOduKaa0BKP8i5p97Gt3PJr9gF32eeAa1qBLeT\ni47uox4Tp7GOXDaLkP0GiIgS3xdjfcYaucByUQgIsONrVRVfUzNHWvRqKPeLByniNv715rShcOnn\n229rHqiiKIpNPD6Bdm3l/3G6vReiuIPX6zsfxyfQj8VY5shAnF+960ubo8SYfge5oWzjUGwo6y+q\nD3yNrlKp8nHVaMSbcsZDk9he0Pjss44dP7sIRfnUKauLiGikGM2etAefBjaK4o6vH3/173PmDNv5\n+ahFLuZrfO5PfwItVPzPfennP0dNzgg/f77XPjrIapfBg0GSd5y/N96PdNuPHTN6wCmQqkLsNVGW\ndP6UB9n5bMfGyHPnsh06pB20sjH8kBX3JT7ZRy8WnbsqcDheb4h9nZ8kk888ClrGNrELOmSc+PDD\nbMvWTES06xUeACirFnuF/B6bLc5EV29z+N1uca8OOXIEtMzV3PHMGFPpoE+giqIoLtEFVFEUxSW6\ngCqKorjEcymn7MRy+eWoic7iA36FQ8UufsZdyCffgZ3TS54Qbz2Dg+292aypYV8PYUAm91KyY6d0\n5IDWOpffIJ87hz8y4n0RZ5o61ZqvssvREGMen+wAFbER484dW7Y4dv/nngOtfRLH63x9Lb2FFdkC\n/zQdTrSKKhiDHeCT8jk+WrQIB+P1VRZGg5eX42uQ8Ya6IoRj2cYLegot2cQHYhgiEVH9Nn6zHBxs\nz9eyMv785Xw1IqIVjXw/Vs7GezVmhOgIb3Rxav7e9xw7oLvbmq+JieyrGT/0r63iAyNjpPAwD2Q0\nX4rvXmd/DSgvZz8nGAPuvP6w0bFvvhnfEMjXDAvnYMd9yMq4+259C68oimITXUAVRVFc4nkLHxfH\nopHiUxPOCalh+zA5vXIMJ64bI9opIV8kshYXW9tqNDf3vC2K28YNnwumYeJ60l7e+qYOxZSinBP2\nB7UREVFrq+Nr4T7cUiQO7XmonExev+IK/JEy0d1a82cZFjFiDa0iWcq/A4f4lR3nIX6nT+OPTK0V\nSfc5OfauaXCw4+uu39WDdN11bMd0YEhBzmUvHo/3cfxAkQ4UG2vP1/b2noc1ykmGJSUg7f9vTrOa\nUorFC9BF2lJDbSKizEz+XqU3GqmMkyaxbTRN3tXN37lZq78PWvOrbzt2QICle/Waa/iafvUVSPFj\n+P4sHpYGGvi9ZAlIkx/gMERJydf7qU+giqIoLtEFVFEUxSW6gCqKorjEYyln2yuvOHb6CGwWkL2O\n43O5c7B0LGVMFx+YeToybmKR7dvZDgw0xDvuYO0/UDoryjyXf2Sct94oCbOEjB8mfroJxd9wysWh\n/8bSQhnmOnECT4sJbxZHAWSF1asdsz4DSw6Dj4l4sdGFJe77HPOKm/VD/JlyUl4Opun0ChFsn3U5\nxrKDZ3Ocu36L0TFG/I3x12NjDwgsx2I8ulc8/rhjtq9cCZLvj37EB++8A9qUjRyjjTmG166yVnw/\nQ0PJFiJbkcqmY7pa3CEucKyekQnaw+Jrfnvt26AFHCjmg3hs7uGWqpe4LDj6zhtAKx4iSk6XrwKN\nJk5k23hhs2CBUWb9NegTqKIoikt0AVUURXHJN69EMrYaxc/woPD4O/ANv+wh42vMkqYRI9i21QuQ\nsBJh+XLUjt4rtslyoDkRtr8xSpGg/2amvUoUWYlkNo4ZP77n8xIeHc4HRueY+DkcFigutuRrdbXj\nZ0VLJEgbOdLwTxVcsjVp9hKj+5HsmhMW1if9QI8sw63XD37Adr8/7sDz3niDbek4EbagspnG1tXF\n36tLl1ATsZmUrdEg5S4+yQdGnGrN05w6tmxZ38yFb73nAZD89/IM++GPYfXPwYNsDx6AFT6VJ/he\ntZZyFxvL11SmghERZWQ45gVRzUdEtPXXfFp6G1ZUwpa+oEDTmBRFUWyiC6iiKIpLdAFVFEVxiccY\naH09x+quv/5L0Lrf+ysfhIeDtr+U1+WpU/G8++7jrk65ufZiNbJrTG0takfnixQcc/DRX/7imIVj\nMDUk8XDflB0mJ7OvRoUshF2mhJ8FreAQp6eYf6OsCLQVA+3sZD99JmGXf9q50zE37xkE0sJ53I0r\nYTZ245IhqMGD7X3+J0/2/PkLV6lwFV5TmjfPMTtLsczzoYfY3rLFnq9eXm84vv7oR5jmJe+H+ANG\nuabseBQSgpqM30ZEWPM1KYmva8E4nILQOpvTg/znGOlIou44MSMMJBkfbWiwc11nzmQ/169HLeiY\nSJsya4tFKW/1RkzHjOxfwwc9xOv1CVRRFMUluoAqiqK4xHMak6IoitIj+gSqKIriEl1AFUVRXKIL\nqKIoikt0AVUURXGJx3Z2cXGcW1WWUQla/dAYxw5eja3+65dz26vggcakO9mHLSamT/IAZd4fEbaB\nM4YHQmm2USZLy24XtccWc+tk3bbZY0COCSxeeRSk+FWj+ODee0FrFwmEvpamMqal8TXNnoY5ku1j\nOC/Ud9UKPHHGDLaNkRVr/sYTUq3WbOfm8jWV/Q2IsKZdti8jwqREc+ykHOFZVGQxD/Qdx9fu93Da\nbdbeCMde8YfhoFXv4vaG3sY3N6JFfD8tfq8KCvgeSFqC+b4yF7VhL96r0PKgFPOr5eTRrCxL90Bn\nJ3/+okUhERF95ztsGy0CoV/f9dejtmED2xcuaB6ooiiKTTynMVVUsGhUG8kWPJ0jsGuMj7doqGzM\naKd332X7gQfsPYHk5LCv5lOGqIrIHoGNgWX3I3MYXUqdeLLKyrLn6/Dh7Outt6Imh1yZT0QSw9mu\nH3JFSz9bc8Gbm3vsGlR1jp9GZI9kIqKI5VyVUitnaxPRsPvu44PcXHvXtLLS8TV6UQxIcmcx+uZ2\n0GiVaLA7bBhIF37+c8ceZHHWek4OP9WZBUWwyzAGteUuqnZsPz88T94O2dn2nuz372dfp9QaDbDl\nmiAquoiIitbzYD+zwXnsAW7ETJmZdnx96SW+V8eORc1cgwSFbXyvJv7eOO+559gOCtInUEVRFJvo\nAqooiuISXUAVRVFc4vEtPMQrZSd5Itp8mOOeITiLiaZ4H+ADY1AT3XPPv+XgN0bGOf74R9Q++cQx\n01YZHdLF0LvAQOP/k3wjuGcJ+TY1snQtijIOZ7xNzPLm2NGkSRjn23ofh4CwZ04vuO02x6x6CgeD\nQdeo7pfwvLfecsxhX32FmsgysMrevY65eDFemzFj2Ifu+xaDtuY7fLUGtIFEx3/GGQMYOe8dqeOq\nHLusCd8fyM+8IRw7YKW0cXcgr5u+A9qGDZdZ9JDZto3tKeunoyhj9EYgPPZODhkGPvggnmdORLTA\nzGemOvZuwvtx10WOc876SSdol/FMSfL585ugDYxi+8KFr/+9+gSqKIriEl1AFUVRXOIxjamiglMY\nYodiI9quEG7uayant46Jc+z6bThPXg5Ru3DBXrpFezv7auamZ3uLYVFGYrfcMuUcwu1Uam3fNFSm\nvDzH14R9ySAVrRPX2fRV5LwU1aGvCdum8MH+/VZ8TU3la7pkCWoyV/7oNJwJvuA8hxquMUatywF0\nNhtqU2sr38gHDoBU5sdz4UVGGxER/eY3bD/xBGpy+9qvXx8l/YuGvkRE9OGHbL/wAkidQ4Id24yM\nyc9n926LvjY0sK/G1jtoLn/PG04bBTMyfe2uu0Dq583PbV1ddnzdvJnv1YVRWPRDhw+zvRhDOM0t\n7It5bzz2GCfdd3d/T9OYFEVRbKILqKIoikt0AVUURXGJxzSm2KYiPpiDsYPls7lUq6nJOLFlu2MG\nN1aDdKFUlgQaKRy9QGYxGRV5VDORU4XCBmI+QtvgwY499DkjHtxi1KBZYnMHxz3NBibtQzg9peUj\n9Cfohzc49per38cTly+35+DfyVnFca39h/xBk3Hmj0eng3b1JrbTl2PayIoMHDJnDRlz+/hjkA6L\n9CRz4Jgsgcybgw1T6LBIzYnB1KheIW9W8wWCiIEWHgoGSc6Nk2E9IqLd+bJE1beXDjLN117r2AFG\nkBjinqNHg1b/MqfqBVMXaNu3k3UWtol0wO11KL4p0pOMiYNPXs+Nj8wBj9u3f+9f/l59AlUURXGJ\nLqCKoigu8dyN6cIFR6ysxV6AMZ9ytn/uR1NBS/mS93AFVz7Q449PSrKXbiFn2NfVoRYlKgqMDBdK\nGCFmPxtVMsWLeUsXH28xNSQtzfG1a102SP1Wig5QRq5KwyquhzHTigrzxVbZx8eKr15e50Xfyk9B\n2/Uu962c9RnWPhUF8rzwhLYC/KGyq1Nysr1rKjqHZR2KBWnFGLE1N7ZwR++/37FHPfII/sxnn2X7\n/fet+Xr2LN+roatTUBTXp3kd1j8F7BHX2WwIKuedr13bJ71rG55/HqSgjRv54Oqr8TzZEc3sz5mR\nwbavrx1fU1IcP2V1GRG2h33vPTxtwiGRgmd+qWTMpLpa05gURVFsoguooiiKS3QBVRRFcYnHGOiK\nFRyryWrBuUfNq/j1f0BbPWiyk3ZzYBhIcgRNQoLFuOLChfyHmPEh2UnKiIGldnD6gwzNEBEF/FDM\npDl1ypqvCxbwdd3yWSJoXdsLHbvf8SrQKjs47StmDKaGtFzG3XgGWuqevmYN+3nfcvyRAbLMUMQR\niQhr4h5+GKSTBzmNLCLC3ufv5dXh+HrjjdgZaLpoIrR2eTNoHVdd5dj1f8HvQuBN7F6AxY70MgZO\nTz8NUuEmjjUnBmIZ9JFvc+mkUR1JZw+IEuDQUGu+ZmbyPSAalxER0bhxbBsDCyhYVD4O/NnPULzz\nTranTrXja2Ki42f18kKQRKMuyGgiIip5SnRnM3LDNjdyCfDChV9/r+oTqKIoikt0AVUURXGJ5zQm\nRVEUpUf0CVRRFMUluoAqiqK4RBdQRVEUl+gCqiiK4hKP7ewqKzkHTNaTExH5/klMvvvzn1EUcxsa\nMrAuVZabFxdbzAMdO9bxtWoTJntFTxJ1/J9/juf9+teO2blsGUg+R47wwahR1nytquLrGt3/JGj7\n67jG3ExnjRvD7cNy8rG9XHi4+Hdxdq5rYSH7+frrqG2ZJj5/sw/YOzwKoaYR/Qw7vpsPZs609/lX\nVTm+XvjP/wRpkJwMKnKUiQhqyJtDsL1iQJ3Iw42OtubrhAl8XcsXFaG4c6djVizaDVLsLDEfxSjq\nXrEuwLGzsux9r7Ky2NdHH/0StK++utyx+w3Ez1kmiR4tKQFp1HPP8UFCghVfYfzQAWyvWD+P692D\nDxvXdONM/hlb8bvo9d3rHbu7+wrNA1UURbGJxyfQmOn85LY/HxsRT7nySj6Q5UVE8Lja/1pcuIuh\nhAIrBnpD80v81DnoKvydhTs4VSsxHKt75KAsn88+Q+2mm9g+f773Tv6d6Dp+6shrSQAt+fxv+WDs\nWNBiJvGc8MpHjVnsG0Wz27ji3jtJWF0CT5xEtOYEd+Ba9tQAPFF0tQkrLQUpZwlXraWSRURn5EG3\n3w7SaVGlhc8YRAliUF+A0f2q87OLjm2zDXT5YvH53I/dytYs5vts2b03gCaHCtKqVSBl3XabOMLu\naL3Bz4/t7lt/jOIBbuK9eTUOlVtYx4McR919N2id0/iet3VdZZPm2CYcfhd8XFxvY4hfxboQx07f\nOQq07u07xBH+Df9An0AVRVFcoguooiiKS3QBVRRFcYnnUs68PO5GPSkZpKBS0S27pQW0jl/8wrH3\nG4PaEi71zVvYI0f4Ldwnn6AmG0sHrMc3dBDnXLMGNRE7o7fftuZrXh77mlyH/iTV8RvDghlGLFN0\n+d71Ig4OmzVXxCEvXrTia2sr++mfkYbid3j4XfKfMY6X1yE6TG3bBlrQMPa7ocHe2+KlS9lXszPQ\nnDlsBxpzAoPfFbHdN95A8bvfZfvuu+1lDGRm8pfiBMbrZMuj0H05IJ2t5Q5cyfPw2Uc2GauosHdd\nU1L4us6YgVrcOV4DEvbh+lC0TXS9MqfIyUF6SUlWfE1NZT9z1mOnsslT+Vr99Kd4XvJO7nDVvBO7\nX8n4r4+PdmNSFEWxii6giqIoLvG8hW9tZVEO0Cai6kBOqdmzB0/LbORBWWYivcxjDg21mEifnu74\nmnAiEyQ5e33wR5jGVO3NydPmPHnfGVP4YP9+a77KpF9zLHjkMJ7vXXwAt+l33MGpIt27MD2I+osm\nwvHxdnxNTeXPX3alJYLms15Gqtqtt3LC92OP4Wm//CXbZWX2Pv9Bg/iaXhg/EzQZNho/Hs+TO+jc\ngUtRlB2E09Ls3asrVji+Fo7IAunuuz9w7O4zX4FWfCLUsY2aDzr1zFE+sFj0IYc1mg2Vp01ju2wa\nhhvqp3OSWvBATHGi48fZjo214qssTpHZXkREAQPFln7SJBTFwLtLRgGG91NP8UEPAxD1CVRRFMUl\nuoAqiqK4RBdQRVEUl3iMgUZGclzBrNbMz2dbDu0iwiYYZvE+BKEGDbIWq0lKYl8LtnWCVnGYC8Zi\nV8WBFnyaUxeefRZ/5uj/w3FeKi+3FwPbvZvjtTsxXlcUJeK3ixeDFjmOGzZUlzaARjJ+c/68HV9v\nuIFvDhkPIoIPuagpFqQE4lLV3CYsVZUpRj0N6nJDeTl//nLYGRGRzzT+zDv3YaqKjyiPpaFDQatf\nVeDYwcEW4/Uitpw+EGOH8iP/61/xNNnbpq0NNdnPxd/fnq/NzbKZCGqvvsp2zeNY6rtgH5eTbjmD\n37n2V15xbF9Lw/rkWiXCmkSEM+wuvoCff1Eb+5ZwcQdoQY9w+WZPKXf6BKooiuISXUAVRVFc4nEL\n7+V1wRE3bBgEmtzCnzqF510M/z4fyOd8IiyZsJhuISuRrrsONVmJUr76KGgxi7kDi1E0QxGnRa9G\nS30L//6z+KIbe7GcabzFSD2HaTUNi3mGfdCqhaAdF7laUZa2RUVFfE0TRtSAlr49zLEzF2GnLpgL\nb/x98ec2O7bVfrDNzXxNjU5FkH8zezZqd9zBtjm/XJai9JDG4orcXPbVmEVOGRmO2TkkGCSfYXyc\nNb8etBUjRNWarTQ2IqK1ax1f2xfh/Sgr/N59F3uFEnEK1tix/UERf6K13rWyaq6pCTV5CxpRMdCO\nbux5bais1C28oiiKVXQBVRRFcYkuoIqiKC7xXMpZXMziu++i9tprjlm9DlMDZMeboEajA7wc3uPr\nay1W4+X1leNr9yfYWd7rqm879ssvXwaa2QxHknZOdCDKzrYXVxowgK+r0XUeOmYb83uy83nuTdpe\nTB3Km1vh2MnJduJKPj4cVzJLIMsmcjyWjE7uFdOzHTv2WDZoXYv5mvbrZy8G2unl5fjqs2EDijI9\nSQbgiLCWdt48kMqHJjn2hAn2fG1v5+vq29GMogzgGV3OoB2S2eFIxmstzm+COPip36IoplJ4PbQA\npHfe4XlJYkQaEWEl54oVdq6rLDkN3rkWRfElX3BFAUgyNcx8BxJ9XqRmTZ2qMVBFURSb6AKqKIri\nEs9beEVRFKVH9AlUURTFJbqAKoqiuEQXUEVRFJd4e1RFGdfJaVjGJbOR+u0tAo0OHWLb6GSfM4PT\nbVJTLZbyiQ5H/9R1WuZNyHQPIuhi1PUVxoP7Xcud1a11OCKis2c55SLUG0vyklZyuV7Bj7E7DN14\nI9tGOk7o6f3y51vxtUmkBgVefjmKsh351q0gZW7lst/0+UaZp+jEY3NQW2IiX1Pp2j/9uzackFA9\nhqcnmFlDse9u4oMHHugTX80Un4qMcj6QJbFEMFSwajwO+Ys+Jv6ulBR736uCAv5SGC3pg+ZyJyPz\na7VkiXDny02gFV/HQwjj4y2tATt2OH5mnrkbpPR9XJJplvLOPMzXcfcSLOUMm8Pn1dRoKaeiKIpV\ndAFVFEVxiect/NNPO2aE2TVGtjGR+3ki3JfMnQtS6kC53cdmu73BaxZ3Te3ehwPXTt7AzV0jAo0t\n5T33OObZy/ApXU6XDiN7hGZ+6znbAAAcS0lEQVRwhYtZ/lCwlYfKdV0xBzTZ18j/Bz8ATTbUtUXg\nc8/xgRGKkXu0Vu8AkGALPXIknierlu7GrVZvKPyj+Oz2XYmi7M5UVwfSQVHsZXYVi50WYsU3E+mC\njHYREaUt4QbP2SHGtMaoKMeUBWtERNHTjOtsi1L+LrX+8Y8gNfzkJ3ywcydoS1dyE3NqPAJa/xsf\nINvEPcP3kllRRFErezwvf7446MCpkjXH5DA8f/o69AlUURTFJbqAKoqiuEQXUEVRFJd4LuUsKnLE\nzmkYr/TZKLrsmPHR732P7a++AqlifLpjx8baS2PKy+PUkORj2K29eRV3QTdDeXEPDeeDF14ALXo2\nRz6rquz5mpnJvsqu3kREcfmJjt28sRC0gHxxzf/wBzxxgeiGYyuN5eTJnru8yyCcGZD78Y8ds/Oz\niyDJ4YS2upETEVFkpOPrmrurQfpMNOfKWt4KGh04wPbPfw5Sk8hrCrTU5Z+IiM6e5S7vQ0JB8t0j\nugWZ7xZkd64RI0AqPsRxaGupQYSTHj75BLUpB0QqlXEjJ+3jYYnLl+N5EYfz+MBWp/+8PL5X5bgM\nIqLPP3fMmTe+DdLuFjHwbuNGPE9O9dNuTIqiKHbRBVRRFMUlnrfwmZmO2LUyHaQHRCbC8OEgwY6u\nLB/nlxcfC3Jsm1uNBQt4qzFgAGrZk7jhc9w6nFEtn/bNjJv+YhaWreoeIqLkZPZVFJcQEdHrr7Mt\ns0SIiB56iO1T308ELWsEb/dtNamFufBffIGa2NJ3zUsB6a232JbFU0REAWNEQlhNjbVrumsXX9NZ\nt+A9J4fRp2/DQW1yyFjAdpzRTsuWsX3xojVfKyvZ19OnUUsOEZVIb74JWvHNPJg9/vAKPFHerOnp\n9sINra2Or+XHMJVH9qKOPp4HWr95yY7dVYfVdv1C+DPo6rJ0r2ZnO34WhWCVVsJ0kZBo5PudXMTh\nPbMSLWbIWT4IDdUtvKIoik10AVUURXGJLqCKoigu8RgDzcnhWE3qHGP4lWy/IoddERHdf79jNo+d\nClJAm4iHBAf3TdcYGQ8igu5MFccxjjNuHNsydkdENPoFEWfKyuqTNJayWkxjiSvl+E3nahzI5jOP\nS0D3z8bhWFM+FZ2bbHU52rTJ8bP6Fiy/k9k/aU8aQXAZFJ8+HTWZDmUxBlpczPdq/BDsqrO/ibvq\nDMNqPQoLFPe1DOoRYcerzEx7n39iIt+r5nA4WYdYiiXJcjhe9TyM10Z++K8HoLlh82a+rlddhdqs\nlznOeXIJxkAjWir54G1MHaL33pO/wM5QOdE5LPj221EU3cIq64JAkvMGjapzeCeydq12Y1IURbGK\nLqCKoigu8diNKXWcmOk+z6hEES13iuYWg5RwOacNmQ1j9xzmFIYUzH7pFZ2zeXtr7orCxex3s2hG\nPqaPGYN7+E2bshwba5t6R8U53rY//zxqcQ/ybPJvfetT0K68krftBxeDRHmN3I0mmezQtYC37X51\nqEED3VdfRXE+t7hpv/dekHwffNCSdx4wQjgyamD0BKaRI7mCZ8Wz3wdt83289bT5+UPDb6OCp7mU\nww8nwvELErueqwHN8fbDhnGobC1GzXqF7Bwlq8iIiK5ZxNv2WO8a0CasjHHs8vex61an+KE+mzeT\nDeATN9oxFR3iBt/m9z+vg9MBAwOx8s8M93wd+gSqKIriEl1AFUVRXKILqKIoiks8xkC7oqIdu80I\n1vmLYFLCfKMGspZ7p0fW4sC5vY32utBLZKwmOT8WtMrVPMhu7TiM17ZTvGN3f/Id/KF+neLAh2zh\nLa76locxdkSLudP7Cy/sB0nGoMz4jOx4k2wpCCoqICl0JZaOpvzpT47ddH8jaIGiy//hVzFNbsLA\nKuoL4sP5Otb3jwStcmSqY+/6Iab//OhH4qDpVtAWnpCRTzuxOiKCGG3XYUy5CmjjblGxB4yhcic4\nmJ9vdBUzu+nbYm2LiMOuWoKiuEHyDkWABCWqk/C6+nzH+J5ZYNCZM45dfmIQaDLL0ozjVvlx3HP3\nQUwbpIEix4lm0tehT6CKoigu0QVUURTFJZ67MSmKoig9ok+giqIoLtEFVFEUxSW6gCqKorjEYxpT\np+hw4vPaaygGBrJtDHE6/bvfOXbQZxhjXScyMzIzLQ4VW7iQf5H0zTxuxJSbpscec+zNv0Zf02u5\nPJQKCuz5OnYs/yJREktEVH07dx03O2TH+nEK0K6/RoM26xHRab2+3nqXb7qIw+HOrVzp2ENF2hIR\nUVogl5yuMzJx+p0+yQcREdauaXMzdw0KgPQzItq7l23jetPjjztmzU8fBSls8RQ+2L/f3uc/fDhf\n11tuQW3OHLaNi3dyNafgRXQY6WBy4FxMjDVfvbwuOL6Gh2N60KmfiikVbW2gxddySpDZdb/msOiA\nFRBgx1f5nXrpJdRmz2Z7506QTjZyKW/EUBw4WNPIndvCwrQbk6IoilU8PoHOu0dMCh2HGky1bVkL\nWu7N3Mdw/yE8L3NihTjChPfekBvFic7yP2MioiUi/7dzOc52CnzqKcdeOdf4oSWzLHmHFCzgWTdJ\nB5JAi/wBN2Lpmojzm87W8VPnrKZN+EPNgU42kM1SjdHVQ8V1M58+1omxM/2mx4P2TyNnLSETpBMI\nO0aEreQk6Jq//hZPHDvWMW+66UuQul81EsdtIZ86zUd02QPU2C3BOODBg/G8WzFZ3R48F8h8kiwe\nmenY5m7ptPgIzDarXlfxsmMtCejhhx1z5vwAkIaE83cqZx/20W0K4e9fzDzsFSw3rsVYf+OgT6CK\noigu0QVUURTFJbqAKoqiuMRjJVJ7O7/ZnDcPNTk/ZJXRa1nGo8LDUTOaXlh8W/i+4+vVV98A2oWD\n/Oa34Bg2PUgawW8zU7bim23pe1qaxYyB6mq+6E1NqIn5LbIxMRFRc9SEr/XN/DG2Zm1nZfHnL2cg\nERGVB4rmCmYHa/km2dRkgNrf39o1TUlhX3MvYTeV+gyOHYp+HERkzJJ64gnQKlZxvD421t7nX1bG\nvprju2LH8Qzz5Hn4fCPDx2YTkriVPPeprMzivbpiheNrdmAWSGm13GylYAw2W5ENPHy35+LPlHHe\noiLr96rRo5omhDc4duQknIkkR3YtNpqUB7ToXHhFUZQ+QxdQRVEUl3jcwu/fz4/FIm+aiHALb2ZU\n7BC7ouKJ2H8RnpktjjUePpx9fe451FavZrtg6AoUo6IcM2gx9vyT4YbUVHvbotxc9jVl5wTQdt1f\n7tizbmkADZqeGvuUsgP8f2FcnCVfxfjlykYcvxyTz30iy2fjFk26ZkQhoBdqXp69axofz9dUfKRE\nhFlWZkqNvI+DhxgJ+HJPZ2n8LhERVVbyly4kBKSaNt5ifoojsSDC8K1voSZ/zLJlFrfwCQk82joD\ne/tGhovrZaaniZhP6pDdIMn0oPR0O77W1/Pnb05Zl1GxQ0ZaZWoUh2kS1mNa5SKRjjdhgibSK4qi\nWEUXUEVRFJfoAqooiuISzw2Vq6ocsXUYpvj4n+Y0ism/GgVayX9z2lDzEEwbkvHItWvtxWogjWXg\nUhRlrogMbBBhDtaLL6Img6nR0dZ8ramhHi+6jA+ZM6yTDnPaSOtqTBs5d47tiAg717WwsOe4ooxl\nGmE88skQcWajBBTiivHx1q7pmjXs67J7jNixmN9VtBefGeR18zYKmxdGVfKBxQYdlJPDn//GjSBF\n+/Fspyoxd52IYAZRwzScGR+0Xtzza9fa8zU2tsfGN0kn+HfKWDIRlnbG34nueP/P//CBj48VXy+J\nxkfeP/sZaHnj+DomB2JNZmUglxoblbOU0CRi+ykpGgNVFEWxiS6giqIoLvG4hd+1i7dFMoOGiOiz\nz9g2t3Ap3vzI3DAJq0KCnhbdcB59tE+qO2T7PyLsxnTZZagte4+7saQOxE4tOXNEtceoUdZ8zcxk\nX9P9cJRqw+w0xzarZuJm/QcfPPMMinJ71a+fHV8LCvjmqK1FTezZ6owxtSFiC5U1DLehcqsXFGQv\nhFNUxNf0zju/Au2jj/hDv/baC6A98QT3uDRaRUJ0JybGnq8BAezrOKPLmUwBM9vapgzh7WfFQOxy\nFXuJ099owgR7W/jkZMfXirn4Wcr+tFWEIT6Z1ZTTgeEGGirGBaen2/E1MtLxs3B5NUiJk7j/6Mdf\nYqemK69k23cjdpWL3M4hiupqTWNSFEWxii6giqIoLtEFVFEUxSUeY6AnT3KsxoxzytLO7GnlKJ46\nxdr/PABS2gjuDk1xcX0zE8mM191xB9uiczURYZvt9etBSmziMtTCQnsxsK4uvq5mBxjpTtnGGhRF\nHVr1SIwtT5rEdkODHV/l5292f+p3SEwWMNuRy+740jEiDDRanIlExcWcxtaI8UEZVzT/DhkvL9re\nDtqEab6OXV5usTxSxpaNktzqjjDHjlyH0wrguopZTkREVc+979jR0fZ8bRXpQWcNreEl/jPMj/mt\nt9ge/RGWgEK7tpwcK77CTKxDmKok48Wx2zEe25DBqUp79uDPlKO0evr89QlUURTFJbqAKoqiuMRz\nJZKiKIrSI/oEqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVxibcnMT2dc6symxaiuG4d2+ZoQZHMmLIe\n29nl/mEAH1y8aC1frbOTfTXbUgWfFrmnxmyS+j1c775tG56XOUPU1EZG2suta2Vf/Zswu66hP4/O\nkDmhREQTRrbygZnrKvvN2aqF7+x0/FzzuA9Iyy5xT4PysY+CNuGYqCmeOBG0j6/lmunBg+3lK1ZW\n8jWN+cVY0BZEvenYW67J7PmHGM0HalbxKIqwMIt5oIMGOb4Wb8PafDkeZ/RsnC5LL7/smCvyw0CS\nU3NDQy362tXl+Lp0OT5vyfTf3PWYQztqPOfQii58RERUNUasJZZGpciRHuaU4IwMts0huJF7xf0g\nZ78QQRtESkvTPFBFURSbeE5jWruWRbkaE1F1FFdJmEPlZKemsHvxaaBTNNj16e629j/l5s38P9DC\nrZE9/rvOY9ipxWdRSg//kvC/K0vzq4mw+bM5AEs2VTK7AyWM46eVAdcPAm3BArazsy09gezYwZ//\nXXehJjoRL90YDNLacO7aUx6CFVPyqXrhQntPSrBbGm9Uxomn8zVPYjeeZW+IqiWjLCzrMA/8W7Gi\nb56WjUZWNPhqngtffw6fb4KbuPtR4WnsfpS4U/wdxcX2nkBzcx1fj3wPvyujfxnHB8ZOY7MfdzJa\nWIqVYbB7DQuz4mtFBV/T2APpoC3t4KdM2UCbiKjwEN+7J0vrQZM7WR0qpyiKYhldQBVFUVyiC6ii\nKIpLPMdA4+O5E8t67HBSWsq2OXDMz4/tyKHNKHZ0sB0UZC1WM3kyx0BKJuf0+O8qolLhODaQB+Cl\n78SMgcyJouNQbKw1X+UbQ9mYhoho2DC2Yxqxi03lkATWTuSCtrSW41O2hvVJP823l9FRXeY/Z0pK\nHDNxx1SQCuf1Uef0mTMdX5P9doOUt1jEveXNSUTFJzjrwZiZRv0O9o2vshuXSb+Sl/jgBz8ArbqR\n496RL/4WNHrwQbb9/ftkqFzngQqQvL/Fv6bfO++AVtOf30OYb+Ej2vpg0kNRkeNn2qEEkObPZzvM\nzxg4+PTTbI81sjee5Rj4li0aA1UURbGKLqCKoigu8ZhILwdlmyk1K5bzFm7BA7gOX3MN25En5oMG\nDWTT0sgWGzaIg2c/B63gOk70HmpsJ2ReQ10dbuHN7Z4tZNLznDmoxQSKJsrn0FnYChlpI2u95cAv\nTB1yS/BxDttcf0ccaN27REjHSHGjXbscs3D1zah1DKU+QWRL521fAVJRbZZjTzNmlMe/9ppjd16K\nBe2O3/EWrmQCWeOyy0QYi1pBu/pqDnmYTcyPTuN0nMTTmKqzRwyg6+zsrYfM8L/xtv0dQ+snY3dy\nciMRhclYlFEREtPBoZHKyl67SERE+/vztl1EkIgI+rtTyTO45IU9w2vDjC/wvCNH/vXv1SdQRVEU\nl+gCqiiK4hJdQBVFUVziMY0Jml60Ga//Fy1ie+5ckNKPcelW5rSjoNG+fWxnZlpLt9i1i32VMVgi\noh//mO2nnkItMUQEYYypUomN2Y5tc6hcezv76jsHUy7owAG2zdiijB9v3YqaLEPMzbWeGlIRiH7K\n8HD0qR14noiBQl4WEdH06WxbTA1LS+Nrmr3IGH8m7zl5fYmIXnzRMTtQoZ9M4u9GSUnfDJVrnY6D\n4/z3Fji2OVSuel0Z9UT1EI5RR0ba87VNDJXz27gRxVtuYdt4SbJ5KMedzZmDt93G9ujRlnxtaOAP\na+BA1OTLAzkpjojKhvA1Nub0wVoRFKRpTIqiKFbRBVRRFMUlniuR0tIcscN4vu0vt5d/+QueJx6T\nC71xG5I4TnQ8CQ62ttUIC+Mt3LhxqJ0/z3bJtE2gVdzMc+uNp3vKjuLtFCUlWfO1uJh9Nau4gtu4\nMopWr0ZRlMqcHDETpPx8tm1VIlFNjeNn3iHsP5l8SVRCybwsItq8lf9fXjgD+13m7uVqmpQUi9ti\n0bs0czX2Lv3VrzhVrfurIDxPpNh4fTcUpO7PRD6Qzeqekyf5S2f0IO2aNcux+8ktMhGVZ3BK0QQ/\nDI2lbBvl2Lm5Fq9rcbHj64U77gBJ1qINMebb0403OubmMQUgLZwvzrTUu1ZWzcnvOxHR8OFsb9+O\n2sKhIh3v0CHQyidxX1vtxqQoimIZXUAVRVFcoguooiiKSzzGQOPjOa5Q/KIRAhAxDjNtQKYupU/H\nDvCQRtLDnBE3eHm97/ja/fEVKMqgqBlXlPk4ZoBEtueZObNvuqefM8ouRRvs4vn7QYr/kOO3R0Y+\nANrol8Vsl/R0K76CnwOzQTs7nctwQw/mUY+Y1/TTT9l++217sbrkZL6RZYcdImjX37xqM0iyQ3lk\nLXa/opEj2bYYr29o4OsaNBvLR1eM4zhn1nzskF7Twd3Tw2YYUxdkezSLXc5kbNEI19KUuRzP/vhd\njHV/IcoiQxuxXnPyb2Ic21p6mIiBNzRhDDzoNJeONkdhTW7AfH6XkDkCu3jJj3/KFI2BKoqiWEUX\nUEVRFJd4TmNSFEVRekSfQBVFUVyiC6iiKIpLdAFVFEVxiS6giqIoLvE40mPBAs4B2+K1EEUxQoFG\njECttpZtkddIRETHj7NtMbeS2tsdX6trfUGKHMG1t16X4UuzV1+9zLGHGtMmHnqIbavtzETOWvJ8\nzFmTuXZGdz0aP75nTU74aG624+uoUfz5m79PjvugdetQFPfGmrcw7+6B5eyaX3d3n7SIq47C/gvy\n9uy3D6fLyhaBmVsHgSQ7NgYEWPz86+v5Jvyv/wKp8y/vO7bP9Cl4nkhMzB2aCZIsRbfZzg7ya9va\nUJNjPOT3mnBKrLk8JHWIPgopKXZ83bGD/bz1VpBSV3P/g5xp2BJwzdvcBnDZmRTQKuawn7Gxmgeq\nKIpiFY9PoJMni4O6cNBONvH/1t6HsAohbJuoWjH++ykP5Mx/i3O6KHc7P3WaT5KR9//Qse+6603Q\n5H+qZq/d0lL5d+HTSW/IWsdPnWY3Jtkn2WdYMGhnr+AKq4Yhp0CTPYP7guADRrXRt77lmEWLcV54\nSx3byx7GCWe7QvhBYRbZ4+w4fuocZvSh7rcxx7Enl6SCVuLHVSrpc0LwxH2iO08SPtX2isOH2f7z\nn0GqE7PWwx55BM8TN8tEYzhe6H338UFuLllDTmRbuRKkuJXcASokZBRouS38Pa+cjhU+ZFQ0WeGJ\nJ9i+4QaQcpZwQ+Uj53E44rIdoqLrww9Bi5ULSSwO8fsH+gSqKIriEl1AFUVRXKILqKIoiks8xkAn\nTZL/chFoEdfy5Lb2M0YLaBEfo/79QSoVsboJFoOgsqtOyrwuFNsedsw5fijJF8hmPLL7z+KHWoyB\n/uY3bF98DTuLnz3HsaRQo/3NyXP+jh0hOswQEUXN5ot5AUPSroE379PWoyjieMNqUYo8LGJwjZNA\nm/VLkS4wq6aXHjKhe7h7OLTRIaLq8Rz3XDMez2seytctoH87ijJWaTMGKm86I0sl7MwZPjA6pMtW\n66G3347aK6/Y8g657jq2BwwASd6eRniU6kM47jnqeuMF9s03s52Cb77dAl2sMjDOSbNnO+bopiaQ\njjzJ3eJG/xLPq5nNcU+cx8DoE6iiKIpLdAFVFEVxicduTNXVnEgd2YKpKnJr3j4CUxg6ruBH9sb3\n8OfLbWF6ur2E36Ag9tXsmZw0kge1rdgeAVrWGE6sLusfD9rzz7O9ZYs9X4OD2dcrjN7PH33EdusW\nY976yy87ZvEMHNQ1ejTbgwdb8jUhgT88Yw59QSmHNJIIfZE0TMStb9u1Ik3HZiL9hQuOr0fex3DL\nCy+wbdZ1eIsglpmcTjNmsB0R0SfJ6WtuwvSwZR+IghXzRr7pJrZ3GPeGzMeLj++ToXKTt+D3o7T0\ndXGEqUMbNnAKkJ8RNpszh20fH0v36tixfK/KlCYiah/GqUq+O410vMBAx6wMxL9Pzs0MDdVEekVR\nFKvoAqooiuISXUAVRVFc4jGNKbK/SDMx6yNFzMV3H5Zq+YaEOHbAfBya5TfdiKVaouHJl/jg1VdR\nzOdGB1nbtqG2r84x47ZjLDcO6iPtpTHV53MK0sytmMv14INs53xyN2iTVvLxsEsg0T33sF2G/RLc\nI1PQnnwSpMDvP8oHmBlCFM5lv2b8K+iDDyw5ZyBiWaNbMD1q9CX+zNMGrgVt8WK2j5w3yvU+Fz+j\n9x4y06c75uQQQ5vDqUvFB/1BipepS2btrviZVhFpPyVPNaBWx414agJxfZDvD1KbjOt6WKSyxeL6\n4JqODraNzje+bfmOfWQWDkccfR3/TTHheL0rS1sdOzT063+tPoEqiqK4RBdQRVEUl3jcwmft4fz7\nFZOqUPwhdzjq+uIiSP1EWVDrvDTQAvf+2z5+I5rHTnXsAFnNQUR0222O2dAfn8Xz27hKZX4pduoJ\nmJfAB0XGzPDeIEqeWlpQWr6c7dbt2LuywY/TLIK2YcpN2crx4sjStkiUopUPxXSkz/8mDsyGj6Is\nxX+v8YGLrbZNYsfzs0BLC9aNBAbytn29UVAlW1ru/q9NoE3e94Bjl5RYcPIfXOL4y7BhKK2YxpUx\nw8zQiOizGjs7CKSt89jGRL3eceS7yY79nHHt1n77accO+yl+rsvOcLVVsxH+CZD3gK0t/MNcbQh5\nUkSUOIfvjXHY/Iquu46v44evtIIW84xIKYvZ/LW/Vp9AFUVRXKILqKIoikt0AVUURXGJx1LO9nYu\nOfQ9ZqQfiThO+kFMxcl8drhjt50+DZofds62VnKWmsq+Zv4ef6zPF/w3yrlCRERvvSXSH6gQtA0b\nOP6TmmpxzkxZWY8lkgEHOdZqlh36zOAYaOZIjI+mnxNdbWxd14oK9tMoK5zpt9+xf/ELPO27Y8Tc\no40bUXztNbZ377Z2Tevr+fM3JwuYxxIZgxw4ELW0gaLsLznZ3uefksLX1WhjVHSMpxAktGDZYcMk\nvh+HGF335Uyko0ft3atZWXxdZWUrEVGY91nHTtuI7xbE8kDrzO/jXXfxQWGhFV/l5y/HtRERHTzI\n9tn5mMZWHL7UsePX4zq24CZON+yplFufQBVFUVyiC6iiKIpLPG7hFUVRlJ7RJ1BFURSX6AKqKIri\nEl1AFUVRXKILqKIoikt0AVUURXGJLqCKoigu+b8MT1kBum1ejgAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  11\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/X1949EZMT8EjF1RI7MGBEj\nox8oOb5GjIyMHDk1cnyN2/HFHxGRqSNj3MxImTIiE8ftiMhInWOO0BwxZoSmZmTk1MiIMXJajIwY\nMSO8/7i365zXO/msLt7e9+N+PM7zr3M9jhccrs/1efu+znXO64w4e/YsKYqiKF8fr//XASiKovz/\nii6giqIoLtEFVFEUxSW6gCqKorhEF1BFURSXeHv0njnjvKLPXOIDruJitnt78bTPPmN77Vr0FUZU\n8kFq6oivFuZXYMcOJ9adI+4E18iRbIeE4GnjV6bxwT33oPMb32A7NtZarJWV5MQaHIy+uK6tfLBk\nCTpnzGB73jxwZW+KcuyiIrIS6/79HGd0xvXovOkmx/SpKAOXvDekTUTU2vQhH4webe/zz8lxYl06\nUACuwv5MPli8GHypK0Mde84c/JGJU3r4YNQoa7H29fF19R05CL7VP+c9zbL7PwQfHTvGtnlhp05l\nOzPTWqxJSRxrTW8c+LInNgx5XlGeuHYybiKigQG2Y2LsxFpU5MSZ05UNrrwn+Ff4/OMf4Os4yeva\nuLFnwFe1jX0pKef+TukOVFEUxSUjPNaBHjnC//scDwdX0qF8PjC2UTEbeVe3aRP+yLw8tisr7eyU\niIgaG/l/ytdeQ99dd7G9ciX65K7j4EH0Zf6Mwws8e9ZarKdOcaxjJn4LnQ895JhHpi8FV/iSRMcu\nmLITfIGBbKen27mu1dUcZ3w8+uSGp3nTEXT297O9bRu49t/Nu8PoaHuff0sLxyo36kREbcU1jl3e\nlQS+jz5i29jU05hfins8N9darK2tHGvoyUbwnZgQ69hB7XvxxM2bHXP/fSXgevJJtquq7F1X+RTS\n3o6+H/6Q7XXr0Je5L4UP/vhHdMovZFmZnVhranghkzcnEdGLL7L9m9+gb+NGx+ymAHAFHKzjg4QE\n3YEqiqLYRBdQRVEUl+gCqiiK4hKPOVDI1b2H+ZjmkTGOHRWBb6/o0CG2zdfep0+zHRpqLVezejXH\nuqzYyCvKZM3MmeAaN5dzTuZb2MJvP80Hixadl3xdZJfxJnPiRMdc8CjmZEpvFW/ow8LwPPl3tbZa\nibWhgePs7ESfzDOuWYO+/Kxux56VgX/DVv90PrCV/yIiGhx0Yp01B/cFU6awLVJeRETUUtHs2Clr\nosC3YQPbo0bZyyvS5MlOrB1bMGH/wgtsLxtRiOdlZTlmWgZWxZTPF99PW2+2iejMGb4HTp5En8y7\nm+867r6b7W+OxXC8PvmED2xVNzz/PC9k4j0CEeHNalRhtPlFOvZ4P6Pq4fbb2X7zTc2BKoqi2EQX\nUEVRFJd4LKQf800u8i34VQz4co6lOnbDvErwxXVy4Wz3hJvBt6ZiNP9MrHceFssGHnfstj1/BZ8s\nT2lcgdt0mW24/HL8mYUL3rMVHhCZl8wH5qO44LHHsHCZpokarPp69MluAUvEZXCROdT7EFHKro8d\nu2pCLvi6ict//P2th3VO+vp5L7A1Hgv75Q2QOa8fXIN+/Ng+diyeNns22y+9NOwQmUceccxxXc3g\nWjaZu1LKjmEZW/oSbggovy0afC1+9zl2JNnDp58L4se9/So6xZfn+CePgkuWPI25+mo877rr2H7/\n/eGGSEREZ+bOdWyfO+5A59tvO2bdSbw6MhTz8b5swZuOnU7nRnegiqIoLtEFVFEUxSW6gCqKorjE\nYw40dR6vr5UbjVKlDTc6ptniteB1zo+WhmCr2uHDsXReuPdex5w/H12vvsp5nLg5o8HXUNHh2J+t\n3g6+xolFjm01ailasmIF+kpLHTNI/E1ERHTBBWz7+aFPJnNtMWkS29Ong2vDNHHQNQ98ARu5/KZs\n2gTw9U3j/KTvsANkfK8SpWu//CU6d+1yzO4p2MoZEM955iJDoKPykM1sosBbfO1WrUKfKEdLn9QC\nrsYwbt+88UZwUdc+a9EBuWtGOXa+9xsYz1TOffdjxy50TEab97hZ2miBw29wFVPUxoXgWz+d254X\n3tgNPqqtdcy+iq3gSl8lc/v5dC50B6ooiuISXUAVRVFc4vERXsr21ezCzoekw4cdu90o/yh97AQf\nnA4EX01EjjiyV8fU7T/esRumYFlNyQzefmeOxBKXqBlcoLDrzQfBF/sr8Zgcm0a2qPyCS04m/f4+\n8IWu4t/TsXw9+GTnh6jMICKi6O/28YGvnYfjuE4uT2tfjr62mVLHEj/jpV1cfnOZ0ej2iKGUZA2h\nAHXiRnxMD9rEKYWA3bvxPPEIV7YJr1u6d7k4svf5L3iJ4yt996fga7txlmOblWqyzMp3ZQ74AudY\nrAkUyMZB8h8AX+xBTnEdn4ganPK8nYGp4EusF9/PWDvJsah14vMxZNUWdor7od5Y8sS/PRiCce72\n5nUDVxRGd6CKoigu0QVUURTFJbqAKoqiuMRjDlSqEyU1YVvZggs4l1g65mnw0YZT/O8+wtf/11/P\nuZqh2qPcENAuWuJEfpaIyE9U4EStw98qy0FG7/4EfLRcJP7S7OXA5I89Md24CqJcaNxMbIPtqT/g\n2NFXGsoxci6VpRxog8hrRZ0uAl96Bv/fu2TJKPAVzm917DseDAXfj37EdlCQjSj/yZYt/HNn4HWr\nXs7XLXnuCfB1dPG1Sq/F3ClVVNiLTwBjeb74AnxSLapgJrZ5yhunfE4duNL8O8TRuGFGyJT4D5X9\nIyrx5vsjcwKWK5Yd49xmYn81nng+Su5ECdqZkXg/+hzm61jTiYpbNwol/dixOJ8qdluWOMIJAP9C\nd6CKoigu0QVUURTFJZ6HyimKoihDojtQRVEUl+gCqiiK4hJdQBVFUVyiC6iiKIpLPNaByqmMixah\nT5bI/eQn6JNKazXeyeiUUlZFRfYmHR444MS6dwDrAGO6as4dHBGlVrCc2XPP9YDv7FpRlJedbS3W\n3hEjnFgP/AFf4snJGWvX4nkHNrfxQSD2n8uJjVRebiXWhAT+/F81pjl89ieOZf9H48G3Zw/b2ZNw\nmiu9yWMSbE46pZ4eJ9bybVgHGB/P9jjqAJ+sSUzZjHWgeXlsh4ZanMrZ0ODEevNyHNvy1FNsR1+D\n92POKvy7JF1dbJeVWYy1spJvUCmnSETVF7OOg6lQFzWW620bjmHBb9xUUW/p5WUl1hEjPnbifPbZ\nS8GX2i5q0c3RoutEIeiSJeiThfA336xTORVFUWzicQcaN5HFRx96COd7y0FtV1yB58n/jdaHYReC\nmP1EQ/9/6oJ9rCgbsxjVZhcs4p2FqbWLGznsCjkfwq9EROFX8H/quwwlKylOfSBkFvhOjGTB13rU\nfib/GawcZPTTuEZ2acnPjYgoIYN3nXWLa8B3zXwRwUZU+t1/C3ev4Fi0YSIeifLWZA75z06exC6d\nqVP5uGp+A/hayRjqZ4m9I/nnmrMA5S1Xsxu/IQXzedefWYy7/rINsovG3r6oZSIrFAUHo2+7eOip\nnIudUdTEgyXjLrsMXHHxvHNtwEvumgsv5F1nagR2cJX1czdV+m78TJNn8rWqnoRfxp4wfpIdaq3S\nHaiiKIpLdAFVFEVxiS6giqIoLvHYyrl0Kb+F/fnPPwffQw9d6NhFcw6AT6ohVfujitGmTWxXV9t7\nW1hUxLFmRxj5GPlLN2xAn0zuTZmCvs5O+QusxSqva1gY+tKaxPW66ip0vvIK28Ybw1kbExx761Y7\n17WxkeOMPYkDt/KPcX4296rn8cQrr3TMnltuAdfIf/D95uNj7/Nva+NYx/cfQacc4uaNaX9ZQfD9\n7+NpU6eyXVNj8c32woVcMXAjTh1I2yAqSEz1fKHG1DwP1YFgkNr69dZizc3l65r/62vQ+bz43Cfg\n8MC0LM4a+vvjaTKXmp1t6boWFjpxxu1C5bj//m+2Z7+CA+daMvj6D6DgPqjqx8WdO07dgSqKorhE\nF1BFURSXeHyEr6ri7XtKfzn6RvKjZsp0LPil665zzJbfvQ+uyJlCYLe11dqjRlwcx2o8TVDZXBZ7\n3dmLQ6ykgK05T37iRLaDgiw+wiUkOLG2v/wyuEIee8yxO+ajGPW46WJO+aefgq/nLb7Oo0ZZilU0\nJ6w/iM0JC71ZUNsUhQ4KE0UfsoqdiE6s47I2m9dU3qvLjQF4HYfELHAxfI6IqOYgF3knBRpF/5Mm\nsW2p4JuIqK6OY00IxnRDc3+4Yxuz0Sg9guNrHIgBn8xSWS2kT0zkBpUVO8Ela9LNbMPixWyHnsYU\nX91pvpcSEuzECimcLvx9ubX8+/JfnownygH2snOCiLL9+B4vKtJHeEVRFKvoAqooiuISXUAVRVFc\n4lmRPiWFnWYTvqy/mTEDfTIhcu214Mp/j9u4cnPt5WqOHOEcSDgZZSy1tWzPnAmull4uY5FtlERE\nSdPtix4QEVF+vhNr92Ic2jXyMv41vg89BL7BX/zCsU8TEiA/j6NHrcQaFcXXVObYiDCVGNVv5A7r\n69k2a1hkTjQ8/Lzk6sxgt7zMbcizn8YceJ9QSfH9xBgqKO+Vujp7sY4ezXnF7TgccNs2trcb7brv\nv/83xz77JJaOZR7n9tWSkvPzvdq1C33ZWfz9aGzCvdhFF7Ed/d0+PFEOlYuJsRPr44/z5//BB+Cq\nnMSlSqnxOFSw7jDnwBPicahc63H+m4YSk9EdqKIoikt0AVUURXGJRzUmKTK4cwnKpiQu4m4T8zGt\n+kae/Z589HHw5a44P6oxx1j8hV58Nxx8y+5nyaURYwz5G+ISrCuvRM0Vf3+OLxaf/IaH0BkMOG50\ncd1/v2Pm++Ms9tw3uGuqyZhv/dJLbJdaCJGIqPlh8Zg40ij/COZreqIXS2qCbviYD66/Hs+TtTnh\n+DkNh/RgLrGZajxqynI0+hw76l7czE9+syNQqal5O2uH4tUeHlHB/Ni+wsiMFQXzZ160G9NN0H02\nvwJcCy8RT5gl9gZFhofw43f4RFTWosWcb4g1ZaV++1vHXP8IljIunGR+By1wIXdGQgsZERWvYjt1\n9wrw9U7n8sy+flyPQjewchgV4XfxX+gOVFEUxSW6gCqKorhEF1BFURSXeM6BCknyxLA2cO18mvMa\nif5YxnLPLe849p49j4Iv5nALH0RGki2kQr5RqUT0+uuO+c47d4JLivOMX4UtieQtfihhnm84FGzj\ndtac6S3oXLPGMSc2oSthOWfi6iai4kzSe6I0hAw1KreI/GW3PyqgB2zmNrdVh/G6lRTf4diRE/H/\n6PvuY7X6Zbak8wlbBzdvRh8oXj2OOfkdFWzvmYHzkkoC5THmR4eDFP1Kjsc26KpazrttywIXVfuJ\n3KEh4xX25z9bi0+SvcLXsefORTX30zP5OE7ETUREt97K/86ouRs/k+/jNlxW3HP55Y5Z54+THGSV\n5d54bElP3i6+R8HGwgHJ83OjO1BFURSX6AKqKIriEs+dSIqiKMqQ6A5UURTFJbqAKoqiuEQXUEVR\nFJfoAqooiuISj3Wge/eylFVMUyE6ZfP50aN43trXHPsvf8HTZl8qahQTEqzJbp06xbH+7nfok7We\npkRYDYlixLFjwddXzLWOvr72JMJKSjjWfUZ7cdUMMf3SqPVLzuO62ep5NeBb2sR/R2GhnVjXr+c4\nTVW6lFWihlfORSGCqaxfGnX4zDNsv/baeZFdk7cmEVGyv9BxkJNWibAoU2g/EBH1RUc7tu/Zs/bk\n7JKS+M2tUbTacpzrLiPDzuB5YuTEqQcLwCWV+IaSXnNDTg5f14J6HOsCEpeGFmTJOt6bZe5OBl92\nCI91GWpUxtelo4PjHHe3ob+wdq1jngjDWtagN3fwwcqVeN4dXM9MubkqZ6coimITjzvQmOOV4l/i\nP+3I44r+cbfjvOiYTt5FVf4DuwKOBPP8cntaPPifhZw7TYSdSTXe+L8hzZ3HtrFb8s0TXQqFxg58\nGGSKjpfNm7HDJSiLr5cx4wo2T6uPYhuPn5+18BwWnn2aDyK+h07RpSaHhBERJRTzdL6UCOy0Cv4e\ndy3Zu6L48PD22+ir6eVdR9Ih7JhpCE517LjXXgCf79/+RueFVUIeqLcXXJGbeRc0fjPuMtse5m4b\nc4jb7BHiySUUv3PDocCfP6X9T6FyWPTVYlifcbN+dgkPRMyfWA2+48awPBuM8xcdXXfdBb4zU/jz\nX7UEXFQSzW1SS7/3GvgKmxLo36E7UEVRFJfoAqooiuISXUAVRVFc4rGVc/VqfrO17C5jUNu6dWxL\nOXQiovmcA6u8AtWYZD7S5pvtxkaONSQEfU88wXbpYzhUqrWXh0qZeUQpsh0QYC/WLVs41rfeQl9B\nLw8Hq5pUAr6UGWI41w03gO/MW1wJ4eNjJ9alSznOwrmGatSGDY6ZG7geXPKNvTlv8Oc/Z7u01N41\npZ4evpFNOS4xqW1cBE4dkPHJ4gEiooZd4i24j4+9WBMSnFhX34bKWfLenb0nE3z77+P7IfobxvdR\nTqMb4o2xGwYH+R7wIhy6JicLVm33BZfMScfNM5SshOIYzZplJ1Yfn6E//yYhayarLojwS2+o6m+5\nha/37Nk6VE5RFMUquoAqiqK4xLMa09atjrNxLJZGFBezXb0YB87B3GdDlHTvSC4piImx+AhXVsaz\ntiNQ4DfmJJdRnJmOZUyydlqOMyfCv7G52V6ssuhXjqwnwpr05iacp733ED8mxXy8A3yVf2Oh6NRU\nS7GmpDhx1sypAlfSblEOtAIHdVEpj7WrvgZTONOmsW0zhdPXx9fUtxdnrdfsG+3YSWGteKKIvW7+\nVnDJz2LrVov36tKl/KUTAwaJiKrbWWw4udiYZCgeN09s3AmuoIOisSIpyVqsVVVDp8Zkw4KZ/iha\nJdIfRglk2nzet5WXW7qumZl8TY2C+EE/TtuYT/fV20RawvwjKirYLirSR3hFURSb6AKqKIriEl1A\nFUVRXOKxlTN0Bec9TTGJhx9muyUQG/Qj60WZglE2EDbha0b4FQldw3nP1jm54Es+zG1lEYfARVOn\nsr3EaPMyWwJt8e1vc9vZs89iWc1B0eaWMA1LQ+qmc1nFqdlY4kK/txffv9i7mPOeU8IMZ3uIY5Zt\nCwBX+sUXO7aZ48Uhavi3Dwffdi7rKWvCJmGZu+sODAVfxSTOe2Yfw7KxhI3zxJG9WJvncHuk0clJ\nyY+Ktug33kCnKLMJmogDGZsruMwsiuyRsk/cZ9tPgi9GBL80AnOyoRE+jm1+r8r9ZTtt0bBjJCLs\n3zYEWryEKM/GjUZeWSwA1VmN4EqWkwqHQHegiqIoLtEFVFEUxSUey5iqq7mEIdkb9SfHZ7EakPmY\nFh4sHtOMMo2ok7zVt1kaRJWVTqwtE1PBFVkhHhmMsqrRS/jfmlKRotGCRo2yGGtODl90Q/OzfIDj\nSQvEa/4lCR6JfE4KCrISa3Mzf/5RYVhSJT/X5jyMM2rRZD741a/AV3OcH6+Tkixe08ZGvqaffgqu\nnSO4xCtxApYx9YzlR3ohMEVERO+++3fHPnv2Emuxdo4Y4cQafPXV6JR1NtOno0/qb5pfOjl8vbra\nWqxFRXwPGI06tHAslwfuvxzLA6MvbGbf55hUiH52IR+sX28n1tBQ/vzNQfTye3PPPeDauZY7+Mzv\nf3rIv9cu1h2ooiiKS3QBVRRFcYkuoIqiKC7xWMYkx5yMykMFdFnWFD4BZ7c0NHHJx+FpWN6wJuJr\nRvhVEWUMh4xSpdMzuFRi1y70yXKsL5XcXCTaJe+8k2yR3sVK41lG3i3NW+Tobn8QfD1vve/Y5myn\nsaILLSGIrCCF0zMysKQq7t13HTtqO5aNkShjMiWukrrKxVHacEN0ODOJy1N8fv44+BJF2vvIAH6O\nK+axfdBQSq+ouMRWeMDgn8V7h92V6BRlf0Xbx4MreyK3TC+4qBx8pcUddD6QrzCCRnaDr2wb5z2n\nTzJO3MA36E15RmHVwWttheeQO4e/N/nt+A5k9Yucd1/27LPgixf3hmwzJiJKr4//t79Xd6CKoigu\n0QVUURTFJZ7VmBRFUZQh0R2ooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUlHutAadYs5w3TkTwcdxAu\n6xUNCf3e555zbL8vvsCfecEFbJ89a61nt6eHe3aPHkVf9Bd7HXv9oRjwSamzRP+94IPCsJ6e8zLp\n0Oy/HSfrAh/EOlD6zW/YNuePyOLXnTutxLp/P8dpfoyyb9znPyej86ab2Da0B/I7ufYzN/f/jr4A\n7dvHtixuJkLpM/OaZmSw/eGH9mJNT3dirZxSBq6LLmJ79tXN4JMjJ6r9sNYxuVfcN6mp9mI9cYKv\nq1FE3RHPn6VZQy3bz7cGZ6NTTpS97z4rsS5YwPdq6Q9xxFDATJbbNG5HqHM1R5YkTBSjYUaP1l54\nRVEUm3jcgVbP4V1n8hwUcIW58HK6FBFJ3R6/S4xujgce+FoBflVGVbAY7jfiUWz4mnt413n0++jb\nchmfF7kcd6czslhVKp/s4TXpZsc+vfEA+Pon8c6iaS3uMtJ6hepRvNElMclsBRk+f/iD+N2P4n/A\nPj/+sWOf+M1r4JPD2HLrU8DX6Wev+wiQalQnUfi3OYKvY9Rh7PxZv4m75sLCUFEouImPUYZ5eEQd\n5F3nKmPImdw8L3gCO3hKv9/u2KY6Wqu4b2zGCrtFo4tHfu2lchkR0dYKsQrMx88jau19jt18H1lB\nPlg0eqPAu5x5+PDDH4MvPv5Sx07vNcSd5Yy5bGMX/U90B6ooiuISXUAVRVFcoguooiiKSzy3csbG\nDu2USQdTxmZgwDH3tqM0kJxVX1Zm8S2sjNUYZCcHRw3cfju4vO+/37GXBqLCjRQEj421GOvWrUO+\n2SyYwDHIggUiomUDQmXo1Cl0yjfG4eF2YhUq/1+aKijfWG/YgD75N00wpgiuEQMHS0rOiyJ9RwgO\nDpMhSIUpIryNSwYWorO4mG0fH3uxNjc7sV5zH+Y5j77Cb35XPzMafO+8w7Z5i8u33pWVFu/Vujon\n1pr+BHDJVLOpVp86SVTpdHWh831WFbP1Fj4/n9/C5y5HdTj4btx2G/pkZYtRSjDYzz/Hy+vc11R3\noIqiKC7RBVRRFMUlHsuYyufxnGSzTEHOTC/tOoJOUVKS0YmCyrfc8jUj/Io0F3OsZh217x9ZGNn7\nvffAt+V1Fq29JwTP27+f7VhjnPRwSNk+y7G7umaBb4qIwZwh95vTjzq2Kf6a328UXdtg2za2zeHe\noup453Z8ZEp8lAvrW5/FEqdffM5lY6XDj9DhSCB/QOHH6sB3JkukG5qO44nicbLoR2+CK7tJFGTH\nYWnMcCjazY/tR5/EWPv8+DF52Rt4bywN4bLCtAEswH/9knRr8UkG4zme6RfgU+zJDzjDY4ot0wCn\nfOTgPiKiUWbDggVk1mjGDB/wRYpc3B3/C0vVXrrmDT646irwLV/OdmHhuX+v7kAVRVFcoguooiiK\nS3QBVRRFcYnHMqbyci4NSNtk5IBEPdLSdePAVXhc5BmMEpf8DVyaYVNMoq+PY/W99krwtf2B81yy\nzZCIqOAwD8urmY/tcUn9QkBl1ix7pSEdHU6sMXPw2okKMDqwCkURQDDEKH86U8u5NB8fS9c1KYlv\nDiMHuv8izjlGv2MMRrvsMravuAJcNe3cEpyUZO/zl2UsUiCCiCjUX4hCyJIWIqLFi9k+fRp9svwm\nPd3e5y9EesyhezRjhmM2B+Mgx6jNS/kgMBDP8xavM7Kz7cV66aUc644d6BOTDZvnYJJQ5u+zp2C7\nMo0dy/a4cXZiFWWMJzY3gkuWTorZk0SEcZbfg39f5u95AGFJiZYxKYqiWEUXUEVRFJd47kQSjxqN\ni1EPVOpYpmzEx/uCeH70FE1ARIRP9FY7JjIznVjbskrAJSUfc140tCsfecQxs5uwxEF2VxQUWIw1\nLY0vulS1IqK6Jp6/nnAarzkJZavqf+B88+TtQrmpstJKrOvX82Ox+eTrVcvpjlmb8FFzawZ//jv7\n8d6QeoxBQfau6alTHKsQiiIivFdNzcf589luakLfx0K4p7TUXqzV1RxrcheWI9Hll7P9/PPgqpxW\n5dhmc8+777JtM9a2No7VvHZeN1zPB2aZ29//zrZxYsAcLo3q7rYTa9+IEZzCMxXfpHjt3Lnokykc\n86LKNrUDB/QRXlEUxSa6gCqKorhEF1BFURSXeJ6J9F//5ZiG6DyqNxtq6DlTxWwhI7EU0y4VT7Dc\nYFgIyR0z1pzFrCxP838HvobDXFZlirzLUTpWkSo/mzaBy3uCaMkza67E7KkIQxyJJubZiU2w8EZR\nfvLEy+j87ncd06zE2TuS855hIeiTKd+CgmEGKJDq+WauTqpqpf+3kcoq/rNjRkRgSdm4Ltkei6pJ\nwwHuM28jJ/fMM2wbf4gsccsewLKhE48tpfPB+JBBxy4qxv1W9tVX88E114BPtqtmFyeCr7tW3jA4\nBcItvnIu21tvga9nBr8fOG3MIPNbud6xA0JGoVPmTodAd6CKoigu0QVUURTFJZ7LmBRFUZQh0R2o\noiiKS3QBVRRFcYkuoIqiKC7xXMZ08cWcIP3BD8DV8sILjh1hnOb12GOOfWpRPvjGfHGCD4KCzo8a\n0zpDPlrI81TuxlIVqbRvzj+Lm8olHOTlZa+Vc8cOJ9bsP2BLZtEqVncv34TK2mlz2dfajj7ZktjY\naKc9bsSIGifOs1j9Res7uX1z4cE0dIq+zyN+N4Mr/CSovJ+XQX1BWYbKvxjAtnVNB/jW1/L9AGVb\nhLGHh9trj2xu5ns1qr0anaLXdTBkPLikWNTnn+NpYz4QJVdRUfaua1sbrwGdRg2QKPNpOe4Lrki/\nNsfe/xH+HbLkLCfHznVNT+drWhaBrdx0nKcQJLWjryZYDBI02lHzN3HcQynH6Q5UURTFJbqAKoqi\nuMTzI/ytt7JtzH6P+IJ39ubws7jXeH65FGUhIqLjh9kOCiJb+NayclHLNOzKOCrmmqUeywHf6v/g\ndhihD0tERPv28f8vOXjasFiiWCfbAAAcZElEQVRQy4/tspmDiKhxHz+am6PYA8ayr7sJB/n9+tfh\n9gL8J5MnC5WliDbwLfxUKAWZKjYRnNSpN5qpNp3kLqUCe3PaAFM5KnceP7af8MYUzsJ6VuBa/Sk+\nTi/7g5iDXofD34aD1D42O9FuXsXxmMMRKytESikvD51SKTjKXtfUmWB+jPW55x7wjf+Eh/CJjB4R\nEZXt4/PSp+C9Gj1HDpHHx3u3lN3IqlYl/Zngy8zjgXcTVoKLGmdwJ9K65ejbOl9+5gl0LnQHqiiK\n4hJdQBVFUVyiC6iiKIpLPLZylpRwaUDmIaNURQy/GnH3t8B19pPvOHbOKlQ4KcgSA75Gj7ZXblFZ\nyX/IzJnoE/JM6/dhfkiWhuSMLAKfzOVRQoK9WHt6OFapzERE+2/Pdezo68+A75rrOAd6xx34I4tW\n9vGBr6+dWBMSuDRkJuYA0+eK33fDDeBLm3zUsY3Zd5CftDlUkFJT+Zoux2RWw0nOD8t5ZiZyAgER\nqnolJtqLdXCQv1deebnga5jKZX9mTl6+a2jJKgdfwmb+ftbVWbyuYgCiLPkiwlvXHOQnr2XGoxhO\nwC9/yQe2hvW1tvLnb+Tkj/iz4pM5VG7ULn53UnAcy99yZojcbXi4ljEpiqLYRBdQRVEUl3gsY8q8\nTJSqmEOjVqxwzG99C8s/ZomuGPMRrmClMc/aFqKl6MRp7IoIElv6kyfxtPw8URrSb9S/SKHolpZh\nh/gvVpdyWmOZHFxFhoaunMBHRG+9xeUZPl0nwLfgYS4JKy0ddohERJQ7iR/b77wOfQHBfI1LS4+C\nr/yHfE3b2vH/6EWL7MT2JURtUM1xLOlKiud0Q2oG3huVh3hO/YJb8DM+dYrtRNQEtoeh4h3nzWLk\nU9ag2PCaNWy3TsGU2nPY0GYPcV0XdmIt37ZgLgHMJ0xF0H+McczWdzBNuI8bg8jaZT10yDEHZ+Kj\nePhyUdZ4+DD48iftdOx584yfOT+L7SHK2HQHqiiK4hJdQBVFUVyiC6iiKIpLPOZAG6+4z7Fjg3vQ\nKRIGD0aja9kHnKvb/zKqnwyKNdvq6i3kiNatMJ3chmUOHPM4OW7q1GEGdW6W/V70MD78MPjGfNLq\n2Ks/w5a0ySLU2A2Yk35gRZW9AP+J/PP/8Q/0dR8UrZ1GHpf6OXd87bWYc/zsDdnWZ6/9tCOPy3qS\nNmCuLmUz5+qkMhMREXmzolDp//wQfTCdMHa4ITp4HefPeNY6/Lmffsr2k0/ieYHi9YGpHCYr96oN\ngafh0HCMc+txt9wCvj8+8T4fzA3BE+fysLzQ49jKGXpwGx8kGrlTt4iSQ69eXKvq4lmdzXsanrZx\nHts//enr4Du77u5/+2t1B6ooiuISXUAVRVFc4vERPraYlWHIUGKpGsGP9wsW4HklFfzYHvge+i69\nlO3Q0K8Y5VdBzFAvaEKFG1AbNmbYU4WYUx9olFiZA89tsXixY/Z8D+tPli1j+6678DQp/kxZWeAL\n7xRlFuHnVo75uvz612yXRjwNvuourkdK7qwFnxTa7e9HOa6+EH5sx4f74THupBBDNj7Hijy2fbwH\nwUfLxb81ZcVEqR61tpI1Vq1yzCyjo0immILqK8EX6s/tPXX1WKpTvUaqZdlROCLCMsTaAbxXz/6u\nhuMZiWVVK0V11owZmKrJNmWmLFB5kH9H8Vz0NW8bWty54xiXuEVOugl82e/xsdGj6KA7UEVRFJfo\nAqooiuISXUAVRVFc4lGN6cyIEY6z8z38d+NvEQpM3/0unihrKgwl+75iVo729bWnGnNYxBpRizm5\nmi84d5N0GvNKsgUMcqVEqPq9das9hZvsbCfW1gzMroT6iRZNU1pdlgv95S/gyn3gY8fOz7dzXVev\nZtUgMx8rGXst/rrOt/heMSuc5CVtbraoGjQ46PzS7tO4Lwgo5QkJ9NZbeJ64xuXtKJGfViveAVRX\nW4u1rY2v63hvHHKXs4EVj0zlqMwmkfc0c/mffcb2o4/au67p6U6sBSFl4KqoYLv1FzvwvG9+k21D\n5ip3G7fP2rpX6cwZvukMlX/Zvjn4i1+Aq+kVPk22yhIR1awRee/QUFVjUhRFsYkuoIqiKC7x+Aiv\nKIqiDI3uQBVFUVyiC6iiKIpLdAFVFEVxicdWTpo1y0mQNi/fCq6oMG6BajuJTXnjV6U7dlEYlj5k\nHxYtX+Xl1sotamq4NMQsR2hc2cgHUu6GiBou5hInozuSWk6LIVodHfZKQ/budWLNqUXV8YJeocB0\n++3gS/4VxzrXaFdL9m/gg7g4O7GWlHCCfGAAfULlP4cKwCUrbKQaPBFRTT3fK0lJ9sqY5OcvBwUS\nEaV2iVIxQ44pt/Zmx5YlVkSomjRUGYsrxOf/JXkw0eYpW36JCFpkzWGEVF/PdlWVvVgPHHBibey/\nGVz+/myb5WqyOjB3LK4BLZN4fYiMtHMPhIby5y/jIiJ6+222UQ2MiI6zPH73lCRwTZzIdkfHuePU\nHaiiKIpLPO9AxZbMnCVE/fxfzHjQTSSilSsdM/vuyej705/YLkchheEg64gbi5vBV93OmovGCBqq\nF//ht2zCmTgD13GxuucL9TURu4WCacbO7hjrGo5/AMUbvsPToik5+AD44pZzEXgD1oO7JmYz74aN\nScF0qJftxUb/wQUXsG3OIJIb2ST8D39YjOERPHKMz/9h+jy2OzvBJe8Hr2PG7sTcdVsidxc/dZi6\nnqnyqcMYz11dwTqX5o4ve6MxV9gWYjsfW5ECrsFNrEFr9MtQ7nxuCMlekw6+00LX1tYSIEe2mbON\ntgn5Ufrtb8G32vtRx77UWOPkw8BQ6A5UURTFJbqAKoqiuEQXUEVRFJd47kRqaXGcVYcjwZVyPN+x\ncwdwrkl+v5jDLN8cEtH6LhZEWLjQ3lvY0aP5LZyZjxlXnO3Y5REo3iFzu6++iue99H3xb7OzrcXa\n2MixNjWhT46tNlJg8MJ282b0Se3n3Fw71zU2luNsXGaIRezfz7+P8sGV/7LIe//4x+CL28RVGA0N\nFsVEhECLWaLQfcMNjt3+Bt7vUS8JoZEHHsDzBkY5dkCAxViXLnWCyPcrBNdFF7H9yCN4mkzfSiEP\nIqLcXvGdKyy0F2tPD18wY6Y6iHYswRld5btZuNicQyX/aU2NpesqKhs6grGyRV63mJXGJHop7myI\nnsCXs7FR38IriqLYRBdQRVEUl3h+hC8qYo3FedngCmjnUqGlm6PAJ7fsSbVYwkDr1rHt42PvUSMt\njR8352FtRGywmBfT2ws+GGtsFjXLAUVvvmkt1txcfjSeY1SfyJSCvFRERNUrRHmWoXlaNpbTKOnp\n9h+LYpbgY5GUKpUFx0REkcd5rm5SRTL4pomxsjZTONTczDeyMb+r/DEev5tWj6U4dfO4FMcsKQKt\nznHjrMWamcmff0kIppRa4vl7FrkYRx5XZ3FDSPJpo/5HFIRTQYG1WI8c4VjNUjaZNqryX4hOUejf\nuM8HXHJ98PKydA8kJvLnHxyMvuuuY/uDD9B37bVsP/ssuFbfxnPGli3TQnpFURSr6AKqKIriEl1A\nFUVRXOK5Q3H7dscMiIgAV1UXzx4vrBiN5z3HvXxn/vxXcPlMEYIEB7AdcViIkoPYgVRw7c3gOUgx\n/ka7Xmkp20/j7HNau9ZaeJL8Ju61rJzQAL7p09muPm30ZK4LYdtQvviP1ywFJ2gby3lPsz0udSaL\nhNQ1YbtmpKixqok+iifOuF8cBA03RMZMGAv6+9lO96sCX9kU/juyV+DfsW0bi8l04OiiYXH55eLA\nqGPznibeNRj9mslTPuSDdej70gAlS4R7s6BKzXyjZVvmXacZwieiD3JJLZY5ytxpA97+rimbsdOx\n5XeIiCjIXwjaGK281YdDHbt37n3gW/apXA8WnfP36g5UURTFJbqAKoqiuMTjI7zU0YxdNwt8IVn8\nCE8rVuCJl13mmD7BxuO9FAq0SMliftQwmp9o40a2Y+Z10ZDIkiYiqgzkx6lU898Og8Y8fm7xM8KR\nT+YRc/D5RpZ/hB+sBt/s74vnIgoYZoT/B3kdo6NNHz/uJvzXt9ApW2i68A+sOciP7TbVmKCWyuhE\nWlifwweTsFYpdxV3RhlZqi91gtli2QjRfWRIR8l0A3TJEKHQpfmcGhhoJzgT8fm1ReAHNn43fz+6\nx4aDL0CUEglxNiIiStgmSxtRK9Qt6TM4vbF+G645Bw/yvVqegWKxyU1DdynmnuLHduy1Y3QHqiiK\n4hJdQBVFUVyiC6iiKIpLPOZAY+u5/KB6Ds5ESpaqJoY0UA+xis2oPXvAd75yYJnHRCvZnDzwRRRz\nTqTPG9vjfKWavpQ1JyK/i62FB8QWi/bGGTPAlzyBczSz6jPBJ/M8ZjnG+VBPl6VLRf6YBeoLE6Up\nW7aAL2ElX2Oz/GmdUPm2+fk3RPC1MtPs2e2cBO9egvOb8kRa0eslVJxa/SpPBIjBTtbhMV9I+Buj\nHqKWiNI1U1pfHm/YgD6ZAy1EhadhIX6u8YqAxgs7IGQUOkWONiHMuFf/8z8tBce0nubv+MJdeGO1\nrKxx7P2f4Vynt8L4OL0C1wYcX4GlWP9Cd6CKoigu0QVUURTFJZ7VmBRFUZQh0R2ooiiKS3QBVRRF\ncYkuoIqiKC7RBVRRFMUlHutA09JYzr98XR86hVzV3mlYIxjj1+LYUfNwmqdUHYuJsTfSoaeHYzVU\nwChyn+i3NRvlZR3mp5+Cq3X/x44dGnp+YjWna6ZP5Z7+E36h4JOTGHPmGvpqsrawrs5KrAMjRjhx\neq9eDb7yQJ4CeRrbi2FY40svoW/MJ/z3UWiotWva18fX9OGH0SdVCmU7ORFRT3s3H5jjXGV//ejR\n1mJNSOBY6/xRY0LOeGkMxHEosvQ3pSIBfKARV11tb1TKzTcPPSpD3rxiPSAi6l7MdZMB/SfwPPkF\njYmxE2tCAscpxokQEdFvf+uYzXc8Ci6YymrUrNOaNWyHh+tID0VRFJt43IHCZs2YCZ3WybvOdcZQ\nMVrDQszN97wIrpgl/D/A3r1fMcqvgNydZf7iSvCtzuChYg8YAjcj23kn53WoGXy7d7MdipvBYTFq\n5BnHTl+B/6v3ffSRYwfdeiv4/scLQp3p97vB17GRB2CNIzt4//3vfHAMxXTDhGqQuauTjPmloWNj\nKndZwncFq+qUXhMCvqrN3KXU09QCPpJNMp9/Dq7Vz3B3i5wvOFzqVvF91tiLHX6xb/N2+Zih1AXq\nUDO2o9MQ2LbFzjwWPU/82WR0yo6iH/wAXAEbRTeUoY41OInbuqzt4OQOvL4efTfd5Jhml1rUxaLd\n0HwclN1dZ87QudAdqKIoikt0AVUURXGJLqCKoigu8dzK2dEx5Bu4jk5ee82XXjJfNGZLCfhWf5Yp\n/529t4U7dnCsk41cjUx8jBwJru6wmKFcNGkS2y0t9mItK6MhL7p8C0+zZ4Ov7TdvOvb43eV44lNP\nsf3mm3ZiTUriOENC0Cc+9Mws/H9YphJL78fBgdmbWf2mqMji53/ppRzrY4+Bq2c+50dH9X8IvrpD\nnOfMyMAf2bZd5EsjI63FunQpf/5m/jjnJH8/cv3xuyPz/B378M121W5WOUtJsXddKys5VlDLJ1Ta\nmjZt6J9h/o0yJZqcbCfW3FyOM/9l/P43PM4TF+O2o8IZvfqqY/a88ia4Rh0X70SiovQtvKIoik10\nAVUURXGJ57nw27axbTzCzVvHRb4NIWng8/oWP17Om4dbZtAotUjZByx+m16PpSHy+UKKPRMRBbzK\nIrqRP7kTfC0b5eMnCrEOh/RAMRDOSI20efPv6XwSHykOisqV7O0V4GtYy//WmCbvHlEasnQkPk6G\niV9vVLhRwwZOQzT34nUrCpE/x3icGg733sv2BBwcJ4v5Z+/BCWcJYpLc4sXp4KMXRQleJDaEDIfC\n+SJNs2QJOoVQcv4GFPHNa+eSsJraIPDJgYM2Se3nJpT91+H1kdVCDbuwzGdnvY9jJy7Ha3ckzCgl\ns0D+RVwQ373jNfDFZYmRkGa513b+Uo1qN+KSZU1RUef8vboDVRRFcYkuoIqiKC7RBVRRFMUlHnOg\n6ce4/OMvL6MvK4vtRn8sqTn7DLdOlhdfBr79R43hU5aAtNfUmejcyEPFuuIxjzPqJz9x7JYn8LRm\nb86JnjsD4o6+aZw/NmfDhd7Gbajjf/Qj8HVN5BxY2dxG8G0QqbRm7Eh1T2+vY5o6Emm1/DekzcEa\nlo6RfI29jdIXOWzMKlOnsm3Uo81u57xrWi/mcssncp47m7DkigLvpfPCr3/tmDszasD19nNsLzP6\nDmVrsXkZvbaJvP84Q6BkOIiatOhpl4Kr8kkW26na5gO+lI+5JbVxHeYWY6eJZuMOQxTHLaJdU3Z1\nEhGtn1Tp2AuXG9dGCsgY17t1PrejDtXJrTtQRVEUl+gCqiiK4hLPnUhlZUM6T93Nj2ny6YmI6IEH\n2JbdPERETU1sZ2ba65iAToT+peiUWplGd48MNrcdy7EWLWJ7zBh7sTY2cqzmo/H4YC4H6enHxyJZ\nNpI8gKVaoxfzo8mHH9qJtbyc40wbKEPn2LFsT0Q5rrQ8fkST+q9ERL4jB/nAy+u8aKwao9YpdGyP\nY6cvwRRS2Tq+3ie68HovX852ZaXFrqnYWCfWwd2YivF6gstxMk+hdqV8bDe75mIXi1KhlhZrse7c\nydc1MeQIOkVJUOV0vB+lzK45Tz6hV5TxJSdbibW7m+M0y+pi7+bUw5E9H4MvPEzcj7JskwiFbWtq\ntBNJURTFJrqAKoqiuEQXUEVRFJd4zIFK1ZjCk6noFCUuO+dXg6tLKGmnBjeAr6aXGw2TkuzllQoK\nONZZj+KPnSDydd1/+iv4AuYlDfkzB7dziYmXl71YIa90uBB8CfWcvxVdhkSEqjY//Smqp99774WO\nXVVlKdbJk504W5/F9rjQYJ6RlbPSF3wF8fyZp1ZgY2nlQAofVFXZyyt++CHfyEZtWGoxF6GFGRMJ\nxAgiGr8Sc+DwAWRn24tVqlzJZCERvjTwxirDkl1cTGOO9vrLX9iePdvevXrkCN+r5uwrqcK29TTO\naMqO4AkJRcFFeKL8Gy3NRGpr4ziNywblX6lj69ApWme/JDcl66G2btUcqKIoik10AVUURXGJ5zIm\nRVEUZUh0B6ooiuISXUAVRVFcoguooiiKS3QBVRRFcYnnkR6Fhc4bptxe7C//2c9kHaK5DnN/6Y9+\ndCF4Kp7jciqvs2ft1dbt3ctvw4wCypZ27n+W6lVERGkRLGHWMRbHT8gW+ro6i73QDQ1OrEfGYp1k\nuL+YtmgE2+jPNat/xXJWmj1HhGfpum7ZwrV1e/ag76mnuGZuzx5szI7ZIGqGTW0xeVxYaO+aHjjg\nxHoiGD9H2Rud8PkO8O29lCULY7xRzq6gnn9OTo69z//MGb6uPtPw8++r5Rpac0yHnBqaXm/Issmx\nmGlp9q5rbi7rIXTmg6t8k9AOkCM6iYhWrXLMIycDwCXrMhcutHNdY2L4msqfT4TX8Z57hv4Zy27C\nmvXkdfzZVFefO07dgSqKorjE4w70TBbvOucbCjcrVvDO0me3Ud0vWgFWv47/w3rde55EamUXgVR7\nJqKmG1nw2exSmLWGdxlb+7ErackSFLu1RclhviZTAw2n3HXefTe42p/lTXZqEwpDN77Cvtjhh0hE\nRJcK/dySFThPfeZMnqe+axeeF/Od7/CBIcfU+gpvnYcSqXXDzi7+HBN7cSexZhdf74Te34Evpn+L\nY3esrATfbbdZDFDgc5qvZcAhjPXjS95x7Cuu+A741qxhOz0Mu2bkYEdrQwWJiGayOPluo2mKVooB\nfYYEUm4x7zrzp+D68OKn2LVkA6lqZs6Nk5vjhceMQYaio7LthygMXz1HKkydW6Rad6CKoigu0QVU\nURTFJbqAKoqiuOQrK9I3TMCcW9wu8VbeyDl2jwxy7IBazCuBlPasWdbeFtbU8Fu4l15CX+lqViQ3\nB0dRRQXbx4+jTyZT4uLOjxqPzCMRUZsfK4uPr8UBaBQSwrYpZS+JirITa2KiE2fLqp3gkqpGPhmG\nipF8XRwdDS6paR5uswqjrc2JtbFzPLhEmosSR2LOsew4ZwzTtyfiz5RlGJaU04mI6ur4Xk14/XF0\n/vCHbEtFdCJQbqpuxzGHyYu+xQd//au96zo4yPeqKS0vX2lfiNU2MlZzkN/tt7NtSzmqpISvaWbG\nGXS+LCZiLlmCPlle8sIL4Cq7kEdSpKfrW3hFURSr6AKqKIriEs+F9Jdc4pimmGpbBgsBj/frAd92\nMZspLX4qnhho1u3YISmYh6En3duLznqh8Gw8FpVMZTHozBVteJ4Uu23B2dbDQoq4GumPzsVcOjHe\nvOhyeNuxY+h79122oyxNsRdDtq67BAWcv/ENfmTrqc8A3/6zXFIUvXYt+MLHjLETm0G3Pz+2v/Bz\n9D3yiDhYV4vOMFH0I9M5RBQ3h0u1GpKHGaBADmGs6cfBcUmvP88HTz0FviJ/LmR/+OEvwHe2dqO1\n+ABxn526KgZcY2Q67k9/Al96Fotsy0wIEd7+5oxHt2RO5+9uUAimcDIyuFki9/rnwXfGj8utfMw0\nxFdAd6CKoigu0QVUURTFJbqAKoqiuMRzGdOVV7Lz6qvRJ+pY8gOxTCF3IrdAZu/G9sii24SYw513\nnpfSoJJ4bMGMj2e7qQlPSw/EgXiSDlGmMc5iyU3PiBFOrBvX4vW//HK2Z69FUQy64ALH7N6BQ94C\nlosys7IyK7GmpnJpiJlyldfRmOFGEyawbc5Mk5VYRUUWBVry8/lCivZDIqKS+nDHNoUmqidwOV7P\nChzwJ9PT5eUWY01O5lhlQpSIeuZxq+Gog1hyBcHLm5qIltZyA29hob1Y5T1QmdUMvhNjOdceNNdo\nIBWlbI1jsQ1SCuHYKmOaNYvjFDMkiYiohET7pjmNT7wTMQfOVe4TzcatrVrGpCiKYhNdQBVFUVzi\n+RG+spKd5r64vp7tb38bfXfd5ZhF28aBK7uCO22opcXeY9E113CsDz2Evu3b2TbUgaATKAPLcahW\nlLzk59uLNSWFYz1pyFxJuajp09EnykYKurAzLCdMpCIsdc3I+fWygooIS1E++gh9pQ9wv1Fzfzj4\n5G0UFGTvUTMykmNtmYTXRj7uFnXi46RMMZh/R/Sv7KdFiIgaGjjWWqOqSqa4St67E3yZc4QiVq9R\nqifvm3HjrMXa3MyxyoYeImziERVvRES0YgXbZoNf9TqheRsUZCfWkhL+Thl5o75AXoM2GtVemZ9y\nJ1jj97CkLHaiKM8cNUof4RVFUWyiC6iiKIpLdAFVFEVxieccqCy3MOW5P/iA7ZE4E4e6uHWy8kYs\ncZIiQnFxFktDPvyQYx0YANfedlaHMtXT82eKFk3j72jp5zKGyEiLsYr5PfTgg+gTOdHB9nZwef39\n73wgZ+AQ0c7ljY6dmGgp1lmznDhbV24Fl0zBRW3LAV+BX4Fj58xHJXtInubmnpeZWHf8DFsOX1og\nytrMhJxsLX3jDfRddRXbixZZizUhgfOKRsUVDCEwldVLv+CcbEFIGfjkqKnMTIv3qpiLlnYM56KV\n96fwgXwnQkRlK/lzN0aUQTWWtVlTzz/P3ynxDoaIsA99+XL0yYts5pVlvdUQJZe6A1UURXGJLqCK\noigu8fwIryiKogyJ7kAVRVFcoguooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK45H8DXZV5\nERXc3S8AAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  12\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXFc1/W1/8/McYmYc0RJjogY1xkj\nZ2RizJhjREyNGdeJlxyzb/4YkmOOOTA0xiUj5RoZIyCuI8eUqXPMyxSNGREjwjJyjowRGTPHtBwj\nRwwZ2f3jbp9zXm/jW314+/s9fo/Hef51Po/D58vh8/1833ze53vO63zi/fffJ0VRFOXjM+H/dQCK\noij/v6ILqKIoikt0AVUURXGJLqCKoigu0QVUURTFJRO9OVeuJOcr+oozyegMCnLMkS3l4PIZeIsP\nenvxvMFBtuPiPvER4/xQcnI41uIV3ejcuNEx21ZUgytmsNGxsw8mgG/mTLbT0sharB0dHOu2begb\nGGC7JrIYfCOrcxzb59QJ8NW2hzl2aqqdWOvqOM5kqgNf8na+H+R1IiIKDWU7LbIDnWfPsp2QYO2a\nUnW1E2tejwdcy5axHbEPrymFhztm+kG8xzMy2I6Ksvf+09AQl77I4IioMYOv8+nTeJr86GTum4/O\n0VHxIo32Yq2p4ViPHAFXYWCpY+ev6ANfXtlUxy5adhx8dV0Rjp2cbOm6lpY6cX7tQBa4Dizb4dgn\nbr0bfGFrlzj20Lbd4PN7Zj8fLFjwgXHqE6iiKIpLvD6BfvKTbK+cgk8gFZPzHPvQITxvvn+XY5ce\njQVfVo/47xAX91Hj/FCuvJLt2iPTwJdaVubYwWcJydjimPGr8Al0fqd8WskhW0QNtzl2c2gM+LL9\nqxx7ZDn+Tp8v38oHN90EvlT5eJJaYyFKouRKcT0KCsBXNyyegD6H/9Wrz/Px4b9HgS+6vZAPEvB6\nj4fsTn7qLBnORCe//XShDHdLEz53vWM/2I5PoOfPWwsPaGj2c+z5q1eDL2GYd0Spxo7o0UfFwUHj\noztnjrX4JCfnpTl2yNy54MvfIj7LB3EbUrSPP1c0fQ34DrbCE6gVqnw5lgPncV1J3d/k2Nv/3Thx\nDcdmrmNJodd+6O/VJ1BFURSX6AKqKIriEl1AFUVRXOI1B7p4Mduxq2aAr+/gMcee//J+8B0PXODY\nkPMkovp4/uYu6aPH+aHkfuUFx244Oxt8fQOccxLFA//L5MmO6etr+K64wlZ4SHu7Y8bHYw6UAhc6\npvkNfbrMe5rVDZWVdmKDWAIdM2snxlk6a5Zjd9+COVDPXs4dHzZyx7Xh+Y6daiXI/wXeu2eeB9+5\nZ1927EmnTuKJ99zjmI88gq7iYXHvlpaSLeaP1jt2wyB+Cubv5Jxj7ZFVeOLl/C340M56cPltzKdL\nwcMPs13xAH5A0of5mqzB9ChN276dD2RZBhFVhbaII/yOxC3Tp4sD44Msvx6YUIbvo8ydpndlg69t\ncYljG59Sfr2PFaWiKIrioAuooiiKSz7hTc5u0yYupM59yig5Els4WahORFS9jddlTyIW2EKtQFra\nJSlOjzrwEPjqbljn2IsW4XkyTVG3Hou+ZQlOdLTFQuqHHuKL/t574MoZ5K3YRQ0BmzezbWxTzqzj\nrcmUKZZiravjOM0ymYki+9PZCa60bXyv1GS0ge/CHN4MTZhg75qeOcPv/5Q/vIBOWWQuUjYXIVIW\nRETUxeV4FBtrLdZz5zjWrVvRB80cW7aA76Q/l/+E7MWtaH0ob0WTkizeq42NTqwnwrGsKmy1SD9E\nRuJ54p6oWYzphrTt4nUsFf0XFfE1NTIGkLZ7+230pfxBlCqeNWoc5WessFAL6RVFUWyiC6iiKIpL\ndAFVFEVxidccaE0N5xXSOo1WRplMlLkiIqL4eMfMqwwBl9QjaGy0mKuJi3NivXCoCVwTtrGAiGz5\nI8IcqEzrEhHt2cO2LYEOIqL+fr6uAQVY5uUZ5NxW9Vmj0EuWhgwPo0/moUtKrMSalsZx1gwvAV91\nIgsvyJiJiJIO8d+0YgW+ZlIPl4ZQdra1a9rSwrHK940Ib9WdO9EnBUPMyrDkTtF2mp9v715tanJi\nbRzF7xbkVwTFGy/geeJz1VKA97gUdJk0yeLnaskSXiC+/GVw7Qq8z7F//3s8LT9e5L7N3KK8j3fv\nthOr+Py3bcBrI5cnz2RsSa8Z5F7SO+7Al5zylGiJHuP7Gn0CVRRFcYkuoIqiKC7x2omU1s6qNivf\nRxWbikAusakaxW1xejtv706dwi38vfd+/CA/EmKf1tqKrlihufjq19EX0y62lDMzwJfqL+VZ7PVN\nybRB06Jw8FXP5C6NnH1Y/lHcy91fKyuwM6zi3436LAvUBIrOjGVrwecpE++5sUXbto238AHbjQ6e\nxERr8UliV7AC15xOLP/ymchb4cpKfGaI2sKdP1Gy3IkIlHqsIlSNmgvQVRwsrtfDfx3zPLNUZ6LX\nT7J7Tmzkz7IQNSMiopmfYjt/7Qg6y7jbDlqBiLAczxbi2qwyGrg6lnKpUrXRGXdRZ6Lk4EG209I+\n8Ef0CVRRFMUluoAqiqK4RBdQRVEUl3jNnCw5y3nPi3IFIulizm6h01w38IUvoCvlFjnLJ4xskd3L\nebeSv2IrJzVzu+T584ZqjRhCtOtXfuC6/XbOewZYiPGfSIUbOoy+xmFWp7lIZFzIM1X8+RS4Ovw5\nV4Ua8ONgwwbHPPw7vDY3lnFpmF8G5ocg77lvH/jkvJoDB2wE+Q9EfZzPUaOVU0j1hIdPAtfJDC5V\nCdmMJWUXld/YQtRLFfWsB1fOKL+PxQPpeJ5Q3AoZHgLXidP8/oTZ+1jBIIKaUdTPagyq5QMjz1kf\nzvnzpPY88PX78/ci1j5XQuGs4+Bb6DvNefdQ4y2N28nXuKSrCnzZ4v4fC30CVRRFcYkuoIqiKC7x\n2omkKIqijI0+gSqKorhEF1BFURSX6AKqKIriEl1AFUVRXOK1DnRoiCXCTmHZIU3r4j7twqPYJy77\ndM0RGqLskkJCLMpudXeznNXZaeCKCee6sPI9V4Mvs4CP6yqxfix5n+j3rq62F+v+/U6sTZcvAFdc\n0HE+MOrQWjK47u5Pf8KXPH+e7bQ0S9d1xw7+hvGxx9D3wx+y/fjj4PIENTh2tT/WVlbP5BpRj8fe\n+19ezvdqZhf+zpHN/Dt9zuKImdQ1Ux1bahQQYX+5zTEZJ09yrCGLcYLsmV9xDeuUJwrBB+NIzBGy\nUieyqsparG1tHOtPf4q+ituFNNzevej8/Oc5nKvWgStcyD/ExVm6ruIzRddcA64zn+XK6IeMEvEv\nfYntlJtQQ+GkL68jY61V+gSqKIriEq9lTBcu8H8fsyg/v5MFduuX7QZfkm8jH5hTnP78Z7azsuw9\n1XV08B8iVWmJiB59lO1bbkGfVNE158BfdRXb9fWXZKiYvz/6Jjws/kUakjt5r/D8dbNLKSlRqOH4\n+FiJVe5A/FYbXTFC8qZtEJWhYvxZNerw39AXfafYAbz1lrVrWlLCsWafNsS/r7vOMZtuuA9ccc3c\nmdaXgU98UozH5tMy5efzvRqOalxNwdzVFZeBOylqbmbbGDh3bj0rDlkVVO7vd2LtG8a+oQcfZLvi\nHqP76+hRtpcuBVfVTu4GS0+3E2t9Pb//5sOw/PUJw6hw1uTPu+e4g3jf1M7kazqWoLo+gSqKorhE\nF1BFURSX6AKqKIriEq/fwsuBW3JoFRGBwo38cpCIqPRogmNnGcpITbfyN3I4TmucyPyQMVVsRMhF\n+cifI8Jczc03o289KuXYYtKUy/nAnIAmvkFc2Xo3uCq+w9/QN/RG4Hny75iN3+y6xe+XOxy7LhGV\namTmLuYU5sDle9F8HU4yiL5IussOsrrjzPeLwbd8Odvv/Teed3o55z27KtFXGFotjnDqwriQU86k\n3BERxZEYJCc+Y0REu37DFQO3ZODfGLZNKGBlGapSlpg6ehKOK64XE/rWHsQf/upX2f7Rj8CV/o1v\niCMjz+uSzk62q3ti0Xl0IdtGzjlukHOi/Wvxmi411rUPQp9AFUVRXKILqKIoiku8qzElJLBTDGYj\nIjo5j8st5OMzEdHWrWxHR6Mv9w88qI7Ky+2VW2RmcqzG9Kv+Af4/EbDYSBzImgdz2JXcF5aWWotV\nllyYosIV1/M2omgUyyouu4ztG27A8+TOJCLCTmmILKI2L418X2+7DX0xPWKetgyaiPq/xmmJgAB7\n5TZRURxrRQX6ot/lOeHHg/D9lyUu67Dem1LOigaB++6zFmtWFsc6PIy+z32O7dxvYtG/FA2WM+KJ\niLLWc2lQaanFMibZTAFbb6JNj/o4tlkdKDM1qYOY/qGeHraLi+3EeuKEE2dOJSpKy/fYzCDNH+Zm\ngLwjyeArWtPPBwEBWsakKIpiE11AFUVRXKILqKIoiku8ljHVLOOWzDvuQF/Xb9k+aFQw1C0SOTAj\nV0PtxrElCoO4XCZ/BZacBMiJeLK8wkTmPIku/qMt8eqrbFdsOge+JSs477l6NZ4Xc0i0GvrPRefE\nYHFgpzTkzTfZrhtFwRh6WiTv9v4VfT/+MdvGNMLWVraTjJccDx3topV1zRrwDW3kEp9w444/Nodb\nVHNewlxdymkx8e8+bAEdD1KkRHTEEhHRjA3cIp31RywP27CBc3QyHUpEVBovWxQtXljZem2orbwy\nmX9n7is4WLBxmVgDgrEc60Q8X3Nb8+92vcivZLad+ySKvLc5KFCU/xXtM0rVTokPYMAHj7/TJ1BF\nURSX6AKqKIriEu9lTKWljrM7Ebsbpo1yV0zyeuyKWSgK/ycaW6a0VqHqY1G3cNcuLg1JuRNnZje1\n88xsU3BJijGZpRhh/3YTH7z8sr3SkJERvuiyK4WIktazelH9vBI8b6fo/DBKtcBXUmIlVlluYwjq\ngBqUIQxEn/0s2ykPGOkE2V1jUeGKPB4n1qLwanDlBfN2snQAt5pZczv4wJhtDrmpoiJ7sXr7XG3l\nFE6+L3bGFCa28cEC1JHdVfkXx05JsVjGdOyYE6tnCyprBQaOfVrxalGCZWybSw7x62RnW4r15Ekn\nzmMDIeCaESzKkYw6ppojvHbJdYuIqFJ0puXlqRqToiiKVXQBVRRFcYkuoIqiKC7xWsYklYKmGUmw\nnM2cO6hb3wG+/lCeQbJiBb5k2tJLU8b00ktsp9yKOZe4DPE752L5T7RM5v0M1fM7fvyyY0eRRbZt\nc0xZRkOEec9y32zwtU/n45pgo83vIrms8SPV8mM6jXa8IL6m2Z9/FX2/+AXbxnQATwHnpzBTOU5E\nTviQkctauIXznqsi0Veyhd/Zu1H8iqYY+WlryM+VMZLg+HLOexbeeyuel/gI23/4A7hSvni9OHhj\n/DH+gxP+nK+sHlyCzsBQx5RxExG2axqfuexDMreP97hrRD3YnpmoOj9joMCxi4JKwSfzngF7jdz5\noPgbqOgDf60+gSqKorhEF1BFURSXeC9jUhRFUcZEn0AVRVFcoguooiiKS3QBVRRFcYkuoIqiKC7x\nXgf61lv8DZOprTZvHttGE+nQZJ4eaAwdpOLl3ENPERGXpBd6qAzrueQ4ikijDlD2wkubCNvUGxst\n9heXlPB1NaaEHtvANWwzKjPB17KUJftGR/El47am8kFtrZVYjx/nXnizJFK2FGcuQ0m+w6/yeInP\nfAbPm0bd4mCatWs6MsKx+vx6PzqfeoptQ7KwNpH75FN/ZNRd3n8/20lJ9t7/F17g9//UKfSJm7DK\nH2sk032FRJwpTiBfJyzMXqxLlnCshujBSCB/zn2OvoDnySmxhr5c/nKe7llYaOlzVVXlxJl8EGur\n6yLz+cCQOvxaCt+r3/sevuRfWF5gTH0BfQJVFEVxidcn0PT1Vzv2zLm14AsV+r3zOxvB5zePZVqK\nDXFT6vX+0Oua0FDH3L4dXd/+NtsPPIA+2QhSOtHoisiQHRQ4cGpcSGHa4GBwgcKN8Ugsla1ig7pp\nTKclItayMG9EJQ5NL9rGTx/mk0m0eDzOGS4E35VXsjpTbq6NKP8Xny3cCZN6FIfx1YazMPLhu7ET\nJfg828nXPA++DF+2EyzE6PDrXztm/nmcZCcfJE2xZQrlnV7yUh9w5eayoHC0LZViIlDVlnPpiYju\nvJPttTtng2/uXD5OntsMvowMe+E5iG1mXfBOcHUv46GCZAyVO7BSdC1tw/NSide8lJQP/rX6BKoo\niuISXUAVRVFcoguooiiKS7wmzqqmC9WUuaiilL+HVVpuvg8zRFNEPgrkyYmIvvKVjxniR8SXE1bG\n7CsK8GWF+qpThlNWE0yfBy7PXs4BVltMgda2siJRqjEbbqovq2cf/mED+GKuFQpMh4ypYvLvsIX4\nxrqtF/NfedftcOxjN+aDTw6OK557DHwdo6hqbg1RJvDpTxu+xETHfPppdMkvZSsq0DdlkfhWPgHz\no+Pirrscs3Cyoar1zDNsbzaqCcR7nJiI3zRHPwZVGOON0OHwFv67Ux4wMsG7+AuEkj/9CVxLTvF5\nyRsKwCeHKRR9sMjRx0cmVuUNSPD1yEV55YIC/oxPnY7D72pXyb8Xv+f5J/oEqiiK4hJdQBVFUVzi\nXY2ppYWd5sx0MXDrWEY5uGZEXuADszpdiMlSTs7/leFX1WtFyY9RuJ7Xy1uhIsrD15SxWypOJyI6\nfJiLvqN/awgVy+tsiBHDQLbwcPRNnsx2WpqdWPv6+Jquxy189SJR/mFW2cshYoaYLgjtZmdbu6ay\n6D9iq1GOJrs51q4FV3kk37tXXomnwXBCPz9rsebnc6wwKI6IaP16xzxe1gSuCCGwnH6jUXIldrBR\nUfaaPvr7OVb50SUiSm9loeqVV9SAr+KMyHkZQ+U84S2OXV1tJ9a4OI6zKRgHB6aOcmxyO0+EcwSP\nHEGfLIcMC9NCekVRFKvoAqooiuISXUAVRVFc4r3/T7YZQo8hEQ0PO6bUDSAiCg/nddlP5HSICHN1\nFqlqF8OvArGVj04LsROjrGqV1EE5iwIN9b38mklkj+gbRW7tpuXgO3GKW/QKOvHvWCMG9JliIlHN\nJWQdkY/9/OcxB1ray1dkdCJenezVXJrT2InnJeyNFT9oaaAYYeVKxM03o1PmlZcvB1eQaJ1M/k8U\nE2m6ivOMcXHjjZAp7BElR38xJtmJltlmIwUe8fjjjl316g7wpW3h16nBdOS4WCc6TSsuN96vjRsd\n8/Eg48SHxXtw443gqg6VpW12ytqapgvhnUH0xYsKTFODRd4a5mcqZHMWH5RiC/A/0SdQRVEUl+gC\nqiiK4hLvZUzHj7PTKFWpn8hlCknbsE0nb3qdYxfNMyr4dwrFk+pqa+UWJ09yGUPIb3B7Q889x7ah\nTbjpvwIcO/c5Y6MuS15iYuyVXD30kBNr3z2oxjP1ZdF98uyz4Nt0JXd45d7aAr6+cN4aT51qqYxl\nxw4nzuM34VZT3g7JoR3g2/Uaz1pP2WW0cMnyq+Jie9c0M9OJNT8Qy+oKV73l2NX7rgafp5e7qLqX\noXKUrGJLSLCoByvLA40SHyhdM7v43nlnzJesm8P3RnKyvVgbGvhztW0b+naX8XW9SAJNagSbaTu5\nb7akCZuQwHEa4mAUUcbbe88w3huyjGn3aiwpaxqOcey4OC1jUhRFsYouoIqiKC7RBVRRFMUlXsuY\nGnojHHt+JP5o0lmRLzAkpidKMZS//x18dQt5XpFFgSMKOSpaC8+cQadQajL7tXJ/u82xG1fVg+9I\nM9t5MWSNnHc471m8B8sjsnu5dKIkEv+Ou0RXZO2RWPClbhDKMY0frBzzcTl3J+c9Izaj4tKRcM4X\nlrdHgS9zr4hl2TJ8UbO11xJ18Zzbijcq7vpGOe/pOVuMTlHjMi2wH1x79nB+PMGmJL24Biufx7bD\nH/yAPxVhGzx4nsjfy3lERESTUYDIGvP/wt8nzKk0Sq5WiTlpxsy09M08eaBq4tizvWKnkRUat4hZ\na6LEkoioMIh/3/J5eF5sl2ilPo03Tly7KCOMM+6bf6BPoIqiKC7RBVRRFMUl3suYFEVRlDHRJ1BF\nURSX6AKqKIriEl1AFUVRXKILqKIoiku8y9l1d7NM/iks2IqbyTVzI/4B4JMKdmbZn2yLraqy2F88\nNMTfhglJMCKiulCW4YqMxNNkydiMVVhbCc2/YWHWYq2u5r5dz4PXo/M73+HYvv99cL3wLP+Jsd+9\nCc+7/Xa2bfWY797Nv/C118BV+imuZc1abEyWbBcTQ0+dojHJyrokPdvz/+1ydEothHvvRd+777Jt\n1CzTrULezuJIFyos5L79UayvFQNEac4cPE0q8ZmTZ5MWijE6EybYi7Wmxol1ZCnWrMrPjlC2IyKi\nokGuZ66dg7XOqW88xAfr1lmJNTub33+z9FhituWHPc91rrsmYp1ryn7x99bUaC+8oiiKTbyWMaWn\n86peVTaCTtl5YFT+0wpW/pWKJkQoxGJTNUaq8VykYiOUYk7sfxVcYQX8X+bCT38KvglifjfV1dmL\nNSuLYzU6OORTb84wqgMVrz/HB/7+4Iuaxf8LOzrsXNfGRn7/E4axS0sKbBc143u8aBHbEa04NC+1\nmYf41dZafP/T0viamgrfl13G9n/8B7jKT7ECV2ZXFvjgD4mLsxdrfj7Hag7dE51RTc34fCPFwQxd\naMocFU95Fp/sqb/fibVkG+405S2YHn8Cz5Pdf3IQPBEqHFu6riMjfK+asxjnt/KwyAsbcBC9FIcz\nd6dSqSkmRtWYFEVRrKILqKIoikt0AVUURXGJ12/hqwrkt6uoVFKfyAonUnyaiGjCas4lxUV2ohOS\nNz5kDZFcbViIqtMTb+FvjBPIyNUIhZsJZmLpVcyXWkOokKdvDANXVQbn3fz3Gef96lds/+Qn4AoO\ntqPAJDl4kO2EuThxq7aX8555q4fAl7zMz7F37kwHX+1iqXiEObVxIZTuS2biVLXsLSGOPRSPUwcm\n7xUHxo288uc8Sa7C4lC5tkTObT/4IPoeEHnFuFnnwPfCNlHRYA55bDanutmhoZ3fo+y5L6Bz82bH\nPDZnN7gyxDfhbfG4zKRu5YtZa+m6+qxmxaebf4iff2rme1fmkYlwbmZuLvr276cPRZ9AFUVRXKIL\nqKIoiku8qzHV1TnOlb9G+eOnn2a7ewM+vh+PXOLYRrUNhWTM54OGBmvlFm1tXMYQ44tDzuLWsODv\nPmNb7PdVUSz9xBPo3LOH7cJCa7HGxY09qGvVKrbNaqyK7wjR2Im4Lapp50aHtDQ75UFQnC5KQYgI\npsr1b60Dl2yeCDJ2llN9xRY+IOCSNCfMm4c+GYPfM8a+TF5ws9xGljy98IK90qDYWP7QeSvev/JK\ncGWd4VRU6apuPE9+0KZOtRZrVhZfV1nVRUQUN51TfEOTUeBZVjFNGEChaqi6t9T0MXs2xymbEYhw\nFrzRm0IHrhUpJrOkUH7Gxhh+p0+giqIoLtEFVFEUxSW6gCqKorjEu5hIaKhj3n+/l58zVA8i1nAO\n9HgB5kfPPNng2FM+PL6PDOQ9RWkSEdGKFZyjO30azwt6+nnH9luEk8PSQ7k0CBsSx0fTBjGQ76fP\ngG/jRs5zRWzBEiBaz+VP3Rsx75g2V5ZnYWmUW2TJx8bJ2AIn04UzVqWCL0AkwE4WVIOPDhxg+25j\nSNk48HSyYAzNWg6+470zHPvQ6wvAN/0JPk5YZUw4E/e/VWSSdorxKXjvPccsGcXWUlH9dpFKT+1Z\nvndT8e0YF6IrG0SCiIhmbee856SjbeA75s9lbsHBWK4WIHskLSHTxeb3HAUFbEvNHSIimizWrk4s\nuTw5h9exEPpg9AlUURTFJbqAKoqiuMR7GZPUg5QySkRETz7J9mOPoe/FF9k2Z7TLbh+LGptQcnME\nVYykrMpQAc53ljshKWNJROQhsf30eKzFWlLCsZpymXJ3U7XihTGdI3OxhUPuCtva7JQx1dZynLJj\ng4goNkiU0Zi1SqLE6aKOmTVr2LapcLV/P9+rr7+OPnlxTKkeWf4jy9aIiKZPZ7u01F6sycljqjHl\nnOZUxF//iqdV3CW6zaSiERHRz37G9t13W4u1vJzvgcx4LJ3q8+eUx9T1xgx7cU/kEaZ/vv51tqOj\n7dyr+fkcZ+FpTH2Vz+QEXGai0Ykoc3rGhzFpO2/h6+tVjUlRFMUquoAqiqK4RBdQRVEUl3gvYxI5\nATlXiIho0XOcZ5hQhjNPuhO5/GLazx8CX8cAl9hEkT3m7+V4ZM6DiCgzkkt+enrwvBllfN7ppXhe\nfjPndYys6rjIHhSvdroLfDWJtXwg5ZCIqHEOz89JWLYEfG3N28WRHZWr1EoxI8rMc44KdSajviV1\ny2zHnjULT8s22+Vs8dJLbDc3o0/GaszLAgWmb30LfbfdZiW0ixBDexIqsUVaXuaaZYbClkzSm6r7\nGRm2ogMyD4n4esPB17OQv09IPILlarJD9cc/xtc8f95aeA6treIg0hd80E6+fTv4vvY8f6bMFmDj\nRz8QfQJVFEVxiS6giqIoLvFexqQoiqKMiT6BKoqiuEQXUEVRFJfoAqooiuIS72VMQ0PcHrXZD1xS\nrDkvAxWn01az+srixfiSsrNvrGH1bsjJ4VaucKy2oPS/P84Hd90FvtQ1rChTG4+lGPm9ooyp0F6s\nlJ3txJrUUwIuqeS9O6MJzxNDvHZ9qwFcV13FdlycnVg7OviamsLp117LtiFiA3+DWTVUu0qo9sTE\n2LumWVmczDcnh+3cybbROkm//rVj5r27Dlyyzbe21uL7f/w4xyqlgojoxEZWLwurzAFfoT+XDc2c\nOfbLJyVZjPWhh5xY++7B6yM7X6GMiLB0yBCOoqaZoiSypMRKrKWlfK8eOYK+mtVCqc0ocTtzN8cy\n5RX8vGXt5Xbp0lJt5VQURbGKLqCKoigu8VrGVFfHj8XJhzLBl+3Ls5dLFhpbzb1i2LYpNzR5MtvV\n1fa2GlI5ylBNbpzOnVFGcw+VrOHBWLQAxXZP/vfLjh0SYm9btGsXX9eU3xrD2sReqH5NC7hkI0rR\nWUNsWarzLFliJ9Zz58a8prAve/tt9N10k2O2DUSAK6ZdpCyys+29/2+95cR65v2rwTXlcjFf3dgy\ngxLv4cPokx1Ws2dbi1VuN6UQIQL1AAAbzElEQVQ4GRGmxrZsQV/eIjFU0Oj+Sg/kbruqKotb+PR0\nvgfMCZFCSD11L3bGyQav1O3zwQfK0LaG9RUWcpzmRRWdX7vuw89UyhYe4rfk2ufBt/tbYgDhggW6\nhVcURbGJLqCKoigu0QVUURTFJV7LmJIThxy7f145+EoKOK/YNx3VmO59jb/+P3AT5vg2fZrVqXM/\nRqAfRs0w52CWfRfTFQk3bnXs0D3H8ERZ8vLII+AK2QLlFuMP8h+kXCVyxqbKkcgRJ735OLhOh97n\n2DHNqBw1XQgOVWM6yjUdPZMcO2r9UnQK6ZqqyVhu0yxm+tWSMeHsEqkGbXqS8565ldeDb2XiG479\nzjtG2ZgYtFA9EAs+r7VC4yDrLCsADU1EnS+Z2izJQAX49M2cT64yvluYu8higILD9/J99pnPoE+G\nULttBJ1iGl1WOJbclQamWYvPQahTle7FEXBZQgEspRIHR3pu4Lzn7lPoy3qK1bBK8esRB30CVRRF\ncYkuoIqiKC7xrsaUkMBOc8LVpz7Fttn686UvOWbNezj7O61TbPeKi62VW/T1cWnIRQOutvIWPj0D\n/2csElufyEg8LWSFeKRvbLRXGtLX58S68sGp4Ko4IwRs5QA2IuyoMUtKZIuXpfIgeU3ffBN90e/w\n9qYvErc+cv5gxHAH+JoGWEbbVscUEREtWeLEmj55N7guu4ztiseMrabE6FLZ9DL/Xbm59mIdGeHr\n6nOwHnx9s5Ic2yxjkpVqooKIiIgmnRIlThER9q6r6EaEFjMiOvM2f5am3GOUKm3c6JgrK2aA6/LL\n2S4psXNdCwvHHtRYNZFLMDddh6nI3O9wmjJvA3ZbFhWIe8XHR8uYFEVRbKILqKIoikt0AVUURXGJ\n9xxodTU7ZQsmEWW3cq5OdmYREdVMFDnIsjLweVZxnqG62l5eqbaWcyBm12H2f93AB7ffjk7RH3n4\nRy+A67HH4PWtxZqayrGaSjWyqqku0GjXlHlOaRMR/cu/sH3ffVZijYnhOI23kaICT/KB0TqXN4fL\ntIoWtoGPNogap4YGa9dUKkeZClAyt23mx6AUx9fInctrbDFff/gwxxq9+lZ0PvEE22aJmwzWHM4n\nE8/HjlmLtbubYzVT8vLYrPia1MWfpZNBs8E3PMz2tGmWPlfd3U6cu16eBq4bb2Q7NBRPk18reM4W\ng0+W56WnqxqToiiKVXQBVRRFcYl3QWVZKrNtG7jOTuYtfM1iLMXons7CxMvjwXXRVtAWqYPcMdEw\n3dj63nMP2+YeTuyho5/ALVxtkExb2OtEql0tUgXBwegUF6gpHruN5I5y3z487V5RLTZlvAH+A7lF\nGxw0nP68D5NbdiKioiev4YND14LvIkFjS8iUQtVy4z0Wc+F3TcFuo+Je0bZl/I277uD7OGX8ITrI\ntE30pk3olHJML76IPrkXNUquQKrLIl1dbBtLAAX08H3cchS36Vu38nFNEHaqQT3WNCyBc43oKLxm\ndR24enrYjtiIXVAeUeJI2zEt9vUxuo8k+gSqKIriEl1AFUVRXKILqKIoiku850DlpCijXbNmZg3b\nA5hX2CsEjtq2YGkQtYpcTVQW2SKqkvOeHcuMfKVQpG7pwdbJWCF/c84XlcwnbbWX9wTE7yxf1Aiu\nTJEfMktDhMCNnC9HRERTDos8dFIS2SD5LOdgEyoxrzx3LpeKFF3xEJ4oFOkbVqESz3x/VAS3xqFD\njlk1irns9EVvOfblA+Ci/Onc9lkYiS2gz4nbP8ViEjTlcn6v+iPxvZLtm4WhRl7zk590zO5hVBya\nJmuDLJJ0mVBlb30PfI2+HHtCFyqyxR7l3GJ2PCqgbRYpUGtPcKKWMrYZFa5g6oBYC4gIRlRA+SUR\nHRXp6bHE2PQJVFEUxSW6gCqKorjEeyeSoiiKMib6BKooiuISXUAVRVFcoguooiiKS7yXMQk1pmOz\n8Cv+Gb1cilF9FksxPF2idcscci/VeGprranG1NSwakxaK5bc1Mzlcpy0xUPgAxWbRcZkLlEaQ5Mm\n2VP5HhlxYj38sg+4ZIeeFP0nIsqM5BKgoVnYkuj3qCglWrfOSqxFRXxN89agknv9QY7bbM+dPp3t\n0pnV4Nt1Bd9HKSkWFel37+ZkvilxJQbgHX4fWw4PH2b7b3/D086fZzs/32Ks6elOrOc2Y7vupNF+\n/rG1AeCrmsPXcmQZfh7lMLriYouxNjbydZVljUQ4kNG85s8845gN198HrvmRQskrJMRKrHV1fK8m\nR+IwPlmqdNHfMGuWY7bMyRnLRX5+qsakKIpiFe9PoEK9YsZeozhVVHlfNP01WFTKvvEG+sxhLpZI\n6xXxGdqlafF9fNCD4qXVR3hei8cUaDhyhO1YY+TtOOjo5Kc38ykz94/cXDCyGYuT6ec8mGhbJ7p+\nd2qdY1eMP0QiIspr553FkmUoGCM1GJImY3H8mc+La/UZLFxOOSobK/BpcDz0zWVRkKmd+eh8+23H\njN6A+pvRzz7LB0YxevfpSXRJuO46xzxwAF2XX85Pnea46JqJrFeZtgH/xsRE4/NpCzEHqSYcf0c4\nTxKmsrII8NWu4Wu5x9ihzN8rdqFV+ATuFil0MrAI9UA9vs2OXZ2IzRJSOzivEkdw1y+tdeyxelP0\nCVRRFMUluoAqiqK4RBdQRVEUl3jtRMrO5m+2zJnpnp48PjCHIokcz+H4deC6VHOGEhI4ViMFSrs3\nnnDswu1h4JOjhHLPZIOvbTErCMTE2IsVKgYOYt4l4SznXcyxN7/6FdvmfPOanZxXTUuzE+vKlRzn\nI4+MHUvKxpvQedttbMejonb5KU4mZWbau6ZNTRxr3AAK6lInJ4xrwzF3mHpU5BlNoQmp2FJTYy3W\ntjaONWbLEvDN6OIc3bFvPw6+vD/yt9nyW3ciIr8jIg8dG2vvW/jjx3mBMGY0rVzH+dpvfhNPk59B\nc7STFMWpq7N0D8g4pSILEdUlcp7VXKqk0MxFKuUSj0e/hVcURbGJLqCKoigu8S4m0tLCzu9+F1wr\n57zs2N/7Hp4mdkyUvOgCOuXeo6jokhT8FrbjnBW5Fc7IwNNqg3jbnjMRRf+K14jH+6uvviSF9LR9\nO/rkEBqRCiEion/9V8cs78G/MfM6odu4YIH1UbHngrA0RL6NpcsMzVdRVD20ELeofjPF63R3W7um\nWVm8LS4dxkaKkTLewnUa5V9RE4VWpTkPWxaHp6dfkhHM5ttfsll8Xh5+GJ2yst/Yi575YbljT5li\nsZA+L4/v1VWrwHXOn7V19+7F0/70J7Zffx19ixeznZBgJ9bycr6mZqVkVDB/juOWouZv0xxOReaM\nFoFPNoR4PFpIryiKYhVdQBVFUVyiC6iiKIpLvOdA+/vZ+bOfoe+uu9iWg5eJKHsvt/JdVP405RLk\n6oiI8vM51uho9P3kJ2wvXIg+0b6ZF4TCF7/8JduvvmoxryREWsyB632LuZXTTMlFdfIcqsYgnEMl\nc3vZ2XZivXCB80pmjkvmhyLuNsqY7rzTMfNGsf2vqFP0xNXX27umfX18TSdih/LKH3Leq+ITmeBb\ncpZzh4mJ+JKeSJHbnT3bXqwit3yRuIXMu5q+jRsd80QgtsGGDXTwQVSUtVgbG/keSOg0BgONjrJt\n3Kzpg/yzVb44+6w+nluUk5Isfa7k9wpLl6JPfAki1yYiXA7iCtB3cjuXhoWEaA5UURTFKrqAKoqi\nuMS7GpPYClV9EjX90g/xdhJUi4holPhR2JQJLDy1wLHzF5A1lnTxVnG70aVBt/Mv8mltAlfNPN62\nr18MLvr0p62FBzSFspZj3MGcMX8uakMyHHsmc4dNdTB21EycZ1+NR0q35se3YSybYziWX/wCTxS1\nYqHGNaV4o73KFmJ7S/7+4Kr4jDg4hPdqhjht5058Sc+A2ELPtqcc1R/IpVw7h7E8LHOR2IobpUoN\nZzmG+ZGoa5u0Osqx61E4a1zIz29jJHbqycscE9oHvqrlXGaX5Iuju+tbxT2fVExWkDer2cInOpOW\nrcdtulRxmr4TVcWCAulD0SdQRVEUl+gCqiiK4hJdQBVFUVzitYwpJ4dLGIpX4JyRhh7O3cwfNZIu\nMjly9Ci4YvZwHqWtzV5pkCy5MaqqoO3QSI9R9Vd38Gv8+93gkxVGkyZZLGM6cWJMhZvkZX6ObcYq\nxMGpKhEVh3b9nfOl1mYNDQ1xnGYPpBhDkLoc5zpVVrI9KRB9NVtZRcqWahQRzsQxr1vCPlFGY8rx\nyL5Co6Qs9SCXitlUDqP6ep411Y5S50WDIlZDcgnKsY6isj7tF+WBAQH2Yn3rLSfW9PXYBilnNF1U\nciXy4BdmYf74P/+T7dxcS9c1OdmJc0YPfjbkWLbsVvxegW6+mW1RfkdEdHIyT6vQMiZFURTL6AKq\nKIriEu+dSIqiKMqY6BOooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUl3nvh09L4G6bXXkPfPfc4pjlC\nQUqdJUw2xj3IcX3TptmrV8vOdmJN6kHZrfo7xHRDKcNHRDQ87JgNXTixc+5ctq3WgZ48yde1vR1c\nhV08AuPgQTzt0CG2/XyNUSly/MO6dVZibWkZeyprQKuo/Z03D3zdpyc59rQtKB9XF8/yccnJ9q7p\nsWMcq3FJKf2z+80fZ86cYVvUthIRNQ1wf3lcnL1Y+/o41qkr5oMvf1aDY8vplUREIcH8ng8N47OP\n3+AlGj+TlDRmzTKtWcN2WRn6Tp364J8jovKjrKNgazJrfj5f08K52HtPW7eyvRjFGZJ38uetjowa\nUVlQPMZUVn0CVRRFcYnXMqbCQl7V8xcdQ6eUrgkNBVfHLH4ijTrwEPhGfsBz4n18Lk13h2cvdnes\nXcu2eOAkIgx90hZD0WjRIrZnzLAWq/xvaYxNp9jA43zwxhvgS93BqlK1iTXgg/+sfn52Yt2xg2+O\nW7HzJa2An9YN/WL4x116FNVvgJYWe+9/W5sTa7JQiiIiqgsVKkLyyYiICiN5Dnt4OL5k6izRfWdz\nt1RV5cQ6shx3bz5f5us89PTz4PMrE8pFUu2biGgHd9RRWNglGdZ4+NM4yPCRR9g2RrHT1OETjj0U\nhDs7uXSMNaztY9PUxE+grXHgkk10u6ejihksAMaNXD3KnWg6VE5RFMUyuoAqiqK4RBdQRVEUl3jN\ngXZ0cK4u0FBnfl6kZ1LexWFs1cSK6zCYiwiVw+vqrOVqamo41rSd+M2mVLXJ2on5sdJQ8Y29qTgk\n8yP5+dZibWjgWOe/jDni1Fc4R1y74QT45N/RXVALrmn7xN+RnW0nVlHZ0JiIlQ1f/CLbU36CquK7\nrmPF8eeew5eUOV9rA8WIQDWIBgbQJxLfUmGHCBXXY0/vBl/3TP6Gdto0e7GmpvL7X7sdqyk8K/iZ\n5o478LyUTwqVIVnqQkT9QRGOHRBwiSoGAkfQKVTg8wm/P7jiCrZz/2xMXZC5xqIiO7Gmpztx1syt\nAte+fWybhQSlBf18IL/zIKK0UFaor6nRHKiiKIpVdAFVFEVxidctfFERP75LMV8iouxEUW7T1YVO\nOS9aTm0iopgBLhS2KahMLS1OrNU9WDojd+JxW1PxPFk8bRRSZ+3jso3S0ku0LdqMg7rO5PJW+fx5\nPC/EVxRLG+U4Dae56Hv+fDuxRkVxnB2H+sHXdDTAseOexzQEPfWUY5YuxkFdWRliG+jjY+/993ic\nWE+sx5RSWLD4nYbw7/EgLnmJGMDBeeciOd1jtZFClAbRt78NrpLvcOmaFAImwuyX2dggsSlUDfPW\nt29Hn2igaDuNpUoxp0W6wajV23WAGy1siX+Xl/O9mrnwJPhGgkIc22yyCA5mW/b4EKEW/FiNFPoE\nqiiK4hJdQBVFUVyiC6iiKIpLvIqJ5IVzWUd+5xLwVbVy2UR65NhlI3Q3Dmpre0wOmDJKnMbDm286\n5he+gK4nnmA7zsjJ7volDz27xsjzmtUwtpDVUovbsTyo7VlRSiPVTIiIVvCgrr5KHOQ3f4MQQpiP\nQ7XcInNu2RsCwPfqq2zHLcTkUflSzntmvf84+KhTtIRGRZEtisI575kXeA6d2/c4pqfVA67Nm8XB\nxkrwTdo6SxzhcLxxsWwZ20ZONlDk6AKOoChG8UK+Qc08v9kSbI3Tp9lubkbfnDmOGbMW45H3QBfO\nxrso12gD+ZVA+oYQ8FV9ncVkYo0hl7JFOb8ZW0Dla8ahy0GfQBVFUVyiC6iiKIpLvJYxyXIbY+dL\nq1axPekolqpAOZA5pF3u/e6+2165xYUL/IfI1gOii2bTS3IGWZ3FDFWWP5WUXKIypgxUjqJZvG1M\n7ULlmNqtQ44dt9APfLIcY6yuiY9NXh6XBq0oAteLL7L9yit4WqG/6Ewy57DL+pu0NGvXtLFx7HtV\njlePCMJyLCmymrYP01SJiWynplosDZL3qmzZIaL+P/7NsQPmYdfUyBFWRDNVxeS9GxVlL1apyGZU\nzoHM57SfYylb063cUWc0TdFvfsO2rTKmEyc4TvPjn7W4z7FbeqaCL7ZMvOdmHkS+UH29ljEpiqLY\nRBdQRVEUl+gCqiiK4hKvZUxyJk/e6iF0CiWWrEHMj5X2CrX0WbPAd+5OLmuaRPZoaeX/BWapQss8\nziXGtqNy0JX/wrapSJ7eLktesD1wPEhlq9J4LEfKiucW2dpBLPMq3MwlYOa8pD17yD7iPd6+AV0y\n/5VyjZEDn8jlVx2+qH4l1cjxnRgfCa38HvfOQ2WgggK2dwcaNTWiR7nGvxlcx2eW06VgyVK+V+Mf\n+xv40kdFu67RPy1bO2sHMXceJXPLUfh5HA/5h7g8qakA3+dpm1lNP8sXFZBK5/B6cbwX8/Vmi7IN\nwjbz7K3QRHzfGo5y3tOcngClgsZsr5ht/Pdhky+jT6CKoigu0QVUURTFJV7LmBRFUZSx0SdQRVEU\nl+gCqiiK4hJdQBVFUVyiC6iiKIpLvNaB0u7dPNIhHPuEZZ+4WVs1aYOYwmcULMp+Xh8fi/3Fx47x\nt2HGCNFdv+E6sJRv4BTEC+J/yNKl+JKyNTY93WKsNTVOrEOL08Al6yQ9fzOk4O65xzFXfh9r6959\nV768nVhhemg8TmSs2sbybosX43kBPaJ+1Xj/84a5XrOoyOI1zcpyYo1qLQVXx3qW95u9MRl8L6zg\n+sX8U+ngKwwVtb8ej7VYN23i65r7FOqkNa5tcuyELcZ02bIytlevBlf1Iq4n9ngsXteQEP5c7d0L\nrg5iOUJzDZBlqRNWZYLPM8x1mtXVdmLNyeFrWnwEr+mFQ3xNf/5zPC/lFjH51tBtOBHIdddhYTrS\nQ1EUxSpen0BrR8VTpzE3Lsq/27HLD00DX6Zo6aldewx8qavFf6Nye50ejadZuSYhGBV3Ul4RqkbX\nJoJvgvivvnsrCuoiFvumxH86U1VHau3Smt+Dr6OLnzq/8Q08Ly5IDPmjCLLB/INZfNAVCr6gcB6G\nZzyYkGeOPx/IrQoRnTpEl4S0AX7qnDLFcApZpZlGB5dU9y08gk+gjWK+eALZI/cr/IS+srcJfHfJ\nA1PGaMsWto2Jc54e2ddlzGEfB2nzeEDbVmOQ3U7R1GWGOqOZ34/8QPycV5+W1xk7mNxS7Muf8cMP\n4zWNLuNYUhLx879kLa9duzeMgk/OygzDmXkO+gSqKIriEl1AFUVRXKILqKIoiku85kBT44UyjL8/\n+Kp3cu4gc9DQ1RHfvKYGNYMrbWKtY9eQPeTsq6o9OAAtXSiubPoNqgPlThdJOVO5Xsp8e3AY2bgQ\niv2Dg+h67TW2ow2J/KitIn+8HlWFyvdy3jPTTgoU3/PeXnAdEQP3Cldjzjl7AwdQ0rUGfMvXYNWB\nLWqWc95r19v4LewQce7YrBigSlH2IGX96WJ1LmsIOf8bb5wNLnk/nFyNAwfXrmW7NtFQRzPluSxR\nU8YD+voH8XuA4ngeetcXiVnitl7OnxcWoC89lM+zkwElOrmCFbj+eAR9S1o5FmP+IeRuVz6K3+Xc\ndtuH/159AlUURXGJLqCKoigu8bqFP372asceMAaueZaJwuoCHKCeHs7bqXvvxfPmvPQxI/yIpL3J\nQ61qr1+HTjHgPfcWLHGgnWJS1u9+By7PS/c5drXFHfymF3mLmTsRRWpDZC7CEHhNOMTlKY3tOPt9\nxQosELeC+P35rbgNE5eUmo5iykSWEeX7N4CvcGsqH8TVkjW2b3fMa1fgFt5vDyeLEszJgWK2OdhE\nlJHBdiOOaB8fn/qUY/7bHeia8gOR4ujEHMLEiaIcT6pEE1Hfak6j4di08ZG0jLft9f6p4Nv0RX7/\n3sXx9lCeFyMbAIhoc5C9+P5JSAY3HYQYUwWHh3kd6+zE84pW8cA5CsLA0pbz82Uq/ukO+gSqKIri\nEl1AFUVRXKILqKIoiku85kAjgrg85Vww5rnoFOcO+9fgEKuqNSJh+Pt54Iselg372WQLmfdsbkZf\nqhAFkflHIqLcMi5xajjkA771X7MWHvCSyAP3fTMWfFMP5vGB0a4XJPI3Iwsx5+mTKP6uJiPP65IL\n8Zz3LDyFQ/WOz+H32LzekGc2SsNGtnHeDK/2OPnc5xwz5o0d4Eo9yHlFoxoPKtUWGp+GrVutRQdI\nAZkpnTg4kKKj+efuuQ9c8XJwYCQq30w9IoYTJuHAufEg59plB2HOuuRWzt9/7WG8jw/cwJ/thFVY\njtW4RiSUE+w0yebP4lz7HKOM6atfZTt11CierBQ3wKJF4AoPj6IPQ59AFUVRXKILqKIoiku8D5U7\nedJxlu4NAVdW0G4+ePtt8I38H956+KzFbbpngB/nbWkBEhElJLAeoKkO5NcqtgxGaVBHJ28ko3qx\nNKjqLG+TreqB9vXxRX/ySXBduJ9TERO6joPv2Ch3+IyicIzMqFBSkqVYW1o4zgEsVSs8ytvE/F6s\n8TpZwNt9o6KE8teIDho/P2vX9MQJfv/DRrvRKffiRkdV9wa+j6dtywNf/kROTRUWWnz/29qcWPtC\nsTNOlv+EbcV4Vv6F46l4B+tq5Pa6pMRirPX1TqyHp2Bq4P772W5ahBqsct56w2ncCh8RW+z8fDux\n7trF7/9LXkol5Rh4Iiy5e/119LW3s11aqnqgiqIoVtEFVFEUxSW6gCqKorjEew40Ls5xFsVjaYxs\niTJV1et8RX5mDarxyJY7Kim5JHklevll9IlZQuXbcJZQ5kGR16lERfqmLm6Ki4uzl1eqqeF8TVp8\nHzpF7N3/ugBcsqQk5KChYyPz0OvW2YlVzG4yk0dFO1miW8ZFhCOp0hadA1/tPm4NTE21mKvr7+dY\nZTssEUjutLXjM0PMkdIP/DkiohZfLrGJjbUY6+zZnFf8EZYxRT8gynq++1087/rrHbO8GSW3MkfF\n35GVZS9W8T2IVO8nIkgStvljOZK8J6KC3wJfWw+3VsbE2LmubW38mYo5VAi+kbXcAuvTjq3TIDs/\naxa4cnZy7ra4WHOgiqIoVtEFVFEUxSXet/CKoijKmOgTqKIoikt0AVUURXGJLqCKoigu0QVUURTF\nJbqAKoqiuEQXUEVRFJf8DxUJpxYKkdBQAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  13\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/XV/0/MkMgxYpZkxMgYKbcx\nIvIHc46RkRGRY6Tc5siYMX8Qc+TQoTdjPIjUGXPc/ooYNyNlYkbGzIw5Ytzk1EyNeSsRMW7jNnXM\nGJEZIX7/uLfrnNc7+WQXb7/fx/fxOM+/ztXp8+F4fa7P+3O9z3XO61x18eJFUhRFUb44Xv+vA1AU\nRfn/FV1AFUVRXKILqKIoikt0AVUURXGJLqCKoiguGebJWVREziP63K9tAV/rXQ87dlhFLvjGbC1y\n7Pa5Bfim06ezPWHCVZcfqmfS0znWtWvR59d2yLF3nYoCX8KIRj4YORJ8e7vDHTsmhqzFmpHBscrT\nYRIZicdjliTzwZIl6Dx4kO2sLDuxJic7cQ5srwHXihVsF81rB19l0xjHTk3Ft2xqYjsu7sqc09Il\nreAbCA1zbK+Kcnzhzp2OWTwF/43Z0eLamDrVWqx09qwT61kKAFfAUfE3R4zA1/X3s21cq7R5M9t5\nedZiTUri87p9O/oOH2Z74uvF6BTnFf5HIqJHH2W7uNhOrGfOcDnRypXou/tutn/+c3Ad2nTAsaOO\nGNeGvz/bycmXjFPvQBVFUVxylac60LAwGtTZOiPHsavvXA2+WVeLX3LzdtDHh+26Onu/6gUFHKv5\nUzlrlmMeum85uORdntda41dUkp1tLda+Pj6v3g116Dx/nu1p09DX28u2vAU0X1dZaSdWcU5zz+eB\na9kytufMwZdNmsR2Wxv67r2X7Vmz7N2BUm0tf/7yNpeIaN++SwdHRO3z+dods8P4/EeNYvvhh63F\n2trKn39QEPp27GB7dugBdD74oGPufeF9cJWVsV1ebvG83nijE2v2v+LflKdn6S3b8HXr1jlm8YxG\ncI0dy3ZCgqVYIyL48//wQ/RduMC2ebFee61j1ozDtSExkW1v70vHqXegiqIoLtEFVFEUxSW6gCqK\norjEYw6Utm1znCcmzQRXRQXb3d34sqVL2X79dfQl+9fzQVycvVzN5MlOrKtm/Anj+Z8sxy6PLAFf\n+rQTfCByTERE544ccWzfixftxfrkk3zSv/Md9I0fz3ZDA7gOBSU5tjz/RPi021bFwOzZnKszU67h\n/c2OPWZGBPjap6TxgZHk68vnCo3B8kpuWLCAY904uRJ8J2I5nuAH78AXpqQ45q47MAeWsJif3lNr\n6xV5Ck833YQ+kb+v7r0fXJMns21WaJwtE88dBnli7IqeHifW2fP9wNXRwfbesen4uvnz2Rb5UCKi\nXan8+VjLgWZlOXF+5jsezdfq3l68VmMOr+cDWR1ARAVrfB07L09zoIqiKFbRBVRRFMUlnrfwublc\nnBxSBK6MHQmOvf9nu8A3sTrbsWtjsTQkafdCPtiwwdpW4/Rp3sJ98gn6gnuPOXbx7nDwiV06Vfpk\ngO/Y4lLHDg+3WBoSF8eF1NvrwSV3O7Gx+LKpK6bygVGOA4XVOTl2Yj15ki+OuXPBFU9cfiV3ayay\nFpmIKC6QPwsKD78iW834FNxq1v3oZT5YtQp8MwO5xMbcFue2iFSErdIwIqLWVj6vZv5LFsQbhfTN\nqfwdPH4cX/a3v7G9cKHFa1WUB91wqhlcMsMU7n8SfMmZox27ZslefE957Xp5WYm1sZG//1NHHEKn\naEBoPD8BXFNb+DtOW7fi62QJZkSEbuEVRVFsoguooiiKS3QBVRRFcYlHMRGZc1mTgr6MTFbB+PWv\n0TexhYUtkrqxvGHBcG7Y33jZYX4+r77KttkeFxzN/8GoDKLf/e6/HXvGC6XgKxRdX4eMtMqQ2LPH\nMZ/9BbryZog8U0sL+Pb/gvN1E28/B76sZVxygUUcQ2DGDMeszMS2wrojnOfe5YN57oR1nB8/tx3z\n43Q+0FZ0wNmvfMWxp/wc8/r7R3I50MS5p8HnL7o8Q0KMN128yVZ4yLe/zbasTSIi6upiW+ZDiSgi\nsI/t80fAR5PleQ0eYoCC0FDH7O9E1/e+x3Z+/mjw1fTG88EHPwJf9fN83ya6rIfE1Edu4YO33kLn\nN77hmNH/9Rf0RfOXvPor+AzkHrGOoOQLo3egiqIoLtEFVFEUxSUet/ARu1mp5tZbc8A3kMndPYtx\np0nnQnir6eszAL6NhVIfFBV+hkLaVt42pgfitrG/n8taatedAB+13OOY5d2oI3loqzwOI1v09fPv\n1gMPoK+ukzslRgRh18R7HWxP/A3qgfqM2GAtvn+SO4237U89cgF8R3/C2/bVvYYSjxA5NXahlBHd\nwQcBg22Mvjj7XuZte0gX+ibeLEpsXsCLVUpFgooYEfX0s/4qFkYNjbrfsKpR/NoE8JWk8HdnBiGF\nmWyXRuMWflcQbz8TLO7g5Qf4wbUfgWvePFYymnVNLb5ObP2hVpCIZpE8xu4v10h9XLFlJyKqXsnb\n9rfX4MvyfnunYz/wJtaG+f6H6FJatOiSf1bvQBVFUVyiC6iiKIpLdAFVFEVxyWUr0qcYZUxFy3r4\nwGhH6wvkJIxULiciKn5NqOEcPmyv5ay8nP8hw4eDK+1Vnt9kdkAufOIax26Xqu5E5P83fsuAAIvt\ncenp/MaZmegT81zyxmJusSCRc5InArElTXZa1tfbiTUtjT9/s8RHtmi+8w76Nt7CufNx/4G585dF\nV+WYMRbP6bhxfE5vuQV9cj6PKWM1TDwGkHOliGjXdC4Is6YaRERUU+PEWtmbDC6ZOjRbS31XimcG\n5kwkeWFbnDVG3t58Xs3eYvnl/vhj9Im8Z/KbmOesmS7KBTMy7MTa18dxSil5IlCob1yFSm1Hj7K9\nsN8oAJSTDKqqtJVTURTFJrqAKoqiuMSzGpOiKIoyKHoHqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVx\nicde+KIirgNsa0OfLF+MKsRaNiorc8ziCux3luMffH3t1dbJWHNDjd5sMT4wbjfWJdb/YItjV154\nGHxCzY38/CzWAS5cyBNEv4Y97NdwWSqtMfp2TzS084HRZF43iWsE4+PtxOrlxefULAGsD5zNBz4+\n6BQ6ZwHfx8mSsiTT1vRQIqLqao511nV14Ou/917HPvM/+NBUloUuX/4i+H784+86dnGxvVhbWzlW\nUyugoEVMv12Cegey9jMtfwy4pk1jOy3tytSs0u7d4CqN5nrOjEk47kOOx0jrxHFAlUvE/zvIqIwv\nSkEBn9O8+WfANzDyBsf22ofjRSrbYhx75iMYis+bb/JBVJTWgSqKotjEcxmTGChVMg9/YebNY9u8\nAYFVfuxYdMoB4xaHylFzsxPrhiZUMQoUWrPJIaiMnL4uyrHLR2SBj267je1Fi+zFmpbGnSjTcIa5\n7PBJ6sDOiKqRHJ95zpMX3cgH779vJda+Pv5VN2bKUdVa8Sufn49O+Zmbn79U5rE1/I6Ixo3jWI9/\nZMgRbWTp7hO34x3xHCGabc53++Y34S3sff4ZGfylKyxE3/PPs30BFbBgG9iFklM5QVWOvXq1vVh7\nevi8+rUZquLiIkxahsMa5bh72ZlGRPiFTEuzEqufH8fZcxBV1eo7WUkt7iDGcnYe70gD1hWATwqf\nU2Oj3oEqiqLYRBdQRVEUl+gCqiiK4hKPT+HP/vnPjp31S0PhJvYltsX/R0SUtZ+fZsvZ9ERE/Wv5\nqbP35UZ5OYickKmqcmws5w5PjIgCX3S0OAiaBj5QY7FIbhDnPUNQAIqmTGE77yDmZAtSOe9YsOkG\n8CV/61v2AvwH3lNY8anKyGXmrOF/Q9sprCSYL6oXhDg9ERGlpPCwMaNWYkisF+LhFNIAvpoj/MQ6\neT4qwHd38/SCdevwPX/4Q1vRIbWJ/PQ6yZiCIEsv2v+AA9DGLBNP6ANxOJ95nm3ht0Jcg0ZVQGMH\n55prV+DQwf0XhVrYnk/BVxeY5tjxZIeedXw9jnswDXzHHxNDD0WFEBFRgKjQocWL8U1lycgg6B2o\noiiKS3QBVRRFcYnHLXyAuIVdsBPLPzZuzeUDY/+QcjPbXg314PMWgsFUhwXPQ0JWnRt7sfAOEYMh\n/NrUxP+uGWuSwDfaSE3YQopRNx7BcWXPPst2QT4O5KMdTY6ZN8UffYFG+sEGqalsT8P3v1PM3zI1\noYMruBykqwsHBwaUyTISbGoYCkFihnf8fCwyh8vTEM1ujuUtaiNh6qelpUEcxQ4tQAGIUxs5ruaX\neNs+zRD//vd/56THrK714IvbmS0OiskW5ZF8TtI7sQj9t7/lLXzvAyjwLTM+uR+hoHJRrxzeZzTh\nuKSok7ftx184hs6Hn2P7S19Cn1StliWWRFRXyGmJwVINegeqKIriEl1AFUVRXKILqKIoiks8tnKe\nueoqx1n2JP5/spUw+wmjy+k3v3HMiDVYUiBpbrbYHjcwwAGak+NknkO2EhLRoU2c54hahpmOvp2c\no/X2thdrmzivXu/ieR2zQoh0HD8OPug1rK4e/A/YGip27hwHt307uGr9+XNNeuQ68PWIOP3+8Afw\nnbj7bscOvnjR2jlNTuZWvpoRxjUnJyKapSmyVM2cjifz6jZbeUtKnFiLerFUTVbVPPus0TpJ3Fp8\n/fXXgueJJ9heutTi9+rkSSfW0p2jwSXbYM2hg2d+JnK011+PTpmwjomxE+uhQ06cJwOxVHH0WPGc\nwaxVkye8pQVcfRXcHjvY91/vQBVFUVyiC6iiKIpLPKsxrV7NTimOSQQKPHszq8AVsyKOD/r7wdde\n0ejYNueC5+TwFq6hAX1Sg9QUB5JVLaYajxwZnpRkcVv08susHPXfWB62cLcopZKSV0SYmpAtS0RU\nv4k7WuLi7MQaEcHntHkPaixSb69jrnoey4aWBrHGKt13H/iS57E+bE2NvXMq1ZgeeAB9mb/gPxNs\nXAD16zlNEpeK3V09bfxvtqkHm5HBsZZ+7Ul03sw1gFXDMBUhTjll3PQyvu6uu9i+4YYrowdqpJQq\nb+byJKM6jDLauEStYAQqIOX5i3KxrCw7sba3c5yGyGp6B5fSCWlYIiKa9Wq6Yw+UlYPPa7NQShtE\nNUrvQBVFUVyiC6iiKIpLdAFVFEVxieeZSP2cx+itQF+/UMA+iB1QRMStk6/95+vgmSxKH/ZiZ9iQ\n+MUvOh175cog8C1bxraprL56pWiXNHoSB9ahypA1RFnHnl+j63xsrWNn714IvvIuzo9Ob0AVn7hu\n2b6G6uBukULz1a9hfjA1ldXS77gDX7d009f54NQp8I0fjzOybHE8k8tmqq5bBL7gf/1XPjDa9WS3\nZmQL5nkDtrJqEmVkDDnGf1J6XuQ2v7sMnYcPO+att6Jr4iROw5lN0PE//jEfFNtr5azs5VbLNH9s\nH5Ujkqo6p4Lv7A5+1rHZqCoMzefSrdlkh+ZezsO/Mhzbh596iu1Rr+IECNlK67XHOKv+Rrv0JdA7\nUEVRFJfoAqooiuISz2VMiqIoyqDoHaiiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSUe60Dr67ln15yu\n+akYtPfKTxvBdzKUa8JG78b+UmprY7uoyFrPbmUlxyp7homImngSBlX5Y22l7NXf/4NScE28IApV\nbcluEVFMDMc6fvyg4eDEUCIaMWJwnyQ83FLf9pkzTpyNLVgHKmsAi641+rmlttkf/4g+2cM/SH+x\nK4RuQ898HBXi9+8ivrfewtclJrJtarJ9+CHb999vLda+Pv78vefMRKeQetubgvWcMZ1ijql5AXRy\nHTRNnWot1poajjV5Wg86pdzfqFHgar2Ha3HDVqbToJSXW4m1vJzjlFKbRESzK4RMZUUFOoWEXd+U\nOHB5TxfH9fXaC68oimITj3egcV38ixc3Ygc6pTBpSj64ejdxJ1LWEfz1kbPJcISbPcwGgpEjxcEb\nh9Ep7pAmLjbuTuULY2LsBEdEe5u4+6m+AX/D5E2Q+UsqO4PSArFrovgo/8qG22lEomNdfNcZhM1d\nVLRRiCibgrnylv/LXwbXQCJ/6jZ/vauC+K5z9p4adD7+uGOe6MYhfsFl3LVS0IHqR3ktok/mflTN\nGgrnhvPNjPejj6Jzzx7HzD+KrrofsYhy9RuogLV/Px8XY1PQkJDj57Pz8dwVd3XwgTFTvVAcLlmC\nu9CIimyyDQwV3I5dY/Gib2t3ILjI67XXHNsQcaJ086K/BHoHqiiK4hJdQBVFUVyiC6iiKIpLPOZA\nWyP5CWGYoaoDcu1/+Qu4wn7Pqi0lvW/i6wKFPDxNuLwoL4O0UH5ivpcwXylzogUj/wS+RJFnevYi\nqi9tTD1GV4KaHfy7lRzaDL6irRGOvWkTvk7mRIvH4gC87OFSKQfViNySmsq2qfJPQv2nbhKq30wT\nqWMvY8CfvIxG44yyISHftyowGXyzO/lzDDZfKMYVHEExLkr3Z8Uxo5ZkSPjLZNs99wwazw4jJzfu\nTs7DHl9VC75ZheLhAvkONUQHWW2xZInhbJnLdmEhuCpP8Rer2dCOap7L1QURZIeuLnFg5GPrVsjr\nAYcj0kcfOWZQCLrKY1m5abA6Ar0DVRRFcYkuoIqiKC7xuIUP6xKF5HCPTFS+nUsa9kzGLXzVR2KI\nlJzJTkR13bxtx03oEBH79JZ96Er/mLe3CYu/D74e4n/HQw/h6xq7uB7IYmUIjKZPnoGV9LkruXQm\nF+fGUdow3lKaI8zpvpvJNrLIP+BIPfhO/5C37fFfx/IWOsrbt+y1uGkuni62c6PtXQHZiSwwveCX\nYeA7eJA/x+I1A+Cjb37TMWu+/nVw1c4wxHdtIa5Vs0Fh6vvvO7as4yciGjeO7daxWAQYtkkU3Wfb\nKxMqGMkD4I514wz7o/1caB4/ogFfuIPLHiNmGJ+zzEXVYirCLbNDxFp1tBN8G6ZxWdtcY/idr2hA\n+Mo30Bcf2i6OsGzsn+gdqKIoikt0AVUURXGJLqCKoigu8axIPzDgOE//FdfaUes5B3ZuWQH4fPeI\nvMaf/4zv+X2RgwwOtiZ6UFLCYgJZmZjnaj7KsUccMfJaov7l7DwUoZBaCUVFlgQ6iGj2bI61quwc\n+LKWcQlKyXgUNwGVlPnzwXX6Q37dqFGWYi0p4YtD1rMQ0aHCXY5tVrgllHHZSFUKtlXK7tj4eHvn\nlLZtc2KtGYYCHck7uQglLwgLkgqeu8Wxe97CXL6fbAlNTrYXa10df6++gfnBUdPFhD5RYkNE0GtY\n04klgMlt4rlDTo69WA8c4GtAfiGIqHQat3qbAj6hoYO/5dixbIeF2bkG5Pe/owN98vFNZVAuOm+6\nie2rr0afaKulbdtUTERRFMUmuoAqiqK4xGMZU3AIr6/LjPHVC6Vs0LXG3e1jj7FttNNkzOf3LDV2\nqEMha8ohPjiFkisdHdzyEvGlL4Fv/7d5235PCL5nT4N4T4oaaogOVWtO8sFurLkquXe4Y8c9jaoy\nUhlnUhm+p9wWxVutD/tfiqbsguPcXqEBOwL/39yxvPUtasP0zt4Q7FqyRdJm3rbXrm0H3/6beNvu\n/7rxwnffdcyP/4quJbs5FVGKzU1DovIUf0Bp/gfQuWCBY/bNxc//xRfZnvV3/PK0zuDrGIu4hkbe\nTk4VFMj6OyIaKTrVTOUwKfubfdTo44FOITu9SFkhshyqA3xhO0X5VRB+32oXc3meIWlKE1NSPvfv\n6h2ooiiKS3QBVRRFcYkuoIqiKC7xWMZUW8ulAUbVDJ2cJ3JZUmaeCOsGjh9H33ahhnL4sLVyi+pq\njlUIBX0mnL62E+Dr8edWQ0PEBdpVqafHWqx5eRyrOYZHpplKulEhvXUFl2CFHdkGPtq5k+3KSiux\nnj7NcV4MxLcMFLlDSHgRUU0v5/iSO3CuT1UgtxnOnm2vjKm1lWOdMwd9sqTGCJUOLON87cytmOjc\n9o4oKbJ4rcoyJlq5En3y+/Lqq+DK2cz5QrNUZ5u/yJeWllqLtb2dz2uZkXefO5ftMB/8XsGzD3N+\nk2hXpUWL7MRaWenE2ToJvzdhO0SJ11FD5v+229iWvbJE1JfI14O396WvVb0DVRRFcYkuoIqiKC7x\n3ImkKIqiDIregSqKorhEF1BFURSX6AKqKIriEl1AFUVRXOKxF562bOEnTM88A67aJdwLnVSG4wUG\ndnBfqlck9rqe3M1TKEePtihnJurArnoEtfk/+YSPB4bjn/T55BM+OI96/7UNXAealGQx1muucWI9\n+e7H4OruZju8BaXgKD+f4wnBaZ6yp5fi4qzEWlPDNYAgl0ZERf3ce50baMysnCJmkRjjPDMOcr1i\naanFc5qby9dqbCz6ZHGtUUC5K5EnsSacN8631GhLS7MXa06OE+uJTDyvwQdFDEaN6K587ps3JQTF\nBA2qrbV3XouL+Rowp3LKgavbjWGXo0f28UF/P/hOdrP0orU1YPJk/vx//Wtw1XXySJf4IJy02xPE\nPr/n1tOgDFKvqnegiqIoLvFcxrRwoeMsGYsz07Om8Up+0j8cfKMPCmWUtWvBt7eQ75RiYuz9Up49\ny7+UW7eib2GFEJ81f0bF3UnEziJwNe8TYse+vlfkV/3hh9E3aovo3OnE4Vj1ieyLW4t3/dDSVFJi\nJ1YhqH22G39r5R1Hxg+NP3ezGHBnKPikLwlw7PJye5//uXN8Tisq0Lcwmu/ceiZOBJ/f44/zgTHb\nHFrYxoyxFmtdHcc6wlCykg1lRZkn0Sn/5+eeQ9+jj7Jt8VqlCRN4gXjvPXBddUp29WCsb799u2Nn\nZuJbSkG0V16xcw2cveoqJ86At94CX8Qc3gUbXynYLJnfxXvuYTsgQDuRFEVRrKILqKIoikt0AVUU\nRXGJ56fw4ollVrTxpPU1fno8OvNfwHXoTU6bRI3FYWQxW4U6dEzJZYb5+cin16ZSDc2bx7YcFEUE\nUvvv/BJd54ifFvqSPbK7Wcmq7i1UbN/dyWpFxUfiwBe34iwfyH8TETX6c050qo0giWjXbv59TYjE\nHFdQEKv8mxUakI81HhfHxgbQleDaay849ttv49QBGsaT7Davx5y/fECctQMHDqY3sKpPuXH5DwV5\nfZrXamKiOJA5WCI6dIrPecXbi8BX8h/iCfIi9A0JmSScPh1cF3c/6dirRqHqVthWvq7r8lGtLW5F\njL34/sGnp8Tn+hNUY1q7lj/XuFgcONnTy9e4X2oC+E5M5ikMAYNctnoHqiiK4hJdQBVFUVzieQsv\nayrk/GQiaqxmUdSj63HLsHA8F9HmjcTyJ7nzDCZ7jPHn7W1qqnG/XcalNOas9awuOdRrjMWIBqcy\nlLc3aZk4AgzmwRnphgXL+d+18VEcnDf1qNhjTjWGeLkExIf9O8CXECqKzD+4Fl+4TwzuamkBV+Sy\nKiuxmTzzDG/bw0L6wLehjD9XWdJERJRRxiVu+3+AW7/IbroijB/PtqmnXDSSt8LHpmeDrzCf7ZpE\nzClkH+XvIG6mh8idd7L94IPoE5PkHnoT/+qG3ZymWthVCz6jstEK993H9qFIXNbiQnjI4A2B+B0/\nc1AIQcvJjEQUvHIhH2zAdeyf6B2ooiiKS3QBVRRFcYkuoIqiKC7x3Mp57Bg7161Dn78/24Z4Q/0w\nzuRJkQMiopLzV2b4FWVkcKzmBLzvfc8xG3/zF3AdPMj2E098AL6///06x/bzsyh8IYeKScEKIhjQ\nl53vBy75zwq7zQjnhRfYTk62Eqsc1BbWjbnDnrGcOzQ/47QjnLvLGYa5sdWhIgedkWHvnEZE8DkN\nxPww/ehHbD/9NPqGiXyZzPkT0ckub8e2KXwTE8PnFcqWCLs1jUo1wPf8WfwPGzeyvXy5vfMaHMzn\n9a9/Rd8f/8i2IRoD1/Xw4eiT7bN+flZi3bCBz6lIzRIRagSZrbP33sv29dejz2ueeJZQXq6tnIqi\nKDbRBVRRFMUlHsuYklewylLNdmMLL++TjWHbcQ/yrX7c/DvAl7WJt3D2+pCIaMUKtoOCwLVgOm/b\n387Hl9WP586o7LcN2RgfWZ7jTdaQ5UnGEPOwaN62myo2L77I9lJjZjjsRSwNCgzL5FTMNf9ZB76/\n/53ttH4sqVnwsYdCGnMbaIm6NayPGn8ENTare+937Fmxb+ILhahl9Yv4Gc+6ahsfzJxpIcr/5Zei\n4+2669AnP2PfTCxHyxnJ53n1lCbw7f3Ocse22ucj8wibN6NPfs+MeesnCrn7J7gXNThLKvgaz8oi\nK6QIuU7/T/D6927ha2P2StQnlp1g8itERDTRzAVcAr0DVRRFcYkuoIqiKC7RBVRRFMUlHsuYenq4\nNMAv0dD4EUrjA9094PIq5FbFVcPzwHc7C1VTQoLF0qD4eCfWnEjM18nyH0MgHcSCzJSHTPHEx1uM\ntaBg0JOedJDP15o16Atr4hxYczTmxyKGiTxTeLiVWOvr+fOfMQN9oaFsH2rAz5+iox3z9H+2gkuO\noAoOtndOV63iWJc+fg6dIue8axgq+e8WYmHdRuumnPmzcKHFz//AgcG/dEJOv3n+pdsHiYgijqBy\nFOQq+/rsxRoWxlMpMvGzzGrivHDzim3gk+2axiMJKki1f61STw+fU6N9WAZwzn80uHyPivK8TZvw\ndbJUs7hYy5gURVFsoguooiiKSzx3IimKoiiDonegiqIoLtEFVFEUxSW6gCqKorjEsyJ9Xx8nSI0a\nj7PDbuA3Md5FDq83Sxik6PPJkxZLQ0S5xa61WG6RcOryJoLt/xcsDZKz0UaNujJqTO2hoEFPYzob\n+eCRR/B13/mOY55bh/8m3yZRuhUfbyXWujouDYp/40nwFV3FrYO5c3Hg3LFuLhUJ34MNu33zuXfP\n2/sKlQYZk9pmbudym69+FV/23e+yHf+zyeBr3/Inxx4zxl6spaV8XqV4PxFRYSHbXzJm4416dy8f\nyIuTiCbM4HN+4IC9WJubOdaIClTIj9nHLbtz5+LrZNdn4xJUpIcyo5wcO7FWVjpxnpyGkwWee47t\npe9mgA/kmeTJJ8IW9YgILWNSFEWxiS6giqIoLvG8hZdtO0ZbTIDsfJg1C3zhd93l2DG92BV0crFU\nysm5vCgvB6Hqm9BSA67ibt5YgjYaAAAcSklEQVSaZ9/2Mvj2j2SlHlNQ1VTKsUZZmWOOedBQJxLb\ndFqyBH0PPOCYYpw9ERGVhAg1nHhMC7hF7rQ6b1wOvk35bMfGYndHTKGYr20M6vLeJ1IUU21NsCcU\n8JUtREQ0QnQbmXrKUtA4/6o/ga8pxFJsBlJx6ZVVzeA70c9qQaP34XU8c2uyY2+bh9+rhgb8DGwB\nAsT9/eDbu+6QY9d0RIFPCo5Vv4jdX58E8jFutoeAyM2M9kGx6aX3dPDB1Xg90hNPsG2kRSgl5XP/\nrN6BKoqiuEQXUEVRFJfoAqooiuISjznQkn08OGziE6i2Ul3NdtPXcRjbgRRWnZ9n/oV+f7oS1HWy\nen78NKydChH5mBsevR98Z+ZwaUZABSqpC1EhqsOU09CQb3zhAvpk6cRjj6GviVXIS2bgFIBiMcgN\ni03cM+VHXLkx42Zs+ZU52LHfNCo8HnrIMaui8ZyW5bNdXz/kEBlZO9eEau3l00XeKxVV1ffs4RIb\nr5Rk8OWu4BxkUZGFGP/BK6d4SsN9Sw+D7yc/YTvYGHK3rWK6Y/f0Y567gtPq1lTeiSBdT0Xjx4Nv\nwz7Oe5oVQFLIaNaTqAJPW7eKg3CygkxmGzlwuvpqtt97D1ytbw8+3zEqNkz8j1ga+U/0DlRRFMUl\nuoAqiqK4xLMaU3IyO/+C89RpwQK25ZaUiDI28a196be34OtuvJHtuDhrHRN9fdwx4b0Ot43pR3lT\nW+6zEF8o9ho5/bhPS01lOyrqynSiGPP4aHW0SJWIGfFERDPnBzj2hx/i6155qY8PvL3txHrLLfz5\n/+pX6BNbpr5+/B2WAtYHD+LLmneLrqXRo62dUyn+bc5alzvG0ZE3gK9q7RnHnv0VLHGjW25h25bw\nLxFVV3Os5jj1jac5jVASi2VMsqrQLGOTwuBTp9q7VquqONbZIzGPFZPPaQRzhr2MZ/p09EUF8Tmn\nG26wE6voRPzMyZF7c+OEV6XwOZ6dOoCve+optpcv104kRVEUm+gCqiiK4hJdQBVFUVziOQeam8vO\n8+fBVRvLeUajuoEWLWL7lXFGUY2UaTlzxlquJidn8LzSgZ+J3Nbf/oZOOVUsMBB9UmZq9Wp7ykGt\nrXxe33gDXLuue9ixEzpLwZe0k5VkzAFojYXQImknVjn8bsUKcLV38G+vqbglU7eNkUZNjUxQWlKN\nIiKibdsGvVal5FFBIA5qy+vKuuT/R0SUPp4HjpWX28srxsXxtWoODowaecKxx90bDL7jr4sWRfMi\nlyfdz8/eeZXPQaCvk2ByXPK8AHDVbBU5eWMi4f6f7XLsiRMtndeBAR6A6Y/3hZGRbJvlVjLN+cwz\n6Jszh+3GxkvHqXegiqIoLtEFVFEUxSUet/BSUNdo7qCRI9k2RFpAxad0Xd/gzkFESl1x7tyggrpy\njxkW7QcuubtY3YWCykldLFpcW2tR/PfsWY5V7hOIQFUqa4k3uOS2XZZYEWEmoqTEUqwTJjhxxo04\nAK766ayqVdSPqlq5y0Q5iPFZXHUrb68vXrRXGpSRwddq6fxD4Etfx2V1996Lr5v1R1HWtnIl+HY1\n8bWSkGDx8z9zhsW/D2JZVcJKoVD16afgy7qL1aJK5qGKU90p7vaJj7cX665dNOgCIcvV3nsPO+ou\nfsLHrR14HR8VwmHJyZZi3bvXiTMgMQZcssRKii8REY06yOm9qxJvAd/FP3bxwSBpMb0DVRRFcYku\noIqiKC7RBVRRFMUlHtWY4sdz2118qFEacvw427dg7iC5iRVWBoZh/sPLlDyxhUgQ9oWiwot3E8v+\ntM4xkrliGlbJDhzUtn0+XRHOEpd87EjZBb61oiu2OTEXX/jGa+J//DK4xm6yKRf1Wcz2SPLnJPjy\nH3wErtxh6/nA6PG7+MejdCUozRctovs6wJeSwjnQhPwJ4KPYWPE6LGMKDbWj7P8ZxLWaMB/boPuE\nWpC3nE5AxuA2+RCCiOILZ4oDVE4bClJVKaar1vCxsvx7770PvuoX+bnDrP1Yynh4IrZa26Cul/Oe\nH3yA12Nk5LWOPep6bNdsH8fqbN/6lvGm68Q5HWR6gt6BKoqiuEQXUEVRFJd47kRSFEVRBkXvQBVF\nUVyiC6iiKIpLdAFVFEVxiccyJqmcnrHOGAy1bp1jLvgtPuLfeIFVg0DRyGTDBmstZ9dcw7GeP49D\n7i6uepYPjPa42f+13LEzM/E9Y0aIdjmbbadxcU6sPTtwspqs+tm2bPCWxPL8E+DbsJOVexYutN8e\nd8gH2+OiCsUANqPPt6+TFcdTUvAtnxUfxahRFtsj6+udWM9NigOXVKSXSulERLljheq7lHwnwjbb\nsDBrsebl8bVasOwcOqWSVEgI+oS8/0BoGLi8SJTneHlZizU3l2M1Z7XJzleztVi2eXp3n6FBsaRI\n39g4+ESCsWKmoKliNmUK2+bHL6+VkydVjUlRFMUqHu9AQSRk0ybwlR7lOxI55oiI6PQPWcdyVCQ6\nz73LBbe+lxvlZXDXXWzPmXMdOv1DHNN7zkxwyV8kXzLuBpaJma4lJUOMUCB+ErdvR5e8A93/aRT4\nYERSVxf4mprgDtQOoukhaiSOdS1P5Du39LKz4PPu4qL2wMDRloL5HMQtkK9xUtNnsGBt5U7UrYST\n+vHH4Craznd5uUZPw1AoSD3G8WzHpo+0psV8YGh+nr3tNscOePtt8JU3cazpqIkzJGSfgdkDI0/z\nTTdh8XpTExev+/igYEpFBdu27uDkWjXfaICRc7kWL0bf7LFilydHYxNRZXcSfR56B6ooiuISXUAV\nRVFcoguooiiKSzzmQEND2W4diU9hM5rSHDupuxJ8eXvEU/mXcda275G9fBCD7zkUGpcIoQNzEPXa\nDsfsS5kNrpKyKsfOisQh5sUhnPc0JjsNiWwfnsvTbWiblC8TucayMvBNlGoS/fjRfYCFB3ZYutQx\n4647DK7hw9lOH/4K+LLf5LlOzz6LVQ+lc1gUmEZdWqDBFSJHX9+P7xs3rMexzbE+jUdYNHmqMfcp\ndsvDdEUQFSxTluCMJpqWz7YUHyeiADHQ5+xIfAqfniifdGPOcSjEjxXVHsZj6jFTOEd4sXAt+GD2\n2WOPgetEJ3+bgnHsk2uu5ZQrrV6JgiF1e/g+UT51JyKiX/K12/rQcnAdLaPPRe9AFUVRXKILqKIo\niks8buG/8Q22R72EI3ar7+dte+0W43G/3Gqa41dldarFLTzM3mlrQ9+ePY458PvfgytL1g3Nw/qH\nzHfe4YNse6Irxd1cZ7L/h6hBSs8/z7Zx7mom8RwiGRoR0SuJQoOTFpEVHn/cMes/Xg+ugr+Jv/ER\nlrBEC4nLG2+8Gnxesby9HsCd1pCoG8GF/Zsr0BfX2+DYyZNQf5NeExqrkyeDK2asLM8yyp+GwLFM\n3rYfQQlSWtnAZV+lW8eCr3YzpyKStuP3EboF6rE5Y0iIqvTcRJzD1J4oRkL/BOczrxrG2+Gl+7B0\ncJ6Y31VnScZ24haOpf16LDmU88KijY/fV6TJwu67D3yrU2Qdp6Ej+w/0DlRRFMUluoAqiqK4RBdQ\nRVEUl3jMgY76bzELfCzmY+4KEgdvY2KhyodzfLMPYtkQ5ed/oQAvG5kDNUUYRElFWzeWeMj8yPhN\n2K4YtxxzYtY4zCVBb76JrolvvcUHRg40eQbP6ClNweTR7AbOSVZZSoHK81YQi3m1vEKeddViCrR8\neQnbkZHgy05ttBQcEh/N+cr4nfno7I8d9HVhP+dSJR8fLFtq9reYpBWEN3H+8l9+mAC+xx4TXyyj\nJTXpUy4JPDcnA3y+RsmTNQIDHRNmMhERNfFnm5GJs89kudjAVpzRlLnTVnCC3/3OMccYqkDR0Vzy\nFWDMPTv0wl8cOyoSP+/yCr6/TL90ClTvQBVFUdyiC6iiKIpLPM5Eqq5mjb1Z642ukZ18H97c4Qeu\niHViexEUBD4oMaqsvCK6hU899TfwXfzVFseG0gsiGkPtjn3SZwz4Rt96DR98/LE97cqcHD7pX/sa\n+h54wDGz12Kbhhwxa0hwQtaitNSOzmZzM59TU9ZVKtykBRq1KELiKtsoYZEakt7e9vRAN2zgWBem\noP5kq0jbhM0zu5Q4pWBml2QGJS/PXqxpaRyr2RmTQby9z+3AbXrRPL5WodPHfKO4OHvXanMzX6vG\n2GfZ/jOuENMfx3/M/46AZfjvkApPNTWWzuvAAMd5EDsKyceHbaMVrWQnf+ezduIY6735fF3HxKge\nqKIoilV0AVUURXGJLqCKoigu8VjGNOsBodD+OJZJ1OzhvKepql51sMGxNyzG0qBpYnYK6skMjaJM\nVkEv8jFkVDJZZWfMV1Gt/uy7LGNkttWNNlS/rSFVbWQrKRENBHHe08w75k3nsrL6KVhXMXKkvfD+\niUxXJ1MN+MITY/nAfxr4znbz73JxSwH4zvXnObY3Vr4MCVFt85npCWEid9dahmVU9Ws4PzcwBdsj\np/qIMr5BWvncUDmXS8JK23B+E/3yl45Z9C3M5S34Bce38adzwXdyGF83VmcAiMR741jMZU6dxdMm\n5i42lKvE68zyp+IReeIIrw/XyDIuM5kt23W3bAHXsGHiuceSJeAzZ0BdCr0DVRRFcYkuoIqiKC7x\nWMakKIqiDI7egSqKorhEF1BFURSX6AKqKIriEl1AFUVRXOKxDpSefJKfMN18M/qmce3fzMVYebZt\n2SE+kM3PRLTgqyxttXGjvf7ipCTuL66dg/JZ1NnJttSvIyJ68EG2V61C344dbEdFWYv19GmO9Sc/\nQV9lC9cb1hUeAF9vL9vJvzCk9l56ie0bbrAT64ED/Pkb523DSK7lu/NOfJlU5DNrWdN3i974bdvs\n9WyvX39Z1+rU6b7g6hdTG1JTwQVTMvbutXetLljAn//GR/EzhhrWu+9G34ULjll6Pg1cGZPEuI2I\nCHvnNS/PibV9LtZsjunlvxk1NwJ84pR/ZhKq9A3WY/6FSUvjz9+Q9hvYx+fY65vG9+ZqHjlj1giH\n/V6MsVm0SHvhFUVRbOK5jOnkSceZnIl3mTXnWQi2aMou8OVO4ZW87jyq38SP544hGj3a3i9lUpIT\na11mLbjiK4Sos9myI2Zt07Jl4Eo/z8O/ysvt3YFQQgKf9Pk4yI6kAPFtt4Gr4KcfO3beFGNwmBS8\ntnRe5Z2yeXMuZwOag7qknq1371nw5azk4WyrV9s7pyUlHKs5U1CK8az+9svolIPEurrANTCSVZy8\nvCx+/o2N/Pkbs9blyUubi/c38tKQmyoibGgLD7cX665dfF4TFmPv4P7nuMtw4kEcOlhygVW9s3yM\nAXjyO3fihJ1YxVplfo8PLeYBmIb2N018hsXfza5A2J5Mnap3oIqiKDbRBVRRFMUluoAqiqK4xGMO\nFFS+v2bkjq6/3jFjFqNSzd5FrHiS9zaqtMgnm62tFvNKWVlOrFlUAq6SlawqVf07fAo7680cx57Q\nsBp8BzYLJamwsCuSr6XERPTJHK2ZH/3qV9n++tfRd/4823V1VmI9cYI//+CteG7yevm8meI3XnNE\nznknThBrPdjj2GFh9j7/ggKONS8VFcAg52YoNdG6dWyb8vAy0ZucbC3WqCiOdfFi9KUFcW57/7Wo\n1PT002yXGYJjUiw+Pt7eeW1v51jHnNqLTvF4vfo4PoW/5x62Z8zAlzWuEZUHEybYiVVOeQgNRZ8c\nOGmUhZQGcWUBKHoRfvwZGapIryiKYhVdQBVFUVziuYyppsZxxqxJBpfc+dx5J9YG3HXX1cKHbymL\nrG0WJ+/fz1uN229HnxzAFr8nB51CNbWkE/+NWW1iAF1JibVY8/I41oJIFCqmo0fZNmtVRKlSblc2\nuIo2CqHoDz6wE2tcHF8cH38MrvYtf3Lsz2ztxL9h1Qcowrv0Ri4pobQ0a+dUDkB891305QbyLPD2\n2HTwyd1dXCSWXMHWv7jYXgrnxAkn1tPDcXDgqGd4Szl1Tx74xAw3+rd/w7eMiRTi576+V2RYY1Ek\nNqj0TOemCL+udvA197JQccRuTP/Qb3/L9uHDVmKFFM6tKJpMr7/OtvzAibD8T37eRNTTz+k+Pz/d\nwiuKolhFF1BFURSX6AKqKIriEo9iIodCOCe494Nx6Fxxi2NerJ4Lrvgyzo1s2vQG+FauvOuLxnhZ\nTPyIyz+KN2H5R/YRIbxgljiIHEhWoJHL29NhKzygIFGUcUQaZUxCwKSvrBJcmzezXTQDc060+AoM\nwBODwcwWWJmqHdPSBL60o5xnnobz5vA9LSJTWwcPGs4RDY45RtbREdEYkQOfuQnFMrYtTrEUnYHI\nbT++FnOgsbGc93z+eXzZqC9znnP/n7Ecj2Jj2T5gCJQMgaIybmel8ePBt6KJv+clIzeDb7sYHtgU\niM8dUv/AxwFkh7w93DJeGoiiIBlrvuvYRWvxvOV2LuQD+WCHiPzk8YkTl/y7egeqKIriEl1AFUVR\nXOK5jOnMGcfZ43MDuPxWiBIfs4NDSJ4UvIudSHmJQivUosbmuXNcxmA2m2SHiFIh4zZdHrcOCx/0\n/W12zdC4cU6s5948Di7ffN7eZPdj+Ycsx/rzn/Etb+QR3dTebilWoQVZGYrbW5kJMednS1Gb8t6Z\n4CuexKUw2dkWz+nChVxyd2QDuKSUqd8p7FIq2s4KQ1LtyCQhwV6s6el8ra5Zgz4pCBUWOoBOcWIP\nZZaDK+q4KN15+GF753XCBF4gZLcbEVFFBduyHIgIlYz27EHfD37Atq2Suzvu4DjNOkapD2rGKfSK\ny3ej4lz61ng+GKS7T+9AFUVRXKILqKIoikt0AVUURXGJxzKm8p2c95wzx3CuXcu2lIIhItq+3THz\nuv+Avve/94UCvFx8M7lFL/vFF8F3rrub/z9zXs73OJ6OX2E+Mn6azEFZ/K0RSkq+dxszWrZwLuvU\nCnQ1NLAt009En8372iDpCOc9a6cbJV4iYdjTi6UhkPc0VN5lHjcbu1GHxKF5nPdMxaoq8tttzMgS\n5C4J4QPjJBb3c54/IYGsUT5DTEy4+2fgC/jpTx27LwTzx95iRtJNNxlvulLMxHr4YbLGI4+wLWYy\nERG2GsuBXYRlRWPHYov07LeNZyY2WC8U8Q1FevrwQ7bNhwdibWhrwxzoZ6YFXAK9A1UURXGJLqCK\noigu8VzGpCiKogyK3oEqiqK4RBdQRVEUl+gCqiiK4hJdQBVFUVzisQ5UTrrcNR0nXSak+jl2+5Ee\n8KWmsi1KQomIKLj3GB+Eh1+RqZwLPsVYN97I9YxxDTgmQRIUhMeybX4wSX9X5ObykzuzwFb+UVlr\nS4RyYrIolAhnp7z/vpVYw8K4Z3v6dPTJUrvRc+PBN/D73zt2x7v4kFJeGwcOWDynW7Y4fyj9D1gH\nKVuhzcmL8t/lqdX70KErEyvdZcg7Sl0+s7hX1lr6+KBPfiAxMfZiFXoY0N9ORHmbuG6y4CAWyuZF\n73Js0W5ORHgZ2zqv11zD1+pLL6Evnur4wJCz3NXCo0dM6UXv3aJeNylJe+EVRVFs4vkOVPxUJCy/\nA1wnjvJdZ1sLuOAX5k9/Ql/w/whpnPDB1Y++KANr+a5z4zQUVM67nsWW6ytQGLV0NwvaZhxZCD5a\nLG5JylH9Zki89ppj9iwrAldZKHfUZC/JAt/eClYSiulFVaGTb77v2EY/hWtad/BuIS4TP6vRnSza\ne2xtHfjCX3zSsaUSEtFnGpPs8eUvO2b5POyaOhkS49ijW+rBl7GVr5W2NnzLz3TfWaLuer5Dji9D\nseFVX2UFrqU+FfhC8cWa2YLqWMPExqUqhqwRNZ27EaOj0VfaJTqMpAQXERWsnMB24Cnw7d94aXHi\nofDxf7HAeHnDGHS2sBrU2WjcLSV0CdHyOTvxdfn5n/t39Q5UURTFJbqAKoqiuEQXUEVRFJd4bOU8\neZKfbI0+bwwxy8x0zJzxu8Al0yEffIAvm3hB5KcsPi2sreVYkw4aT9pvu41tkSsjInj0vmFfFLgW\ntogcZEmJvSeb69fzSRdqMERE9PjjbJtP4X8mlHtMGfif/5zt+HgrsZaW8jkNCUGfVKoqXou/w4sX\ns+21owZ8kBQtLbV3Tl9+2Yl14L77wSVFg5oMpabZvaWO3Tg2A3xSLb621t5T+AUL+LxKESEijDV4\nH6pI5R5hdSYzX1tYyLbN6QlRURyrMVeQ6iJF/ta8jlPEQL533kFfdTXbjY12YhXfqaK/LwKXvHZn\nR+OzA1ohJM+MPG72bs6XFhdf+pzqHaiiKIpLdAFVFEVxiccyJnl3W942F51z+TjWKE6W2ySz9IHW\nVbAdY6/eIolE0au53/zoI7ZffRV9Ypu8cG0a+gyRWGvs38/2G2+gb8ECts3K/vvuc8zmlZg2kZrW\nuBF1zzBxdZipGHrqKcfM/v730dcvLghjlviJaC59wYnoQ+Rb33JMr6PN4GrrihgsHMrbzmerYBiW\nqjVEp9OV4PXX2TZ3vsFtXGZVfREFlYu++bJjt8/DNIUs+i/ACqchceggp2pmz8H7rapILrmaHWrM\nol+yhG1zqJz5HbTBQw855o5EdB1ILeaDlAp0SrFlo8uieOJfxdGlRar1DlRRFMUluoAqiqK4RBdQ\nRVEUl3geKld40rGPdTeCL/wHPAwt4eUZ4IuIDXDs5oazxl/03D3qGqkKYSReT/+ec2JPt2GGcIeo\nBmqNRrGEK9d3yOyvwEF2E1dyaUgOrQZf6AzOyWV01IIv4qkf8UHGX6zEJlNXU4w5YLW3L3ds/w70\ndYoc+OytS8C3aTzHXYRdrENDJgFjY8ElxURm4KUK7ZonfDDn+f5TdEVonsWtrjkrl4NvdT+3E85a\niSfdbyTnPc2hck8/bTFAySuvOOb8+Zh3nRrK60NRxQTwdU/i9WJ1h1E6JAYS2uJQJ7ecmhV+8lnC\nrpWYH5df8R078GU1/aK1e5BBfXoHqiiK4hJdQBVFUVzieT8tShHCZVsGEVU9zjJLs+djuUVTE3dQ\nFJcFgC9kGqsN4bTooVG729uxo3fjbfro3/BWeNo0VL8ZMYLtgRVV4POKjKArQiLXWbz1FrpOT+FY\nV7cVo3Met/gsWJQErsde4GPsp3KPPDcLQ1FxSZZ/9e3Akiq59c8IxFQDXamsiBDz3NWJn5ssFRq9\nBofRp3fzOS6/E9uCbr8dO1psceg+3ravPo/KUbk7OZ5hheCinvni2hWdgESEwrsJ+G8cCjWf8La9\nwag+WnGEdb/MFM/qSdyBlluB3/SuLq6zKiU7RC1hVa153ai4RbdxOdIkQ/MzoIHjHJZirEhHRtDn\noXegiqIoLtEFVFEUxSW6gCqKorjEoxoTZWSwUw6zIaLcPZxzePBBfNnElwefOwQlJnFxV2bOzOnT\n4Mo5xTkhmZshIpC/ST+CCvAyr5OebnEmTnY2xypn4BDR3iUcX0zoGXzdxIlsT54MrmMifxsebidW\nT6pBXtOFsvdOQ8lb1g21GOMKZs1i++LF/yszkWS6MCoU53fBLCFz8JMckuPray/WnBwn1jwfLFUr\n6ORSqlW3YWvphQtsmyOxbr2V7Y0b7V2rwcF8DZidzbJbUypFERHKQ/n7o2/+fLZrauzEOnOmE6ff\nblSxklVTpuKWfB5hznyKWcM50b17VY1JURTFKrqAKoqiuMTzFl5RFEUZFL0DVRRFcYkuoIqiKC7R\nBVRRFMUluoAqiqK4RBdQRVEUl+gCqiiK4pL/A/zQjRCeKJTmAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  14\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztvXtYVmX2/79QIzIiJRJDIyNFM4eM\nTA0dcszIzCHiY0pohmTkacjI1MzIMSU0IzMPRA4fxzFPGakfTzFqZmRaikR4HCMiJXSIjEEjIp/v\nHzPttd538Uxtbq/f9buu9fprbd8+D4v97Odm32uvg4/H4yFFURTlt9Ps/2sHFEVR/v+KLqCKoigu\n0QVUURTFJbqAKoqiuEQXUEVRFJe08KomJvIj+mXLQPK59BPH9rx2EF/XsaNj7m7RH6QVK9jOySGf\nX+nnfycnh31duBC10aPZfvxx1P76V8dMPzGy0befOdOer1FR5Ph64gRqBQVs33cfas8+y/aECaj5\n+7NdXm7J1/h4x8/cwXkgJXcv5P82KxK0zEy2w9fPBW1Lt8mOPWiQxc8/NtbxNWfwRpAqK9lOH1wI\nGq1e7Zi7B6OvnTuzHRxs0dfjxx1fl+8NB2nkLD7e97fjoF3Sm12oNt5ywP3380FenjVffXzOOL4e\nOtQGtP/7P7bPncPXjR/PdvCcNNAitmc5dnGxnfNaUcHfKfPr37s328YyRvPmsb1+PWppz7fmg2++\n+UU/9Q5UURTFJT5e80DT0x3xxjdngvQJ34DCXSUR0dGjbM8duBO06u58RxoYaPGvenGx42v/iREg\n7YxbwAd794JWs2qVYwds2ND4+8fGWvO1vJz/Ws6ahVr79mzLv45ERDWV5x174/aWoB05wvaUKXbO\nq/Tzww9RG1a1iH25djxosWeXO3bZww+D1uHbb/kgIMDaOS3y8XF83TIbr+l+/diO6lABWkW7do4d\n8tlnoK3cG+bYiYkX5w60vgPegfp2vt6xd//1c9BatWI7YnRPfE9xJ01hYfZ8nS1O5mWXgVSRwHeW\nIVXF+LrHHmO7UyeQIor4+rB1B3r+PF+rl1+O27ovvuAd8XXX5YPmec/PsePnR4OWN13sViIj9Q5U\nURTFJrqAKoqiuEQXUEVRFJd4fwovgkedilDypXrHTj6Lj70itnFsZPBgfAo/XzwQz8MHu00idjrH\nPbdtQ63sUn7y3sEIOga89RYfyMd1RJSWyU8ds2ItOPkfEhLY3tMlGcWJ8x3zued+BCl6ID8VXLoU\nX1ZkfD42kE8s069aBFqDSAOI/esVoN2zirMZtq5oDlr+3gDHjomx4OR/6L5pE9tFs1FcyrHNwgm5\nIInkBSquDQNt+PCvHTsx8aqmO/kfcgs47plch7HDlbM57jn8DozleTYcduzjKz4CLXy0+J7txOcO\ntih78kk47iAuujbbloN2ZtYox47flgLap5/WiSM/ss2jj3aE46++Yjsz07joRvNnsfVLzHoYG8zZ\nJUuW/PLP0jtQRVEUl+gCqiiK4hKvaUz5+ZwaIJORiSBXnqJ61KNYVsa2kQ1evIbzbSIiLKaGfPQR\n/yIdOqD2+utsjx0LUkVdoGO3a3cYtNatuzp2dbVFX7Oy2NcePVDz4y3N0HmYqrL2TXYh7Qn83LZv\nZ9tWaghVVzs/pLAsEKTIhSL0cOutoG25ntOaBh3NAi3lKId3rBZSyKIPIxRTOjjVsWWSPxFRzjJf\nPrjhBtD6X8PX6s6d9nyV36u330Ztxw62p09HTV7WU6eitulDdi/Q47k43yvjh64czaGCRM8boPmM\nkKG7k6D5+d3m2N99Z+m8nuGE/8iBmPCflMT2448fA83z2SWOHRGHIZzi6Wv5YOhQTWNSFEWxiS6g\niqIoLtEFVFEUxSVe05hiuomyt1YYxygN4vhceaUvaKG1teJ1rUCTlZQRWHHZNESQtqYLxg5rRz3j\n2O2uOgPaU0+x7fngLL5ngWwuMZms0a2bY+5pgeVjUV1qHPsqM3NGlMRlzbuAmmyYQpiq4xqRKxUp\nc6+IaE5n/hlJQ/BlHb4WByf9QXv99W8cOyenNdli3+MrHVtmphERzb2Vf86E975BsT0HGudcmg7S\nu1PXiSPjl2wCQUFsL7kd03/omjK2E4xAp/jyPP44XjfLhnCoElt3NBHh7PFsTI9K3Mu+zyzDRjyn\nTrHdrl0AaN+9IfMX45vuIxGRSGMrHIjpX1s6Zji25xSm3E2eH+LYZlw5tWCoYy8YSr+I3oEqiqK4\nRBdQRVEUl3jvxrRxI4tffomabME0Zw5I+y7l7UWvb7H7yR5/rgSIirKXGuLj84Hjq2fNKRRFRdVp\nD6Y4tG3L+03PQ0+AVvS3vzl2d4upISEhnMZSMQa7XFHfvo5Z3hGruEIniHIoowXWviO8TerVy855\n3beP/XzwQdQ+//x9cXQbaKtXcyrWsGt2g+ZzB1faeDwP20u3ycvjbkx+uC0c5M8+nO+BW1/ZOczs\nFSm1/Hx712pxceP9YOO7lzr2PeMxrWbrGg7vmG28lnfjcNPIkRbTw8aN4zWgI1b4HB7IwYKGBnzZ\nzTeLfsE7vgZtYy1f17GxdnydNo3PqfzciIgGD2ZbpvsREa3cL7phyY5WREQyFBkdrWlMiqIoNtEF\nVFEUxSW6gCqKorjEawxUdiQ3OxwdFGOQsrMxNeT66zltpHSp0RlGtkYZPtxarOaee9jXrbNx7k2N\nKDWc8BD+vjKUFFqFr8uv4m4sMTEXp5TP7DovKjmpSxfU5rblssix/8BklSWjRHeenj3t+Fpa6viZ\nfwLjcbKssHNn7PLv+VGkkRlto3weu5r/n+d+e7G6Nm0cX6M6YqranjEiVWjXLnydvACMgGTEBI6X\nWiuPJaItW/jznz8fNZn19+abGOd+660Rjm3+GnJGVnj4xZnftafASJ0TJds1QXh9BIxJ5AOjtDa5\niEtrc3Pt+Jqezn4amZM0cGCjrsCUh8XLcMrDuFqRxjh5ssZAFUVRbKILqKIoiku8pzEpiqIojaJ3\noIqiKC7RBVRRFMUluoAqiqK4RBdQRVEUl3ifyjltGj9h2ou5fvte4PzO3r1xeqTnHZ5LUNENp+DJ\n/MH6+otTXxxxAsd9Hv6f/+GDQ/jQrOsy0aZu0iR8U/k7x8bay1n09WUnsrNBuvDII47d4Vr0tXz1\nHj4wZ6wMGMB2QIAVX0tL+ZyGtTfGtizkSayL/TAnddxqUW9u1BeH9eX2YaWlFmu2Fy1yfPWZMBik\nb6iDY7d69FHQzopxL8Xv4fm+444PHNvj6XNR8oBj1o8DbcvgxY49qGAaaNWTuC1bYCa2V/zoxRcd\nu6fFvg2BgexrdZLRKE8mVb7wAmqjeCrnz75XN93E9sGD1kd60N//jpocMfTQQyD1HBL6i/+NCDtE\nZmT88rWqd6CKoigu8X4HKqdajRgB0vW9eUHesQP/cl/ox3edIUVY3ZOUFEkXg4gG8XOMliuyoGe9\n0aklSPzlbiO7rxBhCYNFkkfw3VytUeE19QAPa1tm9HeGshXjz+X5gdyBCOsp3CNvjqdOxabZgeIO\neFxbHByX1oO7H2VV4udfVRVCF4UfeRfk+f4akPoP5Otz4UR8Wdch3ChZVvMQEX3ySR97/gliVojm\nw+3bg9bvXv5eVZzC75WcoF46Zi5o/uI6tonc2JgdoOjddx3z8BsHQerqX84H+/fj6z791JJ3jOyy\ndvWDw0GTd5K5flildlL0iTcanEFVYGPoHaiiKIpLdAFVFEVxiS6giqIoLvFaypmYyE/gVsatRVEM\nRjODBSU33MD/7dw5fN1ZEdgLCbH2tLCign0NyUxFcaIIfMXFoSafZq9fj5psUZ6TY++JcXk5n3Q5\nYYwI2l6lbMPO6vKhZ3IZDkDL78ud7W11jpJP4U03K6/kH+H3BV5DYr4XjZsfDho8lY+MtHZOz/j4\nOE60GTsWNJ8lrzq2569vgHb6bo5HBr+H1/jMozxJLD3dXsaA7HJmEnqSMy3qe0SBVnopu9Dma3wL\n+bUKC7Pn6+HD7GtXOoyiDBrKJ+tEVPNHjkOasUTfbRv5wFZ2S3294+fJSy8F6fA7fK5iKo0hfrLl\nmVzTiNDxZs30KbyiKIpNdAFVFEVxidc0ppXtRbLuw6+CljX7O8dOq8XBaN2uELOXk5JAq1nK2ySc\nFt00QmqP88EQnOF9uI6bvZZlFoMm79qrqvA9W03lLRS2i20aW0o4eTfmXtwZtHjtNceWRQdEmHKB\nB5DXTjFYu+CasCROiK9//33Q2go7oBa3dtu2dXXscUYKy9DR/KmvNaJCTWH+07xNy+iC27QrVjR3\n7Jo4nF8efFak29TVgfbYY/b8k/j7sx3odx60s9dx6tTi2bhN93+Fj1MLNoJ21X1sezyxZIuulaIh\nekEBimPGNPq6khK2o1oZW395TcRa8lXkoLU3pEL5scr4EhEsAD37YQLgk0+yPWzYL/9YvQNVFEVx\niS6giqIoLtEFVFEUxSVe05jS0jiFIWt/NIr9+rFtNBqB1ACjkUDyDI7/2RooRYTDr15+GbVeczgd\nKLYBG43ITIW10zE+Crkh0dHWfIXzmolNOrIWcslk2ggsO1u5ncvVEhOMAV8y6BQRYcfXnj354vjn\nP1Fbs4ZtowbufOYCx5Z9XIiIZIZRbKzFZiKzRcDwkktAqhjBsfyQ1Vh2CoPkjBgotRCPCCymsfn4\ncN7X5s3XgSZj8mZzi86d2T51CrVIf/EMIDzc3nmV14BR61ral+PJYWU4PDKrqL9jp1VhUxSYpFhf\nb8XXwkL+TkWW4Xc8dCJ//8sTsAlL8QguiY3YblwbMh1q/HhNY1IURbGJLqCKoigu+dVbeLNRUebr\nfEc75gF8j7WTeEZ56oqeoL36Ks+F93iusbfViI93nBjpj7fwy/vlOnZ6WTJozz/P4YfVq3Fo9IYN\nbK9caXG7mZ7OvSufxxCHZ+Hf+OAPf8DXiTyr6m4YUpHZYhs3WvK1utrx8/BVV4E0/X7+zPMajFSU\nvn3Zvvxy1K7mufA0dOhFqe4JbYthkZo6DouUXok/stkn/HvcfPMPoB06xKGArl3tff6yH6gsdiPC\n7kePPIKhsbfe4uszfpdRbSfTzGz12CSijRvZVxm1IyIKmMjfpegTuaDlvc8uGEVsRE89xfbcuXZ8\nzcriD3IittzqP4DvE82Z8XnZHCYL6d4GtIr2Yu366CPdwiuKothEF1BFURSX6AKqKIriEq+lnJmZ\nbPt2DEXxnXccc4zxLumbOHbw6qtm92mZmnMNWUN0zH/RbCS+qMwxZ3YzOu7s6+DYG40xQyunyxK0\nrmSL+BIuffUcOw5aWvZ4xy56C1+3M47TgwKnTAEt4U8fWvPPQaRGdTEkWY5IozGOe+NjHJ89cABf\n13Iwp7fQ0KFki9BWNY6duwKLhJNr+byd/wDj9VHvL3LsY8fGgyYz8DZi5WSTuPtu0T1/H56g+u78\n3UluVYEv/I47SaXSApBm8BgyCrTg40907872WSN+LL/2I17DGGhQ3EuOXSBrIomob48e1vz7ibST\nPK+pxBgksfN/+DM+/Af8jKPiOO5ZcdJIDRzgT/8NvQNVFEVxiS6giqIoLvGaxqQoiqI0jt6BKoqi\nuEQXUEVRFJfoAqooiuISXUAVRVFc4jUPNCeH62BTKAe0ZmNSHNsYgkcPPND4e86YwbbN6YE+Pj86\nvr70UnPQnnySJ4M+/TTWZstuZka5Nz34INvR0RZr4UtL+cmdMbJwzfshjm3WSXfqxPaCIByjMvIE\nT+lcvtyOr7Vi0qXv9/iw8eDBX/aLiCjwzlv44OhRfE/RMs7f47F3Tm+/nR38y19QkwXQxogRys5m\ne6CRQCjbMsbEWPM1L4+/V0VFqM2cznX85xt8QWs5htvHHZ6KY0tkvmZ9vb1r9cIF9rW6Ob5tkJwj\nc+ON+EKR+7kv+yBIhw6xnZxsydfUVP78p09HTbYpFPniRISzcFrgcjhzHed+NzaVVe9AFUVRXOI1\njQlmQq/DO57JtXzH8+KLOODswAEe6/T66/ie14jiI5uztqlNG/5FZDcgIqL589mWc8mJYA47rVsH\nUmEZ13RERtrz9Z57+LyalTpnhozjA/MvaUMD20bzX5/O3AHL4xlhxdf14g40zugMldadG+h2McqU\npGuPP45NoSsrufIjONjeOV25ks9pYh1Wxcz5J3cNmtIad1JrruSd1LFj+J7ysqmuvkjNn7/9FrW4\nOLY7dgSpPDjYsTctwu+tnPdms3PYnj18XqOCsGouY124YxsbDVo+o5QPzK2U/M9r11rxtbSU/QzL\nTAHt/Hz+zI1TCjvi7dtRWztPDBwMDdU7UEVRFJvoAqooiuISXUAVRVFc4vUpfNcGMWTNGA5XJeZL\neQ7VgEYnuHXNBx9gt/Li3jI+gfGoJjFmjGMubovx2lYiPrS/EodKZZ1cygcy/kREkf/6Fx8cxCeJ\nTUHOPLv1VkMUHZBGTg0BSfyKEA79NwXmPzSZOOHo6VU4NKzXLrbNTuXnOOmBli7FLt/79rEdazSy\nbwqJXQodu7QVTh24ZL04MD7jZQ+z/dJLIFF689ni6Jkmeii4/37HnLYCu3xlTOVOVjF+u0HL780d\n6WXyABFR8Xz5+fQnW0S1Eh3JNm0DbfBg7oD0zDPfgNalS5hjT+vQAd9UtnmzRFhvcZ0ZzzJa/i93\nY6ooMlKERMB+1y7sOFd8lo8jjGZ0P6F3oIqiKC7RBVRRFMUlXrfwy4siHHvkQkwNiIsT2+8CY/s4\nZIhjFselozZpHl0Mctrztn3cJmNvKMIPAwca8+23iqT70aNRuwiNX4mInhG7QbmlJSKi5sMcc/4E\nzJwoGMKpK0eO4MsyM3HbagM5nG27kW2TkCBzfrAxtmfsVMcunoSD+qhAzK+PnUu2OOwX6dhtbsDz\ntu0uPm+tWmFIYevvREhnE44/qxBpZCHPWNzCv/22YyYkGI26X/7YMR9ZZrzu99xhu3g/dniOX8jX\nfJ69HTzlHWX/+iWhrxHreA3wnMME9T2yQCB7F2hr/sbX1TCyhJiqmLoOv+MLepSxvRo//9TuHCZZ\n2YBhSlon8vMiMCz4E3oHqiiK4hJdQBVFUVyiC6iiKIpLvMZAR+4VZYXduoEGQ8WMhhjUti3blcak\nNtk9IdqIRzaBFD/RXMGIZRb688+J3JWH2hscTDTLvNaL9JeR9mbKUa9j7Ouzm0aCFreUh16FXnst\naLH7OZ7cPg5jMpHzEsXRSgteEv3zn2xvwwwW2ry5s2MP6oHlmhUNix07ZD6mjdGAAVZ8M+l6kAeu\n0XvvgTZP9BIxM2iS24p8MKPRSIgYnGgVkcY033gkkDuP/2HXLtSGHRMpdyexfDoz02JOmCC+lUiP\n8jPi2Y891qg/q8/y9RllpEAOe1g0mxlmJz0wpyPH0xcsuQW0+nn8M/qWELKUS7ur33wTpNovOHbe\nSBaT3oEqiqK4RRdQRVEUl3jdwsvt98y2i0F67k5OxXjqKdyGpv3A5R1tly4FTVba2NzCZ1WxD2nr\ncDvTZTUfRyTFg1aclOXYO8+mgWY2dbLFmYf5/OQ/gQ0ht5SwP6GPPw5a+XufO7Y/NmMiCgoi23z9\nNdstK0tRFKlr+z7Hz7/Xe7ydqn7xRdCKBrJmMduGKv4w3LFDkmJAixAlXCtHtwKNuouOV2Y/UNk1\nKAbfs0ls2uSYuX33gnQhiUM4h/rhy/YlcQinV8L1oIVny5nm9u6LioP4U1o4EbWcsWP5wNj+jl4j\nQkxm2dSGDbbcc0gpSeWDs2dB863krkqRZRimaViyxLEDZVNVItovPv5QrURSFEWxiy6giqIoLtEF\nVFEUxSXeY6AiHWnSc1get/33/IjfrORMOsTaRydQix1d/Rtd/HWkEccOaRgWiMluQZ9+ehg0GjzY\nMScloHTwIAcaPR4jVasJfL6Xz0+b350HzV+EaPpf/zlocSKtSnbS/vfxAsdOJTuUlbHdtbYKRdG+\nu5f8j0QQ5w7csQOk/iflLB+MnTYFyKQzYmC5ZznuXYvZNpTqz538zfQ32a3eWskhEe3uzaldEyag\nVtyDO6DtHmzkju3neV5Db8NrYy1doItBxAw+dznG84yaFvxcxOzmHn9CpAsaJdExozmgmJ9vwUki\nmuzH1//cQ0aumog5m5McWoh5WQtGYUpVqiiPpRgsnf0JvQNVFEVxiS6giqIoLvE6VE5RFEVpHL0D\nVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK4xGseaE0NOU+Y/K/EPNBmn33m2D43YDszzztiSqfR5ur0\nvTx6IjiY8E2bwFEfH8fX8B/xwZjMUYt5/EZ84aOPOuae3lgLL4YgUrNm9nylQYPYwRb4ERTP4nyz\niLqPQKMuPGJg8YoAkNq3Zzs21o6vPXvy52+2VpMTQpcvM3IQR4jxDh9+CNLuv3L+YnS0vXO6W3z+\n0adPoyhGc0CPQiJIYq7r3BkkvwMH+CAy0pqv8ry2MkrzE0QucvL2RBTFZNgFY3Gmy/z5bJeW2juv\nPj5nHF8/pWDQuv34o2PXN+C9mGzj8Ew2utN+4UI+GD/eiq/p6XxOJz+Pb+kv2hsGxmH/jSqR3ty8\n+VegvfYaj6pJSfnlc6p3oIqiKC7xegcaMJ87qmS9hHd1aRM5S//ppzFL/6O7ebHuaXReCR4ruiHl\nYXPjptDlT3/ig4Z60O6+mztHea49B5psFG2Or27enGeNezyRZIvizC2OHbE3BzR5R5J/tCdod1/5\nA/szazZoWXUWh579h48//sCxd+3qA9pyUUU0bfpy0F5+mxs6nzqF79mh1qKDgqJX+PpcbxSizF8q\nhp95loD24AweKjj1k8ZT+iIaVX47H7Xl705MHX53kvuJrlc9poJW2MBebELpYvWpJiIeHthN3jkS\nEYnuRQkdi0F6+23+ve5/B89rhLjLrh5PVpCVaP6yjRgRUVwc/7y9WE0V3iXcsR96CIcjmjMmfwm9\nA1UURXGJLqCKoigu0QVUURTFJV5LOYcO5Sdba9vjE2oZMEyvwv4/M19t7dj7tn0D2tVXsx0WZu9p\nYY14CltmxLKmTGH7rbfwdS2ruFv1gvXYdjq1ijuA08yZ1nzNyWn86fbK0WKIl/GINm0Fx2HN1xX2\nFZ/BggVWfM3IYD+NeWuU10FcD0Ynb2rOccWU94aDJJpfWcsWICI6fJh9vemmH0Dz87vEsUXSBRER\ntWvH9tSpH4N2yy23OXZhoT1fS0vZ17CynaAtP8kd4Ec2fwO04t/xuYyoxDZGl93HHfO/+86er76+\n7Gv9RGNAYIMYyDcPp+P5NF/m2J5jXkY7hIdb8fX4cfYzfIaRvXDvvY6553q8HmXCSGnmWnydHKTZ\ntas+hVcURbGJLqCKoigu8d6NaeZMR8zrlg6SbAT71VfY3PXcOR549eST+JZPPcW2zS38BbGFP3EM\nf6fOnTmtwfOnP+MLRf6D7/y5IMldSWqqPV/r63m7IRPSiYhy/cbxgTHkbOgKTn+ZaAz48u/D7kV4\nPHZ8zcpy/Lzn7xjCkVljgwZg2ljpSV/HvvxykCh40cUJiwQE8DmtmYepYcW9uTFyldEXun+V2La9\n8AKKnTqxvXatNV/rxLWa/hReq6KHOTaJJqJxI7hApfAEFlJEJolEq+Jie9+rC3xem9XWgHb6O/bh\nkrb4I4t28O910034nh9wdhzFx9v5Xu3ezX4a/ZupZYEId/zzn6BdNpq39GZYrNe1FXwQEqJbeEVR\nFJvoAqooiuISXUAVRVFc4n2onOim8T93HwPJs4GPA0bEgtZyHZf2nT6Ng8PCPhSpGWGYUtAUdomY\nSwfjt2rd+io+2GYM6hKpQnL2FBHRN5iBZQ3fm7mhyVcdsCkEPcjnfM9994HUcD//jlGzBoEmCwKt\nlR2KDiXLlqEk+kj8bIhbWJyoKywqAm1BEJcH2xp+R0RUkyTebXslaPtbcAw0+cQ00I6KuGcFIatv\n4+YdOWSP3aK0ce5ZTJ3JODHUsc1Yngx8RwYFoZadbc0/yccis6vXn3HqYrDsYDN2LGgyfG/GnWsv\nQjlv9F7x/KIBT1xNb07xCpiA69EVV/AadPvt+J7Z2SGOnZJCv4jegSqKorhEF1BFURSXeN3C5xPf\n+r7yCmrHu3DvxJoB8ShO4R6QDbcZs79vu40uBkePst2xI2rQVWVWCWill17q2DElWaAl7ufUnWE2\nB4OLPpNjjXnaNIs73vgaUl6V6GU4aRJosX36kG3Ke/N2MvQKnF8vt4z53TDFaUARd+ZpthQ3v6lt\nZXXVULLFpldfdezBc+aAlky5fGCkhp0fkuHY/Ydjr9hlOELcGmVl4uByrJqS7kX6H8cXiry6mhaB\nIH33HdvYtbNp9PqCQww+W5eBNmpUG8fO7YsduXqIyE1AQzVo27ez7yON5cEtPlMeEX5dBVpunEj5\nWrUKtBbi+3fhRCloGHvAzmg/oXegiqIoLtEFVFEUxSW6gCqKorjEeylnTAyLcugKEZ2+qqtjB3+B\ns3sKevVy7NAv8P1Ds0UaSUaGvTlDI0c6PyjqBMZj9nzFpaU0axa+7vvv2TbScQr7cWwvMtLiTKSK\nCsfXaQtDQMqYLmKNsnUREZUv4849oSewi0/8Qu7ik5dnyde5c/nDq8TUIFqxwjGnjcaZWGLMkPxv\nREQUWimulZ497Z3TjRu5a9BATKuTMcfwbKOrmOiyXvkDxiPfW82//rBhFj//1FR+YzP9aPVqts2B\nSaKrUN4b34FUJ+K1iYn2fI2J4RJJ+ZyBiKh8NKekQWcm89iIO4OzMTFWfA0JYT/7Gs2f1t6xyLHz\nO2ELfLkcmM9O5K+wfLnORFIURbGKLqCKoigu8b6FVxRFURpF70AVRVFcoguooiiKS3QBVRRFcYn3\nbky33MIB0ieeQE2mtZgTx2TuSrBRWPbss2ynpVlLt8jN5TSG5AYsH6x67DHHDjLK/KgFn4LDAzHF\n5V//YrtXL3upIbIj+RlD630Nn/KKWbkozpjB9lVYrkYPPcS2pfOamMjn9OBB1I6J5lwX4oxS3q++\nYvuSS1DbLmrnfH0vyud/8iRq/fqxPX06au+/Lz+BvaB51oh0m6FDrfl6443sq/xIibAr+jvvoFa6\nXZQalmBJMn35Jdvjx1vzNS28taayAAAdIElEQVSNfc162XhbOaGvBS4lI2sXO3aXLvgymWYUHW3n\nezVtGvuZMXgPaD59bnbs2bNxRMK0GVwwXbwfJytE+IvzHRamaUyKoig20QVUURTFJV7TmFJS+LY4\nJwlvi6ExsdH5tecsrgQR4+OJiOjNN3milMfTx9pWY+ZM9jX9hctQvPZatuVWh4gS7+eKDrOhsmzG\n4utrbwsvZ1iHdMa3zX2FPw+jEInCNi1w7Ioh2I445F3RqHr4cDu+hoayM6Jih4godAJ/xntx50vn\n2/GPz30ar6+M7qKBsMVtsRwqFp2JzaYDCrY4trllTjvJYZvSCdiNS167zZrZ+/z37GFfowbicDiI\nN5hdrCXdu8Ph+aPljt2ypT1fZbjhyP3YjPr8dO5k1bIFbn/nvMxb488+w/fMOSk+ny1brPgKw+8u\nx+//4pf4O/7pp/g62WXObPQsBzdqJZKiKIpldAFVFEVxiS6giqIoLvFeyrlzpyPmN/QHSYZAzdhB\nUhLbffoUgrZ3b6Rj20wNonHj+Bcxu7PLrjajRoFUvJ3TWLZuxZc99RTbNmNg0OXof/8XtR072Dbi\njhQX55inr8MO2T+0ZffaezxWfJXpVn5+fqClPspxpW7d8HUJYvbYEWNm3qlTbMfH2zunMo3J7Koj\nr1VzpmBhgxjBZ6bjrV/PtsV4LQUEiAmIHUBKG8Dd/LOmGklu8jMwfN3jx9/PqCh75zUjg8+r2XDp\nuedqHLtTJ4zl/uMf7LvnGHY5q/APd+yQEEu+5uQ4fpaItEUiom4ixW9xb+zUNq7bbvarYzRoMlOz\nsW5segeqKIriEl1AFUVRXOJ9Cy9ui7NqcTBy2npxuytLdoiIfv97x7zs9QUgyYyi48ftbTVqanir\n4Xslvm3pIf4du36+GbSMT7hJ7bQyY/iz3PrPnXtxUq4GY4gD8myMwXHk78+2ORdcvi4314qvK1ey\nn+aPkztIU0uZwCksUT0wvUXuQnfutPf5p6ayrwtapaMotsmn700GKfgy3oaaM+xpgJhvX19/UZo/\nr6zF5s+yp/e4AThULnEGb31XtsWquX3DOAXLZmjMx+ec46vnwDEUpbNLl4I0ssVKxzarv2TIz1aj\n8nIRbgr94gsU33+fbbNJ9WaxHkyYgJqcex8QoFt4RVEUm+gCqiiK4hJdQBVFUVziPQZaWMgiDJkn\noocfdszyfV+B1PI6DhcEHcO4yYWOHMexmhqUnNxoDeSaH7hb0Llzxst6cNoIxDyIMAZpKa5IRESx\nsRwDS9gIUuJRjt/NbDETtPTms/ngd7/D92zblm1bw9pEGhvEX43jPWe7ghQVJGJ3Y8aAVrqUh+GF\nhVn8/GtqHF9LqzClpndvtqdOxZfJzk3mx5/WMJcPJk+25+vy5Y6v96waCdLWv1Q49pYiHDg4qIT9\nqZ84GTTZLctmDHTLFo4ty9JGIqLjJSK+PWQIinJam5H/VNGWUxmtpTHl5zt+nr/7bpCeHMOXcevW\n+DIZ5jYHIMp5f42VcusdqKIoikt0AVUURXGJ9y382rWOWDZsGEgdXnrJsRf7YUqFnB9tdmOSpKXZ\n22oMHcpbDXPU9t//zrYRUQBfV84/07gYHW3N1+Lixqtm5M7H7A5VvPqwY+cU4LZZRlimTbNzXg8f\nZj+79sG9zz29v3HsraciQJOlaKVxeG2ENYjtfXj4RQmL/Gw7KXKutgzEtDq5Lf7Z4HPZ+Tc52Zqv\n1dV8XgM3YWXMxla8pY/tUQHa8Vre0ocHVYO2fFOgY48caTE0smgRn9cDB0AqF1V0Jz9ofB2RlYlE\nRMe3c+coCg2146tYq6oHDAVJRrfqt+8GDcJ0q1eD5HNDc8f2eK7TLbyiKIpNdAFVFEVxiS6giqIo\nLvE+VO7llx2zw6FDqImchqIOGOfK2cWpShDzIiz7S8OXNQkZOwz0Ow/asD+I2rHbsHXU8oIwx84v\nagNaTNEyPojGTi1NoevNHE6ZOxtjR7KazByORvdy2WmKORxvoMjVodAmevhvZAneuq+/Ae13Mh1o\nMHa/IVFKd8MNRt4YXe1Y3sLvv5W8JE4Hiw8y4lzPPeeYg4zhZ9CCa8MG1MxuWJYInMUX/ukp2AU/\n9pwYZNbuBtAK/sInLCguELSRk8S1O9IcVeie8j+Od+zQrzGtLlScrxBjuMSfROqQ2a2LTpwQb2Ln\nWpVrVaDxGf/ww+18YJZyjhjhmGEDwkB67bX//mP1DlRRFMUluoAqiqK4xHsak6IoitIoegeqKIri\nEl1AFUVRXKILqKIoiku8pjFVVHDJmdmse906tkePRq1PHy7z9PN7ErTvWl3DB199dXFK+YySvNPv\ncypVv374su+/Z/vSS1E7MjuPD+Lj7fl64QJ3jqnDv2HVl4vhcHfdBVpat3zHll1kiIgG+XGXI+rf\n346vKSl8Ts3u+PKCMC6OMy+84Ngtjbe8gt51bI+nn7VzOmcOX6v33IOaLIk1fw3ZKMhMG5PdmVq2\ntFceuXMn+9p//I0o3nIL2yUlIFV++qljt33lFXydLDuNjLTma2Eh+2qmI/nu3+PYUZOiQJPfsxde\n+MF4V+7i5PFcbsfXa65x/CzcjN3hZAd8eZqIcKkwy6rl79vY9Ay9A1UURXGJ1zvQkHa86IZ07w7a\n/vu5AeGdd5qv5OTpujqcT1L/Bf918CWLiGZ+a7ZiP8hbvmXbrAfYtYttsx8kvWnM5LXFwIFsy04n\nRASeG7dLHcRfy0HLsGECjOCtxzlErhFzluqDsDelr0hWXlyFvpx8OsOxM256A7Q/f9bPjm8GU/7w\nkWMf98ORz/L6NPPofd9k/8JEUjURUQvZheIrvKtpCu3vFDczRseYOSVcLDGlCyau5wzh3rXrl+F7\nTglme1gkWSNyoiggMYZfnX/7bcce8Cxm88gRSZs3XwJa7954bIMLp/jziaytAW3jLv5WmXegstnR\nyqVYgDNmjLl/+jl6B6ooiuISXUAVRVFcoguooiiKS7w3ExHNFEqNmcnpoxc5dudl40FLSPiDY/v4\nXAeaCJuQ0aO5SfhcyfZtt6Emn7RVVqImn4L6HP0/0Dy/f4cPnnmmqS4yPXo4Zst581CTT7Tr6kBK\nndWmUe1nTYQtMHk+xz3njikFbctRbrxgPr3OaMFznXZfa8x1ul2+DzZvaAo+vbip844dqPVfn8oH\nnxiPkkVziRZGM5HC9jyz3WJYkcLlkCbjafq3PTgGWj4G59tPEiFIMytGPry3yfLR3Jgl9mF8EH1Y\n2DKsT4TZDealasahbdCsTFxXw4eDFnvttWxPxTj3zCL+jCkzE7TKOrx2f/Hn/gYfFUVRFIEuoIqi\nKC7x3kykvt4R642kI99McXsrtyRElF4Q49jPP78XtMpK/r/BwRZnt0RE8C+ybBlqckjStm2oiezZ\nrME7QZK74tBQe77W+fg4vpYfw/NfVsZ2zDZsmFo9nXtHBnbAVC1asoTt4cPt+Jqby84Z82Li/Tmp\nP28ebu8hb8jYv00bxekmGRn2zmlkJCd8F+7CNJbDJ/lcmdvJyCOcxpS4Gbd+q1ZxD1SPp7U1X2tq\n2NeAkj2g+fT5h2MfOPAwaHvFVykuDt8zpPbizJqSs8bWzsLevrKCJm8i9mCV46OPt++Pr5P9QMvL\n7fjaunWjRR+HRWPbyh34fevf74JjZ2Ti/eS0fuKziYrSRHpFURSb6AKqKIriEl1AFUVRXOI9Bhof\nz+L8+ajJ2SIy4EEEw3TiJ2AJYF5QCh/k5NiLgeblsa9GOkL4WVHmNwZn0MiZ4T8bYC3rPDMy7Pl6\n5gz7agyxrxjNqSvyxxMRNecx1TRsRwpoNa+/7tgBHo8dX5cvZz+7dEHtHxyrM3Noqm+6ybF/qMTr\na/NmtpOTLcbAd+/mBi09cH7VrbeyfeT6QaCVLtzi2CK7jIigkpVSUy36Wl3NJ8Uo5Vxcy3Phx9UZ\n16qMHZpdceRzCFuz1omIxo1zfL2wcDFIzfaKGOF4TGWUuWQzF+L8pvSieD7Iy7Pj67RpfE79/FCT\nOVVGx6CozZyeuGc8lh0v/pZj4uPGaTMRRVEUq+gCqiiK4hLvNQFyrq2ZGiTGGqc04K19ndjR52Ub\nI1azzZZHdjjdh7cFc/rGg5YpOrDkVGFq0OhVfGfezNymGtVXtogfwxVFeb1xuxGyboFjJxojWMe+\nz9u7A61yQHuR+HXWplyJn5+cjR2OctdxQ9Iz//oXaG1EF6OdRvern41qtoVIT2tpdA06skZs4Tqu\nAy3sXY4pVE88AFpee6wEssXYZ3hLu2jRSNDGJfHx7tHLQYs+y/6U98YOWKHvi+2nUYnTJMS5bNbn\ndpCifD507D1GJdz5q65y7Ko/GVfkI4/Y8+8nRDpickEySLkJnHK3sS4GtPvkCviXv4BW1uO/n0e9\nA1UURXGJLqCKoigu0QVUURTFJd5joGPGsG3ElSL7cXncwYM/Gi/kjvTLlrUBpZlsx5RuL8YU3Jq7\nsGfVGrHLF3mWzIUPPgSp2cln+UDmCRFR2jxOwcoyMkqagkyXiVgxGbTi7hwDy+2HMTDZZcpMuVmx\nwkjdsEFBgWMmJMSiNotbXG3fhalqiQOrHbv/VkwNyS6xGJ+TiDSebSKNioho4Ndf84FsQU4E6UDV\nb74JUvz3Mj3P3vyERdzIjF58EbUpIpYXvdCYOiDy2op6YKegoPv5vP73Puq/ATnwzFgD9k4UB+0/\nAU32dv/Zo4SS78k6IsXLrNamwTwUKbYEz1usHHz0fT/Q/vUrhhDoHaiiKIpLdAFVFEVxifdKJEVR\nFKVR9A5UURTFJbqAKoqiuEQXUEVRFJfoAqooiuISr3mgiYlcVm12z5LsxakdlLvqMj5Yswa0rBOc\nT5iWZrFFmBg/QiUlIPncyrl1DzyAozDWfspTOUO+PQKazCeLiLg44yfMCYVypIdRCk8JCWw///xr\noHl+fJQPmjWz4mu1GD0SaIy6rO7OYxpkR0AinLyanf0DaO+8c4ljx8TYO6e7d/M5XbECNXntfvkl\nareL8u5Vq1B76SW2W7a0eK2mpjq+5g9eAJJsxxBatBFft3Qp2yNwuuS0Is4ZtTkqpaKCz6tMCyci\n2rhaZHsa/pDMr5QXNRFFneD85j177Pg6eTL7abRmoE6d2DamD8HE3ssvR23YXZzPTIGB2s5OURTF\nJl7vQNuLxkkpJ7BiZkH7ub/4/4iI6BOuSrjQMRyktAI5fAob3zaJWbPYNpqmek7z3dmFIGMY29kP\nHLOiN/pKJ0Rj5gjs8NQUFi5kWzbtJcK7J7M5lPxDPnP6KNDCOvLfwlJjxptbAt97jw+MWze/O/kP\n8t4/YyrckqfL2X7CmOJ2331sH8E7/qYg7x7Nyhd5Hn334xC3C336OHb0W2+BFj+CP/O8vKb7+BPl\nk/iuM6b9BdAWZ/Pn2KoVVn+tJj4eWIXvKXst26RdO64qfOABvEXL28Y1T/EHD+ILxfapIhMr6va0\nlb+znXs4OfNQFNAREdF113FJkZ/fNaDdfz/b5k5q2F3//efqHaiiKIpLdAFVFEVxiS6giqIoLvEa\nA52bdJgPpmOQpVK8MqMOu7xTXZJjFhWhdPQkxz0Tf52Pv4oFQdxlJXXgcdAiB3JHqHnz8HX9q7Y7\ndn0Jvk7GVbBveNOQTW2MB5TwM3Pn14AWWifSHfb7g9ahQ5Ql75idDSJGjaEj6kv81FU0EPo3Z886\n5smbbwapvXy0bREZy4roUg9axjzupDStSyVozR58kA+MmGzeI2ICHt3bZB9/Qnbl79gR72HqJ01z\n7Jj1GaDJuY7m3DT5NPlisfZ9vAgmd+DYYvwrr4CW78fx2pgyjDuTv3hCH2A8k3BJeQI/o0lfOhe0\nu+5iv2trQaKVM/g779O5HYoysNwTJzL8hN6BKoqiuEQXUEVRFJd47cY0bRonp2ZcPhvFH0UT5b59\nQarowknWdUYWi5hFRxs32kv4LSxkXyM7VIN2vIqHeMn+sEREu7unOnZON0xqhtStuXPtJVIvWsSz\nto2cm2Zz5vDBgAGg1XeLdGzfvrilWJz0kWM3NsP6N7NxI18chi9VIus4ZzZeQ3K+WPg2PKcQQykv\nt3ZOjx/nz9/o+0uBZYWOLc8hEZHvHSKT/oorQLvxSx5GduSIvWvVx+ec4+sbb2Bq0J13sh08CmfY\nyxnya97Ee59hvxPhtq5drflaXc3nNbDyMGgLtnd1bDMFaHmQCOvdcAOKMj1u7Vo7vpaXO35W+4eC\nJK8HjwenGn79NedgDh6MbylrAXJydC68oiiKVXQBVRRFcYkuoIqiKC7xGgNt04bjH2dexuFg6cd4\niJVZcijjno88gkFQz/dizfb1tRaryctjX2VVJxHRwYNcjtalC8acrhGZGWYqiEw3adbMXgzs9Gn2\nNXjgLaBVi7yvwGuvBe2CKKds9tBDoI0kLpdbvtyOrydFM5GAb/E6CdjOtY15hGWulSJTaNx4w5UD\nB9iOjLR2TsPD+ZyazW0Cp49z7D0jFoMWNZVTtQrn7wZt4EC2z5yx2Exk5Eg+meZ0QBGkrzG6WwTI\nc9fQAFppEMfEw8Ls+Roby+d1o58x5O6OO9g+dQo1kduW05AMkpzrZ6uhTEYG+ymb7hBhU57AVlg6\nmz6D1yNzGJ1MG4uK0hiooiiKVXQBVRRFcYnXLfy+fXxbfO4carISIqr7edBmzuMuLWZqQOQYkX7z\n0UfWthrJyeyr0Q4U+hgml2DV1M7BPPDd7GiTsrq/+I877W3h9uzhk+6PFUW0fr1jrumcDtLTT7Nt\nNJyiI2/ZT2ORPTbFSHIiIkqfxJ958gScRC5bQ/ZvgdtiKL0aOdLeOU1P53DT88+D1OaJJxy7ZkYW\naAH+vKUrb94c3/ML/phCQy1u4cPD+Y0nTUJNHJ83GlvKb1mQ+J2ICC/6/PyLkh5oIruKmeR+yH12\nacMG0HZXctez6GhL57W0lP00L1a5h+/eHbXp0x3z/NKVILVcncsHycm6hVcURbGJLqCKoigu0QVU\nURTFJV67Me3bx3bqBHz8X1zCa29MHMbAZNwz/FYjdPDAA7/RxV+HzAYx0xGSHmEf8t7CkE58b44s\nbduGv8fZd991bGM8UZM43507J7WcbnSySkpyzKeM+LFMq8lJwg434XH8nsexqZRroht2OnbQkP4o\n3nqrYy49hF2MmpUUO3Z+JU4d8O/Ix1b7R4mTU9R3Jkgx6zmNKeDoR6DJOUMhxlumiarTBUZFapMQ\nQ5pyW6SAlHzDEsf+NBu7vPe6UXTnMtsxvf66NfckwzlbkQ4dQi33Tk5tHLphOIp//jPbU6eCVNCD\nU+CibQ2lEAHZ3G4Y5x4j0prM2W75H2917E8/Ra3sck6/GtbIj9U7UEVRFJfoAqooiuISr2lMiqIo\nSuPoHaiiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSVe80DT07kOdvt21Kqq2DZKj2nY99xarWIAzrMM\nqSvlg7Awe/XF+fn8NEzk9hER5QxY69iPPXYMNM8KnkWQfzXmssnpE/n59mqhJ0/m82q20BNTG342\nfuCVV3j8gDkJU04GKS215Gt1NY9JGRAIkizhNq8NOU204corQWshR8E0a2bv809L48/fPKkiR/B8\n2zCQZFc4ORGViOjtt9neuvUijZ8JKget+CyPozD7SMhc57xJmAd8z/OcVWvTV6qocHwtrMRM2Ug/\n0X/BaCRxuCNP5ZRrBRFRNIn+CNHRdny9cMHxM3k03hfmLuUc9tIy1MI+FG06jcmi9NxzbN97r9bC\nK4qi2MRrGlNoKP+lLF+HFRxrPueuSsNuKwWNZsxwzOUDloMkmy2npFj8S5mSwr+I0Sbm9Dc8Fzx4\nOzaGLr2d7zrbtsW3hCqhrCx7vorOMRV+eEfUrh0PMhs1KgY0OazN6KdLvXqxHRxs57weFg2VuxrN\nnWE6n1HeMXIpl5e0MPY48i7K2vA7IujGRMagPrgejG7Lk7vz+Rbj7ImIKGe0uOZ79rTn65kz7KvZ\n/Vu2shLNtYmIZlZy1VLnzviyYZ14cJ7NRtW5ubwGvPkmamPHsi2r5IiIvvmG7U8+QS2mhxj6GBho\nx9dBgxw/D8/bApKsMEpIOAPaE0+0cezMTHxL3wKuxKP+/fUOVFEUxSa6gCqKorhEF1BFURSXeH0K\nHxfHdsTonqAtWyYOVq3CF4qYmBmrkY20U7ARTdMQj8zTZ/mCNHOEaE8kB3MRUeX1HAMNmzcOtNJJ\nPIAMI5VNpLbWMZcZT35vv53jnmaz+kHd+IltaUMoaPLhti2gA5URjztexU/lw7ONjlLEMdDcuI2g\nVN13Hx+Ms1dGXDGGOzC1DUJtVz/W+g/ADvlz16Xywc14sSZnj3fsXLz8m0R5HcfdQrt1A23Ou/yD\npjyFA+fSlyzig063gxYaF8nvjw/2m0Ry8GbH3nvtvaDJYZK+lfhDg0Vqxt2PPAya51HRnSknx4KX\nBA8wuq7GSQ5dRVw5gdqBJmP0vi2MgXO7uAPZTKMZ2U/oHaiiKIpLdAFVFEVxidc0JjkXvP4z/H9h\nm0SHWXOvKTKA0zLbgCS3/tXVFtNY5FCpI9jgVzZ3PfHxxyAFCLvNZ5/h6+QAa4tJ31u2cGrIvfdi\nWoWPD58vM62qol8iHwzHpP/EN3h7tXKlpfM6e7bjZ+41z4AkZ3P98AO+TGSx0bZt34C2enVrxx42\n7OJ8/ou3YcBl3F5RzGGmOLXn4gRwnIjGNuft5ZIl9nytrubPX6amEWFRQrP9RvNnce3mXjYepEce\n4a22x/PLSd+uyMri75UIPRERXgQvvABS/p8/dGxzxltGlYjd5eRY8XXBAj6nqR0wbER9+zpm1ODG\nC0JMZKZeY2uV3oEqiqK4RBdQRVEUl+gCqiiK4hKvaUzt5UD6VbNRlBOmzJjjSW6C0aULphQEB/82\nB38tyws47tWtG8bAIh/nGr2OnTrhC2UQBHKzCIM3uzH9pSmUlbH9/fcYIxYz5SAGQ0RET4rzfMkl\nIJmldDZIPMRxz5V3YTzO51Yexvfjj/0afY/PPmvdqGYVkUo37rbbUEvKZnvMGJAyunCp8bajmFKz\nO1s0y6CuTXbxJwL9+NytW4eDDOXnuG4d5k4FiO9jndHA5VojxcgWF5580rGbmbly69Y5Zvw1H4K0\n8G4OGWIyFhFt2GDLPYfUoyIFsagOtN2tuLHJnolrQavuN9SxA6twGuO2IeH/9efqHaiiKIpLdAFV\nFEVxidct/OmjnIKyeTNqyafELfMf/wha6QjetqecLQQt5ZBIfbC4fgeJ6pPIbvUoLv2AbTnsnojy\np/PWPIbyQdvYgytYYskesiOV2a1IbuHHY6YKHTkkqqjqcJsysk50uCFM1XBLQQHbM7vgdtJHJHWY\n2S0btrG4rQTT32Tmi1WuvtoxC4Owi1Xkfv6Mz2djdzB/0Tp298Q80Ej0iqWMjKb7+B8u+PG2fX8B\navkNouQlszeKYr66meJWXmT/8yciavbOO3wgtuxEBPGGs9koyan1gXfdhaJMeYq1883aMpirBs3+\ntC/fwelfO3YMBa3/EhGavB2ru4boFl5RFOXioQuooiiKS3QBVRRFcYnXGOjVbTmWlfzSSyiKeEhK\nHJYjLhTVcWkLI0GbKGKVodhQqEnAjCBzmIwo0avpFgXSfSKt6tlnMXaWkGDJOQMZvjTGN9HNN7Mt\nK0mJiCoq+e9dyK03gFa+7yvHDrUUApO+xfjjDJ6JE/k8BpSgJqfjmKVyx1eIdKhQiy2ORPB4/zKU\nOiZwd6iAGZNBG5A0lw86YC7Ymh/iHXtYkx1kXnyR7SmPVqNYUsK22a1ezB2KjzOCybfeyfbBg030\nUCC/WMZwo537uRB658LDoFF3kWZnBmwrK2155zCogcs3B/XG5wMvE3+pjNFN1H/UKD6Q7eeIKOEE\nX6vVxsf0E3oHqiiK4hJdQBVFUVzitRuToiiK0jh6B6ooiuISXUAVRVFcoguooiiKS3QBVRRFcYku\noIqiKC7RBVRRFMUl/w/z9uwRzgRk+wAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  15\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9YluX5/0+QHBpjZhTKiIyMERkp\n/syMHHPMXyNjpg6N/DBHioaOj6mRI8eUoR9HjhkaEWOkpmaIfEyNiDFGpmbqmBkZmRGRGpojpmQG\n3z++6z7P91U8q5vL43t8j+N8/XXex5vn4eS67+fivs/n/OHV0dFBiqIoyrfH+/+1A4qiKP+/ohuo\noiiKS3QDVRRFcYluoIqiKC7RDVRRFMUlPp7E6mpyvqKPDj6B4urVbLe2otanD9v9+4PUY36yY1+8\nSF7f1NH/SE4OpxMcPYrarFmOWVg3EqS6OrYnTsSXSdeDguz5evo0r+srr6CWsDPBsed8bxNo113H\ndkAAvi61PpUPcnPt+JqY6PhZOLoYpKR9yV/5cYfwcMdsX5AGkvekOD4oK7N3/o8d4/M/YgRI9Z9+\n6tiVT2HWyb33sh24IhW0QzNzHTsqyuK1WlbmOFHpFwdSzFH+nYdGoT9RI7rzQbdu+J4rVrCdlmbN\n17g4vlbLFlajuHw528uWgdRy112O7f/MM6C1z0xybG9vS+uanu74meWXhVIzX4NplANaTnMiH7z+\nOmjFj77l2ImJX++n3oEqiqK4xMtTHuiiRfzfZ8EC1Kqq2O7VC7Xxv73TsZteeA20oLXpfJCVZe0/\nZXQ0+1o9cRVoaacWObZxQ0xz59aLo09A63j4WT6wdVdHRLm57Gvq2OMoLlzI9tSpqD31FNvyLp+I\nMgdsdeyMDEv/1dvb+eJYswak8//9347dS/pFRLRzp2NO8S0DaeuyY3wQEWHvru7JJx1fV7bOBenu\nu9m++WZ82VVXsd37tRc7f/8JE67MXd36JtDO+QaxPz8aBNrBI0cce8if/wzaiVF8JxUaau9uOT+f\nfR09GrWw1kOOvbctCrSRffiJtbgmFLTEPuV8EBtrx1dx/i/NmwdS3d/5Mi4owJfl1o/ng+BgFMeO\nZTs+Xu9AFUVRbKIbqKIoikt0A1UURXGJxxhobS3HPyKpFrTCg5GOnVSK3yQ2rOW4lxlzyFzYwgf+\n/tZiNXv3sq8HD6KWuvx6PjDE2vMhjj17Nr5OhiPj4+3FlS5cYF//939Rm/rDM+zbqetBi1wq1nn9\nenzhyZNsjxxpxddz59hPma1gMvIyfjvb0C/asUPWp4OW2srfkObm2lvThgb2VYQKiYho9L38a/zH\njUNx+nTHLPxsOkhJ/Sr5ICbmilyrAwei1nP0MMfetOAAaAk1KY6d2ScPtPPn2c7JsZgxkJDg+Jo/\nGrNC2trYTh2yF7R28S2892efgRY3mbMJysos+ZqfzxvZ97+PmogXZ4RvBSnzZf6+BoLlRPiFSXKy\nxkAVRVFsohuooiiKSzwm0kde5jQFqq8HLamx1LET/DBVZVOfS46d2bYUtCmzOMVoK95Nd4m77vrc\nsTt+tRi0Cx9/7Ng9jWz5yM/5dXtfeAHfdMMGtuMxObcr9PTh9bnvvu4ozuAUjMhp00A6/TSvc+AD\nsaAlBXNqSCHWCrjm5ZfZnno3ptuQD186eduiQUppE2kq+/aBllvRLo7s/f+WqXSXL6PmL56TM4bs\nAm3RDH4yS/r128a79rPkHbJnD9sjR7SDVpnNj+0J4caa7+M1b25GyQwFWEN8BpJLS1AT8bnIAlzX\nJRv5ibo+G18mnu6tkdPKhR1pt2LRT9Ma3mhmGDU/tPks22YlzahR//H36h2ooiiKS3QDVRRFcYlu\noIqiKC7xGAOVKT+pR7F5hAwXbJqBMYddFVy6NX7AANDCfb+ti9+MU6dETd7DjaDVvcHxGKMCkoIC\nOB55rhXjkTUjOO6JiVpdY9FS/j2r5jWANoU4XpNtxLVOvcv2VZvLQQvGSksrTG1+kg9Wv4uiiA8F\nB8ejtlTEvWV+DRHlruX/2anYK6NL+FdxfHjnTjxb8SK2PeFjkMhvzF8dO7MKY7mP/+Jfjt2RRNbI\nHCK+M7g8FrQYqnHs1OwY0HLFZ2n6Hfien4wQWTZJ9sb0XLrM56vKD89zbOMyx64dgfvDrl75jm30\ndpG9ZqyRtlOs1URM8ROVxV/xhSZPZruoCDWZD9fJxap3oIqiKC7RDVRRFMUlnh/h+/VzzLFGoxLZ\nmUU+shMRjR/LqRn5BYmgZQbkiiN7z3Affsj2ymDMj/LjjCvKnHcGtDnzudpn3QNYTRE3QD7v49/Y\nFVaNEo9wy0pB25otHn9lKRQRhfqK+Mdtt4EWHPyYNf++JPVt7mpkuAJPO35+xgtFVVT7x/jM7OP5\ninOPqMwq3InpKGU7+dwFBuLLytv4sX3SJNQef1xeKzd12cUvuX4WhxgqKlBr9eVH0dwxmB5IkznF\n7YaT+Mg83EzBs0T35zc69r53sVIrfCdXJ5oZPw3hou+m2crtuefYno7v6ZYpAVw1tvUd7Krl4xPm\n2JEfoFYczmE6vyH4nvEVKfSf0DtQRVEUl+gGqiiK4hLdQBVFUVzisRvT8ePcNcao5JThUYqYjekf\nKydwd56f/hRfJ0enbN1qr2uMvz/7KhsTERH1HszxK6+Txrwk4pSijqf+hNL8+WxfvGivw82KFZ0v\nuqzJM+Jap39X6NiBj2JeTRKxVlhoaV3PnePO+ct6gySbfvsaqWkhm8VEAHMEgKy5tNjhCOZ3ZY9H\nUXbgqqkBaVc9x8fGH8zE1w0ezLbFjvSZmexrxmyMyVfXcUxedjsiIhr4E3Yh4Au8hLyPiLLrqCh7\n12rfvvyL7rwTpGPLubQz4jJ2a4M1N4LkuaemOHZqqp1rNSeH19TInITjpVhZToVLxESIBx9E8dFH\n2Y6L025MiqIoNtENVFEUxSUeH+EVRVGUztE7UEVRFJfoBqooiuIS3UAVRVFcohuooiiKSzxXJsfE\nON8wxVAlSH/5CyeprViBiYAyfy1zwTl8z1On2I6IsJev1t7u+NrQiP8XQo5wTXHTEGx1JvNbo/+2\nArS9P+T68pEjLU46FHmgZbdjDXtcPdcQFwekgZboK2r8jb58e304F9earyIP1DsA80Db27gNIGUb\nMxtEIu7+hwpBGn6LuB5697a2pqGhnAd4ItuYFSMK99t34ugJea1efTUmXg4dytf1gQP2zn+bl5fj\nq685i0NMDT00GcfIyB99/XV82fCXRA5rRoY1X6OieF1l7jcR0VjRiU9+rImIgkXvDPN1MUdFP4zU\nVDu+5ubyXlWKPTYq/cRnfvVqfN3atWzPmoWa3Bzi4zUPVFEUxSae05hSUlg0/1PKfyvbtqEm0v1z\ntoWAlFYvOpzk5dm7q1u0iH0NCACpcTEPmQseOhRfJ/6OSxvwzqV7lWhaHBtrz9cePdjXd7FR8Tnf\nIMeuqsKXifl3dMMNqI1ste/rrbfy3ceOHajJ6iPZXIeIaPGH4g6gFLtNXfrgA8fu3tFhbU29vF51\nfN23D6eWDd8hZtPLSigirJhZj41423vxXbe3t7070Ph4XtcSMppRi2s3sS0fJOm6rOgjIuo9S7xP\nScmV+VwZTz3HJ/ITkmxaTIQDCXd/ho2hL/zlL47d09I1sGULr+nUNxaB1rKUK+P8xwwDLWcaD/FL\n88P1zjzFHa8yMr7+/OsdqKIoikt0A1UURXGJbqCKoigu8fwtvPxW6q23UCsocMzCsRg7TJrB3wgv\nO1IN2ob+eY59iOxRPIDjHGbnqMz79jm27CBDRNTvNg5t/HEwSPTjH8c6dpQFH78k7/cXHbvPPtRk\n45r4gTisD+LORsup01ezr0bTddd88UXnmuyk/q9/GWKjGOpnxEBb+/FK4vf6XWPFCo57Du9R2+nP\nXVqA8bHuM7gzUFMbeuTXyra/fxcdFJT8jLu8l1+H12NsHX9DXfwcdj+SYxfmfI7DCNeZsV1LxNfz\n56rk5UGghYl4ra8vTp544AFxUITbTM+zZ+05+G+mDhJdlbywtbz/ZP5sNJUeAG20yB6o9cEu/37G\ntICvQ+9AFUVRXKIbqKIoiks8pzE1NXUqpmZzuo05VCzr+zxPvKTvXNDiW4v5IDHRWrpFQwOnMYTc\naLztq6865rFeI0GSvocsnAJa7igOTdhq/EpERGVljq8tozGxX46iNrJqaFO9SMGQ86yJKLaCH03L\ny+34WljIazpzJmr7ROjhb39D7ZZb2JbpLERE6/6ZwAebNtlb02HDHF9rC/Axbd06YT+Kj75zfsdp\ndr/6Fb7lD37AoYiOjmB7vh4/zp+r2bNRe+01to0GxjRtGttGQnjtNn6EjYy0d63KpuqekuVN7ajo\nW375MmqyT/Xw4XZ8bRfFCd7Ll4NWPpSLVWLbjEF9jz/umDkPHAYprZ8Ir2givaIoil10A1UURXGJ\nbqCKoigu8RgDbRZxhYDvfhdFWUsmmjUQER3fxmkkYXUYc0gq5ZifteFnhE0PDl2OBK2lhv3xv2w0\nNzFiiZLUAdxAJTfXYgxUxJYL9wSBlDTtgmOfONUTtNBmju0VHsWStNGjxc+F2o8rrf0DXiepdaIk\n15wqJ1LczFjdlu9xqsjUqRbXNDracTB3MqbOzZ/PeVbvv381aCEFGY6d6YND5eSlERFxZQYgtnze\nA8VHHnHM5FPoz4gRbCf1x7/R6x6+Hjo6fO2ta0OD42uTD5Zlyx4yuQOxaQzEa7dvBynj7emOnZlp\nZ12zsnhNzcryQwWcMHlqMOYq9hHNRC78F35fI0upx4/XUk5FURSr6AaqKIriEs9pTHv3smjM9648\nyvOrYyYZZRqffuqYh97A948KFnOwr7/e2qNGcTHfwo8Zg1rQNtF/0My3uJof6fKuwd6cKeGiB6rF\nGebU0sKLUleHmux6ZfbZXLCAbfmYTET5ftwZJznZ0uNmSQn7KbsWEcE6Fo/Gx7fEGe18YFQiJWzj\nrkGbNll8hC8udnz1evBnIG3cyOc4oTkXNMi3kcPuiWhXI4eCOnuEc8X48byu06ejdt11jhm5MBYk\n6Z5x+ulAjejP2r27NV/T0/lzldUPuxWdvpfDMYEbc0CTraPS65M6ff+sLDvrmp/PfsroARGRfxGf\n8+Sj2CtUFnDJjxcRURA1iYMgfYRXFEWxiW6giqIoLtENVFEUxSWeY6Dl5Zxu04jxGFnKZ1ajbd7M\ndnMzan/60x8du6PjYWuxmtRUjoHIZkBERFOnsr1xI2plk7m0NL8NO8ok/0mU0r32mr0Y2MaNvOgi\n5kVElF7F62w0AIfSOdklh4iwXf1jj9nxNSmJU4OMNJX587lVU8f9P8fXCce33IUxR1FVazU17MIF\nPv89x0ajKEv7Fi4EKXMip4ZljCgHDWppLXZ5r61lXzdsQG3iRLbNTv/rbjXit4KD8+c79hCLnf7p\nwgXH12MnMa1Ohu/NUUN7W0Uq4YABoCX6bHLs4mJL10BICH+mzCCozP+qqQGpdibHbg036eOP2Q4M\n1DQmRVEUq+gGqiiK4hLPj/CKoihKp+gdqKIoikt0A1UURXGJbqCKoigu0Q1UURTFJR6nclZWcr5a\nTD+cEJm1OdSxlyzB13mfFy3jjLwrSHTz9raXr1ZZyd+GybkYREQzZjimf//rQWo5L+q2RWsrIsI2\nbcnJ9nwtLHR83X8b1gkP78sjJ/Z/hO3DrrmG7X3GNM/EKvE+hYVWfE1O5vP/29+itmMH2w891Aba\nr37F65Zz0MjJlAmDw4bZW9Pu3R1ftzx7CaQeomOcWdKfOe2YYyeviQAt/94X+WDCBGu+ennVO752\nrMSpnJCnevPNICX98D3HlgNziTBl1VpuJRHRqlU8KmMJTjRtn8R9DfLG4N8h878zuq0ALfU095yw\nlQss29mlz2tBUfY7mIst6+iFF9g29yo5iyQpSfNAFUVRbOIxjam6mnd1czCUrJKRvZWJiLZ+wBU8\nCTe9BtqmNv6vZbO6IyyMfT0+I7PTnzv9UAYcf/YZ22bVVJSfmDUdFmbvv3pGRqddruRdsDnDWt5Y\nj6/CuwGY3nb4sP3qDmPueNY0blI9apTxunv410fLWfZERH//O9v+/ldk+Jl5d/7gg3yHvGMHNn+O\nqxMVXcYdSOEkbgaelGTvri4xkX0tLsC7ZbiVNG8zRYnfJl98cpGdhM6csecrDGszyqaqb+BOUtH3\n4K/M/A1fOhk3G+V/P/0p27auAdE5LK4oHqSyIbwfJNTh53/TBPbt3DjsjCULmjob1Kh3oIqiKC7R\nDVRRFMUluoEqiqK4xGMMtKSEYzXxl7eCllozxbEDAvB1MnQTNGs8vq7/Lse2OqhNxBXNGKjMEjA7\nefeuEt8e+vmBFr+eOyOVlNjzddEiXtdVhLHMXaM5Jjd+QANom2r4W3mz+82h2aJbuKWMgfb2zjtc\nhfiJTAszVrd7t2Pe2u8iSDL8tWqVvTUNDWVfW1tROzOZB+DlDcgDTcb2Uydipon/QM40aWmxeK0e\nP84fuh/8AKRjb7IUcbAYtL39uVvYL36Bb/nWRh6cRlFR9nzdurXz6QnyojA6IB3rE+PYEZPC8HUy\nEycnx46vwk+vqfeBNGjQVY59+PAXoJ09282xzQwNuR2MHKkxUEVRFKvoBqooiuISj4n08RdF+sFN\nN4GW25zg2HEnN4EmH4smPL4LtOzbv62L34zTc/mxPczrDGgDB3LyvDHjjJL82NmVh7FpdEmzTALH\nOdxdQWYunRiDjZF9T4oDHzw9MlQin4KICIbj2WLNGrblrDsiokkLezv27t2YRB34KKfYvID9iymi\nQjYFxgFfXeHEGB5wZg6Ho1LOuTNTnJ599qxjFxSEgiYziqwico7KdmAILa5OrOWePaDVjeFH+N//\n3njPjz6y5h4gk9DNqWsiVhI6Gos+5BN969jjoDWLuY64c7inMoBDih2PpoMWXZPF2l9fBa1cFHrE\njroAmtfVnEbY0TH6a3+v3oEqiqK4RDdQRVEUl+gGqiiK4hKPaUxy+NXJk6jJ8s1DNRg7yMjm4VNm\nX4+yVk5voMpKe+kWubn8h/hiuR6UIW7bhpr82ddfR23QILY3bbLna3Iy+2rk3OyawVGh8aNxXQs3\n87ombcP0MPi7eva04uvevXz+zYYxbaJ/iDn8ruykGChmNmiRL4yNtbemt97KayrLRYkgjrfrVBRI\n45ewrw07a0EL6SPKLLt3vyKpQfnnp4CUPF90PvnNb0BrmMYpbyGrMX6c049jy2lpFlOuWlp4XY0A\n8qZm/s5gyBB8WViNGEJolis/+CDb771nPeXOe99e0IYtGOnY5gDMpPM8VI4qKlCcMIHtuXM1jUlR\nFMUmuoEqiqK4xGMak0yb+Urlyz5+vEmYifOin3iC7cCNOaDlUKVjp31TL78BDZP4kcZ8Sk+r4pQr\n+tvfUHz/fbbNRw3z2dQWd9zhmHsHYX/CfrLpkVH+k/QdEWIYPRrf02yXZYGRxI9C1VUjQCuv4P+9\nZpXSyo/5UXjx/EEo3n0327GYNtYVGl56y7F7YXtSavTlx/bxB7FK7cI+9jXkR3eCBkPsLSIrZR54\nALWq+7hya5MPfnaqqtjedhJnxC83isFsUXnQnw988HwltPFj+qV+2B2KSkVrM6PC76s5WF1HFsOt\nXTuyU81sDnb6Nt6FAs3P//LlbJt9RP+N3oEqiqK4RDdQRVEUl+gGqiiK4hKPMdDs7M61YaO6O7YZ\ncwx8QMRKFmIt3waRDpNmMQgqSzTTpjWhuFPUji1diprIv5gyArsfbT0SQ1eEL7gjzMiiZJBq54mu\nStufBy3Li2fJdOsGEs0UTY8C/ckOInZ1yfiFOx/m7JbcYCxHpfXr2D5/HqSkQYcdu5DsIUsHxQgs\nIiIaIcO39fWg9VzKF2HLSzg9YcYktsvKyBqvvMLdgcwwO4bhsCQ1sZQ7oiUGV4FW2YxdpmwhmuB/\nJX4YM2OMYxsfc8rO5pQrMztIXhKJZIeHHmK750xMDWsbxesWk41x3NPPlvOB8b3CptY4x06gr0fv\nQBVFUVyiG6iiKIpLPFYiKYqiKJ2jd6CKoigu0Q1UURTFJbqBKoqiuEQ3UEVRFJd4zAOl6Gj+hunz\nz1F75hm2T51CTRRHhy7DTC9ZXpqQYLHt1ooVjq9pZx8DKWcwjyZp//l00P7nf9he/KaRlSZ79oWG\nWvO12cvL8TXgs89AK9vD+bVx53EqI40a5ZjpxviJrMlXYCpjbCyff2P0au0SbrsnuwUSEQXfyL/e\ne8cO0Noncm6dt7fF8x8W5viaMQ1HSGTuE7l/5gTRMZzL2H7ttSB5y7Z4kZHWfI2J4dZrZg61/JgF\nDuwLWrv4nHWjS6DdfjvnltbWWlzXJ5/ka2DOHJC8unE+83vUHTSZitx76FDQkgfyqIz8fEu+xsWx\nn2ZvvbFj2TYWvGUp5zD71x0ALWbJMMeurNSpnIqiKFbxfAcqm9++8w5IJXURju3rGwHaKFHBcWKM\nURUks/0T8E6hS/z1r46ZMw8n1zUM5LvOkIJ80BZvFlUzX+DMaGhBlWev0iPgu9917Izl+J87s5+o\nzzFKP7I2812n7MxDREQ+ohQrKopsMKUXV2nMNm7czouCnvhelSjezutf6RcHkk8N29HRZA9RMpPZ\naJYNiVIk2cyXiOhf/3JM73ffRU0ucmQk2ULOvOu9FrtDZVKGY2c8+iho3qIa7NTkq0CTD0s2KezB\nXYiSKspB6/gVD707vRjTIXv/lO/eGrbhnV2bUQxoBdmNzGj8XNyP1/Q7g4eBNvVvLzr2uTsngFbZ\nLM85Ntv+Er0DVRRFcYluoIqiKC7RDVRRFMUlHks5y8r428K4PhjHWLSNYwmr5mEXI9lu5dBljB1F\nzRTHtbXWvi2sF99s9//DH0BLP8Xd6idOxNeNvItduPAvXIueC1P4IC/P3jebOTnOL9o7AltSyc5B\n4gtiIiKq/NmTfLBlC4qyHU5cnB1fy8t5QczhcBs2OGb1EWz/BHPjso2OVjJYFx1tbU3z8/laFQ3/\niYjo9Gm2161DbfdT4toNDgYtK5vvL9LTLX6z/eKLvK4idk9E2KrI/EN++UvHPNeKsfNrr/3EsTs6\nrrHn66JFjq/t2dh1S16fZjcmOUwyfVQ1irIFVViYHV+PHXP8rG7G72TkVwkh69NBu7A0y7HNoQ5y\n0kJEhH4LryiKYhXdQBVFUVzi8RE+L48fiwYORE3eFgfVG7foIuE3ei02N62eKh5DO5m17Ir0dMfX\nYzOyQIpYwInUeZMwFSPlaR561qPuMGi33MK21eTksjJedLOjrhzAZRQopJby47AxTh6S2XNy7Pia\nlcXnP30IrtvKw7ymi+/DdDSvH3zfsV944WrQZCSgs+RkVxQXO74m12BBhGzoa17H8lHzxAIc1OY1\nn1N4Ojq6WfO1vJzXVRaWEBFVLyhx7FsfiwdNZIfR1ns3ghb0CKfqNTXZW9dhw9jXA/2xrfCwei6m\nMJtYy3WO7o+pjHmlQY6dkmLH1y1b2M8ePVCLu8xrOmUzrunW2SIFz/wsys9fTIw+wiuKothEN1BF\nURSX6AaqKIriEo+lnCl1nP5DO3EYF0zxmjQJNZEPMK3ZeNN6o1zOFj78p5jD8LKLOH6XEoBNGCrD\nOe45dBm+DoaR2USmquAUMaI9XB6X2YopTnKZY/obqWMQFMU0Drf86EfiYCjmVC0eLdZxIaY4dYwT\n10p/PBnxv/iHOMLGLl2hYTTHPcONa07G56IP5oDWUsRrnLo0FbSOD2XsLohsIfuyVFfg9Vi2h2N0\nb/0ZUwdbwkUZ4ryXQJs40d5aSg48yN9ZbLpmE2qNIq3JFzvK7PXhYYmVdbh2KRUiDplSQjaYeg1/\nxktacXDcuKf590HaGhGVHOTvFeJ7HULtvNA6+b16B6ooiuIS3UAVRVFc4jGNKS6OUwPKlmM3kuvH\ncEWR+e3/+vVsG41RKO1ZThuiw4etpVuEhbGvZmeahFHitt3sXSrLD2QJDRGlV/AtfFaWxZQbUeEz\n7gl83Nhdd5NjN736HmhBNTzfmiZPBu2U6NTTp6PDiq/torpr9i/xOikqYvvScmMu/HPPsf3mm6jJ\n5+nCQmtr2tLC59//vBHemDnTMVMHYOco2RkprE8LaJUHucIqJsbi+T9zxvE1q+B6kNKPcqpQs1xH\nIkoX58AYYQ6XcWKiPV+9vBqdX9rxKHYkKxvB6YJxdXgNBK3hufDmHhBSJDpQZWRY8TU+ns//UqPb\n08DB/Ct8vPA6Lihg22h5S3F+4lrRNCZFURS76AaqKIriEt1AFUVRXOIxjalsKpeL5e/DNIkze8RX\n/kuW4Av7FTnmyPoK1Orqvp2H3xAZEjSzqlKXhDh2ri+m3GwZzLGbDz/E12U1J4sj7GTfFXLrOO65\n+xZMnaEbfuyYQb7nUJNrZ9TOYTKMHV7fx/Gi/H9iKefTT9/FB0bwKH8Op4YljzXikUac2Rb+R0Q5\nsVEfWTKPY1kjjF8fNkR0kjp5ErSY8CuTxnSsmeOe5keH1vA8n4DDWFosMwdFA34iIsonca0m2rtW\nP/uMO1Qdq8cS6XrOuKOy8EWgifFdFFKPcefQIu4QfyKDrLB9O0+TKFnyBmiyydJDD+HrSsUgh7J3\nbkVRfsZijK5i/0bvQBVFUVyiG6iiKIpLPKYxKYqiKJ2jd6CKoigu0Q1UURTFJbqBKoqiuMRjGlNG\nBpdHVVWhtmAB259/jtrUbC7XLPsNpmLEjTjDB9dfb63krL2dfTWrNX/xC7aHDkVNlpnJsi4iI/2i\nk1IuV8TEOL42FGGKR0ib6O5utisfwiku5eGY/nTvvWxfvGiplO/JJzlAPmgQaqJVVUMj/h8OmSy6\nBm3bBtreRk4pGznSXslhVBSffzkMjIjozFFxzYlheEREp6dzN6b9+/F1cQvD+OD4cWu+HjvGvkbU\nYMqRTEdKrsIO8PQel/ZOueE1kFavZjskxGLZaWGh4+uhgUkgvfNO5y/79a/ZNqcnyBSs6GhLvra0\nOH7KElwiqOQ1Tz9UHV93HWqZy9r5wNtbSzkVRVFsohuooiiKSzw+wsuuJpmBT6JYKp53fH1RGzfO\nMY1R21S4k6swkvCJoEvIHsUFsC0ZAAAc3UlEQVRHj6K2+0hfx65d+RFomSRKIWYZbWPGjmW7k0oE\nV4hWRnKoGRHRQ+v4sfGRR4pBi1nCj8axomKFiOjiT9eIo61kg7iXeKjayadQqy3gZr8h5kmWFT3/\n+78g3Tx5Ll0JDk0SHX6eeALFgLOOmXoSm1Qv4QKWr1T3xIWH23IPiLjMnc2SDyaDBr/SnIB3F1d/\nXWtc4yHPruCDxx7rqosO1f35Qxr9Gu4BA0UrK+8dO0CbGszX41fCVHI2ezRWN7lGxG1i1mB515Ah\nZY5tdmqSs+3NrnI0eDDbRlXYl+gdqKIoikt0A1UURXGJbqCKoigu8VjKefw4p1uE3dMXxfvuY1vm\nCRBR3kGO1cmuLEREa0UzpPx8i+kWsbH8h5ixoxtvZPv++0HK3cwx2dTVIaDt3cydhGym3NCqVezr\nwoWoyTwLs5X3bbexvRa7StEzz7A9cqQVX6tER/q8+/E6kU2VyiYV4gv/+EfHbDSCvMHy3FicSEAJ\nCY6DSb44/Ex254o7iO1/FrVx7HRVOP4dpydw/C8w0OL5T0zkxTTboItW8/sD40C6VTQL8t+M6U+5\nbRxLTU2152thIe8BSYEvonZ6gmOb3zvIiQXnCnBw3P7v84i24cMt+XrTTbymcm8iogvLeZCg2Qys\n9zQxEaIXDsbLH8PfJSQnf72fegeqKIriEt1AFUVRXOK5G5OoQshrw5wjWe1hFszIKiXzlllqERH2\nHjUui8dNn9//HsXnn2f7hRdAChrCjXKbqo6DBqVJq1bZe4Q7dowXvdkYYi4eI9I3R4K0fTvbDz+M\nL0uZ/Z+rJr41OTmOn5FFmP4jIw2Rs4aBtvJnnOJ0+rTxlgtEg+WQEHtrWlLi+BqyAKd4y6fkQ2Ow\n8a981kyedAak/FPiEbqszJ6vGzfy+X8RH4uPLeXwQ8R0o/pLVIMdmofhBlEYRpcuWQw3LFrk+Jrf\nHwfHyWyxlSvxZaJojoI24OtOP8jnwFpoJDKS11R2SSainNJQx047aTQwF53Y0/dEg5S1XCuRFEVR\nrhi6gSqKorhEN1BFURSXeCzllEOV6oxsm9xpex37Qre7UHuDhzq19I8CTcajLlmchOYjfidV4CC7\nlpe4c43/QSwry84Ww8Jk7gUR1nnZRHYo8vMDKeEgxxo3FVwAbcSIno4dtwZLS0//jP+uwEAbThLU\nx9auwXUrPMi/P7zmAGh9RUnk4jcTQdt1lMtTx2PWWJeI38Bxz4YhGAPNHCjSaGYbF/IenoyW75OC\nmjFkzhabvHhAY8Kkq0CDy+Eq1OQXD1E7M0G69KebxREOgOwKOX04fjltImpyyJ3/T+5Esa9IezRS\n9QK3iZLQuXZKe6vXcnls9LzxoKWJRd3yMyxznrp2imNnFWF5dFY2f97S0+lr0TtQRVEUl+gGqiiK\n4hKPaUyySbH3JKyKkG1NZOUREVHKEdFhZqJx3y8rUSymsezfz77eOgLf1v/ddx07b08oaCkV/Lh3\nbDlWTESsEX9Hfr691JALF3jRzQ6vs2axffkySBnLu3f6lnKEdViYndQQ2VDbyAyBJrkngjH9A/4G\nMyzSrx/bhYX21jQpidfUKIs5t4dDDL1LMf2nx1xOz7v4G0y3id7J6TbV1fZSg8aN43U1lyfwXQ6N\nkY8RYROdwmv74edRNjy3WYlEK1bwut5yC0jJFfz4azbkkk/tZoNzGRmJibHja4NIYzz/d9zTZFhE\ndm0jIoqiQ44dvxzDjdu3v+/YHR03ahqToiiKTXQDVRRFcYluoIqiKC7xmMbkff6cY++aXQbaKNE5\nO2VpLGgrf1Tu2Is/3Yhvun4921mWulET0fAbmoQDRl2ZCILIEBwREQ0Y4JgRdAykZOKON9j7poss\nER2zn34apC3f47jrG29gzHNVgIjRyZpYIho5mn92716ygoxjZc48AdqxNhFLXjsAtPI+nLoUXoRp\nTLJyFSNOXaNwFMc2N5xErUI22TGG3N15pyhRlt2uiKj6atmB3V4n/d23cDlh6J25oJ1YLQKGRjeu\nQ9P4/Ee14kmOmC9SCVM9lGd/W2Q6kugURUQ0Vuwe8SdzQFu0jNPxzHLu3P7ib44xSitd0vwG/83m\npiYHSxyva0dx0jLHLJF7ExGlh99I/wm9A1UURXGJbqCKoigu8dyNSVEURekUvQNVFEVxiW6giqIo\nLtENVFEUxSWeuzHJLs/mELMPPnDMsu9i9xc5R8ws8YLBVBMmXJFSzuFvGkPORKrS6Rux7DTw75xy\nZeY4zXkizLHXrbNYHnfmjMi5wFOQu6G3Y8+bhy+TFYqR67FzUN6APMdOSbHja14er6kczEZEFFQn\nujP5+qIoSlC97hkM0nXXXe3YZ85YXNPycsfXLZ9gWt3Ua/gcNw1Arb6e7SH3oDs9H3iAD4qLrfla\nXs7rKn8/Ec5nNEsg5TIHHS0HrbCR/66kJIvrmpHR+fQEWbIra0mJaNzLnMa0Z88/jDflVKKOjjvs\n+BodzX4OwLS62Hr+bHTrhi+7+262jcpp2rmT7QMHdKicoiiKVTzfgT70ENty6AoRXRrBDSTiRuFd\n3ZGJ3LzBmGpL9Lz4r/XRR9/My2+A6BdCw/v3B23Le+zfUGOK7PF+/J9btIYkoq/kDdtDNFLMn4Z9\nNlNH14oj/E8aGS7+RYpmLkRER5bZco6RNxhyBhYRUcl57gcaP70HijA6Gpu3nFktZ1Jhkn2XEF0i\nXnkFpdsX8DmO8GsBrajG37Gj9+8HLauCr5tO2kG6ItaPk+APnh8JWs8FXEgRapxjqqhyzMLLuHZf\n+ZxZonYy9x2NPIhPdolruBSieCp+lnfP5CIcav4OaD3uCCPrZGc7ZsJaXNPf/pbtFSvwZXLsuvmQ\nfWBesTj6+mtV70AVRVFcohuooiiKS3QDVRRFcYnnGOgXXzhmfhE2tkieyM07Fo3GmTgFa9jevRvf\nMi+cYyXGBJouIRvTNk/EBr/z53/u2B1vv4cvFN8eNg9JBmnkGm4YS1NxlkqXEA0tkrcZbUq2iWDj\nmjUg7ZrMMahrrw0CzexbbQPZd8P4kpXyZ3Icb0vRRdCm+nGmxdiPjTSMPn1suQfsv5HPlfwmm4go\nIpy/9Z0yzR+0rTO4Sc6JAGxSnO4jGywb8+S7wOmbOUb37C9QC36Ur4fEtfg7zy1hfy5jTxSabm8M\nEiCzBCJlF20iKh7A/lR/F32NXsZNQo7NxoYpF5+UsdQkssJmHsS1aRl+0ZFXwTHXsqJzoJVUcdbL\n1ss4S4v2iWs1UWOgiqIoVtENVFEUxSWeH+FF5q6Z0pO/kx8hZ89GbVU436JnvIi36F/px2kJOWLV\nTEDu+IKzZ+MmYQrF5s187GckNZupW9YQ75s77zhIo0TCelQzJkuPb+R1bZ+Az37eZ8+Ko95kg4TL\nnMaRMBNTw6ov82Po228bL2x+yTF37JgA0qGjnFJksx/o8Bcz+MDolUoVBx1z6wDssUkLeSZV6MQq\nkE7M4x6XmIzVNa65hm0zrUa2pKzogzOaip/j/qQbtmB/0sOH2R4+vMsuOsQHVPPB5hoU33nHMf3G\n4CN84nl+bB9zECSKsDZ3WyBieLWzMGTw6adsF5biZ0OOaCMjRPGVmVRfg96BKoqiuEQ3UEVRFJfo\nBqooiuISzw/5n3P6j1nKl/wxB28yih4DrbWV4569eoFESUfTxBHOUekKSRu4tPArXQFKeShLmTmg\n5Ympjnnydvw7Koh9TSOLiLKz1D442+bW6RxbPFz3E9B8RXMLY7ILeU+ezAeVlWSDsl6cuhFoNGG4\n5y6+Nl555SoU93Ds3Ex/iqVyOLKGrMOVM6eIIJa1a0gGSOEz8FgS2irLaiO74h3Q/X/4szPkAbzm\nVq8Wv7EIr7rTk/nzUn17NWhppZi6Z4uGfvy+a/vh71gi4rVHd4IE4UOzoVBtAMfFba3qJRHojDyJ\n89siXxE1mkZqIG3fznZBAWqm41+D3oEqiqK4RDdQRVEUl3h+hL/hBsc0n3xJdK65+i6UMqeJ8cCi\nQoCI8BnFIllj+LH1scc+B+2mm/gRc9kyfF3ian6I6H8fPk7FBcjHa+zw0iXEI3zWJKzieuQRtn0r\nfo6vE2kWPh9+iJr5+GEB2dTKLCAaNIjXNKbC6FUkWtyYLSSp42NL3iEjfXgdZxShlvIsn9cxf30N\ntO6tXJmSuRZTXJqb+drIxcyYLlF8A/sz8Dxqkf0v8IFsAEtEgf8UKW/z54OW89RT4gi7o3WFkGyu\nF1xlPv6KUFniB0+AlDjjTsfOrIkBbcwYa+453DuW24Hu7vYiinKtdmKsYU4jn4urjK1J7nn5ncw1\n1ztQRVEUl+gGqiiK4hLdQBVFUVzieS58374syuAcEeY1Dca5N4kvcWsYswRUlk5FRdmb3bJlC8+Z\nmToOu47nFHAHHrPKr0ZUpxmN7ClotujOU1ZmzdeSEvbVGN9CYctF1xfZEp6I4teIlBKje3aQ7LTu\n72/F1+Ji9jPA6OQ/XnQ1apS1ckQU/OqrfCBrDIkgrk5xcfZm9wwbxteqTOkiwpZCRtuqlW/xOV78\nKnZjim3jdJjycnvXalkZr6uZ5ie/Ihg7FrWU9RyT3ZVdC9r497jMk+bOtbeuN93E6/r3v6MmpgDQ\nkCGoyZZYsu07EdZWTp9ux1d5/rcZraoqKtg2zn9a9vWOvXgxvizw5yJ2W1mpM5EURVFsohuooiiK\nSzw/wiuKoiidonegiqIoLtENVFEUxSW6gSqKorhEN1BFURSXeK6Fb2lxvmE6VI/TDKOKeOqemQO2\nyYdzGc0u+ckPiXSqjg57+WpNTY6vYaNxYqXMtSwJTgXt0moucu7uYzSJk4Xc119vz9cVK/ibu5Ur\nQTpxhPM5Q3vhBMHinVyrfeQIvqVMy9261U7O4q5dnK/4lXaG27gVXWo4jh6RNcRm/ujvfsejRzo6\nrrW2pk1NnedWypZ65rodFOMmNmxATdb/t7TYywOlzEw+/0aO5P6rOfdQjv4gIgqbKMbRmEmiP/gB\n2zbzQLdudXxN2jMFpMJWcSxn6hBBwvexNhyIErFefAZzc+34euKE42dyNv6+fF/+fVl9sKlBeniJ\nYxeex6mcSa3iZ1NTNQ9UURTFJp7vQMWtxNGjeAfabxnvzr2X4Dz1hOe5+0n1jk/wPc0SGluIaVzH\nr30ZpEvbxSCxN94ArXsNd3Ha1YZdY8avFv9VLTUpJiKiu+9mW3S1IsL59pn180BLFNP7Ej/9B77n\nwO/Kn+yig/+X8du4MXZGcCGK4o7jrqtRMgtWJB1n7d0cSYIaRVerVrwFPXmS79zkHQcR0Zab+a6j\n56kToH0KFVZ3dN3Jf5N2nps4Lx2I2pulbCeNOAbaokncjcms8JMPS3bO/r8RVT1Ls/EOdMvrWx27\n3/fxZcPH8prvmY2DEyOefZYPbLW5Eo8d+bMPgXTMl39H+nvYqSnvfT7/ZiUinfSl/4TegSqKorhE\nN1BFURSX6AaqKIriEo8x0Mqj3Kkk8fGbUBwrYnfzMFaXHsDtm4OxqTZFDx36LV38hsgOPEYwo3Ej\ndyE/b3QAj8rmb5ObZ2AMNG0gxz3tjb8jyqrhrkrprctAy/TJ5APj6+Sm/vy6JQU44Ks42OgKbwPR\nSemUcaVcWMLx0altmC0w9fZTjn3CNwK0Y6c4kyACG8B3DdmBx2hxlfLJ8459aRZOHZj6tOhitBvf\n8u2351pzTyKTVnrX4AC00lLuCHXkCK5d7tIzjh026nrQrtCgB5pzLcc5HziF2tQHuvOBObJg0iTH\nNKdApB3B7yGsIFMtfPBivXZ4FB8U/RW00TN5wF2EL8bA6ZTGQBVFUa4YuoEqiqK4xGM3psJCTk5O\nOmnMz5aNSY1bZnmcvhknP8vE+txce8nJmZnsa8bCCyjKmeFm/odoWty+DVNc+vVju6HBYiJ1dTUv\nuvSNiFZ+L8uxF//XGdBgIJaR2d4wk89PSIgdXw8d4jWNIkwNiVvGj0Xm42PYapHWds89oO29iZtt\njxxpb03nzGFff/lL1MQMP9r6spGd/nMxuM9oxHzrXA7pvPWWxfPf0OD4mr8nBKTk0SLlx3gslsUs\nZt76O+/wIMWOjqvs+VpezteqOQ1O7gFzjXDHjh2OuWsSTmSTxQsZGXbWtbaWz39pKWoZ08SampUU\njz/O9v33g7R3LIfTOrtW9Q5UURTFJbqBKoqiuEQ3UEVRFJd47ki/dy+LZjcJGci4A8vcmn7Ica6g\nyw2g5e3kmE9KisW4UmIix5VGFYOUPINjoruqeoI2vkiUp/n5gdZewOWL3t4Wfa2s5HWVA8+IiOZz\nGSy9+y5qN9/M9ttvg1Rex+saG2vJ17CwTptepPrx2shLgYho82a2Q9ZjetWUeo7x2mp6QkR07BjH\nwJYvR02GEgMDUevbl+3E8AOgtYQPc2x/f3u+XrhAnX7oeu4RcXgZhCeiC+EcdzbjfAn9he/Dhtm7\nVgsL2VdjIJs8bt+Ha+e9by/7tnYkaPJSsrUHyBj4ddehdtttbBuV0zBILnBlGmjFAzl5MTFRY6CK\noihW0Q1UURTFJR4rkRaV8q23Ob+8sRc/+qYPwq4xsjPMtipM0zCfWK0h2hglV2B/yk2lXG2U4Iup\nSuBsQQFIH3/Mtvno1yVk6tLly6jJ5w+zbMqXKyPM9Je6OrZjY8kO4eGOeXwJdmPKXSJ6J+7EdTt0\nkkuMQv7yF9D63U1XBLE0X+nrKbOTcuZhtUmTL/eOzN02DLTUnSJ1LzOTbCFPv/lUfGIgr2voqb2g\n9WzkdJyEgcZ109xGV4L2mVxxdtSoKlwtQh7FzUbKnTjvmyZjCVP8Bv4bU1IsOElE697liz7pM/z8\nZy7gSrlnnsHyt8DPRIjR+ANHzKb/iN6BKoqiuEQ3UEVRFJfoBqooiuISj2lMsjyqogK1mhq2S/rh\n1/9NC/nrf/N1iZvH88GuXdbSLU6fZl8DT9eiKHM+jPK4Yl8uOzTnN6XMvTLzm2TZ6YwZqIUWiLQf\nX6MbjChDbRmI3Zj8fS/xQffudnw9cIAvDrPbzsmTbItYKRFB+51dE/NAkg2mbJZytnt5Ob56v/8+\niqID+vH7sRtTWLOIM5olyTIGHRt7RdLYco9iBzCZSWeOPQoaK8qizQtHHgcF2fP1+HHH1xY5d4mI\n/EUqXVldGGhxAzm2uPI5jNdfdRXbaWl2roGVK/kzNW4cajKtbetqTKtMXc2+5fYyytVll7lOZqLp\nHaiiKIpLdANVFEVxiedKJEVRFKVT9A5UURTFJbqBKoqiuEQ3UEVRFJfoBqooiuISj7XwdOIEf8M0\neDBIe1/8xLHNOnn/fVyLGjobC7MXLmTbZju7ykrOAzO6gNEEHrxHTz6JWsyQFj4w6tJjJnPdbGWl\nPV/LykTOqlFjP3wQ53PuP9wdtYe5Vnv/H7F92KOPsm3L1/372c/hQ9tB2/I8/++dej9qDd26OXbI\nH/4A2iXRrq+7xdxa2XoxdTO2T8udyeNIKs9HgTZiBNtr1uBbps9s4gOLuZUJCbyuZqpvYSv3mIis\n2wqaHJ0S28fIdZYXvb//lcmvrtiIosyTNM5z04MPOnbQr3+NrzslauPz8+34Wlzs+Nk+IxEkueeY\nrSck8johIswfz8zUPFBFURSbeL4DFf+SW43OQCNLFzn2nGdXgbbuUa5MmTkT3zKlUTbYzSJbxOzk\naqiWZTjFXfoAd5xEVFbFg7ruvRebRnc8IqaREf6NXUGOrY8IMLrYTJrpmMPlrHMiqi3gu87ha5NB\nqwyXpxKrf9wi53n37Yv/a+VsPq9uWMLV8eGHfDAbW9r4fHFl0ubmPMt3nb//PWqV+/iuM6YV57DT\n8n1s++H1eLw1yLGxzqZryJ7Zwz+rRvHelx3z4GmUuk/kp7lzL78Mmt9nvK743NI1As9yp7Xkv04H\nLX//UMc+4YMrFDpiHR985zv4pmvX2nPwS8SwuPWteAcqt67C8/GgyQ5Ml1YfB6m78fn7OvQOVFEU\nxSW6gSqKorhEN1BFURSXeCzlrK7mb+Cif9IDRdmBx5jiNOdm/hb+7NnOf/mVGioWUbQItKYFHL8M\nKjA6i8tg3kMPobZjB9thYfa+MR40iBf9FHbrbtj/kWOboSMZ21vVmABay/pNjm1tANqTT3KHo4fn\ngvSTn7D91FP4MtnUKGhwX9Cqt/DfFx1tcVBfdbXj68rXsFPV4rN8PRQPwFi27A4VNxGzCRJn8v1F\ncbFFX9PTHV8XXca467XXsr34buxIv+UDjvPKZlhERC+8wPaBAxZ9XbXK8TW2Aj9XMmvBzHzpOVDE\nRI2YZ149x3JtZeKkpXXeOU76NmsWanH14vsSMyXmxz9mW7sxKYqi2EU3UEVRFJd4fISPieHbYvmo\nQ0RUMoOHsy3ah6kBclBW9IhL1Cm2Gv8SETU18R9i3sPLx3TzD5H39EaT2rzGOMe2OsNeJP3KYXhE\nBP41rMEBeCG9OAVr005/0BKyRbPd2lo7vq5YwX4OHAhSZQ+uTjCXVDYFNvsw+08SDYQrK62taXQ0\nX6tjxqCW0SvXsafUpIImZ5SnjjaS02XmenGxNV9PnGBfQ5dhyk2P54sd+5//xNd1r2P/oLkyYSSo\nvd3itSqKaZKzQ0HKn8EpWNWEYRP51N5mzLsre+dWPnjrLSu+HjrEa2qGN+K/8yIfDBqEYiOnLqZt\nxqGC8vR7e+tceEVRFKvoBqooiuIS3UAVRVFc4rGUU/YKiP/vm1Acy90rzPlWvneIcMGf/4yijEeG\n4LCprpBVxGV36QdLQWsWjQ0Cfv5z0Cpnc8OGmI+wWULKKTlkykh/6goyKGTEQNPX85pktWFpGc3j\n6VgJwcGoGTFKK4j8j+O3TAAp5h0RVxrxQ9AWLevp2FVV+JbLllU69niyR/XMQj4wpgOWBHPcc+s0\njCu3jBHx+9VYurfyNo5HLrbg45csWcL2p58Wg/bSS2w3YmUxhYoPZHg4loAePmzNPeAEcdwzvz+m\ngKWJcu6cwfjZ2dOfyz6Nal7K2/mWY6fYcJKIorZxiXiUsSEVH+RrN7gOXxdzkRdONh0hIvLeIM5N\nIsaqnZ/5ln4qiqIo/0Y3UEVRFJd4TGOCdIvnVqAos/TNpoaiM0p0Ad76Vm8Qc5lDQqylWyxaxL6u\nqsJ0BBmLODEK/ZFVCkuX4svko0dIyJVJDTnXC1NDeq8RYYP6enzda6+xffvtIDWt5y5DQUF2fB03\njtd09zNNKMoWN0aeSnUrdz8ye2xu3/65Y3d0XGVtTXNy2Ne0U1gxs3cSP3rKDlNEROWlFxw7ZmJP\n0CoHiJSn3Fx751+kh9X+FOfUR24Qvpv5WOJiTV2L3Y/++EdOcevosNcP9JKXl+Nr/Zu4V8hLoM54\nNE4aIPrVmg2DZbnVxYtWfG1p4fPv33gMtAv9Ihy7Z4XRjUtcu4sOTgFp1QyR1hYZqWlMiqIoNtEN\nVFEUxSW6gSqKorjEYxqTjA9mfoGxmoyjIm3ko49AOz2Lf7Z6mlHKOVnkRpUZ8YgusMpHdLqXeSJE\nVNmLU1ViFhodqceOdczf/e4nIGXdxd2qKQTTeLpC3h6Oe6Zsi0FRDukJCEBNxp2bm0EKahbxmiAs\n83PLnj3b+eCk0alm/XqhnQQp+h//cOy6lZ+AVtIq17GcbJF2kWP08fWYblNSxN37S0vzQcst4Lin\nWZIaWcUloEaRZ9d4+GHHvPiWoYlg4rkl+Hf03s2pQgEBGAPteEamYCV12cUvufwvjnsGG/OEbrvt\nC/79Px4HWtZoPrcLjBDoyTcuOnYE2cF/qYhXDx8OWqMP/5YndseBtm4lx47baow39fE8sINI70AV\nRVFcoxuooiiKSzymMSmKoiido3egiqIoLtENVFEUxSW6gSqKorhEN1BFURSX6AaqKIriEt1AFUVR\nXPJ/AGWy1kFj24bSAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  16\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/W5/y/NzIgYcijNjBEZGRkp\nOTUiDkMP+SvmYaQMPczDHMMfcRjHqSPHIaYMiZgSKl9yzEPG0IiM+SuOY4xj+GOmjjFlRMSMmZqR\nY2RkDr9/bN3X9Xonn7Wbt4/v4/t4XM+/rvtxeePF/bk/N+/3dV/X6xp09epVUhRFUf5xBv+/DkBR\nFOX/V/QBqiiK4hJ9gCqKorhEH6CKoigu0QeooiiKS4Z4cgYHk/OKfvx49O14aC0fPPYYOr292e7s\nRF9HB9tpaYO+UJRfhGPHuJwgMBB9Q/jXrDvqA67332e7vh5P21wiwrt61VqsKSl8XVNT0Re2P9+x\nq8esAN+hQ2wvXIjnhVxo4IPISDuxZmbyNd21C1zly5sce+dOPK26qs+xJ03Bv9FRUWzn55O1a3r5\nMl/Tob3d4Iuew595XXoNnjhmjGPWdoaAK2bcGT4YNcrevdrX58R6+Nd4feQ9uPL1aDxv7FjHnHth\nE7gWLGA7NtbedaWGBr4HxLUiIqKf/pTtr3wFXMf8Yxy7pQVPi4hgOyDAUqwZGf2WE3WtLnTsTz9F\n3yuvsG3+ejE91XwQF3fNOHUFqiiK4hKPK1C5kNtRcBqdBeccs3VkJLiCx/AKZMbTYeDb+9rlfzDE\nL8jRo47ZPQb/T5/0ZMeOnjMHfNH/J9ax66auBR+98YbFAJnSSl4RdRfgaqmihVedF4zF+/TpbId4\nG59H5X62I/HzcI1cdRpbkKTeUsfeciEFfOXb+O/ykV3nwRe76HY7sRksWsT2s8/iLmPfPnEwuxh8\nWVNqHTtnQSv+0P1iyZ+UNNAQmexsx5z885+Da/JTT/GBWHESEdH69Y6ZgBsCiq3PEAeFZA25tDV2\nIXTHHY7ZMCwGXBNF6EOMp0zAxSZxEDrQCP/KiRNsb9sGLr85/H04U9kAviVns/hg9iLwVR+Nc+w4\nuja6AlUURXGJPkAVRVFcog9QRVEUlwzy1Asv3xa/+y765NurP/8ZfSP+m98kfy5vIpNVSUn23hbe\nfLMTa+Haj8GVcd9ux057fRb4igo4J9vVMxR8fntf4oP58+3FWl3NF11WLBAR7Re5zLw8cCUv4r93\nZRFl4NszkvO8M2daerN5//0c58aN4Mqq5zfEvb14mqwsCPLHHC81N7MdHm7vmjY1ObHWnsW8Woz/\nMceu7sD8+LhxbFdV4Y/MrBQ/p6nJWqxXBg1yYs36Pn7/cm8RefhbbwXfpUVpju1ViZ8/TZzIdmio\nveu6di0H+Ic/gOtyMefBzXRt+9iZ1K9T3vM5OXZiXbGC43z5ZfTNmMH2sGHgal/G+eIDB/A0mfYP\nDb32d0pXoIqiKC7RB6iiKIpLPJYxrVrFtrm89VqTybasrzG4tA/LBrzixdLeYmnIpQ942z6tzXD6\nT3DMeNwV0Yyv8bbdrFrqXvQmH8yfP9AQHQo7uCgiw7sUfOf+k9Mfr2M1BpV1iMLq9Vi9/jBmLezw\nwQdsG2VMOUP4c735cSybyh/J26KKkRngS4yfSNeDTQd4u716Nfp27eJt+8WL6Nuyhe2tW9EXf4DL\nbYIHGqBg0wbebeZWGSVn6emOWdGLxTOJBTl8YOQb0qI41qIiC0F+hty2yyYYwutsXjsaySVXNS14\n9Xx92bZUcEc0ciTbRlG/vFbbn8eyurvOsp20xYgG0o9YGvcZugJVFEVxiT5AFUVRXKIPUEVRFJd4\nzIEGZXOOMsisVRFlE41DMHcQvi/bsTvnoCBGsKk8YQmZozVDfeihmx376keXwBc5KJ4PfJvBR77Y\n2mWLjJcf4YO//AV8b47mtsikC0ZL3jvvsC2VRYho63FupVu5cuAxEhHU+Fz29gPXjw/yZ/7xt9PA\nRyc40TinBF1NLZxzDrXUxUdEJDt0H34Yfc89x/aOtyagU5bVLVwKLlNcwhY9Pf38/0SgtHHPO+ii\nHpHnM75HUSfounBpPefojVuOnp3KJWoPP4w5wvIOznsmBeJ7EOztDB9wjERE9PTTjnm4Hl8ITKa5\njj3vwZN4nrxxpkxBn1Q9aWqia6ErUEVRFJfoA1RRFMUlHjuRTp/mTqQAX+woOXyKl+x33YXnjfIX\nikvPPotOWSu0Z4+9jomiIifWYxG4pZS7pOPHURDwo49udOzLt2A4vnLvl5FhL9bSUr7ohnKM3Dea\n3UZSWjXL29jey9qQ5GQrsSYl8ef/4otY43X1FVbjospK8EWe3eHYQkCIiIiWLWO7sdGibuX583xN\nH38cfRs2sN2GNW5NE7mDK3QklriU7WLlqORki7EGBzux9rz1Fri8RelM3c3YNRc9WqhFFRSAb4Uv\nb7Vt6qzOncv3gPEx0/LlbM+bh77hw9kO7jmGTplvs6UJvHEjf/5GGVPOvkmOLcWliIj8/dmWJW1E\nmMLpT2NVV6CKoigu0QeooiiKS/QBqiiK4hKPOVA6c8ZxdnuPApcUCpo2DU+T83rMKo2s/aLkqaHB\nXl4pMtKJtTEPyyZkm1lpMSri5xZwWY05E6l2l/i3Q4dai7W6mvNKcRcNVR1RVtFFWDokO8tk7oYI\nS3dGjLCTA8vI4DgLh2WCb9L+XMc2y1skMjVLRPTCC2zPm2cxr3j33Xwjf/e76LvhBraN+V3t3lxL\nFXSiGnwwAsDLy16s3d1OrCc7sfxH5uEuXMDT5IQIKIUiotmz2Y6OtnhdxTPg5EV8BoSQKAkyg71y\nxTHLO3G2U5KvmEsVG2sn1kuXnDjrDnmBK7qz3LE39WD7uPzeTL7DmPJQLKYX5OdrDlRRFMUm+gBV\nFEVxiectvKIoitIvugJVFEVxiT5AFUVRXKIPUEVRFJfoA1RRFMUlHuXs6PRprgP1DQDXl77E/a1X\nFxtNpLLh2dQE27ePbVs1YETU3c01iz6rDXk1UbT6uRqxYY18YMhZ5ebx35fMTIu1dfn5TqwpbSj3\nJwcWFi4ypLeysx1zU9QOcMkyvKwsS7HW1XFtHWEtnxz3YtaBDu5lycCwCLzex6ra+SAoyNo1ranh\nzz/2m8PBd67lQ8e+8UZwkR91OfbJs1h3G9JZywcxMfY+//JyfnNrai8ePcq2ISSw+D/5Wm7+HUpI\nXt7Ptc9Dh1q8V1tbnVi7/HE0h18B1wYv/jAXfJvvEONHjGLguQf4+7ljh51YDx+mft+GT36O5ewy\nRuP3pnCI+P4Z816klJ+Xl/bCK4qiWMVzGdOECY6z5pnj4JLKLKNH42n5LbF8YAyUL/p3/jlpaRb/\nUqak8C8il0dEIOBacQBX0ieEEK1oniAioqgotvtTY3GDnx//tew6YKwyxQrk8H3YNfHgg2yvWYOn\n5S4QPyckxEqsra0cpzk3UKramIpLUmzn7Fnql5gYe9d0+3aOdd5tdeBrD+TV8z33oBrT1XPcCbTn\n6O3gk51pNhWOKDPTifXSaly5eY0V96fRxpdxMcuxC9egMDh8QDY7/ITKVfIqvD5lvYl8YH7n5M7T\nmMU+6AZeLV+9GmUl1q4u/vylRjIR0VKhk/3JJ+iTs+hkpxcRUXCE+H3Pn9cVqKIoik30AaooiuIS\nfYAqiqK4xPNb+H/9V8c0Z8FVFJzhAyP/UbuM1VbMOU1z8EWXPaRCtxh4Zx57J1SAK/9La/ngq1/F\n8z78UBygOvhAkHnPov0h4IuP5+O36/G8yb9nVZncRRHo7DESuBaQs7/atzWiUyTBc1YbSfBFVY7Z\nsfoIuGIPiLeeMfkDjvEz5g0Sb1er6sEXFMh55RtvxKqHJKGqXh5fA77AhbF0XRBSWl7/dDP6nnmG\nbSmxRETL5cvsH/8Yz9u/31JwSPUBzgOWjTOmILzA7zMqmnFCYISINeAEXter2/5sL8C/IQpUKD0d\nfXFt4j5LTUXn88+z/el49EkVr37QFaiiKIpL9AGqKIriEo9lTFL41yxj8WoRg6LMQdxCtLavHsWN\nB3cK0dKAAGvlFjNmcKx7n8FtI40XS3NZY0NE1Myz4E/PwQL8gBIhIpyba680RBSom0XGe86GOfbM\nIbXggwF05hSv225je9IkO7HK0jCpkk1Edb08zzt66f143t13O2bR9D3gEqPm7Qr/vvSSE+uK38wH\nV/6Y0s/9888497UUxx7xKyyyhvq88HB7sTY28nU1amfilrFosdmgIMeUv/wyDmq79Va+b7q7LV7X\n2Fgn1tAO3Io3HeBBk3MXoTD0jhJuUGhoxgaF++5j25b4d3k5f//NdOOmV/m/GGkMnLtUz88Kr4Ic\n8G2/j8vG+hP/1hWooiiKS/QBqiiK4hJ9gCqKorjEcytnTQ07jVf6tTdyWU/445geGPoJnzZ0NZaN\nUEIC22Fh1yVX07QGczVSnyG5OQN8l/O4NGPoNBRogNxpUZG9WI8c4Qtk5DJz/v0dx5aXiogo+Gsi\n13jHHejs7GS7tdVKrJcucV5JlokQEeWP45Iqc6BY3Xi+xuONyhBZYlJebi9Xt24dx7ryFzHolLlj\no7e0/ASX3yTN6QYf9CunpFiLtXfQIBaT+Tf8/pXP280HEyaAb8V6zo+aGj3y17ImJkPGdf0TDhbM\nGcZtqG3YIQtDJ01k66+1FlmRA6d770Xf++9Tv75f/5rtdevAVbSoybH7azvXFaiiKIpL9AGqKIri\nEo9b+KYmXr6Hthkzs4XESeH33gNXRiorxRxrQT3IsDzW5qMdO6xtNfbs4VhLStAnt41Tp74Dvqsb\nfu7YuT1YxvTii2yfOmWxNESUMeUcQJ1NqQ6TMhFLVWCfJLeXRHRuM38+tkpDpG6pWcYE23ZzPzl5\nMtv3GyVOcjs9eLC9a1pa6sTa853vgKtL2AHy/ycimjGDbWPf2b2aO1h8fOx9/ufO8b26YQP6ZKOM\nTD0REcUtFKVCRrddVxUrUPn5WbxXH3mE74GXXkKfvAe++U1wXXrzlGOvXo2nFS7krTGFhlqJtaKC\nr+n8+R+B78knb3HsHVfi8ET5nTIlzjo62E5L0y28oiiKTfQBqiiK4hJ9gCqKorjEcxlTV5fjvOyN\n7VhSZLpvSxmeJyWYenrQV8VKPZSfby9Xc/Ik/yJGWc3nersENVFcxhQ7/XL/582day/WY8c4VrP+\nQ+RhatY0gUv+WmZKUirrh4XZz4He/1MsRzu1gFWsWp98GnzBPSJ3a44reOEFtp9+2to1DQ/nHJgp\nxlUUxfnhnGbMgWWlnnfsmkOouB57gygpmjXLWqztoowp6Mkn0Sk+/+pmnEEk26m98rLAR//zP2wf\nPHh9Zo2lJoKvfQ0rmwWtx/cHlwuKHNtsSS0uZtvWTCSIMxtLFYsC+Tue1oE+UP03n1VCNau/+V26\nAlUURXGJPkAVRVFc4nkLryiKovSLrkAVRVFcog9QRVEUl+gDVFEUxSX6AFUURXGJ56mccvSArN8k\nohmnuLbK7OcNnih6du+5B3yt23mSX3CwxZ7dtWs51u9/H31RUY5ZugBHjKTs5978rLE40kEOG/Xy\nshdrTg7XrGVNMcZ2iKK5gC1Y63c6XUxFNEYPFq7nv4UZGXZizcriOM1296QrXPt7+VvfAt/QW2/l\nA3MKohihQnv22Pv8hw/nz//NN8GVtTXIsXNSz6CvhCXirhiDTXNbRM1odbW1WE+f5usqayKJsJ43\nPh59r77K9t7FKNkIhdkxMddFYyCsJAVc4mtFhReS8DxZqCx/KSLK6ORazMJCS9+r9vZ+n1Wy1jO3\nBOvZ5YiZ2LGteJ7she/nmuoKVFEUxSWey5haW/sdfpaYzl0bFenGEDfxxF8xHbtp8hfyTHQKCbku\nHROm4M6So8l8IIWHiYimTWPbaO+ZNJt/xyNH7K1AU1I41lJ/FKktGskitZs343m7RWNMUBuuXIOX\nsYhwa6ulWDdu5M/f6JgpquRrk3bDRjzvF79wzGRfVPGSKy6bq3qKjHRijRmGuwy5kjNErOAj/+Y3\nUVD5Bz/gnVROjsVYxc6u4Uo4uCKrREePscuYlMAraWNkPA0Re8nMTHux1tbyvRozrQ98i5fy+mvz\nN/CarzvI4uQrv2t0+MmOHz8/K7HKOM3Op6x0/lz3HMDhd1LxSq5GiXD+ZH8rZV2BKoqiuEQfoIqi\nKC7RB6iiKIpLPOZAZV5BvgEkIvrkE7alaAkRUf5Iflt8bj6qn4x4u5EPwsOt5WoWL+ZYN49ei87b\nbnPMan98kyjzHsEF6ANZH4tDxeRQudqLk8Alc4Q14/EtfFlgjmMnL8C8UlfPUMe2pkheWMg3xxCj\nYEMmj/btQ9+CBY6Z618ILpm7Cw21l6uTiuRmODKVKIsAiPBFa2Ag+pIqZ/KBzYqBlJR+r2td/CbH\njt5lKAfJpNzy5eDqE8MJB1+9ai3W7dv5ug4fjr6Yi1y1cmzMXPCFefMb7dJ6VJWSKVBbFSNyAGZR\nRyy40prF99p4WNVG8TuHmCj8TvXedJNjD+vnmuoKVFEUxSX6AFUURXGJx0L6iAi25e6BiOgWntNE\nK5+6BL499bz1mPnMEjxx716238EBbwPhiSfYjlmPAr+1+7j84gDufChuDJdZlUeUgi9pdB1dF956\nyzFjXsdK6ph3f+vYfTuPg++imKdN9fXgq+/hMqY4Y26WW2LF52imE2D6nTmMS9wsU4xym+uFLIKX\nNeVEONN+2TL0JR0Q27uL3uiUCsYWuSxEpV+txBTavDGnHRsaJ4joOzynjfbuwsL1wT/4gcUIRTy/\nEWV2DzwAvqTX5zu2HL1ORPTaa7xtT+nAUj26805xsJSsIFIaaf/xLrj6Svh7PXgzltzFLOByvPZD\n58EX9JOf/N3/VlegiqIoLtEHqKIoikv0AaooiuISz62cWVmOc0VvDrjy20SizRzGJHqpTh7C9jhZ\nKmK1le/8ef5FSkrQJ6exjRiBPiE8EjQG/56013M+igICrMV6++1cGpKXh75Zs9ge8clp8F3yD3Bs\nc05eYr3I5ZWW2ok1ONiJ84rI2xIRDRFJ566tKGzht0jcG1Ongq/sZs55JSdfnzKmxCEoCgO9fQUF\n6JPlWEZJUXBCmGNba48lwhZZg6bH+PqYZVU+P3+JDx57DHyXv/xlxx5qsYypvZ2va1BVPjrnzHFM\nvylYqtSVJ94nQM6TqOkuvsltlbKdOcNxGl3n5FVV7tg5HZg7Xr2abVnSRkQUtFXk/XNytIxJURTF\nJvoAVRRFcYlnPVCxpZHaf0RElCq2QmfPom//fsc0lVGCHhArYYsD7TLXczlCWxuW3Mgqm2BCzb/2\nDv4bIstdiAg7kc6fJ1usF+VIidO70Cn35uPHg8tLCJROL64AH1Uan4ENpkxxzCGybImI6tJ52+5v\nCFz5VrEC01KjSmXz92VaIoBskZjNW8gVc/Az/vle7pI5lY5pkVZf7gRLSMCf2bpclrUZXWoD4fXX\nHbNpDaY/QpdzOdq5F1Fxy+feex27+iheuzsP8XdpspUg/0pQs4jP2OMe6+FrLhqh/or84n/96+CS\nGTVb3HAD23LLTkQUW8Xb9pr/Ndqpmv/FMYO8sYytYhpr3ib28//qClRRFMUl+gBVFEVxiT5AFUVR\nXOI5B9rS4pjZu9A1s6r/U5M7OAdZNh5zPLKoyei4GxBSafxnP0OfFKHf34LlFkuXckR/+hOqVVMB\n5v1sIcssDr+FM1omC4n0hgP49y1y7FjHNlX3F1XydfYaeIh/RSr+GAliOeYmYxmq2Gx/mZWhzFKc\nz0l32ULIaslZVkSYoq85gbnD2KN8r27bhqV6tK3DVnTAuRf4swr995noFO2jZndmSQnna+OGHANf\n7j4uuZpsMwkq8/BGjjBsDZer/fEKTh6g0fztTto+C1zlJbL1287dOuIx8b0WuXsiokcfFaVLvk+A\nD+alXUlGn1GdeS10BaooiuISfYAqiqK4xHMnkqIoitIvugJVFEVxiT5AFUVRXKIPUEVRFJfoA1RR\nFMUlHutAGxpYIurgQfQ99RTbXlNCwdfxWx5LEViMIytkHzDV1NiTCGtsdGId9CjKZ11dt50PjHi6\nTnBvtKl0JutHy8stypn19fGbu2nT0CdqPbvzNoGrrY3tsDaUbCvv5X7vpCRLsS5ZwnGKSZtERO0j\nwx07qGQFnieKRBuzsZ87/LgYqbB0qb1rOmGCE2vZUzgKJTld1Peas2mknJ2JkGsjPz9rsVZX8/dK\nyi0QoTJkyKEy6hcxMZKIqP0RHq8RFGTvXt03aJATa8gf8IXzl7/M+hBr194OPtnvbt7iM0fzGB0K\nDbUT6/DhTnCthz8Elyw9Tk3F03aUCC2KLVvAd3I239chIde+proCVRRFcYnnMqa5c9lpDDGDVhhz\nZrjopsmIR/WbwlShlBMcbG8FUlvLK9DHUcXoI2IRZS+jvaNiLHefmL/it77F9uTJ9v6qyxn2pgLU\niJtFr5YcaE5EjYt4RRI+Hgf50aOPsn38uJ1YfXz48//0U/SJv9Ypv5oPrnvuYXvl3bhSzmnhlXJW\nlsVVfVMTf/4PYXfXV7862rF/+cte8D32GHfMNKzH7p6Tw7i7p78ViBvk57959m7w1d7IXTuzjYF8\nlzt5xdc9DFd8UuHL6nVNTHRivbQFFcBkfGZnnOwMNNWXcuPFdQ4LsxJrt1gp+5i73j/+0TEjD+SC\nq2EYq1/VLsfdUsyn4rOZNUtXoIqiKDbRB6iiKIpL9AGqKIriEs9qTHLi0j//M7gKmzl3YL7Z8hLn\nFY6pQ6dULw9GZaQBIfIe3/gGKkB50Tccuy4KFXemPsC2SN0SEVHpbPlzYgcaoYOcBzbCUONpytvj\n2Fu88S1s0QEe6lXbg2++Y2691Vp8n9F+gvOxQenG7/8Nvqalv0K19hUfCCX3m1EpP2vzHeLgvYEH\n+Tdqz3IlyF/+gr7BD9zv2K2/PwW+4LdEnqv+9+ALuUmUnoQY0voD4M032Y47h0pF8sW/zCMSEcWl\nct6zehvmwLOmyOqCGLKGGNBoDp4Yzanlz82VzLiQyQeLFhk/U/xiYWFkA59f/IIP3jPuqzv4nmsY\njzn57uki72lMz6C33/67/6+uQBVFUVyiD1BFURSXeCxjkoX05qp43ke8vQwrRiHSY77RfCAnuhFh\n3U5trbVyCzkX+t130Tf5MRb4/VwhtahdGrwKt8VyjtqZMxZLQ156iS/6k0+ib8wYxwwagiVg7T8U\nc8HN7YX8vSxd13Pn+JqO2JCJzl5RDmRu0cSF+5xgdNTNfPDxx/au6cmTTqzdo0PA5bM6jQ+kSDQR\nXR7JAstDd+L2Lnkfl1yVlVn8/EtLnVhPRmD6I6R4CR/Izgki6qrk7aZZ/iabPqqrLcY6aZITa13e\nEXDJ6sVI3ybwhS7glIr5CJDExlqKVXz+Jwk//5BeLptK24opg6I1omzwf/8Xf6YY4tdfyaWuQBVF\nUVyiD1BFURSX6ANUURTFJZ5bOdPS2LlvH/p2iSlzw4zxcFu3sj3SGMwmj2Nj7eVqdu/mWGWdEBHR\nzp1sm1POhNJAwwXMncjWTpvtcStWcG4xP/0MOkVusbYtCFxhj3MI/jfeCL66fTzYLTraTqyRkRxn\nQ1QWOsXws4qOcHAljuTStaLmaPCJ0yg42GKubuNGJ9acD7DkSJbbJJ9IAx+N4DZf+u53wdV9hQee\n+fjYi7Wxka+rWf4TEcG214I48NUt48Ft0f6Yc4T72sfnuoj0SAEZIqKgNfzuo3o2ltzJVLP5O8qB\nhKNG2bmul0Qrp9eGDeBrnc6fuajKIiKijz9me/OgJeiUAjrh4ZoDVRRFsYk+QBVFUVziuRNJDpg2\nS1WkyF5eHvrEPq2OcAsX7YuKN9YYPrz/eGRHlZmKkHOvDdWYrAShHEX2uqby1/B2e9OWUeBbsoh9\ngVfwPH/ZwmK0qURH9YkjO38XG9Y08MHohejs6HBMc4smpXnSojrRF5ggDoaSNd54wzGz5geCSyoc\n0c4O8PWtL3Ls8SjiBfqwMRabe2SZ3SuvoC/mvx5x7IqnUIQ38eBaPvjd7/BE2SZUZ3T/DYRD3J4T\n1LIVXMeW8bY97tRL4KufzQpdRZPRR1dkii2AbOAldHSppQV8wb7ljr18eRL4Rq3n0sXaaai/G7NP\npK3CMX3xGboCVRRFcYk+QBVFUVyiD1BFURSXeMyB5v6B8xiZuxPROUvklWQ+lIhOj+G8Z/QFI+d5\n8eI/GOIXxGzRlIh8YVEPtp2mjeZ5OVvju8E3ZBHnPcMtCkclp3Lub9Uqwyl68oL37ULfn//MtqzN\nIaJz7/PfQlmZMxBqLkY69tb16AsM5BKrlSvRdzKCc2MhZ418nEyY+mGb54CQivyyBY+IYuLFzK4f\n/Qh8g0eywlHBtvPg+xBH61hj3ut8D96Vbsw9Os6lM4nTMB5a/xHbMudHRJSQQNcFeTMtWwausAXc\n6mr+/7JFcsY8nFiw9yOh1pWCrayuETngjs2bwRU4ZYpjj/LG77i8H2Py8H2N+Vy7FroCVRRFcYk+\nQBVFUVziuRNJURRF6RddgSqKorhEH6CKoigu0QeooiiKSzyWMVVXs2pM3FFDkfyXv3TMnBnYcia7\nPkcdqgbf4v9hhZnNmy2q8WRkcDLXLOkQ0jCbEhrAJZW8c29ZCz7ZkkinTtmLtbXVibWpF+ujQseJ\nlsxp0/A8obhTtwDLX6Tqd12dneva3c2fv8/ZVvDlVnHc5jA+X1+2vXq7wDfYn0uX+vrsff6JiRxr\nRTH+n3Lg4CZ/VJWKimI7ZAj+jkA/iuRuWLeOY/3Nb9AnP/IHHkCfrM56+mn0lZRwidPVq7dYixWm\nEjwZCb44f/4umaVzstO0YRyqHMW0cctkba2leyAnh7//F4ye7CuiJ/qnPwVX6QaWY0pJMEqcHn+c\n7YMHVY1JURTFJvoAVRRFcYnHLbzUTI675xbwnd7O2/aeYnDRqN52PpAKukS0+ZAc3JZP1mhuZlso\nBRERKDDlGQ0cYoYbDa7HfVFJCR9b6pcgIqKKo7z9TXwH0waNPfx/bgnELp6yBXwcfWoj+NZ725tb\n/hk+CTyzftDel8F39Tbu4KGeYrY5AAAcUklEQVSRhvqVHG5uKOPMmXNtVZuBIuev5ZZgh1PgGN62\nL8kLBV9hLwsThywyxL+lMHiwvVa0lffX8MEgvD4NY/j7MfleTEXEJPDvVWx85xYuxO+nLb73Pbbz\nKjH9Ve3Ls+kH3YKdgFfH/gcftNwBvlRsaLLC4cf5M578l0bwpWzle27iBlRcSukQqcnJr4KvZt0p\nx47t5//VFaiiKIpL9AGqKIriEn2AKoqiuMRjDlTOVCLvfwGfFAPKj6ghZJxjJS/zAk9gIOc9jTFl\nA+Ob33TMde/MBddiUcVwer9RqiLrmMbtBNeKtiK6HiTO4dzR3IWYd936XfNfM4tfZrWYzRsiwHdn\ns/mvB07H3r2O/Y1vGDm21fWOWbQfh/H1iMFdeXmY88zOthUdItOumd74uWW18FCxrnocxjb/U7Yb\nm33Ad888Ps+SwNVf8fZ2zBm/XAGuwHfYjrwDE50JCfyNkRV2REQ5UTJfbqgKDYD1QoXLLJ36zW/4\nu331FWMsQd6tbE+dCq64KzvEEX5X3TL5J/yWYvvUUvCVxtfygZwUSUSbRuc69vTdueCLnXq3OHiH\nroWuQBVFUVyiD1BFURSXeFRjKi3lLgRzvHvsFvFifz2q7dY0s9hurC+WPpAQN6WhQ+1193R38y9S\nVYW+cZxS+JwQ7cSJbMt2HvPfhobai7Wvj2M1/0+hsHz/Qzh0TVbVTP6VUQImBaVrauzEGhzsxNm4\nFVMfN9zA9h//iKfJ0rDQs7XolHvP8nJr1zQtje/VokOT+v+HZv3PTpG2kQPLiahu+R7Hjo622DVX\nVOTEumkIzqlfEsEphopmLLlKHMZdfWFrcGb8Ka64oY8/thdrTQ1fV9lhRoSzGhu8Z6JTfOfmduC9\nOmwY2+XllmKNjOTvlJwGSIT1mEOMrKX4t5vysBNpSdRJPggJ0U4kRVEUm+gDVFEUxSX6AFUURXGJ\nxzKmlPdFm+EJI9Elapz6xIAxIqLYNs57rTsYA76Vw47wwSQPuap/kMItXIKSETEOnTI/KBM3RFiP\nZSZ6r9MAvJMt/HcrxPDFJXDeU4gvERGWAO190FCcMWO3QPdRznvuN4bKZY3n0rWaIdjoFjr2smMn\n5uHn7+/PxzaLxFJT2a6bcwR8Mu3qbZT/+PvzPZiVXmv4rIUHNE7kvOeSHiNH/Nv3HdP7VsyBZh7i\nvOc44xaHkkOLyHsQlMKIKD2d7+Nq2gO+uIX8fdxRZaiKiZJDovcGGuLniMvD50q1t8h7G9/pxNmc\n91wQaPwgHSqnKIpy/dAHqKIoiks8Cyrfz60HcTNwvvsxCnPssN5L4MvYx9u0wrM4T77irgrHTrS3\ng6eMnSz2evhRLJ2avFUoPBtzwWnDBrYN5aCwEu5uOGaMtx8Ihw6xHWLUhkjxKlnxRUQUur9QOOeg\nU5ZjWcJnFQvh+o5FFZszE3nbHpttaFWN5zRJcXEAuKTYtk1CKrlLZ2tvDvjKesU92NYJPqnURdn7\nweWfjukHW8iqmvD08eAr3ckqV70f4HmigelzWttJP7qfDzJOkS1CA3mL20fYqfXWW2z/6U94Xpy4\nrvd/C7vRTpn1UBaoy+bvfFWU4cwOZFuIqxMRVazhTrCAVCy3+vWv+bPorxNNV6CKoigu0QeooiiK\nS/QBqiiK4hKPOVBZ/RP3w2+BL+yNN/hAyoETUeH0s3zQicma65Cq+yuiJfLBBw2fbNfbsgVcZ7Zy\nGcmosZjjOfYjIdVD9hTfx8u019KfgS/l30Wf2z6jjOpn4t/Ono2+9HS2N2G+0i2bxvHPSVtgDNwS\n17R9FarfvC8qU2SKmYioeqpU0reooi/qmKa3GL59olRtDuaOT19gRaEAoxRs1EhZtmNvrQGVdBev\ngC9lCrdyNlzEMibZhZq5Dwe87XmO855GU+XAEDnDwUYb9GuvZfR/nj8n+k89gt+5k8s5VrOMzy1y\nIIXZrRkpe6CNdt0zJVyOd3oY6sMVbedcehp23DroClRRFMUl+gBVFEVxiUc1JkVRFKV/dAWqKIri\nEn2AKoqiuEQfoIqiKC7xWMaUnMxq1GXF2K6ZlMrlH+UtRk+mlIrJy0OfbOOyqUhfWOjEmnkByyty\nh3B5wuL3sc1PqqnXLKwGX9/Xv+7Yg69etRdrezsnng2F9PZl3K4ZdHQH+KQ0TkYlXvPCA+L4yBEr\nsZaX8+efFHUanbIlTvafEhElJDjmpq04VHDuUg7N3+Y1DQ3la7psGbjqxnCrafTBteDbPobbled9\npR1/Zo8YlGZzIkFDgxPrpYlYjnRFVDX5EJaOXR7GZXZDFxjD2ErEJD8/P3uxTpjA1/XNN8GVuZrX\nX6Y6lBxSEYHzD6kwQnzP4uKsxCqfVQsXoi+ykluSi8b2X+KX1oHPjfBD/F1sbLy2cr6uQBVFUVzi\ncQUKwg+dKMIwa1awY3cXo/6izwKhD/nQQ/hDX3uNbYt6oFJdIdsYe0TFvOrdDONfCf9c+W4FV+VL\n/McXJVEGyNGjbBuF3bKWO6cFVxnpYqFn1tHToq12YhOAtsq7L4Kvr5JXx4NTUUyk51vcdLHke99D\nn73wELGSP+mPq7po3zOOnVWPs3lHSxEMMY+KiKgogn/HNKxpHxhiZteV8RirvB3q1neALyqVgygu\nxt2Jr+i5CPIbeIifcWb3cceON1aSBw/yCvmVV7AJ5chqMercmFF27tFyx7Y1LrrMW4yuHmcozYom\nm7T1WCxfMVbsSC94g8+UDr4WugJVFEVxiT5AFUVRXKIPUEVRFJd4zIGGH2fhh4y3UfihsJffbNH2\ns+CD127mXCFzLrstxNv+oUYuS842OTM2Glz1efx2OfHrw8GXeO+94gDzvAOhzp9zm9EROGemQIyJ\nz3p1Ap74XyyEMOYP2EGWnM2yDGVlFoIkYyRM/WHwSaGZ8QUoJuIjXyUbr0S98ox59rYQr4FDfPGa\ntraNcmw5AouIKKVT5MTkm2wimnO9ErYjOPPn8+JGcNV9LIY2FdwLvsan5zn25XGzwDd0ocjSV1TQ\n9UBqTxMRFRdz3jNumiE2UyDy/ONRNHrdOrYLC8kOZ/kZZHyMNGUKJ4X3X8EqHBIiJBSFSd6Zn+4W\nR3i9P0NXoIqiKC7RB6iiKIpLPG7ha+/lbXvhHzPRuabAMbt6sVha1h8HmPU2cn29YgVZQ+7NRNkC\nEcFc21FzDLXEBWIc6+9/j77Jky0Fh0R3iD32Bbw+N93Ec1joiSfwxAm8pZcSh0Sf35raQH6O5jCj\nC2Kqsk96MvgOf4d/v8ltNeAbLAP1wdKXAREf75gxQ7BUrbaKt5fBY1EPkqbz7zVpOtb/HFkjRg4H\n2JuPlPMXLqWa/Qj6wt5+mw8MfdK+GbyNbDM0T23paprINM7Q5SiKGb9MlAu9iGVu8sQiwvOux71K\n777L/7UxL+rll9l+7jn0eZ0VzRO78KI2jOe4sdiM0RWooiiKS/QBqiiK4hJ9gCqKorjEs6ByRobj\nPLYA6w3CUrkNs3u/0crZJoaoGzOgr9xzj2MPsSgm0d3NYgIi5UlEREtSRVmLVDkgwn5FI9aOZ591\n7ECbwhczZzqxFk7bA64M4us8qRLFDWROrmEY5uTkrPH8/GsLH/yj1NTwNTXnzMy8InKbZlJLXMdu\n/yBwyY7gkBA7cRIR0Y4dTqxZzdgCmzONZ4ab4h3PP8/2XXfhj0yMv8wHFoVvLl/m6ypSt0REVDOS\n22IzvLE8rHA03xvJzXhvlM22L9BBRESXLjmxNrXhu47QFtFO2oM1X3G7OC9uas10dLCdm2vnHgDh\nm5G14Ms9yt+VzHr83pTG879N2Y/3Te54/v0yM1VMRFEUxSr6AFUURXGJ5y38yZO8he/FQomw0ef5\n4NAh8IEeo1lSVMDlT9TUZG2rUVbGS/jkF7A2pPaZg449zShx6O1l2+vVl9D5zDNst7Zai3XPHo71\nrNHEJau8fv3r34Lv6nYeB5t2ALcbRbPFtiUmxkqsra0cZ/DLqKNJX/kK/7tA3BYFTwtw7MZK1BGV\nMqL9aSy6orycb+QbbkDfk0+ybaiKyQ+ge1w4uOQE3MhIi7EmJfH3Kr0cXGG7uFNm+32oHDTvJ+I6\nV1aCLyaBS7Bqay3GOnw4X1dZYkVEycv5/xRStUQEkrAUfMBojZOzzW3prHZ1OXG2X8RyNFnG9NRT\neJpXs0g/fuc76JRiwefP6xZeURTFJvoAVRRFcYk+QBVFUVzisZVT9uuF/Xk3+uq57dGcJVL0HZG7\nM1s5jXk1tkju5NxRn5GTjZkmypiMHkgvmRMzB7uY/ZKWkJVTRrceCNdUVT0IvrA5fHxsmtEG659A\ntgneKtp3x4wBX2wx5+OMLk8KFjVV4b1Y4jZ2rMUpBBIpD2WUVe3ZP9SxZ+40ZnSJRKeP8YtE3nKL\nOJo/4BCdeBI47zlz/v3gy3qS89w5b2ALZOZEznPnZqOvtiRdHGHp2EDoevtDx24x2kfLDorYF/0E\nnb1C3V3W2BERtbWxHWpJ6l9MeQgyFOBW/o7//9ZOzDlv28X346LXjoMvYD0+166FrkAVRVFcog9Q\nRVEUl3guY1IURVH6RVegiqIoLtEHqKIoikv0AaooiuISfYAqiqK4xHMdqJAIi9mCvde12Y18IOu6\nzOPsbHCFjudndlOTxZ5dIb1nSmtVRLEsWGKbMZVPTpCUcyqIcIJoWpq9WI8ccWLN3Y91kbKEMeli\nEfhOTuPav5CRXfgzvUXdnSXptZMn++/Zjx7d6thpxcHgaxaTDuum4xTOSVVcv3rkiL3PPzaWYzWl\nGc7v4lrUija83lFRbE+diuedekLU2ubn2/v86+r4Xn3vPXAlvc71puUF58HX58/jXk4Yk0nCDoh7\nxea9OmkSxxqBUytBSEL2txPRySksZxcyGid2bt/Lo1zmzbN0D9x9txPn6V+9A66AbI5lhT/25ecf\n5Sm95QtxFExSm9AiyMnRXnhFURSbfGE1JjqOVfq5f+C/lJkXsSvmUjavOswR7UXrRVfQ4MHW/lJK\n8V9zFH3SUV655fjjqi7raKxjr3sUB6C98Qb8/OuzWt6/H32yU+vOO8FVdo6Hij3wAJ42OeFuPnjn\nHTuxNjQ4cfZFoBCxFNnKaksCX9Ny7vYwNydyUW9VULmoyIk1rQ27dIriWVD58E34e0wexKvTvom4\nOh2c/fdXIG5Yt47v1ZVfxU6tjEqOwdSpLi5m21yB+pBY5fn42Luuu3f3/4C47Ta2ZScYEfWlcxfP\n4M0b8Tw5GP70aTuxRkY6ce5Z1QAuKeC85EuG4pr8HaZMQZ9ccfejHKcrUEVRFJfoA1RRFMUl+gBV\nFEVxiee38CIncLoZ36QVf4/tzA5UnfeqZ9WYggJUK4eERJA91Rg59CypABVeVkxvcuw5hiL99vs4\n7/mYMVRs+HBr4SHiGsjYiIjyK/mtoFnBkPyRGOJ1bhj4yn7Abx6TyQ6Z+zhfmLsvE3xZMtF8333g\nGyZCi7sJVbyS8jiPW47COANDDLIDdX4iosqdjjl5LCYPb1/D+VL5tp6IqHo8V2zE2Yjxb9x6qziQ\n1RNEVNjDQ+Vqx+FQufZD/Fb+0pDbwZe4iN9sV1RYCPJvdD/Gn1dVFfqSJ5xx7KIhqFw0u4PtoJtv\nxhPT08k2mxI47/nwP6Fv5lLxfuDGG8HXfZSrSfIMoa5cUOO6NroCVRRFcYk+QBVFUVzieQsvhFB/\n9CN0nZnGpStnLuBeLGENb9t7V+N5v/0tb9s//viLhvn3mblFbLI+/RR8q0UMxiwuStkW2a+zo2OU\nrfAAOcM7f/oZdO5iYeRj3lhys0+UBCUY+snJC8W/TcYyDrfkXlzi2LGdm8BXM1tsL40Caxgwtmgd\n+HpHzqLrQdxOvh/NGfY7pojK/p07wff887yFD4jHMiajMscaspRmxVYUas4XdV4xPdXgC5vO97jZ\nLGAOS7SFz+NiQOO3D6JTDIhMG4Yppcujc/lAdlYQ0bmVPN9+xMBDJCKiJZ0ixfTsz9D5gx+wLVOI\nhD03uYGYMtn0b/z7LqFroytQRVEUl+gDVFEUxSX6AFUURXGJ51bOM2ccZ/UhzAdK3Y19+/A0mY8x\nZpFRzOiTfBASYq/lLD/fifXMAmwtHTVVDL86fBjPE72mp1dhnk9qJQQHW2w7HD7cibX9zQ/B9f77\nbEMukYg2bGDbbPNbsuA6tPLdcQffHLuNoYKil7D0ChZOyTl9OalGjlfmw2Ji7F3T06c5VikQQ0Qx\nqZx3r/2a0Vb4ySeOeXI6luJIAZXo6OvUymvkDpsSOHcYOqwVfNAXbQp7SN/ly9ZibWzkttPwSmyR\nhetsJIwzpnF5nqgwIyKirCpRZthPi+Q/TFMTX9Nt29D34otsv/IK+uSDTAymIyK8AUpLtZVTURTF\nJvoAVRRFcYnnMibxyn/OHNzCD+7hLaO3tw/4Er8ktntR/wK+Y80hjh32RaP8AjRN5217aGUh+A5v\n5VnbE3DHREPF/sJc+WdGCc3T4PCBB/kZolTFLJWRc+Efewx9rfW8HQ6bjZ/H0qU8+9zWnMCcxaxV\nmfUebuFzz/K2PXMYXm9azYpS5z7EOL9dzMc1RpOaNdZgZ1xBgdCALPkd/lvRbVdSgq76erabsGFs\nYMitoXHTHdrCduiJ9XiezOkYW/jTbZcdO2Cg8QnCs8WHZIjCli/ni5JU3Ae+PLG7NxW5TsbzeSFk\nh75xnBYYvGgROhcscMyaDuxSjO1gdbbF76NW8FrRmeTXz/+rK1BFURSX6ANUURTFJfoAVRRFcYnH\nMqZjx7iEISw7Fp0jR7Jtyphs3uyYWZ88Da6c8aI9LS7OXmlIX58T67ET+HdB5hUHj8ccCC1fzva7\n74IrdxDHnplpr4yltpavqyyVIiLaInJgxpgZylp+ybFPX/ACX0CvKHkJDrYT66VLTpxllfj/iS5f\nmjMHT5s9m22/zWvB1/0UX1MfH3vXtKGBr2lkgXGvil7enH3Yrpl1QrQAm+MTZBJ0xYrrUhpkIitp\n0jqxHK8vjyc9DE7HkqJzT3Mub8QIe9e1q4tj9avCVkcaN45tc2iWbIs2fZKGBuv3at8wvFdffpnt\neYN2gE/WWLWPwaS87PrNyLj2NdUVqKIoikv0AaooiuISz51IiqIoSr/oClRRFMUl+gBVFEVxiT5A\nFUVRXKIPUEVRFJd47oU/coRrK4dg/VxYL/eJ59Zjn3jmQu7ZHjwae6Flz6o1KSsiokce4bdhTz4J\nrsSjLFNWEYW1bDf/B09B/MUv8EeGT+T+Yho61F6syclOrOvuKwPXjBlsh448Dz768pfZ3r4dfbKp\nPj/fTqxdXU6cJ89iN3BI7zE+MHX3iovZlnW2RFj46udn75o2NvLnL+c0ENGMH3N9397bksAna0Qb\nLwSDK3yXGBORm3t9aivn4NgWio93zL5lWOsp65mFnAIR4RiTigp7daApKRyrOUZGyAjQ1q3oW5Iq\neuONKZw5/lyzmpVlJ9bSUo7T7L2Xt1zRC8aEUCnT+N574KoYxONWEhO1DlRRFMUqHlegtRd51Wn8\nUacw4u6CzNkoVRMUwatM8QeViIjKxBx0W/PLiYjov/+bbanoS0QVZ0VHxy0Pge/jP3Y5dkOzobki\nZ5/fjnO4B4Ro41k5EuetU4tYZqxHper23/EUvqAS7FKRAsfWEIK5simHiOhKBGtpHcU5bZQsFXRN\nZRw54c+vP40bF8gpa1FR4Bo+nO3SCByAWJnKdt16vI9nHGdx470DDpCRGsqxvjgAMFUIkHduARes\n+MzVoDlI73pgruxkp9ySnYa0VonoPpJdi0SUteaIOMKdrVtSxorreAKHQyb1CKH0Rx4BH6XyDWAK\nWMtGq8TEa/+/ugJVFEVxiT5AFUVRXKIPUEVRFJd4bOWEt4UFmKurGMf5ocTnMa/Q+BwPpH/00Q/A\nd/U2MeDt/HlrbwubmjjW0EVGXkVIHKUUoxpT6Vihpm6oxtREsPpNbKy9N5tnzvSvxhT09QmOXbvu\nOPhiznL+LqcD3yZnzRZvxcPCrMSalcVx/vCHOPzu6gd83+w5hLnMmU/z73DRyM36iiFuNisb5s7t\nX+FIvgTeaeRr5ZvtxGHV6JSVDYWF1mKNieFYly1DX2y9qBiZiEr/iRM5RxcajxUD8vcoL7c4AE8M\na/xcsFK9qqUFfWLq4aaJWGmyZGwdH0RH24l140aO0xjlEJ3O3/m6YTPxPH9/ts1SguxstnNy9C28\noiiKTfQBqiiK4hKPxQ9+e1/iA2PAe2Inb2/NJbPclt544z+B74IYfO5P9oDwpk9Hp5j9XOpvlA1t\n5ZKirnosY4ldKIR5Y2sGGqLDqCouJK4bh8XSQaKwN2YLDrmSNWELo9DV2MllRbbG3+GuzBudm/nz\nH/IVFM2WdTq+3/42uI418/C7MItTBXcM4TqTplUV4JMixab4syzPq6U48HWM5eMUskdtIP+0TZ3Y\n2NGaytv26cYXpGgbb9uNyiBab8yfs4bc4j78MPpkPdbdd6Nv6lTHXEIvoS8CG12s8Oabjrnn7qXg\ngmu1ugB8yQU81u4mPI2eeIK/f8bG30FXoIqiKC7RB6iiKIpL9AGqKIriEs8NYLI90htzYJe2ccmH\n14Fa8EWfEHmc6RngO7OGqw1s5kC9okTpUlUV+Bo7Axw7fO9/4onTpjmm3z3D0bdtm7X4ADF0L3qD\noQpBon/M6J/tGsn5moCx2FoaEBHBB9VGOY5LZGnMqlU3onPIE44Z43safSKP2+eLJU5hD3OJEx3H\nMq0BIe7P0PXYJBwqeiDLWjCbmUxcYlN4Ec8zOoKtkRvIec/MbPwcMztZQCZ3DJb/pC1byPZCvDfC\nonwc+9gxskbfQr4m6Sfw+qx/nit7Bst8KBE8OzIn4vMhXlQyWsuDi/bhkhJ0yfuYfvlL8JVNb3bs\norNzwRc1S1Qu9VPuqStQRVEUl+gDVFEUxSWet/BiW3h5VRa45ojZ37WVxgDzZl4W1yzD5XvuLlZt\nCTVGtA8IocaTlY1/F2Dct9T/IyJas8YxKzZit02xGGneOGvAETJP8PZXphCIiMq2cuzJUmGIUHAp\n2khTkLmFskBmhFC4uWL8/Pe4HM0Up8zJ41KlrNV94Iu7m7ftdhINf0NeR6NWKXgcx7NggXHeeE4k\nZew3JHdA8siYNT8AoKzGkFV6SIqFPYG+TSV8byQk+IDPLM+yhbytzGajwY9zCaD8HhERtRbz9z63\nBUsAk4v5WpZhlsI10LVlqEZJca6Ks1irlNjMz7XJs3ALv/Ml3rb3I8akK1BFURS36ANUURTFJfoA\nVRRFcYlHNSY6f95xtl7Ecgshqk4Zi7rxPJEDzdyFjYW5W8TPsajGtHgxK9xsfu4SOl99leP53Xxw\nya5PUxkpZplQvGlttRZr76BBTqx1u/H6z3xno2M3PIj5msiVQvXq+98HX3cU55V8fCyp8ezm4Fpn\nzwZX8G23cZxVOLspco1QJzd6DGUplp+fPdWgnJz+1ZiyxoscnJk7FqpBpYG54EqJOMkHISHXZSaS\nKQCUIcqstk/FNs95fxLHHR144p13sr10qT01ptpaJ9acQ6g6n7VKzAx7CCc9lH73lGMvXIg/UpaH\nBQVZugdKS/nzN9rOoQTTHJEhHwBykgIR5tVjYlSNSVEUxSb6AFUURXGJ5y28oiiK0i+6AlUURXGJ\nPkAVRVFcog9QRVEUl+gDVFEUxSX6AFUURXGJPkAVRVFc8n8BUMBmhK9YWtMAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  17\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX1UVmXW/zdISGqEZEqojMM4hIyR\nEamRkfEY41tkZErkmJGRmcOQmTroMEZGSuY4ZOqQkTGOqRk55CsROWikZmRmajxExhhqQ0T4EhHB\n88/M2ft7FXfN4XL91m+t/flrn/Xl4Obc57481z77xautrY0URVGU/x7v/9cOKIqi/P+KLqCKoigu\n0QVUURTFJbqAKoqiuEQXUEVRFJf4eBK9vD5yXtHfe++VoOWPLeSDzp3xxC++YPuPfwTpyNZPHDsi\ngrx+sqc/xrPPOr6WDngIpLg+lXzQrRued+wY2+npqG3ZwnZIiDVfc3PJ8bWhAbWSEraDglALD2e7\npQW1EyfYLiiwc11bvbwcP72ffx6080kpjv3BB3jekKq/8cGtt6J46hTbYWH2Pv/ISE4nmTIFpMJ+\nMx07cUcqaMXj8xxbXkMiomHD2A4Ls3iv5uW162v+Wl/HXr4cT6vYXOPYsZNCQBs/nu20NIu+NjY6\nvj44xx+kBx9kW35VTH/MezWirowPYmPt+Jqf7/gZujAFpKlT2f7FL/C0jz5iu08f1AYNYjsq6oev\nqT6BKoqiuMTLUx5oXh4/KaUOr2z352jNGjgsH5vt2DHLJuDP/u//sv3ee/b+p6ytdXwtPx4MUsxq\n/h9p2/h80NauZXvduI34O7/9lu2777bna1kZX/TNm0EqGLTUseXDMRFRUhLbM2YYv3LgdD5YscKK\nr83N/Pn7zsAnN/mIUUzxIMVvEj8rnziJ6OLXixz7668vzFNd7Vj0NXgJP4GWj18KWsx7z/LBkiX4\nOy+/nO39+635ekw82YcvXAha/hXzHLtfPzxvzBi2m5o+B+3jj3s6dmioxeuak+P42jxnDkh7/8G3\ncWz0eTxPbJ/ylzWCJP/k6mpLvnbvzrulr74EqaqK7XHj8DS5q9u4thnFl19mu53vvz6BKoqiuEQX\nUEVRFJfoAqooiuISjzHQ6mqOgZkvqIuis/hgxAgUm5ocszY8DqTgUxV8EBVlL1aTkcF/iAx6EBEN\nHcp2//4gbfg6wbEnfpoD2ikR8wlqa7Pma0oKX9f84QWglfef7NgxX24FzWvscMe+//6uoOWN5dgi\nJSTY8TU2lq+pDBYR0YOd+O31o4/iaTKzIOruASiOGsX20qXWrmlcHF/T0gVlKMpA9+7dqD32GNsy\nPk9Em+fPd+xxFj//UyIGOrgvfv/mzmV75Eg876mn2F61Cu/xp5/m+3rmTHsx0H37+LpedRVqXfYU\n84G4VkREdPw42/KPIqLWdI5Je3tbyhhppXYXMu+GesdOmBII2qxZbJsJOlFr0vggN1djoIqiKDbR\nBVRRFMUlHhPpZQaKfCInIqJ/bXfMQ+MyQYo8zNu74F278Ly9e9kuLiZriLSJwuhskBJbOD1p8MIE\n0BYsEAfGnilo2jRr7rWL3F4SUcw9nRzbaxKmgO3ceZFjG7siKp/Cf1eMLd9EHtUpY+u7cu1NfPC2\ncZ5Mur/9dpBi9/BnY2y0O4RMlo6dHwtaejof3/A4nic//+7dUZvy0Ty6EAT17evYZvTLz49tmchN\nRNSjB9vPP4+hqAvFkAGcgtSzHybSp6dz+tqMEkxl82/hbTN8OETkDfFAO89wrZ14hx1qhEVqSuoc\ne/163MJfdhnbsjCAiGhXv1zHnkk/jD6BKoqiuEQXUEVRFJfoAqooiuISjzHQmP5cLjZ1ak/Qmqdx\n4Kub0YRBxhKXbsKmB8Nf51hF1E9288epHMkpB9F+qM1ezrFEo+qUIhZx2lBmP0wpyhomYrTxGOPp\nCPkLa/nAB2Og9M47jtl2GkvSLv4ZfwbnzuFp3lNFA4UYLFd1S2MVf/5Br/0NtILv7nZssyHK+LWs\nBR/GOHfZShloxL+vIySHc3rcX7vindW7N9u9zlWDtmoVn3fXXeNBCzsmUsPCMHbeIUSNphnnlK8I\nzAYd8nXCffdVgPbhhza/TYxvD457Nu/ZD1rYpMGObTbpmHgzdxCpX10IWuAU/s5RAX7n3OJzySWO\n3RUz/Ki8LsyxY+rKQfv6DbYHp+Pbg/2basQRrmP/QZ9AFUVRXKILqKIoiks8ViLl53N2v5+xLU4u\nEVtGo6fhhpOcNjKxLz4yQ8VCaam9SqRDh/gPMRpUNt/JW0rfBuxiQ2fPsu1jRDRkQ05fX3u+Jiay\nr29jDtCD406ybaRVDBzItvfyXNAm7OEQxsaNdqo7ysr484+tw21YaUCiY8c9hNVGrR8edexly/B3\nyu30xIn2KmZqa9nX4LVYUQb3p9Gc0qv3YXF0LWgffsg5LlZ718p7VZbCENH5zRzykN23iLCT0HiM\nNtCll3I4pK2tuzVfY2P5uprhBpmBZ4YbYpYn84F5YkAA26mpVnytr2c/zY5LsseuDJEQEW3axHZu\nNIYT9l3JoYYhQ7QfqKIoilV0AVUURXGJLqCKoigu8RgDrazkuIKcD0NEtGgR20ZTbXrpJbaHLE5E\n8cABtmtq7MWVKir4DzFaeRft4fKthH8+C1qjaO3ubwyh8X2YZys1N9uLgR06xNc1MghjskfqOFUp\n4u5rQBsV9J5jm6W1TzzBdmKiHV/T0thPMx4Xs0qkopg3h8xrGjsWpOzNEY6dkWExrvj5546vLb16\ngeQjgsmTz64ArWAcx3Ynb8Z7tSBoNh/k5FyYe/XgQdRkSyAZvCMir+fkrK8AQni4T1tbvDVfY2L4\nHihfiylglS2hjh22K4/axfgbS8fzZxAXZ+ke2L+f4/WzBoNU9u31bC/Gdw6xw1odO3UaPk/mHRep\ni8XFGgNVFEWxiS6giqIoLvG4hVcURVHaR59AFUVRXKILqKIoikt0AVUURXGJLqCKoigu8djOjpKT\nnTdMG25bB5Jsp5byDOYrVr/C+YqhC1NAW3wlt1qbM8diHqDIAzPJ2Mx5YZdeippMGZ14GuvLoWZ3\n8mRrvsq63csu+w60ti++4gNZp0+E8x9+9zuQJu/jHMGCAjvXVeYBhzVgKzNZRHx+Adaed9kh6ubN\nUYdyTozFa0qZmfz5y1xjIiqbu82xb7rpVtA+++w1xw4wUivlhJeyMov3alER+2qMu5BjVEyHKqv4\necf8PLbV8T0+erRFX8+fbz9n9TD3EciuSwUp45jIEzb6HZbP5TaBMTGWfB08mP00x5mK71Hi8aUg\nyQG+hxZgvwf4e7OyNA9UURTFJp6fQEV3oonnsElv43jxZDn3M9BCD/AQt4oZRnPf1/9LD38qsjTn\nySdBWrCPn4h9W86Dljy1i2NPHBcEmjkn3BZ1POOK7r+/E2j1xFVTTT44ACtYTMCqufUh0Aq+yBJH\nOOTPLWE7xBO5hwlnZselgQO5oifhj9ejKJ+wJk8mW9Q8ztPiQn77W9CGD2//vN69vxBH+MR3zTX4\n2Vhj4kS2jZZbdeIz7vHVV6D1E0PdCrdgtY1R8GUP8ZRZ1oINh3cc5+PsWfWg0SLxXTIqA8VHRdu3\nkxXypvITeerQQyiKdaxwL65HBT68jvWchpVonzdN4YOsLPoh9AlUURTFJbqAKoqiuEQXUEVRFJd4\njIFuGMMdmu+8EzX/QZF8YE6UCg93zOVGfEyEzuzS1MT2LbeA9HlnfoFW+iK+rF+XJAaHteDlqBg1\nz7FtjuySXbGNBunwwjK06Qho5U9zJ5nVC/C8piaOe2K+RAfYs8cx6yelgRQo2uNnjIsFjeqi2R41\nCrU33qALwYm3+HMN6VcLWms6dxHyDX8NNBmPNjtcXbC44q2cCVA5Dd8K7xnIx0bTeVomOqAZgwwo\n8azopm4xttwYzrHWA6tRk8MlcldjvH7gSM7MiOtTCdqOx18VR7d32EciDLMeokjQAkQiSMjJV0Fr\nuET8nNngqlNv+jH0CVRRFMUluoAqiqK4xHM3prIyFmX6CRHsd/YYaUPDfvObdn9lRh/eamRnW0z4\n7d6dfb3qKtSixZZS7tmIMLF71SrU5CS94GBrvh7z8nJ8Db/d2MKItBE6cwa1Tz91zG0lviA98gjb\nR4/aua7Q+Dk9DrT6TaWOHbjFmO0tEv6PNASDFNFNzNoOCbH3+Tc3O77Wdu4MUvDQofxPfoZ7XzlH\n0Lw1Gp8Uzbcfesiar9XV1O6XToZtcksiQEsbVObYhwIwbAIDB73tfa+WLmVfg4wsPxmOiz9uNFQW\nU+/2/S9u74fsE+lxaWl2fJVr1U03gSRblq9+Ai/93LlsG/2rKX6NGIy3bp0m0iuKothEF1BFURSX\n6AKqKIriEs+lnHJynLSJoNC+v3meCJbUpmOjiar0/8a9n87pY186dq8/Z6B44gTbs2ahtmAB22YQ\nTDTMoBz8OzqCnzyQQRgi8LV+OJaWBYh0rNGfYfns6FtlvpgdXyMPcNlb85tvghY4lX07/yqmhhz/\nkONMU6bg79w/dAkf5BrNWzrC61wj3GxqYnBgzc2Y4tTcm1NVfI2hght6cLnsRLJH6GZOVaocOxO0\n/L0c95S3JhFR9BaOe+42SiDlrdpO1aErZIzYTPORrxYKTmEzkcmHOV47xMzVk+8dLBE5g6/Noq0Y\n5xz90M8dO+PqraAtfmqMY8/p8zfQDs3lhEBMjGL0CVRRFMUluoAqiqK4xOMWfsVY7qMYcBi1ZNHn\nMeE6fGRu2sH2ofmNoPXp408XgktERUHllGzQ5I6hh/EXJ1VxD8CD0aiN+SNXYVhqGkNEROtEKkUn\n3BnTnIu4+uewcc1jr7uOD154AbTmhbxtxwSnDiD2374nT6K2dq1jdvn970GKOMBpTWPHGlUxZ/3o\ngvDNN47ZamoDBrAWhGlVvs8/79hn77sPtIl/OC2OLO6LRZpXWDcMKSwoYf/qv74Yz/N7yzFjvtkC\nUtQWrkSzuYVfv57t8qEYbqgZ8yfHnmx0laIqkeMkm24Sfb+zlwVkqCgpCbXGkg18YMRF5pxdzAdG\nnlbkX/7CB2Vl9EPoE6iiKIpLdAFVFEVxiS6giqIoLvEYA5UjQYYNQ23DtRxz2+9jpA2JGEcjTQBJ\nNPixyh13sL39xc9BC1vNqTON8zHF59A/uzt2ZdWXoHXvTheEjBkcF/a69Bxoc77jPK+DmFVDsVtE\n3GvhQtB8h4i5VO+9RzbIXc7/v6adQz/poovY9jFuI5EOZo5EohHjrPj2PUT6V+gXX6AmUtfC92BH\n8sqhuxy721tvgUYyJmozsCj8SexWDJL8nrW+1ASat0x5E6lZREQVATIlDDtndYTyceL70mMgaAf/\nzrH85tuw0rHxXdaiDuI1b53CXeBtPcHNTOfI98zxJ1Bbxu8yAoZuA03GS43G+eSbhGmEP4Q+gSqK\norhEF1BFURSXeO7GpCiKorSLPoEqiqK4RBdQRVEUl+gCqiiK4hJdQBVFUVziuZ1dRobzhqloKNaX\nyw5ViSPPgzZ5WhfHfuop/JUXi/Jef397owfS0nj0gNmxLqSuwrFLG3C+ZtxwUTm9ciWeKEZoUE6O\nvfET+fn85m4c5kUOHsnjD/bTYNAgUW3NGtRky76wMCu+nhWjR7rddRdoFbO41Zc5aTWkisd9lBKO\nAokLEpNGIyLsXVN/f8fXtCnYfyE3gOvEC/pjPufkMzy2o3rUQ6CFzv/xkQ6uEJ9/8PwUkGo3lfOB\nkV/rNaSfY7f9ZTP+zn/9i+158+z5mprK9+oHH6AmezMYI0wzdsU7tjkpR7RRoNGj7awBZWX8/Td7\nSEz3E3moZs6yTFQ2Z5asFmNI8/N1pIeiKIpNPKYxVYsnkFBz+Fl/0UbZGOK0zYublI4OqgCt5dpr\nHdunrc3e/5Q9e/IfIkuoiIhuuMExK3d+AlKYUZkCyA5EFv9Xl0PFQpdjh5vTc7jZbq+vcJ62HOxX\n0ScBJPmfZ3CwpSd7eU3lMHsiau4T6tidO2OVUtta8XR0yy14XkBPx/b1tbcDKS7mazreGKjeeJDn\nwn+vma887tMHNfkok5JizVc5rO/qq7HP17PPjnLs6dOwr9SoMfy8s/0to6vZ8OFsFxVZ8zU/n31N\nCS9H7ViMY6ecfAK02nvnOXbwDuM7Jrs/b9tmx9fiYsfP+CXxIMlqIzFfkIjwexNYshG0DW1cRTlx\n4g/fq/oEqiiK4hJdQBVFUVyiC6iiKIpLPJdyVlS0Ky7dxW+zz55FbYfoSF++CTtuQ6egMWPsxUDT\n0thXYzhc/UsvOXagfHNIRBse2e/YE6swjpN3OcdxUlPtxevo/HnH19auXUFKupP/jI3d8A1t/jCO\nJaX0Nzpky+COr68dXysrHWfydoWBlFrC8aGoKowdVTwihnPJUQFERPPns33o0IV5W2x0qiray3FX\nMwQ6bRrbraewi1dzr16O7WszXp+c7Pi6buw6kHbtYluEvImIqKyEx+XVde4MGiRC2PQ1N5eva3g4\naiKWWTgyD6TEuzndZvZvvwYtZ4HI2unSxY6viYmOn16vYjeqtu944NyKVfjMOP2A+I6Z7ZgOHGC7\nnbiyPoEqiqK4RBdQRVEUl3hOpJcNfI19+sxLOf0i4cA80CAbxNgzHRAJt9E2O0GJ6VcbnsGt2EQ/\nHmSWOwhTKho+YjtmB/4dV19tzz1AVCF4G/PdNw4XW+V77gGtSfTXXXE4FrTpt4nuz19iY2jXiFS1\n1DVG02zxOU7CiAn1fPhuxza3oYFjMR3KGrKQwBhi1tLCW3g5JI2IqHWXCIUkLQDN12zMbInTf+Jt\ne/J3GOJKDufvS/xcLPqYOZfHBS79+9/xl0YbExFtIStmjPyw6oNcsHDMuK7Ut69jmk21yw5woU0s\n3sbueZOnM/7jH4UgHRLZaNOHYlplgkixKqrD1MCG115z7IB2/ll9AlUURXGJLqCKoigu0QVUURTF\nJZ7TmK6/nsUHH0RNTr8yi/BFPCphFqa/zBNhxiFD7KUGNYmyUz8jVYn++U/HzLz/JEiyt0DmLGyK\ncvoMx2p69bLna14el8fFPYC/tv9VV/GBLM8jgphkZl1aexJNnmzH1z3img777W9BSzjOQ8xefx3P\nu0bMtytfg+WoZaf4foiNtZgaNmCA42vhE0dBSlwrhoMZ8VESaWTlT78N0qAb2L0uNlODrrjC8TX/\nCbwfU3ZwetiDl2F62MMPsx120xX4O2Wp9YoV9nyNjGy/mchjj7F92WWobd3K9tt4XRs/5Ri9tYZC\nGzeynw0NqPXuzfa+fajJPLYTOIyOli1ju51mMvoEqiiK4hJdQBVFUVzicQtfX89bzcAp+IqflvCs\n9e8NjRfD31OX4BZ+yXP8JOxvc1t05Ijj64PPRIC0clSRY7eOxb9D7pLNvoUR88XWr7DQmq/NzXxd\nfU9UozhypGO2HsPtr/cI7q2Z0q8UtPyFIh0mONiOr927883xl7+0+2NeE41OXeL/5e++6wSKLETK\nzra3hZcdjiL3YlUMTZ3KtugGRkS07lGujEtegPcqnTnD9smT9u7Vmhq+rmYHqOXLHTNyNYZp0tPZ\nTpnmC1r9t986dqDF71VtLV/XYB9MD8xczulhRkEdzXlF9LLdbPQufeEFtm11OZswwfFzAmHoY+N6\n0dXqV7/C81580TFLz2L/3biD3BmNZs7ULbyiKIpNdAFVFEVxiS6giqIoLvHckV52Tq8qRlGmCsyY\ngZpMDZD1h+Zxbq61WE1UFPtquvOQGHXz9b5DoFX6RTq2HIFCRDRiBNvx8RZTbkTnqG0jc0GKEg2q\ngi66CM9btIhto+t+TFWBY5eX2/H1kEhjily8GLWRsx078ngRaDJeLrsLERFFXi1csxkDF/HaAUFY\nynr0YRETLSnB80S5Hr3xBki7xCSD4TZ9FfG6rIEYr5NNteTsICKiv/5VznrCoGPbV2IqgL+/PV8n\nT+YFQn6viShhEXekL1qGsfyKBp5YEFVnrB2y7DQw0I6vYWGOn6d347uDXovF1Acz5iw7LpkvQaZM\nYbuddyD6BKooiuISXUAVRVFc4rkSSVEURWkXfQJVFEVxiS6giqIoLtEFVFEUxSW6gCqKorjE40iP\n3FzOrfQxflIOsBu9NxNF0VttwJOTQXr3Xba7dLGYW9nc3O7bsEIxwTBRjikhovzTYxx73Dg8T9Ye\nFxTY87WggK/r5C0TQFs6lPMCjVRPGEdhlhcPGsR2cLAlX+Pi+Jr+z/+AVHYj9yUMMOYdRPqJPLw1\na/C8kdmObbOdnazZ7tYbf63/o4/ygTGxlbbzaJqMe7G1XPasej6wla9IRJSVxddV/PtERPTzn7Nt\nXtgxfK/WXDUGJPmj1lrEERHl5PC0yznGtMstIm/2lVdA2zaeR2WYXfDmfJPFB5mZdnxNSOBrKnsf\nEFFlOOclh0X743myFaeRsx4fXuPYxcU/fE31CVRRFMUlHp9AZZPe0auMbkxy5RYdZIiIGpu4U8zR\nldfjeUmXs12EFSwdYcVq/jenT20GbfgX4uG0BTvK7BXdgVKGYQVDjx5Gdx5LyCfdAU9iJcpw0Ze2\nYCrOfi+YwcPxaNYs/KXyMwiOJBvUiUFdPYym2bHXczcor6uxme5dd/E0vnUzxoIWWyKePmKNnUsH\nkM3BBj6PmxFZDfXXv34LWls4X6vsG7aCVlnHT3lhgR330UFO2rvkEtRE9Uv8kniQHhfD3y/BGY8U\nUiW6c8XFkS32zpnj2G39VoJW9N0njh29EJ+IRwdwc/IDYogcEVHtVP7cg614SVhFZEwODAsX32u5\nVSPCoZdGlVrQwh//Z/UJVFEUxSW6gCqKorhEF1BFURSXeCzlhM7pq7BrUOVIfiNndtyRXYzMZkwR\nW3L4YPZse28LBw92fK3fsR+kwBPcgSlwOMYHZXOWQw0hoBUt57dwCQn23myOGsXX9XojRNzSwnaP\nHqil7RId8o0YaE0f7owTEmLJ19pavjkMZzIWcMw5ewrGjiF9wBjUlR/AnXFSUiy+LX72Wfb1zjtB\nKtzDndMTo2tAk+kMdb/7HUg9Pv6YD0JD7fkq3xjL4C0R0eHDjnn6hkSQ5ItuM5kgc6UYMmeze77M\nbhk/HqTPRSernmYsV37u5rC2vXvZTkmx4uu+ffyd+vvfUcuexp95YwB+x/1/Lb6AMjZNRPTLX7K9\nf7++hVcURbGJLqCKoigu8biFr6zkx+Irr8QkYz8/3jI0NWEjWi8vTrpuNPrQdrvxRj4oK7sgs9bN\nnrkbB3LqzOkHMHVGhh9GjcLzZLK6rVnrRESpqeyrOfpdbs3MxtDeQ8XQq044rI127mTbUkPdrCz2\nM3OTkRoluv3OXouaLLoID8fTRt7DrvW02KS4qIh9NQsQZF518CYMRZGfSA2TW0siDJNERFyYQopB\n2OBbptXsuxTTmL77jm3T1ZmHU/ggP9/eFr6ykheIe+5B7eKL2f7kE5AmXMfHG+/B9DC66y62Gxut\n+CrDYtufPoKiWBA29MJigIk/F+E+ozql5cknHdunnXtVn0AVRVFcoguooiiKS3QBVRRFcYnHUs6w\nunLHbnuxCrT6sdwkpEcPbDTRekqUSx7cCdqOX//asUf+dD9/FNmzwqxypB2cRtHr4kaQkpKec+y2\ntzCnaHInGde5u4Me/jDJxzAmWz2F47Xe1Io/LHPCjHI1GDiXnU02gOwTWddLRCeu5nLNHJnuQ0RH\nmnig2Pz5IFGSFc++T8Imvh8TxmL5aOkxbthSNxxjYJFB4l41O7TccQfbR4923Ml/MzmAS5hbrr4N\nNB9Rajjk4VOgLa3jv9EcODfzk1f5ID+frCGHRxovCUqH8b1r3B60cb1IV7wKP/XQHvwdxFF07tl+\nPX9vNnyA36lHl0Q4tvl+pOgYv1dIiMZ0q9KdHP7FaDSjT6CKoigu0QVUURTFJZ6Hyu3fz9U9Q4aA\nFCgGWJ9/423QunblbdG31As0H5nCsG7dhUkNCTC6PInmpbEzMOVm9+5PHXvr1p+BJnfMiYkWq2aK\niviiDxyImoxFGHO4KUlshWRDViKi3bvZ/uQTK742NvI19T+InaEabrrJsQNuvhlPFOGFwPCeIE2a\nxHZursVreuQIX1O57STCWISRN5a5nP3LWoAhk0aRKuZvcy68qJr73ucv4093Y9io+pX3HDu0D3Yc\nIxFSoaNH7fmakuL4WrMAQwNBP+N/xvfcOdBa/bgD08sv46+U49a//trOPZCSwvdq/jD00z+dU7zO\nnMFubLffzp//ulfRlTK5hY/XfqCKoihW0QVUURTFJbqAKoqiuMRjGpOsc+xmaiKlwUxVue46jit4\nv2OcN9Jm8hIzOajYsQ8FYfd8WVq4ezemKixaxHFPM4sl9zkR9vAUK/4vgRktR7HMrXQ4p2PEUS2e\nKFKV0tbHgJT7WIE1//6DLMM8eRK7MX0huvwfvgzDQwPf4Q+9frPRpef4cXGA87I6woQFnKqysQW7\nGNGwYWwb6V9r13JaU48e+DyRduut1vyTlC/j8sGYR4x2XLJG86qrQAqV98rZvnie8bO2yO7P8cSR\nRgeogK/4HvBNwu9cp9decOw//AEnFlx+OVlHdvna0HUpaLKR2Pr1GJMffVZMhLgWW9DHv/OEOJhH\nP4Q+gSqKorhEF1BFURSXeE5jUhRFUdpFn0AVRVFcoguooiiKS3QBVRRFcYnnNKaMDCdA2iq6MxMR\neYvyvQevLAXt6afZ7toV03Ta3urOBzEx1krOvLw+dXx96y0syRRNvql3bzxvyP2itPPAAdBiR/Dg\ntLIye2WHXl7nHF/37u0KWt+h/M8EG+Wak2/k7lAFa7DscN87/H/hkCF2fC0t5fK4uP8xfuV117H9\n7beoLV7smPXR2McmcIxI23n7bXslh2IA3rpdwSDJ5kynsMERlOvKKloioqXDCvkgMdGerz178osH\no3VYXsBsx96xA0+TM93OnkUtNbqCD6KirPl6wMvL8TV6J3ZWW1HFn605G6/6PpECZNzHia9wiWph\noaXvVWam46fX438E6bHHuCQ38yCmuLVu4s/Yu+k8/k7Z4SwrS0s5FUVRbKILqKIoiks8pzHFxTli\n2kDcpstHdjlbnYhINGr6HkXdRrc4AAAcqElEQVRn4/igtNTaViMjg7ebxk6c0tPZNhu/yiols2vM\n6dNsL11qbwsfF8e+nsRZfXT05ul8MGIEaA++ztuPleewiqd5NVci+fpa8vX8eR4qt6gLSFn9uEKl\ncXwKaP6LMhy7eio2d5a7orw8i92Y/P35Rl6wAKRt4VylMvrLv+F5t9/umAlJ+DcWBYhrXFBwYWat\n+xhRNNHxt9ho4xt/WFTYdMPawMVfpjr2nDkWr6voxjQzALsctbSwnes3GzRouSR/kAirrVJTrfha\nW8vfKTMUI7//XX5xBWiL0/kLOOfT6aBRdDTb7cyv1ydQRVEUl+gCqiiK4hJdQBVFUVziMQZaVMRx\nBTNUM7rPIccOHold3mv31vCBOeFNtiRPSLAWqwkOZl/NJt/F4WKQmBFXhDhHFQ7O8x8b69iNjRbj\nSiIGFhruC5JMXQlbkgqa7DqfeiMOOZOZIhkZdnytqeFrevAgavG38T/h9/e/oyi6vp/+2h+kXl8c\n4YOICGvXtL6+fV/j5l1v/jjz4ouOGTw8DKTaOvHZNDfb+/xFeiDEComothv7ELweuwpVjuVYrpk2\ntEJ0DvOx2T1/61b29ZprQBp1H6eLbe+L92rdczyssYds60VEXsf472prG2XH1+nTHT/zBq0ASQ4h\nCFuGcc7icfyz5rsT2cQrNlY70iuKolhFF1BFURSXeKxEkjvamQeN5rd13F21pGQbaqK8o2zGRpBi\nl4jGqwnYhLUjyMdtM1VpwKu5jn10RiWKcgCZkY9lPtLbwqvzGXG0F7SwU6IBsRwURgRD5vLCsWri\n9BlMwbFByBBO+djzNOZb+YmuuDN34ee4dD6HdHpNnQratv4cThkdQdYIFE2d4155BUU59G7lStTE\ngPWFC7NQa1hEFwQx+z11CYYN8rrxNn3UUdzCPzGcbTN10Oerr6y5J6m9Zoxjmw3Htw8T1UY3TgLt\nmNjCDzPKv+6/H+fL26B2Pm/FdxlRw9ShHG6Eci4iWruG7YJ+OE8+eRXfD7Gx9IPoE6iiKIpLdAFV\nFEVxiS6giqIoLvFcyunr64jFW5pBkmENMzMoeJko6zICibIkNDfXZoejk46v3btjuZYcejfz6ydA\no1/+ku0eODgNAqu+vtZ8jYnhlJtLL0VNVBZS6l4skYSgtEhpIiJK+y1/jrauq0xjCvHBAXdlVZzC\nErspDTRayMO5EiZhGpOcKTh9usXUsLw8x1dZ1khENKcPl28mb70btHX9Oe51JAljoLICMTLSnq8b\nNvB1HTAAtaMiO23ixUUonhGxc3nfEmHLqc8/t3ddc3P5xho3DqTGgBDH9j9xBDRoF2UGT2Uc0lbn\nqMJCx88N32LHpYk3f+7YFSdwqJwIR5P3NCNtUK4H2dmaxqQoimITXUAVRVFc4nkL//nnjlh2DB99\nZbWHnx+eJjNXvJfkgBa4iLf39fX2tkWZmbwtksVFREQJDdypaN+VmI51rWhgnPds+9fC6nbzyBHn\nHxr1COby7NjxhmO3ffxzPE9uhYyOuofG8VbU1naztZWv6eHDqMlUsS5bMFWtZugExw7ZhKk4s09x\nmk5OjsVrWlHBH95DD6E2Y4ZjVl6HW3g5pj4oCE+LXHKBujEtXcq+GmleNQ0c8hBuf8+/VatQq+7E\n7vW3WYnU2Mj36kQMx5w7x/b69Xha8I78dsXUfsWOba0jV2qq4+fkpjyQ5O0w5OJDoKWt5pS73H54\nr0IbJ29v3cIriqLYRBdQRVEUl+gCqiiK4hKPpZxH6jjuKTJTiIioeBDHMk8/gnFO2dm9+yDsVG00\n0rZGVmdOT9rmMw/Ff/7TMS8fhpIsiJx+zEjHgbQmLPPqEAEBjrn9b/Wo1fVl2wyCbdrkmPHjsHTz\nrOjiVF7eYQ+JiMj7MMeLIs0WVzJtZswYkEICGtmXoTNBy9kr40yodYTqgCjHDpWT4oiIxDC0sA0b\nQAoTOXh5x/Hzj/z1r635BxhxT0lIA1/zvNewlLfLV+023aehommSUcncMUQccMAA7Egv0wPN7lDZ\nXUXpr9Eivh8e2kF8pwoGFqD2ochHG4YLQO6veehl/fV4PwZuhqGCP/jP6hOooiiKS3QBVRRFcYnn\nNCZFURSlXfQJVFEUxSW6gCqKorhEF1BFURSXeExjgk4sl10G0uSdXBJndoB/+222r7oKtZy5Im0n\nMNBayVlyMpcdysFsRES9erH97ruoddnL3aFo1y4U5cCv0FBrvu7bx76a16ehK/8zM27H+HThJE6r\n2OaHaRWjd4l0sZwc64O65PAtIqL42y527OoPvwYt9CVOKVt6MaaUxT/Crg20WXIoymP3ncHy2CH7\neCLBhl6YqjTxM5FWZdSrNi7jtB1/f4tlp6NHO74e274dpGCRquS/2igtFK2szvfDv7FLiejcZHFY\nI2VlOQ7Vz8BUvhtuYPvorZiuSGKQXGEAdhVL7LOfDwYPtuNrWRn7ORDbx4vhGRTWsB+0qGmDHXvZ\nMvyVclhFQoIOlVMURbGK57fwaWmOuG1kLkjyqdNMsn/qKbb37UNNJgBXVNj7X/3IEX6qO3YMtcQR\nnNidvRwbImSM4z6Grb/6FWjet9zCB8XF9v5Xr67miy7mHBERXkxjlox8Apk8FcchFywUo6RDQuz4\nKppeZNRhkrHsY2q2pkyMZl8SZoSAJvuheHtbfKorL+draiT2k5jf9L2Z16tXsy0fVczjmBhrvj74\nIN+rK9d3B23CLV+2e55srbtlC2oRn3BCOI0Zc0FGcHt1/gKktn1coHJ+4GDQuvhw/+ANr+K9+tln\nbM+caeceKCjga2puJGXjFdnjlYioSxPviKsbAkGTT6Tt9djVJ1BFURSX6AKqKIriEl1AFUVRXOL5\nLbxg9F58A5d3gufHFKxpBW1CEq/LcowLEVFFuiz0N2bNd4CIcPYhYlU6imO508G8eZ+A1NLCbzOH\n/wPjwbEjMHZjDRlbk005iIhuuoltOSCJCIIyq3eUorZZzJcPwbijWyrHctzzyz+hln2K36xW3o5N\nJmjuXMdctmwdSN6zRCx1qfGWuSPsFX9/374gFS7gBh2JDYavMs5sNG8pnsvXOL7jHjpcIUZ2Ve7D\nmGedCImb2SR79rAdscO4dkOHWvLOQGQm/PnPUSCtq+I/JPmY0cDjT3zDTPy50Rgc4v52ruzkyzgG\nPGIhxsDlrRHrY3Ta+YTXg9APPwQpd75cR7Ch/H/QJ1BFURSX6AKqKIriEs9pTK2tnEhdgmtt/Jpk\nPjCGyVRM4u3FokX4Kzf2gS2cvXSL0lL+Q0QSLxHR6U48gtdMpJdpNVnPoTtB8u86edKar6WlnHLx\nzjuo/W4u/zPGqCla9zf+E80JzPGDeHQr9expx1cxKji3CUe+pvmJuTNmalCfPo65dBOGE+QY2bg4\ni2lMkZGOr4n9ce6NvB2MKdvUrx/bctouEVH8MZG6l5Zmzdf6ev78A30aURRb5vrwGJBkXUfRwAzQ\nmhdkO7avr8Xrmpnp+NpzFY59/nwtzzbadyluxWXxQspBLF6QLTlTUuz4Wl3N1zSUqkErOhzq2AkB\nZaAtPcBJ9zMPJIMGi1c7qYH6BKooiuISXUAVRVFcoguooiiKSzzHQGfPbjeuCMEjMauHiGjxz7jx\nhJmJ87vfsb19u71YzeLFHAORpWJERDnPiLjiK6+AVjuUm3IEN2HshO64g+333rPm67Zt7Oszz6C2\nva+INZo1siL9qfAYNpNI7Gy/lC8ri/3MHFQEWvNttzm274034olyJpFxb8AgHZuz1kXjk9QWbHyS\n5zPdsQPXoyYzl/yMoHPGU6LM8ssvL0jZccR7f0Px9793zNI1NSDJEsWsBZg6WFnFz0JhYfa+VxMm\nsK9mZXGZTxwfREejKC+mOaNK3gP+/lZ8bW1lP71XPoviRx+xbbyUWbeZZ4sl78VY7ZFpHMeNiNBS\nTkVRFKvoAqooiuISj1v4vDx+LE7dYYz1rKpiW4wNJiJKuZ2rK/LPTgAtoWmjYxcV2dtqpKayr48/\njlqvjzh1odwHewXGDOWtUOxw/P+kbNMFSA0iospK9vXKK78D7a23Ojl2ulFQtX+9CDHIbRARzQzi\nip+lSy1d14ICvjnMubUyH+jECdTk7GpDqyCuZomKsvf5y3BDUhJqYQf5nmseh/ej7A529iyeJ4vE\n4uMtpgZVVPC2+NprQQoS4ZDZQzHlRlYmmeEG+WtWrrwwXa7S1mNa1euvs/2HP+Bp8roak4QpP0ik\nYGVnW+9dO/gAhmn2r6rgg+HD8TxZFWW2cZNpjHl5uoVXFEWxiS6giqIoLtEFVFEUxSU/PQZ6Csu4\nZMCocmoOSDLdQc4VIcK4XnW1xViN6J4PKVZEGBQzA2Qij2VDG8bH7ryTbZvd02X3bLND9vLlbJuZ\nYzJGV/SB0eFGdpLp0sWKr15eTY6fbW8YXWxkfGjtWpBOPfmkY3+6F++vIZ/xXCdKTLwgM5HIB5uM\nbXgvzLG7YwN4in9AXMc33kARW5Jb8/X8ef785QwsIqJg6YORclM4jUsnzVAelHlafLdA8fGOr2Xz\ni0GSoe6AADxNXjo5O4mIaOJF9u+BQ4fa70iftoe/100vvwyan9naXyLTn2bO1BiooiiKTXQBVRRF\ncYnnSiRFURSlXfQJVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEs9TOevr+Q3TGJx0J0cLls4oBCnu\nqGgnJXOpiDBhLSrKWr6azFl94IFvQfv444sc2xxe+Pnx8/w71nYBLfXYhRk/smIF+zp9GrYlI5FD\n6TUf6/ZffJHrpMXkByIiyhkppnTGxdmvhe/UCaSyvnc7duzBXNBkIrDXk4+B1Pab++Tvt5evKMaP\n0NSpqK1Z45ihC1NAkvmL/fvjaY88wvaQIRZzKydMcHwtTNoIUuKaBD4wE4FF78NWo0WcPOrS1mbN\n18ZGvlfN7opyksvkAGx3KO/j7/XBEy37KDXViq8yt9bMrfY/ziNeKloiQYuqE7mt5nydb75hOytL\n80AVRVFs4vkJVJYRGd1/5HQ2szMMXX+9Y5Zd9RBIJXKIG46Z7hCpW/h/7tS1E1EMGOWY8+cHolZS\n4pjduiWgNnKkNf8k0w9y0+R16/NASxZVVJ99ho2Ke/f+1LHvuutnoKWu5+a2eXFkhaV1k8W/jdpn\nohlT7CnsuCQr09pm1OKJScftOGcQv4mvaXGQ8TQkBqpXVeET6KRJbBuzEWnIdXJ3YO9ZY/G1/NQ5\n5zBW+NWuYt+D63A43tIgvq7mQ11OAw79s4X/M0849gcfzANNNjKKm4rfndK7jjv2CdlFnYj6dO1q\nz8F/c+YM270uOQ/a7LX81Cm+7kREVLFKbEHuvx+0dSU8C94YN+egT6CKoigu0QVUURTFJbqAKoqi\nuMRzDHTcOLbXr0ftiy8cM2bTTNREcKSpDqWsUzJWg/G/jjA7nGNH829Fbfx4touXYFwp/wDHbswO\n8EkN8Y5t9X8a8QZV+kZERAs5a6H3pO2G2MOxWlowBpoXlCmOjM5ZLpEdf6JWTwetfqHo+r0HW46H\nRfs7dsWuRtCizFfdloAkAdktnwjuY++1BSCtu/syPnj+eTxviUjZmD27gx4yx4+Lg2sw8Co7CSUP\n7wGa7MaVsxczNLJHcvf6DLLI5Zc75tatKMl4Yuky/F7RAy85Zp8NG1AzWzdZQIYvix54E7ScOh4k\nefHRfNBCxg927JonccBfct++4giv93/QJ1BFURSX6AKqKIriEs9beJm6JJKRiYho7lzHDEyfDNIs\nsfPImGskijeM+G/8+8nkHODcnYqqUtCK13AqTWM3TKS972reMu/ceSVo3gvFVjgzk6zxwQeO6fu6\nsS+6kn24995R7Unfaxp7IbZFe/eyvagOB3VtnMKhjxUjMW1ouhhAF/W2MaPbrGSwhBxiRhebcRGm\n8uqr4bjlQ86/j1h+DWgVp4Id22LGHT38sDhYj/lIyekc8kieFgzan/4kDrZgIn3GrGZx5NtBD5mK\naA65XdtpN2jvvivS7OTEOyKii7h4xZwLXx/NoTEjqdA1suag4gos+jk7hY8f7YPnQaZiycconj7N\ndqxu4RVFUayiC6iiKIpLdAFVFEVxiccYaP0IHsYUuHkzaHmbOHphzmUSITCqOYFrdMjYsf+tjz+N\n995zzO+VlorhXJc+g80trruOA4vx4TV43nGjts8WoplC9vsYr5HVsy+88L5xIqcAPf88lsMNeIpT\nyY4aWWVumX6YU5emz5+GYslw1g4aZYSyKcPOnSDNXsLlcTiKsGM8K0Ktl8zFOHfEfVxajFFFom5C\no5tvBu14dLZjR1kMgob1E/FKM3b9M05P+3LolyD1+nS/Yzfv2Q+a79UD+ODo0Y47+W+iVvFne+4c\nph1u2sR2QzSmeUXNmePYASLmT0QUKHPO7r6bbJDTn32rILwfZdOT2N1PgJZVwuWpMb/4BWgVA9i3\n9j5+fQJVFEVxiS6giqIoLvG4hQ8s4a4xmf3XgZYVzpUP647jK36Z/fTSSyDRnNNCXLr0p/r548ya\n5ZgRSbiFkw69PxUHg0f6VYrfYXScmmZsW20h+lVOOoyz6OV249w5TLnpUiWqPUTXJiKizZv9yTpy\neymHgBNh88wRRmqanBNvNGfMGSFni8eTLWRVjNlEa9Ootx078x/NKM6Ywbaxnb7jDu5+1daGlV8d\nQoaxzMqs9zlss91Ix6P+gxxTppgREcU+hqEpWxSN5a3x0WdQ+/Of2a7dVYmivD/vuguk5K28NV5n\nZwcPF+T1L3ELf/vtbAfeeSdoSfLg9QbQTogmY+2FcPQJVFEUxSW6gCqKorhEF1BFURSXeC7lFG2v\ns45juWbtTX917GQj/UN2AN+xwIg5HTv2X7r4ExEd8s28qlqfEMdOnwQSrVoV5thhZvDMiDNaIzra\nMc0u6HJkVJ3RyWrNZo7tZhodl4omyhQMO4Gl5OOcxrO2H2rHmkId+wQ2pKd4US4ZMx4Th8o3e77l\n3LJ8OduJPlhaWjacy06rO3cGLfQ3v3Fsrzk4yeCzzyzGPQWn/8px4F4l2AFIxuu3JWHnqNFJHDPu\nt7oYNBp0YaYnJJziGOicNRhbhIxE8Q6CiIhErLFSzkcionXvylJbO/lhMwO4y9KCB1FbvZrt554L\nAw0aRX36KWgJ38h3ND+cG6hPoIqiKC7RBVRRFMUlXm1tbT/+U4qiKMr30CdQRVEUl+gCqiiK4hJd\nQBVFUVyiC6iiKIpLPCblnffyct4whffFl001S7hO3mzZ7zuVc0ZPfesFWuA334gf9EWxA2RmkuOg\nj/FXZc7nsSKDh+L/GbJuP2EL5rnJHLiiIrLmK+3f7/jaGj0YpIMH2TYnYcpcu6LDoSBtFwM8V660\n42thIV9TORGSCKeJdhkbh+LChY6Ztj4GpGeeOenYbW1XWLum5eXsq5m+Kz/j/D7GaBaZ+2tM8yyP\nTnPsmBh7n/9Z8b3y/Qa/VzIPeN2sCtBqgzhn0vw8wl4WbdrmzbPma2wsX9eyqQXt/6DRpjJqBLe7\nNKcBRfoc4YOICCu+1tSwnyHpiaCdffVVxzZSq6nfIO4vkHX7e6DJ/NGamh/+/PUJVFEUxSUen0C7\n3HuvY9eM3Iii+B8nbW6X9iTyf5UQ2X2mxmhg3AGy+ol5z2ZpTBM/ue0fvgC1SavEz+GTdNEqOQAt\npWMOSkQnWu8eOPu7rk48WYqKJSKCbkHfe1qGx24cAOcWWTRm9sHusoif5I4sx65BEX7Vjm3OkOvd\n+worvpnEnBWVOct3gZY/SXSLeuQ1PFG0v1r8dRpIcwbKmfb2ul11kxflMD5lrl3LT5nFJVilUyc+\nj+QtyfhLG7CTkC3kU1jeLqxGHPkAP5Q1fYRP0sOGsR15Dw7ro1deIdvIrm9zjO9xN1GmZvQUI7qG\nfZtv3KuZ6T/++esTqKIoikt0AVUURXGJLqCKoigu8dwaR06rN1/7iU7jRsiBXn31O/4Hnn4aRWM4\nnTVkwO6mm1CTr4zla04iOnTmjGNHis48RER08iRdEJYtY3sStoeKP1vo2MV9MO4a78MxGdkpnIho\nwQK2MarmnowGHhR2vr8xAk682o6YjwPFdjz1lGOHv4uxsfXrLTlnIuLKD3bCa7NyLmc6mG9aM3dx\npsOcN/8IWvZ3PJwtI8OKl0REVP40d8gvMQYyZqbzdIfozWWgwVewxei+lJREFwIZok8dWI6iaPVe\nj6F82rWL7ZoteM1DpoisjVKj675LHn1UHPx8CmiFPjz1IXEZTs+g665zTO+5eB/XzOB7PqSdELg+\ngSqKorhEF1BFURSXeN7Ci3Sgi/+Ij7eviEbAeVWYSP0ccZPYvG7YiDR19QWaCy+GwTffgrPWfc+d\nc+wVdTjEbfqNohPvfGOonJgnbxWZciKnoRFR9jFOAjZ291TfwvuIw4dRMyITVsj04y3M412/AO33\nv7/MsWek4/Z+pHSmJBe0Ipg/h2lDHUIk7z9t5qpM41CUkStPtInDKae/9AUp4/JWcWTvWaOqiu3M\nU1gsUTyft+3x0/BeXTuMUwk3bcKUoh2ysAH/jA4RWMXz58/fcANoXUQ61nPP4XmHDnAj9VYfw6E+\nfew5+G/Ex08DB+J1g0xB4/vm1flbx277FLubh+wWza7bmV+vT6CKoigu0QVUURTFJbqAKoqiuMRj\nR/oNG7hAf+dO1GR8bto01ORMNxnvISIavVoU+hcWWmt60NrKvno31INWuIsbG4hqSCIiigsQST9m\njs0IEbCLj7fXTKSiwvE1YxOW62V35aYQ5TfPAy1mLcfLKqZiuWbUdvvNJGpr+Zqmp6P28sucu/bE\nE36gyQpUmZZFRETjxrHt7W3tmmZns6+dOqH24YdsFwRhLJ/EALx1XhjnkrGz+HiLzWQGDOAv3Y03\ngrRtHKdgmfHatzn7ie6/H7XEsWJ4o8UmPefP83Xt8uZW0PaK+l6jCpLo/ffZfg3LZ+V9ba1JS329\n42fepkCQ5PuC3IOYxuS1m4cztvmNwt/5xhtsx8RoMxFFURSb6AKqKIriEs9D5UJCWDT24iH9OTXB\nrESS/Rj378G58LV1fF5wsL1tkewHaoYN1vXgdJnc/phWM1GMAv/DH/C8vFUijcXidpMSE/m6yoHm\nRFR6jOeoy442RPh3RbQcAi11Oc+Mz8uzc10hLFKCc8hT1vOM8rVr8TzZ09ScbR+7RWyhc3KsXdOY\nGPZVVsEQEfmeEl2/jFQ12ePSyHChrM4XpsdmVhb7mhmEVVMbLuUuWzCznLDaTBQCEhFRVH/ROcjf\n35qvZWXsa2yLUTUk98Yyj4gIK6PMG1l2S5s504qvMoQzbx52Y3v/fU6bipyBW/i8SZw2lnoY0+qK\nx/Ja0V4IR59AFUVRXKILqKIoikt0AVUURXGJ5xhoSoojRh7IB0mmqrzwwgfGiRxzaLuoF0qytbnF\nNCaqrmZfx+G8IBk7EiNQiIgo9HCRY49amQDa9lEiXpqWZs3X0lKO18StNjqLy5KxGTNAWvHoJ44t\ns4GIiILni85N+flWfC0Rs3tG3HILaE2vv+7Yfg8/jCfKnCeji1djnwjH9ve3FwMvKOBrKmOwRERL\nx4muRrt3oygC9q13YRrTv/7Fdq9eFtOY4uIcX4+9+SZI4aIkuWzn16DFbhIxOuPeaO0f5tje3vZ8\nlbHFjDosy4YLLVvXE1FeCX8HZXyeiGjyII7fFxRY8nXjRo7XJ2Epp5zJZM7Lkm4XrGlFcepUttv5\nTukTqKIoikt0AVUURXGJ5y28oiiK0i76BKooiuISXUAVRVFcoguooiiKS3QBVRRFcYkuoIqiKC7R\nBVRRFMUl/wdhlsx+G9hHrQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  18\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/XV/49mZsSMiMKIGJFjxhwZ\nsyTmzEwJyTHGnDhyn3mT8VVzzNChoSNixq3kmGMmjhy3MWNqxE1ESkRkzPDHjBiZmakZEUGZ80Zm\nzBjef2y7znm9lU928fb7fXwfj/P861yPw+fD4fpcnzfX+1znvM6gs2fPkqIoivLlGfz/OgBFUZT/\nX9EFVFEUxSW6gCqKorhEF1BFURSX6AKqKIrikiFevQUF/Ig+Ohp9a9eyHReHPvGzsQvCwVW7sokP\noqIGXViYF0BmJsc6Zw769u93zJaRSeCKXJ7g2J1PVoEv8LUKPkhKsharx0NOrKUbzoBv1a+HOvZX\nvoKvmz+mkQ9qasCXcjjXscvKyE6se/fyOZWfNxGdWFPq2P7L5+PrDh92zNYNteAKqSzkg/R0e59/\nVRXHunEjuLbN4c8x/nAh+Nqnpzt20O4K9EXztRIUZOmcEhG98IITa/qL94Kr8J4X+GD5cnydvCAS\nE9EXGMj2ffdZi3XPHr5WX34ZfTKEiHtvROewYWw/9RT6/PzYDg+3EmtaGsc5dy76olaI7/zbb6Nz\n1iy2338fX7ev2LGbms7/+esdqKIoiku834F2dLC9aBH6HniAbXHHQUREBw86Zu0n29Hn9+yXie/C\nGTHCMTPW413vuHF8/MJqfFnNbr7r/EEO+oqmej89bgkNlQHgneRVV/EdcdqwUvDl7fA4dlboQfD9\n+kFr4TEbNpzfJqLjx9j2l//FiSi3Lsaxszv24ns2N9uKDqj35fM2acN48MUvTeOD6dPBF9TBOyJz\nd1K3me2MDAtB/ovB3+W7znNOR/ketm+4AX3y+2jyzjsDD+w8bNnCdsGK0+BrbPbhgz17wEfV1ee3\nifCPrsJdn1vEkgN3jkREmSN5Z5E/C3cZNHKkY2aXR4Kr6f4nxNH5v2B6B6ooiuISXUAVRVFcoguo\noiiKS7wm+VKP5zv24t+jr7yc7ezAJ9C5YoVjlq76CFzRvWxjpnKAHD/umAUnU8HVeEMJxzM6H3w0\nMYBtIz92egjn1XzIHrlx/DQ9ty4BfNlX87lc9VfMu0AhRA3mQAODxdPu2NiBB0lENHky28ajzfAx\nY/jg178GX/bXvubYuYRP4bNHVNqJzWDiRHFwEn1tTz7p2MELFoDv9C23OHakUWkwcu7FSCzDpUo5\nOehbs4arKQZvfwGdMvbZs9G3Y4eN0M6hYFgWH1SPAV+MfAy/wKgYkJixzZw58MAMTorPvJjSwJcf\nzXnPzN2Y587fnenYf37TWBum/P0Lf6/egSqKorhEF1BFURSXDPImZ5eUxMWpUHpDRN3dbBd3p6Bz\n7FjH7LwP6z9+/nO2S0stFifLQurFi9EnymzyhmSDK6uXt0xUV4evk390aam1WKdO5fO6/ef16Bw1\nyjH3fBAErnHvb3XsrOYZ4BPVGJSaaum8dnU5cZ4ZNhxcQzdxWoTEFpmIoPZly64QcCX/TbwuNdXa\nOY2J4XPaODELnfJzNYrsYe9vlJRlV0Y5dm6uvWs1IYFjrVrRAr7cSi6lMXfpIW2ikcIsDZJlZh9/\nbO971dLixBozF8t8ZHxpca34uq9+le1PPwXX6WH+ju3jY+m8bt3qxJm0Gb8bFXeLFKMsvyTC+ifj\n+x+1idcuLaRXFEWxjC6giqIoLtEFVFEUxSVec6D0xBOOc0sAlnRccw3bkxZibgTKLSqNshUpkBAT\nYy1XU1zMeaW0tRhP50ucZwpchTnZpGMFjl0xcyv4yno5l5KSYi8H1trKsYYM+xidu3c75p5ALHEa\nl3idYxc/iuVhaR0il5udbSXWVas4ziXXYVtp2RBuK73kEnzd5ZeznbARy0Za13BJSUiIvXO6bh3H\naqayk5OF/bUmdO7cybavL7hOz+RyOGu5OiKihoZ+RVoO5PA1uGkTvixv9yTHPlGOuXP5ZyQkWIy1\nuJhjHT0afUuXsr1wIfpELj9jQwS4xotO26QkS7FmZPQrfJS5j7/HPT34Mln+JJ8jEBF9JL5iRUWa\nA1UURbGKLqCKoigu8dqJtKpbbNu70XfddeJA6vsRYTkItIgQpW9mpZ7CGLKG3Akdm4alIT+TB0K1\niYioIrHBscvasPwhONhWdEjIct7+dj6OW+PAU6cce9zIA/jCt95yzFH70bWul8uzDHVO1yz5Gm+3\nC455wCe3PrndhlTRrl1sP/ccuEJIpiyuHWiIDlIrdX5lDvgyX+duqOS7jA9VbEsPjJgErohuEauP\nvVhX7Zrg2MeungC+Zyey/fHMdPDRG284pj+dANe+fVwalICZnwHROJq7eszvQ4joOKTNm8FXcpJT\nN1IalIjo3Xethcfs2+eYVRMLwCXjTj/1GL5u2m1sr1+PPmgTM9KU/0LvQBVFUVyiC6iiKIpLdAFV\nFEVxidcyphkzuDTk6qvRV/QbMctHyssQQULS05YHLpmPyMuzV24xaND74g/BtsOzTz3v2Gd+8hPw\nDX3tNT4w/w5ZR7J160UpuTKFaYbP4Tzslh9gWdWRI2yb4uRtbWxXVFg6r2LO1KR9qFRTP55zrnvu\nzQXfuN9wa2/ZtDLwBQjxq9hYi+U2R4/y52/k5Oct4/xg0TXYyitP5NGlqGQetlAkE6uq7MUqZ03t\nN5LZogTHLP8p6OWcaMkYnO10xRVsJydbPK99fU6sJ07i/Za/VPo3n4PIuWRGqRaUOVqaiXToEH+n\nRKqYiIiSp4h8sSy9IqJtifyZx6/EfDSUba1bp2VMiqIoNtEFVFEUxSXeO5EURVGUftE7UEVRFJfo\nAqooiuISXUAVRVFcoguooiiKS7z2wlNrq/OEKWEBjmaQ5WvTpuHLCkdzbVVuB07Ik6WVhw7Zq1fL\nyuI6MGOAJIUcFJMhjamMZTmHHHsMDh2kiPfEVMR777VXW5eby0/uiorQ9xj36s77M04XLZpaxQdS\nv4wI5ytERFiJtaGBz+kEagDfgQCumYtYHI8vFLJwKUOwllVOW4mKslivePPNfE5lbS8RSChuuXMd\nuJKv478roxLrAAsOX5w60JYWPq+RK1B/AeQeTX01eWGvXg2uCdO5V7+hweJ5FWNdqnZgfbVsf5cS\ndURE84PFtdrbC77Wsdwnb0vSsL2dz2nQQjyn22bzNRi/7FZ84Z49jlm7Yyi4YjuEToXHo3WgiqIo\nNvFexlRfz05ziJVsoTFkWtZV8jC0+ZMPgQ+GeuXlXZy7OqO9Z9thnkAvZ28REVUsFHdWH3yAzg8/\nZDsz86J0d5Ruwv9hHuL/eiemoQKS0FqGziMiorTd4m61pMRKrKWl/F9diN0QEdF997F97Bj63nmH\n7ezRFeiU25WhQ+2dU7FbopUrwVU8hu860/bhjgju+Mz55XK30tVlLdbYWD6vhoYzVQSI+O68E53y\nztpQOdvzVb7rGjfO3h3o7bdzrHtH444IJkua3UbNzWwbF+tFEaoWws99c/AzHrxvLx8YO9A9v2Xf\nVVfhW4Zv/mKRcr0DVRRFcYkuoIqiKC7RBVRRFMUlXp/Cb+thhe74TYZskJBnKrh8GbhkXqdifzj4\nlv03qzO9jUJNA+PgQcdcV4e/c/7cPseO98Wn19u6+clr/B1H8T1lfswirW38f8uzPxOdcXGO6b86\nC1zRi/mEgVg2EdXPKnFs1FV3j3wI7DmOKt8Fr7EKfcZJVDiqnyhyR72Y5KvfyU86J9kKlIjoD39w\nzMZZ+KQ9bQ3nByMPYlVAyw7xpDU0FN9TVjZYRFYixI49YXg5f9uw3x88PYmceDZV3sdGixSdxfbs\nvRPF9fmnt9E5a5Zjdp5Fxf7ATz7hA6OawGdYnziycw837w3Oez50GH3hIpbW8r3gGzdCqMoZylhS\ncay/S1XvQBVFUVyiC6iiKIpLvJYxTZjAJQwNC7EcpS+Ri2HN+dWXXcZ28jeNwWhyqJu/v70ylhkz\n+p21DSUVckg4ETU891fHNuuWg4aJ7ZXNWFtanFhTVuKwKik4XLgDffVreFjepA0p4KPJk9lOTbUS\na1ISf/4V97+Azs5Oto2SmtKdYY7tqcNSLBC0tVTwT4SCuqYutixdK4lG0eTw1bz1M+aiwQzxmBh7\npUG5uRyr/K4QEU2ZwrY5hn1oHG8kS2fjXHjPCNEsEhtrLdZVqzjWTz9FX34wizpvG4kD8GTJXe5L\nd+ALZSnbsmVWYm1t5TjlwEMiovJyEUtOH/i21fA9pJnBiRjxxd9/vQNVFEVxiS6giqIoLtEFVFEU\nxSXeWzlFe5QsEyDCMpqnn8aXZYwR+ZkhRqVUTQ3bNls5q6qcWFtCE8AlQ4iowXIcWYqx6r+wFOOh\nh9geOvTitMeNGoU+WTkzqToDfKVjOHbZ8klENG8X5xqLiizFWlvLF8cjj2As83ZxLMOwNAiSTtOn\n9++zOKiPJk1yYs2bjPlBmXY1h/EF1YnzaIheUGIi2zZz4IcOObFueQNL7pJn8q85/Tf8bsrcnlnG\nJLtX8/PtXavz5vG1+vDD6AvZJ56LmIlnMeUuYct94Lr+eratXasejxNn6wr8boQEnHbsLjl9j4iG\nP/ssH9yHcdLUqWxXVGgOVFEUxSa6gCqKorjEux7oYS7pNypVYNtubouy6rjcIm81auzVVnPlf+yF\nxXhBnInjbXtkTRU6Kysds29DCbikUIypKjT0eDsfBAWRLWRKQVZ1ERFN+kicWGOf5hnFXRRVHVge\nVDRovjjCThzXyE4so8YDSkV6DWkoUVJV1ovajCm3vGsnNoOjG3jbPtcYUT54OXd0dc822t+kOo+4\nToiISiq5EyjVECIaCKeDedue7NuOTvGZ+xxsAtfO41GOHTvxDPjyr3xcHGFn4EAoupzTSNv2Y/or\nRJbOPf88+Dwv8na4ajFqyTb5GvPXbXDPPRxXM37/K3p5bTj4GKZFsqr5gy154jPwye+pUYznoHeg\niqIoLtEFVFEUxSW6gCqKorjEexnT3r2O85Df7eAKD+bSAHrlFfBF/eJexzbzozKv0Npqr9zizBku\ntxiaiDN6jq7d5tiPPw4uKvpxo2NnlMeAT3aA1tdbnDMjy4Okag0RbRnCuaNLL8WXJY1mdf/S3Vj+\nIvF4LMWaksJxvvceuGIGcRmTKeQ+tJtb4BoPoqKQFP1PTrZ3TmEmzk2Xgy/3Yc5tZV/yGPhAPt8c\niuUnkqmW2mOJiMLDOdZLLkHfT3/K9vxK4ynBqVNsG3OfWvbzvVBkpMVrtaDAiTXtIJbVFY/ncqEZ\n1ZglFKJi5yAerVBenqVYz5zhMsaD+Nwl8jCXW616Nwl8S3r5esj4FHPHS5awHRh4/jj1DlRRFMUl\nuoAqiqK4xPsWXlEURekXvQNVFEVxiS6giqIoLtEFVFEUxSW6gCqKorjEey98SYnzhMmzA5uBS3tT\nzvlxh9Wr2TbmfWwbzVP+4uMt1quJWCk4GFy1ous+9nMcTdF+K9esGkP5cGKiTTkzIb1FK1agT8iC\ndV4fBa7LRXnjmjX4su5utq3JmZWWOnG2T8Y6PzmywdQQyPjDrXxg/n1vvcV2Zqa1c1pWxrWVYkAr\nERHljhfjLvyMRnkpr3flleiTs0Dee++i1AGfFj3cREQ+Ym7G0ZNYQ7txI9u5C41pnvv2sW1xpEdp\nKZ9XTy/qSEBR9a23gqtladl5QyMiSt0v6kkLCuzEmp7O3yk5i4WIaPx4x+z7yU/ANXjePMfuLSoC\n35AjR/ggLEzrQBVFUWzi9Q709Ey+64w2FnWaJhRczbsM2X5kTGp7802247FhaEBsuYJj/bvR/STv\nLGNHdYJPzrA3Z9HVjOQ7gAJDh3lA/OlPbMu7HCIqG8Uz1XuNO2LPYZ5TPWt2LvjCFkoRaUONyi1C\nbSfItwtcSVTn2KfnYncH1VzD9gt4x58XzEpROPV+YEjd5qE5xjtvEK0v7xpqULKjx+hEKvkFd19Z\nFGOCu2BDhphCRAzPPNgKPil+1NKGd6fBY3mXhZ6B4dknhsWZd3ZSkk0qrBOKd0X+BO9OSdz1WWOl\nl/VItBQu/CmWbRYu5nP87J2oYpa8XOyyy8rofOgdqKIoikt0AVUURXGJLqCKoigu8d7K+cIL7Hz0\nUXAd2Mjq6IYYNS0ZlO/YTZMzwRc1Sqg4+fhcFNWY0gBUjfGMEE9hpcQKEZX9/A3HNlX3g7pZ/YjC\nw63F2tTETzaNFDENv+cOPnjqKfD1jexfgWnwRvGE1JJyUGcnxxn4Y0MZSCq579wJrrIx/Pmn7Dfy\nkTKRN2mSvc+/qYmvVSn3Q0QVQ1gVX1YrEGF1ybbp+JQ5vkcMTUtKshfrrbfyU3gp+UX4FP70MMxm\nygEFg/+IkxxnPMcqXlu32qtuaWzkayBmbiQ6RYXN0VtuAVeYkBJbtwbV8+VcyaoqO7HGxnKcZqq2\nIfkJxx604H7wnX1H5JmNCo3w8Txk8tAhVWNSFEWxii6giqIoLvFaxlR7KReZxwY8Ab6I5Vy6EiEH\nbxNRcTNv22ePxvcsXO/j2OnpZA9RN+HZiVt42GIaJRQp63nAVWMoDr9qPslb5vj+d89fmqgdXBO1\n5V2MNVnMqW44jIPsxogBdGbxeqQ5l9sC8ndc+dJL4Hvufk6LJI8+CT6YhTfEuMQCAixFh2RXctPB\nmDHYgJBULspRzCl+o/kCjW8rRp+5F7RE3+ucNvJZW4hOcb58RgwHV9UmLiWb9iOcYb71NpFuInsX\na3Q02+01LeALCuCtedh3vtPvC+fPwS38/CEbxVHaQEMkIqLaWSzufHq6MQJuORfEn930LLgq9vN5\n/MEPcDji05glOS96B6ooiuISXUAVRVFcoguooiiKS7yWMckSBlMQIH0/5y4aZmHuaMJPbuQDo62q\n/S7OOQQFWRQTaW93Ys1ai7nDvNmcHyqoxvyQ7DrNH5YNPpkfoxkzrMWalcXnNS/UyLtVV7Mt++GI\nqGQM58tS/SrAR4sWsW1L+KKxkS+O2bPBdaiaz2l47wHwbXkzwrGvuQZcIIhRWmrx858wgWM1BUPE\ncefjpeAK/CmXOEFfLxGIUNgcKtfSwp9/5PduROdvfuOYtcMSwCVTsgmhmI/M2MglRgUFFs/rzTfz\neZ0yBX2i7q9qCLbz9vayLfOoRDiEMCXFUqynTztxZub4gCu/TeTAx44FX/ZJfgYhYyYiahMp0f6u\nVb0DVRRFcYkuoIqiKC7xWsYUs4i7YmLMkg5RDjRhxCFwHXqRVWzCK/PBt3Ah21u3XnCcX4xIFcTN\nRFUVeuYZx8y46y70SQmmUaPQZ84Jt4TcGfbFYRnHBlHWYW4p5vuKE/YRzpOHcz7wEImIaMaaGMfe\nanZp7OcUQko5bt9kI9DeS+4AX/TLu+iiIFMMUqyUCNR4Ap8r7tdnpkzOaROzhNRyLfn+99EpPvT1\n69FV8ZE4l//xH+BbvdroErLFq6+ybXRN7bmSu9M+O4YvS57CeqV9V18NvsOPXoRBlqLFbPJk3MJT\nhxhSP20auGaLCrywNixjzKicQF+E3oEqiqK4RBdQRVEUl+gCqiiK4hKvOdDOSs5XBV6F7Vjpi4c6\nduHoRvAFf/vrjl37IuY7Tr3y5YO8IES+crTRPkrHbnDM+p4YcE3KEa2FhlTPtsMXp5VTjomS4kRE\nWGURVYf5Yxoi8pAnsX0yfKnIQ1YYJU4u2RrMJR5nnvkz+IaKRG7ZGiNXFDfRMQ/NwpxntcjrZRgd\ntwOhcRSrKo2YiPrxYbtET94//gG+2rWcv4/twBKnGWv579r6xemwC6ZE6ttHx6FTtOSa6mDt0/lc\nBq2YD77Bq8W1kokKaANh3iOsSNTZiYpcFSP593wYbVyrs2Y55ppf4RrQbUyMsMEZP47TfHZwKJpb\nO8O7UeU/jMT3yMjxBgRoDlRRFOWioQuooiiKS7wLKiuKoij9onegiqIoLtEFVFEUxSW6gCqKorhE\nF1BFURSXeK0DlbJbZntxWhtLv1WNzQWfbCH/6lc/At+PfnSdY5eV2ZPdWreOYzWGMlLBztsdW04T\nJUKJsKgNWFvXupR76kNCLEqE3XgjP7nbswd9skjU1AETBW7p5VijJpXY8vLsxJqSwuc0Jwd9UuOg\nIRrrDidsFHWOcnonEZ0I5XEb/v72zmnHoEFOrCM6O9EpC4MNecVioT2QVoM9/fQe6wvQG29cnAmi\nZv99URHbDz8MrnkP8v3OAw/gy6KOi8mzsbHWYk1N5WvAVPsrnFzFBzDHhejkPfc4tp/5N774Itu2\npt2KcyrHuxAR5a7kmvWm3VjPvnIl28ZwWaqrYzsiQuXsFEVRrOK9jCkykp2LF6NPTBxrnIxCxDGb\neVpc729/C74hP/whH2zdau0/ZWYm/6c0O5Fkg9H8yagcteev3GL0rWgMp+wp/vM9Hnt3SyUlHOvM\nmeirrGQ75b3H0PnOO2xLWSsiol2i4+fBB63EevQoxxm2Art7SsbzDPXUxBPgaxfqO0G/+hX4JlVz\n+1F9vcW7+hkz+MMyB+zFiW6fP/4RXL2i+2SIcRcFA+hsiVQT7pbm78ddD+w65AB1Ilo3vsyx5x/E\niYydy1hsOzDQ4nkNCXFi7f7gA3CdeJ9PechJFHgu3MHqUHPm4Fv69Ijrxd/fSqxVVXxOEzoMxS35\n+b/5Jrg6x/LgzMBV2BqX0sHDH/vbLesdqKIoikt0AVUURXGJLqCKoigu8foUXipyF/fgsPrj4pVZ\n998MvqMvvO3Yz1xfCL4ld+FTcFvkv3SrY594HFVVpt/FuZr5Aegbt0E8JRYDvYiIPJuE+oynlmwh\nn/z7rEUVm5TERMde9cEy8O0RudyKUMw7gsz5gw8OOEbzbe64owR82Sc5P9T5OeaOgt5/37HLdoaA\nr75cxu0/8CD/zdKl/brKDvJT2ZQ5V4DvV938R956K7gottlQGLLEqVNsb7kTpyck+77g2JnBZeDL\n7+BnDY0z8XsVI5X203DKwUDYtp7ViwyxIsp6/gk+MJ60d3RwDtRI5VJcHH/uhna8a+Qjmhxf/Pub\nRMUQLV8Ovp+L/GzpuJvAFx36xb9X70AVRVFcoguooiiKS7xv4cUAplu+gS7QpT0+FXxh+7nA9oYb\ncLZ12Ewuaj969AKjvACypr7h2HlvDQVf/ShRKjJ9Lfi2+fJc8PhyLNX5v8Lnn8PhITES7tln8Uf3\nrmHh6nZDGLpuMosBY7LFPXKme/a0JnTuYDPwh4bw7PTpjtnchuU2o0fz9i3S4g5eDvEuPYnXnCwA\nn7cf0xt/+QvbS37cju85HpsAbLFkXhcfmIPr5s51zN/+9l5w5R9hX0w3luPNqONt61Z7O3iKr+Q3\nW2+UB3Vt4nNp6HtT3uuiuWbRf4Fvy+fcoJCcbCFIwqJ3OV+QiIiGiGXOUFsunbXDsU+Px2tjt9je\np+Nl7KB3oIqiKC7RBVRRFMUluoAqiqK4xHsOVLTEjfvQGFQmkw6m6EV5uWOm3HMKXH5r7/tyEV4g\neT1cSrPlDygYMGUK23Omg0umnGjP/8FSnXFfM0qFLDF/IedoMxZgrCIc+ta3jBfu3++YQa/gdL7R\nU5eRbYKD2fasQYGGnBw+DjM/f3Ft5OecRp9UbIjEIWUDocGP854BxlUdv4/zcUk3Yrtm3g0shBI7\nOwh8tT/jkiK6F/ORA+FQx3DHDr/+evC1z+VYPzucAr5tzVzWFL8BhU9CR9oZJGiSFcB5z53l6JNt\nx5ddhr4xa7h0aMUKbPXeLU6rrRyoLJUyhW/aR/Lvv/6KHvDFxfE1+AtDLOWWW7749+odqKIoikt0\nAVUURXGJVzWmbdtY4UQK0xChzKN5q3vppWwXdhulQVJ+yKJuYXo6x1q4FMtRmjp4axZFRjmOkGra\n8hGW43znO2wHBdlTuNmyhWNNvhlVbGjHDseMrcbaidql9Y7dPmoS+IIWi+1eWZmVWD0ejtPcpc/3\nFTPUN29Gp9Tc7MEtU8JKLr+qqrKoGvTYY3whv/wy+sSA9b7luJ0cfJLTNLX7sK4qdszHfHDttdZi\nbWri8yo+biKCCjAKOWh0v3WIgerelKMmTLB3XisqnFjPTMO0gfzYRXaJiIgWLWLbLCuSJZC1tZau\ngYYGJ86uMfg9Hv78044d+xSmEMeOZTtvIp7vy7/H2/vPPlM1JkVRFKvoAqooiuISXUAVRVFc4jUH\nOmMG52ryn8EUQN8Rfp3fTejzF2o85yjZy9xNaelFmTMz70ksubnjDrbFqBYiwnxM0CtPo/PVV9ku\nLr4oKt9klLHQo4+yffAg+qTSumhdJCI6upxLsMLC7OSVVq3iz//3v0ffoQWsBtSaiLlamdcbYpQU\nyTReRobFHOjw4U6sDdVd4Jrwgfhcb7sNXydUnJqWYymQTCvazIHPm8fndSp2QUNnZ8RObJ0sHcZt\nlZ5eLLkr7uVnDWlpFs/roUNOrOvqwsEl09uLFhl5Z7rWsb7//W+CR5YZRUZairWry4kzJm44uBpn\ni/NoJGQHXcZ57rPPGc9H5PctNVVzoIqiKDbRBVRRFMUl3ofKKYqiKP2id6CKoigu0QVUURTFJbqA\nKoqiuMS7GlNCgpMgbcqpApdUMdq7ugFft2SJY5bO2wUu0VVHISH2yi1kK6f8HURESQEcX1YNtnnl\nVfPwK1Md/MQGLmvx97cXa2amKA87NgOdCxeyvXEj+kR8FSMzwTVHqGefOGEn1tZWjjNkA7ZArrqC\nVYOWvIYK8FDfMn48+m4Sg7vuu++itEdGbcZzQ88/75hde94GlxAOoytw3hwl38ATACgmxlqsXV0c\n6/CVWeA7NDvPsa+8El8XeCm3nbZ2Y9tpyJ9EqZbF85qSwrGWBeN5PbGUh+4ZVXXk5ydiC0BFrtQF\nPEqupMTOtTp1Kse5/VlDAWzDBsdsGIMldxOiWQ3taBtOspDfqfp6beVUFEWxii6giqIoLvG+hR81\nql/X3oOi2j/Z2Ps89BD/AuM3hGwWs7Yzja3WAJBNA6tXoy9pBQ+SkqkHIqIz//mmYw/dvRudKCRk\nDRAoknsdIjrgx2pFoU9+G3zJe5PaAAAcgUlEQVQ+mzY5dtJk7LZJmrtSHOWRbSbtzIXj+ro+x+6a\nh+md4b1CiPrwYfA19PBQQWMU3YCIGsXbti3fwnnuyWJ/OXwxTlybuYa7VHxyjOvR906LETLD6zg1\nlHQQP6tEcQl6guvBl1nDClymOlaIVKC6z55oOTTufI7nwz+U14DqtXg9SjzjO+B4/PgwG6EB23/D\nQ/ZKNmPHVKqQippw0wvgK97IQtlSQJzo3Aza+dA7UEVRFJfoAqooiuISXUAVRVFc4r2VMzubnV//\nOrgabuA8S0AAvixihVBHfxvLRm6/9A3H3rvXXmlQYyOXMYiqBSIiWrOG7eELPOhMTHTMSWtRcbuX\nU6fU0GBR4aavj8+rqbgkksaHCHM54UOO8oFQETrnOCrKSqw9gwY5cQ77+9/BV7CWSz4M0XnKmsjl\nP503xYDvd79jOzvb4jlNS3NibV2OKkbyepADEYhwGJkp8j5/pFAotzg9gbKyWOU9B3OgQzdy7F0z\nMV87vGarY7dGY/nbH//I9pIlF6c80BQOW/KjVj6QNT9EVBDH5y4juhF8sGCEh9uJVU4kkKMkiOj0\nWM62r1wJLsr6Jf/6YdXV4Ct4h/Oj/SmH6R2ooiiKS3QBVRRFcYnXLfyJE3z77l/0GDrllk5OmCOi\n4koWUxUz24iI6NgxtgsL7W01pPjz1Vejr+hH3Il0zsCp/by9aBqG282ofWIrmJZmLVYpVCzPBxFR\n0UOHqF9kXYUc3EZEJEqcyOOxE2t+Pl8c3/gG+o4cYXvfPnBlh/LAObM0JG2B6PY4c8betrikhGM1\na+dEa1r66hBwxcWxHT/2Y/C1dPB1bE34lzDdZJw6St8vtu1mbuTkSbaXL0ef3H7m5l6UdENGD6Yb\nZNNcSPcB8KWvj3DscwZLylzJunV2Yr3uOv78jXOTceRBxy74Foqmb7uKU5GhofiWEXUsGk7p6bqF\nVxRFsYkuoIqiKC7RBVRRFMUlXnOgkyZxrkYOoCfCEp+COZj/gMSnUW7TkMPtaRMm2MsrgcLN7lp0\njhnDtq8v+mS+TNY7EaE6U1KSvbxSRQXnludg6ZTMiQ5fiLmjxjk8SKy5Gd9y/nSRv7v2WuuDurZs\nx0FdyX9hFaHGaZgbixmylw/MXG1yMtsWVYOotpYvZEMBqngTq/+kjTKUw2S7snltyGT6Z5/ZizU3\nl2OV6lRENG8n5+SKfmp8r0Ss69bjvY9UlepPOcgNt9/O36u90ahkJPuiG45HgEtex54dRg5Ufucs\nDWssLeU4zRS4TA+b3drSJ4chEmFOND5ey5gURVGsoguooiiKS7yqMdWPFCUV02ahc+1atv1w69vS\ny7fzkYZsjFRNssnw6bF8YM6il5jlH1INaZbxN14kbl7G2/adO9EnGzqeeWYd+B4NZTs7GOeC0wqx\npy8sJBv0+fK23ZxfHvJz3ra3lmPHlCy3ObADS4MiFsfzgUXVINi3Gd1daT18krd8hNvQ34gMU+Pb\nV+F7vvWWtfAAqfht1M4UvSg65Vbj13PbdP7MT53CtzRLcGwhv74zOvC62trGqbLj3biF94RyqqTz\nP/FaDXzHSKNYwOPLClf0+OPgS5k2jQ8Svwa+ghru6MroRRWvPVd/sVqc3oEqiqK4RBdQRVEUl+gC\nqiiK4hKvOdBVN3Er45LFt6NTSNwkLQgCV8X9QvXZyDkmHWwSR1EXGOYXc6aa8zFCgJqIiHxFB9yV\nSwrAF/ihiMd8oWw5C7Onov3AA2zX1aFPpu8+/RTlgdavZ3vQ/aiO9eqrXCpiS+l98LfvcOzhU6aA\n75lnhEJ9IibkWuo47xm5CYem0XvvWYoO2XMFq7WP2/UEOkXNV+cYdMkOWPI7Ar6mYzy4zd6VSvAh\np5fjp7V6A7fBDr3zDvDJiqv46BPgo+3bxYG93LLs0g4PxmFtW57n5w7Jd2Gum3y57vFDQ3Ds9W7+\nm+PJEvffz7aU/CKiQclcjjhlCn6SI0aIg0osuRsnneMMFbd/oXegiqIoLtEFVFEUxSXeBZUVRVGU\nftE7UEVRFJfoAqooiuISXUAVRVFc4rWM6fRpVjjxWZ4BvgNzuBzIVNX2jOfhZyU7sPwntVm00hUW\n2lO4kerpphyL6HPr+8EPwDX4ttv44JJLwJf2zV2OXVxscQDazTc7sWZ+F4fu5eSw7XM3lrHQc8+x\nLVtpiWjCDi4rsjYAr7SUz6kpnS9KPBpH4/CzGD+hImTK38j3samc3tDgxFp6DEuDRo9m26xUmz6d\nbbOtVv5sf0PF3JCRwd+rgjYcDicHrnWtxFbe4eNu5oO//AVfJ3ukg4LsnVcxrC3rb8vAJUWvzI85\ndyKrrlFlJTpl+7Sla0BOpFi0CH3jvsLXY+pqbDktmc1tpQcC8LqRAwBiYlSNSVEUxSpe70B9OsQY\nXWPu0UZR1G3qc6zbxHedzz+PvtQfGcKitpDanR99hD4hljhY3sURUWplgmOXROM43OM1dFE48Rrf\ndebXbUXn3b92zIIf7gJXtRjJO3NmLvhMLUMriDvytLZscBXP5cLp48bdBx3mLcmJRNSC9F+RQRcF\ncVcj7ziJiNra2DZvpGfPZntrB96BxMJ8bEMwZQAU3C0aTb6C3yt5HZvypPTd77ItuyqIKKGOd3ZV\nVQONkMkbxHed5jWWN4vv7DZtwju7zge5seGFY5PAd//9f3Pss3gZu0aeq3GvoihIwk4WBTE3pySE\nRkYe7wLX0CdFQ0bMg3Q+9A5UURTFJbqAKoqiuEQXUEVRFJd4zYFmrOVcpjnfXT51M5/C16/kmTgT\nJxoiJOXHvlSAF0pfIosUy5wXEdH6Dzl/McSIVT6Fax+JT5MrxsuZNJjjGQj+B3kWPT3yCPhmfJPz\noxNRS4Tqg1nQ4HYhOkGEIiQFqJfimtinWJSidqwhCrKWL50EKVhLRIdGcZzf+za+7K23ODir/703\nbnTM9d14Ajo62K4aj/kx6hBDceSAHCI6PYQFpX3IInfdxbbxAOHEco7dvxzz460LOPaQw/XgG3uS\nLgp338121k5D+mM5X6BlkC8mylvPQiymTvnZ6h3i6N4BRvhP4BLsDQVft3iWUb8W50x1beS8p/F1\nw8fw/aB3oIqiKC7RBVRRFMUlXrfwBbOEVqZRGtS1mm+9zXKLxt28bY8ZdhSdF3Bb7AY5kThjJ44K\nzhPbO3M8r9xfBBkFv7XHWTsw1t4OHnn9dTgctZJtWWJDREQ7eZb03hEJ6DsZIA6MeUku+eUvxcHc\n7egUOYNBv/wZuM6+ztfN66+j/uLgZnFNRVlU2RTjk+82SueSLxd1Pc096Hz3XbYDA8F17PXPHDvC\n5ucvuyW243n1F6OUT8zDwvWTIjU1YjyWBg0xS8ks8emn4iA4GJ2iC6Hzc39wZdVwSVhWN85Aypt+\nnbX4/k1SYh8f/Oe74KuP5vRTVzCO4B4+S3yPxDpBRFR7G5//WDo/egeqKIriEl1AFUVRXKILqKIo\niku85kBjFnCOqnF9C/hk9UWhL5a4jM3hPMOBwygmsvwYl2lUkD3kvBjaeBh8cr558hbMj7bvbnXs\noBF94ItdKuZCxxrlLwNB5OvOVG4DV66v+D2vfANfJ0RRttyCuZzkm/HzscGHH7Ld9/ob4EtMZPsX\nxpyhM6M5j+czBM8prRRJ3q1GG+sAuH0iFxrtXYpXVslx/sxTqRl8TS9wbj/q7afBF3G/EHPZhW21\nA0LWAN56K7havst5t1Dj2xnZK/LHx0eALzgY55LZIr6D8+mRu7HVuaU7xbED92FLamvdIcfOC8Zr\n4MBBXldspZbrd/C94KRrrgFfweV8TqsTwUX1773JB0a7es2IMseO7ScJqnegiqIoLtEFVFEUxSXe\nZyJlZTnOwhG4ZUw/yTIqB6ajUk+EL2+Lz5FjkrfXM2bY0y2sre1fD1TI8zS1XQuuqDhxvALHmsI+\n9dprrcW6ahVrFy75H6PDp0eU2XzrW+i7/HK2awypKJlTCQmxE2tJiRPn0YmoqhTWLLbJkD8h2nOK\nN2amgs+SG8W23ebnX1XlxFpyHEu8nnmG7e1/Q8Wl9s1cYhPki2o8dM89bO/aZS3WEyf48/cfhqOC\n97zJqYj/+R98XewxsYU2uqZgPm9xsbVYs7M51rGGkJrUT80fjxJQWz7jz+AOQ9ZWKmJNmGBHZ7Wk\nhONM3Y0dhVB+ZVyrnXeyHiuUbBFMbqeCAtUDVRRFsYouoIqiKC7RBVRRFMUl3nOg7e3sNOWYZK5u\nBJZU0EsvsT1lCrhKazjn6PHYmzOTlMQ5EFkpQ0T017+yLSqBiIjoqqvYlh12RJgSHTzYXqxdXRzr\n8OXp4JvRUejYW5djaVJtR6Rj//d/43vKXOPbb9uJdd06jnP+wqHgqyo/49hxcfi6obO5vIWWLkXn\n5Mlsf/yxtXOans6xmupg8tzIGUhERFUjhUK+mQOvq2M7IcFarJGRHGtLIj4/kDORqLcXfU8+yfaq\nVegbI2rJbOXAybhWpxu1PDJJOMzQMtq0iW1zENXChWxHRtqJVcxuMltg/ZfP5wPjeuzyC3Hs4cPO\ngA8WhLw8zYEqiqLYRBdQRVEUl3jfwiuKoij9onegiqIoLtEFVFEUxSW6gCqKorhEF1BFURSXeJWz\nI4/HecLUvhKnQMpW3LTRjeCD+jnZMEuEtWMW69VkHWDh0nZ0viGk2IyG175ZPEFS9ugSEYUNE+8T\nFGQt1tJSjtUzxpChkz3usmaSiE6PYhkwY5gjxF5RYalmNT6e+4tHoOyeHDcyIdqonxM1w1Pvw1EP\n8nXJyfZqa2Nj+ZyaMgGD94tzbDpFg3dGNY7JmDOH7YgIe7HK80ojR6JP6i/MnIk+WWtpFt/6+bGd\nn28t1oIC6vcpc8Y0lqwLmhgOvvaNtfwe+7F+NCNU6CgkJdmJNTOz/3N6mOUts4ehLKX83pQOQb2H\noBqW8mtv1154RVEUq3i/AxV3Epdcgi7ZiHTOsCnRCpI1thZceeViZndGBtmicKEYXjcHhVHLZvHd\nU4ofqsYM7mYFnrDuY/imK9eyXYxisgPBc1ycg+5o8E19hUWcv2J01Gwdy/89V6/OBN/goifE0YMD\njpGIoDMnYLOXnzM7TYT61bPPomvuXLaTkwcQm0HtMKHAVD0HnevXO2ZxIt5Jp8Vxh9Xc/XgnHV4t\nPqcIe9eqvA3P3j8DXLl1Qp3rppvwdY8+yq/biXd1uWPxurZFxnpxZ7l6NTpX8za0rQ2/H+0dHJ/v\nMeNNYYi7Head4u9GUSiuOVUjWJ0ptxfFtqf+WQisT0P1s/a1UinLh86H3oEqiqK4RBdQRVEUl+gC\nqiiK4hLvOVBDvVmSHixyCc3G24jcWd5CfLJJd999wcF9KeTjNPmkn4iqF7MdvQLVyoPFg82hzThw\n7BxZJ0scTeR8milWtH2eyGUZskJ5vTwFIAtynkT0wAPW4nN+Xw0/9c+viUTnQvE0O2c9+kSubMNG\nVHGST+GtUlnpmKlz8L6gZCk/oU7b4AGffEIb3nMIfR0d9uKTiKfpuccwnm0zudolfmQJ+EhcnwEB\nmAOVOeB+5p+545FHHLOiF787STN9HXvwrBTwyRF3vePLwFdVw9dEAr6lazo7xYFUtCKihI2seJbU\nVgi+7Y+JQX3bT+KbvvIK2/fee97fq3egiqIoLtEFVFEUxSVet/B9K3iQXOBG3E6cnslFpz5jsIi2\ncAFvhSavrQef3GnHX3CYF4AYJNdOOCNbVk188gm+LGwTb4uPzkJx27ANoug2E8uGBoKs5TbnxkFB\n9OLF4PpgCdud92Op0jti1PgEnJvmmqzD/BlPvR4L/rf3cNnY0aVYwhJWx+mdOXOSwGdmSS4GZlok\nYTGfkIUL8eRMIjEA8d13wbfnB/z5j7MXHk5nEyVfREQ94vzUh2Jh96QhvL3fb/Sn/Oxn/3Dss2eN\nmsOBsJZL+ZJ+jzPsafMOxzyxFrfp/if5+pg/10gqQBkTCoq7RZbEtQZEgS/Ej9M7Yw3td0nfwyjE\nPLj6i0vD9A5UURTFJbqAKoqiuEQXUEVRFJd4zYGCCEN5Ofh8PvrIsdt3YPnHApFnePxxfM/XXmM7\n3mISdNCdnEy86y701Sdy6ULhccy53DCH855hBzFfezFazoiwlGfRIsP5F1ESJHNlRHTbbVz+ZAqf\nTKAGOLJBhh/nvR8ydC3k0LCNvZg7zm3jFj8fKY5BRJWV/D87JsZCkP/i0GF+3/BhreCbPZsHh202\nWlInzeFSpYJ3sFTlc9GhOs5mElTkFUtG5oErdSx/51rIKB0bxeIyJ6vRNXeuxbyn4Myruxwb2reJ\naGEbPz8omWjEOn68YxZOw9ZKeUmEkB3kjD1Dg4fye7klPWsWrlVTf8b50u0/NMrGjGv3fOgdqKIo\nikt0AVUURXGJ1y28ZzXflpdKGR0i6prILQRBPR+Dr6mZZ79DhwARVXXcLo72XmicX8jKlVc49pEj\nhlNsJxaMQdfgpaI8yZgLHjOROyYaDcnTgeAzk8/ddaaKTvN7bO/aBa7ZR3gLf/Cg8aa3RpNtChJF\nWsDUWBw12zFzV84HV/sK3goFbcASp/xo2SWCJU4DQQqCtZ/EjWFoKNvVxtaXZhuz1wVvvTXwuM6L\nCCJgBW7h6SR3w4wyP9Lla8QB6lpOnGgnNJOhX7+R7dtuA1/05K2OXTYZy9yOH2c7fXYX+IJGDXfs\ndkO61y2iEY1Cug+AryuYVbWGGCue/JMy9mPZ2EiRspiPl7iD3oEqiqK4RBdQRVEUl+gCqiiK4hKv\nOdArrhAH61FxZ3g0J2gKN18LPvn0v6AZ1ZjKFnLeE/VbBoYs6zHH3pAvl9xUHsM2ryRTTV3QWClz\nu9f2+3NfGpGUM2PNfvFFPjAGH8lRU7EbUMncM4zzUaU4vso1J0ZzOZR/DyarjvZynjHMqKn6wx/Y\nXnKXkXTeuJHtJHs5UJ+VXErlY8QTJC7I9mUfgS9hJbfEVq3F8qfcbltFNgY5Ofz7x59AXzPnZI2v\nHKWLPPQ07AClyy+3FRxy9GXOyYf54rOOGYE8JshPqOUTEdH06Y65ZXsEuNrrZI4SfW6RwmUhhzHR\nveQ9/h1F72PtZO7ChY6dtQNbTucfzxVHWKr3b/QOVFEUxSW6gCqKorhk0Nmz/U4tVRRFUbygd6CK\noigu0QVUURTFJbqAKoqiuEQXUEVRFJd4n8qZlsZPmJ5/Hlxd73A9ndlf6rOee0+p1+g1HiG07jye\nQWSJAwfIiVWU2RERDEGk0vWnwXdmiI9jD63BvvQZm7hnfetWshZrWRnHmtJrFG2O4brJjI0oESYU\n5Ojj8gbw0Z/+xPayZVZijYnhOBtXGFJ/4nOt6Mb6uaSVQu/gzTfxdQ8/zHZ2trVzmp7OsRpTMmjW\nLLbXrEGfHOBo9pOH+4ra16Aga7HK82pOKZWSA888gz55XQcm3gG+4v9g3YS0NHvXKmVnO7G2TM8F\nV+Ru1jnompkGvs8+YzswzhgFMmUK2/n5dmJNTeW1qrsbfXFxbJvrkbg4Ok/5gGvqVLabms5/TvUO\nVFEUxSXey5ieftpx9sl/40R0bxy/7itfwZedOsW2+R/25ZfZLi62958yIYH/qxvazzR0BXcRbIvG\n/6LxE/mONDIa/wMtEzOmkpMt/ldvbXVijZyG3S4tC/i/ekI1/leX+srZy/vAt62G/xfGx9uJtamJ\nz6k5Il2qQZnKUMWjxeztq69Gp1S7tnhXRx4PX5Bf/zr6/sED184RyR01iu0dO/AtN/GddWmpxc//\nzBmO1VBqPiOm7nW8j9/NkO+JO7lLL8X3lB1eERHWYu3r42tgcI7RjSPOc8Xl94ErabQQLpaxEdGe\n77EC1bhxls5rZiafLNmWRESFibx7Sm9GxaXWHFYOC1mM3X1Rh7m7T+9AFUVRLKMLqKIoikt0AVUU\nRXGJ16fwJX/nvMY3dmOOY/s/hES7fJRJRGX7wh37F7/A91y9+suGeGFUbeZc5oHDmMuM8PV17N/+\nFl9XU8M/2xKXic7fiVxKsvEUeiAItaDrr8cc6LZgzntWBaMMdlbPOj4wSg1Gzcbcrg2iNrECPhmq\nVfFCjYv+jBUajbPfcOyYNZhXahe59CCbbcSyuuOhh9AnyzCE+g4REa1cyba4ToiIPvnEUmwmIs9Z\n+tAb4JJCUtkrMAd+4Gn+2Yh9WL2x7RgrDsXbETg6h+JgvMb2vcq2GPrwT+T1Yjw/GbcpSxwYivwu\nKRnFCv2pL+FTfz8/tqsScXBcwnoRi6xkIaKmLV88qFHvQBVFUVyiC6iiKIpLvG7hU+uE5HEADgbP\n3MlF5vkBOOBqYx1vhc1be1lga5PSct6Ke6YZIrVie7f9dUMY+YdiC7cDa3UacnjbbmfS+j8ZPo3f\nTcwQIyLY3cH8cCKivHIuq6DPsVQnjI7CkRXkkD2jODl7LZ/H3B/7gU/upnuMavAPdvO2PchCiP+m\nYRpfgxNqKsBX2MbCzQvWFIJv8E6xTTMmzm2fKsth0gce5L/ZvdsxPcOawZXdK7btssSKMP105IgH\nfLU94gqNN5osBsDgbh4IN2LEcPDJLf3UPxolTj/ic+7ZkIE+OQHQEqliRj19+in4POW8Vq2Lw2aZ\n2omcQog16h9Lj/E59fSzAOgdqKIoikt0AVUURXGJLqCKoigu8drKKQU6IgiH1cvBaLRhA7jqR3O+\naFK1kf+Qjf2xsfba47KynFgn7MTSCJnLpOPHwbfuOJfZzD+GZUwtszivFhlpr5VvyxY+r8l/w7KK\n0iHcaub54DF8oeyDleU3RJRbwwIe2dmWYh061InzQPMZcEUMEa16Ru4QErnGgDf42eHDL4roResc\nLLeRqa2MOV3Ur/Oyy8Al2xOTkux9/qWl/Pl7Qo18pXhoULAG728ydvO12r5mK/hkujwv7+KIiZht\npy033OvYkYcx7zxpLedA6+dirPNe4b+jqMhSrKdPc5zNmFfuvCnGsQOvwRboeQ/yOS76+VHwQXlm\nP9eq3oEqiqK4RBdQRVEUl3gtY4ro5hnuUNJCRB4/LgcYMwZLPCaKqpaGxALwTeip/bIxXhAzDvO2\nveEe3Pr2TWRZpcGh2PkTXSk6Zb56J/iMKhJrSN3JqKmoDtOUyNvPCXVYGtKwRggUGp9HM+EWygri\nd5iVJyXl3G2WaqRFoNtHClwSUetJLoUJwaqYgdHW5pimPu23v832oQ78peFifvmBNvRtWs62xRH2\nWBFm1LGd7uF7mp4e44WioyqI2sFVV8dFYXl2mnv+idi2pz13L7iKx7JyGNXVga9+kUiH/G4T+Ir8\nZMrH0MN1yZ43uYxxnFH+N2U/b+Fb5qCv6Pv8Jd/zCeravijCzj7/WHi9A1UURXGLLqCKoigu0QVU\nURTFJV7LmEpKuNwidWwLOmXuxhhCk57j79gLFuDLwgNEm6W/v71yi/Z2J9ajPdgkGLaaVY3ygteB\nb/NmtltmY742ppxLsBob7ZWG7NnD5/WGG9AXdJzPc141zkTK6mblmLLRmOiS+bLUVEux9vXxxWEo\n6vRtKnNssx1V5viMihK4VMLC7J3T2lo+p0balcJ6RcmVma81Z+QImny5fy8qymJp0GOP8Xn98Y/B\n1XlZiPnTDoGDPuYDc0SAJDLSXqxyLtry5eBqOt5/rEuXsl37vSfwLf/yoGNbm0ohZyIZJX63T+O2\n48mT8WUzRYd65J8wTv9fcJwnTqgivaIoilV0AVUURXGJ96FyiqIoSr/oHaiiKIpLdAFVFEVxiS6g\niqIoLtEFVFEUxSW6gCqKorhEF1BFURSX/C/h04hgIOFdPAAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  19\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXtcVWX2/9dBI8JLpqRmhohEeImU\nzAtjRGjmbcgYUyJjzBxSMzPGUVMjY8xRM8Yhb5ExZGpqSkaOmjlkaN4yIjM1L4RIhoVkZmqknO8f\nM7PX+jzJmWbz+Pq9fq/Xev+1th/PYbHPPg/7WXtdPF6vlxRFUZT/Hb//1w4oiqL8/4ouoIqiKC7R\nBVRRFMUluoAqiqK4RBdQRVEUl9T1JZaWkvOIvlWrH0G74456jr16Nb4u+PRex67uEAma37Q0PkhP\n9/x6V32zaRPVmE7Qe/MExy574QXQWi5dygfdu4MW3ifUsQ8dImu+bt/OvkYvHo7ikSOO6dk6F6TP\nP49y7HYh50BbvjbQsZOSLPmanOz4eWLmEpBavL+MD1q3Bm3w3GjHXjV+N2jrK7o4dr9+9s4pde/u\n+Nq30Q6QNtyT4djLm6eC1rMn280WP4/veeutbMfH2/N11Sq+VqdPR23tWsccOzcUpMychnzQqBG+\nbuNGttu1s+drair7WlaG2syZbDdvDlLf3/H12KABvmzVnFI+CA624qvHc8zx03sM39LTKsCxIyKa\ngnbNNWwXPjof3/S119jevfuyfuodqKIoikt83oEGT0127AcfxDuQ2Fjx/4bG4Asfe8wxh83BO9Be\nvdIdO5ns0bvbGT4oLwetctJsx25Zvz6+8IMP2O7UCaTNm625B4SEiIM2bUA7+Zdsx46IxddVVLAd\nPSIQtKAgtpOSauefw8WLjhkQgNKJoUMdu4X8S01EQ4fyHSj16gVa/x++c2yvt44FJ//Nq686Zndj\nR0QdOzrmReMmqtn3h/igb1/QFuzkO/7RtXaQKe482LG/fWUwaA0usG2ec5ordiRXXw3SuZB2jo1X\nRi0ZMcIxy9q3B6ly6irHjjz7DWiXLrEX5i6koIR3ITHBVryku+9u5diHLqD21FNs//WvZ0B7912+\nqz952+OgNfv44//6c/UOVFEUxSW6gCqKorhEF1BFURSX+IyBFo7juOdyKgQtPJHjQyWDCkCb9gDb\nU+/A9xQPme2Sk+OYVSPHgtS4nJ/6HUpMA+2229j+RyK+Zc+eWx3b672z9j7+mwsyRnP//aANG8b2\ngTn/AG3yxv6OvX3cKtA8Q+4RR9fV0sN/I2KgjRcaT6jv5PNR3AOj2fNGst2nAmNOdLXM5qhHtvhG\nxOfSHn4YxdVFjpm8YgVqJRwUzTzYG6R9+6y5B2zbxrYIJRMRkd+Afo7da9x6FJt3ZruoCKTd9fgh\ncazN/hbiJJw2JHF5kKfZF6C1bs1PuyvDuoB2VxP736v33+cYbN26+KQ9Y6Bcn/B5jUwe+OknfM9R\nV/PziIU1/Fy9A1UURXGJLqCKoigu8bmFjxonbncPHgTt0JNP8oFMBSIiavWZY+6b/zVI48axXVpK\n9ujWzTHFbp6IiL77jnMlbrgBtevEbtfMaX7+eXvbdknoAbE1N/YNTzzB6Sg0DxN7wwbxFj5yOqa/\neI/Jk2lpCz9vHts7d6J2882OKWsRiIhkppj/okzQvvoKwyu2aCo+fzON7eR7XNhxhxFS2n+ct/5j\n//Qn0DyvcFpLVlYrskWHDmz7HTkE2oIBvG0vMdLoeg8Qm2iZR0hEsW+/bcs9RMSbOlx/vaFtd8xO\nnfC7UriFQzeea38GrXt3+98r7yWRx/cXDDctuWmKY2/Zgq87f57to0dRM5a8y6J3oIqiKC7RBVRR\nFMUluoAqiqK4xONrpMeMGdz0YtIk1GRTkAJRnklEFLOHmzeklmHzhgMH2N6wwV4ziRMnam4mUlLC\ntiyHJCK67z7Oq/I+g+Wqh/78Z8cO93qt+Zqezr6m9chHUebO1DFKHY8dc8zcbrNB6tOH7cBAO+c1\nMpL9PG3ksMjw6NSpqMlrJSmxuuYf4Odn7Zzu38++mn02WsSG84FsgEEEpaYnzzcEadYstjMy7F2r\n4eHs66E5eShGRDjm2HnhNUm/SAeUcef0dItNWjp14u/VBayRLFzGX+aoI5hWR3X58Ur0nASQxo9n\nOyHBjq/5+XxO5XMWIqJp09g245qyBFp+h4iIgstFCWqXLtpMRFEUxSa6gCqKorjEZxrTSFFR4peT\nDdreQbxtv+s2TFPwfsUlPRmJmPmfEoFVS7ZocZHTeIpbYcpJtNhvpnyKHVeWLQvjg224v1/6DO9e\nMEhRO3aIdpUTzsaBNmYMHwfvNLZFd9/tmAkHc0Eq2MPbpBijOZZb5JbG3MLLLaSZNha1Tpyt8hGg\neW7ktC2vF/uI1oZ2FzlVqTIAO4DRwIGOuTcMt5PlIjvLbHdpZENZQ2Ygnb7vPtAafcEVPZmnjX5l\n3q5sd8OUol2tMK3NFnnPfeLY8Z9hepAM44SF4c+XobLtPSaAtutGDD/ZQPoimm8REWQ4/iK8E9eS\n08j8QjBksm0bV1BF0+XRO1BFURSX6AKqKIriEl1AFUVRXOIzjSk7m1MDZAcZIhzBcuIIzuehxYvZ\nNttqh4mYY1ycvXSL+fP5F/n8c5DOzVng2IFG5+y8ndy5Jb4Eyw7jN3PZYV6evdSQrCw+r8YoGUhH\nietRBdr2Pf6OnWh0jjp+/JJje711rPialMR+yi5RRES953LXoE1G16DeYziWtHwaliom9ankg8aN\nrZ3TCRPY1zlzULsgMtAuokSBMkBmzHaCvKG0NGu+yllj5oAE2SxqdMftKPoYkdB7G6cVbtpk71pN\nTmZfl+zEGKGMLf/iApHpeOvWgZQWwumCtlKuUlPZTzMmX7mnmA/eeAO0lWFc5pmYeAw07+eic1gN\nc6b0DlRRFMUluoAqiqK4xOcWXlEURakZvQNVFEVxiS6giqIoLtEFVFEUxSW6gCqKorjEZy089evn\nPGHavWEDSDK7M/Kf/8TXiWS2FMoC6ZVXuCWW1xtgLV9t0ybOA+tyL75to6ee4gOznZmYbph/FqcH\nxj3elg8OHLCXs5qezk/u5HwHIppxkGu1p0z5DjRvR1E3/w+c2Om5kfsReL2t7Pj6/POOn+s7TQGp\nX5n4XI02ZzI/MHVuMEgyz/HECYtt19q25XNqjreQhfwyD5mIksY0dmxzQmb//nxde7097fnq78++\nGr0A9z37rGN3aNAAXyeK6EvnYRu8s+Ijb2ex9aLMr5Ups0RECZM4L/TMHsz37dGD7b0Tl+EL5efx\n+ONWfM3NZT/Nr/jupeyb55arQVu2jPtmmO3sREc+atjw8teq3oEqiqK4xPcdqKguqD8Hq03kcKZt\nRpPSyFd6OnbWLPyLX3QHdmaxhazoaXTpEoqDBrF9Nf4Foueec8zYZ7uidvKkJe+Qtm9w1ciHH6I2\nuRcP40pMNIbDRYgKq9WrQXruOfvD2lKO8V3n7KnGH+DXXmPbaNWUf4TvOjNKsPvRxUHYRcoW34hO\nuc/+FStm5Ky40INY3bN8PO+lUhZFgfbuuz3piiAH9NXFr2AHUbm3tw9+V2SHo7gVRkejJ56w5p5E\nVhwOGGCIY8Y45sSJKN14I9tpXzwEmqyia0d2SLjIncsS1sWClruNrwfvj0bV5LZNjpm9tjdIwweI\nqsWGOGv+P+gdqKIoikt0AVUURXGJLqCKoigu8RkDTVjBXaZz1/mD1k5ODjPiOBDYk0EUItq9UXTj\nocZki+nT2Q4IwL8LS86e5YPrsZP3yls4HjnkKD6GPenluEczCz7+BxmTM5tVUSwPOQuVvxQRTmvr\n3Bmkulvs+CbJKuGY0P7PseQ3UIS2ZTyciKj3o6KrkRGbuxGHF1ijqejWv/AqIx4cMtcxM9Zib3ER\nxqOsg9jKvyDgykxPOFSfY60XjfZQ7f4+xLHPGp3c27dnO6MItT++tNKxvdhUrFbIyROeu/Bnen/k\naQMLl2K2zeBTKY6dHoQOXWj/pHgTO6XkFUP4vOW+jO+ZUo+zAM7Uw+94w1GjHPuF940YaIQYu9BU\nY6CKoihW0QVUURTFJb67MU2e7IhFf/kLSB2ffpoPjGaqmRs5bWDs5njQlgziBODkZHuJ1HFxnEhr\nplvICIM5T1vOkA4NwRnmJ8r570uLFvZ8LShgX7/+GrUhrXeb/52R6UJG3sihlTz8Kzzckq/nzvHF\nUVKCmmiaPfx0BkjZt8937KQPcYifvFR697Z3TouL+ZzKXr5ERPEtCx27uiOmKskagMBF+HtAutGq\nVVekSfGiRagFDhPD2YyM8AmLQh179ky8VkmGqRo2vCLnVf4IIqLIRjzIEZqoE1FuR976J9TFpP/C\nlrwmREVZugZ69+Zr1Zgct38apziZSfavv77VsZ955k7Q0oeK4oDwcE2kVxRFsYkuoIqiKC7RBVRR\nFMUlvmOgaWksvv46aqdO8Zv88AVIrVvf4Nhmmsbx41sc2+uNtRarkQPQxo9HrayM7fj6+aCd6cwN\nOg4cwNfd0o3da2SxQYM8r43npYNUWc6D5BISMXVs2jS2I88aA8fkADRbw9pkg45du0Bav62hY5uD\n8WQZX7MH40CreP99xw6yeE4LC/nzjwqpRFFMbjtilPKGXXWVY5/+GXOsFnAvFZo82V681uMpc97Y\ne2cSaCkRnDplNrdI2CeuFSPQf/b22x27vsXzumsXn9ejR1FLGiauT2OS374nOVWpw/ff4wtvuYXt\nr7+242t1teNn1UW8L5RD5syBg4cPc0l0RMQg0K4TldTbt2szEUVRFKvoAqooiuIS392YRIcbkmlL\nRBS/jisN6B3sfiRnXX/22SnQystj/ycHfy3LF3EXo7Q5DUHr1UsclJSB1nDH847dVZYIERHdiWkN\n1njzTcesfB07QGUv7e/Yud2MjjuDOFVk1qPYf/EPcgdvwUUiwhwfOQOciELmcSjEHFc+tptIxdqz\nB7Sgm26y5R1QXs72/gA8A+0SIx077OabQZOpKml1ngfNaNVqjQceaOnYR97cCtrMtWw3aYJ9Vr0r\nxYf8EHY4qj9vnj0HBV3/xNVZzbair3T//Y65NxarvyJ/Ky4Ks9Hq55+TdUZwVdS6AdkgyfXo0PRV\noAWP57SxA1ONvqWQDtWfLofegSqKorhEF1BFURSX6AKqKIriEp9pTCUeT41iiJiDlL4NU1VkA/h2\nFwpBg7hadLS1dItRozjdYuGpwSiKMrOL114LUt2VK8UBhoRnHeZu6hMnWpzfc+gQn1ejPk526glf\nlApa/gAuNYzrfAa0GfM47msr5aZtWz6nBw9iPO7YMW4jFTwMP/9z6zg+CqWJRFS1lGNQ/v72zmmV\nuFb9RWcmIsI5SGUYA6eOHR3zhFGufPEYf0zBwfZ8PSN8bWiUHQK//S0eHz7MthlHlDHqJUus+bpH\n+Gr2Iwp+5BHHjjmCcceCIDGJwMjHyq7Lz0+GD7d0XseO5Q9LttgionKRNpV0Ny5p4uOnuXNBgi5j\nMTGaxqQoimIVXUAVRVFc4rsSSVEURakRvQNVFEVxiS6giqIoLtEFVFEUxSW6gCqKorjEZy28x/MR\nt936sT1oxeWBjm3mT2VWcIuuijfeAC3okqib9/Ozl1sp2lll5+DfBVEmS9U5S/B1ovdd5bffgvTe\nCn7ANmSIvTxAmbNqTsqYNYttOVGCCCd4mmNLmjThloJe7y1WfIV8xUvY78BT57hjv/hiK9DG/ZF/\n/Lfl+JCyWYNzfBAYaO/z9/d3flD1hSqQ/Cq+4QPZE5CIzs1ZUONbyvMfF2fv81+wgD//0UFYmw29\nAbt1Q23kSMf0y8G8yx072O7a1WLOcmYmtwnMwXr3Tz7h+Tje7zFLdMFSzkseHbsftAtivGiArdZ7\nSUn8+S9dDtLjYqrMwifQF/qER+F4hppdJDhJ1Ou9QfNAFUVRbOLzDrRBgzv4YCc2Iq7XnqtPXnoJ\nJ7Vl/siVP0s641+D1IU8cAz+NNQWUdHz7bfYjQkaLJuD2OvUcczGDz4IkhxvL8ZO1xo5WK3rF3hH\nfPa23zt2pKj2IiLoDnPyZxyONn/+LWQbeRblgD0iogYN+K4zNSQXtJXizn1UW3zPzZt55xKFv0Kt\nyF3Bd52nc1CLjeW7o9DYWNACi7gx9XbCmfFxq0eLg5rvVP9X5F3n8otYqRUkCr56l5eCJrd61T3w\nDpT2nGe7q8XvlejI1rkzSp98wh2HJ8/E71xFhThYhx3OA77ABuw22D6G15nopfidWthatOp6vx5o\nlQ/yuVqxAt9zSKK86bx8uqfegSqKorhEF1BFURSX6AKqKIriEp8xUNngJXwkdtwRDY7oq6/CQDv5\nA9upJfjkjlq2pCtBQRHHYCY+fAJF4WzW6TSQ1t3BMagLFSDR4pn2/JN0PSI6X8thcERUX0zuqmrT\nBrTvxBPtZiszQRs3ns/z6NFkB9Hxp8WRApB++IE/5JU/J4A2pO1etjfjVMG9dS0GPgW9fsfxqvPm\nk38PP4UfvBpjjuPGsR39PnakN7tzWWPfPscsuoD+zN4jvmdh+L3KG5Dl2Pc9ih2nvB8cpyuCWAQS\njdORNe0nPgjAQX5n6oon2i/9Bl84fTrbS4ysGJccEY9h2tybDJoMucY02gtaeRO+boYYU/OyX+Xr\naHgNP1fvQBVFUVyiC6iiKIpLfO5RlsRyqkR1Dt7E1qnD98wREbjVOPBjsGOfO4ipGKdPs93i1/v5\nX4kpFwnJY6aDVrqOb9tTFk0GLWL8DMeWw6eIiII3i1SR4TXdxLtAJKUPX9QFpOyWHGLwX7MGtGZ9\nOjn2mQ8+AW1MiT33/sPkpe0cu8IIb3TvzvaQ+zFxnUaKygrZsZaIIieK7dz582SL+pd4u9VwDMYw\nPAu58e8HH2DCd/QnnFZX/OAU0EIP/MOaf5JDQ3m+++xtRjpSh2GOOXwLbkV7iM/Au3Q7aCdv4SFz\nzWrv4mWJe7Q1/oMYKpfdIQOkpUvZzh+Jg/zk62yRfESE5tbuA62ZbOK+di1o7UTz7bx9oaAVFf33\nn6t3oIqiKC7RBVRRFMUluoAqiqK4xHdH+rZtHXHltAMgJSZyHG/NmjqgJeTE84EZSFi9mu0uXew1\nPejXj3+RmUb+kcxxMLpw7D/i79jt2/8M2nXXXeXYlZX2GjSUiiYdwU88gaIcMnf77ajdzLGk6Gm9\nQdo+KY8P4uOt+OrxvMjNZB7+FMWQEMdc2T4dpCEzOVYb0wBjtQUhIq5ncfjZmTNca2fGa2XcPWo6\nplztncZlqJFT40GjjRvZrqqyd60mJPC1an7GMpUmMRGk0gj+zIN7BINGCxey3b+/PV+Li9nXCzhY\nkH73O7aNFCBZArr+IMYWZRbT9u12vlfV4jvl96lxrU6a5JjRp9eDtHgH//gQ4z0DxTVOX36pzUQU\nRVFsoguooiiKS3xv4XNza9wWr5+227HNgo0ePdg2mx/5nRYVC40b29tq7N3r+BozJhIk2WJRdkIi\nIuoXdsixM9aFg/YbkXFjtceiDDds24aaTLMwwh+FsTwnXlbQEBEV7ORQhK3tpsfzKW/h3z2J4rx5\nbMuyNCKYvZ5XVnPlUXy8vXM6eTJv4WeUYfoPfOhz5qAmK+PMC1mmYKWkWPN1/Xr2td8iDBvkjeBQ\njOmO7E+a3sHoI7p5M9tZWfau1Wuu4Wt1/nyQih991LH9CWn59NOOfWbSDNCuvXaDY3u9fe34Onmy\n42fhIPx5UUGcSjl8GoY+sleLLlJGyt36SVx916+fzoVXFEWxii6giqIoLtEFVFEUxSW+282IuMrF\njz4CSXZvNrOGZMxRNFEnIqLSxXv4oDem4tSGhGkc9yzoYLQjEl1tPP2x67h33SnH3rcPY6BGFok9\nxGwb6t8fJE/PJo794YepoD3K1XrQLZ+IaH85l1O2Izt414jUlBXrUBS5QfsrsDyy3bBejm0kBhHJ\nuVPxX9fSQ2ZGH9Etag/GsuQFumDgJpBkitNxo6HRdSXi/Wvpn6QXnx5KWJwHWsgWts2ZWDt2vOjY\nQ7/4I2hnw7irk81+VxdF6tIFEfMkIgp9+23HLu5gfNKLuWRaziT7F7Ijfd9aevhvxJylnByUojby\nCZ9XdAi0yD1nHPtCOUg0SDye6Nfv8j9W70AVRVFcoguooiiKS3ynMSmKoig1onegiqIoLtEFVFEU\nxSW6gCqKorhEF1BFURSX+MwDrazkmt3GJYWgZRdxtplM7SMimng0xbH9c7JA27qVbav15aNH11i3\n77mWK3W9N2Od/ISBnBd2EQdIUkkJ27m5Fn0VdbuyLRwRQfOA+NVY0y3Lz+XIBCLo2EV+fnZ89XhW\nci38pQdQHDTIMSeE5YIkOxYWd8apk6VzuIY7ONjiOT13zvG17e2BIMXGsm1OkxBd136Rr1ivHuc+\ne713WPO1sJC/V9Nx+gyVi1zEbt1Qk50YRbsBIsJznpdn8byWlvK1Kj5zIqIykRs++WF8GC2/OwV1\ncaJvWo98x05Pt+Pr3r18TsNvw7cMePllx84PSwGtZ08+kXffjROD83uKKa1TpmgtvKIoik18pjGV\nlvKq/sYbqL3IRRHUpAlqz4uFW86WJyLyq+AZ3dS0qb2/lAUF/It89hlI2zs97tjRXy4DjUTz1Zid\ns0HauvVLx/Z6W9vzNTWVfe3QATXR/LnLZqx/mStmtUUvMjoOyROdkGDF17g4/vzNz1E2jbr3XtTk\nTfVJo4nT2CIxnC87+4rcgXrqGVsJ4julo0d7giKrgr78cito3g9Fo/DoaGu+ZmTweU3thsPhlpdw\npZwx/4xWVfCdXNN9+aBNm8b26NH27kA9nlOOr19REGgtVq507O0tcacRTeL3kg3NiShmMV+7BQWW\nfJ0/n79TohMUERH9LBqlP/IISJ6FXDHVpw/egYrZj7Rpk3ZjUhRFsYouoIqiKC7RBVRRFMUlPmOg\nHk8hP4V9DrvxLA/jQfbyCTARPi2Oz8EhXjBEq4YnW66IiXF8veajApDOPyDihaIzExFhfGbMGNTk\n/7XZPb+qik/6nj2oyTZXRlrApoELHLt3872gfXPbbY7d1Ou14muVGNS18W28TuJjuYvNLwKk8viH\nH1B78EG2Q0OtndOkpJqfbMvuYIG/6YTiu++ybYxPaNuVu5UfOGDxyXZGBp/Mlhh3W3KBY4nJJTis\nD9ozGed81238dNlqdsuZM+yrDLQS4SA7GTAkovSp3B3sscfwZVu2sD1kiCVfKyvZz/r1UZPPGYwW\na0vC+BybWQ8yK6OmWK3egSqKorhEF1BFURSX+G6oTNc51spb0kB5KJFTA1q3vgq0zp3FQcup+Jbm\n/soWIpP4fMlukFJXLHHsjJ3YGfXsBh5w5bdoCWgycTkfs0Zqh9ximLO2ZUjByOzeXJ+38D1euA20\npmZmvQVWL+NdUVLnE6ANHtHCsYeNx5PTbyQP7rpgdCmefWmKY6fhJVUrZLJ8aBEm9lfGchgpUG7Z\niTCT3kh/mz//cboiiEGCywehr8mDzjn2xXrPglZ6lD+P0Ie6g9ZVZud0xWTxWiGLUuTgOiLolp71\nHDbHvuVatm+4AV9WfVA2NcYm5q4R13/Vk0+C5L9OhB8bNACtpYiS7duHb2n0kL8segeqKIriEl1A\nFUVRXKILqKIoikt8xkC9pziQ4WmC3Qt+opsc2//iTaBRI44rjZ2JI64yZbDKJqILw4zNXUDK2CHi\nRbfeClqRsNsZ4UgRqrKLSJcanIh/w1b1Ek6U45SrivFsB65ZA9qm+hznszWqL2kcD4s7YXSMCRDN\nI2TmFRFRPxFzCjDiZnu2WHLOoN1jnGVyyNDCv/+eD+bOA63iz3927KA77sAXzrxCMVCRnpa0Fksg\nqS437Kj71VcgtbyRf8ddOzGtrOvfkvggxV4M9NxULideFISlxfIZQcp9bfGFr73mmEOOYAkorRY1\nqhMm1NpHIoIcJP+nnkJNHGeNx6tj0SK2Czd+A1pICA5LvBx6B6ooiuISXUAVRVFc4rMSaexYru4w\nt2nrv+XthNFPiCqE3dJMWxK9+ai01F7FRHa24+uu9sNB6vo0d7HZOxdTbiJE78Cyo3gu2rTh1Ayv\n94YrU4lksGQF9y5NLsK58LOaZTi2aIRDRESFa0v5IDjYiq9nRSVSffm5EUE6muf4JyB5n5vPB2aT\nVVm2Fhho75xecw2f06NHUZMX7/nzqInZ5r9osipTnOLjrfkqK7z8jVBM6HgOxRQXnQEtdzNXRiWc\nzgZNXvM2K5GSk3kNWFIXv1c0ciTbRuuoQ8N4u//WW/iyRyexe0GWquY8nm+4avKYEYuTvhmfsecj\nTmvzfo6pWFRXRDjDw7USSVEUxSa6gCqKorhEF1BFURSX+ExjyrzA6RCZW8ahOG8U28aslJai/U1x\nQDvQQkUHeKuI2Ea399Ef7x+4q1LkPCPFQ5SjmaVb3vtlGguW3NWKceJcGjHi3/+e43cXX80AbWIY\nd5natSsGtP1nuXwSz7h76h875tjbW7UCLfpvf3PsO5biSIK8jlyjGb/HqNeUw3La2fKUiObMccwZ\nOS1AmjxNxF3N7lfXX8+2MUvrF9MCLOF/lSh9XrwYtOLFfD3SMEy5kn3Ndk3E6xHSmJYvr62LDlNl\nJXaFMTRKxhaNkRXhN97o2KdOYTpY0KxZttxzeO01TjkqNbSikLGOvaXHWNDeFV8/T/uGoLVuzRMJ\niosv/3P1DlRRFMUluoAqiqK4xGcak6IoilIzegeqKIriEl1AFUVRXKILqKIoikt8d6RPTnYCpFk9\nsFu7bKqek4Mvk02EzC7PXu8/hN3fWslZfj6XnMWtMFKVRElWVscFIMmBY+OMTK3iPZV8YHOoXOvW\nHHjuZAw5k6WO63CQHwzEmocpLvmD+PeKi7NUypeZ6fi5KQLTP+69l7tzLVuGg9GSwngiwII92Blr\ndLlIa0pPt3dOJ0yoMZi/8vbZjp2YiF3nvff8kQ+MeuXyJpye1dxSySERwaC2kmuvBSnkxx8d+xwF\ngiYzsGKC9uN7yskGUVHWfPV4TnGJ5MtYdlo5iL9nclAcEdF777G9aNGHoHlXii5Tgwdb8XW5KI9N\neuABFINENyizG5xII5sRuwlZ9DemAAAdOklEQVSks2fZnjFDh8opiqJYRRdQRVEUl/jcwlfn8LY9\nwGhUk1TG26KH3nvYeKWcr42dUZ55pv//5OCvJY58TH0THYHkaG0ior//nVvFrFlzP2h+QY0du7q6\ndv4BcrtlVLukLOYtb2Iibn/jTm/ngz59UNsoGtPGzSYbnBXDuXq/GwHazTdz2+akScGgyWF4v3sM\nf4fq63kOt9W/3mK++oyzGG7YIzpXeS+1B+10Hd5rNurZEzRZ0dKcLNKsmWMGmJqII62NzQIpaWMy\nH8hOUUS/HPhmCY+Hwxh938LQ2J+4wI/mzsXXbd3K17h31DIU+xgVXxZIeu45xy58FofxRQmNiopA\nkxMwzSK1lhiZuix6B6ooiuISXUAVRVFcoguooiiKS3zGQP32cDpKWRnGsqg+R2+8D+Agezp92jFP\nvo6pAcZce3vIGJCRj5R3hLv+lGH2D3nXcPbLiW6oVXcVw+hoR209ZGSaxTvvgDRoFscIfzF/rwnH\nj5f87TuQ5m6Od+zCWjv4L4o/5XNjho4OHxYd6u/B+OjegZyqdAQzWChhqegplGuxw5UIWE1enQSS\n562/8MHSD0BrJNKGissxbahLR+zOY43Vqx1z+Rf4TCC1I8fyy41zTrfcwvbAgaiViaGPFrtcyXTF\nDc/jlVXdkQdGGg3ZKCeH14dd32LqYNd9IpYfHV17J4koX8Q94959F7S0bRyvT29kPB8Q8frcI7tB\nKm1urHmXQe9AFUVRXKILqKIoikt8d2MqLHTE/QE43/0zUdAxZBrOhN6Vc8Cxu36PW3iPqGDxeofb\nq+5ISXF8PTQe0z/k7Oe//hVnP3fqxI1YC6fl4XseOcJ2aqo9X7t0cXzdPhe3DR1+wz/mfDl+Npcu\nsS36BxMRUcYckWfl52fH1717a9zDe37PW8g//Qm3urM7iKo12UCZiApieXsfE2Nv+BnNns2+tsdU\nJbrnHsf0C/AHqXqYGJQWgaEIGCpm8fOPjuaquaFDa/6RKVswFLGgBzdKDgnB123cyHZmpr3zOnw4\n+5pd3g+0TePWO3ZzI88rshEngW0vwzS36DDxHWza1IqvRaISKcTQfhLfI2OGH41ewY3JE4IKQMsd\nKK7j5GStRFIURbGJLqCKoigu0QVUURTFJb5joJWVLIrUCyIcOGeWRy7vw7GDweuSQQsQtWtLltiL\n1VRVcazGv2VTFAcMYNsIOvV9Ic6xT53Cl+1OFEPdbMZAu3fn8yqGsxERlHZ66p0H6dIlLqvzKzGm\nXMkWWNHRdnzNz2c/zbo2MYFv/XUPgdSvuUh3MVtcyYB0u3b2zmlxcc0XsozDGoPjzqzmGH3DqVgC\nuvI3mY49ZIi9a7WggK/VmApM5co+zWlewwedwRfKVD2ZX0SEpZ1jx9o7r+IaKDRKXaP++U/HztwX\nB5rswiYqqYkIL4nISDvndaeIgXZbinXnjZ/g69OY4UijX2jN/+/7L0GTpZ2hodqNSVEUxSq6gCqK\norjEZyVS6VnuRrTuInZikTth0dDkX2wucUyZXkFEdKZIbj1Df42PvwrZ1Dll5EgUw0TbGCP/Y8Nr\nnFKxqQi3/qfv5Wa7jVJTa+uiQ8EsUdWEzapoqmiy5H1kDIoDK9iWM7mJfrlPsoGoKBu7Ns4Qwx3L\naAwFOS29AzA1pNE0tletqqV/EvGZrx+HqXP9Bor0pDZtQGt4yw188NRToMnx7TaJ+Wy+Y3vGPAqa\n9wM+X4VHYkCLknvK99/HN33+eXsOCnbV48/95lNGlCSCvy/NXsL0QJkRJvuAE/2iF7gVWgj7ZC8M\nKX33HccYR282KpE+5FK5rvhRUOhaCOFd9ufqHaiiKIpLdAFVFEVxiS6giqIoLvEZA5VZE6NjjSFW\nO/iR/5ZPsaNMtBiMNi8EX+Zpw0O0fGVQ/a889hinfKR80AtFGR8U3VeICAaJ9T48H7WPP7blHhAz\nb7Bj54/EQKAM15ZOywYtOIc7NVGdOvimsgNNeDjZ4ORvOKUms3MpaKXE5Xly+BYRQVB00/jxqIkh\nXkQYH60NuSM57tnRqMiUqVN7Ow8HSZZOtm+PAenrrmM7IYHsIfLlvKfOobbjB8eM6laFWkWsY476\nbgZIC4P2WnNP0vWkKG/+Gw7dK9zIcc+bjFi+LO00Y+SB20SMundvskGwrHPeuR0078cid7IbDmqs\nWsFpZKLi91/8ipb0egeqKIriEl1AFUVRXOK7EklRFEWpEb0DVRRFcYkuoIqiKC7RBVRRFMUlPtOY\nTp7krjHNXsMSKM9E7lxz990BoMlOLBeM9AZRHUh+fvY63AQHs6+yMRERUdURkYJjljyaXW0ksovT\n7t3WfN20iX01GrZTShgPFTPbfJ9oxMPCWixKA40qRJnnggVWfJV+9h4fiaI4N+kBmFKT1oi7GJld\n3hsnctpKZaXFjvTx8Y6vVatxsoA8jeswi4Wim4vSYl81h1262PO1Xz9+8PAldgCa8TBPc5g8FFPH\nPK04X+yGG3Bw3IkenBpHq1ZZ87VSdDnaZ2gxopNY3w3YyeoGUSGbvQMnVpz7mH/HwEA718BZ4Wf9\njh1RFKl0g9/GMs9uYpDke+/hyzb8QXTKSkjQbkyKoig28fkUXq7qhwxt53x+3bZtqL3xxmuOHRDw\ne9DOfyh6RUZFXZHZLea8mK+/ZnvhFvxrSNdf75j7F2Fid+P27F5zr/fK9AOVd7lERHfeybZxu1T9\nwguO7Xfrrfg6+Uvn5dnxVfbYNPrB0s8/O+b6TlNA6reak9X3jsNigNtu42vD6/29vXOalOT4mha2\nHKT0Xvy5Ds/BBh1yA5I5FOdT0bRpbK9fb83Xg+J7FdG3L2ieDU+II+NOiuTsqR9B8UbcxQcHDtg7\nrwkJfA3sw3vQ4o28KvQyalfkzK6EjdiIqHImzyxr3NjSLuT559nPn35CTWzziqctAUn+SvGx2H81\nKpbPd2Gh9gNVFEWxii6giqIoLtEFVFEUxSU+Y6DnznFcMXBOOoqxsWzL+elEtL8bx8DMJ+KywfLs\n2RafwsbE1PyLCF9XtsffY8jc7o5d/eEO0N58U/w/izNxKDvb8fXCo9jFddVr/Gsk52AT492iiW4X\nc4CTfAofHm7/yaZ8XElE9OKLjhmcGA1SaTnPXi8WsVIioqXP8e+XlmbvnMprVfYdJiKKucDNK2Km\nY/OKrVv5PP74YxPQZBOMggKLn//YsY6vqXUzQVq4kO1du/BlkfeKR9vmLK3Dh9meMsWer998wx9Y\nWRlqoqn3/kT8XrW7KJqb/B6fg5QUFTl2iKVnC9XiWvUTzzWIiGjLFrZltx4iOvkdX6uvvoovmzzi\nv8+v1ztQRVEUl+gCqiiK4hKfifSBk0RybI8eKA4Z4ph73/0apNva85b+n//EW+bZNAGOrCF79wUF\ngZR6lrcXHTD7AzL7zVFK5q9si9JeHOJY9DT2pywTPVgrBuSDVneg0IxR0rGxPL8qsPYuEhFR5THe\nvdXfmAXayTa8bTdbftJQjtuEGpUCaY93FwcYMqkNckSUkW1DMc0Piv+HW/jGRZ86tqce9lH1vi1S\n7ii+1j7+h/yBvG3PiK0Gbdw4vqcRO10iIop88EE+MGeJX4mZWESYSmdWIYjvzkEj46pdBC8txWs+\nAS10Libd28BPpv899hhoJ9q3d+zmlzDSJ7ftxrgsytvJM5/ia/j49Q5UURTFJbqAKoqiuEQXUEVR\nFJf4bqh87hw3aKiLkTX/Ppxik9AIY3VvvcWBxvnz64E2eoUopSsosJZuUV3NaSx+UyejKPJamhbh\nzHAZojNHrctZPykp9tJYUlPZV5kNRkQU36jmskPpz5tvHgMtIqKVYx84YMlX8fnv+gw//65/4OYi\nFZ99BprsH9PytddAow4d2LZYykspKXwhy59BBHOwMhbh7yHj3oGxXfB1gwaxPWGCvQYdlfz5Ny7D\nWUaZW/i8mteGzBY0m9A0asT28OEWU65kGpMxI+hMBc9sMme9y6ZBZo8W2bRj4kQ7vk6YwOd09lQs\nyZR+r1+BmpyJ9d13+LKXX2Y7P19LORVFUayiC6iiKIpLfv0Wvh5uxf0//9yx15dgb8KXXmJ740bc\nanr7juIDix1uqG1b3m7mHACp648cYsjch9U9YwedcOz4kS1Ak2kkpaUWt0Wiy9E17UNBOn+U/dl1\nHP3p2porI1JnNgVt4kS2mzWz5Ovu3Y6fZyJwe9twOqejFQzAdLSYzaJXaU4OaNUl3OPSZj9Y2GqO\nGQPSmcU8OloWpRARxVeIblFGDOfCO+84doDFblwLFvB2c3RHHMELs8QNTj7G51VO8SUiahHCFTVU\nVWXvvO7dy+dVxgmIMKZkln8dP8723XejJvfK/fvb8VVU95mtoapb8ghuv4PGeHbRjqugJBikmB4i\nxczPT7fwiqIoNtEFVFEUxSW6gCqKorjEdwxUdKPOHpAL0tChbA8bhi9b3lKUa9Y1qkVlTkNk5BWJ\nKxYTxhVDT4uSPKPkLW4Sx/bMdIuUEf89BuKGjAyOgaWOOFPzfzRrJOfOdcy9RzAdJ/KsiKVFR1vx\ndf9+9tNouEXxQfzz/HpgN6bqEaIDuWxpRETB4xIc22ZcuUJ04wkyY24ydrdhA2pffeWY5U2wG5O8\ncoNsTiSorOR4/eHGIHUd2YkP7rkHtKjNHGs2P48zieKcZ2VdkUkP2SOxY3/aOv7uyPWAiCi8M3dz\n374Rr/EAMUItKsrONVBYyH7efjvmI3nvvI8PzMkKYj2IScRnDnIgQVycpjEpiqJYRRdQRVEUl/je\nwiuKoig1onegiqIoLtEFVFEUxSW6gCqKorhEF1BFURSX+BzpMXgw51atWloFWnAY196WDkoFLX9A\nhmPHbcbWcrOuneHYtlpZERFlZrKvYxstAa3p+GTH/uEHfN0zz7BttvQfUv8ffGCrZpeIPJ4vHV+9\nx+qAlrmW63HHFuG4jxlhXLdtTleQ00+Liy2dV5FbS/371/gDz32FeXcyL3jVAPwsZO0xJSRYO6fZ\n2fz5m6NZqk6f44Nx40ArHMmjSrZtw9fJ9/H3t1i3L/JAzbzEQ7Gcz2nmJc+cyfa116ImU0bPnLHo\na2Eh51c3igIp9IhoDbl0Kb5OtAJsPAznYchS9VWr7Pjq8XwmnobfDNrLL3Pi6WOPoZ9Hj3ICa5s2\nqHlPivEvOpVTURTFLj7TmE6c4L/qLfZhI+ITHXh1XrwYXyf/yJsVE7LhTXq6vb+UHs8Zx9ebbmoI\n2vHj7ER5OQ65a9CA7cAS7NRSFcZdpmzegcyaxed14iPfgDZhDndZmr0TGypTRIRjLuiIQ94ef5zb\nGHu9AXZ8FR2uaNYskBaU8V3FpEn4sldeYXvIrUb3G3l7unv3FalEixuBlWiinzLcqRNh49+pU1Hz\nJ7Hr8ve35mvfvvz5r1mDWuBfn3fsrOungJYyRwy9k7ejROT5Hd/Web0NrfkaGsq+Fs/NQ1F2UV60\nCDXZhcssVZS+26qaysvja9VYdCJzeIcsmzkTETVbxrvl8EW4k5brWkyMViIpiqJYRRdQRVEUl+gC\nqiiK4hKfT+FbdOR43PK5GKsbKBrcpDXKxBce7OaYw0ZgJ3OjWbQ1PB6Oe5ZuxLhb4QWOZTZvXgaa\nN4IfX5YdPAhaywce4INVq8gWMjz08MPYWf6FF3527JIHCkCT/cDnGN1vtm0LIOv89rdsd+wI0uhe\n/GR79D6ja9Q/RcerI61Qmz7dlndAeB+Oex6ah/H6uJkcr8//sjVoFWI6m//Vhm83i6e5gwfX3sl/\ns+F+jl9nLU0BLeWOOxx76L1G2O2RR9jeuROkTz9NoCtB8VTO/Eg3skLeOM5x8E5G/Hj5lyLYaHYV\nq6iw5t9/yCxhX06fRe2zzzhL5MEHrwNt8WKOe/YpwdddffV//7l6B6ooiuISXUAVRVFc4nMLnzKQ\nt+1ZFbhNP3F6rGMHGtsJud278UaUzNlTtvB6eeubuRmH3D35JM8tb9DgVtD2ruQBdEFBxptus7dt\nl/Tty3aLdZiOdOoUb+nMOfXDu3FoorgCf0cj+mCF6pncwNcvIhy0vasPOXakzBMiItq3j20zx+3U\nKbZ79yZbwLbd2DLmiw+2+uiXoAXt47nslS0jQTt8mO2uFnx0GDjQMVPWZaNWwuGPimOYYhg8nsMI\no67G1y3cI44jcatdKzp3dsy0+vh9SHtVzIk3QzNPP+2YM+ZhWuHkAPvhprEjOeUsfpA/aDfdxNv2\n99//GbTQHfw7ZQ5ri28qq1W6ptHl0DtQRVEUl+gCqiiK4hJdQBVFUVziMwYKFVh/fAO0Fh06OPb2\nMctBkxkv99+P75kSIJtLJJMtvJe4KUdUZ0N76u+OvWtIBmiRHXhwXJdu+Pdk9+IIuhJkhIh48t/x\nvJZ05hjohQuElHEKVstYjIGOGWPNPYezIh1k+sBDoM1eMfny/5GIEsr498sNMJpM9OxpzT9AxuG/\n/RakM59xDLzhOixHrOrD6S+N5+G18epBTnHpajMIKoLbJx57DKQWYiCen6HRiy865sLEEyCdrMNx\nz2Y2fPw3bYdwXHjlSowRR7as5AOjtFTGRCevGADSjJm8XmCroVogfl7emB4gzfqEY+33338VaFUh\nDzm22UxmZ11unlKTn3oHqiiK4hJdQBVFUVzicwsf/cl8PhDzs4mIosbHOXYPvGOm6KmspezYgeKo\nUWwn29vCJw/jvwVm+g/V5zKJrvPSUXuA02x2b9yI2kixLy7AqqBaERLCtmwHRURRRZyOEhURAlrm\nPt6KdK4Pkmy/aI2GZ3mbGBGBM7PplffZNuI0uYP4XCXMxaqgmaK4BxOjakfxUE4zCd28GbSGy5Y5\ndmGjONCi6ouUFyMXrM2bFh2U1KvnmC2uvx6k0px8xw4OwOo/2eYq/yB+HkahmDUOHvzIsUNC7kCx\nPtfGnbiA8+3X9eL0oPswovKLjlhWkK20ZJcoIpp4g/iBbx4HLfUUd7zq0wff8tecU70DVRRFcYku\noIqiKC7RBVRRFMUlPjvSFxdzN+rQC9jhqPc4TqPZNLMQXyjn59x0E2rNm7Odl2evI3lVFf8iZixT\nlBOuH4lpLDIcKbskERHNvuvKzEQaNYrP68I/4LlbeZhTJ4Z8hWk1sgRw/wXsut7uLe5kTlOmWPG1\ntJT9lNWZRBj3bliE8eHhOdxJPzsRY6D0syils3hOKT+fP/+vv0btzjvZNnPDiorYNtKxPI9yQpDX\na8/X1FQ+rxnjMR1JpqqdaImdzFoc5Pjo9gCM5cp5Xs2a2ZueAB3pt5Si+PrrbP/4I0hdNvPssyZN\n8GVvb2T3/L1eK76mp7Of06ahJo/NZwXvvMP2HUaIN66jSNNq3Fg70iuKothEF1BFURSX+NzCK4qi\nKDWjd6CKoigu0QVUURTFJbqAKoqiuEQXUEVRFJf4rIVfuZJzq4a03Yvi6tVsm1P2RLKVp+dhkLxH\neQomhYbaywPMy+OnYT/8AFL5UB5h2VyOlCCi3C1cw5tw2hivkJjIdmCgPV+rqx1f87fg37C4Dlz/\nvP0ITuyUkxCiOlaDljGX3yc11U4eYJnH4/jZ8p57UIzgVn9ZHXDci2wLtmQS5g9Xtm/v2I0t5QAS\nEaWl8bWafjYVRfH5yzxbIqLu3dkOHtIdtMl3cx+HGTPs5VYOH86+btmC2qRJbKf0wHM3eSnnXpuj\ncTZN4hxRiouzd63GxfH3atw4kPKIWwGa/SdkJ76um58Hba+oW4+0dQ0MH+74OSMMv8eTJ/F3JXct\nft8S+vB02V8U6S8VrRjT0jQPVFEUxSY+70BlcUHv8dhMddMF7lS0b+tW0Dp0lh2NY0ELjuUKmlKj\nsKFWyAonaRNR85MnHfusURaRILpD5fVZAFoj8Vc+Joas4anzuQ9VTra7BMqaNdw0esAA/Nsn71xs\nIc/imffeA61hWJhjt2wJEr3++luOvaTsJdDE33vC/j21I32EuJjeaQPa5NV813nttfg6eWM947fY\nOWzGOOltYG1ddMhexAPQVr6FA9DefpvtnTuxabZsMmRWzZ1sz5VJNhsqy8qo6JnxIG0P425q8eZF\ncA3v3tJ+mgJS+hcPWHTw33Tr5piTR+DuTN7m79uHFVy9evHner4eVvf97QJ3+JpBl0fvQBVFUVyi\nC6iiKIpLdAFVFEVxic9SzirxFNZ/zRoU5ZN30e2IiIjqc7v0vXPzQZo4ke0NG+w92aQbbuCnsKOw\nG0/aaX4qWzkVOxzVb8IunD2F56JxfY5Vkb+/NV+TkvgprNkdRs5GMxFhR0rpuBtF2T7bkq/fiM+/\n6axZoOV3nuDYsqEREdH48WxXnz0HWsEejjnFxNj7/M+d43MKwxCJaNU08TTbmBy24CIP8ZPnl4io\n92ExkeHxx635GhzMvsrMCiKiQ0vF52p0jvrmrrscu+m6daBN+IA7oM2ebfF71akTfynEUDsiogox\nIDDoKhzWJn3PnIf3aY24kT0lJ1vyNSOD/Tx/HqTQVzkGazZqCz/MHdfyr+kPmgj/1uin3oEqiqK4\nRBdQRVEUl/jcwpeLLVzzW29FcYCY9XzkCGoipcHzV0x9uPPOWMcuKLhCWw0xW5uIYGh64WlMVYja\nwEm+ebdiukWv+9i9QItJ3x7PJcfXF1+sA1pqB25AnCGGyBFh8+elxrh1uRVcvtzSed2/3/EzZmTN\nKTUjRuDLPvqIU5dGjnwCtI8/Znv3bouff2oqf/5yj/gvJ9i+eBGk3J08nC3h7BLQ4ldzmk5enj1f\nCwt5C2+GbEZvGcwHZq6S/J4Zv0d1R07V8vOz52uRWANS78a1Ql4DZhgnaedYPjCqBUrXcVFOcLAd\nXysr+Zw2HoSpSsktOYy45BZM6qdLIlXQKBQ4eb6hY9fUpFrvQBVFUVyiC6iiKIpLdAFVFEVxie+O\n9Js2OWJVLMbjSkrYXrQIXybTQYy+HjTxEW6WQU2bXpG4UlTP60DLX/OdY8eFYf3ognXBjh0bi+8p\nQ07x8RbjdRMm8Ek3AogF5eGObTZokDPPsjpngbYphNNxeve242tuLp9TmZpERFT852WOXfXAQ6D5\nd+ay37SB2ITm22/ZXrjQ4jktLnZ8XbIN49wyHcVswpE7NJcPzMl5MuicnGzN1/x8Pq9mWk2HDuJH\n7hmLopyAJoPJRJQyiQtjs7IsnlfRTCSOMCXx4EG2T6zejq+TF6sZsBfNRCg83HozkbyB2ExEfo+h\nypyIOt7FP/5awvSnO+/kBws1Pa/RO1BFURSX6AKqKIriEp/dmOT20n/hQpDOiTSmXv/AMIBsFSoy\niK4oUV+LGe7GLPq46ZzWIGdrExF9/TWnDX31FYYp7ruPww1eL/bmrBUzZ7JtVJtcKGHbKKigrI86\n8UGPp0CbM4ft3vhruEbuYOVnSkRUGcLb9sZBDVEU/znCaBWbvlM6Z8yMrw0irUeGl4iI0qaK7jxG\n6dem+ryF30kJoA0UxV3Yi6x2xEXwLPhvv20B2v2JvFOsIkT2GAow4k1ZsE225+3yEfx9yY8oBC10\nkOitapZxiYqv7FhMDwsRIZW4cLKDiDF1MKq75Pco5iCGvkikZ3pXG+G9zf/dOb0DVRRFcYkuoIqi\nKC7RBVRRFMUlvtOYBg9m8fRp1ETMIasEg24piWf4wKjxOnkLt3avqTzKFYWFNfsqg2KiczURQaBv\nyWrsOi4zjKqq7PlaXMxpLG3aYNd570me2TR4DMZdVyWKlJtp00BbOYXThYYMseOrx7PF8dN7cwqK\nMoelXj3UPvyQbZlDRETVA7i012bJISUn8+cvY8xEGGc2Ys6y7HPJZoxHyrivzVLOWbP485/4lZGq\nFMQTCfKffRYkWUxbaDx36DetCx/s3m3vvHbpwqWcPbADWEYfEcNesQK00r//3bGDfkRfA4tEylN0\ntB1fxZyxlJF4XyhT1wrn4DMQ+po7txW2xXS8qJBKPmjcWNOYFEVRbKILqKIoikt8b+EVRVGUGtE7\nUEVRFJfoAqooiuISXUAVRVFcoguooiiKS3QBVRRFcYkuoIqiKC75P2UgFvspC9UJAAAAAElFTkSu\nQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  20\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9YV2Xy90cyMjKWyETJiMgMyUhd\nEyMjpSI1QyNTQ9eMx2X9FRn5VZdcJFZJWSNjSYyMjDVS11wjFSPWNdcIWyOWzIiMjIjEjIhcMyJ5\n/vl2Zt538tk63FzP9VzXvP6a03hgOJ/zuTv3nJn3dGtvbydFURTll+P1/zoARVGU/1/RBVRRFMUl\nuoAqiqK4RBdQRVEUl+gCqiiK4pLunpx5eeS8ok8cVAa+hPWRjp3faxGeeOyYY4ZXFoCrap34OZGR\n3X5+qP+F2NgOywlq1xQ5dsg6I9ZDhxyzYOoucM3ot4cPoqOtxdrWrZsT63HDF7h5Mx9s347Ojz9m\n+9prwTXnnDzHzs0lK7Fu28aff1xaODpLS9mePRt9gwc7Zs3UVHAdPcp2TIydOImIkpM51vHj0dev\nH9vr16Nv6VK2d+xAX/z4Fj7w9bUWa1kZx3rwIPqSxtTwgbxYRESbNrH93HPgqhZ2aHu7ve/V8eP8\nvVq5Ely7bs1y7HGro8HXtJW/O/Pn44+UPyYoyM49cOYMX1N5axIR7d/P9u7dHf+Mt2bn43/o35/t\nqKizxqlPoIqiKC7x+ASaWC+eHiYtAN/tt4uDS8bgiVOnOmbVdnxyjVvNT67btv3MKH8ObW2O6V+O\nT5LrK9ku7Z8Jvne+YTv34p3GDz3fVnRAxqP8P/XUW/H6UK9ebMtHJyJa9U++dotHvwW+O0/Yi+9H\nLr2U7T1rqsC3YSHbvYLxg8ya3+TYJ6rBRTk5bMfEdDpEB/HQS9EjTqFTPIJUV+Mv9W3jWHv08Mfz\nToiL6uvb6Rh/pGdPth988Afwzf5ugGN7jxwJvrYvvnDs7qtWgS9UXgCblJc75pxvs8B1r/g7zEf7\navG5y7+XiCho6Qw+KMAdqlvk74vZmwK+mK1bHfuv59SALy2N7W5T7wLfihUXOXZK1Nl/rz6BKoqi\nuEQXUEVRFJfoAqooiuISjzlQOn3aMQ98iPmhsWPFwc0P43ni1WL0zCBw/eMfh8VR2M8K8mdRXOyY\nG15GV2ww5+/GPoNvk4vn8Bv6Ra/Hgi/zRAIfRONbxs5w8iTb6aWR4Es9keTYFTOzwXf99eK83cPB\nt2zZfxy7vf0CC1ESRTyb6NirrswD36hRbCeMOAy+jHX8uaZMRF/RxHJxlEC2kG9Xq6t9wDdoEOc9\nly/H8xq/5/s6joyk/Ox1bJeUdDrGH5Gp1fbPGsF3qi3QsXeswxqNuKOcgywbkQy+ESPYtvpUFBzs\nmLnd5qIvNM0xD58IAZf8G8XrCSIiSu/PeU+s0XBP2Mf8/mJtvwzwzZ3IAdxr5GN/ECno9sbvwVfT\n/N9/rz6BKoqiuEQXUEVRFJd43MLH13PJz8br0ee1RpQ0vPceOlevdsz6etyGtjf2oi7hu+8cM7bN\nKGNpC3bM4t/vQ9/NExwz87bb0Pfpp7aiA/r0YTvZzyjePcRNCEN74PaXBvOJ0d++Ca7pH91hLT4H\nEegPWG1DCaXxfFAfCr6Uc87hg+qB4Cvpx9t2i1VMVDhbfK7vvgu+mmlcyT3go4/wxNsmOua2NCzV\nilvaNffqxo1sR9/9DviWv8Fb+FC8rEQBAY5pVi157eBUFMViKqozHPiWU14HQteCL2k6f4KhuzHF\nIcuK8gdh+dOBGzH9YIOqy/j+n9u3Ap07uFnm1qXoihzW6tjdzjsHfM8+y/aAAXRW9AlUURTFJbqA\nKoqiuEQXUEVRFJd4zIGuE1UcXmlGwYFo8Wo50Qou30PcnvjPR4wfKs6zmauRLZD5a1rAlRAgWjR/\n/3vwNXzGbZWBWzFfW9iLS4riyR6yRZKOfI5OWWfTy8jBidqhXSsxXzeuj8z7YhmPa4SYhd8Iwzds\nGNszZ6Lv4osdc9VK1Hj57DO2bbZyyrqZRZ/MA1fmH0Sp0Isvgq/xNb6OcZ9ge2zRMe7fs3inUn5w\nOh9cMQl8Gctv4INDl+CJQlzGJxjLA2tK6xy7g3SdKyL+zeVrL9UnovNf/3JMr+n4DYkTiiGJuzHn\neaWoFoqIsBAkES0QneZ7bikG36mt3Nod+cQK8JWc5AWq/eU3wNdtwk2OnZBwEZ0NfQJVFEVxiS6g\niqIoLunmcSpncrLjXNsfSxHmzj7DB5NwG0Kfi22poVtJ06ez3YHGnhukHqDXr4eg89xz2ZZ5CSLY\nJne7HDt4Hn2Ut6Kpqfa0K+nUKb7oR46Aq4q4bCT8dzeAj/r2ZXviRPQtXsz2559biTUpia9pdiXK\n0exawmVD43YYHSo33sj2PfegT94rRUXWrunatRzr3AXe6Pzb39j+8kv0iTRFxXhMU/XowXZYmMXP\nv6iIP3+hnUtEkBppvHQouAIeF1q2UhuUiGjNGrbj4qzFGhPD1/UnZVWC7PFGp5b4uzLqZ4ArpVn8\nHZmZdmK94Qa+pq++ij4pHffSS+DaVs5lY5BaI6KIH/67drE+gSqKorhEF1BFURSX6AKqKIriEo9l\nTK0rOe9ZvdBwirKRZFORfJMoa5LSQ0QUPYnVb/bsIWt4HeJylAPrsD0u4sgLjl12GvNKkfWc52h/\nvBx8+4bZbzkjIiKhkJ16BPNDzUIBJvt67J9tXc1lVqbCzSvn8c+ZYiFEIqLsQVKBCXsHx40SZVOb\n8DM+0H+aY19mKOX7vfKKY1sqtiIiEA2ibZuwrK6PqEDJeQFcVNif855DNyShU9bYhE0ja4hZO96T\nsECqdT+XUkm1dCKi3Mf5P8RW42SFHFFVhgVOnUOWB5lKVmX9JvNB5TDwNUznPOdCsyN2wUmyjug1\nLtyB0wPixbuD+IWB4Fso1rWhoUYL+HNiHYlE1bQf0SdQRVEUl+gCqiiK4hLPZUyKoihKh+gTqKIo\nikt0AVUURXGJLqCKoigu0QVUURTFJR7rQEtKuA82ppchk19Z6Zgtk3C6ou/MOMee0RNrRGVtW0iI\nxf7iGTOcWFddUwCuxffU8oHZCy/qEsnPD32PP852B72wbmho4OsaeMjoIV6/nu377kPf66+zbTYm\njxnDdmCglViHDuU4zRrAO+5gycDbbsO6u3792AbpNiIY90ItLfY+/+HDnVi3LUFZOvmxRh9CyUK4\n3o89Bq6GITwmIjDQ3r0qP/8NG9CXcoJrj2tmo/7EgNee4gOj37tkPo/0iImx+L0Sehhm3/6q6wod\ne/EVW8A3YwfXiBpyD3ALREZainXyZCfOw2kYS9galuFr/CNOl73wQrZ9+uB9DNKbYWHaC68oimIT\nj0+gcvhVzAbsRBkwlTt69o4BF/mKTouVC9Anh2Edx7HXnSKxBz91tn1gOKeJLhJDjSd9eo1jjxyJ\np0WPOENdQZ9L+X9mTV9iGZn/F1/wgfHYN2cwD5LLHYRPWaf8uMPCVodPxbdiIFzoTvB9RVc6tt/e\nc8F36HuhmPv88/hDDx2iriBxMF+Po8YmoyRNqOoIsWciQtHqgTgAL/BkjTiyJ1MsL4F8ACYiSpnN\ng/z270ffju9YKHrBdhSNjjnSNbE2LuanYHOw4OJ/iLauZXivznqan0CjxuOTXVMoCp5b4eabHfPh\nh9FVfCG39wX8wRCFlo/Dxg4kb3+YYyeG0VnRJ1BFURSX6AKqKIriEl1AFUVRXOK5lVOqPM+Zgz4p\n190dU6lzXuO38LkrmvC8qVPZLimx97YwPJxjNdXaxRvqgiOoqvImpxUpty++MU46wUo92dkW32ym\npzuxlozoWAU9qhwVd+R1lm9rifBN55YtdmJNT+e3xadPoy/jNP/+I088Ab7+Mnf73Xd44tVXsz1t\nWpe8LW5Jw7fXvtWcH201ppjJNHy/Pn3A1/oJT1bw9rb3+Scm8nU15wYKgXwp2kRERNdcw/aUzXHo\nlLm8kJAumZ4weSZm17eMFBUN5guEW25h+w0c1kbyOvv724m1rs6Jc/ObHetRmQMJ5o4UwxkHDQJf\ndg4/XyYlnf3z1ydQRVEUl+gCqiiK4hLPW3hvb3aaE5fks7BRKTtnWW/Hzu2Hc5hhLruXl7WtxuTJ\nvC3aMgK3cKA+bKQbmmbyVtT/xafAR/fey7atrQYRDpWTtWJEMCysZTsqTufmsr34fKMg/Jxz2J43\nz0qscXF8TXNy0Bc4a5xjb75vF/imXHvYsWMWYP2H3LIWFlpMi6Sm8jU1RLxlKY6cS09EFP5rDqG7\nzJ8QYQW+pUF9RESFhXxdr7wSfREfiCaQUaPQuXdvxz65hc/Otndd8/L4uo7BesVFObxVzrwcvzsJ\nb3OZVc+eHf94a6mx1laO85lnOoxl/Hg8LS6YG4TqeqHYelA/UcbYwVqlT6CKoigu0QVUURTFJbqA\nKoqiuMRzDnTPHi63aYsGl9QVmNGWj+fJMiIzVyN714YPt5erGTfOibXxOczJBbzHucSWYfh3+C4U\nrV319eCrWcM/Z8AAi/m6RYucWAe+gqVKv/kN22buKClXtBo+9BD4Eg/y35GXZynWFSucOGd88Ai4\nZLowj4z2uMsv57g+wfPymsUgsi1b7F3TpiYWE9nrD664zzk/l/wRtkBmpYm2QiksQ4SCHQUF9mIV\nwhd1q1H4ImjCED6Q7wuIUEDmhDGtT34gFoVvKD6eFwhZgkhEdOutbJu5fJmvvfFG9N11F9uWhG9k\nyZ1RjUYHD7IN9x8RCoYMxnb1uhwWaAkK0jImRVEUq+gCqiiK4hKPakyyjGPJLHS98w5Lsxx9FPVA\n5wt72qVV4CvuVUtdgnj8Nna3tGQJb9vDK/eBr3AU6wNKHUsioqgFXKpDuzAt0ClEmc37q1HlqOkG\n1qCcORNPS7rqKj4wSkryLpU/5w6yQdG1vP3+k/H5B7zApUGbL0WNxc2b2d62FHVk5zzDW9ZcsojY\n3tYvRZmvtd15227uNNPSWCkotx5nv6/awcdGP13nEDVhleXoChJb8V09cbs57gSnolJKMRWV0UuU\n7nUww9wVcptutk2J8sXGCZjGuXM9H78VnILnybJCS6SOF/eZofiVOIEVuJrG/xV8/qtWOfaZhYvA\nt1tkGxONLNWP6BOooiiKS3QBVRRFcYkuoIqiKC7xXMYUFMTlFvvrwCXVsktL8bT84r58YMxuqe0Z\n7tg2ZyK1tHAZg9GtST7HRN7VHO6zZo1jzpiPytkrV7JtcyYO7dzJ5WHnYr5SloeZbWf+IhM35xEs\n1cn9H/E32lLjiYvjm2P2bPQ1s8r30JWYq5MVNWUbasCXsZXV0lNS7F3ToiL+/M2OzJieQpF+HpYx\n0f33s23klRNWcqz5+fZira3lWEOuOR+do0d3eF7rds7Dm7lcWTno728v1qoqjjX8GM7vKqEYx5ap\nUiIir43ckjo8Zwb43moWivk1NXZiFS2nNaMwYSnXqoSt48DXVlzs2N2NMqZTb7zj2D4+WsakKIpi\nFV1AFUVRXOJ5C68oiqJ0iD6BKoqiuEQXUEVRFJfoAqooiuISXUAVRVFc4rkXPiuL3zDJ8QZE2Bc7\nfTr6Nmxge9069C1dynZUVJdIxNXORom4kHWixzUtDXxNp3nS4Cyj33tbT1G/ZlPOrKaGr6scxUAE\nMmV1a7aBS06qCFseD7700ELHTk21VAdYUsJxGmM5GyNiHTvgDYwzcD5PjGzYhNoDJaejHDsmxl69\nYmsr1yvKW4yIKHO7qDs070dR+5mysBVcGX7iPlq0yFqsZ7p1c2Idcxu+xC3pxZ9rw+pC8AWmifpG\noy+9YlKGYw8darFmee5cJ8CGpWs7/GeBfc7gfxDzZ07dj7W3ovTaXi3w8OFOnIc3vAWuykq24/80\nBHw1m7nW09TC8FkqJt9mZWkdqKIoik08P4GK9oKyk+HgErPP6LVLW8D3vh+rxiT0w+6F/G9QfcgW\nsdX8tFC0AWety5nVQaE421rqPQcEGD/0npl2gjO57z7HrH3hTXCFvPmCYwetN/4O2Q1kPIFMWib+\nB5lqpzTtwK+402TnfvSlj2DFo4pgnFEuNyAHzosCX0xPqc6EQ7w6g/dR7njKHIFqPPQrvt6moHbb\n9987dsYTRlfQ229bi0/iJbrhFgwxnGmscGR2VB34P6x6FfH8XPCZQknWEK1xgROHg6vxFX7Sq6vH\nZ7FDV/BT563GKpMyQg5LxM/DLS2lHMsrhszX4hWiw9DYLUvxZZ/V6XiiubM+C/oEqiiK4hJdQBVF\nUVyiC6iiKIpLPOdAxcClQ4Q5UPlm691q4wXV/kcdMz9nBLjO9GD1IZurd9F4oYp+2kgIDRrkmHJQ\nFBFRTSi/TR6wyciBBP/3HIgrhOKOIZ5NIc8/zwcffohOIStz4LE94IrYvt1aeM7PHMU5wb4ffIvO\n3bsdM3QSqu34HD3MB+ZQQXm8BQeqdYZTV1/t2GtWYA54ophhFjYfYz0l7Maj+DcGPCmU1DMyyBri\n8x9XbQxkFPlRfz98s33++fyN6b0V34j32MF2HQqndYra1VxhETIY1coCHhfVLcYkt/19+A229wLM\n19IO+8HKH3nhhegryOF3NDP64DsZOeMydBi+cxjXjN+xs6FPoIqiKC7RBVRRFMUlHtWYdu3i4uRx\nOShEOuAIi7vKx2AioqgRoiDZnF+9cCHbhYX2Cn6vuIL/kDvvRF9EhGMW/ICDw2T5R3U1npZ8tSi5\nuuOOLhGpff999E05ssKx116EM9WlaO2A0zisrzGAUywBAZaKk6uq+JqaKtWiqr+hH5a3BC4URf5L\nloDvcHeOMyzMYsH3Cy9wrH37ok92IBiiyRWHvB17BGabqPW02EJ7edmLtW9fJ9bkez8Hlyxdyhhf\nBr6kTTwsLjtgBfhaHuB7xdfX4nVNT3diTazHLW7edG6SaB2B5WpSGDzoXSxdrOjLaTxrRf8NDU6c\np/wCwXXBBZ849vPPXw4+KbZsZsGOl4rvWHi4FtIriqLYRBdQRVEUl+gCqiiK4hKPOdD8fM7ViW5I\nIiI6epTt665Dn5hV/5N2NKlJkZVlL1fT2MixfvQR+iJ7cZvfvmMDwNezJ9tDpw3EE2Ui56uvrMVa\nVsaxmnk3WR42dLvRyikGuZmiKDRpEtt79liJNTub40x68QbwLbqJW1Aze2CcKW1cDpax4Dj4Epf2\nduy8PIu5uiFDeADiy++AK+go5+rM1tI5c9g2K66kuERyssVYzz/fiTXjD1g6lXIkgQ/exDZfuu02\nxzy1MhtcPoeEgMbw4dZiTUrieyB7olHWIy/YNdeAq3EvJ/d//3s8LT9NlC4FBdmJNT+/44VMCiHt\nN3qS5893zEXrQsAVGsp2QoIOlVMURbGKLqCKoigu8TxUTpRb0NNPg6uiH3fwiEYfIiLyXsfbi5LQ\nJPAdYbEZmjvX4raooMCJddXn2G0iq5rCBnuDj+rrHbOwtDe44vcK/cW8PHuxrhCtMqbiT//+bJtq\nMFI79LXX0PfSS2xHRtqJta7OibOqOQhc4Zu4S6c1Dbt0vHOyHDuLksGXHMBqUzRtWpdsNc0R9g8/\nzHbxhTjDfs9s7obyuwXDaRP28PZ2e59/ZqYT674Ri8C1dy/bhgQrZRzh2PPHYBdXwueirOmRR+zF\nunMn64EOuQNcgaM4HbZnXQ34ZGrKpxLLsejGG9m2dV2jovg7tXUr+mTqy7g5Gl/ktETADw3gKzrI\n5VCxsbqFVxRFsYouoIqiKC7RBVRRFMUlHtWYmt7jNjP/1SngOzmGc6DeU1GRnKZOdcyYYU3gKi31\n/8VB/ixEzcHD92G6ovtVnB9s/BTn3pwTwP82/vrrwbfqbi4NWWwlyP9l82b+nYOwJbOwmq8rJMSI\nMNksRwIQ4ayfyEiywdCJnPesGIR55fxRBY59JA3P696d855G5yTRxjfYnjaNbOHp0rywmz/jWuO8\nXn9lX3hwMDpljZNNRE4u6tMXwBU1le/BOU9gyV3das57JizA71x0M6sm7cEO4M4xkEv7jK5cKhD5\nxOg2VDmi3dw+m1qJsU59j9OVYRZCJCIqW8mlapG3GzL/r77qmHUbsBQraBXfq0WjssAX++AV4uDj\ns/5efQJVFEVxiS6giqIoLvFcxqQoiqJ0iD6BKoqiuEQXUEVRFJfoAqooiuISXUAVRVFc4nkqZ1MT\nv2EypLUah3FfbMDvE8BHCxY4Zm1PnOYp5e0CA+31wssxGVKGjAhbYc2xHd98w/aUr/PQKcdYJCRY\ni7WpWzcn1oOv4ku8mGDRU7xyJZ4opLegn5iIDuxlWbSICDvXtaKCr+nQSpweueoL/swX98NaxsND\nuL4zbCPWD4MMn7d3l8gZBvwmBp2iLplKS8F14MFCxzZlEHNy2C4rs3evtrZyrN6z8buzbTxf57ij\nWJcI82cmTkTfX/7C9rx51mI9Ke7VnmPHgu9UcbFj+zQ24onDhvG/+/RTcKX9D9/zmZmWrmtSEv9Q\ncwGQ9b1S9pEItDC2HUS9B/n11154RVEUy3guY5JDxd59F32XXML2+PHoEzIyDcdwjQ5M6yKFIzlU\n7Nxz0bdsGdtXXYU+0cFUMTUTXM88w3ZurkXlqMmTnVhbN6Kqjvcm7vCJWo/dPxs2sG12+NTsF8LF\nvXtbibWhgZ+UAk8bPTxSUftzHIxGsqNLBk2EIrwxMdau6XH5pGT45FjDIKPbaNvj3GESV47KSGPf\n5fuhuLhrxL8DGrETDR57TIVnqTJkDPmr68fdZ0FBFu/V2lpWjqpHweHBN/OvMae7DxIqY82//jX4\n/EaP5gNL4t9yqFzNSRwqN4A63tW1PvecY294GtfCxMdEJ9LHH+sTqKIoik10AVUURXGJLqCKoigu\n8fwWXr6xWr8eXKmlPJxr6UlUOPLezsowgSdPgo9uvfUXhvgzka/a//Mf9H35JdsPPdRhPEPr94Er\n90k58c1Qsu8EKf0575mxBBXb0/34zauprB5ygtWhrrxyOPhiZ7GaflGRjSiJAquFco1Uyici6tPH\nMRtCo/G8K8937EUP4NC08aIKA8e7dY7ebwiVp1tuAV/zAY4haDfmueOmcaz0m9+Ar/gH+TbfUBvq\nBAHntzj2vmasUpFK7t7bt+OJMn9nTGv8/GHIgVojehbnPY0lgHwfeMCxB5lvt09w5tlPTksgoqLu\nrM4US3Zo7cV5z/59DGfObsecfBKrSbZ8wBJTicvxnUPJ05wfN+o6HPQJVFEUxSW6gCqKorjE8xZe\nDIMvasYNF2w1+ht7BjGHOW8+lmlUi7nnWTjfq1MkfzTPsXfsQF/ORi5PiRmMc8rrTvPWN+h3ODQL\nKqtbMU3RGcRlpaxqLJZe9vBXjv3DDxeB78C/eNt+2WX4M/P6pYsjY568W2TzxO7d4Mrw461wSg/8\nG3zP5S3zrUfARVF95PAxFAzuDPvaeAu7/h5MG/zlOr6m7Y/ipLbGo/xvv/4af+aAKYYwry1EmV/U\nUqMEcPlyx1x7CL9zR0M5N5PZhqmfiFIxVC7CnqLynpzDjl10COWPQ9as4YPKSvB5qrmLhQYB/Dvc\n4j1MpEKMdELNVP4+zAolRAxqXNSnAFyZfm+JI0yZ/Yg+gSqKorhEF1BFURSX6AKqKIriEo+tnG2i\nPa67UTbRLPI4fqKcgYgo8XS2YwtdESKClAPl59trOTt1itvjfE5inrOpO+c5jx3D82SH6u1TMRy/\nv/+dD6KjrcUaHk4dXnSYDTcbS1xoyhS2DxxAn2ytrKqyEmtcHMe5bX9v8CWM52s8fTqet38/26mj\nsDRMlrdQXJy9lsM9e5xY849iWZVMwQWWbwPf5u+5pObaa/FHhtWL0iWLbafN4nvl99134Ks7xuVy\nR4z8sczty+8REdHChWxnZVls5czLc2JNOpQIrsGD2b7DeH0Q8LTIyUsRHCJau4kHS86daynWp55y\n4jw8eh64pKBN44MZGOf14v2NyD8TEQiiUFiYtnIqiqLYRBdQRVEUl3hWYxIKRwOX4wzvJ59ke+lS\nPE0IHFFBMJbUVE3iR/vwcItbDfEIT3fdhT6h+UdtbeDKKufyl+QA1LWEPV14uL1Y09M51iuvRN+9\n97J98CC4dp3gUgpZCmXi62vpum7bxnG+/z76ZHpDlK0RETXm8jY5YA7OBKeeQiupoMDaNfX15XRD\nyzU3gK9pJ5djGSJG5NtDlKdddx2e9wb/zf7+Fu/VRYv4upq6nmJf3O0CrKtq3/xPxy7qgTWAcruf\nnGwv1pAQvq4ff/wv8I0ezapb552H582Zw3ZsNXZ/1U7issKQEDuxFhVxnMbtSFFbkxx7bWg2+Oae\nEKmGPtjCNPAJTlm8/77qgSqKolhFF1BFURSX6AKqKIriEs+tnELh6AUjPfjhh2xv2oS+kFlcRlK1\ncA/4wrsfFkfYGtYZhj7LpQvvzK8AX/vLonbJSJAkr+TynNpyLH8KacafYw3ZBysvJBHU3DT+BRWA\nxu0VuaRhM8FXUsl/R0xH0jG/kDmvcf4y9wrMYzW+yJ9rwH9QrT7gt6yxE98TpaEK+6dTV1BeLg4m\nfgm+779n2z93Bfjok0/Yfv11cPnvFSVPcUYutzOImT1rKyPBNXc/X+f2l42+wzGcL603lJFOY4eq\nNWr7cTtpeE8sSZMld0b6mIr/UObY8ZWo9H9SlLnZUg4T45mgoo+IKGr+7Y7d7wf05ffgdzSy/I6I\n6P0X5Pd/6Fl/rz6BKoqiuEQXUEVRFJd4LmNSFEVROkSfQBVFUVyiC6iiKIpLdAFVFEVxiecypoED\nOUF6223gqpnPLVHGrHq6+mq2F99bB76G7qx+EhjYNe1xqy7Gkhs5U84QhqHxQhDcnIsluw5ttsc1\nCTUe/y+x5EYOC+sd7AOu4ztYIXvRVlTIzuzOijOUkWEl1pYWbo/z/bNR/jNwINtStYYIJK9Sd2Cc\n6YN4oB5Nnmzv86+pcWLddQSV7oOD2TZbObduZTvlhKGOLtV5fHzsxbplC3+vREkTEdHkNVzW9M03\neFrx86LMbu9e8O3qya2d48bZu1dXreJ7YMmST8B3002XO7bZPln0Gg/rS/0fnBCwhOe4kY+PnVjL\nyjjOyF414GsN5vvBVLGSccsPqd3/AAAcnElEQVT7hIho0CC2g4K0lVNRFMUquoAqiqK4xHMZU9++\n7FxhbOHEQKltaTg4TjbXLL7zMPhA8cTf39pWIzWVH+HTX0M1HlA4MhRXoJ3CVH+WW7i33rK3hYuO\n5usaanSbiDn1IQux+0UKF6cfxRnWiT14IFZenqUtXFYWx2ls0w+cxx0qEU8ngK/xMZ69/d57+COj\nt87lg7Vr7V3T2lqO1WxFkdJVZrpB7uF+9zv0SbHjhAR7sba0cKzGVlzu2/ddhgpoMlRzRvuNN7I9\nZYrF1FhRUcfXVR6fPIk+kdeLn+8PrsKZ9oWqJ0/m7/+W64y1SoqPG4rqa2dyWmzuV8Z5kkce0S28\noiiKTXQBVRRFcYkuoIqiKC7xmAMtKeG8Qkx9Pjpl+cW/UKkaSp62bwfXtmE81Ckuzl6uJjaWY509\nG33jtothWCJ3S0Q4qcvghBji1qu93VqsSUkca/ZEVKuSkjCnli0D1yub+LO6/npwUcgCVkCioiIr\nsba2cpxmqVpqG6vYZPRAhaWUSVxGsvkdLCmSwwK8vS3m6kQZkznlTua5pBAWEdHQNZxLblpTQB1h\nU5E+K4uva3J3VEhPb2b19NSFp/BEcWM3/glj/fe/2Y6JsRfraVFy99bruFZEPTiED4xk96o/stK/\nqeS2ezfb1koZRWnYooOo1p85iT//bfVYVhd3t/j1mzfjz5Q53kWLNAeqKIpiE11AFUVRXOK5jCkx\nkZ2XX46+H1iZNLEeB8fJ7p7YkU3gK9rPJQ2xsfa2GocP87bIFJeVo8hjluIj/LYl/HgfN6IBfC09\nAx3b2qA2IqLkZL6uRr4heR1vebPGG9t7UYJz5le/ApeX7GiyVR4mO9HMfZgoW2kaFAUuKUwb29bx\nHHar5Tay5EoIgRMR1c3iFINZxSTn9gXNHge+fUt2OXZUlL1Y5QA0o6qGEtfz/bn54bfAN+V6IVxt\npp5k2sJieSCNG9fhvSq/aJFrcNtctp7LF1v7o3C67Abz8rJ0XYcMceKMH/gOuAop3rF3TS8E37g+\nLJq86jUUTV6yhDu/2tt76xZeURTFJrqAKoqiuEQXUEVRFJd4zIHu2sW5GrMDcuNGtmXOk4gougcP\nlDLLmCCPEhJiL1cj87UGtUvyOjxNdnKaFU4zZ7JtrT2SCGKtWYixyXxt5EEscTn14IOO7fPyy/gz\n5YmW2g5PneLPv60Nfb5LuCUzO3Qt+OS/TZ6JOfCG05wDt6nGFR/Psc6ahb5Dh9iurESfrMZLH4z5\n2opgztcOHWov1ooKjnVoMF4fGjWKbVFGR0QgJVT1+lfg6n0dh9fHYskdhYfz90omjIlo7Xpvx54b\nivn6PcSDJaPbcDjiydt5yFtPW7FKhStzQZISbGbSWX7pc3LQJ39OBy2n+gSqKIriEl1AFUVRXOJx\nC79oEW81Mv9pKBx99pljnvz0U3D1lPt9Q8G0RZRb+FrcahQUcKxGIwo0Sr39NvrkNt3nNG6nSg7y\ndtNmdwft28cXXao2E+H1egfLMeQ1b6lvAZfv7eLzefNNK7HKcpvYUfj7IPch0wdEdGYlC1p7LUgC\nH73yCtsff2zvmhYU8DWVe3YiorQ0thcuRJ9Q3EpZjapBGQvF/WCzNKiigmM1h5FffLFjJr6OakxC\naxvUl4iIPviA7dRUe/dqUFDH36uMXll80KsX+Nruu8+x642f6f81//nWygOvuIJ/6LPPok9+yc38\njryoZmmYUEaj1FTdwiuKothEF1BFURSX6AKqKIriEo850M2bOf/x0UfoSxkmShPqjSzHI4+w/QkO\nooI6kuHD7eWVDh/mP8SccCXlX6RNRIl+POTMFAeXbX+FhfbySrW1fF3N0qnsTb35wJBAKumX0JEL\n0je2BnVRaytfU7McTUzcyi7FVr2k/aKtr7oazzvnHLbfecfe55+X12EOtGQ8l4Nt2oSnyUFiqeeg\nIvmZpUsd28tivr6hgT9/I3UISvNmxY2MNaHnFvClHuJrnp5u716NjORYzYF8+xbvdOwzY+8An1wS\ngq4+H3w0ejTbu3bZiVXmwMvL0SfWg+jyDHDtGcP5+qzui8AnU6Dh4TpUTlEUxSq6gCqKorjEsxqT\noiiK0iH6BKooiuISXUAVRVFcoguooiiKS7p79GZmcoL0ggs6/ney9oKIkkdzC2JWNap8h1Szyndt\nrcX2yKee4lj/8x/0lZayLVu3iLCuxWhJhPMsKRwREVF8vBPr2K9QIbt4PpeG0JAh4KO773bMpp1v\ngksK5dhqO83O5hIW89LIajCz/MtnIytMNU1KBN8zz7C9eLG9z7+qimMNb96HTkOhXhK7nofxmV1+\nsqt23z6L9+qAAU6sZRtqwHXllWwHfI2+shM8rSDyRiOcwYPZtlkeJtWYjLbstUdiHHvu5TvBd1oo\nGeU/he9Z5u62PwAR1NjM77i8Nkbr7KkcHpbps8kYnClbQL28tIxJURTFJh6fQItCubB00ARcgENE\nw37V8yh6kXW0iA/6jALfeR//0hB/HoUXzXPs+C9xzK6sOl9bjnNP5q4W/3bSJDxPjjW1iRC3KK7E\nguiSc7kgOuYd/L86XXSRY8onOSKixbdViCP8G92SNIlnRBWUBoLvrXOEeMlpI05RuOzfsxVcfft6\nU1cQPotnCe1ZibOEovvzfJ66nlj0X9Q/2bGT92aBb9+6w+IIz+sUX3zhmLKvgIgooJRnTzUb6h2R\nYly4Ie1Cvg88YC08QHRojP1dELhuukkcjBkIvh5/+INjS81VIqKWjbw++HY+wp8i5nUREY39Kzeg\nFF9UCj6fqfw0XJdTBL6g9UKrNxF3Uj+iT6CKoigu0QVUURTFJbqAKoqiuMRjJ1JJCb/ZNF6005YN\np/jguefAV3Ah5yNNsQw5SykszN6bzfBwjlW+PCPCl7DpUw+jUyg27DodDS4piJCY2DVzwQMC0CdH\nHU2dij75b03NWDmHyJqg7owZfHMY82JW5XL2avFHRn5ICmqb4sbyhggKsnZN5b0aE4xvr+nmm9m+\n/348bxSLS8SUG7lzeSNZjJWCgpxYmyrrwOV/o8glXnYZ+KpWs4DP1q34I6XwiM35XVL4xNSiLuzB\nucU904032AJT20e+WoiLsz8XnsaOBdecr/gzzn0jHHy7VlY5tnlNpXhKR9dUn0AVRVFcoguooiiK\nSzyWMcWM4hKUHj2w/GTs3T6OXXz+38G3nXgLXzETR/PSuiNsZxu+TiC3uw8//AP42r/mwnrffliO\nMmoUHxctrwJf3Hp+3O+gisEV337L9oED6JNF6eaWyb+5Vvy7EPCZk1ytMHKkYzZ+iwUni9+b4dgt\nOQXgk0X3IUsmgw9GzBZh2UhngLHLYs4REdG2pz537Lhm3GrGLOZmhYpnsRzvhJAyjcEKns4hPixT\nuvLY/7zv2IZ0LW0J5e/jiVFdUw5mEriJS7tGjUoGX8pRvpYTjD6biA/4nvC6dQb4zMYLK4gvS7fp\nmPt68klxcD/mIsf14RRK//74IU+Y8N9/rT6BKoqiuEQXUEVRFJfoAqooiuISz2IiQqHCzy8SXH8X\nac+WE9vAt+0o5xKb+uFccJnXif+5Uf4MQkPZbn/vA3Tu5lKalmNGslDMvaEFleDaW7nHVnjAlM1x\nfGC06307gX3+9ZiTXbufc7IlOUapjhzgkoSlMW6RQiAXX2xUcTQ2OqbROUe9ruR/W/QylsnFzreZ\nTGSkJsw4Ma+JiGjECLYLShPAN+M/3OY7dP1c8M1pX+vYMTFkjabcXMcetXot+HwOshBKdXAUnii+\nPMNGxYLLHEtmi33DOO+ZuB1zoDR7Ntu3344+0cp5JuIGcFX5oRCOFb780jGffhr7Y2U1WlX1cPBV\n7mV7xqRT4Hv/paPi6OytvPoEqiiK4hJdQBVFUVzicQtf14+37cuNkprW/ax4k78VH4tPnuStZtKx\nFPDFyy4Vwu19Z4hbz7qjR4qLwddf1Aqd6eEDvualXKZhSAVS02mplGSU43SCbdM55TFmDPoWk0iH\n7MV92dyFYs6yqRTVBXVM/tTk2LF34lb8tcvZfuklPG+c6Foyr2msTJlYpGAQj6eF+b+EIltl641O\nNOGcUY8jbwvqZWeavXSO/6OPOnbjN+jzEfmGzPVY/kOL/+WYvqvQFbZsGR+8g+VYnUFOs46aOLFD\nZ51xPwaJNp5df8At+7gj4h4PjyMrCCHV6aPR5Z3D3/FwQ9g2XHxvMtZgmrKtjbftqaln/7X6BKoo\niuISXUAVRVFcoguooiiKSzzmQGXJkSwFISKKWcp5z5JJeeDL68HlL3WzMa8k1amtrt6i5Cr1XszX\nLRR/5VYjBZdRybnTQyN3ga//RM57WtQjp7iRx/ngCUNa/pJL2K6uBlfjp9zKd0kfLCva9AL/zbbK\nw8ZO83fsnYbovNdgznNv/gbLraQaTuZBVNzPOML3BmbHO8fh8Tw9IWw1liotEe2kUbPxk/znP1nJ\n/QfsACa68VvqCtb24oTaGGN8Fz0ubtAPPwRXwe+5zXPGMfzOyakQqDfUObKWch48byuWVSWeZHX3\nIEM5Sn7Rx63HO7JqCc8BsxXrqdF3OLZUmSciqlrOLcNmTn62WNfaUKyeUsf/9ykP+gSqKIriEl1A\nFUVRXOJRUFlRFEXpGH0CVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK4xLOc3fHj/IbJ6CGNX871dEa5\nIlVsElJrpn6/nO5YVWVteuCAATw9sFcv9C1ZwnbPnuiL7s7yYUXNWOc2axbbx4/bm3TY2Cimcr6B\nUoBtd9/t2N2NeR/D53Pt7VtLcRxGtwk3OnZ7u6k95xIx6TD1TuyvliNUwvq3gq/hBI+b8LoUQ+nz\nxht8EBlpb9LlC1wIG/fSNHBtCxYybIZ8oNSBazEk4nxP8AgVCgnpkqmcZz79FFxeDz3EB8bNurYP\nTw3tbnxz5XFCgr17lRITeYLoSqw99V/CNb2Tm9Enh6+eg+pyFLBKfB5ZWXZibWlx4jxcj+Nnwkp5\ndFBeD9TfkLeDqUshJTJ1KqeiKIplPJYxHTjAT0oR9xhCuObAd4lcuj/+GH0fCLHj5GRr/6dMSOBY\n87fi/4GkUgsoQRNRbTN324TU7wMfPILW1FiLdfJkjtXQ/qXUvawAFFiNCkANR/lJL30lDhVbtuzf\njt3efp2dWHfu5JvjBhTFrTjK1625GU+TT0NRp0vQKQeYz5hh7ZqWlfE1jfz4BXTKx4yrrkLfBWIa\nmjEzfmwxP60UF9t7qiss5Fjjyz0okl19NR7LHYlx48Tu506soiKLT6DjxjmxVizHTj359ZCKV0RE\nw4RwmCkOddddbA8YYCfWrCy+pvIWIyLKfI0HB3q/h8FIcTgZMxHR6tVsh4ToE6iiKIpVdAFVFEVx\niS6giqIoLvHcyunr6zhLtraAq0cPtqOMoXK0nofXJ/XHvEn2dFayp+HDreVqWrt1c2L1/uQTdMok\nnQyciKi83DFrRqACeFsb22FhFvNKTz3lxNpt/lRwtb/6tmNHpuEksyNH2D5e3QS+hIWck8zPtxNr\nQQHnleTvJiJKbxa5O+PNdvya4R25oCKiqsreNc3I4FhTZjaAL29HoGMn7kVloIIxrAw0Y70xxE3m\nGdeutff5x8d3/KWTCbyVK9EnykuKDoWAK3ajmJiwZYu9WMX3CipoiIjOPZdtObmNCKfcyeFzRLTq\nFs6LL15s5x6oq+PP36xQkKr65vA9uRykDsbKlrX1XJUxd67mQBVFUayiC6iiKIpLPBbSp8znbXvG\n4OPgKyztzQd/+iP4zlTyfPXsV40ylpyNbBcU/Nw4/yu7xfzx2HcN9d/33nPMltmLwFUZPMCxTxwC\nF8WFygFk9iSVo1+a59gPPIC+w/14226KWMtC35bu/uAzhWJt8KaYBZY7GoWR6ahQxj59GlyFY/hz\nLWrDtEjVY/KzuYNsIctRDjcHgk9u00pmFoJvxodPOfaZvVjG5rUE7xVrTONC/4YheA0OiXvwkPGZ\nbtjAdtUaY8idud23xcsvs33rregTHTQN550HrsBVPPVu22xcAxanCRnlxYYYt0vmz2fb0KGmp59m\ne9483MO//ba4j/vhF67eQ6Xmj+gTqKIoikt0AVUURXGJLqCKoigu8VzGFBPDTlHuQ0REL77omBV9\nMY8jKzHGlRsT6WW/VGxsl4hJNBu1M36vv84HIj9LRES5uWybU8U2inytxZIramri62qKrczj/Gj+\nis/BlfDtU9QhffuyHRdnJ9bWVo7TbCsUJSzZ82vAlVTPucPa2ZngW7eO7cxMi6VhdXVOrGX12HYc\nuU7kYUeNAt82Px5AZ6b4fPeKshaL96ps5fQkfFORhmU1ELsh7kM7drCdlGTvuso1wFQNOnqUbRk4\nEdFf/uKYNa/jfTyAxP0yYICVWJOT+ZpmXYnfk8Oj+TsVtslYj4RgS8lgzHn/7W9s5+ZqGZOiKIpV\ndAFVFEVxicctfEkJPxbHlKej87HHHHPXSzg/e9xs3kKtmlcHvnvvZTsoyN4WLjubY006hhPHD0zg\n2fQR51aAb9/Js897JiKK6tE1XVOHD3Os5gxz8vPr8LzWlVmOLUtaiIgSl4tta12ddT1Qev55cNX0\n4FIUs0FFll/JLTsR0b6N4n4ICuoSNaaFCw3f6jLHLjoRCb7oCRxC1qP4XUhtE9u99HRrsfbuzbEe\nX446mrL76dRgjNUnWJQOGtvpmKlc1lZSYjE18tZbTqyxy4eDq6hS3HOHjBpAKRgr1dmIsK4sI8NO\nrFu28Icn1iYiIpIatAcPok9+30pxMHzgatYtbWjQLbyiKIpVdAFVFEVxiS6giqIoLvHYyhmzktXR\n6eRJdN55p2P264cuWZqzOPgMuE6d7po1e8oUtmN/mwG+Ij9RSmO0HUYdEf1aZk2JqTBjid272Q4z\nEnYVp7ll1AiVIpeIWTKhWeCr3cu5RdTpcU/DTlbvDlyPOfABs7l3Mnspnld3mnN18ZtwzhCd7JqW\nQ1k6Z+ZdE3M4l2iq52+/n1NnldvRlzrR88gwtxy/4Ao+uNRIIIueVJ9mVJUCSayJE8E1aLDR2mkL\nkeBesMBovS7lcsGScpwCESPznkYOdG0bz1KaayFEIiIaOdIxD6xD1fmI1XzvVk3EMib59Rs1Khx8\n8nvaEfoEqiiK4hJdQBVFUVziuRNJURRF6RB9AlUURXGJLqCKoigu0QVUURTFJbqAKoqiuMRzoVtV\nFb9hErJPRARFioWVOO4iflIrH/z1r3je+eezbUt2jQgk4mpO4LgLOaXvT3/C03LLh/DBQw+h85tv\n2J43z16smZl8XQcPRp+YR5B37jxwPfEE2+9vxlEIWaVcw5acbKcXuqmJOnzDKFuxf9J7vgn1Dzo8\nMSbG3jWNjeVYjfrdfb3iHDtqaxL4Uv2yHTt9JI6eSN7N41Wysiz2l2dlcazm2FI5m+WPOCqnZjPX\nN5oTPPJXipE7vXt3zQRRo1f8zBdfOLbXs8/ieXKiqSnZKCUto6PtxFpby3HK+S5ERKtXO2ZGd6wD\nTVlwikMZ7wO+8ePZ7ug7pU+giqIoLvH4BDp2MT/V/PvfxonizJ807EipIENdKGkvPw1kx5E1Epfw\nU2dez2R0CrHX3/62N7haVvH/1X1Lcb59SjUL8WJvUyeRTxn9+4NrYA4/dd50E572No+Mp9bu2DXx\nYS5Zx5949nx6Dj7VL1jAdtlBbzxxySS2pfIOUZd1d9WuYfFhU9sXmnZk4ER0xxfi4LJB4Pv2b9Q1\nCLFhszWqSTx1+n/5JfhOi3lo+cV9wUf9fst2uqGc1hnkztPYaniJzzafUFVsr2iwKphpdDGag9tt\nIFrRUtZjL97MmfzUmdKnBXx0gq//nh3Yibjqz/hEejb0CVRRFMUluoAqiqK4RBdQRVEUl3hMRhQP\nYWX3GZdgFlAKUKcPM4ZfDROvr4yE1Pylk39hiD8P+cbs1K2oVOSzkDVfhho5MKpvc8zawZiUzSiV\nWjFrOx3jj+RP5Ot1x43ok7Ph8sbjdR0wmJWNajahsv5HH3WsrO+WqnrOe6ZOxLf+B97nHOy1za3g\n8yF+s/kTFa9nnmE7KqrzQf4vs2axvWd9LTqFOvqBP78FrgsvFAfGoLbcL+W9sqWTEQo++8wxa6Zj\nvvKrO/g44thh8IXffg0f3HMP+DZfw+dNIYvIt+nPPQeusX34/UHxs6gclVDK+dLo5YXgk6JSdR4K\nNn4RQjpp0iRU8pdKXf5X/wp8dW/zy/uhtw4A3w3rcVji2dAnUEVRFJfoAqooiuISz/UEYjrYyQ3o\nkltm+vRTdMrH/ilWNxQdsl2I4cb2KkPn8uWOKbelREThwVzWEFKPWyZ5nk0SxnPRs3c/LKu65RZx\nMAjLauTo725XG+VB9L2wzyUbyD9/yyQcYhZRvoEPLpqNJ4ryluGTcEb7ggWPOHZ8pyNk9vhx+qWW\nsBytfAFv2+MP4szwGQe4bGzNGiwNS+vD2/ZsskfWEv78kycMROf99zvmnI9xTnlucDAfbEf159F/\n/jMfTLGnsJZyjBsPTt6ETQh/l8LVZrmaKJbfMxFTKt2ulErh2ITjlpKRnMI4tBd9ydUs4CzTJ0RE\nRUI0eSgsaj+txz8b+gSqKIriEl1AFUVRXKILqKIoiks8KtIfOMBiEhHnYtnMge+5bCbiE6PEQ+Y9\nzTziJ5+wnZdnTfQgMpJjLZuVj05R4tC6EWP13sSDsoaumQG+iu2ixiIoyJ5AQ0WFE2vIJCw/qt0k\nymwefBB8ky9707Effhh/5FVXse3vb0f4oqGBr2ngUcwrn7mR66+83nsPfGXNnNeKPJSH583ifJSX\nl0WBDiF6sXkCls3I1OGKFdSh79JL0bf4NnHPDx1qLdbaWr6uZpVX+HTOw5qlY7Lrd0YzZmUPRHB+\nMiLC4nVNSOAFIi0NXKd6cX57zRpw0datbFesRJGW1P0s0pKebifWigq+pvIzJSLyXyjaTA1BlLVL\n+Ds+d7xRUyVESCg7W8VEFEVRbKILqKIoiks8ljFFXMSV+Hl7cauZWCm6dGRrARHR44+zbWga0quv\n/rIIfyZye1N3KyrD7G7j4+C9eF6vQbxtnz8ffS1+vEXBqdedY9cxvpa147E0ZNU/eGu2+MknwTey\nnO2I83F7V7ibt37xluqDApeK62go8cwS89RvfxfPm3KCS4UOj0ZN07DVmXywCMt0OsU13KUz5Vws\nY6K+XFJTtM645WWtitx3ElHjpdw1F9D5CB3auPmNwiuNWeuilMaUio37XJRgGRqbEfCP7XV4nRHd\nR15SRYyI9q7h9UF2+xARHT0qDoxyvPRj8m/GtJlbegkhJf+tmDaC3//rX4Nr7giRppm9FHyJ/XY5\ntvETHfQJVFEUxSW6gCqKorhEF1BFURSXeCxjosREx7lrImYBxh0RZRSyx5CI6Oab2f76a/TJmThF\nRfbKLc6ccWJNX47/X5BlDWaJQ9TNIgRTdl8mVgID7cW6cydfdFN2XrbolZeDa9d4VoSqrwcXDAEo\nK+uCMqZeqLgEcRoX9XDP4Y4ddg2GIib3UO/2dnvXVMzvSszBlsy8Y6xiZSqHpY7hsrGm/sPB578e\n8rX2Yk1KcmJtXY3lSEtFGi4z7RT49pSzQnr0Izfgz9y8mW2LJXdlZXwPRK4z8pViLtqci7E8MHcI\nrxetv/sd+LyvvZYPqqrsxDp3rhPn0HJUTgsQCeziu4xs5rJlbN95J/qkxNfw4VrGpCiKYhNdQBVF\nUVzieQuvKIqidIg+gSqKorhEF1BFURSX6AKqKIriEl1AFUVRXKILqKIoikt0AVUURXHJ/wU98LeC\nbTzH/wAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  21\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl/XV/49EjIw5MktljhERI8aX\n1PAXEXkzI1NjRkwccZMjR2qOOTI0coybGZlzZGRqZMyYmjBjxkyNjBk5UvNGRwyNjJER6iIjYkZE\n+P3jvrvOeb2TT3Xx9vF9fB+P8/zrXI/D58Ph+lyfN9f7XOe8zqBz586RoiiK8s3x+n8dgKIoyv+v\n6AKqKIriEl1AFUVRXKILqKIoikt0AVUURXGJt0dvYyM/ol+6FFzFMyodO6O7CHynkzMd++mn8S03\nbmS7qYkGfc04v5KCAnJizWldgM68PP6dHVeCKzQvxbHPbtgCvsHH6/kgMtJarD09HKvPxmJ0Dhvm\nmNn7E8F1xx1sf/QRvqy1le30dDvntbmZ4wymZnQ++yzbt94KrkdeGuvYSz7Kwdf9+c9sHz1q7ZxS\nZqYTa+1svB79/dnetw9flnE827E7l60E344dbKek2LtWa2r4vN50Uzf4HnjA17ELjs8CX/GUcsfO\nmNGGb7p6NdsrV9o7r+PH8xowezb6goIcsz4Er9XIPYV8YL5u+nS2Dx+2E+vmzRzn7beDq/bIYMdu\nb8eXLV/OdkQE+jo62K6oOP/nr3egiqIoLvF4B1p9Ktyx4yZPBl/GZ0/wz0Vkgi/uAN+dzp6dAL6c\nkHJxhP9hB0JOexbb/mvBt2cG2/IfNRHRcm++6yxdmA6++kUljh1pIcYvWL+e7YaGDPAVr+p07JUz\n+8DXdor/323ejO8ZFmYvvi8IXiFiW7ECfDn/ftCx5/jh65aMq+aDO9ah87nnbIUHXPsS33UeXY3n\nrXgDnzc/I1bav98xh7Q2gitlxihxNGTAMX5B7DHedZx7DO9A6eOP2TZ2fRmL4/jgN0fxdeJu0Cpy\ny2j+jqlTHTNSfsmIiN4YzrbcAhBR5o2HHRv3CgPg3/92zM7eweC66CK2Ez7GL07Cmmscu/jIePA1\nNHz1r9U7UEVRFJfoAqooiuISXUAVRVFcMshTL/ysWfy0cOZM9KWMFvmibiOPI5BPZImIltwv8lNe\nXtaeFpaVcazJz2FutW8r5129dr0AvqZr+ImgfEBMRLTk9iY+CA21FmtGBsdqPhWUT9NFeo6IiLwO\nHeQDI+kZn8Q5uqoqS0+MZ83ii2PRIvTNmcP2vHnoE3mz7Kn14Fq5W2ST6+vtPS0uL+dY5eNzImrO\nK3Xs4Dmx+DpxHmtSsSIiNnkkH5w8eUGqMMzPP2A1VwWsDcKqgJAQtuNH4Hlt9ObzGh5ur2KArrqK\nz+s116Bvwwa2ZWKfiGjxYrZ37ULfBx+wnZlpJdaUFD6n27ahr2cDf/41QWngk0uXeRk3bxXft/Hj\n9Sm8oiiKTXQBVRRFcYnHLTzFxbFzzx70HTvGtix1IMK9hih1ICIsaRgyxNpW4/RpvoUf/ko5+Cp9\neUufEIRbH7rlFrZ/8hP0jRJlLNnZ9rZF9fV8XltawJW2jcu+Sic8Ab6qa+51bHn6iYgyO/L5IDfX\nenFyzffuBFfsu1wO0jwJfcHtYuuTmorvuXcv2wEB1s5pZiZ//kV5Z8DXe/nljr3zebzeRd8CRa/H\n7R18NjU11mItLORYs3pxm07LljlmzuIecC1cyPahQ/iyBKoUBwnWYg0O5ljNa273brbNInS5XGQE\nVYFvS3u8Y9tqUBg06DMnzgceuBh88pI7fhxf9/jjbL/8MvqeeopLCs+dO/9apXegiqIoLtEFVFEU\nxSW6gCqKorjEYytn2ihuySttwNxhySEumxgWg3mchLlCsOPUKfDVz8x17EiL/ZHf/rY4kLlLIkrY\nKlpNjZwjPcF5xgpCQYTEvdiiao0jRxyzOQbzbktF+jhn073gm30j2/G+Nfie+33JOt/7nmPGrk8B\nV9mPuQU2uaESfHWjOI87VubDiaj6WIBjxwWQNWSXYfWRoeB7fyvnPS8zTpOvOE7sKgVfxWL8u2wh\nRSpO35sNvuFTpjh2QR62QdMxLiXz9o4DV8kp/llsSB4Y8pHFL3+JvnUvBPKB/KOIKGI35w+ru+PB\nZ2qL2OCDDzjv+dln6Jshuky7utAnywaLl50AX1JSIH0VegeqKIriEl1AFUVRXOJxCy9vb8+Mwv12\neovY3owYgS8UW1SzKyRSvi7S2KIMgMG7K/hA1lcQYdeM0TGRsJG37b7G9i5x1WK6EGQ38LZ9ZYeh\nRyMkYAq88eOpbGGVqcjJo8FX3csdNri5GwCvvsq20Yr2nrg2yB/bacYuuZYPnnwSfBE3iWoQixNh\npcqS2Rh3ySVsR0Whb+hr3JmWlDQdnRdC4oqI8n8gFIEuRi3Vsre4cy9ZilUSUdwi/g6al7jZCGQL\nqZ86eBumOE48wFvewN3YxRV9GEvwAN8x4gejBxTfF8g4Ey7CbsPhV13l2JXt4eBL7xC6pb5YcidL\nnuIxC+Ggd6CKoigu0QVUURTFJbqAKoqiuMRjKye0nB3CMhbID4n2MyIi2rTJMXOPY5lOby/bBQX2\nVGMiIznW+k1Gu+a777I9bhz6ZPLI7FWTudP4eHutnJ2d/c6ayvLlPGfhjzCXU/k55+hMtew//pHt\no0ctndfsbI5T5rWJiGR+1mzllWVkxt8HKj0WW3lp0CAn1hPv4DX98MNsX3EFvkyW6WRNwevmbAjn\nHAcPtqhwJOY3ld2AOfB//IPt/AhsSY5ezS3JEyfiW8p2xbo6i7GmpzuxlsSUgEvGEB50Fnx1x1gV\nfmwD5k6h5iw21k6s+fn8oRuDr5rWcCtp6Cks/6v352cHkb5N4Ju1LNSxy8t1JpKiKIpVdAFVFEVx\niWc1JkVRFKVf9A5UURTFJbqAKoqiuEQXUEVRFJfoAqooiuISj73wcnpk8aJGdMp6PrPWT9QIJqzA\nXtfKjWLcwtCh9urVHnqIn4aBtp3Bs8/isWycfvppcJ0N475kq3WAWVlOrNCLSyi9lfi7Sfi6hx5y\nzDp/7HjPy2O7stJSrD09fE7lLyCizK4CxzYlwkoW1vGBMQrmwE0s3zZhgr1zWl/P12pk8rXga3r+\nqGPL0l4iou98h+1dz/wLnVIcwWLN6q23cqzGaaUJ94upobLBn4ho8mS2f/hDcCU+zTXCFRUWr9WD\nB/kaMMUizPpfQfNCvq4NpTsa2yJ0KxIT7cR62WVOnJXPfAiuhHvEdFVzbZDaekY9e+0hH8eOjtY6\nUEVRFKt4vANdtYrtWXNRxaRcCL+WncRZ21Kz2Jwpd9aXxW4Hkz1Kv/egY6c9jHcgcp518c9eA1fG\nKR7GVtGCM+yjxMCxwK/WVv3ayLvOknZDkWoGD7Uu6cBY01cLoeIJ6KtMlTO7Z5EVZHuLoapV+Aa3\n93R+gKVwfZdf79hestWHiMYtWcIHFkvo5M1Q4cU4VCx0N3f7hISgSHZpr+iwa1kEPtidxBrz5AeA\nHK8+4e/GLHriTpmaoAX4QvEZ1E1BIeaKPUPEUSfZos57vGOPXWxIEq1Y4ZglR/C7k75JDDk0b0FH\no5KYDZr/m+86E/Zh51P+/JOOnZSErwvfx+c/c7EP+IqmSEHt8yvH6R2ooiiKS3QBVRRFcYkuoIqi\nKC7xmAMdcorVScqjtoMveA3nYJpTc8Enn9DnrhoCrsGbRM4nI+NrB/pVwKy4G28E3/yL+Heu68AB\neFJNPzEC1VjyN7IaS67xJw6EkyfFwa+xgqF6H+dhzFRR+j7OyTw8F33DnzH+Lgvk7+ecV66RPKpZ\nLZSLDKGmuAce4APjafHxcXc6dijZA9Js27aBr3AH/6Zhw8BF3Y9yVYavMQGgQUhcRVjM1xZF8PXY\nGIPfgZgWcTAZpwBIxu7F6g367nctRHae37Mpiw+MahtZpZK+bBq+UMq5r1kDrpy9fF0VkB3k7Mrg\n/fvBt2oTK8IZgxWoaTKf/6KtWNlSMZmHauK4SUbvQBVFUVyiC6iiKIpLPG7habvYthvTuOCufFsr\n+EiUOEUtO4i+jgswv5xwrt2sBiwNKZ8qhGBbjYljf/gD28bAarPkwRa/+IU4MAaXXfoW20blENT5\nDr9tPDqNbYsNoEB+LwYTJ53moG+hml3mfSe4Wv7MtqxoGihy/PyBDzE5kLWbt4xFM6rA5/vMM3wg\nhaCJqC2Vy2EiLMToxNDN28bMLvx+FAwTYsCGaDbsU400BUyAtMlczhUd+BhLGSf8VQh+33ADvk6q\nLRvqzwVT+sSRnXu46P0ipWHkvjo3iPKkEKOkSpSqlc6pBlfacZkWw7KxL9A7UEVRFJfoAqooiuIS\nXUAVRVFc4jkHKhKLt/4OH/Hff784MMVERK1Iwghsj5ID52yS0cU5kIyN88BX9pd0x74iBl8XJwZc\n1RzBkis5+8omjz/O9rS9K8A34aWX2H7uOfCV7A127Nfvw9zZ51vZTjHm/7lFCpvQvK3oFEIXJTuu\nBFd6DOfj3jRKnHL95RA1bKscCDldOXzwHubr00Zw3rNrL74uaA6XuEwxBrX5HrIVHZK5W5T8fGzk\nDmUJGNTmEQ7yi8CsbFMLf89CLdaHVbVy3jO+FYfKwUS+06fRJ/PJRo68afVOx7YWq5yy+Bq2OUtB\nm7YObCDv6uLj3bvxZWlTR9BXoXegiqIoLtEFVFEUxSUeh8o1NrJuoTn6vaKX1Una1leCLyCPyzSK\no7CkSAi4UHOzRd3CoiL+Q+TweSIsazC6IsqSWZtwkiG/GXhclDXExVmL9cQJPq+Bx7CsBsrFjJO+\nNoJnxi/ows6jYn8us8jIsHReT5zgc2qUse3cyNqZ5ulOCBJdSuaFc889bE+fbu/zT0jgWCH3QNQ2\ng6/H7dhQRwtiRKxGJxLUxlnUrpXapbIyiYgofnIPH0g1LCLqm8LlWOZceLn9HDrU3veqs5NjNcvq\nUqJE556hulWwgdM6OSOMrb8MtrzcSqxVVRxnfNQZ8HVdfrlj172C651smDKvY5mFmDZN9UAVRVGs\noguooiiKS3QBVRRFcYnHMiZZbrPIEOum9VzGEuBnKGCLvFfGiB5whYUZZU22EAmalGGYV5wsRstk\nzG4HX/KjnPg8EITlD0lLuXTroNGROhC+/32WY3r+eVT5TtjAuc0TS9eCb4FQwKpPxRxokJFLs4Io\nVarZhvOCpp0q5wOzjdBP5Jzl7CwiVHm3iSiPO3AUy9EmUJtj+/oG4OtkntOMbTrPGfpSacwAkCna\nE9vr0BkjSvDmouSWV0uzY2/dGgw+2Vk7dChZY906tv/P/zGcEyaw/fbb4IKu2I8/AV+6H187RnbU\nNceOsR2/B0sD/T76yLG7jY7n9E38Hb/2JLZyHn2yRhydfyKB3oEqiqK4RBdQRVEUl3gsY1IURVH6\nR+9AFUVRXKILqKIoikt0AVUURXGJLqCKoigu8SxnN36884SpZhUWQsau4l54Sk7u9y3G/h5HOsiW\n2epqi73w//qXE+sjf0B5tSX/5pGaCUfywVfpO4sPTKk9LK6zF2tbGz+5W70afbI52uwjF+e57YXD\n4ArYJmTiMjPtxJqRwXEuXIi+DRvYbsDZEwl+XE9XGYajEHJ9uX41P9/i59/Xx7FOnQqu+lVcF2xM\nUIFJKDDChIimTT7LB4MHX5D+8iGpCeArmMi6Ejl/GgM++ZkH9J7AN5VjSSMj7Z3X7Gw+r2YxuGwe\nl03lRKgrYIzYqG3gOt3oaEvXwKxZHKcpFPCJqEM1Yinr4lpfU5FPTCai8HDthVcURbGK5zKmSZPY\nefvt/f7Y6bvwLqOsjG3zP75sTKmvt3gHEhjIsR4ylHBlh4mhxrQ2iO+IFviVgg+keyoq7MW6eTPH\n+sor4Op56inH/vAUfjbD/2sBH5gDzmU3UEmJnVgHDeIAfHEYYMkT/F89fbTRTSMmvFXtx64geceX\nm2vx88/NdWLtWYa7jMPiZv0HE/FX+r/3Hh/ccQe+58iRbNv8/Ovq+LxOngyuWVO5q698RTP40vK4\n+2jOHHzLuBjR8efjc2GUww5VoPNb33LMoreng0teLob2M2y6ysstXQOFhXxOjeGAsO2NQUX10m0s\nqJx2JAtft08M+Dt4UO9AFUVRbKILqKIoikt0AVUURXGJ56fwEjGYiYggrzD8hy+AK3PGtXxgPGXO\nyyuiC8H86fxUct0t+PQyYxwnwXp7UcWo5HiiY6f7Y46npOvCDMCjv//dMfNHoWJ/1/18vLLMOFfy\nXJp5nquvthaew8svO2ZJCw4VTH9Q5Acfegh8la1jHTthezr4QpbZ0t8xOMLT63y6UJF85EiWJ/L/\n/e/xdaLSYe1/ouKSSOUSamYNjJ4IPj9r8lDJrDyJr+PMVai4JB8gmw+940ZfGDmmjRvZXro0EXw+\nxxsdO9WY5jC0hfPiZ4LGgi8vz1Z0TH4X5y9zIxrRKZ6BXBmEQ+Xuu08crEAVpy+d5POgd6CKoigu\n0QVUURTFJR7LmKCEYRHevqf58Xa31Bu3aVKktnBYAbhkva/VQurQUCfWnaubwDUtRmyTthrzzcWQ\ns6oX8VzIWuC4OIux5ufzL1q6FFyxU1hwumaKUfQ/WjQEyMFtRETvvsu2rWFt8fFOnG0bUaQ64BAX\nfBc0YDG4rLDK8DVKw+S+ODra2jltbuZrNbgBhxzW+HN8sUFYgB4/N9CxjbloVL7xwhTSU3U1f/5m\n84a8HgyB57KjkY6d7IdpM8DisL6srP4H4Em957hDmBqTxexno1CMWFaL7dpl53uVk8NxBgWhT5ax\nffvb6GsX+uold3zzc6p3oIqiKC7RBVRRFMUluoAqiqK4xGMOtLGR8wrhp3DgUk8Ml7WYnZOyzaxp\nHw4ja+pgoY/QUHt5xcxMjvW730Xfkr+n8IFR/lMcwrkbs2ph5cxaPrCYr6PaWj7pxkC27EMsbrKy\nHXPLfRu4BEgOGCMiPOk1NVZiLSric5rpj7nMrCNpjl3YvQB8gTt4GN6JRYX4prJ1cexYe+c0NpbF\nZKbXgOuKK9iWAhFERLt3s52air7BSzP5oKjIXqwpKf23HYoccU1YBrhkjvboUXyZHPjWn/CFKxob\nOVZvo+pRPtAwEsiNvaEczyq8jstu4es4OdlOrImJfK1WzDBK5UScdZOxXXP5crbNHK+saoqNVTER\nRVEUq+gCqiiK4hKPnUjheUIrU+o/EpFPB2/No7tRD7KJeLZ1/nosKbrllm8c49dCjDCnJU+HonPV\nKraNfXrGJi6xaNuKWz/qHkEXBCk8aWzhVt5zmWPXvfwh+MZefRUfjMFuq9oVHHu0hRCJiDJjuJuk\nuiMNfH7iNOb44vx6OaOb/vAt8EHdiEXSgvjvT7oWfQkjhJatN57vqCieE2+Ohf/4Qe4EGz7wEB1O\nrNji2IGtteCLW8afXvWePvCdfp/vd8ySq6gotv+FWbOBIWuO5PeIiCo+ZQWmxGXYqxX+0kuOnfkL\nTBNONUqJbFARIhTh9neAL72Xu/seRnliqljNZW0ZywPBFztXrCNNuI59gd6BKoqiuEQXUEVRFJfo\nAqooiuISz2pMMj/X0gKu3uuu4zcZgbnCzjdPOnZuKyqjlOwPd+wJE75umF/NPE67Ul0S5is++4zt\nKwx17GBRgxVw3MiBJiWxbTGxlL6V80Wik5SIiMaJkott29A3VpaNGLNdou8WiT+zxsUlVe2sohP/\nG5TbiRs3jg8MVfWmVm77DTVaFbNvZMWjlRYljkrfEvEtwRwYXSVyx0bN3ViR2y/ciy2pWVHiehiO\n7YgDYccOtv/yF8xYg1KRka+/IoRzcr/7Hb6nHJ5gk5QxfC1tOY3lQYnbE8wfd5DFeUVRRjvvaFlL\nFkBWEHOwtpxC5bCSD5/ggw14bVRc+6BjF6ca3/9VRn3medA7UEVRFJfoAqooiuISz0PlFEVRlH7R\nO1BFURSX6AKqKIriEl1AFUVRXKILqKIoiks814HW1PCYhDlYB9e8n+sii7dfCb6wMLZvuunzft/+\n3LmLrMluzZrFclayJpQIBjZSVivKWYGelfxBIpyCWV5uTyKsqqpfOTvZK96zKBtcsqQyfds0fJ1s\njt6yxUqsW7bwOZ05E329vWwP6cAxGSlLuad4y53GmAQx6ZMKC62d054ejtXHzwedcozL3Xej7z/+\nwzGLp+JUVlnenJBgUSKuuJg/f1N78fnn2TYu5JxtXJdbcMT4/GUhqI/PhZGzM2qP20SBdYCYNEtE\n2Jxv9NCDcEV6upVY58/nz3/dftSJ6BLfaz/5fSeCCbltq8vBJeXsiopUzk5RFMUqHu9A+2L4rnPv\nXsMpupQyjE4U8vV1zHO39qJP3roQDiobCOXXidnki8rAFycGXJVMxDnsSSIc7xtuAN/gd96xFh/w\n1ltsf/ABuOpm8OC4sQ114Hv/fTFf2xhG1xbCn5Wl3g7as4ftlCN4NyzvlGv/8AdwbTlwwLEL9kwH\n35zFfGwrTiKis9/iGwSfjz5C5003sX3bbeDaMpW7ZDIacsB3JgkHIlrj0kv5d0zC8zNUqD+3jcB5\n6gVzhYj2pongq9zNd90J/TcIfXPWr3fM+Xf3gOuBB8TBqYPgoz//me2nn0afFP+2BAyLu+Ya8FX8\niqfKpUUZM+Pfe88xTYWrouViGCUNOe/v1TtQRVEUl+gCqiiK4hJdQBVFUVziMQfqtZ2fSgauWYNO\nmeMwlJpo8WLHrCz7BFwJ3fikyxq33862fJJJBE/aU408h5yT5fWzn12AwM7DT3/KtqG4A8JWO1AN\n5rLLRE7MeJq4fx7nkxMTyQriYyRabSgcXX+9Y0Yb6k+NfuMdO8JQvwrYLRR90nHY2ECof4UfFsf6\nYq4Onvwb+fog+aB7Rwv4hqaKJ907dw4sQMmNNzqmWfjx+uvjqT+WXMxP2jsX5YIvIVUkPhMqBxaf\nJCjIMdctQoX80k18/5WWZHzQP/yhYza//E9wBfeeX919IMBghxVbwZe2h78bjWQo54sxBIsW4XsW\nr/ZcpESkd6CKoiiu0QVUURTFJZ7VmOT8anFLTkRE//mfjlm0HYcxLVzItlcebjVgCxUXZ63gt7aW\nC2n/+Ef0rbuVtzR9M7DGw2u/GOpllAaBoHJmprVYDxzgWM36YzmQrfC4UY8i99RmzcVdd7F9+LCd\nWBMS+POXhdFEUFlf2RIJrn372IYBc4Ti1rt2WSxO7+nhWKViMRHt9OWcxvTpneA7N1985mK7SkTU\nvGSJYwefO2cv1qysfovTa0N4eN9FF+HLnnyS7ZJhRlnZ3Llsh4ZaizUhga9VU7TZawd/r6r98FqN\n2yTSM7JwngjXgMREK7GeOMFxBm4w1pxvicGGr7yCPtH1k95VBC65HISGaiG9oiiKVXQBVRRFcYku\noIqiKC7xnANNS2Pnq6+CK/9n/zR/2iF3kcgzyY58Ipp1nNvjysvt5cByc6nfPyR/IQuf5K5B4RM5\nxMtrCg6jattU7dgBAfZijY/nWKvCMsF3+kHOw3xu6LAELOO8Uu4oHPAlZmpRdLSdWIODOc7mFVh+\n1pOc7Ng+L76IL+zqYnv2bPTJ6yEry9o5PXOGYx06GnPyzXtPfOnnv2DjRrbz/3gVOm++me3iYmux\nZmdzrCtDsLVY5rZDl80CV9NWbu3ticA2T58jopVy/HhrsT7yCMf63HPok6lMsztTVAd9KQUampfC\nB5aEb6RAS0F7BrhEZzllDd+Mr5ODGuWgRCLyieGSsp4ezYEqiqJYRRdQRVEUl3gste/ZUNqvL3cZ\nl1HUzV4JvqZTrFyyPwwVbUK+UXhfH7kVf/999LX18rZdapUSYZnV2b/+FXxmGYktqry5w+Xs47vA\nl/cZb+FNUaEtr3F8uS24o+j8rTiwNCgQRrr74ifX/RH/Dp/eM/hCuZ8Tqk1ERGs38bWxYKABCrwv\nF+ejDNW4pABY7w/wvM3+B/8dfb9tAd/+Oby9xuntA0NuKc+mZvT7cw2GBisd4T/EVEeL9zNUzyyx\n5H7uPpo/H++3vvMdTuPNnInpj0Oiic4Ua8sascWxCwce4v+8TxefRyPbSG++KX73IlQ/KxvOKbTk\nDlSHW7bsq3+v3oEqiqK4RBdQRVEUl+gCqiiK4hLPciNC5bv1bcyrBQsZo7GvPQG+ZtHLmQZS0YT1\nNmRPmUnm60yFG5kDM0sqiNg52OirHHyNUKHuxBbAAbFhA/8Oo+1w3W5uOzRn9Jx+lHNOhpA9pBpx\nepV7GhrYjo7oBt+QOULyqRt9soyprQuVvOWYqQUWk6BD7r/fsUu6sPwnPYjVmc7+G6/j1FS2F72C\nvtjJYrZSj6HwNADyJ3N5XNU+LJ2L3y5OipGwr47IPP/PEVH88bX8nvYGPYDql/dibJF8+23Oe159\nNV6Qn356uWPL64iIqDBGXtd2pMPkrLOJv8bM6g03cD1gxSgsG5x9B/uS52OvakwSKjedD70DVRRF\ncYkuoIqiKC7x3ImkKIqi9IvegSqKorhEF1BFURSX6AKqKIriEo9lTAUFrMRiCGfTtEP5fNDaik6p\nXm4Mo+vcV+/YQ4bYUzgqLuZYt21DX9VyoVRjDsB76y3HfMT7QXAtGSRaVLOzL4jKd+UIo5XvL39h\n+1e/Qp9skfzTn8DVfOu9jh0cbOm81tY6cdb5YjPj2G5W8t/Zgb5phx9y7OIr8JzKMrKUFIuK9Lm5\nnMyfMAF9Qi1q7D5UHa/LEwPYzJ5DUW5mUzlKTiS45BL0Rfo1O3ZNazD4pLp/RkwjvlBOVRsy5IKo\n52d7Y3nQyhViyBz0/RKq+xsDEOFnr7zSSqxpaXxOS6f034LeHJMGx3J5MuY7Qsldf98pvQNVFEVx\niS6giqIoLvG4hc85x1sxWooKN3Bb/uyz6BMipcUL68G1VSjMVFeTNTIuZaHUjFEvo/MmEZ+xLe5b\nzmpRvzAaamoOseKUre4eIqLKyWIrtAfTH92nTjm2r9nC8frrbK9aha/7j3vJOqK9qcuYYUfHOLZj\nXcYW/uc/d+yMbhQzrjyCYse2OPNblqMaajpHjHBM/2txC08xMWzDcHGi0jXcfYYbv4Ex4RL+TiTm\n4UC+qVN5255xCNM7+4JYHapFyRu/AAAcH0lEQVSqNRx8fkIXONqmdJTY464cvQ99e8QaYOx/G6P4\njLUuxtaoXqHUNG0aWUFmtMLC8NPKmcuC6sFz8BcWyu+YHMxHRE29xnC686B3oIqiKC7RBVRRFMUl\nuoAqiqK4xLMa0zvvOGZKBOYyI0TqIOdFo8ZJyMMbguRfGj5li4pL7nTsxLwb0Xn99Y554jbMFQZu\nZ2WY+15CZZh1j0kFHh+yRU0UK8fEGtLivk8+6diNMZgDC+/lz2DnEzjUL8hadEzatgTHLm1F1SA5\nLC5r63jDx6o2jV2Y81y3ju2EBLLG0AcecOyy63AKwsUXs92NqWMoVarfh4pbaf4yf2sxdytyshXd\nmJOrCdvJB0FJ4Jsovq1xO7LAB5JHFuWYWj77jMPZjmpFUnY+5Xg+uNaLdHL4PhycVxvRvwq/W24U\nX/kZM9CXsognUiTN3Qm+iAi2Q6fgZxwqpboIS8q+QO9AFUVRXKILqKIoiks8buGjG/jWe59RweA1\nj2/DY1PxFr0mhrcoptZuWq+cZ55OtkiM4VIF2ncInWLWtpwDTkSUO5OHpf08CH0nTvG2PdDiDi72\nXS65alxRCT45pjq6vQZfKP6OaQ04yG8ncclVOFa4uAa6z5au6ffn6NJL8Vhs78MNUeBd/yVLRYyt\n/0DYv98xk31xO0miNKxh6lr0ic60yOMoYD1fpHRk6mHADBvGttxDElHsMlEwJ7b6RERxby1x7J0P\nHQbf5clsG31YA2LLQ9zgldOLJWnNEZyDue46fN2Qx7kEMv9z7EYLEkP1bJVcVQ3jWfON3lvAt+UU\np59O34C1k8N/JlIoxvk+fSlv24f383v1DlRRFMUluoAqiqK4RBdQRVEUl3hWpK+oYKfM2xBR8THO\n1WS0Gi1PIpFXk4Stc9E3saiJ97lz9lRjNm/mWBcvBlfVMycdO36T0ZT36quO2fwylgYtWsR2ZaU9\n5aDsbFaO2b0bfVBKI/J6RERFx3jI1cyZ4KLAU0Jxavx4K7H29XGcpqDOxIlsexuZdClq5OWPQ+Xo\n6qvZPnzY2jktK+NYx4xBX2g7K0dRSAj4irdziYtZ/iKFu6Kj7X3+tbUca/TMK9Ep2wl37cLXPcF5\nz+hNOFQu8RTndisq7MVaXc2xLl2KPlnV5OuLvqHbxbOOPXvQKcocKTTU+rXqdegg+LK3ca7dFI7b\nskyoWhnrxplNXPI0dKiqMSmKolhFF1BFURSXeCxj2tLNZRwpG3Drm9HFaqMnVmP5h9yW/vgHxi/8\n6U+/aYxfD6lMe8014Joyhe3GUSi2OkpU5wS/+gL42tunWwuvv3hWTjUkqba1sC33yUS0ULzOa1kO\nvs74WRv09rJ95Aj6cmc38YHRTUV+XP/U14HdPVJQyma5zbhxbAc/+xA6xcx4euklcGVs/T0fjF4B\nvoDtQpk7GsvGBkJ0Hqdi2o78C3wBW1mpq/MVLFWK3s7X7qx2LMcyRcRtETeMu9+6u1E5KuCYuHZl\n/R0RqlxJm+jL+30LeC3n0rW+ZZhSXOnLf0PsQvwbIO6uLnDJTEORIeLl/N5vFKWiKIrioAuooiiK\nS3QBVRRFcYnHHGiKr8htLlwIvvT1XBqwMQhfJzr5KGNKM/jmf4fbrGx2x9UM43xt7EQs//Haxy2R\n4UbdUNMcVu5p+R7mPJctsxigIJ6EWs7xFvCdSeIWWTOtdESUjSQan8fOIwGObUnkm3yiOF9UYeRY\na9u5fTe6w1DpETlRLyM5N0Eo+NgcSRDcIt7rvffAt3YDt+Qu2P4YvvAkl7iZbZVl/+RrPJks8stf\nOub69ehaupRVlobkZaNTJKKv/xE+k/DaKMqG0u21SO9s5Wugfq6RCBQCUI1TMsEVfkq0Ie/Yga+T\n9WKWeqQf+RbnPZccw4F7Mu9pdGtC8njtbGydDqOvRu9AFUVRXKILqKIoiks8dyIpiqIo/aJ3oIqi\nKC7RBVRRFMUluoAqiqK4xPNQudJSTpBGRaHv7rvZ/vnPwZW2l8sopKIREdGmTWwXFtpTjaFp0zjW\nw9gC1yMUyX1+9jN8nVRMN4J95FEuf1myxGKsCxZwrEY5kqT0EErLy48gfDEWK1WIYVmJiZZiLSnh\nOE3ZKDFwq2cqTodbJQa35Uytw9etEb2zJSX2zmlzsxNrwiIcACY+fjq4FNuOKSjIMYv2jQVX5inR\nLltQYC/WjAwn1ualOM0h+M5JfPDKK/g6oRbUtBBLikI77KtxERHRmTNOrH3+Q8Hl9bBomTVLlT74\nwDGzZjSB6/hxtq2pnDU1OXGu3RMKLjlZIXojDrSrnMHnP6ED27zp2DG2+/n89Q5UURTFJZ7vQOWo\nVPlvg4h6XnnNsX1O4ayU0jChv+iHOqLXP3qVYxcWXky2qJzHd2AJE1Gg4cNzrLk4/Nf4Hyh+Dxcr\nb5uH7ykFKmyycwYLQbTsRd+CfTzbJe2GG9C5+u9sG/qsMBOKDI1JlxR18U7i6OVYnL2unQu3fb4/\nEnw5L7AoS+FevKvLOnrUSmxfQohThoXhyN/KYSL2GBQMkXfEW/cYd6ARxkxuS9SIGWIxQYZTCp+s\nwTlURSF815mZlwK+L231LDHoct6EvPkm+kIPHOCDG41R4qLxws8QojG1bG0QO5fvOqUICBFR9B4x\nI2vUKPD5+bGdtg2bE0qTcF7Z+dA7UEVRFJfoAqooiuISXUAVRVFc4jEHOuh3PId66tTLwfeA0OuI\n9cNcUUASD3tuaziD7znIXt5TkrCGRWojl1WBT4qbDIvCp55V88RT4uVbwTdlFYvo9vVZCPJ/kXNZ\nFoShoEbkehZbqZ+MscKQnq0Y69qt/IR0AY7LcU3mTM5t53cYog8ilua/nQRX8HE+/1ktKDJBl11m\nJziD0mGc9/TrMpxLuSygrgWfJI8Vf4cUuiYiyvfm829M/RoQDz/M9q7d+HC3+W3OOW40cof5s1kk\nY60x+3xBlz1hFsm5p5/ng7294OvZxjlCnySsxKB2XhPe/1YiuIyxVFaQ36m47XjNtS3l3LEsHiIi\n2nX1Zsde3HAn+BI6+G+qNP68L9A7UEVRFJfoAqooiuISj1v4997jbbt56ytrTDfux/KPthVckFqw\nHksDzp37QBxhWmBArODylFVG9YkspG43fLLM5rvX498hSxxskuEttBvv/R346kUV+vwdWHK1rpe3\n7ZX7cCt6IbZF9Je/OGbOb7DgP/5m3mquMMtS5MUhZxwTfakczhZpqZxjqdhu3BeIuhn/jaj52JzH\n12oXVg3RkiV0QbjtNnHw+3+AL3gYz5DKn2NcrN4eLkg5lyouzn1wHsg/hdejv9AyzTQbQlbzzLR1\nN+CMqrVdD1qPTfZ5XHIdNhl8EsWf8bhxxlhzMUbafxJu4efM+erfq3egiqIoLtEFVFEUxSW6gCqK\norjEs6DywYOOs6Z7PLjkaJusVGydLNzErYRZIdgOVfYJ1wMkJ1sU6MjO5j/EmEN95Mc/duzRslWO\niKqncqnS5B9hOF5PP80H6en2Yk1P51jNRIuYe3NiJpZjBLZw/u5sVCz4RLrS3nkdP57jNAePi9bJ\n08kY5/DHhAiHWRskFVGGDLkgohfk7w+uojV8n5DZkQ8+uugitl98EX1ShaKoyFqsmZnkxPrWW+jb\nNV98X2QumYgeOcdtx2Y1WMaj1/LB0aPWYk1P51hLYkrA1zyZW2S3G2Oxpk5lO/zOMeBr3MxiP+Hh\ndq7VW2/lOMfgr6OCmSy00jwM17HgOfw9+tJMJKEzFBd3/jj1DlRRFMUluoAqiqK4xLMa035uN4qd\nifNAu7sD5UF/L6POuVjCn0yd4mjI14vy6/DHPzrmmaUrwTX65Zcdu6gBSzy8xS4p7sknwVfYwVsU\n1PcZIKJ04kt1VeI4cG48+oQe5OBU7O5IhrSFpWjFB9l4DP/XvjGct+3Jk68FX87trLjkvRffMj9E\nKHcNsfj5i7IZs/4sU6RFyn6MHTzJH4lur/ffx/fsxc4bWxT94AnHrkm6F52p/evDLgnbwwemPuv2\nq+hCULJBtODNwDRO8L59jp0lr2kiolUb2P7b38AVvkGUGYUbnWou2fU9UWKVhLJqJUd4226W+wWL\n2eHexmro6/vVv1fvQBVFUVyiC6iiKIpLdAFVFEVxiccypoICLg3I6chG53XXOWbc09gCJUuDzJKS\n9P2cqygpsVjGJMpYtuzGNseUbi6/qPBHZXVZRvLTn+JbBo4S+R8vL3uxTprEM3E2vwYuOQRAKswQ\nES1YLWa9GK1zfQs5l+TlZem8dnYKaaCN6JMlNsYMqqKf8t+UGWPMRJIDk7ZssXdOz57lWEVei4iI\n1nPPYdkPsYxJiqqbKc+iVT184ONjL9aHHuJYZQBGEHXLd4Jr1PUcwvYn8Xv7ne+wbbU8MDKSf9GG\nDeCqaOXcYuImzMmDBJqRXOyZwT/r42Mp1tpaJ86KU9HgSmznPHcxYTtqxpRmfotTOEtLCp4VFWkZ\nk6IoilV0AVUURXGJ504kRVEUpV/0DlRRFMUluoAqiqK4RBdQRVEUl+gCqiiK4hKPvfBQBzrMmBAp\n6gCzqBBchRPL+eDRR/F1crLkyZPW6tUqKznWvDz0TZjA9rpLsE98VivHLtXLiLCULTjYXm1dfDzH\nmpSEvowYnrx4wi8cfKL1GGpbiYgG3c3Bnzs31kqspaUcp6lKF9Bezwd33YXOG290zPQuHK9QcrUY\n7/Dgg9bOaV8fxyrb4omIsuaIybDzsE8ahBt27ABXk2+kY4eG2vv8+wYNcmL1WoNzROomcW/82JnG\nJFQZq/weEdGBi7j2ccIEi3Wgmzc7sVZdgfXe8SFcQ1nXgTWU8rska5uJiCJXibEapaVWYo2N5c9/\npjFiRn5vhg1D31NPfS6OUJZzzJiRjl1Xp3WgiqIoVvFcxlRVxU7jvzMtW0b9+kT3kew6ICLySZ3F\nB+Xl9v5TpqWx8OvkUnClD3/BsQvfnA6+LH9xJ2eIBnfs2uXY/ufOXZD/6gdC8L/6hPcqHLvsM0Nx\n6VahZPXqq+C7dQ3/Xbt22bkDOXuW/6u/8Qb6HnuMbVO1pmSq2IFERKDzjjvYtij8S/X1TqzyzpGI\nKOQH/GvMOz769FO2pUo4EcW3s3JTVZXFu7q+vn67e0CJ2OyoksfGB1Ixku9cExPtxbpzJ18D01ag\niLfsTit7He9Ab76Z7aHzZoHv7Ea+PgYPthNrTg7HWTARRdxvXceKcG++ia9bupTtjNmd4Lt2AquF\nHT2qd6CKoihW0QVUURTFJbqAKoqiuMSzIr1UmfYwVOxLj9lEfm6PL+bxpr3++jcK8OvSuYbznul7\nMQdCn7LCTda8s+Cafx+rM10RhUpN+aNz6EJQ+rnIexo5mcsm8vm6rMV4oZwc9/bb4BozZjrZZsUK\ntvM7UDl84kR+up65PwV8fUmcO/zTn/A9k59/3l6AEqHQHrrYyLtecw3bZWXgql3Bg8Sif/AC+BbZ\ny3oClTv4viXBUHKXA/Da2/Ep/KJFbA81prglfiorYezNT5g2jAeyndmOQ9eGTmU1ppt3HwSffCzy\n2uXl4Pu5EPIaO9ZCkGQsQWGYO971WBMfGNMzpFJUxR6sepk06at/r96BKoqiuEQXUEVRFJd43sJf\neinbUl2UiKpn8JahxXiX9NFcGjRtUSg6b7vtm0X4Ndm7l21/fxxkJ4tnw1ehoO7FF+ee9z2IiCjk\nlJ3gDNJ6RemUGHj2P0F0sb0Ui+WplUtuKkfngqvAt0ocGcPoXCKzLekjsSD+HtGcUBmEg9oSdvFW\nOPkFY8v8PU61RBuXxkAo9GbB76wZ09Apqro7N+B2MnoPl41BTQsRTUsSw9CmFQw8yP9l+HC246bg\nPUz1fSKN0Gvkdxqi2DYG5936Em/bd9mcgCh+z9DRRmG/OK9D52Kq7uQEPq/rftUEPizPwjntboGG\nlBE4AFNu08fOwRI3+Z2/44efge/mmy/+yt+rd6CKoigu0QVUURTFJbqAKoqiuMRjK2dPD7dH+UQY\nCatRo9hOTUXf5MmOaYoMjN0qhtOtXGmvUKS01Im1JigNXLJywUjl0pw5bMd61+JbHmeBhrQ0i618\n06bxSTdbHWXCVgZHhHkvI18HCipDh9qJVbSc0uefo0/GbfRylr3B5SDJN58BHwyVKyiwd06rqzlW\n89zIyYHG31Gymtv30u7GcLx/8hM+sNl2nJ7OscbEgGvWbi6lMwVcMiLE9Xn8OPhOTOZrPjDQ4rU6\nciQPQPzbSXAFz+Nc+5mtVeDzVOVYePUTfHDvvXZiralx4py1BltOpbiIFAgiIuoSjxxMMSG5xNXU\naCunoiiKVXQBVRRFcYlnNabKSnaewpKes/fc49itb+J7yFvfwSuw3KZxNpcRhYdb3GocPMhBhIWh\nT9Yq7NkDruqZXJ4Ttx5VY4piuOQlM9NirMXF/W/hf/Qjtk3pmCguYyldhdqFacfFec7PtxPrypUc\npzGk/sCdfN4mXFIPPihTMTpmdk7h8rdp0+yd08ZGTjcZokqUdkTU9cgUAhHuL+V+johydnAKp6DA\nXqxFRRxr5oxm8J3x55SX1LEkwgyOESolkOi+S0i4IOfVGO9Ohw+znfwpKqDBvtm4BrIbON2wcqWd\n8yq1a+X6Q0QU18DX6s4Q7KiTVYTt7fg6eY6Li3ULryiKYhVdQBVFUVyiC6iiKIpLPOZA6+o4rzB2\nGbbHVS3a6dhGeozSU3v4QM5xIUKFp6Yma7maqiqONT4IW8fa/LgEK2BEH75QBm+Wv6xfz/aQIfZy\noImJfNKlAjkR5Gvzw7BFUuZ20lswtwx5x6IiK7FCGdty4/dJaSAzObZ8uWPmeK8EV8EI0RKamXlB\nFOmptxd9srXPyIHGHeGcbDXFgS/Rv9qxKyos5sBTUjhWoepORFi7JCY7EBHVL+c8Z6Sv0R4p84zZ\n2fZiDQzkWMVzDyKCkrDMdrw+ihaf4AOjzK1v2JWO7eVl6byKZyCnv4/tocOfEdegsR4l9HLLaSVh\nC3jRFD7f/T0D0TtQRVEUl+gCqiiK4hLPZUyKoihKv+gdqKIoikt0AVUURXGJLqCKoigu0QVUURTF\nJR5Hehw4wHWAV1yBvqCruSzK65FHwFf2fZas++ADfN2CHaKedOdOe/VqQnqtedKd4AoO6vvSjzuI\n+skTXUP7/TGrEmEZGU6sg57CURlhYVwzd/R5rPUr2Mb1rDlRKB8GtXaxsXZiXbDAibNy6lpwJQwT\n0mpmre9vf8v2r34FroO/+Y1jjz93zt45bWvjp6FmU7OoCz0xDMdAimGelNFiTGGVOoiFhdZizcnh\n71VBaiM6xbmsDsIpsXH3XuvYlY8cBZ+UYrN6rQqZyO677gKX77e/zfFs6gRfwnJRixkUhO8p61uL\ni+3EKiUi581DnyigrmzFzz9hNNertnnjyJJjYnpoXJzWgSqKoljF4x3oY4+xvWU9/oc58Q4v+KZq\nzKt72V73tjHgzPgvZou0F/mu81Ijnmuu4f8T5s1S+VyW7gk01ZblXd1avAMbCOOPFDv2ZZeh75JL\n2C7djyLWUhCr1g/Pq2xoKUY9Wdfk+PPfnBpiONeLc2UoddGNN7J9/fXgGvHOhSmbq2oIcOx4vxbw\nZW5lVaWipW3gy/DmW9DOpTg4bshsYzidJQpaheD3aLzmDrzKXXxxz2WDr+oxvutM2It3y1W+HHug\nMfttQIgvt+/vf48+0YGWsHsB+uT33NihZs7kuz7cfw2ADRvYNr/kd/LakPDQQ+gbxp2AAVPxixMg\nJ9XFoYrTF+gdqKIoikt0AVUURXGJLqCKoigu8ZgDhXlX8nElES3bwertq1fj61L+yXmG+vn4tFgI\n9VA5PiwfEFJUqTokA53eQvU9xMjX3fMs2//4B/qkOrxF5ENiITJPRPjgNy3pLPjuuovzh0W37AVf\n9JR/iyNU1ndLQTcruR/4uBCd8smqeQG0tDhm0Q4cKhgzkm2bubqJE9lubo/u/welUjoRlcw76Ngj\njNz5tB07bIT2ZYTiVuORHnC9J578mhdHvD/HSjfcgL63xKC2+HsHGiEjFMri5uJnWb1VTEUwVaVu\nvpntl18G1+OP87VaVHTpgEMkIqpt4Rx49LZt6Jw0iW0p60+ET+yNv2HnMf57+8uG6x2ooiiKS3QB\nVRRFcYlHNab6ei74/eQT9E14RpQthBg1LvLxv9yzE6Gg8vjx1gp+58/nWEeORJ8YU0+xvxwDvtO7\neTLW8NM4HK2mI5JfF2uvOPnKKznWO+5A33//N9uykJcIR8ab861lxVVurqVYe3q4kH63D7igcHu7\nUYwicxRG6od+/GO2H3zQXsF3ZycPals2BFxy1/bhh/iydffzULf5v8MtquwBCA21WJx+ySX8pTMH\nB776qmNWXYE5rvg9oqzpppvwdc89x3ZJib1Ys7OdWBOOoTj2jBlsX3cdvkx+B0VGh4iwjj4y0tJ5\nFU0fpoAzTIdbswZ9cgtvCKoPieIyws5OLaRXFEWxii6giqIoLtEFVFEUxSUey5giu4RghKwTIaLs\n57jNb2Xqv8AHeS8zOSJzopWVZIt1V3F+5pFz2AIXmyrqZWSdEBEN/3VGv75YOYwsFvM/A+H99z9z\n7JEjLwbfwVU1jr2lFVvLZC5X5iCJcI5arjH/zTUizxb2zGvgkqnsKn+j/ufddx2z7L6D4BojUtDY\nqDpAROlK0apU9Im8V0VUFrhi53Des2a9IeyxXrQHFhplXAPh9tvZFiVNRES0aZNjxntvBtfZbTzI\ncfBio3XSHOxnC/GdkHPriIi8dvD393QQDmR78UW2035zVb/vSSdPDjhEIsIvgPnlkBilaSndJY69\nZTfm8jsbZC71/DV3egeqKIriEl1AFUVRXOJ5qNwTTzjOnPewu6Fgl9iLzZ+Przt+3DFLwnDrm/64\neN3hw/bKLcRcaFONpS6GlVTMRgR5R7/oPgyn+9/8loMH2ytj6ezkMqYh3Zj+iE3imdk1i40Uxxtv\nOGbAEw+Cq20TzzCnuDg7saanO3FmDysB1549bIeF4ct++Uu2J4zBThvoWrI4v3zLFj6n5q5YltFU\nJRWDr3M2p3DMiruVK4SOrJeXvWv1ssucWGfdjHVVshlmcB6momRnUv4x7DbLncypH2t6sEQ4w/7Q\nIfStWMG2p64ts+bu/ffZvvNOO7GKMraKPVjGlrhD6KpefTW+TsqfCd1QIsK0ZWCgljEpiqLYRBdQ\nRVEUl+gCqiiK4hLPOdC+PsdZvAHXWlk1sGCeMXNoyhS2Zf8hEZXOKHfstDSL7XGi5axqCuZdpWC6\nWTXx9NNsN23Ckpu1h3iuy4IF9mINDeV8nZmSkfm7Tz5ANSb661/ZLisDV+PSUscOD7cU65gxTpzR\nlxwGV+1WVhUHNXAiogihfiVrr0yuvNLaOV27ls+p/PVERLG7hXq7ocbUGcaf8ZCGWvBBOV5+/gXJ\nKxZN3AKuqSyQTgsX4suqeuP4wGxXzMtj22KLNL3wghPr2nemg2vBHL4+D7wxGHxSrGszVmNRlp/I\nQ2dk2Im1ttaJ88QoVOOSKdjaB1/A140b55i5a64El1y6MjO1lVNRFMUquoAqiqK4xPMWXlEURekX\nvQNVFEVxiS6giqIoLtEFVFEUxSW6gCqKorhEF1BFURSX6AKqKIrikv8LrSV45/dREWgAAAAASUVO\nRK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  22\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9YV/X5/2/MiKExI5dG5hg5UjJS\nckpkzMiYmmOMTB0ZGRnhj/g6ZmJozJiSmpEyU+PjxccxZWqGzo+ikTEjMmyGjgiNKflxTKERGRIy\nQvj+8f1+zn0/X8l77fDy+l7f67off93nenLe3Jxz3i/Ouc/9w6urq4sURVGUf59e/68dUBRF+f8V\nXUAVRVFcoguooiiKS3QBVRRFcYkuoIqiKC7p7UmMiyPnFf2yZaiFHMh27KKhqaDV1bE9dqyxX0cl\nb4SGen1bR/8VnV5e3aYTtAjb7/RpFP/wB7afeQa1AQPYvnTJmq8REXxcBw5ErX9/tv/2N9QmTmS7\nXz/UEsad5Y3Bg634ek4c04DPP0exrY3tTZtAijyY4dilqz/A/eTFERdn7ZjSuXN8/k+dQu3oUccs\nGYHX6vz5bL/1Fu725ZdsBwfTVTn/3/0uas8+y3bUkz8ArfP0p45tHHKqqmI7J8eerxUV7GvY/uWg\nTSxb7NiPPIL7yVMgfSMimjeP7ehoO75mZLCfZWWolYSnO3bB8CzQ4mNbeWPBAtAKxq7nn4u/sp96\nB6ooiuISL095oLm5vKon1WeiOGsW2ytWgHR2QY5jyxsOIqLdu9letcref8qzZ9nXwbtzQGudleLY\nvkdLQcsqi3Ts9Lv24YdOmcK2xTtQevVVPuiBgaj9QNx1mLeZ8l/3kCGotYj77PXr7fjq58d+yhNH\nRCm7oxw750ICaGW//71jB5zG62vgbeyab1eXtWOaksLnP+dAMGj5S2ocO2Eo3hHnVY127CVL8DN3\n7mQ7IsLetVpdzb6GVO1AUVwP0jciothYtocOxd0+GxHNG8XF9q7V5mY+gcePg1Tdn787Bw/ibin9\n8h274Sd4fTz3HNt5eZaOa16e42dWfSJIffsKv8Lx/Kds4WMsv0JE+HB66ZLegSqKolhFF1BFURSX\n6AKqKIriEo9v4ZNGVfDGA6+AVjCE37TG19eDJt8kS5uIKDz83/TwW3LgANtJM2d2/4MXL8Lm5Mls\ntw99CDTvlSstePZNDo+c69hnzqAWv5HjtVPrMZZ795hCx37qKdzP/0wFXU1qA6NgO2dysWMXUz5o\n0eJ6aDWyDHzffNO+c4RJAZScDFrC5CbeuO0noN1x4AvHNjMiIh4V8ehPPyVbhOxd5dhRBxaCNmIE\n29ltc0Db3offCst4KBERHTpjyz1EXqDDh4M0SKweKYF7QDs3iuOeActTQMsbHii2MCvCNb/9rWOm\n34exWtq2je1Fi0BavZpjoLt24W55S2rFVtAVf63egSqKorhEF1BFURSXeHyEX18e5thzZO4B4SNE\nUT9MxdgtkpMfeAA/85NP2M7IIGtMmMB2a28/0E6eZHvERHxMnxzI9ubN+Jn40GoP+RQxfbohisfP\nodtQkseuvBy1SZ++zxthYWSFDRscM2hBHEiFMzicEDd/MGgdogLANzYaNHgMjDa0HrB6NdtJC/Cx\nMPkM22GvvQZaePh7jt318hH80Kr7bbkHZLbxY7sZ0pLpSe3T14P26ni25aM+EWEMyyI5h0Ide906\n1GqSuZgGYmFEFNC32bEbFmMoasAzU+05+D+8/TbbRu5k7nD+/UkDMdQgQz/TvoMa9R/3L3+t3oEq\niqK4RBdQRVEUl+gCqiiK4hKPpZzU3s4i5IkQUWOjY1a34Sv+kGXxjp0/oQC0hG2TeKOoyFrJWU0N\nl8cFl+WhKJuCXH89ajIFywxIyXSokhJ75XFNTXxczS4tIpemORlTXPzKOXWodgjGD4PuvZk3zp+3\n4mu7aCbifd99oKWM4JJYWWFKRBS8jct+WxdgoNt3k4iHpaRYO6ajR/P5/yAZz3/FCC7t27IF95Mh\n2cSxNaAdbuSSUJulnK2t7KtZ6izLCcNObAVt4pZHHXv/cg9pa2Fh1nwdNox9/eor1OSxjGwsRFHW\nwZrNXWSXHEvXKo0c6fg5ceAxkLZvZ/vQIdwthkTc85prQKu4md+XhIVpKaeiKIpVdAFVFEVxicc0\nJrruOrZlc0QiePTddgAf4TNFF6GE2GbQKA1vr23xiiiUeuwx7MYin9Ljbq0ETXY8auqL6Tj+so2L\nRYLD/R27ZrrxO77+2jHNx801a/ixvaaqHbTS7ecdO5Ls4P273zl2Vh121JknGlUF12OHKxne8V1h\n5KqZLW8sAafK+B3yMd18ZF66VGys2AxahMwpisC/vyf4LuAKo7JRmKrUW3wjw2b8ArTZ13fzg0Tf\nbM9kCVk49v3vfwLa00/f7thLl2Ka27Q/PMwb//wnfqjZeNUC1Vt5XblnJ2p+k/kbEWN0jsutinHs\npClNoIVtFmlaYVeumNI7UEVRFJfoAqooiuISXUAVRVFc4jGNKTWVUxiyZ2DaxJGvuVzw+edxv3ff\nZftS4DAUL19mu6bGXmpQSQn/IZcugXT4Bk5HiBjRCtqBPn0cu/plPBaytLOy0l4aS1ERdXvQZRP6\niC+wQ/7ZO/nvMEtA5YCAxERLvra2sp8XLqAm4pxmzLHhtgjHHvB5Ne63Zg3bubn2ZmJ18jHttdSI\nu4qD2pqMsSzfOk5dqu7ATvYBd7B7/Sx2z6eFCx1f84auAilxnOgAZLQyKzzIJcpGYySI5RYUXJ2U\nK9+ZRgmmuAZm314C0rhx3X/mtHvsz++S5x/i2kSUWcXx2dRATLeSaU0V5fheoaLK27E1jUlRFMUy\nuoAqiqK4xHMlkqIoitItegeqKIriEl1AFUVRXKILqKIoikt0AVUURXGJx1r4ykrOrQptOQxa2DzO\n9ZPjFIiwTDdyJ07kK53C7cwiI+3lq0EeYGwMik8/7Zi9foojPSTmME+5bdNXyFk18iu9Hv6xY69d\neyNo06axPWDnq6Cl/50nfWZl2fE1IoKPadn7+JG9/vu/HTtjE/YQkEMQOzrwM2Vns1697B3TKtF6\nr8zQkkXLwIZZi0H7+GO2o4acBQ0SCvPy7J3/hAQ+/4MGgZROWY49ZAjuJuv4b78dtWkfitaHq1ZZ\n87WwkK+BuEWYJwuzaczxu/IiGD8epKx67lWRnm7nGmhoYD8HfIltCcE3M0lULla33YbatdeynZSk\neaCKoig28ZzGtGcP//fZjHd1MoO/aSMOlaO0NLaNLqwZyZ85dmamxbu60lLH186x2I+o10FuRLzy\nGDYiTtssKqXMW2k5xS011Z6vOTl80I3/ztBVxyjnKFrEXY+MGxcKJdFlKjTUiq+Zmfxf3ew1He0j\nOjCZZTHi4mgah116/Pt18kavXtaOaZ24Ax20dy9oTffwU4fZxGj+/CvbRNiHe8AAi9eqaFSeusgb\npAUL2DYvx+wHuDJtews+SclLxaqveXmOr7kd2OUsaTxXTa18HTuypT0oKhfNuz7ZbNnb246v4vtf\nOwi//y+9xPYjj+BuURdEZZL5XZTX9dmzegeqKIpiE11AFUVRXKILqKIoiks8x0ArKlg8cQKksJd5\nwJXZeSV7tYhzrVuHohiaRlOn2ovV3Hwz+/q974HU9tFH7Nty/HvTh4uhUmbHIelrdLQ9X6ur2Qkf\nH5Ca+3Msye+7xq8UXYVmT/8CpNmz2Q4NtRQD27qV/fz8c5CGbeDsihMvYAw8u4679qROMd5s/+xn\nbB87Zu+YhoY6vmbE4tQBGRI9dgyP22uv3eDYd92FHznmO/bjykRENGwYH9eRI1Hbv5/t06dBOtvC\nkwwGz4zC/WSn9dGj7fkq1oA9dWEgyeNqNsRPPcqDJb3+MBdF4uByV9cQK76GhnK83owdy6/YiBGo\n+R3nWH7MaoydTpjA9pw52o1JURTFKrqAKoqiuMTzUDlB9chHYVv2xZVNgIkI7u1rJ2MifdAIbgpL\nU40GrT3hyBG2jWFwPmJw+ZNPGvu9Z2R6C3LPcMpTUo+c84ARGvFbOdOxG+ox3DBgJTcD/kUsfkzo\nuyKxPtR8ZHLJgw+yLROjieinP2W7eQKex3vFn1RUhUn2E44fd2yr/72n8JS7zF34WDx2JQ8cGz78\nBtACFvCjZkJZAWhfzQx1bOOBuWeIQeUVHaEghW3h8Jd/fzxCMq3queewgXHCgUzeGD3agpP/h8re\n/NhuPhrHimvQmNVGh8L5WBrRn2/MZrfBRx/xMMbox/Gao9dec8zOvpiOmXmIH9snT8bdks6ki60s\nuhJ6B6ooiuISXUAVRVFcoguooiiKSzzHQMU7/5AqTA2hi39zzPwzWFYWuomDJUHzjRjjyZP/povf\nEtEwgmbMQO3TTx1zwC/jURN/Y8X4hSBtE2V1STaDoDJd6sMPURPx2wE3GEOuZmQ7dn/MfiL64Q9t\necfI0rYDB0BaNU+UaPpgfPTjj7k8MXGF0YDid7+z5h4gAmsLHzwG0qrh53hDBu+JIG0o/zkc8EYX\nZDcPLEntEaION2z/VpCSNvK7hsBA3K1iM38H15dh7BTKIzOMoXo9QJYIlxoZie1D2QczjWn3brbN\nr3zUwyIjyNJEjK6Vrzh2Y1o9aH4idW7KT/H3ydclck4iERHNMF40XAG9A1UURXGJLqCKoigu8ViJ\nVFvL2f1BC/ARpnQ+dzGJ7I29Qr3u5c/86U/vBW1Pm+iGVFxsrWJCdg6SPSeJsJOQyKIhIqLcFU2O\nXV3vDxqOMLfY4aa2lg+QrHYiIqqqcsy8KkxHSRzKx3n98QjQ5nRwn1VKSbHia3s7H1Pvbfkoyme2\nf/wDpE6RD9LLbH8jn0st9q2kH/yAj+lzz6EmS0rMi0M8Tp8ymmyee4c/0mY/WC+vNueD33sPYzER\nB8Tj91tv4Y7y4jW6nNGWLWwnJFjzNT2dr4Gs8D2gnROPxgETJ+KO94rvvXkNzJrFdmmpFV9nz2Y/\nzbSpHZtbeaOlBbSFq29ybLNTV1aZqEzqxk+9A1UURXGJLqCKoigu0QVUURTFJR7TmGQj6Xyjq9KP\nb/mLY995J8bjbhDVcvdiCJTovqV0NZCdYYxKTppziksgMwdlo1jGE3S2lGOZV+5G0VXK5v8aMaOl\n+owvSCGbNjl2+HyMgeaW8XGeMwjjUUSB1tz7H2RMKOFgAmj5Qz/gDZlCRkS9ZDesxx/HD33zTVvu\nISKNq3Y85pwFHeV4fc1wjOUHE8/PGfLOO6D5GjOJbNEVfj9v7L4PtNalnErl+/vfg9bccMmxT/wZ\nP3Pmi3x+TuCp6hGZL4rQn5FyFyDi962yixQR+YpY99QlmMq2w4z7W2DjRo4Jd+09hOLR69k2cpVW\n1Yt8K6NVU9Nu7tSEb0cYvQNVFEVxiS6giqIoLvHcUFlRFEXpFr0DVRRFcYkuoIqiKC7RBVRRFMUl\nuoAqiqK4xGMe6OHDXF8aUYatviJ2c+s3o9OZTK38Rn2prEv387NXX5yayr5mUyqKsv5ZtmgjwjZg\nZ86gdvQo2zfdZM3XiRPZ1/37OlHcvNkxq8MTQfK/g10YaBT81l7gTLWgIEvHtb2d3zDK/mQGjdOm\nwXb/y5d5w5zfIGvoAwKsHdP16/mYztmG0xXb333Xsc0BLr4itzH3KE6d3LWL7f37LfZCiI93fJ3a\ngWNEdkzIc+ymWDz/8ntmfueWLGE7ONiir4WFfA0kJ4OUPuszx87ab0wXfeEFxwxbivnV8itn61pt\nbeXz77sLWwTGvcEtAgsfeBU0WTg/tQrbAM6fz3ZEhE7lVBRFsYrnNKakJBblPG8iKr2emyjLu0oi\nIu8x4r+ROfdadsaxOBc+L4//AyWOqACt2ofvLIYY1SXeQ8QAKvNuSW4nJtr7r37unOPr7N8EgLTh\ne+K/oOgURETQuanYB/+ryxvrXr0s3YHI+fWiSxQRUdw2HiSXloa7jflerWN73YZD3L78krdtPoE0\nNfH596+vRtHH7D7N5B4Mcmx5Z0REVLyEK1EoMtKaryUl7Ku8cyQiqhe9gK+7DrUTS/jOyhzyGLJZ\nNAO32OUK7ux/Owy0xHt4emDeRmz+HRbOTbXNoZMlDyznjcWLrfian89+Pv44lmldvvwjxy4vx/0i\nhnI3ts5+WG8kC+wyMvQOVFEUxSq6gCqKorhEF1BFURSXeI6B3nOPI9b87n2Qgk9yN6A9hPG4mM2i\n443RGil3LHc2T0qy+LZw9Gj+Qy5eBOnsmxyrMTs1+Y8Tw7nkazcieCNuq3M2ERHFxDi+Fs/Drkoy\nRhtUhl3gEw9xm528ETmgQQZBdrYdX0tKHD9rA6NAkk3o//hH3E02vMm9C996Jn4417Hz8uyd/+Zm\njoHNm4eaPK1mPC5ooOhWbsR5IXYaGmrN14UL2ddVK4wsDDEQsXkjvqH3+704lvfcA1pOGcf5U1Is\nfq+Kix1fG+6KBqnPQP41fU+fxv3EG/vQ+mKQKjeLdxRhYVZ8LS3lY2q+ypBxZvMdyMaNbEcPNAZn\niq5p3WWM6B2ooiiKS3QBVRRFcYnHR3iZGmI+3dbVsS2bGZv4lpfAdvVAfhQMCbH4qLFjB/8hZm6I\naFKceQiTrDPGCv+MtKHDjdwItrtEWleIR3gYsEVE1NbGtlmF0CHSwI3hWPAs8sEH1lNDzB640Sc5\nhJBDKaCldHDT6qaZWNTw9ddsDxhg8ZgmJjq+Fk7OAyluHKeqVJzBVJXAu9mFfpfxu1B7DWtDurrs\n+ZqR4fyiwxMyQYogMaDx4EHQcgdyilsS5eJn/vrXbJ8/b83XPXu6H9YoaytKffDxfmo/fmzfMQqL\ncOKPc8pVQYGda6CggP00s/8id4tr8O67URzGqVmJ67CQQqZndhdu1DtQRVEUl+gCqiiK4hJdQBVF\nUVziOY2ptpZFM+YmuxnIuB0RBEjT+2OsRqYYHD58ddItvhEDveYa/p0vYzpWxHRRymnWeS1YwHZB\ngTVf29s5XuO9BeN1bU8+6djZy/HcpN+1jzfM4WyrV7Pt7W3H19BQx4HSdZjiEXmRfUl9+yHQsldw\nWV9AoDdo8vzbbHpRU8PHNLi+FEVxrZZOyAIpcrzwT55vIgz8W2wmQzff7Pia+ovzIGU/wMd1/X/j\ncZ0znP+uyn4Yy5dxP39/i9+rwYP5IpRpfUQUtoDfZ1TMMIY1Dh/umLlnMD6aNFaU2oaEWPG1qIjP\n/69+hdqJp9i3w+EYk5f9glLCPwAN3kF0k26ld6CKoigu0QVUURTFJZ4f4VetYlHmnxBR0cjFjj1p\nI1YiQc7L5Mkg5TXyzyYm2nvUaGjgW/gBz0wFrX3LDsc2H5nXt3HPxTl16fihUFKTa81X2Wd11L34\nsd7PP88bFy7gjuJRNDu5BqTU10Vlyvvv2/FVdI0ye6VO/A3PqN//stH9SJb7mKU/MufNYjcuyslx\nfG2agWlV/ms4/ad9CaYNeS/gn42qwuquLVvYDgiwd61Cn90ODDfUDORHczOLLWi/qER66ikUx45l\n21IaGxFRh5eX42vvJ55AUZZ8vY+hMbh2r70WNdkweM8eO75u3er4OWwZdqo68SqnKjaPwoo6mY4Z\nUocVUyT73H7xhT7CK4qi2EQXUEVRFJfoAqooiuISzzHQ/HxH3H5dAkjTGjhelFSFMafcJWd5Q7bY\nJiJ6/HG2T5ywFwPLzHR89VuNs02mT+/eHbmd/2d0R4agrJbyibgSBNqIiN57j22jdVTjSy85duFr\neN6S+hfyRlycHV+9vfn8/x47jt98M9uR4ajRihVsm6WqMjZmKYWFCGfi/Pa3qH35JdtZI3agKMsl\nZTksEVGfPmxfumTv/Pv58cmT6WdElNc7ybE7jAFOo0axbZbWBuwS8dG5c+35KqdSLF2Kmmzhb84a\nk7Fuw9nOGbyWWJueIGKgR4ZgDFR2CzPjyjNnsm2G6/0f+tfvFfQOVFEUxSW6gCqKorjE8yO8oiiK\n0i16B6ooiuISXUAVRVFcoguooiiKS3QBVRRFcUlvj6oYk7G+EevL53xftFZraMD9ZH6YTLQiwnwx\nf397+Wp5efw2zJyuKGYRHFmMUzBljqDp6s9+xvaGDfZqoeWoFDG8kIgwh/GZZ1CbMIFtc/Kg9D0q\nyo6vo0eznx/MMkZIyPzJwECQSifzCAfzVMwZIUZWRETYO/8pKXz+t20DqXDjZ45tuAr+rVuH2mGR\nF9zbZh6wyFmGJGUi8rqd2yt2/RPvbyb+jFvv7f8R5jon1nGNv81pp1RRwaNSzuDIi7ihogeCcSEn\nBHKNf/5mY/KoGLFDSUl2fF24sNtjSmvWOObKO3DS7cSJbIcexT4ZsFYNHqx5oIqiKDbxnMZUWuqI\ney5gA1fZxSQ2FneTTUpjhteCFp0c5NjFxfb+U3p5nRd3dTeDtuGH3FB1YT02VJXFFeYdqOzLHBpq\nz1d5Z2c0q4I7oh3zjMbAomopLxzvCI8fZzsnx46v1dXs5403ovbJJ93vJ+/kdiwwmtTK0q+YGGvH\nNDKy+wF4OybwnUVTbCJo8mbFKAqi0HJxjG3dKRHOhX/ppU9BW7HiB479z3/iftI/ozkWLVrEdm6u\nxTvQfft4gZAlPUTk9R/cke2FF74PWsZwURlnXOTnrrvOsQNs3dm3tzt+lpRhE29Z/BZ3/lXQKu6Z\n69hhZdiNa/BqrrA8e1aHyimKolhFF1BFURSX6AKqKIriEo8x0CNHOFZjNpUOC2zijRkzUBRtYxa2\nYQdwGTstKLAXq8nOZl9TYzHuCq9eZZcYIqodzh3yg8jY7+672e6mI7Urmpr4oN97L0jNR044tt8K\no0O+/DtkoJmIaNkytm0NQNuzx/GzeghOHZAvukWTKCIiuvS2eNMuhuQREVW/wX9fSIjNGPh2x9db\nb50Gmoxtm1kBhbH8VrZVdgojIl/ZGctmxoA4rqX98LjKDkxR4a2gnW30dezB724FbWUddyBKS7MY\nA01N7bZzWGc9Zzf02ovZLamH+O965ZVToHX9nf8OCgiw42tNDftptlwSwwI7du0Cqbc4xxU+EaDJ\nZKKsLI2BKoqiWEUXUEVRFJd4TKSXTzCp08+Blr05gDWzmaqYr77M6BcsH+FtAmPrZUNfIqLXX3fM\nkje+ACnqBBcEBP8S53D73Mo/i1PRe0bmOn/HTj55ErR+PmLDmFNfPI5nmpfVJYGWOfwm3vjsM7JB\n2FJ+DKsox6bJmYv4WbO83Be0pqH8KOR///2gXbxoxbVv0PXmDbzxE3zaOpfMT3cBaxbijgc5rcrX\nzM0y86Es0Tqej2vkjd9BcR9fj9kbcQBaWxvb6ROGgZb2jrwejKKHniAGK678FV5XaXeP5I3XXgMt\nex6Hw7IvZIFWc8t/OnawrW5wYlBdwiFMVVu0jFOqQh7ANKasQ3ytyuNLRJTxoriOsq7sp96BKoqi\nuEQXUEVRFJfoAqooiuISj2lMDQ2cGvTmm6jJ8qiUKozHyeFcRQdwjfYRMT5bTS+ICFKD1m/zB2n4\ncLYj24pxP9kUo39/1ObNY9vX156vouyMDhwAqWYox8eCB2EaC02Z4phNW4pA8r9FxNIsDUCbOpXP\n/46BODiweDKXvUX3M8o1ZX3s+fMg7XnhmGPHxFg8/1Ondn8hy1JCI+Y8+wuOz61di7t5LxMNOzIz\nr8q1WlmH12roAW7E0jQL47Vy6Fmv3YWg1QyPc+zgYIvHdc4cx9eKWetBChvEMdGg8JtAk4fcbNLy\n9NNsW2vS09rq+OnVpwWkri950Ulf4Qfaiy/+t2Nv3YrlqPErQnmjslLTmBRFUWyiC6iiKIpLPKYx\nDfgLP+4m9DPe8S/j7H5zoHKnWJeN0ebwOG2ThPn8KJQ/bR+KqznFImMEVkxs2hLt2OfmrwItfyen\n5yQkkD1kFdE0rJoJFi2gMi8vBi1D5ID5x2J3rJgHLzk2/oXuEZkhRItvB224TBUy0n0mjuDH9s+N\nCrbNQyw5ZxIe7pitydhxSxameG/GFJ8NQ7kSqakFT7K/kUZmi9RlfK1m7w1GUfTV9N+cjZpoe5Z+\nNA6krHCZZhhAtmjZsMGxV1/AR/iZM/mxvXYjhsaaw/l7lbO0CbS4WRi2sIL4TnW93QGS13dPiy3s\n1PTss1x9FvAoPqW3fsVRIUzUY/QOVFEUxSW6gCqKorhEF1BFURSXeJ6JJFJsal95BSSZ8ON3332g\n9WppduzITfNAo7feYttIcekJ//iH2PjwQxRFN5bf/PgjkCZMuJM3xo0DrX8jXRWOXMPlY1ufugRa\nzmNnHTvD6LhTs5MLSoNfXw7a12VknXN7Kxy7c8Rc0Pxkitdjj4F2szhun3+OnxmyS/gdgjHentA8\ni+Oe5caxiJ7CqSuJU5pBk+HbrFjUoB2PRWB80BnjpYCsSZZt5omoYCfH77IWGb6OGsd2TU3PHBR4\n/5PjgAV7MXUqr06kTq2IBk1Oc0g4vgy0Xbtk+65reu4kEeRKRdbvAOmZZ7gk9pZbcLePP2Z73J13\nojgrnu2Cgiv+Wr0DVRRFcYkuoIqiKC7xPFROURRF6Ra9A1UURXGJLqCKoigu0QVUURTFJZ7TmGpr\nOUB6/DhI58I5hcHs5Cy7zstmR0REmeNKeCMqyuJQsTbH165lL4N27glOlwm4UI07jhjB9o03gtR6\nmtOsfH3tdbgpLOQuRxMmoOY7Q5ToSd+IiK4RKR9//ztIJVO4zM5Wl6t6Ly/HT6NPFTV/zpfGPCNT\nrSCW00jaY6eC5n1AFJrGxNjrGlRZyQ795CcgJTzI57EFG/VQ4TpRAmmKohu71aFyMTHdfq9IlE7S\n6dMgZTRyRyyjqRQ09WputnetnhLXwI7l+L4kPZlLNM+1YXmmPHR33fUVaG+/3cexbV2rRUX8nZq0\n2+gOt3q1YzZcwm5MAy7jpA1AHuRu1iq9A1UURXGJLqCKoigu8fwIv38/20ZH5QDx7Fl0CHuVyAIK\nM/Of6sSUuagoskXXZdFlZQ0O6go4Vdrtfl5fc0XHc0/4gPZiHx4q19V1A9lCPt74Np4FrWIJV3uE\nzceOS+lj+e+oN8ImP/kHWWfgs8/yxvex2ax/HVdFFfwJH5kp8Am2jUf4q9aOS7b9+vnPQcrvl+7Y\nnctwwFlzC3cuKjOepvv25U6ZRTfZAAAcqklEQVRJeCZ6iOheVrEbz78Mf8Ucx+FomSvEULdt2/Az\nl8rBjiE99dBBtkk2w02lVfzYHnkRO6AFiO7Ub7yBnZqiWmS/sBiywaRY/v63t+AARNnf25x/+fw2\nPv+5Q7AbW8Rubmh9+PCVf6/egSqKorhEF1BFURSX6AKqKIriEs8x0AcfdMysL7EbzxIRcpIxBiKi\nzZvZDjuKHcBpyd5/w71vz8SH+H/B/temgJa9c7BjBwbifl3bOeVm4n9ivO7WW+3FPbtj9ouDYXvi\nRLbDjG71WSM5EHMuMAK0GTPYNnZzjxhiV913NEghazhVpPY97KoVtP9Vx/Zuw65BqeuCHDvbaLje\nI0Qu3ZHH13f7Y2MmT4Lt3dN5OF/CjE784WWii1BkBllj0ybHDBuP0dWvXxLx+t7G11OkWSUcxSF/\n+bEYS7XF2Ds5dakyEDvLe934pWM/9thDoM18i6fKxZ3BrvuFK7hbFPbVd0/N11879rFd3f9c1HG8\n6Po8yV28jhAO8Quv/9e/V+9AFUVRXKILqKIoiks8d2P67DNH7BgwAKTeP/yhY1fvxgau9eLWN/AB\nI4H/NP++oCB7FRPR0VyJUDwPx6oVtHCqRHxfY+TaxYuOee7+R0EaNYrtc+fs+Vpdzb7KxrNEREOH\nsm32860p50corxvxvD33HFdRZWXZ8bW2lv0MaqkErX0oz8z+4guQ6MwZtseEG67IDsbnz1s7pgUF\n7KtZwBUyQqS4mWVTHTyALKoqB6SS6SL8lJRkrxJpuSjpeeIJkDI3cVrN9Om4myio+cbfOEQM64uO\ntnetzp7Nx3XD28YAvL0cjiusQi38YXah/kO8VsPaRE6QpQqvykr2M/QkNlSWF+TsT/ExfcP1Ynvs\nWNzvb39je+5crURSFEWxiS6giqIoLtEFVFEUxSUe05g6+3MhV2+j+0+jqNEMGXcTaCEzZzr2kXKM\nf1xvlCDaQobWIlZgedjhrnscu2H3+6B98gnbdYfwM8WcKquE9OaYceEm7HPU6sPlcbKsj4hoajJr\n0m8iouDN6WILyxXdErQ0gTcmTwat8a67HPvMe3iOI/qJjlfmoK5Dh6z4ZhLfkc8b/bBeL34Kl/b1\nNgYFihAolSzDer2sQ5yqlU72aJjF3cHMbkCy1NDsZGbGyyWD54uEoOjC7n/w3+RHPxIb9+NwOBo0\nyDHjCN+DnBF22AhMD8vbzCl4iZiN55rQdXyuSmdg6mTkX3mQoXh1Q0RENZO5fNPsKtcoUjW7KzrX\nO1BFURSX6AKqKIriEo9pTLKh7u9W4M/JihlZeUSET3t9+qAWHs6VKV1dftbSLTo7OY0hPBy1X/2K\n7WlvG81WP+I58SXL8fEe0lpSUuylsWzd6via909MnaqqYttsuHP+vOgO9cd3URTpWPToo1Z8PXKE\njyk8yhFRrzO1jl10Mgi0SXvn8IaRNpS+hTsF2Uq3IiKi3Fy+QM3Yh8yrMsvmRGlaySG8n4jqEF2E\noqPt+ZqR4fh65KFMkMZc5jBCYT0+38aK1KBezz+Pn9lfhIJsXqtRUY6vo1tKQJJhM7NT0913sz3m\nDUwdgu7PlZV2fH31VcfPcz/HqskA4jCJd2AAaLLhd+c2TH+S6ZgBAVe+VvUOVFEUxSW6gCqKorhE\nF1BFURSXeExjGijKzNLu/wDFoVxL1ru3N0hRQ0RnmI0bjU+VXVvu/VZOfhtkmMv8lXJW2PYHMMVh\nmg93tRk3Dvcr7mAtuof+SRLe5LinmdUzV4Rvzh3FFJfDZzh+c9jo5L1UpFwVY1jVNWPGcWf/diPH\nw1uU8U16cBBo2y9yN6RrjeFnWTNluotRGtgTxACw9UOw486cGfw7E5ZivDZ/IMfnosw8oVncNYmi\nLV4Boiz6u0apa0M9h3LjtszpVjtyBD8yZiimEVlD1Ol+0DYMJK8/c21pSwt2Y5qzkUt9Vz6KZcBp\nH71k00MiIqq+n784HUaqWsBYro9un5+M4iAu3+y14VWQAq6/njcSEuhK6B2ooiiKS3QBVRRFcYnn\nbkyKoihKt+gdqKIoikt0AVUURXGJLqCKoigu8TxULi/PCZDG7U0ESczFIv/6atBkHlF6X+zynTVe\nlINFRdkrOTt7loO5slSMiFJPcvlmdl8cDtYwl0vp3n4bP/JdUS25YYO9ssPWVi6RLCtDTaZjJU3A\nQWEN1/EAugHXt4KWvdHXsVNTLfk6erTjZ8uf/wySaGJEfpcxjr5lC9sJ44xhZ6KDD/XqZe/8p6ez\nE2Yrf1kTKw8wEZRAFrXggLdJ5eJaycy052tKCvtq1kGXl1N3WkI9dw7K9zFKkpNFek5Y2FXpSL9y\nZfc/57cJU8cSq3hYW94MLAHd/g/ubTRtmp1rdepU9nPHlnYUFyxwzIU+uB6tmsXpX/nlmFaX0Pav\nJxLoHaiiKIpLPL+Fz89nUQ7rISI6ftwx5R0eEVG2D3dPbPhf2Jvy2mvZ9ve3d1cXGcn/gWSPRyKc\nJSP/wRMRpfbL441kI8lWZuB7e1+VBg00fDhqcrhNbCxImZv5DjTjIN4tHV7B43AjIiwd19RU9lPO\nTSaCu6P8UfhfXd5kykNIRBTzEfdmpMWL7R3TykrH1+gFoSDNn8+2OdY6pIobSJwNx7HWgxfF80ZB\ngT1f29sdX5tasAjFfy/3NU0/icnb8jpuP1kLGnTzqKmx5+vUqXwNGDODvP7XY46dnIwjwG+9lW05\nW4wIHwjy8uxcq7KZ0IUL3f8+8+smr89JLdhMJGwFXw8VFdpMRFEUxSq6gCqKorhEF1BFURSXeI6B\niia1s49hnFP2czVjDrNmsS3fyBJh31c/P3sx0OJijoFEP34zio884piF4zBeF1fOzSQqpq8C7e67\nzzt2V9fN1nxNSWFfv/4atQ2DRIxQBoyJqD0tzbE7vsLz5ntBNB4JCLDja1MT/5J+/UAKHsr/e2u2\nYKOZzAOjHTtjipGh0VcMmhk82F6sTsTrs+owdpi+lOOMncYB7yWCohmPfQraQ6I/xpgx9q7V9ev5\n/MumvUREv/nNZcd+771rQDt6lG1zhHlYMh9z+uCDqzPD/nvfA2niLl4T9j9XChpcL2YgXAbJLV0D\nNTV8TIOPG3PhZZcgHx/U5EE1A+TSz27egegdqKIoikt0AVUURXGJx0T6lV/wLfqGRzAZduXvORn2\n8mXqlv44tZf8pk/ijaKib+HityN6oOg5aPR1bBZzeWLX4CM8neHBLsZTKn35pREKsIR8itzwldFn\n8BH2/VxfTOzd1pvDDbHGo1/Qow/zxvs428k1Yn5Q7nA8bjWbxCPbxs2gxc4Xj5NGDCeqnNPaSvCS\n6hHRW/g4vvUWzkSa9yUnVu/ejfslDOS5R5lVmAxOBy+xPWYx2WLu3GaxhX1W6+t5RHhDA+6XMouL\nJ2rrfVE0YwGWiHqb/+6S+XtAkyOCq/tjWl2/O/iJN+Cdd0DL2c3peCkpZIXgA3x9Ru3GDz3/a7ZP\nfIwjlmF2dCM2Em1ezYn0fpht5qB3oIqiKC7RBVRRFMUluoAqiqK4xGMMNO1InGOvpELUPud4XPVM\nTP9JH8vxsXNGg4by+Rz3tDlnSDYQiT+Oc6gLHhExmAtNuJ9IcTCzLYIGyaYE3QRBXCDL3KgtEEWR\nZmH2vZBjiYLe34rie+/ZcA2onc9xpSlGfJjWiNjR5MkghfYVZYai5JeIqGSsbOaCM9F7QvF0LslN\nCsTGNzKLpWIbzg6KX8pXYUHZLNCOvM6NUMZY8PF/ePBBP8cuXmDUFp/mNK8BMj5HBGk2QWZptaxX\ntIhMl1pfh3O4cvqL83cSaySrhF3eiGtAymRZhoozqtyyvjfHPUu2fQZaRR3Hlc3uPbO/4Jj8hpPo\np19fGS+98r2m3oEqiqK4RBdQRVEUl3iuRBL9IEmkAhER5ROnjdRh1gilH+VH/+pl+Ogf0l/cXt90\nk7WKCX9/rkQQ7f+ICLvBRI/A2/sjn/Lt/ZhnRoMGeU3FxfaqOwoLuWpiURxI8jCntGFoJGwbhybM\nCbwyPSc/307VTFYWH9P0WKwoOnXHHY495L77QMsYxyGczJlG1yBZtmaxbyWNHMnX6o9+hNqKFWxX\nVYFUM5Af24LfwrG20PT22DFrvtbW8nENOpQHWmYdhx++UcU1fbpjNh3CUcGydai1frBEUI0WGesP\nkmwWljoZQyOhUzgFr/KQETaTaXYPPWTH18OH+fzL6iIirCh6CUcq5z7BviSNx2s1dR2HF7KztRuT\noiiKVXQBVRRFcYkuoIqiKC7xPBNJBtaMtImEeSfFp+DHpAziuGdOX2MmziGRtjEVO4D3BOjsfWYm\niv/1Edu/+AVIH4r0hzFGOs432kzZQsTh1q3DGKgsSc3YielYFYtEl5knnwYNP+WLnnpIRETpySJ2\ndRxLBfe8zCEn2QydiChzl+goVYfx0W+0J7dE1iPHHDv9uxjL7LjxRsc2CvkoWNYjTpmC4mOP0dUg\nqI5jxLVPPglaxocjHDt1Uxho45bxtRFThzHQv/4Vu/BbQ7wHMIcSxD8twoK914IWGyvKkBctwh1/\n/GNb3jF/+hPbxnecTpxwzOIXsMw5qY5j0J1G+tu3uVT1DlRRFMUluoAqiqK4xHMak6IoitItegeq\nKIriEl1AFUVRXKILqKIoikt0AVUURXGJ5zxQMZXTbJfVfoDnMXjPw4mdRbHcCt+sk0+qFy2wMjKu\nyqTDU6dQmzaN7ZuNKR2Dh3NrsdaLF0Fb8kv+87urhXVDayv7OnAgao8+yvaG5UYN8R/+wLbRvq5k\nVoFjR0XZ8fXwYfazowO1H/+Yx1J0fWnsKH44agrWT5e0XKXpkc3Njq/Zm/xASu0QPQXacISGJHRn\nBmzLdoLNzfbOf2goH9fK1cWgxW3k9npmxzqZTulXj7XnkFt5/ry945qa6viaE4gjT4YMYXtSG/a8\nWPlXzkxOW4NfurzlPO02MdHOcc3J4WOa0jev259rnoK5nn5jRf6smdAsa+pLSrQWXlEUxSae05ji\n4hzR7KokZ1jJ/0RE2BkmY2AuaJ2z+G61Vy97/9WLivg/0KRBWKWRvo3/y2SF42AsGj+e7ZMnQTrc\nxpUgEREWO9xs3coH/eOPURMNldf3xzui//ovtvePXQ5aSgMP/8rJseTrvn2On0VeD4EkD9Vf/4q7\nPfUU22G78W9IbeEnEJt39dTe7vhaUobNr2VBWdw4465e3lq//jpqb7zBdjd3IG4YNoyv1ZdfRk0+\nsSUNPwxadnmEYxvFf5RSn84bWVn2jmtwMF+r5tTFX/O0tpQ38fqQN2+HV+Pf0TSU/w5/f0vXgOhw\nZh6c+G3cCHrjRtxNNurKSsaqyfaBPPzO21u7MSmKolhFF1BFURSX6AKqKIriEo9v4WtXc9wz5F58\nk+bzHr9JM4efZUz4wLHbR+Abeu9+4g1pczPZYtIxERMc/yxow+W8K9mdmogOH/d17JYW7H4THm7N\nPUR0cM/96lGQkqq4O9RH50Gi/a9xjGbP8cWg5bw2WGwYHbBcUnEzx7XOGLPPUvuK2PbkW1AcOJJt\n4613//5WXPsG23dx3HPam/imFQKLozaBFDWTj1vJoCO43yb8WVu8KppFmR1/5HcpbGYEaI2NV/45\nIqKJD/FwtP09cw8R35es8SUgTRbDEXMWnQMtfV0AbxjD8SAvIwL/Rrd0xvJb/14d7aAVnOQsjDyj\nw1nWn+5huy92apLDCwoK6IroHaiiKIpLdAFVFEVxicc0pkYvL0fsb6bbiGexhatvAmlVOD/6p5Zh\nq99ly9j29bWYxpKezn+IGHhGRETr1rH9xz+iJptGGwPHVt7Cc9HT0uz52tTEaSwyjYKIaOlSto28\nfsh4ihqIA8c6xd/cq6vLiq/x8exnwWZ8LGrt4Edm31OYNiafNY/0iQJpzCf5vJGQYO2YZmayrzKE\nRERUN4anuue9gNe7GLX+jQIMOZzQz8/itSpTg2QaHRGEG/bMwpS7mAt87CI2JoB26BDb3aXcuEKk\nByXuxe9y3gJxDdZjw22Zjkfz54MUP4TPT0GBJV9zcrodgEkzZzpmkk8+SLKHtln0M24c20FBmsak\nKIpiFV1AFUVRXKILqKIoiks8pjGVvsFhhb5GfCB6WbxjH2/Ed/zVMzlWsm467ifCUdDko6cUjeU0\njrIy1LIucOB19q8xXrt2LadZeU/HGE/adFmCZifdgojIfwWnUvTtuwo0GcuSMRgiLJmNmRcC2sCn\n+Fxh8ax7ZCip+hSWR4aUid8i411ERLGxjjnGbHphdk+xxAiexUYVvUeDdks9H5u653G/jP2cxlL5\nGqaxyP45SZiN1yNy5vExSWnEUtezi9Y79pjrcL+In3Pc04ydex8Q8dKYGLJFzXD+TrRsM0RZMrlm\nDWoi/anuz38GyWc42UcMhMxagfeFsYs47pl7CuPKSTv5WOX2TQWtwIebpwQFXfnX6h2ooiiKS3QB\nVRRFcYnHR/jjx9nO7Ie9AGNa+LHdHJ8esporQdpjW1C8VaY02HssnvTwdxz74uZLKF643zEDv4+S\nd7KoWjF6nkKKk0WaFvFj+8FY1DIWtDr2noO+oMX4cO/IPR/hXHiaKdv6YCjCLREj2JfSo+gLtYjz\nKtJEiIiKD/Hjvo8P9ua8/S6eFz6g5y46xLzIj+Jnt+Oj+ACvzxw7d53RUaiROy6tNsaX50/bJ7aw\n21BPSHnlB7zx9tug9e3Ltv/qdNCGDuUwlVklVyAeRePJHsFL+dNmzDDKcWQcwajaip/PobIC2gBa\n3gNbxRZW4rlGpCCmLwpETXyPs07idyO3n6hMOo5pjO+KZSS+m4Oqd6CKoigu0QVUURTFJbqAKoqi\nuMRzR/rMTEdsmofpFv5buMwR2x0R0YkTjll9/1yQQv4kWtHMnWut5Kyykkv5Qh8fCVrp2mOOHdmG\nM2iSdvIMGlnWR0SUXiUCHwUFV2V+05zxmObjdTt3B3rnHUwPkjFpcwqAbKweE2OnPE76aTTUocJl\nXMa35xSmVMmJBIVrsDNUwhL++/Lz7ZUcdnayr+3X4MfKKHz/5408JjFoyKsPloB2zd7BG+vXW/M1\nP599NbtTTeoScdcbbgDt7CB+ZzD4FHZGan/gAcf2tlTKS0REMTHdlp2uvMSdw9LewNQxSGsyhzvJ\neOnChVZ8ranhYxo80OjyJuo1azfi91++5jAGUlDuAvHdDA7WUk5FURSb6AKqKIriEs+P8IqiKEq3\n6B2ooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUlHmvhqbOT3zAZ4y5kX7qSfVh7HnUmz7HPjscJiYPX\nidrTVavs5auJlv6hm1JAEp2u6MUXK4wdPxI25jOuXfsjx05JsTgmYd8+x9ec01hjnTKjiTfuvRf3\n+4GooZazCIgw1y4iwo6vW7fy+X/jDdR27nTMtmuuAan6Q94tbAu2CGtdxj0VbI50KS3lPEA5ioOI\n6IONfM6zDuDk1dtuY9uc9iKxNnqCCEZ61B7APOCNG9mWLfqIiOJ3ijpuIxH4yMPcX2HMGIu+5ueL\nnpZ9UTvPY2Mn7sV871/+ku3oUU2g1V7guZzdjcr4dykq4vNvjuZI+oeY2Hv5MmjpbZzfbk4dhWM8\neLDmgSqKotjEcxpTdTWL8l8j4cC12bNxty1b2J7T9SqK+0SlRVGRtf+UK1fyf6C0R2pRFL4Xj1/V\nnUSFT+4DDe668vLs/VcfOdLxtXjlMZCOic207+WBVjGC7+bDynJAI3kXaKvCKzvb8bM1Ge8kZbWR\nWYgWuZOfANL7op+yn7LVu/riYr5WzQFn0tmHHwap9Qm+czKHyoU2ijuSqCh7vorjGrETj6t8WhI3\n+UREtGSJ+LmH0R3vtWt5IyXFnq+ffcbHVXb7JgIHS+ftAClyqRgmKCdJEhHNFXerx45Z8bW4mL//\n0Yewi9XsL7iL1SOP4H5R/XkgYvq2UNDkn3v4sA6VUxRFsYouoIqiKC7RBVRRFMUlnt/C79rFdiy2\nTk8TsYOaeowdyK5BKT74dm7KIt6O/LZefgvSZosOLL/9A2jyDWX0y1NBG7tFxG7KrsUPlS2OLJL5\ncw50zjC6KpWXs53TghkMvYVW3hszDeRL+CiyhGgV5BuO53iOjCtOmID7iW47WbNwiB8dOCA28I14\nT5j4CnfV2j8SY2Drp3As8+hR3C9vJA8OPFiOExJCLxzijShrR5VoOk9anGm82JYNj5KTUZMvwb1/\n+EMUZbusFLw2eoS8IM3Mj1//+oq/nogoUk4s+NOfUHzVeC9iAYh7GjHwDcmiy5bZcsmHv4BtbSiZ\nMegroXegiqIoLtEFVFEUxSUe05iqqzk1IKQcU2oK+/HjZdw4TJT1H8KJsubAuc4WHlRGvr720i3i\n4/kPMeaUx7ex7wUrsMGvfE7KGFUEUmbjHN6w2FA3MZGPq0xNISKaL2bu7dnZjqJ8bL7lFpDyGjgh\nPzHRTnqQl9fXjp8//zmGNwoniLnwMveGCAbaN7yLieIyWT0pyV4aEzTUHmoct717HTNmMw4VmzWL\n7TNncDcZFomOtuerbFR9992ojfmLOK4y54uIvH7GExE///wu0P7jP9hOS7s6BQqjRqHm28bf++zN\n/qDJRtHTH0d3ljzLX9VVq+z4GhrKfvYz5gaWDhRhOzGvnojo3AIu7Ag4ZqQx3sODCsnfX9OYFEVR\nbKILqKIoikt0AVUURXGJxzSmkCpO8SnwwZSa+DIuQTtySzZoTVXnHHv7uwGg1fTp49jBNrvhy4DV\nvHkg3SXiQw3XDQbtq3Uc98w8iuVo6xvXO/Ycskfeao4d5e/F2NGeWXsc+8ixGND+3j/JseOGYblq\n/V8sOvh/WbuW454pyRhXjJ/JvhScxHJEEud4wFpMKYp88UXeSLJ3/iHjbMUKFEWN5p7+e1G7hks7\n25OxsYvZP8cWczq4vLXiWiPlSObObNsG0uef87ViZhSZw+lsEblXNP8ZgQH7zhtvdOzU557DHXtz\n/Db9OTzP48dZc89BHrbgQa0ozhdBUSPlLmCXSKl64QXQaso+48/Er6mD3oEqiqK4RBdQRVEUl3hM\nY8rI4NSAzAXGrGWZfyNzQYho2DSuWjkxYzlo9OabbJeW2ktjam11fG3u8AVp3Tq2zae7ixc/cew7\n77wdtMq9IuWpm36ArkhP525M47JAiq4T6WJGJVRiOT825y3FdKzaDg5N2OqxKNPYzB6LMqXFf8Yk\n0HImcFgkJRb93P4++zltmsVuTO3tjq9h4d4gpaWxbRbwhM0X9XBmzp18hA4JsefrnDmOr4Xj14MU\nV77wGz/uICtsjO8cpDx1M8PcDTI9qHKsEci64w62zXy8hga2ZfodEU09yNfxjh2WrgFx/r/hS2+O\nVNbMxO+bPGyygpKIKHKgzoVXFEW5augCqiiK4hJdQBVFUVziMY0pcxbHr2obMf2nPJxTMaow24I+\n+URs/P3vKJrdUCwRN4PjnrKjDRHR4sVrxNZE0JYv57hn+tBC3HEId82hdqM8sAekE8dhsox5MRTO\n+SmpS/1AyutI4I2j2B0rKLBRbNnpchSyiNOoQoyUGojBNTaClDKIj2PCEiydlGEzm1Se5LinzGgj\nIprWsZU3OowgqOyWbtZyfvop2yE4L6tHiKD8pGswtFZ7mkN5vY1vp2xklXTUSB381a8c299ieqDs\nAJUfjvHaGaJE88xp/J1BvTsdu+FnSaD5lFlzz6G5jc9/VSxOndi9m+1Vi/B6DCjna9WcSFBTF+zY\nwXRl9A5UURTFJbqAKoqiuMTzUDlFURSlW/QOVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEl1AFUVR\nXKILqKIoikv+NxErDNQOrfNbAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  23\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9c1/XV90+OGTHnyFGaY0ZeRmiM\nzMwfxMiIvvMHkTFTh16MiHEjMmbMiTEfXN5MmTrzclz4I3KMMWXoHHkxUscYY2SkxowxZo6YMSNC\nI0fGzYiI7j929Tnn9Ta+2oe3j/txPx7n+df5dvji4fP9fN+93+dzzutc99FHH5GiKIry6Rnx/zoA\nRVGU/1/RBVRRFMUluoAqiqK4RBdQRVEUl+gCqiiK4hIfr94LF/gRfWcn+t54g+2f/ARcLZvKHTs4\n4CK+r7ub7YkTr7u6MK/M4cPkxDp/Ti8609PZ9vUdOp61a9EnXx8+bC3WjAyONSAAfTmhfO1o0iR0\nvvAC21/5CrjWVEY69pYtZCXWqiqO03MoDXybb93p2Pfei+9bv57tuoA4dL71FtsvvWTtmp49y7FO\nTJ8Pvo49hx17/LED+MbGRrblfUJEvf7jHdvPz841JSKiNWucWOsXbgFX+NEcfvGjH+H7QkLY/vzn\nwRXcWefYLS0WY509m9eAp55CX1+fY/bGLAaXX+dZxz7/uYngO3GC7dhYO7GuWcOf/5YevFfJ398x\nq+bkgevYMbZzl54GX96hKY6dnf3JceoOVFEUxSXXea0Dra9n5/Tp6Fu9mu2tW9FXUMB2QwP6UlPZ\njoy09n/KU6f4/0DT9maic9Mmx2w6MxJcr77K9pK7W8BX3xXs2OHhFv+vPnkyX9c//Ql911/P9h//\niL7t29keNw5cF9fyTmbMGEuxjhzJccbEgCthFO+US+YU4fsCA9murUWf3NWPHm3vmmZkcKzGSWLe\nE7yTNHfLuZ0pjh3bWQi+Dz5g+8gRe5//uXN8r0748/PovOkmto3P+BxNcOy2NnxbZCDv+Gye7HJy\naMgFIrdZnC7KysA36MPfs9278X1pjXzNqbDQTqwpKU6cJRH4OcprlVM5A9/3H//hmKXvLgBXfPQF\nfnHzzboDVRRFsYkuoIqiKC7RBVRRFMUlXp/CFzaHO3ZgN/q6Z+U7dnxDPTpbWx1z/yOl4Foy9dKn\njfGqmPYW55LOZ20D35vN4udq0beqkvOlt28NBl/4yrv5xSuvWIjyX5wo5sTrzB6jSuHLX2ZbJmiJ\niAYG2D5+HFwy7ZyTQ3YQ+SF6/HFwLRAFAXRbKPgy9nKeKb+rGHwVtaMdOzZ22BEy0dGOebp7PLhu\nv51ts+phxducL6tYVQO++D1R9uITTFjE16di3Unwxb62j18YecUJixY59q33fwl8N93ET7ovXCBr\n5KbzLwuLvhl9c0WVSFcX+EYcPOjY3T0Z4Du7lq85Pp93T34o/86MRViF00t+/GJRMb5RPB+JL/gq\n+hrPsH0z/u0foztQRVEUl+gCqiiK4hKvR/ieHrbnVxrFqYmJjpl9KBxcfb78etvDuJ1OSOUjXEnJ\n1YZ5Zcrf5xKEuOp94CtuX+bYX0rEEqeaGC5dquvEI3z/CT62Y/HT8PjVr9ieObABnXPmsP3oo+Ba\n8yf+O7bMwVKNnLZs8QqLhV3zzjtsL18Orjm/EMfdgy+Dr6dHlIpMnQq+2C5Z8pQ03Agdso9zPiCv\nMRd8vr6c08iIxmLplrlcLE09/uCLiLAWHpAZwcf2mf9E3+A3+DMesX8/+DqC+Hv10e8w3UCVPxYv\nME1li6bVxhf2jFg+fvpTcFXd+33Hzg45h+8Tx3vKNEoOXQKf1T33gM/vww8de/8PsFRxiVjHzLRY\nRqXHsfMj6RPRHaiiKIpLdAFVFEVxiS6giqIoLvHayrlzJ7dxHT2KPikY0d6Ovtg9nI+K7K4A3549\nbAcHW2yP9Hj4D7n/fnDVP8D5mPvu+z/g+81vPse/ohGFHWjXLrZff91erFu2OLHm9KwBV+4vJzt2\n/U+wjCn8mIhPtsQSYRKoqclKrNByOB3LOPb/F5e3SHEIIqJVq9ie8ALmo5N+xzm+oiKLn/+NNw4p\nepF0hq+xkZKF+9G8pDLtO3q0vVhPn+brKvVBiIhG0KBj9w/g/mbkISGEIh9QEFFeJ+eThxK+cEV8\nvBPrzggsSZQ6LIUB2eArDeU8fPwhFBqBi26rnVe2nRsL0tnp/O9PXDAZfHCvvPce+oKC2F6wQFs5\nFUVRbKILqKIoiku8qzEJhZuknnxwFcUI3cq5c8GXv4cr/035zRQS5TcpKdaOGuPH87HoP/8TfUv+\nwmUsg+uxxGXdOrbznjO29zt2sB0VZe9Y9PzzfNGl+g4RnulkiQURdkMZGqxw3LCkxpOby9c058hs\ndD79NNtmfkfeD/K4RkSDe7iMacQIe0fNwUGOtdvomjsjGkr8sVKJfLwU8gWvE0fPAwesxVpRwbHG\nBp4CX1XXNMeWWpVEREuXsi2kOImIaNYstvv77V3X+nqONXwStjiNGMdpHVl9R0RUU82piBUrcZ+2\n6277a4DUrjXx9Ik0onnhxM1xKgZb+Ka9KtJPy5bpEV5RFMUmuoAqiqK4RBdQRVEUl3ht5exYy3nP\nIl9UDcotYDXq1ZgChXxI2J+xjIW+MouuBR2Bon3wfZxts/9Oznsu6cPW0rxxIkdnKMCXHuJcbryF\nGD+m5gZuOz1mpA9HibzXfVnl4JOqQmMqjbY6sx7GAlIcv/d3L4HPbzW39mb47AQfCRGhVeuwzffl\nX7K9ZMmwQ3QYEcNzkA4uPAy+lGahBiTr74ggeVizG9v82pK5bMhD9oB8YTPm5GBGT3Qd+HLKuJ/Q\nHN8lx2XZRI4+o8rt4BtsTeYXUimMiKibZa9uuGEM+ior2U5JIRt4soRy2pNPolNOSDDl8UU52LRR\no9Bn/k2fgO5AFUVRXKILqKIoiku8lzEpiqIoQ6I7UEVRFJfoAqooiuISXUAVRVFcoguooiiKS7zW\ngZ4/z/2lYz+LdaBxyVzbVb4K69UuTeV6tdHNxsROKTW1eLG9/vJz55xYoxIngEtOrDRbYaeN4tq/\nE//AkR4zHxO/59w5e7EuXsxP7gxZMtBU27oVXL2i2M/vr38FX24Zx56TY6cXurycP/+4gQPgyzzO\nfeLbIrBeNXI71wjXrUY5wypfljr0eCzKrgUHO7E2HcR6zrB0MY+huhp8113PITz88GfBVxEipAa3\nbLEX67ZtTqwXjREzY7ayLFzTUhzNEtbG1zLpEI40LVp3ll9Y0kIgIioq4nsgqRGna9LXvuaYVZ9d\nAC5PNPfCn2vHfZr8DtqStLz5Zo5TagYQEeUHcB344enY7y4V7D7/eXyfLAONjf3kOHUHqiiK4hKv\nO9DHHmM7NRW7CUAoaPp08I1eJ/6vav7vwJTKsUThUd4tGvPPoPPjQgHupC5G805q5iFDULm21lJ0\nBrLjQcylJiIqquVJ2Z1zcZeRvZCHha3Zg7vlLas6xCuci+6WuEAxs7y4FnwLl/J1O3F9HPjqNvCJ\npKIb/4b2VrY9Ntt7hFKyqbhExcWOOSMCxwNu3Mj2Zz6Dbyu/ne8H/AuHiTiFjenrANfZZN51+hin\npbOhfC1/ONP4nTcG0rUgaZYYwteGF/ZEAO86JxmiYtTW5pgTFuDutO4ZFgoPxtvYNa2tXpy7WRJu\nfiqeTkHFzDie7v/uSboSugNVFEVxiS6giqIoLtEFVFEUxSVec6AyPRfegIr0FJPomOffGw2u91dx\nrm7CHnzqRQsXfroIr5KUhqFVXZLKOA9b2okDruIPsUJ6bh8OeMu58wZ+8c9/DjNCpmMD/5ugdkNE\nixaxLasHiIgoOtoxtywPA1dJaJNjJyQMO8R/sXevY9YvR8WlCG+iWq3jHPNVFHGirO238Iu0t4YT\nHZA3lXPb378VKxQeffQOxz50CN8nix6OH0ffhd2yusBeFnTzWP5+ZB3HCobWUfzveLbPBx9tF2pI\nf2pDX7pQIGvBKoThsHj9FMc+8E1MvIrUMj30EL5vYhnLRYXfiMMR631kZQ6qdblFpFwprBgrG7J9\n+Xqvb8Xv+MhmnghQ0z0NfLebufRPQHegiqIoLtEFVFEUxSVe1ZguXeLiVLlFJiLKymL7xz9G37g7\nuOZ0tCFuWhPD2+moKHuF1HJQl3naXnKDKOaOiUGnPNMZ86SrQrhw2GbRd0kJx5pwPA18g2IW/Yhf\n/Qp8FT58vIv95o34S+X0vrfeshJraSnHGR+NA8Xg7BsQAK6mdB4aFhaDZSODImcx4qOPrF3TzZs5\nVmMsPFTOjfZBQW1JfLIfvI6IYDstzd7nL4vTTR1s+T0z59Rv2MC2KUZ94gTbQxV9uyEzk2PdNg7L\n/Jrm8nHY1B6WpWQT27HRZvNL3NiQlWUnVo+H46w6Ogi+0jLeJ8YPGELkIg9RtLwGXPKzCQ/XQnpF\nURSr6AKqKIriEl1AFUVRXOJdkf70acd54r0p4Jr5M87d1SzCEpeoPTyCrSi6FHxihhdNmWJRTMLj\n4T9EtmcRYT3Qb3+LPll/sR2HZkFP6Pjx9mKdPduJ9fRPsM5nylzOGZ46dA5804hLLsjHqECTCZuR\nI+3EmpLixFkSUQgumfNK8sdSHBjcZfZVvvwy26+/bu2ahodzDswUjDn1liid+sMfwHfmDi5x6v8T\nfhfCQkUubcQIa7Hm5XGs2a1J4As/wyVur7yC73vxRbY/+AB9Mxt28IuVK63FKp+DmLo3449x6VhR\nD5YHJu2N4hdyiBwRUUMD25GRdmJNSOAPT9YCEsH3+nQB5jnlo4POTnxb+CbRhlxRoTlQRVEUm+gC\nqiiK4hLvR/iMDHZ2daFPnsXlMGsiPKaZM5rlsXjMGGtHjd5ePmqYakyrVrEdaIjWyO4Tc7b25Mls\nZ2RYTDcUFfF1PXgQXAkBPNPcHGE+sZi7ug7PygXf/Emi+yQ42EqsM2bwNT25+xQ6ZcrAkMK5FMRd\nUqMPFoEvp42PrLm59q5pTQ3HGtVsdM0JpSaoTSIiWreObfM+lj+bl2ct1sOHOdb57ZgaKfLhjrqk\nGKN0TOhv0ptvok/GWl5uLdbISI61zicKnbKuykx/ydfmEV5qsh44YCXWqiqO0xNg3KuizO5UF5bV\nyRK3qALsNssO4dRUXp6WMSmKolhFF1BFURSX6AKqKIriEq9qTDKXuearWG6zpVmoHyUng++6X7Kq\n9n8HTQJf7JF9/GLZsquN84qMYwEgurQX5/BQEOfAdlZiDkSq1ZtlDDNN1W9bNDayLesoiGj1arYn\nDhiqOiLX2G20AIIaT1XVMAP8FzLNOWEhKtXISpFRo1AZKjeAc5DhZThHp/6gfeV8Ikxz0iy8Hzf/\nF7dotv0C37drI1/wpE6cQbRBXFJ7kRKFhooXfdgGu1x2GqeuBR/0qJ45g749e6zEZnL0KNuxS7EE\nqGIqt8XmhuKkh+g2tsPNPnBjgoUN5CMZOmrI04t8rP96bOWE0kChPkZEtAG/mp+I7kAVRVFcoguo\noiiKS7yXMSmKoihDojtQRVEUl+gCqiiK4hJdQBVFUVyiC6iiKIpLvNeBbtzIcv43fB9cspbN88Hz\n+L7Zs9k2e2QnibrQhIRrMiYhaakxtkH0m+d348hKqbZmquDJll2bfdtypIep9jZ2LNvvv4++yFbu\nKx9MRBm0EUuFnJil/mIKC+MnjLNwDGfhdO7hnoSlvhQ1R8jAmSNUpBhBYaE9fYELFzhW2d9OBPXM\nTT9DjbiyMrbz1l4CX9VxnjZrc6QLLV7MsRp1wFDQalzzlGKeYFl4JhJ8MO02M/OayNmNGoW+5ma2\nTakMeU9MOI41or0xfK/6+Vm6ruXlfE1lcTcR0datbMuCcSLqT+U65eeew7ctmS3kJCdM0F54RVEU\nm3jfgZ4/75jdxk5Jigh55hpbJanOY4ibnvgnd63YbPS58062L/bhcLAxQmWn3R93oBmtolMmZj34\nIl/YJV7hDnw4SH1nY5NB+XewMO6J6SvRKf63DjtOIqK5c22F51BXwLPmIxu2gU/u1s3Gkt4+/v/y\nQNlh8EllLNRpGh4XfW527DGJiei89VbHNEWB85af5hfV2N0TGGJvFjwgt2tG9wts8379a3AFBYkd\n6HQc1Jby9kZr4UnkATInuQN8zc3cnxVfGQ8+uSPOPYP36jihgJSSQnaQ1xTa0ojWLOWd5HpsUqNV\notvswQfR50nmrsWhmvt0B6ooiuISXUAVRVFcoguooiiKS7y3cubksNPMsf3+946Z9DfMDxYFsnJ6\nni8qp2fHcF6NwsLsPdnMzeVY5cQzIkh8bQvEXJ58KBcfgUPcQK7aYqw7d/KTzbTUQfD1D/D/05Yu\nxfeV38N5rtOP4jWXc9zy8+082czO5jjzjhlPfbOyHLPqswvA5ankvHJSD6rDyzhHjrT3ZHtwkGM1\nlfylWNiEgbPgi0yc6Nh1U1E5Cp5sR0VZixWua3ca+Hq38oDGTZvwfTLvLFWSiIgOdHv4RVWVve9V\nf78Ta8bqkeBqb2dbPugmQsGxuGisboAHKElJ1ofK5QSh4tJaIWrltwqTrlWLuJrEkx4MvpZKVkML\nDlZFekVRFKvoAqooiuIS72VMojRgWno4uE4d5ZKaouMoYHw2lI/t2aOMwVhnuulasKaH0wZyUBwR\nDsPyD0Vf/G5xNA3cAL7TAeybMvwQHdImcU3EpR4P+Eavz3Ts8oVYjnHiDj62z/z6ZPDlf/nL4pUd\nQWVIIXQa1fK38Kx1zzKMJeqWVx1b6jwTXT7O3hYjvsTx5BoD14qKeZ+Q1IMDzuom8Vkzrh0Lq8r3\nimaFKGOg2jDIi6nnF8WYbvKby/dcSCqWKsmTb/lSLE7f2cWfOSYF7JH/W/yc6aGH2F72Mvr2sQB7\n0cHR4EqSQ+aSsCHELUVz+Ni+aiH6ZKVY8m4c4hcgUg1mPV5woGzIwdLIj9EdqKIoikt0AVUURXGJ\nLqCKoigu8ZqRim3nkopTT+wA36l2bjPcWhYLvtJ2zuPkzME8TkgIt9wZzV/DQmpU1AUYLXgi7dpq\nzJuSSTpToCGlU5Rg5eSQNURL5ugebI+7uI7LrIqL8W0LI9jOfvRV8OVV4mA3G4SdEXk2M5kpS3wM\nQYyaVZwT9xTgvREXIlonp9jLLPf//S3HHjkVr0WS6JetiMEcWOwxbjMsj8EcaNRefo3j1IaJTAT/\n9rfoe/hhxzR1RsoTxbMGfxTFSJsqBxBiOc6wkK2lxnC4w43cyjk/AnOysuQqaRKuAZepz1ggqWsL\nv9iA0yFTpLjIrjfAN00IH9WlloIv8ph4luDBZxUfoztQRVEUl+gCqiiK4hKvR3jZ0THv+6gMdORb\n/Y5det+z+MZ3oh0zEE8aFP8PmQow1IYssWZSObze0skKTOaIaurjmqeUnmpwlUTwcQ81nIZHRTN3\nv8RuxbTBGHFuz2wvAF+/0UUFXIO54HmtfLzN/uHd6JRntGq8bnJmedVSPBafG8VlKxPIHiPFcfuy\nViQhKeSL4mCgHZqxB4/+UjnKJr2hMxzb74EH0Pm1rzlm3E0nwVXVzekQz7gW8K34Tz6279pF1oiK\n4O95TVcT+DZs4CP8Jh9UXKrbzWVfNeswAVLWzfc8JlSGgeiUzK/FzzEjhK9VfQCmlMJ7OL1gCmON\nW83H9qGSIroDVRRFcYkuoIqiKC7RBVRRFMUl3tWY8vMdZ3kgKtVIVfUCTNVBSixjAPN2Zxdyq+LE\niRbnzAjVmMsCkiU4Rh1TeDKX0tTvxhxPfQ/nUsLDLcZaX+/EetofW2TltTNnNElBrJEFRj5Uyhy1\ntNiJtaODr2knloaUNE9z7IRoLMWqEkrlplq9VPAJC7N3TeXsHiEURUQ4oqsSOzlByNxUFJIzfxIS\n7MXae911Tqxn/ojfv2kHs/mFOdvpnnvYfvJJcFUFscqQ1flNQuXsVAyW8slbrrCgH3y0fDnbG7BF\nmlavZruiwkqsVVX8+Z/BwQKUkSjUoIxe4m27uUXTfF/hdtHK6eenakyKoig20QVUURTFJd6P8Iqi\nKMqQ6A5UURTFJbqAKoqiuEQXUEVRFJfoAqooiuIS7wMWLl1ynjAlpKMsv5RaG9GO0yx7b73Vsf3u\nvRd8Z8u4v9dmHejkyVwHtnEj+uIqxdgAWYhIRPkxLFmV0WB0vMuframxFqusWTPl9WTt53z/evAV\nneGaUbO+MswHZOKsxDptGsd5aj2ObYECSqO48tQ61iKYtt7oPe7i31Nfb7FesbeXn4b29aFPjohs\naABXiygaDf7wQ3yfLAy0dE2JiCoq+LrGfuZ58OX/jSecZnxxH/gyTixzbH9//J1SIc5mzSrUAncb\n43iee84xz/07TomVP3rXXX8yfinP1fnoo8/YibWlxYmzxehclyWpJ/dgrff5sVzrfdNN+CtHHBGf\nzYIFWgeqKIpiE+87UNFBUDLzVvQV8P+te5OxS8nv6af5hRzKTUSjviAWcoslVHcLsSCzgwfUecah\nPFRGMu86w1txnrQUOLI5VE4OvTPCAf3a+ALsUpJD3sKKM8EHO6s6Q8DWJad+wP8H7rgbd5Lj5wrF\nGylYS0TTxonOJOMPrI8Qwre0ZrghMgNiOJts2SKijkN86hlvKDW1Ps/3YHAyDjg7+9OfOvZEi/dq\nrFAHqutcAL6MED4R5R5fBj7Z0BMdDS46uegaXVfB4J13wuuCH/M1Obgcf1Zu+h977C7wyYYqWyxe\nx7vOA8W94Dt0iLuNLo1Cpaaxq8Wc+J4e8M1oZYHlk/gxOegOVFEUxSW6gCqKorhEF1BFURSXeM2B\n9q7nvIrfc/hEUD7a8jOebF78+c8duzYIc3VxU6d+6iCvhtI5rG0dnp4CvtRU1j5P+Izxdwilpvru\nKvSliqSTpbwiEaZaHnkEfWP3scpSZNdRdI4T8RiqMpepwtvgd79zzNp3MQk0sJqfZkZEgIvWCiX3\nVatQc1zmxtKGH6HDxKlcJbJ7Nyq5bxL5uRqjfGH+dlYdTwrEz7/oSeNRtyVO/IPzdea1o618gXL6\nasEVPD3PsVsaLoGPjl+b75X8nne+iXngjONcbZFYiYMcR1ezb2cn+mJibAb4L+DrYFTajBclAfnH\nZ4AvY5EYUfDaa+CLDrryv6s7UEVRFJfoAqooiuISr2pMg4Nc8HvsGPoiO3kOdH0gDpQKDxJlLIZK\n6aXpPGxq9Gh7Bb+FhRxrig8OMmuazuUpYYEX8Y3i6Fvlj3+Hp0yUtRQVWYu1vJxjjRvAedoUykXG\nlyn8Pvgg22YltWSIot9Py86dHKeZMUjZJerGHn8cnUdF6sEoDTnxI06FzJx5jQq+TQFfKai9aRO4\nCiO4dC0kBN8WGSrulTFjrMW6YgVf19tvR98HH7Cd9X4uOoWodcrATnBdjfivG86d41gn+BtpA3lT\nfPGL6JM1gPuMtJmc1ufxWIm1t5fj9Ks2mj5EidupIEwnQKOHIWBd1MzH/aSkT75XdQeqKIriEl1A\nFUVRXKILqKIoiku8ljFt3852ZiLmDmO3cr6wgrDNT+agRs6NAlf/c9Cgf7VxXpEUf5FLnIq1IevX\nsl2+qhl8Ugjjrh9hDvTSLM6lopTK8JCtnHHjsOSibhzHEPlv/wa+0uu4tS/+xWzwXdYTaoG0Ri4H\nO22UI1HZjWwbIhM7Yw7z71iOebP3G+maMDiOB9m1r8X84IT7b3Pspv9+HXwp3ZyT3f9WJPhK2sY4\ndoKhMzMcdr0vcut3fB2dN/J1vRSKQ9xkCVjhC4ZiTt8Ktv38yBYTGkU+UU6RI8J8siHg0v8Y36s+\n38CWVBDpsERqKtsliaPAdzaI16BpvjgAkQID2ZbtwESU9IRIeyZ98rMi3YEqiqK4RBdQRVEUl3g9\nwmf65IufTARfxQviCPfMM/hGsRU2hHpoRSUf23fZO8HDEaK8GfUAZRXLzmY8pqVN53ORMWqbSn2h\njGn4Mf4PW8Zxt9G832Kn1r5E8aJrMvjia4XqldnOYdYZ2aCgwDETjY6Z5ctrHNuctS4rseYtweTH\nDTewHYkfhTWMRhSa8NRTjn3wIPrC/LmL7m99GFB2sbiPElrIFqXRfC/F320cKUX6a3QqHkUjG2sd\n29TfrCxjO81mi5coR0oIOAyuTQFsj3/3XfDJiqAtmwbxd95yi7XwPkZmkVoCMW1YeYjtzK4C8J3/\nD073jN2BKRNZgIefBKM7UEVRFJfoAqooiuISXUAVRVFc4rWVkzIz2Wk84r+0gfOjYqwMERFNFqm7\nI0fQd+QZMT9pwgR7rXzz53Oshgr+vGe5fevIcmwru/Qwl1jIMT9ERBOrRelOSoq1WA8f5raz+YFD\nz2gZ+y7m3Zr6OCcX1oeKQ5ATvXDBTqwVFU6cHdMNRfrtrHoednQL+ETqlCIb88EH91Fmpr3Pv77e\nibWmD5X85fyuEh9UnS+K4Hxk0qzT4KPf/57tlSvtxXr2rBPr5l9OBFfWbKH6ZSaX7xLK7mYeUbav\nWpzfRadO8feqEWvQwvfwtaw/ZuQ5xU0QXoYTK+rXC9UrS62cdPq0E+dZX5wfMbGHv2ODd6E6/oh3\n3nHsmsYx4IsauHKcugNVFEVxiS6giqIoLvF+hFcURVGGRHegiqIoLtEFVFEUxSW6gCqKorjEe//f\njh1OgvT8opXgGvuhaEGTSulERF/5CttSfZqIotZxiUlNjT1F8osXuTSo2RBcivQXpUKGchAoygQE\ngOv0WlYrnzLFonr6mjVOrFXRWALkyRJK77fdBj5KTHTMlEosK5Kz+tLS7MTa1MTX9NAh9JmXUSKF\n9KVKDhHRG2+wfeSIvWuak8Ox5g6gUlU25V328x+TF8KfsVmql3Kcy3QKCy1+/s8/zw8ebroJfWKw\nWeYfUcVIlguO3YNqTLEnuLWzosJerFVVfF2few59f/kL24YYE50s5pKw8jNYVhTnz23AFBVlJVaY\nSJFslFSJG/LE/WvANfPvrOJW1INqbEmNovwqP1/LmBRFUWyiC6iiKIpLvB7h6+/mY3v4M8aAKyl5\n8+GH4MoJ4W1x7is7wLdoEXaJ2EIe248a49QjG4Wi8urV4MuYxAozkybh+4RQD03BU8iw2DaOj+3N\nZejz/Oxnjp1XGQY+f3HJC+8HAD6bAAAcfUlEQVTHjqqk3+FxzwZS4EnqzhLhEX6bLx6ZT7zMR2ap\nhEVEVFtrKTiD3B5WtaqJ2Qa+vKksBr7i+9ht0jKLlZKDu+rBV7hQiojj+4bFAw84ZsZaFD/+0pd4\nkNm2Db3gO/Fn/tlnPkQ1pmsxa52IyLOa78GQSuyam1Ar0h+G7Nq0hfyFMdM/tFoIM0dFkQ2+8AXx\nwrwYa/n7P7PVGHD30EOOmTTJkE2XyudDoDtQRVEUl+gCqiiK4hJdQBVFUVziNQcKVR3Ll6PT15ft\nzk5wvf2seDH3bvC998KnCe/qifRldaLIDdPBV1PLec4zZ/B9UsTGZNEitm0OFZN5wZHbsYyJWjkR\nO2cO5kBnzWK7qBhznmau0QZT1nNZR2fqAfBFR4sXvliqtmIu26fKUFHqYBdOC7CGqKOJKjY+LJET\n27wZS1WA463wsiOI8/XjzZ8dDkL2a9OmCeDyKxOTD1JrwTdTDHXbsQNzpzln4vlFSunwY/wf6ndz\n3nOpMZWgupqv8113oO+f81gBraWvHJ3ml9ACS/7AMvxVq1A5v0CU1ZkDMKUa2+jpuG5AnEM8BNEd\nqKIoikt0AVUURXHJVc+Fr52Kwq9yd9vQgAeclr1C7HdSCPjuNToWrCHO4injKsAlu3T8/fFto9MT\nhnQ+8YQhBmwJMaeLkldhZ8TevWwvigaXrMag6mr0lRnlUDbIDeVje85RjFPWjVTdiyU1Uph6WyUe\n2XN9ZDkcDvEaDjtDeTiY0VBE00UJVvh2oxxPpqaMWi05gC4DNYGHRdUZPrZ73saymsPjuPtp/gB+\nyC3tfGw3NMOJtl+bL5YsDzzXfAl8Vce57Od738P3nV/Jx/bgv6P49zlRDoUJDPecXc2ff4DRJRci\nlqDDc3BtmN93wbFr1tWAL2rSOboSugNVFEVxiS6giqIoLtEFVFEUxSXeFenFoCZIzhFhn9/CheDa\neXyaY5vtkZ4CUUZQUWFP4aamxok1agO2h9X8g0upap5+BXyRD3IIPkZLKihJDaHG4op9+5xYy2/A\ncqS4vVz+Ee+L5R+yQ81sV73zTrazsuyo8cybxwo38+ahL6OaP8dzBZhXkq17GUfn4xtl8i4uzto1\njY3lWKUaFBFR8BJRSvfii+iUyXw5fY6IejdxDtzPz57CUX8/xyoEtogIP2OzBfKee9g+fx5922aJ\nMrPFi63FWlLCsZqKSylzRImaUUfXX8kD2UZSP/ii5o50bFuKbJGRHGeEUW7V1sZ26bLn0SkvZAg+\nr7l5IZexXbjwyXHqDlRRFMUluoAqiqK4xLugsmzTMav0xfF28p24Dj/1FNueHjyGrgnh457RgzMs\nqgb42C7LloiI6B5WYIpqxtKkuEc5S1G+HVV8aN06a/EBJ044Zi0ZR3gRvG8bvu0F0cVVEmSUAL0j\nz1d2ruy3v832/L3x4GvawJ+jr3G0y2jkUpyEAOwKKZmLCkO2qFgnSmWOoaJ25gOcttl2rAp8ucc9\njp0zHd/ndwzmgluI8l/IbFjp1g50ipRC/Fosq7s0iVNjo4uNEruIRXQtSOgrFP8Gno0zCrg7574n\n8Lo+GcR2x6rt4KtJHCf/heGGSEQoBpVrlMflTBKla/uwbGzFF7hrq/ZH+DtDQ6/87+oOVFEUxSW6\ngCqKorhEF1BFURSXeM+BStlxWQtABH2erz6OvXMd0aLtb3cj+BIT4+ha0NPD9ratxlCpGJH3kJJG\nRFS+qs6xN7+UCb6s3SJ3kmOv7XD/fZy/yr8N29w86/jfqeqLxDfK2qVZWOPS38DtcSPJDrIlMy8U\nFX6y94rPeO5c8F3azopCA8ZQOWidLDdUeoZBeTsrucdJ6X4zPCOXHyG/AbWoxkRBQXaCM0hqZQX/\n+jYceFdZzW3R5j+f8oQoxzJlxIyBiNaQa4BR5pWfzJ9lZjEqh8k2WFpbCb7SVP7OYWbdPbKqMrYB\n23UrBkQp3auvgm/Xt/m5x+h9+P3/yU+u/O/qDlRRFMUluoAqiqK4xHsnkqIoijIkugNVFEVxiS6g\niqIoLtEFVFEUxSVey5jKy1nhJK4yCZ1Cvb1iDrZAynn0eQOGkrkcQFdSYk01pqaGYzUVyT2+XDZh\ntqOlpPL/Q37+c3yfbEnNybGnxpOZybEuWYK+ma2i5Op5VI7JDeFSopwIVM+G8iw/PyuxJiRwnCUB\nWOIBMkJmCc3vf++YHQ9gq+r4qTfziwsX7Clc1dU5sXbdfz+4AsS9OvjOP8A34hfiev/xj+DbOYnv\n67Q0e5+/VA5rCkDlsLAA0dppykodO+aYMPWBiIJ3i89n2zZ7sZ486cQ6I30GuDZtYjuqtRB8+X0p\njp0xvR58p3xZ5WjaNDvX1ePhe3UVzjiElszt2FUKt65ZqVk4TpQu5uaqGpOiKIpNvO5A40gUOr+C\nOppnf8WvYwdwdG1oqJiDM6sYfGsSeQaJTTER+X8dQ9aPPFuDhnyf3JCKqbFEdLlWoy3knKDD0Xjt\nzkfzjm3sm2+CL6ebC7DLu7EAO+7O2/jF66/bCBNmMFHPUvAVHufC6ZRko3FBaG6ONzVWTbFGS1wM\n5aaDgNtvR+c3v+mYI+YYzQmisH7zWDxJZcmRw2lXno9z1YhtUFgiDvBZsYsbTXbVHsH33XKLYwbH\nGOOhzZveEvUDvOs8GYhNMGeDeH3IrEwBn9ThyS0IH9Jni6oILp7PrMamF3ki3ja1BN8ouhXOP2Hc\nGz8bdcV/V3egiqIoLtEFVFEUxSW6gCqKorjEu5hIQ4NjtuzHHGitGFmdEtQGvolZ/Gh55/oL4Is2\nZiTZoukYz6w+1z0andE8YL1kHeYcE6pZ0PVwAOZHxo2ja8KlBo5h/q9R4HXN05wD3bLOVOJg5hiV\nBnF3c97TlkTHlGaeszN+1WLw1daKf3sR/n+4PJ3FfUs78Slzcwhfb8ziDo8xnacdu+kgfsZhITyT\np+6rOMN+lEhzZR0zRIql8IlNRCXK4jLMK/7yl1wlsOvbD+H75OPkz30OXJce5vvGuPuHRXhZBr8I\nDASf1Bkx85pjDrGgTE6DMdwpVXyxCvHpvWvEAPsl30XXzDfFNyIa57d19PDVajgBLoqVA6qGQHeg\niqIoLtEFVFEUxSXeC+mn8yErLnoC+ILFKOOqIDz6eB7mgl85ipWIaOaPhQKgBzUmh4UQBJSTaomI\nqJqPdEfXoutMEB/bDxoFuC3RaeLVzmEGyOzZw3ZmOxZvbwkUY1YjivGNYkb03jl4UC9fKwurseDZ\nLZfm8rG9o8BIDAxw2cySJVPQJ3QjD/bgEb58ufw9FrVhRc1Z2COPoM/nUceMrCxGnzymm8O05Ajm\nPIsJB1E6dWCdMRNpgxC2NcVUv/51x2z5b9S1DL6DS5zorbeGHaLD2LGOeXEFpj+mpYvvslH0P++X\n3Hhz5HbUBKaZM+3F9z+cXs/ppuL/Qt/dP+b7zGyyGV/GpWszlxnNIueNH/4EdAeqKIriEl1AFUVR\nXKILqKIoiku8t3JGiBKkSpxrIpUEPBuMFijRrjfzISyqyFnF5UY4uWR47Cz2c+w0H6M0IoLzXKXr\n2tAnhnTnpRt1S8mGmIMlMmcJcYWCTvCdz+KczNhRRiuZ6EkzKkqIXnuN7Rl2cqCjU0WOa5JRfyby\nbA8/jjnQqhs5r1w+6Sy+76Axd8gW773nmCVfxlxdgr/IM37hC+Br8eWW1ODOA+A7J3Ln+ARgeGT6\ncj592083gm/wKY79kFH947+D855RZyrAV7OPPw/MOg+PzT4cT1YjCtisCeRnGD4F+L4jKzi+Kl98\nRiJbpstRa8Y1U9p5Lv2ux3BZW7ycr8iB1+4GH+3Y4ZhjD+5A3/vvsx2GM58+RnegiqIoLtEFVFEU\nxSVej/A1zazdGFW5CZ1CxeSykbfPsjJQ/dFL4POt/ZQRXiXQNNKOij/lR/l4/+yzeNw88r9FZ4I5\nR1aWtbRgd8uwEGpJLevx2gUvnM0vNuLxTrZGdeHJnxZX81nogKVjUe8ejs1Uqsp8n1MNcvwxEdFd\nd7G9uXgi+J58kvVhbY1fJiKiefMcM2ES6k9S4nrHrFpdBS5PJf8dSc1YxlIUKH7PBFQUssWadzHd\nsOUIa8DGVaMeLCii/exn4Ipqk3+Xx1Z4lPXtXn7hOwd8W8pYgWneG0barJVTY57VmBrbO8pOigkQ\nbVFrGrBrDgTAAmaDj0Q5Zn87dk3K0cxDjV/WHaiiKIpLdAFVFEVxiS6giqIoLvGaA41q5vKDllRU\n65YtUaFmZcpszjOEp+Ljf8gkZTddVZBXw+jWU/xi/Xrw9Szikooj72D+5ZQPt0COQnFwCp4711p8\ngJi9E/zVr6JPytpUV4Nr3ivcTijLRIiIUqJlUhTVwd2yVIjQVwQYM7HS0x2zrw9dcs5M1gDmcVd8\nh3N+u3YNO0RGlHzJmTtERF0i72lWhp1bxHnPosSL4Mvbzb8n22IKdNseLu07fRyfEVDnDWx3Gzfk\n0087Zn8QKtKPTBVtnx57OVBo0TT7IMUHf2S2UZS4uljYq8FVki5fWcqHiv7oLem+4CrqiuUXMrFJ\nBH+fVBgjgrFvQ6I7UEVRFJfoAqooiuKS6z766KMr/5SiKIpyGboDVRRFcYkuoIqiKC7RBVRRFMUl\nuoAqiqK4xGsdaFMTOU+Ywu66Dp0ffsi2Ua9Is2ax/etfg+vUZG7UnjaNjF/qnsxMjtVUXpNjRZ55\nBn1FxPWNFQuLwBdbLEZOlJdbi7WmhmMtMGTAZPt9ztyT6Hz7bbaNXmgpdUfnztmJtaODnzCmp6NP\n1sj6Yt0dffGLbEtJMCK6OIev6Zgx9j5/mj/fibUi9TC4xIQRsySResQEDU8ojtfI3Dresbdtsxdr\ncDB//o3GtAupOZDZjr35JVO5FjthoVE/Kr9ny5bZu67l5XwPmJKWMrY5+N2R/ecT92SDr/eHP3Rs\nv48+shNrSwvHaU5TFV+yqm6sO/VMFf3v5s0hf4/H84lx6g5UURTFJV53oGF7xEzo3/wGfINi7R1h\n7kBFSf+JR3AY1195fDNNm3aVUV4Fsvko1ZjFldbInTkz24y2KaFwZG6kLv8Pdoiayh0vUa/eh86G\n/8N2CAo6p1Szykzh1q/g+37+c2vxOazlCXyHk3Go3PwuFk021Z1L2lnAttW43CuNP9cWsT6869w7\nx/BVi/v4mKFELXbupYvwb9y2Wu5Ix5MtVonhhX7JqPOTKY8gq3DK4XSxW4aBd0SXy2XZQn6ZTLWy\nYzw8clwtuuTgxDxj4Jzft75lJzaJPCG98Qb6RPeRZ9N09N15P9ttbeCqWs73+FC9XboDVRRFcYku\noIqiKC7RBVRRFMUl3ls5c3IcZ0Y3qq3kL2W17pYAlKqRajxjmuvAdzaQB9BNnGjxKWxdHf8hhmpM\nfwTn5L7zHXzbrtkilyerB4goaRMr3hQV2Yt1cJCfwm4yhP6zjwvlGENVav9rnDR+3hArl3lHqqmx\nEquM8+WX0TfzNvH0stOQxxe50449+ERcpssTEuxd095ejtV8CFtO/OR/3j8xz3lkhxh6Z8jvVBwb\n49ixsRbv1cJCJ9bF1aicVVbGdkgIvk3eniVrT4OvvpsnLYSHW4x18mT+Xt1tDGST0laPPAKu89MX\nOPbY86i6tv9VVmhbssROrHl5/PmbKkpp1aKaRiZniSh/L3/GGYdwHN/+/8VD9IaKU3egiqIoLtEF\nVFEUxSVej/B1dbwtjhzAmdByu5sfjeK+srzBnMNNK1awPWaMvaPGjh1DF32/+CLbYqAbEdF+Hy7s\nX7r0A/DNnftZxz5yxOKx6ORJjlUWxxMR/epXMgD0xcSwbZS40IYNbN98s51Y5TUVQ9uIiBav5WFx\npkhxUQQXVSfUohBzyXQxIzwjw941ra/nWM1OCjFgPfMMHpnlJY0KMAS+jx5le80aa7GWl/P3yqic\nocxQMRxO/vtEdD6LC+nH7kOB87w+LrrPzrZ4r9bU8HV96SVwtTzG4tjBr2FOaXMzH+Gz3lkDPtq+\nne3+fiuxdnTwNR2/Hj/jwuk88C6lD2fUww3gg1WdF0dNcOyhmj50B6ooiuISXUAVRVFcoguooiiK\nS7y2ckb6c06odxI+4s/fzuU2a45hDnTLXE6KnTPeN6Fd5JnGjCFryPYwo+0URBDmzAHXbFEq8tGT\nWfg+qIex13da0cmCBrJzj4hoghAJyTi2GHwBZ9gOnVs4pC/y5uHHSEREXxHtosuWgWvSA5wPM6q/\niAL4opa8hUPlqOGvloJDEsQAuJJkLJ2Tw9m6utDVLFqLo/wNZY9rxN69bJd3RaKzew7biYngGvsh\nt5YuPo5CIwdGyVwzCnsMi1dfdczNPt8HV1Yff5ezX1wAvrwv7eAXs2PA17R8i2PjyEn3jC8TOeHQ\nUPDBZ159CHzws/I5AhE1rOXnPkPN6dMdqKIoikt0AVUURXGJ906k3l52yrMOEfVP5WPoSOrH97W3\ns21U/gN5edbKLZKSuIxByA0SEdHYHTn8YrqhxiJUbJo2YddM2FE+atgsY4GuKVnSQUQ7o7lTJi11\nEHxJyfz/u6JZeISvC+HSjchIS2UsTU1OnNlleNiSIj1m58foZE49RHUdAF/Nd0W5y4IF1q5pRQV/\n/oeMU9r117M9eTL6jhwR9sZT4Ivfymmb0lKLpUH5+fz5mzkcObfcnMMuL7oUMiXCEpwZM+zFeukS\nx2qU+ciZ6vn+OeCSoZvVeFMK0vjFzp12YpWlgYFDK25dplolxWIbGtAnb+zISC1jUhRFsYkuoIqi\nKC7RBVRRFMUlXsuYomL8HLumLAh8//gH22M/NGpDRNlQ01JUpA87iLkSW8jqpHfeQd9Y6RQK9ERE\ndB9LpJstibRwoY3QLmPzS1y6coKwjKVcqOcvXop5TjnbacUr2K62q1vkayON1jmXSNUcM60ku3Xj\nj2eAb+ccznvWhGALMLUbH44lYjv5Wo1ajtcmqjiBX7x3B/gynryXX0zCeqzSVFkOZZQbDQfZomnk\n5OuXcqtheAGq1Ve08echc7dERLtiDHkuW4gyn0FD6X2EmIsW04Zvk3nPzEN47c4W83WdSJYQec7z\nS/B+HPuDHzh2x/OvgE+WOBXXxoJv23pj7tQnoDtQRVEUl+gCqiiK4hLvZUyKoijKkOgOVFEUxSW6\ngCqKorhEF1BFURSX6AKqKIriEq91oJSZ6Txh6t2AIwT8tuZe9uMOvr5sr16Nvr4+8Uv87PXsdnRw\n33bBeHDJ+s5sX/w7dvqyLNivf42/8shTog5wiF5YV1RV8ZM7UwtOBjF7NrhOvD101dy777Lt8djp\n2+7v5/5ys4VY1vkFb0hAp+iRNhvld+4Z6dhpafb6yzMyONbXXkPfRqGoJ29NIqIp67lvfzFh3z5I\nxBUV2fv8ExL48zcmr9K6dWzL7woR1aSzTkLUXhyVAkXCK1fai1WsAYej8bsTHc32yGd3gG9wxcpP\n/DkioppQUaeZn28n1pQUvqbyGhKhvkBtLbjOP8tSnH/7G74t/KioWc/N1V54RVEUm3gtY4JBTcnz\nwZcxiZWLzLHgERHi51qxKwB2JEOs6q7YuNGJdfApFH6Vs9c/8xl82/e+x/aIhdiJIIV4qa7OXqxx\ncXzRjZaSiv3/dOzY79wGvvp9PBDP0IylRqEFbEuNKTubP/+89ai4NSOCd5InZxmfsdg5zWjEbir5\n8VdVXZtBfduOzQBX5vW8O8r460rwyeuWnIy/Us6mszpr/eJFJ9amdhQVD/M/59i9ARPA59fNgsql\ntXjKiu8R1zklxVqspaV8D8Qv7B3y5+ob/eC1FJnyWx4HvoxA3knn51u6rmIAYv+38DMeuZu7u+qn\n470a/orYOcuBjkS0+WvcRZeVpUPlFEVRrKILqKIoikt0AVUURXGJ16fw4zuFQrdUwyai/KmcqwmL\nwVzNgSChBgSD2XCgmpFxHBZV93LeM8CYDSbVsY1waEQB50cuU/mWyVyLXNzDOaAx21GdKjZa5JmM\np/Ayfzv6IA4OiwwR0/EonGyQN46vzblOzB3JvDKNw3uDli51zO9iOpqWfLZcvMLc2HAobeX7KrMT\n1ajqYlipqnE/vk8KI0nhciKsPAi3c0mJiCg2kfOextw4St/O3yXzXk2J4Jx8Q4ORA20Qk+pSUI1q\nOMR38pP32KU4yE6KlSVtCsY3pqc7ZmZQObjym+WEtqphx0hERCtWOGZ7G7o+J9SZCp5EX9BWzpeO\n//d/B9+3jIEAn4TuQBVFUVyiC6iiKIpLvBfSy+Fwf/4zuMoH+ADetNXYhnezSGxHIJaUxD5yi3jx\n1lWGeWU8R/l4Ub8IC35zSBT9d+KEq4QG3t6X+B4F32VNAJb44APxwhDULSrjcpAkcQwiIppZzRXh\np+bh2XjapCuLv35qFi1yzAkNFeBauJ4//1Opx8BHb7/tmDfeaPxOI0tii6Ag8eIY/iNyHuJKrHAh\nv02cQvGdi80hxphwa1TsFZ/V2rXgi0uf49iDixaDr3DPFMfeNgpTP/tXctPHEgsxOogLa86Uk6mx\nnatawJc2i9N/2/xLwNexmtcLTEQMA1E8P5CIIu5j/8ANEqVkTBysFuuBIaC+bBnbpoD1x+gOVFEU\nxSW6gCqKorhEF1BFURSXeM2BDsZwnmtEI9YGxc3itrKEtR7wlSzksgXZx09ElGH2fdrizBnH7DJm\n3GV0cb4oPxTb0UrmiHKgiO3gu0hcboINd8PjxAm2Y49i3jUpXfQPVhq5xVs4f2zoTND+I6Mde4ml\nJFjUcs5Q1SR2gy8mhu3BZCybGSFy557dWKp0egPfG1PIHrK1dfOtO8GXFTN0yd2SVUGOHd6Mbaee\n9fx3VVmqtiEirJ0SeWYiInriCcfc04050JTos44dlYz52lDx8dj6/IkInoOUL0WxlfpAjs/Q6IAb\n9NJCFJsZf1T8nsX4N7qlI53znsFG2/mKW7ntfNfaEPCRHJRn5KOP3CDXKizF+hjdgSqKorhEF1BF\nURSXeD3Cj9jKHRxJbVg2UdRW79glAVvB1x/DZUStZiXQ449/2hivDjmo3iA/UMxM34pn345k/rsM\n6Uoa4yMViEaSLWQWY7AAj5sjfrGPX5htKuKcNGB0SSyZ3CRehZENREPRZW06zZ18LDNLgx59lI+X\nvoYW5G5RGlRaOtwImb2iESfr72ngO93D19gsxcloZF3N/HQsxamaLjrxaNqwY3QQgqWnQ/EIO+Uv\nf3HsNqOM6pwP68HWLMxHJ6SCDpM1xE2Qvf1mcOUFnXTs3WewXPHEg9y6td5IKXz+8/w3H7Bzgqfx\nfZzeyIvAv3+jbJRbjsf08mT+2bipb+IvbW294r+rO1BFURSX6AKqKIriEl1AFUVRXOI1B3puKava\nFLXVofN18fj/wQfBNbKTy0byXzYSIN/4xqcM8eo4teMlx45tRKUiTzX/HVXfeR58soph/CZDWV3O\nVrkZ8z/DIeWQKLNY1wC+uoMXHHscVg5RsJBMj+zCtrP6Bs572hIOgnwh9EoSlR8TedaFRqJ7lojN\naEeNLJClYvaKw6qr2U5Lx9IgWYF3qqAefDLPtf8VLLdZ8tBFa/FJkv7GbbjrRxlOcdGlIj4R0YSe\n0/zCLH967z1L0SGxyV7ue1ESVNKJpYwJO7ju68h+o814zx7xAhWeXCMeLGQvwgcEF4mVolq2Y340\nrpvzuGSUPw5u4mcnQ+00dQeqKIriEl1AFUVRXOJ1qJyiKIoyNLoDVRRFcYkuoIqiKC7RBVRRFMUl\nuoAqiqK4RBdQRVEUl+gCqiiK4pL/C+JEVpnIUFu6AAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  24\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9Yl+XZ/0+IDBkxIqdkjpgxUjIi\n8lAzx4iMKRIZMzUyRjzG8MfIyKmRDzMypo6RMfMHM/IhZciMjIfUyJgPkaljZOSQkWOOORJzxMjM\nOQbfP57v7vN8X8Zn7eby+B7f4zhff5137z54ct/35+K+zvv84dXf30+KoijKv4/3/2sHFEVR/n9F\nF1BFURSX6AKqKIriEl1AFUVRXKILqKIoikt8PKrZ2c4r+hzfQpDyA9fxwcmT+LmVK9levRq1s2fZ\nrqjw+lJefglSUsjxtWzreRRPnXLMdt9wkKSrpZvxc80n/Rw7IoKs+VpVxb52d6OWOrOHD/z9QUua\nyX/vqlYcBC0ocbJjd3VZ8vX8ecfP7JV+IE2ZwnbysTz83NGjbK9YgZq8V2bPtnZOW1v5nIafa0Rx\nxgy2t2wBqWtKkmObrh46xHZTk73r39HBvo5sqAIto5r9ufFG/Nx117Gd+v2hKD75JNu5udZ8zc1l\nX/MCcQ1omprt2JHjh+AHlyxhe9Ys1ObPFz+kyY6vZ844fjafHT7g/zZmDB57//hZx+578inQZs5k\nu6rqi6+/PoEqiqK4xMtTHmhODv/1yZ9WB1pVd4xjJ12owA9u3cr24sUgtY7hv7Dh4fb+qk+YwL7O\nnYta9rgaPti+HUXhX9yKCSDVbmjmg4iIy/NXfVUfiufOsb1rF2o+vGGoCkwFqaGB7bw8O+f18GH2\nc+It+HReuoufSOUDJxFR4ZqLjp00C59MqsYs44N166ydU6qt5Rv5iSdQk4/5b72Fmjzff/oTSJ3j\n+cl1xAh792pGBp/X4vlHUBTfncbMYpBCQ9kO2oBP/U0zcx07MtKer42N7Gv00jjQ1n6n1rGXT28C\nLXtbpGPL3YpJcrIlX8Vuua8An5TlTmLyey/g5+65xzG7huHuNOhCBx+MHKlPoIqiKDbRBVRRFMUl\nuoAqiqK4xGMM9OBBjn9ERaHmd/cdfPD006CVnY13bPNN4k9/ynZFhb1YDbW18S+SmYmafJttvPbu\n2187kERB00RM9MgRa756eV1wfO3/m/E3TAQUa89hTDbuVKljmzHQqVPZ9vOzdF5nz3b8XBaKce51\n3Rl8cOECaMVT2M8M31LQwNEB4kquuOYavv6PPIJafT3bBQUgJRVwLB/is0RUM5UzTeLj7d2rZWX8\nvUq5UAJa1bB0x05MxM95r+I4p5ky0Pkpx6RtxmshBro6GbS2gkrHHt1tZD4EBjpmX+hokGRiTm6u\nJV/7+hw/Oz/G79SI9/kdSFtYPGijQ/kdRNxU/FxtrIgzD5DZoE+giqIoLtEFVFEUxSUet/AXL/Lj\n+5o1qMkE9PJy1FLWcApD/lxMb5ApDTExFrfwpaWOr4VncXsrdhOXpDh98AHbf/4zask+Isk5Kcme\nr2K7AUnFRJTay1u6SZPwYyKLydw1U9Yo3k5RcrIdX+PjHT+bCmpAipzP4YWyJZiKk3KO02/SD2WA\nVlIvUkVaW+2d02XL+Jwa2dLtU3lbHNKN9yOEd2QuGBHuof387Pna2ur4evGmm0AasmCBY8ef2Aha\n9ZvswmOZ+L3d9PQZPhg+3J6vOTkcxunNB2ndqRQ+EMUqRETxvpz2KLMaiYhuuOGPjt3ff4MVX0tK\neK0aNQq12Fi2zbVq2DC2V61C7cjfb+OD997TLbyiKIpNdAFVFEVxiS6giqIoLvHYTGTIkoWOvXg1\nxmO8f7HDsRt+8xBoifUcZ5p2An9mdLlIFYlZR9bYts0xs7fFonbggGMueALjo1deybZZOZmcJmrA\nkpLIFl3d/HcraPNm0ErTOK7UM68MtIA0kUYybhz+0HlLyDqidrC6GqXyqRz3zDRL9ea85Jgl9BJI\nxUtbHRujo4OjcS7fS7LkkYgoZJso7ZMBMSLyuvHrjp2Ziek23+plOyWF7CHKR4dMn46aiImntaB0\nbA3HPTcdwHJFGr+e7fb2Qbv4T5JbOO5ZmYaNT5rD+P40z/ndP2PbLOV85ZUbbLnnkH6uyLGbgrNA\nG7KNY/KpxsuD9lj+f9PSjB866cV/+e/qE6iiKIpLdAFVFEVxicc0JioudsRSX9xwjR/PttghExHR\nwhbxCG02WTx9mu3oaGvpFnV1nMbgYwQmJo/n7kC5q7E70KJFbL//Pn4uvkBULdTUWPO1s5N9feMN\n1KTvKb1YxbP2Iw4/3HILfi5hu9hjlpVZ8bWpif2M/O9nURRdjaqW1IKUlCg6TC1dip/bsIHtixcv\nSxpT6TgMDc2bx7b3Cqw2KhrF/2/WtFbQJqdxytXBg/ZS7qDL2fhKFI8dY1t+V4iIbr7ZMetuWQRS\nzH3X8MEnn9g7r4WF3DnKPxukjAaxJiwxQkjyupu5Q7IDlq1qtJgYx8+qpdg5LimYw00p67G6ryyM\nq7tST2KHq9JZ/zqNUZ9AFUVRXKILqKIoikt0AVUURXGJxzSmrGMc4yg6EImiyGvZ3xuCmmxrZOQG\nNU7h+Gj0l/XySxAWxvbI7mbQ2k9HDPi5Eb/jeEl9fQxoUW++6dgDT1n59/nhD9ku3XoRRRkzNuZJ\nLV8iYk63GXNmzGEvFojcxfEh6ExDRPX/4PkxuYuN63+UU3H6nnsOJO/f/96ihwJxrapPoiSrDP/0\nKcZH/yFCjrQa822GTTpDlwN5WTMyscNR8UrxcsGsnx471jGNCtBLO+1bomc+xz2H7UetchqnB001\nyicD5OQH4z4ui+JrYC09TMRgzQkJSZmh/G8/9DqKr/DNUXoaOzXRFY/9y39Wn0AVRVFcoguooiiK\nSzynMSmKoigDok+giqIoLtEFVFEUxSW6gCqKorhEF1BFURSXeMwD7eoaeKTHyZNsV4zCGtm1I7jV\n1tVX4+cWLfrMsfv7v2KtZnfnTvZ1xw7UqsLYv6Y0bAMWWZ7DBzKZlIjitvMoiNpai+NHRN12cRjm\nJcoBksaUBKpNZN8LCc959lnxe+TnW/E1OprPaeP+LtDiZgU5thyZQoTjXnx9UZPpqt7el6e+PDgY\ntaxqzu/bOBNHkyyc1sYHxlhWr9vZ+f7+iMtSX35JW0I5j+Luu1GT/r2O+YyNgXGOHR1t77yeP8/n\n9YknUIMxIkYtfPsabnUX0oLnHL5no0fb8XXsWD6nzz8PUlELX/+s576Bn5OLhcxdJcIvYFWV1sIr\niqLYxOMTaFBogGOvO4GdkUuquTYnuRqf6gLFH8qSQHxSWviAfKzCWeODYc5Oruj42yyjw013qGMu\nXoxSVBQ3jC1aj9VWtcPkXyTsODQoRMedjGH4BJr08nLHPvO+kWI2jCfiBR8wfuYpY8qcBRrniet6\nFoeU1969iQ/MbUa1uAFk9yUi3Lr4+ZEt8r/C3aI2+jyFougMFNqLkqyoq4vCRrz9f7TXmFjSlcbf\niSDCJ3vZ8HnPix+BJJsWm/Pvzonmy9EWS/z8TvMTemwsNpwm2Qzc6BwlL3OI2R5NdpwabfxMtzz+\nuGOen4IVRbJGr+s3fwAtaMYdfPCs0XHMnIb3BegTqKIoikt0AVUURXGJLqCKoigu8VzKeeYMi0Ys\nq2o8d+dJOlkEGkVFOWbNBexwtG8f24WF9t4W5uby28K8QGPglhg4d8n0K9Fav9A/F6TsUyJ+W1ho\nzdekJPb1ww9Re1HMsZo5EzX5UnBIw0HQOm+c7NgjRtg5r9A5fVYjaMUNHGjL2I7XGF7Dy9EFRJhm\nMECXb1dccw3fqwsWoCZ9MPzpvYEHnPnccw9onS/z22Nb55SIiF54gX01hsr1hXJM8OOP8WMjviY6\n/ct7moj2BHPGSEKCPV+LivgeyJp/HrT0xRzDLlnZBlrqKv49zI5jO1/lqRBz5tjxddky9nNdJvoC\nAWNzOmIvB8UrZ+EQx+R9ovtZcbG+hVcURbGJLqCKoigu8biFl8npZr/W4m+LBNTPPkNRpjSYW2aZ\nwrBunb1tUUKC42vnS3tAktvinHE427rrvvscO8icKtcickNmz7bma1sbn9fR55pQFOlie3yx2a7c\n/ZrzxmQT2cZGS1s4kfAv564TEUWnccpXchj+Dq+++olj33XXNaDJbLj2dntbzaoqPqdJvZjG5j2L\nz2NfOabOnU+c7dgyZYeIaOwM3oYeP25xC79uHX/pjCqE7BbeNh4/jh9btYrtiWN7UHz5ZbYXLbLm\na2kpn1ezsEPecxVzjdRBebP2GrljU6eybSmMIwc1jvhWOIoFBWzL1CsiSvbltcJsxNx2QKSxhYTo\nFl5RFMUmuoAqiqK4RBdQRVEUl3hOYyotdcTm8akg7RcDprKOpoNWM7fEsc1mErKqa/Jki3Gl5GT+\nRcwSLNldorwctblcHinL6C75f4OC7Pna1OT4WteN5aOTJrGdiNWT4Gp6N6ZqeT3xA8fu77/Sjq81\nNXxOzQspA3JmlwkZEzfShroCOa4YFGTx+mdnO75G7sdz07RbxDbN30M07Ei/A4OOMnPPz8+eryEh\nHK9rX10K2tqP+Hu2/NGBG7icPYs/U8bvbDZpkamMHb04WnHkr/g9yPn7HwIN4slGyhVddRXbTz1l\nxde6Oj6nxgw7qskU8VnjO17TwOc0Phhj+efD+Ls50PXXJ1BFURSX6AKqKIriEo/dmGqCeTsRavyf\nWeO4O1HrtBLQ4pckOPbBlZhSZG49bHGxnB/TzawJv7Q0x85pwNSg2Gqukoif2gcapD8sWzZoH/9J\n5DzeGjyEOx+KOclbupkzMWySPq2DD1YeA63/pz8TR9gByzUihNG4GK9xtGhrFf/8DNBqVh/hA2Ne\nfZCMQ5Ti9nUwnF/N2/amG18ArXj/IsceNgw/5ytS1Uqui0PRR5TN0RCyBUSYgqNAu0Y01Wo6FUQD\n0bQErwcdCGU7zvg9BoM4YZlGZVyV72uO/UEY3sivvMKhmnVhODS+NoxTtWx5Krs/zZtniCKlqnUc\nfv/PnWM7vxrDaTnB4hynY5jyn+gTqKIoikt0AVUURXGJLqCKoigu8RgDjf/edY6d8wh2x84fz13H\nDxklXmP2cdxzqTHyRZKU9GVc/HLIlBNjtA2tWF/s2GFGFlP8UhH3iMJ4VG4ox+jy6PKw/I4647+E\nOlbLLkOSv+QvfoGaMSPHCt/9rmNG78dSzqE/4pjwO+8Yn1shujGZIwDM7uSW8DshUlCGDgVtjBjB\nM/7bmI0Ct64RIF37HMc9ly8naxw4wPa58Rh3yxjGsfw2f4zXQSOhAvzSnf+P/3BsP0+pif8uon5z\n6tQQ1I76O+aWLSjBV2n3btDi3vsRH3yE64pbZNzTbADms5Tj47tXoiZLixurO0Dzuv57jt3/xSFQ\nfQJVFEVxiy6giqIoLvFciaQoiqIMiD6BKoqiuEQXUEVRFJfoAqooiuISXUAVRVFc4jkpLyXFecO0\n8z6cWDdnuhgpEBYGGmVmOmbfKsyg9N4G9aXW2m51dHA7q5H+xrgD0XsvebtRCx/LtjlC4ckn2Q4J\nsdcirLKSfU3uxRETsp9d3yjMu/Mu4FzMrvlYmx/ULdqHjR5tx9euLn7DuHQpanI0i3H9c0L5Xsnv\nXoifmzWL7bg4a+dUjp+Zs/4OFJ9+mm1zDKosTDdzaV96iW1LbdeIiCg1lc+rMWJCJjHnbR0JUu4Y\nvlfqgmeDdtNNbFudILpwoeNr1+qNIAX1nuEDs02k7Cknp2ISUYcP39cjR9rxtbaWr39cvZG1LftC\nmudbjBdZ+wc8p48/zvaQIdrOTlEUxSoen0DzxvCTRO4OLBsq6uThbFnmB0X1icz0JyI6OYpT+uO/\npJNfhpHVXG1kzn6e7cu+isZMRESU1MJPda2P41Od7MNsk+uvZ7vub/hXL+YAVz8tPYrdmArffdWx\ngy5cAK0xkWfaR5Ml5Hx32e6GCEpN2lYUg5R1o/hj/cAD+DljiJotYKT7LS+CFj4zwrFbt/mDRrfc\nwrbxlA1P0oP2kKmaxdf4rPHgli6aVRmXmLzmXOvYZuWP7FlcYjRqGhTiegVdjxVe9PDDbBu7kJgx\n/HQ6xXjoyw8UVW2WupyNkg2f5s8Hrcefn+RHvIz36oOic1vJJNTKdnHXqJSUL/539QlUURTFJbqA\nKoqiuEQXUEVRFJd4jIHmrhQd2peEgpYVynHFvtNnQPPexW8Lq09hjC97XI04shcFzT3F8YrTwRmg\nzRcvfuNHNYO29jjHYJafqgUtZxv3y863GAT7+tfZ3mV0XIqp5/jtiNsxBkrPPuuYefXYy3vS5ej0\nL2LZe05GgLRkCduti3EYV+1b/JI5uLsStMsVAz19mu0V69HXK64QB0aH/MYlHI+M3vssaPMftOYe\ncOgQ2/lRmIXRdpq/L598gp/rf0fEIMvxzcOUpUXW/JPUTuUbP2opfgmCLojuRcaoiZ98m+2J/4nf\n85K5vAYM0OTo3yb8EF/HnVfh9+b999mW3z0iDO0vG4brhnGrfCH6BKooiuISXUAVRVFc8qXnwpsd\nZb1Otzt2/2+N5GSRuF4XhVsNmWG0bp3FhN+4OE743YVb8aAGETYwuq2W7ObBXbLRLRFR6Wmx9aip\nsebrxYuc9GtmB4WXcxJw38pc0LwbxLC2jz8GreZKHuwWH2/nvM6ezX5WLD0C2sHeCY5tpqqlThMh\nHWPCX5cvp5RYnQsfH+/4eviZGpBeeYXtdWOMHB/h37ITuIWT+dcxMfZ87fPycnzd/Qp+/5L3c+FB\nYRgmrst89LJeDI1BDKOuzt557ehgB430wMJzfL5CQ/FjMjS1YgVqkb6tfBAebsfXixcdP8/34gBA\nP18ORQYNw2dGOTdS9isnImqcKRLyc3M1kV5RFMUmuoAqiqK4RBdQRVEUl3iOgYq44sV9GFe86qp/\nOHZ/8CjQ6K67HHPtrdiE5NFH2bYaA1u2zPG1LRMHoIWK0sINz+Pvm3VB/L9GCVhpNcdHU1Pt+drV\nxbFFX1/U/G4fywdf+xp+7u23HfvDQ/h7THxUDCdrarLia3Q0+7l3L2qydPDee1GLuJ3TbXo6PwdN\nVksWF9s7pz097Ksxwwxisl0+w0GT/2/6fqNeTwYdW1vt3avNzXzxjEYbsiSy8vRkkGRajb9Rkbpq\nFdslJfbOa7uI1+7bgvecfJ1g+hNeL2LNxrDGrlAuNra2BtTVsXOyQQwRfq9lrJgIBglenIKpgXIe\n4kD3qj6BKoqiuEQXUEVRFJd47gcq9gVDfv6CIYqUD6NtTHEsb9uvM7aoQetFak6exWnrojTmlJFW\nM/q//suxsxowrapjBVdwjJyPvUJTxaxtohlki6BjPAu+IywGND+5bTdynIKef96xJ17XDtrGTK4G\nMjpwukaOcL//ftRkypeZ/hEhcljMeerFv75NHL03KP8kAQV8X6XOnQtaZT1XJiVXY+1Luph73rML\n059Ea04yJqIPDrltnzkTpD7/AMcux1+DKqaJbbEPfnWPHTOq1iwRIu65lhbUMnyEP0YlEhwbLdBW\nizBOYSHZQdyQpVNLQbrpKra/ORUkCtrO3/9PbsYtfPE0WUWHa8M/0SdQRVEUl+gCqiiK4hJdQBVF\nUVziMQaaspnjc2VjDoC2ZcuVfPAxdvLOCOVYUso27MSSGnzu3/XxyyECVvX1OEsm5hDH5DKCq0C7\n4hm2r4vCzkHzRbgOf+IgEbWPI6caQRkR98zfhv9qTgtHN9t6MSq3cKooj6PwQbtIRPSzn7Ftxlzp\nGMe4MjOxB37Zbo4Xb7of44pnNh91bEwoGhyjt3M8/QBmo1HyM3wh21/DuKsIgVLgKZAo4pTwPcTi\n/ASR/9P5eQBII45yfDwzE+Pj1CvSBWVLJ7p01I816usds3BlrOEPpyelrsd7QIxFo8lRkaAV/vjH\n4sjSuwURSz5hdDhLDRTf+aGhoLXP5HciIT/EOHJWIMdSi744BKpPoIqiKG7RBVRRFMUlniuRFEVR\nlAHRJ1BFURSX6AKqKIriEl1AFUVRXKILqKIoiks818K3tvIbptWrQYo/zTlSSzENlNasYbt2ewdo\nAWM4t7Gnx2I7u4SEAUcP0DmRe2r0j6s5wO3/Txl5gLKE19vbnq81Ndx6zRyHsTDqIB8YDjWG8RiH\n6NAu/KAsSB9g/MC/S3g4+9na0gda58f8t3fEb7HVIcxwMOrS68ZnO7bNMRm0Y0e/sEGqytzj2EmE\necAUG8u2Uc/dM2y0YwcE2PO1uZnPq2wLSISd31J2YfJhnshTzp3bChpMOx0+3Jqvkyezr0a3R5Ip\nzCGrjPmaok1cx09+AtKF3/OlGj3aznkNCGA/e4KNPOhRIn9WjpMlorZxSY4tex8QEV1/PdsjRmg7\nO0VRFKt4TmMSTYqXETYpXjdKzKE2H92mTGHbGK7c+VX+6zDQqu6Gjg7+CzTyvddBa/4GVzsYM86A\nyFsNd/7zP9nOy7Pm68GD7KtshEuETyDrVl9Ecft2to0pXvFruJNMTY2d89rUxH5G7sPrf/jbyxx7\nyxb8nJz73T4GK3hC/MWTc1CQvSfQhQv5Rr7zzoH/P6NJNU2a5JiV+7Eq6EMxK3H5cotPy0OHsq8L\nFoB0fjW3J/J7FZ+k4RHQbI+1fj3bFp9AKTXV8XXnDOxyNOcz7saUexKfQPMC+ffYMyYbtIQnRNPw\n48ft+FpVxef0scdAKvzBHxxbfoWIiBoTuYtXdDV2hxMP0QN+p/QJVFEUxSW6gCqKorhEF1BFURSX\neI6BVlY64oQ1+EZQvpSPH4dv2muO8Zv2ffvwRxZOEx1u4uOtxWpaxPCrttfxd0oIbuQDMwgqutrU\nGrGTuOBgPvjoI3txpZ4ex8GuXoy7BZ04MvDnjh1j2xxGNmOGtK34umABx0DlMEAiomjicxq/Ajvx\n1EwSUwemTQOt7CQPSktJsRdX9PL6o+PrLbfcAJpMUDDfJLdu5e5Hlwwce+45tt9997LE6803vxFL\nOGa84EbsZLVpKMcSS8ZhK/d0HxGfTE215mtZGfuasga7KsHbbRFLJiKK2c/3QN1uzBipO8bDGm1l\nYgwdyn5+fu9sFO+7zzG7pj8EUtBJvo8zNuN9XDxXZJfExWkMVFEUxSa6gCqKorjE4xZePr6fM/og\ny6bJMCCaCIbMlezDpsAyp/b4cYupIV1d/Iu8+y5IXom8bXzjjWtAk3n1MvuKCHfFe/da9PUb32Bf\nf/tbkEp3+Tl26mPo6/RJn7A/Txtbfbn9TEqy4mttLV//uAZMYyry5TSmrJlGs2UZ+igvBylpFzet\nraqyeE6Lix1f++ZngCSLFczGw4XE2+IcX9wW5z/H8+3p88/t+ZqR4fia3lsMUslmkbpm5NxUBnKq\nkEyxIsKEfJvfq5gYvgfqVhkFEzIcZmzh6dZb2b7ySpDa93MRQEiIHV/hXt2NgyOpoMAxDzYMAWny\nbr6PL4nvyPhjVpZu4RVFUWyiC6iiKIpLdAFVFEVxicdmIjK0afTgoKwCTrc4vRU1GY57++0e0Prf\nkMOw7A3qauvm1IjRhvaXv3AsMaj3DGi1x3i0mfd+TBt58kmLg8QkYnCcHIZFRBS7VfjwwAOg/Vam\nhMkUEiLK3z/BsXOSyAoQ1vr8ZtCyvimaWfj4g7bzVY4zzdm0CbSq/5HNRTAeNSh8+Fb2TsPhYOFC\ny3/pJfycyMc78b7xM983/4MlROrcfHMYnIwdGrljyYl87xafxZF8ZlMSWyxaxHb+oTjQcuaL75J4\n70FERN/6FtvG4ESfG0Q40dJEjKNHxcHMItBu5lcHNLkc46OVsfz/JvtjOuYli94XoE+giqIoLtEF\nVFEUxSUet/DhBSIdRPZ4JKLERN4oxx/FFJe6SZwa0GtU2jQH87Y44sv7+S/59a/ZvnEubr3vvZft\nqok/By3s4af4YD2WTZ2M4p8TY4zoHgxVr/G2JSmsGbSQ/36BD4xmobBN8R8GWs4zIuUm5/NB+0hE\n5HeiiQ9uuw1Fsb8vW4NpTLKP5cGfYkrZCZHVlIo77UGx9mNO8Vl+CtN/Is9y+k3TXSfxg6KVVMUU\nTCmjwPV0OShZwuc1fZSRAvbss45ZSVj9l+zL4bCMU7mgLTvBnYQmTrTh5f8y5xoOKeWcw+9Vjy+H\nEYyCM/L15cqo2gKsYJL9QG2RPZ4rypZV45f17ru5G9Nbb+H2PnnXQj6YuQE0SMcbAH0CVRRFcYku\noIqiKC7RBVRRFMUlnrsxyS7PZrmmHHx06BBqu3Y5ZvG+EJBkWCEpyWIpX24u+2qkTXh9m1Nwduy4\nFrTFi9nuqj4IGsxPOXLEnq+1texrWBhIMfP4fF1SOifSKpbtngzSultF9/KHHrLia2Ehl8c9hE1s\naMQ9HNdacGcTaJseEWWmMjhNRF6LEx27v/8Ge+dU3KtnRPcdIqLhr7zCBzKFjAhLTXfvBil5MZch\nV1ZavFfj4vj6Z2aiJlKuYDwBETVf4PcO5iSDimCRnlNUZM3Xykq+B4xxQtR+oI0PfPB1SlAU38cQ\nuydMucrNtXRem5sdP0cn4tsVOS7KjNXmp4l0POP6513gdzkD+alPoIqiKC7RBVRRFMUlnrfwiqIo\nyoDoE6iiKIpLdAFVFEVxiS6giqIoLvFYypmVxSkMaWmoRfvz6/+4zHDQZNqAtImISlaItIHwcGvp\nFunp7OvZs6hVjeJyrfQLG9GfYaIj9ZgxoBV2c3lgdvZl6vJ9oA+05hb+mxaxNRs0ORagdi52Mo8L\nFSklo0fb8TU5eeB0m48/Zvutt1AbN45tI/el8Sj/ftHRFlODCgvZV3/sDlUbxiXJBw7gx+aK5lAR\nPq0orhelnBs3WvN1zx6+/gnjjFJO+YVpaUHt+99n+5FHQGqdxmlM4eH2zmt4OPv64YfYrax/J0/E\ni9mAg9zkZZfnmIjo4n4xyC8mxo6veXmOn9PfxTLXvY9UOHZWPfpZNFGk/4myXiKinYvYzzlzNI1J\nURTFKrqAKoqiuMRzGlNKCotG6UPnV3nbPuKb2HEJtj5G5ceFZ55xbN/+fntbuPZ29vXll1H7+tfZ\n/tGPQCp+kju1ZHz8LGj0+OPq9PjXAAAc1UlEQVRs+/nZ87WiwvG1dc4ckA5s4V/DiChQzOYUx+4o\nKANt/362U1PtbOG8vD5ynOn/61dQlAO35HaeiKJf5C68I0bgx374Q7bj4ixu4WfPdnzt2VoB0tKl\nbJt9f7eKZuBDduPnKJGrpqxe/7o6vshmTEEem1MOGxrYNqrtkus53GOzaio6mrfwjVsbQas8yXPU\nZ34X/0lvEdYxGzHLEFthoSVf5aDGHTtQk9Mh5VpARD31XEUXMA6rJpPHc3hloHOqT6CKoigu0QVU\nURTFJbqAKoqiuMRjGlNxLMfZMg5g2syIaWLgUnc3aJB+Ibs2EVHekxyqyP+yXn4J4udz/KJmTCdo\nG6/hrvMLf4A5TtCdxX8BaLWH/Bw7DsM4g0PEDIf9BWPQGe++zgdR3wJt4xS+HvOvx5BM4l/sl+R+\n7WvXOXabkRoWOovTQYwmNrRdNISXAwaJIBPLKnvSOH756V7UNohG4729qA25dSwf3H8/in//O9tm\nO6rBINOsqqtBat3OnazC5xhTAGS6mGwjRkSVc2X8FlN1BoMMA0OgnYiSo8RN8fDD+EFxoWVWGxFR\nwn3i3i20dN/+7ndsm+lfQktdisP4AleyXbR8OWir8Ov3hegTqKIoikt0AVUURXGJxy283G6lH8sA\nrWRYpWOX1ePr/xTRB7axHKs70rBIxBqwNXzzTdD8RS/oaKO6p3Eez7Ze+3N8vF/+Nx7URXFY3TAY\nMt7nNJ/iOzA1RKZ9hSyYAZKc69fwDm59xnm8ku44Uy4aOm+vB232MT4f23GGG736KttzfoDnFPf0\n9v5+J0SJmd7DcOBe7mqeP593E6a45D14nP+/7VhRd0n5nS3ksECj+bM8PeFXX00DijPw3rikU7Al\noKfzqFjQas9NcOz9o3Dg3DzRJzx2FP5Mnx/8wJJ3TM9VVzl2wOrVoC37K4fwzObOTeO52jD+tRLQ\nVhkRlC9Cn0AVRVFcoguooiiKS3QBVRRFcYnHyFl27zo+6DYHx3EaU8qp9SBBF5MV38DPHT4sDoz4\n2CCAssdELMlMXR/j2CvP1oEmU7DGjjX82X3SkneIzOxqFOVwRERRi2937FNei0CTc7tkeSIRdrzJ\nyiI7yJwfo61WxWk+p7QUh5/NEXHcul1nQIu4glNYhlmchlBYzgPgshtSQMu7mYcKUjf+HrmJIgZd\nYORcrRQ5LhVGmecgKOvlNKMNr6N28GEuH6xaivdqUj2nEh4ch+8kCtLYrqwka8h5kcm3fgha3Buc\nHxZnDpa8/jG2Q0NRi42145wgYNIkPrjrLtD2iUZiTVMWgkYtJx1zN2aU0RNPsD0ZZzg66BOooiiK\nS3QBVRRFcYnnbkzp6Y6YE4yv+PMXc9pIyKSRoLU3iG3bL3+JP1NWLAQE2Otw09rKv8j8+aiJXIwc\n/yKQ8u8Ue6ivfQ20ixMnOvYQm52jmpocX3N3RYKUt4obLHtd8Sfjg9za6OGHfUEp3SYaM3t72/G1\nq8vxc+ebQSDNuf8iHxjVZrLjVeNv8P6KXp3MB5WV1s7pwYPcNWhydQ6KwcFsyy5SRJgbtmsXSDWJ\nfK/Ex1vsHCW6nOWPw65aOf99h2N37n4XNDneXmZCEWG0ISjInq91dXxe/T2kIEbvxjS/1nmcAmhm\ng8mCJj8/S75ed53jZ/wtH4E0cybbZlVUzCouMcyLrQUtdxpXhdGECdqNSVEUxSa6gCqKorhEF1BF\nURSXeI6BNjayuHkzSEmnOaXCTKmJOcTpT3WTloEmq+wiIuzFarKzOVZTOKoQRZH/M2E75viYXd8l\nMnOnqMier83N7KuPkUjmdxP/M7PvwGsjfS1Z2gzahLQIxz5yxI6vHR3s58iXMDVsz21cHiczSIhw\nIEHeFBxEVnaWS/5SUizGFVNT+WSFhaF2442O2TgWuyrJTk0lM6tAGz4/ybHPnLk81z+iHrucLXiP\n05Oefx4/NySTyw7l70RElNXJ18PmvSo7vTe+8geQoolTwHJ3Yzpe3kTxbuEf/8CfKb9YtobKyesP\nLaSIvObwv79ly4OgZZwTa4UZIJXjC5KSNAaqKIpiE11AFUVRXOJ5C68oiqIMiD6BKoqiuEQXUEVR\nFJfoAqooiuISz33M161zAqSnjYFLbaIj+mT/JtBoPLeAr6m+CJIsB5s82WK6RUnJwGks27Y5Zjph\nSWrJEva9ibCsMjKQO+NQSIg9XydMYF+NLjZ94m+adzWm1SRv47QaWbpHRBRdL0pUs7Ls+CpKDi8Z\nHFhQ4JgHuyNAks3ReyZhp/LUYE5rKi21eP3b29lXo1yzNoxTg+J2Yxpbtg+ftyVL8EeGzBe+19RY\n87Wzk9OYzDl2B8cMnKpEa9c65p7yHpBkaWdWlsXzeuQIn1czX/H733fMyqGYHnZWzJtraMCPvf02\n28ePW/I1IID9lOlHRES3c4ezogexPFZ23I/pxu8biAN8//UJVFEUxSUe38J3dfFfSvOvs3ioI2/q\nA23BIl6XO3HCMFVOEYmr2dn2/lJWVPAvIvpREhH1ZHIyvzlWN1P0CjR6ScBfTqtPyyI5mXbuBCm7\nnOfMiIc8IsJf68AB1NI/f4EPFi2y4qu8/kENmBAvtxIXx2OzRPlQbf5V97rvK47d33+3vXMqGp9c\n0mlD3qyyswQRZVXzU6aZR51xSDwNlpRY8zU9nc9rCaWDNuEY75CMfHCYZHzqFGqyQGXkSHv36rJl\n7Ou6c9hLs2T8RseeOhU/96540Jvz54ELW6ztlkpL+fob/UfTt3HvWvOcymtuPinLHjRxcV98TvUJ\nVFEUxSW6gCqKorhEF1BFURSXeIyBLljA8Y9NPz0PWl6Bn2MfO4afq7iPZ28XduLbOdnrOCDAXqym\npIR9NeODpRv4jWXr6QDQwru5aWrnDRNAG7FFzIXPzbUXr2tudnzN24VvsOVso9PGiJ6Yao7lehes\nA02OmamttXRes7IcP6d/iI2ox45l23xBL19eZq3GOVNFK7nZttW3xeKcZqzHcypjhzLmTUR0MJTn\nJ13chs2NL1sMPDeXv3RGl+K4fXyNpd9ERMnBB/lgPc4hIzkLPTz8sjT/vmS2kXjbXXsMr7Ns0lJe\njh+DGHmMnfO6cyd//+f8Lg/FK65ge/p0kLK3cxOUwjHY2GXyNs7eOHhQY6CKoihW0QVUURTFJZ6b\niRw8yKIcZEKE6SDGNiR7w2jHLryAqQ9jf8WpD9aSaIkwkd7cw8vtzdGjqIk8hqz1o0Eqark8idS5\nubzdyPvlWND2/PS4YyfU42yfZb35jr3u5GzQaNUqtiMi7PgaHs7n1Nj7nhYzXyuex3so61PuHdo4\n/SnQZBqZre0bEUEaS8fUVJBGnuDxwFm7YkArSuT0rL6pmPTvvU0UXaSnW/O1p4evf309agm9nPZV\n2p0Emrx1C32wzy7c40OG2Duvs2fzxb31VtTeeINtMwdQ5j0aTXfjDvD8JGvhpjNn2E8ZPyCipKO8\npa+aVYqfE2GJBb/Ae+Ob32Q7O1u38IqiKFbRBVRRFMUluoAqiqK4xHMMVDYSMFMYxFyTtlNDQBrd\nUMEHLS2gZZ3l+IfN2S3nz3NcyajkpIgGjntkH8X4WGF1OB8YsZO8QxwTy8215+uePezrtdeiNvEw\npwt1zMLGFyN/xelhZheKwx9wWtnEiZZ8jY93/Fx7N5ZyLj/M891n+1SCVrGSG7S0B2KDlpAW8XPi\n462d07Vr+Zw+iGNvKOQcz4/yuvkG0Ppfe4sPtm7FD86axXZqqjVf8/LY19zERtDWvslpNctfDAcN\nSlLNYetyztCRI5clPazs6MBNYwKvxX/yxO946QjPjAOteC7PX8/IsHSv3nYb/4NPPw1SSjnHkstG\nGbFjmYNppIbFzOfzX1enMVBFURSr6AKqKIriEs/9QGVqgtFuZcGrvL3d9PQZ0KBVjJH+UjRfpmYY\n/fcGgd/pNsfetg3TkdZ9m/fJskqGiIiWHmDbKP35zndseYckRHXwga8vimPTHHPkbky5OHyTCD98\ngB+77jpLzgk2zuTt9vI0rERbS7xtP/oifq7Vl7ft4acOovj3v9tzULB8AVebFW3DarPFi3nr2f8t\nTFWh1aJ3pCznIqLm733PsSNSMfQzGOQY6LEP4Tjgw4fZ7lnQClpAOVfK7HwGtUs6HtlCjDMPnIbV\naEGBogvbH/8IWngvfx8P/7gWNP/fW/Tvn4i4zR4fTP+S7YFzerGCb9Vuto02slRXcEQcYZXiP9En\nUEVRFJfoAqooiuISXUAVRVFc4jmNaeFCRzxfsBEkmSoUcQFTMWQbm6ILGSDJCtCQEHupQRs3cmrI\nvHmoydBm+Ok6FEUpZ/TUIJBkVpPVbjyye75Rdlo7i89z3Emc30TV1WzLlBYiGjKM434XL1rytaeH\n/ZSDbIiIFixgW8zGISKMhxnzaU6//LJjB/f32zunhYXsq5jJRURYSmjMoJIByaJy7CgkU+4oL++y\ndGNqfuYZkFY/yL9G2XtY5kv33su2ETuHcsWqy1Mie0ndqfiiya7vRDhrjEQsmYhwttJDD9nxtabG\n8TN6BZbkNj7zOh+88w5qs7g8Onp3Lmjxh/ic1tRoGpOiKIpVdAFVFEVxiectvKIoijIg+gSqKIri\nEl1AFUVRXKILqKIoikt0AVUURXGJ51r49nbnDVNNSwhI8esT+MAY6QHFp0Z9MeTkhYRYy1fz8nrH\n8bW/2hgTKZNWjal8E+Zy3fyRxVh7fnEu1z8PGWIvt+7wYc5Z7exEzZyMIJETTeWETiKimENc4ztQ\n661/m8pKHj1yLBkkkT5rdiyknFiufy9qmAxa1nhRGz95sr18xR07HF8X1OMk2K9/nW05aYKIyO8k\nt7obHovt2s4cEz0ehg+35mtREV//rN3Y6q1nN9eNf/45fu6VV9he+MmzoB2eyqNTrLUzJIJc4JFj\nsMdAx885vzL5xRmgvfrqJ4795JPXgCYnz0ZGWvI1I8Pxs3UpTteUY2Sij+8ATbYBvHgP/g7yu5iS\nonmgiqIoVvH8BCqqSMx5Up0v7XHsEU+m48d+/GPHPpOZD1rIEvEkU4mNeAfDO+/c6dhZxhzqxES2\ne42nJZhZvQEHznnLCgqL6V5ypvrETuxIdXoKd5LJmNUFWspirpS66TnsKlP3t3ZxhLsFt8wu52tl\nzuKTBVTJY5pRHMY7kM+NAiYaNsyKbyZlXg8NqMmGYD/7GWrL/7rdsc9c8RJoVYc+cuwkbPAzKOQ9\nN+Ix7FS0M43tys3Y5WzhKK6i6pqLw/oO869BEycO2kWHjnP81Cl3QEQEu7lpf0apcgqfy74l2aAZ\nTc+sUDmNnzpPVqMmi7YuROF9IjenKWkpoN39XNm//Hf1CVRRFMUluoAqiqK4RBdQRVEUl3gs5ezo\n4LeFIzdjp5KdN3OnEqOhEG1ay93Bac0aFGVHl7o6e28Li4v5FzG651M3v5Vv9sUO4BF/4DeJIx/F\nt3Adq8TbvIwMa74OHcrn9fOCF0DrenDRgJ8LOsdxzunfxzjn3kfEIL/Zs634WlrKfqaGGl2s5Kt3\nY8DZnv08ZDChPge05BaOiVdWWnxbLDJGOnzw3Ixs4Diz2a08oVfEoM0uTttFYHHZMmu+5ubyeTVv\nVdlkq7cXtdJRfC7bjXcLcjZaQoLF8zp0KH+vnn8epAuiC9dF42MBW7Y4dlx5Bg1Eba0dX0eP5nPa\nlonvB+jsWcfMNjrSyxhoZUEbaHTiBNsDDEDUJ1BFURSX6AKqKIriEs/dmLKzHbE2EYdWyZ6ojdsx\njeXwp5yQ/Npr+CODg9nOyrK31fDy4oTfe+7BhF/pa/x4TA0aPZ5Tg/bvx585+qhIs0pOviwz7Fet\nQk3uhs0x5YUNommtWaDw5ptsv/uuFV8LC9lPM0yzejXbZo9iufOtW1yBoiykiIy0dk67utjXoNWY\nNgP5N6LZNxFRz0wulgiYiA2Mcx847th5efbu1dmz2dcpU1CTNSjyu0JEFF3PQ91qxmSBJlO12trs\n+SrvAZmQTkSU68vb4eRDWNgh097aGvA7hzlwlr5XycmcSL8G0yO/+lW2R1yNwxGT5/k5diVhsYj8\nOeHhmkivKIpiFV1AFUVRXKILqKIoiks8x0ATEliUHQCIiBYvdszWhh6Qwk/WsBaKA57Cg8X/GxBg\nLVYzZAjHai5uN+JuIkjXOA9judHDODVo7Hcw/eWWW9iuqLCYGnLmDJ9XmSpBRJ03cvONEY8kgFY2\nj8tnjVAeFU65DPHaCRMcPytXHAFJzopLGdcE2tCJkY79+usgQRwtKcniOb3tNj6njz+OmigtvmTi\n4O9/z/avfoXaHXewXVZ2WYbK0VVXofboo47Zdg6H3I3ez2l1F9MwNei999i22UykvZ2/VyH7cchh\nqQ+XcMtyaSKioF0iBdAYgAfpYhERVnzNyGA/5eBKIqLbb2f7hz9ErTSU0zOHb84D7bvfZXvTJo2B\nKoqiWEUXUEVRFJd47sY0axbb1djiJHcJb8WXGukWdN9jjnlux3GQmk5yilFkJFkDOrxsaBlQjD6F\n3Y9oP/+/x1/BfcjoROwPaYvSfbw1i4rCbVpwMO8Umn+L4ZWUYE4H6e7GGfZQ8ZWM6RiuETk1yVcZ\ne/ENP2XbqET6fAvnsDQNSwUtzkdWNOEs8UEhWlztvAr/zTn/M40Pfv5z/JzIx+ryHQmSvKds3glt\nabxVHF1dBFr7Bb4f5NePiGj8eN62zxyFWsI4+924iIg+4oZUFGLEjVIXT3LsZWvwDK3z55PXnoZV\njDJqMcKCj0RQbEQJn2DPz6RHuQNTVRT6UhjI1+JMInaVW0AYsvgi9AlUURTFJbqAKoqiuEQXUEVR\nFJd4jIHO3scxgRUrMD6Qd+dQxy4JxeEt6f/4h2NHj8Ku2rRhA9uRmDYwGIIaOHWKVq5EUaaxGPkW\n2Qe4O0+hTytocu6PTWSaRcB+oyv/Z5855j5jPlLETL5c3cbYp51PcJrRnEF7+L8UTeKO3FmvYdpM\n1y7upB60HeN4KYe4zLBsFHZcr/PhGUAWI6BEe/c65pwxeF8V/pnjXtt2Yif3pvu5DLm6AWOgqdeK\nuG8EduoaDLIDUOA8LMkMOcrnq3GlcZGncSx3+nf9QEr4ZgEfFOH1GAwTT4h44ooVKIrv2Tpj0oDX\nj9Y6dv8UvAcoNFQcjCYbVC7h2Hp7KHadn/oX8a+tx3ujbQmfq8Pfx5jnpv+RnZuwVPWf6BOooiiK\nS3QBVRRFcYnnSiRFURRlQPQJVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEo95oHv2cIuoTz9Fbc56\nbvW1IOpd0Dbtvo4PHngAtJSznHdVVmaxndmOHY6vKa9jHlhZGOcBrv0K5oH95jdsmyMUiuaLNm0W\nx09Qba3j68aWOJDkVMYjc7H13tq/86iKv/4Vf2T+OZFPWFRkxdcJE/j6m+NOAsZxvfWeze2gJaya\n4NiTfbAN3kEfkf1pcSrrzp3s65y3jCmQsoWdPMFEVDuPc//M6y/HUqSk2LtXa2vZ17gwPHdd/nxe\ng9Jwgqin3hT0wQdsHz9uzdeiIvY1ayb6SjL302wFKOboVK3FfhhyBEx+vqXzKlsEGq03Nx7gOv2F\nUzHXu/hAuGNnjDsIWt8kbi3p7a3t7BRFUazi8Ql02gxedGdMw3SnF6/mp86aJ42/TONEJZAxVe4s\nXSaGcmVU2QzsxlLYyU+dy8OwG1PbA/xXvsVo4tQ5gttF2eoaQ0TQ4ubaa1GCWeBG56CTsfwEuukz\n7Di09uZSx14+eA+JCAtGhnwV/wBnPMr3w40fgEQJYmhYwVHU6D8+tuOcgbzN5izNBG1ZebRj+wRj\n/VM+cZVM3xjcDZy9TDerrETacwE7JyVsFk+dBQWg0RxRY3b11aitXUuXgyxf0Rh5tdHFWzzZl/0V\nK7VSpr/l2Emh2HA7KTZUHOEASLc0zuTv+L7dqMED6d43QcsI/ZAPVuHce2/5hF1WRl+EPoEqiqK4\nRBdQRVEUl+gCqiiK4hKPMVBvEWe58krU9j4uuh8FTgLN+weLHPvo0UWg1RwtFUcYxxsUp06xbXTO\nzl5xGx+krQbNZxfHnBI24BA3OnaM7XYjzjsI9lzDWQLv16PWuKuND+6+ANqDD7Kdu78UtLwFcrCf\nnbhSxTiOK537JWrFa7g7vhmra2zJd+w772wGrf9v71vxzUTOKaOoKNBWcmN9CtiFHXdStnKXsbJt\neD/6L8FzbIt0fx56GLliNmgtaRyjb1iFn9t2mCfHDWnAN8Y0ymhRbwv5vRJv1omImnvDxf9nfE4G\nesUASiKiskzunJSSMkj//i8yucLsoiabSG3diutRQCLHxDfOrQNNvgMwVgYHfQJVFEVxiS6giqIo\nLvE8VE5kFpuzlqm83DFz63H2e98+3t7n7UbtWBhvkyw9vRMR0fn5nEj+qdFRWPQoptGTMNwQslUM\nmdq+HbSmUzy4zeL8O5oyhe2EQzjkKmerSPR/8A+gzRe7tHpj69+zlLftdjbwBI7633MPSOd9+dz4\nXX89aNF7n3Xsz8lobj3tLrZrjUa7g8Dfn+1lK/C5YF0wFyT0LckGbao8aPAHLTq4Qxxhs+VBsZwT\nzcbfhVt42eDbnGGfLbb7gYGTQZM7+HTsfT445FZcpKcREdWTSEI/uhC0plXcKBz6JxNRiijCoBQ7\nobFMkblmrlUy8gDDJ4loVxpv2zPTUPM+/a+vvz6BKoqiuEQXUEVRFJfoAqooiuISzx3phw93xJI1\nOBzu179m+9lnQaKgVaKxhUwFIqLpV3Hca+9eew0aZs/mpgcVa9pA29PCg6sSxqAmp7OVtUSDJFNj\nwsPt+ZqSwr6WGQPQoGHE+vWoBQayvWoVSPEzechYTY0dX3Nz2c+8bhx+Br7JOBkR1Z7k8x0X1QXa\nKVG7Oqq/316Dlqoqx9eeWGzCEXCMU366xmDsUMbHjB4UFP/hC3ywaJE9X19/3fF1+CNYAnnmKMfd\nzgdi3E2Wlpq9RGS2kbUGHURE11zDC8Qtt6AmYrkX78Hf47772N57nTGQMpRTyXJz7fianc33qvwK\nERFNPsfvZBqH4TsZX1+2zVJu+RVratJmIoqiKFbRBVRRFMUlHtOYLn7MnXPSCSs40h8IdeyOC9jF\nhnz4x7ZtxVSVd7BIxBoV3xbbLZoOmkz5SfgEe5cWf8ZVQcZoawrfLFJeCrE352DYsIHtyFhMY4oV\n27QiY4Y9xcY65oIncC64OSfeBrIH6LQCnDU++Rfc8SpyLfZf3fOB2O0YjUub3+Adoc3amZRy3raP\nMlK8EhN5237BaCgkr4VfOd7j1Nlpyz2g+Ru83T3TgiGOlMW8bS8zEv1OLeaOQBewSI3ye+Xc8nVk\ni6yHP3HsohUdoC14hn3dci9+rq+ewyZr38bzmnuvrE6LIBvI+3/fPtRGzedte3SBEYoSJ3JVdzFI\nTfX/urpPn0AVRVFcoguooiiKS3QBVRRFcYnHNKauLk4NOGV0W4k8xPGCBe/hDJpNY0W8zAjWNCdy\nrCYiwl66BczE8aoAbY8/l8CZpVwirHhJyZnMwIqMtJga0tYmAoEYCfS6is9Xf/XboKXu5NhZ6WlM\nx8iP5VSNnBw7vnp5NTp+9r9jBN1k7aTRpYdkueyJE6jdfDPbTz1l7Zx2dPD1z8SG9OBOzoo+FEX5\n7oQN2I1ptWjcFR9v7/ofPsy+7tyJWuG0gVNuotezf0XjsVOUeO1ACxfa87Wmhn2NX489iab373Hs\nffv+CFr/tx527NL52OUoNVaUb4aEWJ/fZZY5y3PjvRhLTqGTmHGvekdxAXdfn6YxKYqiWEUXUEVR\nFJd4rkRSFEVRBkSfQBVFUVyiC6iiKIpLdAFVFEVxiS6giqIoLtEFVFEUxSW6gCqKorjk/wCMUvPj\nA9ACoQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  25\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnWFYVmW295emZOYwRo4oMYyZ+RoZ\nmZkoQxwjI0WHiJgkIocY4yh6qMjUQ0XGMVLHiMjUw3GIyEgdh4yUHIYIyVEwM+M46JBjRESYRkYM\nMcTo++Gc9lr/W3lmZj+313u917V+n9a+lhsW+9nP7b7XXuu/+p09e5YURVGUf57+/68DUBRF+f8V\nXUAVRVFcoguooiiKS3QBVRRFcYkuoIqiKC4Z4NF75gy/or/oIvTV1Tlm4eHJ4Er51TWOHXbZEfDt\nrezig8GD+/2jgf5denqcWCeH+4Br/4Ov8sFtt+F5a9c6ZkNCNriC50fwQU2NtVizssiJddIk9MUU\nxfHBsmXofPBBtl98EX0LF7K9b5+VWOvrOc6QT3eCr7zfLMceMQLPGzOGbd/peG/kJux37IwMsnZN\n163jWO+6C33+J+r54NAh8OW0zHXszITjeOLp02xPnGgt1smTOdaWFvRt3Mh2URH6ts6vcuz2CZHg\n85sylg8aG63Fmp7Oseav6QFf/VH+noUUZeCJixbxv+scDa7aWrZTU+3cAxDn6bngm3y02LGHDMHz\nqjbyZx45D+OUt0p7+/nj1CdQRVEUl/TzVAdaUsKreuIxfDqj3l62hw5F3+HDjpkzphBc8fFsjx1r\n7wlk716O9Ze/RN9nn7G9YgX6hg1jO3FIGTo//ZTthQutxernx7G2J6T1HVBgILhKh6U6dtzGaDxv\n5Uq2Q0LsxPrFF/xUP3s4uPavqOAD+dhERAsu3+rYX3+NP1I+nWZn2/v86cUXOdaXF4Jr/44v+GCA\nsenKy3PM/GF4j8+Zw7a/v71YU1L48zefiMaNYztt/hnwnTjJzzv+24wdyMCBbKemWot1wQKO1fws\nS9a284H5uLx5M9tr1qBPPtnHxNiJtbSUF7Lt29EXG+uYY5fFgau7m+3mNVvBF/DQ3Y7d2qpPoIqi\nKFbRBVRRFMUluoAqiqK4xGMOlNLS2GkmD2Xec9s2cKVWcu7g1lvxtDk3NPLB2LH2cmCyYuDUKXC1\n9nL+LqCzEXx09GjfP1Pkx6iqylqs2dmcV5o3D33HjrG9aRP6Cgalczix+eCLPCJyYpbytXV1HGfo\nq+noFPnZhtlLwPXNN2yHPhGF5yUlsT13rrVrmprKsRas+AJ8xzv581+8GM+bP5/tqLZidMo/xGIO\n/OBBjlXmhImIDhxge8cO9OW2JTp2w+Ml4AtewT4qKbH3vaqo4O/V44+jT+Y2ZQ6eCEszxDsRIqL6\njVyJERJiJ7ecn8/X9AgW/tD657l6IGcNVujAO5kRHeALGu/r2M3NmgNVFEWxii6giqIoLvG4hZcl\nDOvfx4JoevJJx+y5bRa4fJaJotrOTvCNrixw7OPH7ZWGFBZyrGZV1fjxbI8dj4/wspDeLMfJT+Kt\nRnq6xZIbWXJhVqGL44JKLOxN3SQK+429aM+MGMf28bEUqyhj6hmKZUxffcW2/x9K8TyZ+jC3ffJ6\nl5VZu6bNzX2XBg0axPbgQ3vRWVnJ9vTp4GofF+bYfn4WP//0dP78Zc6GCOtqzD28yOm0x6eCy6+t\ngQ+Cgy/MvSo/O4Ped96B4wEzZ/LBjBn4j6+6iu1Zs6zE2q9ftxPnv/3bIPDJbbqo7yciovqlosnm\nRz/Cn3n7LY599uxA3cIriqLYRBdQRVEUl+gCqiiK4hKPYiLr/8SCBSUP7Qdf4A/YjkjA9qicSZwT\nGxeOP/P48lZxFPAPhvn3kalEmdYiIorbzGVV55Q4dXKpwn98gHml9dtEzjG9xusYHUSwkx8KA5cs\nqzFLXA7mcQwTJ2Cb32yRZqqoIDuInNdzl2Kb49IPRdmMGWhbm2PmHsYypgHT+dgojPIK2aFpdg7m\nLBciGGY53k9/yva994Jr86MfO3aa0XHrDaXTuAQtbmgWOmXO2Cj/kTf2NsJ7NXWp+Dtkgtpb5DsM\nmdsmItqwwTEHPPII+q6+2jHXVY4FVxvrEFE2vj5xzdk6FowJiMX3NTLvWR+P93HdGL7+oTfhd+rs\nX0Q+mgbS+dAnUEVRFJfoAqooiuISz3qgEyY4pqw8ICIKfVRsb43yj8whoktmJbbT1KzhVECEvR08\nRefx1vCbX+Ie9sRSVlnxHx8Evl3Lmx370UeNH7rIqIexhNy2S/Udk8hOQx3qCKtD1X2HikMVKw+K\no4nehMeILq2Hja4oKprGtlmKI7qNMsIx9QOtV+n1ZIuA5bylvf7WAnSKbXvV4nJwycq15b97DHzh\n3XRBmDKF7fwW3FLOFvqg732En+MbA/g+jh9GyE032QoPGTXKMdftCQFXmkwxmC114ry02c3gKqzE\n76AVxBepdXEuuDpGcFnlkk4jZfJbNu+7D58nOzsH889spfOiT6CKoigu0QVUURTFJbqAKoqiuMRj\nDvT4Is4lNL2HvtCTJx27YATmFVL3iJkkRk2JLDGKiCB7iDzXnKGG4tJ1XEt1WsRNRBQuyqxGb1uN\n55nq5ZaQrYZGOJQynfNFOZtiwLdrF9s1t+HfGLWI82XWyphEDtSHcB4ONTU5ZvF4vG5z94gSm9mz\nwdch/mBfsohQIZ9jtI+GPM15xvoxqLgUmSzq337xJPjo5ZfFAZbieEPAKc79btqEecUHH+Qk6O7d\nOJHA7IgEjOkFtpj5DH9J37oNc4twI+/bhz5ZHma0SKZAKRnOL3KNVLkfhgli32P8fmD1bGwtl+eN\nGYPft9R5sqzp/M+a+gSqKIriEl1AFUVRXOJZUFlRFEXpE30CVRRFcYkuoIqiKC7RBVRRFMUluoAq\niqK4xHOhY26u84Ypbk8GuGJj2Q43JOuKitjODt2JzoFCFioqyt7ogaefdmItHIk9zSn+HEPJ16if\nJcd/RG9KBB9MGgwKshYrjEqZakyCFPNH8vdgL3R6Jdep1T2GffLPP892SYmd8RNyKuezz6JPXrdf\n/hJ9P/7x+f8dEdHgQaK2rn//CzI9cvR8lNA7fqCdD5KTwXfqzTcdu/5tfKEaOVToC0ycaC3WjAy+\nrnLcDBFRChU6dmN4CvjGBnY5ds+AweBbvpztnByL40f27uWLImQKiYi2fMcyll9+iaft2cO2OfhW\nSmesXm0p1uJiJ87GKVhbKmOprcXTChZzPXXdV1jrO3Ik20FBOpVTURTFKh7LmGJi+H/KsmU4jOvM\nFFYU6n+6HXzQwWMO4l62jO3Ro+39T1lTw3+IMaf+TB6rQ5n/GwZvFl1UxgC80nDuvIiLs/i/emqq\nE+u6CagclHZKqPOYgrqy20RuAYhQ4sfHx0qsZWX8+Rs61JRyVMyCN7cgchia/LyJqFPIeg05e9be\nNS0o4M/ffOyV94N5P4aGsi2vIRHR+++z3dNjLdacHL6umSMKwdeTxE+d5jWXl7J4qCFHLdvUGhvt\nXdedO51Y63+Mu7eQJNFFZagxLTjC8a3/eRX4esJZqN3aAEQ5v94Y1FjewnFG9+LOrWIQ7+pefx1/\n5A03sJ2aqk+giqIoVtEFVFEUxSW6gCqKorjEYw50yxbO1czZaaimiFdphb3ok+k5v6OYO4VX9AUF\n9nI1U6c6sVY8hcowMrUpRWKIiC65hG3fU8fB19A92rGDg+3lQOVb2NzwUnQKuaqGRevAFbwG38oC\nMkE2dqyVWHt6OM7Nm9E3d8YXfLDJkKsXivQt/v7gCrzvPj4oLrZ2TevrOVYzHDFYgRJ/dQM6r7yS\n7bvuQt/UqWzbzNc3NjqxLngO3/yuv1ooHhkVA+nL/RzbnOOXflRMvVu3zl6sW7dyrO/cDa714a/y\nwcyZeJ6cjiiUu4gIFdoiIqzEum4df/5pG1DhipYuZfsG/PzLjgU79qRJeFpAnsjzr16tOVBFURSb\n6AKqKIriEs9qTDfc4Dhrnv8AXGIkNJUkGMPPRBnJusOompzW9Pcfi93Q1cWP8IMrMZ7cY1yq8N13\neJ7cwstCdSIiqq5mu6PDWqz5+RxrSwv6pk1jO3qzkTYR5RlLCEWMV/eKRofcXCuxZmVxnNm1WJwu\nBYyjYrGou2IMbydzAjENkTlNpHTCwuxtNTMy+EYWA82IiOKquaTG0HemlEOiHMgQ4j3zJAss97dZ\nciVKbjqm4HWVFYCD52FjR9W8Esc2t5u+LzzNB489dkHu1fTnrkSnSMe0zsfheAGdXKCeuwPTFPLj\nsVYeGBPDn7/8EhHRliv4uyGL44nwer/7LvruvJPtsWO1jElRFMUquoAqiqK4RBdQRVEUl3jOgY4c\nyU6pVkFEdOmlbN98M/qEQAPddhu4DrYMd+yJEy22R4aEcKxGLoseeYRto4yBDhxwzJ4ZmAP1+RdR\nxrJvn7VYz5zhvFL/zg50ivqU3GVfgCvjW5HnkoodRBS1ifOlFRV2ruvBgxznxECMReZAIVdMRCSH\nuhn9iBXdnBOPirL4+ael8edv9OSlzPzcsQuHYAvklp9ym+/VV+OPlBV3+fkWY42L41hl2ysRtp2a\n9Viffsq2HKJGRHTPPWxnZV0Y4Zsf4fBI2T4aF7gfXKW9/F3KmYLvJDKLRE7UVtupXKsefhhcVZP4\nvUtkE7bOQnu00QI8NmmyYzc2ag5UURTFKrqAKoqiuMTzFr6ry3GWV2OpimwuMMVvZKmIISFIY/Mu\nTMfEiRO81fAfiOpQFQe4gyPqoxfxRDGzetXH2GmxdJkIz2YZy/HjTqxZRaPBJWd/h43Azih66CHH\nbN2A26KAw2IYvC2d1dZWvjlMFSOxv+3q9QHX4GM89/yclhnZhWJxq9nczJ+/IcZDPtXi2hw6hE6h\nwJRdjSV33d1sW9XYDAri62rGI7q4zE6kM/F8f0pNTSJMN/SlXemGJUv4uq4+ZJSyyQu0aBG4hi/i\nWGW2h4gorE1038XFWYl11SqOc+mHhq5vXh7bvb3oE2mI9EPY6Zef/Pf1YPUJVFEUxSW6gCqKorhE\nF1BFURSXeM6BlpY6zvZpceDySxD5EDMhI+WPLr4YXM338bwim7kaSkzkP8TMu4ncYXmtH7ikQn1G\nklGqI8txbCpHifkt50jkixxNzFFs1yzrZCVvyOsQUdY2VqDJzrZ0XffvZzXyQZPBFfKmKKmSPW9E\nlL2NFW7MlFN27IWZM0SvvsrX9G9/Q58sDZI9yEQoz/Xb34Kr5CjPpEpMtHivlpVxrKbMlZQyM/LO\nC2Y1O/Y5JUXyPtq61Vqsl1zCucVv/9SMTtEHWXE4AFxRI0Qe3HgRUtrJa4e1Vk45kcJ8KSPWgy1v\n9v0uZ+nXmXieTKanp2sOVFEUxSa6gCqKorjE8xZeURRF6RN9AlUURXGJLqCKoigu0QVUURTFJbqA\nKoqiuGSAJ6ecdBjyr1PBFzGQJ1/KqYdERPnTuNc1+zDWj2bVRvNBefmFGekwaBDGMyLHsc3W43nz\n2DZV2eTYBKvSaykpTqwHF6G8lixhNcd9BMcKGTApJ0hEZU/xyJWYGDuxxsTw519WOxydl1/umCVP\nHAGXvB+Mdm7a/+ROPpg1y941rariz3/PHnD1iNEcPv/+73ielIUzRoFA/ej+/dZiLSvj67pxo+F7\nnGXhGoZg7W3waTEOxRwv+9lnbAcE2LuuQg/jjHHP9X/jDT4wBQjEd7D0GE7JlP80LMzS92ryZP78\n//u/wdX+2beO7ddr1HoLucXea68F14DrruOD+nqtA1UURbGJxyfQkP8Wc59//nPw1fSKLhlzUtcY\nPm7ZhS7otLBITSzP0zY0fGnGeOrTJx8yTMwGK2uIDpOJ0/DJrvfkSccONkWspaDuo4+C69gxe+F9\nT9nsAseuX4H/c4ccKnbsxB2oflM/noefSS1rIsJun1mzvA/yfD/ryy/B1SWfQKWCEBF0rZxZvARc\n/UUHm00OH2bbEDEiGs83a/AMVIei229n+09/Qt+KFWyvw0F+XiGeyvo/8AD6nnmGbXNa27hxjhl3\nADuqMsazOlZYmPchEhE1b+Mn96A5uFv22yd2PbK7kIjollscc4AhUn5OR9N50CdQRVEUl+gCqiiK\n4hJdQBVFUVziMQdKf/wj20ZCsIpYGShySN8qLQXhxeAqGZDq2IZutFfIF6gRTfg7z4zhgWvZZKjY\nnGpi28x5xApfGSrAe8O6alYrSjNych1f8stEvxGo9A7xGapCGVNEeUGGpVjF2+yQ+HhwFR7ga5oy\nChWlQh7ie2N8ZRX+zD8G0gVh927HLN2FijtxdXV8YCp1ibfw772HrtC/1vJBhJGP9ILM8BrHLjxm\n/FypZDZtGrgqbmIlsx9+haeFmoMUbfGHPzhmcSUqLs0dyjnjvbGoHBb2jlDrCsTPXP6JthDC8pT6\n7LPgKz/NidboV68E36o3+bt4z55c8Ml5f2l0fvQJVFEUxSW6gCqKorjEsxrT6tV9FqenH+P52vnV\nWCgrJ6NlDsBH+5zZohg4LMxawW9jIxcnm1uEid38Oys6sW4i6vRWPhClF0SE22SLA/Ck+G/Hz+4F\nl9w2JIYbqZE77mDb+DxIFv1aEn/OyOBrav66nPkcWzMFgU/WpocMxb+hpon/bUSEveaE8nKONXpD\nDDpl+c9f/4o+ofh8yZNYxvTtfZxusiqoHR3txJo4tBxcsrEjckAN+OjAAcdc0pYBriFD2M7Kstj0\nkZXlxNrzeDa4fH7CpUuFT38OPpnx+xxdkG7z97cTa1AQf/5mlqZqbQMf1NaCLySPB8nVT8drChMe\n+xjUqE+giqIoLtEFVFEUxSW6gCqKorjEcxmTHGol27aI6LvvxIGpJiISOTm78tF3TJTi2OrjIqKx\nR7l0p2OakQMr4tzR9XOM3/ks+2jTJvRdoFa+E9M57/n8SvRBjvj0EHTK8oz588FVEc9tl1FkB9FV\nSOHh6JN5z6CjFeB77QOOIKTodvBFwOC2YLJFdKfIZctJYUR0fOZCxx7dWQ++glrO3xvdyue2KNtC\ntBOWjO8AV8kOX8de9SmWOC0dwiIZZkeqmaO2xiuvOKaPTG4TEb3/vmP27kCXbJkOvbodnZWVbN99\nt7cREhG2ckJCmAjaXKvmlYBLfo3qbsQypquvZhtHUTL6BKooiuISXUAVRVFc4nkLLxVepIQMEV0i\nmwsGGh08UuTQg06gVcT2wlRYShH7Cf/PDoJvy41cZjVn+1jwZezgjprcSLKG/0De0uQcSkLnMp4T\nXrDZF1ypLwmVmZW4948K7xJH2InjFlmKElSN3V2yVqTuh5g0kNKUJLuAiCg7j/+mLKMpzCtE95ss\n9yEiGr2JNVdLh6aAL3UFpyJSDR3RJWs5FbTayAp5Q/ExTiPNLUoFX2JenmNnrcTPcRVxKsLMLkQd\nkuWCWI7lFatWsb3LkFYTeQQzpQBfe9N5ASg4xNqpqZPwO547ibftGUdeBF/k/fc7duFmvN6hv4Yy\ntvP+Xn0CVRRFcYkuoIqiKC7RBVRRFMUlnls5y8ocZ/FpTAKJDjiaMgVPCxYq6w3VqGQefJTnJVFc\nnLWWs+5+/bjt8OWX0SlV8AcYad8kkYM0E0uyldPiTByY37RvH/qkRLns6yPCfJQprS/71+bOtROr\nmN2UMRRnN8nKNbNVb+ZMto3UOQjz2GzlbG7mVr6gImw57BaK9IOgjIqIli1zzI4DjeDyfffCzG9q\naOBYjWo0mKxgthaGnGJlq8nLMCm//0ExPeLee+3dqzU1Tqyr9mFZ1WWXsZ1ai7llGJFgqMBv+Ypz\n5nPm2LkHCgr4mpqzxGT1lfi4iYgo4B1x3cx1QypclZRoK6eiKIpNdAFVFEVxiectvKIoitIn+gSq\nKIriEl1AFUVRXKILqKIoikt0AVUURXGJx174ujqurQr9ZGuf/y63BSWp5PDIlIQu/MeyfjEoyF69\n2pIlfY4fyRnEdYGZP8ReWBrJYwnokUfQ99RTbNuqrSSiVav4uk6dij5Zw5a4J61vp9QbIKI2f3/H\nHnH2rJVYjx/nOEevMOr8pNSfKXMm5OS64ueCa/CN1/DBkSP2Pv+gIP78DTm7ucn8nFAcmInnCb2H\n4034PCFHw4SE2KtZLS3l6xoXe6bPeKAmmIjopz9l+7bb0CfHllisWaXERL6uxmRWuleMo5Hab0TU\nvINlA4OajNEk8n6JibESa3ExX9O5OwyJPFn8aQhltC7KceyAozhBFrQwcs//+esTqKIoiks8PoHe\ndJM4WLUZfO0buaNowiFw4Xh1c9a6bGHZv5+sIQfCScFWIsocx0+gZT9GCSDx4EahV+OsdVq7lu25\n+CTlDUtvEv/TLTJEmy+6iO3//E9w9UxgxRlDcIjCfvc7W+GdH7MrSopPG4pb7eJJ3s/oQslK5iFz\n2C/kJQkJbMtrSETFQnGn6ZmXwDdKKDDVzscnpcQpx8XRaO9j/F+g4a26Gp3y77jxRnDVvPyxY0cc\nNdSBhLgxzZrlXYASqaS0w1BNFtPhOvagUHVQIKtuNdSiaHTwNzvJNnJQXe9vfgO+Ab/4BR8YE+fk\nw3BAURH45iz8+xJs+gSqKIriEl1AFUVRXKILqKIoiks85kD7v8ZKJXVLS8EXuobfZo5IygEfpD2N\nQW1ds/kNmR3d9P+hJ4nfEvsYau1lCaxIbb4wjpkt3oJuxjzvBVPPF9ckczbmjmConJFz8hGJnrAD\nRqxyApwlRsfywLUzhzDO/qbMksDvnnv4YIORV15jJbRzefddtkXOkwiVpHJ33IXniTxzvCli9MQT\nbGfby9j6HGvgAyNfnzOEv0ufzvgYfOtl7lAoTBER5T7Kklio4eQl4r5adSleg5tFWrzJSI9e9XvO\ne4ZO8EGnUUFiAymyduavRnv6UXHvwrgEou3b2Q4W0wCIiEI3CpX/0POr/OsTqKIoikt0AVUURXGJ\nxy182Q+4UPbw2+gLfecdxw4+YEwiPyTqml7CshFZpVFWRtbwWStmOhvDwTaLSqHnnjNOfOstto0C\n7MJLeIhXilFH7g2F4bylXJFsOHeIRoPly8F1dwL/f/fCC+ng+8EP2LaWGhFbrf4XGdtbuU02ym1k\nWVPXAByMd8goebPGwIFsS7VvwpTSgh1Y4rN+Epf/+JhD0371K7YtbuFhvykn9xHRIZHxMK9Vz/Mc\nu48sWyKiEdW2gjOYMcMxk69Cl//XLEAdVmTkZlbWsr14MbhKh3BJYJz3ERIRCnfX1qIvI0EII8vS\nRCLK3CjKKiubwDf3MG/bjZGKDvoEqiiK4hJdQBVFUVyiC6iiKIpLPOZAY37BU6M6X/wKfEtu5mFo\nqwcYAg2y/Ofmm8E1/g//bIgukMOgiKhkIwualFdjhjBa5PI6Tp4EXzIJMYcUe8r9KYdE/jJvFPi2\nXMFFKHNWYN5t82ZuQ+3fbYi0SKGH8nKvYyQimvkkt46+ZXyO2aM4j7vnDTxPDkqL624HX9kEWSpi\nL69YkMRtmKmTDoJvk8i7m2lOChRCE+ZQQQ+lWl4hSrtaF+eCS+Y9zco0qTOSXZ0AvlPxhmCHJXom\nhTn2iyvQl+3/e8euSsDW0sifPO3Yx+95DHxDjpF1Xn+d7bd+ZLRdXxza53kd4/ge9zWERuLj7zb/\n+TnoE6iiKIpLdAFVFEVxieehcjEx7DS2tzOH8hbeEDGht0XJkyGMQz/7GduDB9vTWExJYT1AoxoJ\nlIs62nDrm7uBt/QZldF4olQSCguzp7EYFcXXdYWxL5J7OLPmavduxyyrHQ4umbUIC7N0XXNzOU5Z\n0mPEQu+9hz4hctrQjSpGweNE51f//tauaW4uf/7GTgwEhQwxHtp6h5gLLvVfifD629TYnDqVr+vM\nmeCqj+U0zZAheJr8jH1XGJ0x//IvbNuMtavLibVkO6a/5K1qSpdKLVWzwU9URtm7V7Oy+JpefDG4\nCn7EKQQzK5M/SFzH668H38xNXMb51luqB6ooimIVXUAVRVFcoguooiiKSzzmQJcs4bySISwOXYa5\nI1ajU9aKBAaiLzyc7dRUa7maM2c4VqNbix58kJVqdu8eCb6IAUL9yFCOoqQktm3mQGtqnFhrKALj\n2SZKnP7P/8HzbriBbTOxJPOQ+/ZZiTUxka+pmef2yROfeWws+Oq+GuvYr74KLsiNFRbay4FTR4cT\na1k1to/Kzl5ZYkVENHrIF3xgljG1tbHd3Gwt1r17+bqGLTfaoOU9KOeHERGJ9umMPy8El+wIjY62\nd13lXKyrrvrS8Mpe0x7wXHcd53aTk/EsWXEXFGQn1uHDOU45OowIlxxTYK1mHjdpRhZh+VNVbD4f\npKdrDlRRFMUmuoAqiqK4xHMZk6IoitIn+gSqKIriEl1AFUVRXKILqKIoiks8qjFRXBwnSGVJDxGV\ndLOWdOIBHGNVOJ4VZlLyQsAHNQxZWdbKLVpbuYxB/goiIjGLjUpGoXJUz3Ie4uXT1Ag+ksPpCgvt\nldxs3erE2jlnDriGfMmlIhkr/MAnZ8zJYVhEGGpxsZ3SEFka1j/ZULgRqvMV07GMTbZOxhCOHeia\nHuPYNlt5KTOT71VD5b1hRKRjB6/B0QI9G1hVymdPFf7MfdyuTI89Zi9W2XYoLxYRTj0cNw598sY2\nZaVkf2RQkLVY+/Xj8rCzuw2JfNEznX8a74/0FtEi+cIL4Mt9+lvHzsiwdA8UF/M1hamWRKW9fM/F\nbTfuY/nFmTcPXJkTWNUsJ0dbORVFUayiC6iiKIpLPJYxlZTwFi5xzH50ClmbjssvB5evfIR+4AHw\nVc3g7V5kpL0tXFwcx7p+Pfr8vxRzuMXWk4jwEd6UcXpITKOz2YnU0MAX3ZDcWfVakGMv/V0k+LLC\neYuZPWMv+HKqWfg2M9PSdRXdPWYLz7rwEsdOS0DRZDmMrmwcqgbFHBIiyhZTOHJb3LUMhZqrq9mO\nDu8AX/F27lqauycVfFIk2Oa9KtNNa4xZbLL5qLh2LDq/+45tMc+eiKh9Enc0+flZTI3k5zuxFg/F\nQYZzk4SylnF/9Kzla+ezoxR/pkw/FBRYibWhga+p2W00+sBWPjC65qBNSqZBiIgqK9kuLtYtvKIo\nik10AVUURXGJLqCKoigu8VieJxfMAAAbqklEQVTGJMuTTtyKw6/8R3HuyPeTT/BEMdn++CQczBQ5\nQirCo8K1N+SJWWUy50VENKeOc3JS0YaIqGLVB44dNcgYzHX0KNthYWSLVW8GO/add6Jv6dUiX/T1\nFPBlh+7kg7yXwZe5UU4gQzUit3SIn+Mr80FEVCmqb6qrsdxq6yG+3jErUQK+eBQrrhsFJV6x5VrO\ne077Bn1SuGr7drw2oKS+GWV8pHp5JKajvUJWKuW2JaJT5uhNCSyRWzaVo/yuuIIPPv7YuwAF7Umc\n9/z8vwynKG3sfu01cA0awEtLTMs68JX9KyrG2+Cuu9g+svM4+Ep6eQ2a0Qku8ps0ybELe/GOrBTH\nJXR+9AlUURTFJbqAKoqiuMRzJ9KttzrmiRPo8hetMO1DgsDn18JTvdbWgotCQ3nbbjTheIUUfC54\nxag4ELPf6b77wBW1iR/Tl4woBt/qMUfpQvCXv7BtVlVRN29581viwJUefwkfGAPQsvN4a5qVRVbw\nfeVFPjAEnANFJ5TcPf7PvxXXzcinjDAGpdlizieiG+o2FMYel1Dv2GIkOxHhTjjEqClK3yg77DCF\n5Q3B08RAQLOOSdbgmGLkUuD5kNEV1NtrJzgDv0WcYlhqlgB9yGb6A1gOGS/+adku7FQ8OJKv5UTv\nQyQioiO/5VLF3O3B4MsI5xLMJSsng2/1QwmOnXK4Any/fI3Xv5ISYzrm/6JPoIqiKC7RBVRRFMUl\nuoAqiqK4xGMOdNXhWY49ynj9v+2Poq6jGn2zZnHOI/dnw9G5XtSYzPmWbCFLQ1r/jPkYOWQqYulU\n8K2KZcWdR5KNH/rEAbZTU8kWsuvNt81QgBKKMOmG5FLxUL5ec4uMNs9NUi0rwOsYiYgOTuXBZROH\nNYMvP5bbSrOqjRqfY8fYnjULXFEy6Wux3CbzNLeMLtqF7aNHl7Hd/K9P44nhCxyz4gDmzlqkqpiF\nGL+n++RJxx504AD4GubzILNarByjFJnnNPKjOWs5B55pCKB5xbBhjlk+BEsSo1t4emPBkGjwlXay\nkhHcD0Q0YYLF+L5HtGRmGInuzG2c91wdjy3pJy5i39un8Htz9hN5z+N7nu/RJ1BFURSX6AKqKIri\nEs9D5bKzeX75NKyNiTjKaivmIPb8eVw2kj7D2KJKsVuLs7apvt6JtfQY7mFEs4GptQrVH6a27bvv\nsj1njj2Fm/x8Vo4x45FlNb//Pfp+/Wu25d9ERJRzSGyhysvtxLpzJ98cK1aAq3gBpz4M/WIKWCPK\nVoytZi6xz5qYLhEIKtfdkQOuH/yAbVnuRoTbSXN+edBscR/V19uLNSjIibV5D6ZGZLrJLHGT3XbG\nxwEC23Pn2ruuAQF8rxrZBgoYxCpcJ77DbjT/OhbS7rjjDvD5vv02H0RGWon1dL9+Tpz1u3FNk9fN\naOACnXifBCwbpG1cjkn9+6sak6Ioik10AVUURXGJLqCKoigu8dzKKXIAEbJOiIiOL+ISj6HxWOKT\n/ngaHwxFRSHIK1gkdS3nq8z8oBR99/TrDVFt+Dk2207Tp4hSCjPxWsSJpnsWYwucVA6Sg/KIiKhl\nGNmm5gdcgjTs11iOlCBElnxaUP0GFK+eeAJc9/7UWniIUAMKNROEwjdgwL3gykoWOcgB+HVor+Zc\nPmb4vKNhF//O4BX43bn4P/jdgv+/YdlQvrhX0h/HYX350+VxDNmi9VevOnZYPF67pCS+KmlnXwRf\n421cAmfo6qPsviX2/47znlHbUDm/dxGXhkXuwO9U+8XPObbfo4+i7zQ/X/r1cQPoE6iiKIpLdAFV\nFEVxiecyJkVRFKVP9AlUURTFJbqAKoqiuEQXUEVRFJd4LmMSrZyUkIA+WeNj1NRseYzLP+bc8gX4\nyg+wOlN0tL2WM9nKNdSUe7nlFrZNBXBZ8mL0zjXP4BKToCCLbYeNjU6s6yqxyENWi2W2YTmGVOqR\n88WIiHIvFypDjz1mJ9a4OCfOsYdLwdU4XZSqyV45Iird4cM/YuFI8GU98LljZ2fbu6ZRUdxyWDEF\n245zBvHAOVPIXYZulrHJW2XsWIuff2qqE+uZDQXg6j+By/EKFtWDL/U0q+6Xj0fFqejDQpF/yRJ7\nsW7dymuAMVjwzH/xlLmjf8R3KcG9HHvdt9ha/dlnbMfFWbquvr5OAD2nOsC1Zw/bZomj7zBxr87u\nAZ+c6efre/449QlUURTFJZ7fwguBBvO/54JdrI93/fV42jXXsO2blw2+yTv46WD/fov/q192Gcda\nVweukgP8lGdIE9LixWwP3rEVnfKJNCLCWqz19fy0ZPQnUMR2Ueg7Ywb4Frwe5djr78T5LXU/ZF9o\nqKXr+sUXTpxRSajrWjFDzAgagoOOupL4yX3wS1hg3XALF1gHB9v7/AsL+ZqmdOaD78QcfpL3fxjH\nCGeP44G1MOKYiPzWX4CneiKigwedWLvG4VQguF4//zmeJ75ojbs/B1dTE9tRUfaua79+HU6sb7+N\nI6HDbuVfM8js7HjjjT5/ZtUpfiKNjLQUa3Q0f/+N5pSa5axde7ExUfnHP2bbFG+ZNk38jBp9AlUU\nRbGKLqCKoigu0QVUURTFJR5zoBERnFcy8wPypXzcdHzrRW++ybaRx2k9xW+9AgIs5kCjovgP2bED\nfUKltqByNLhSh3Les2MGijfIN3aNjRZjXb2aYzUELOgoz1QvmIRvaKX4c9pXxmwf+Wpz3To7sb76\nqhPnwWtQSEIKQY/emInnySqISy9Fn4wzNdXeNZXizyYnTrDdaQz3EvdG8fjV4JICwvn5Fj//vXs5\n1pUr0Sc+5IMrysE1cVwXH7z0EvjqJnFu2VoOnAjugXMS9nfe6ZirXsF5QlKXo7YWT5PC1ba+V42N\nvFaZ6VifJhZ1Lz2MVS9xm/k7XzgD34HI23jiRM2BKoqiWEUXUEVRFJd4LmOqquI5M5fi6NqbbmLb\nnCUj585s2oQ+mQpIS7O41WhocGJtHYrjaQMqix27fsJc8IW8y2Ujk19eCL733vvEsc+e/Ym9WCMi\nnFg7dtSAy3c6j1k1B7iUjucSsM2b8UdKicWqKjvXtaODt0VHjqBPfv5mekdWX5mFy+njuaTE1jwc\nIiKaOpVvZDk8iggr4pcvR58UiA0PR59Mr0ycaC3W9na+rv0vxx+b+nP+M8x+EFlJ6DeoC50y32Cx\n5I66upyAcjcMBpeML3J5BPiOF/F9bcqzyqo3W6kRaKTYdQadIi1W34trQ0ggz3WKm4einzIT2NOj\nW3hFURSr6AKqKIriEl1AFUVRXOJZTETUA4w0/qXMxxQHYhlL3Vc8l1s25BNhFUlaGtljwwbHDDBc\nHSu4tW/0D41UxsMPO+b+lVXgqiLM+1pjCs+J8l2Dwhcn3uR5SVu24Gnpy7gEI666Gp3i7yfC9lm3\n+Ha2OnbolCvAl/Fw37m64ngxn8ccfJ+3lu1Ie9e3Lo/n1IcmT0bnWvE7TTWRXbvObxPRwZXcLosN\nl/YYarQ8bp0ucpvLloEvbh7fx6WLsDaouIWv5VxMR3rH4cOO2dKC1zXDn+cl1azAXH7ELO7nLnzg\nAfDVT8e5RDao2C6uW0IyOsVc+gN/xRxoWxvnPWU7LBFRz7a/P2dKn0AVRVFcoguooiiKSzyWMcXE\ncGnAm2/+DXxtbRc5tv/AdvAVbufHYthZElFsLNuZmRbLmKRu4fbt6JM6hkapSvk81rmMbsHOH8g3\nZGRckNKQczp1/vxnto29cVcbd3wNno/lWAXhXKqVmmrnuh48yJ//xBYcoytrlcKm+YBr7xBWhqJx\n4/C8efPYDgmxd02zsviatrWhT6RMVp1MAdfSq1HnFJC1WzbVmNrb+9TZPb6B0wZm9sPvWqGtanT4\n1d3L23ubnUiRkXwPyPJEIqLITeJaGn/HF7ff7tjDzdYgOeo6JcVOrIWFTpx378LPWH7lzXRTxCTe\n+l9zI5Zpff01262tWsakKIpiFV1AFUVRXKILqKIoiks8ljHJrreybZgD7ejmHGhcMrZAydZOoxuR\nMgOLxRHm8bxi0CC2pZQ0EfSOZY3APGf2NFH+MCAZfO2dnNvDv9BLnnuO7aeeQp8oXTlYjSpXE48e\ndOzWlcXgO2yI+thAdgdOXGHItQtp/70HMAcKpUKGzHvrMFYjN8vNvELkPc/5jKc0OPbSw6i40zqF\n1XgCkqPAd07+1hbywhrDreaLFDGU5hBR3XZWoX/7bfyRmfNv4IMPPvA6xO+pauHSueOjGtEp/46k\nJHANF+207bGYk/TbiKpXVhAtucmL8PfJ3K35ekS2+R55fgr6QLkr7ry/Vp9AFUVRXKILqKIoiks8\nqzEpiqIofaJPoIqiKC7RBVRRFMUluoAqiqK4RBdQRVEUl3iWsxP95el7cGJl/nyuraPAQPDlbvR1\nbLP3VB77+dnr2c3J4Z5dswxUlnPJyZZERN98w3ZCwjHw3XDDGMc+eNBerEFBHGvzM6+i8w9/YNsc\nPyH/ECnRRkSl4bmOHRdnJ9aeHo7T51c4BXTvLY85dthdI8FHf/oT26InmoiIurvZ/uADa9e0vJxj\nNVTpKC+P7f5Jieh8663zx0ZErX/+1rGtTpBNSeE3t+aU0DF8z5k1tHTVVY5ZX/ctuEKGsfQgBQTY\nizUxkWM1Zvek7+C62Y8+wtPeepprlkubUAxQShXYGutTWsqff1xTLvgWfMTyeQMH4nly5JA50aVs\npVjjgoO1F15RFMUmHp9Aj0/ip878ylR0bhhEfTFqGivDRFYaM8NniAFfPT3/QIj/GJljRIfJuOno\nFE8ZOZ/gfPPM8awydNOfUTR19AjZCYJKLd4gh7D1S4oF39m/8KztsOn4O8eMGe7YxXkojbM2nu24\n8zdN/NPI5pKtp3eDL+zDD/ng/vvBd/AY70AmGq1oqwbwk+tSCzF+T/Qy7nCKNmWMFo1n25zDLp/k\n5dMoYQdLYaG3ETKls/mHyQdOIqKQ2UGOvXd2Dvg63+CnzqhaQzlMKo5txW4rr5AT4Y7hDk3u9Ewx\nYsmwYXgct0N2Ctm5sPD7x48H3w1iiN0Uo9lIImbPERFR4wAWXx5L50efQBVFUVyiC6iiKIpLdAFV\nFEVxicccaEsL26N/8hN0ymFYmzeDa7rMeTzyGvjOfPedY9tcvbtmc752MKGKjYw1c+1t4Grt5bzn\n6CRjyJlM3ljMK8lKhMBAVKSfO1/68Lzi8axik758Cfjk20RbgJB42wjwdaxlNSjfJMwdHxUpqG1/\neQx8Ob0ybouqPCdPsm2OQXjoIbaNPF7zGP7Mg26+GXyFM+WkBXt6XDIPZ4Y6vqnZscPiMZnds1mo\n57fNAB/t2WMrPEQm7I2bLO5JrrDoftVoCRfVBRdfjK6aZM572pp/lzGKr03cBrxuMj+6eDGe13Ho\nuGOv+s1o8NWKuX1j+0iC6hOooiiKS3QBVRRFcYnHLXxEID/e0p13gu/EPN6affklnjdCFqvv3Am+\n/rfe+s9F+A8yuImLXk9cjrOf/WWxslFvETBA5ClkxTURdY3h0hh7RUxEp06xLatEiFCLOHHUXnR2\n8t4//woswM9cy+VZOVj9YoXmFSjgHDSPUyaRnThwrltUBo3AnT+lDOVtu8XKIKJbbmF70iT0iQrp\nxkBM04ztFiLBZjW4VC3OxeJsb5gv0jRGPwQUcycn48C764VOcui/J+OJRumOLWoO8J0fYeaJxGC7\nc8qDqjlVUn0SN+pLA+W9i2WFbhm9uO/aPfmd8n3lRfCFJS107AcfxPPMhpzzoU+giqIoLtEFVFEU\nxSW6gCqKorjEs5jIvZyfqFm1D1wRyzkH5i/f9xMRPfMM29dcg74HHvjnIvwHaR3Kec/TRk7WX5ax\nyNosItryHedO5uxOA1/ljHWOHYOVOl5Ruu2MYycm4f9hJZNErq3a6C2T19nI1+Z8mS+O0r0NkYgw\ndxR06iA6RbKualwF+mR/ItRCEfX0Xpj/s9vXljj2UOOulr9x7A4jl1ld7Zh7l2EuN+zyQ3QhKFvL\npUoRSUHgk2I3qVPqwVfewjl5s3Rw8mxu891vIcbvieitcuycZBwqJ9OuMXnGPSfuz4cNAZ/2Tl5X\nbBWHibmR52iw+LaJuE+cAJ9M6w4w7pubbmK7uZnOiz6BKoqiuEQXUEVRFJd43sILOZqI+OHgaj7w\nhWPLx2ciotOn2TZ3902DWBvQ0GnyioDDvI2sbMP53sFTRvHB738Pvqk/Ewe/PQW+mO1CNSbGXtHN\nug0e/t+SJTimjI1MP5gyPvKiW6KiW5Sf5I1Cp5QqknU5RDBPve4X68AV+rXY7kcZc9i9wK+T91gn\nvsNtsb9sP0lI6PNnhA3DLWrPo1yq5+NlfIAoqzM7Y2Km8PeKjqFWaPRhLgGb+Dh2opnfQWuIOqsh\n07AELGYYl9mVTssHX940tmtW1IBvTCzfV+3tZAW5FQ/ZhNcmt5OvW4ZRmyTXp8QJDeDbtAnLIc+H\nPoEqiqK4RBdQRVEUl+gCqiiK4pJ+Z8+e7dubluY4GxZhLis4QZRUyLIlImiXXHB4IbimTmV77lx7\nc2bi4ngmSulDmHPZ8jnnXK6+Gs+bWCkUga64Ap0zZ7Lt52ct1pISjjU+Hn0+vawk1XoaG0gDWkSB\nyrx5eKJQuaIjR6zEWlfHcYY+EIJOISmVNQrbPGUpjjnyR6RHrc3DISKihoa+5wxt3Mi2HMhDBEpN\npacxxxe3TcxPKimxF2tHhxPr3EW+4JIKXDMMwSX5Z8hpAURE27axXVBg8bouWeLEencTqmfJ+FK+\nxRZJuu46xwxKwlbO5qXi3y5caCVWORMrehgWcjWPmMyxFGWDb3RRlmPvw0pNuucetquqzn9N9QlU\nURTFJbqAKoqiuMTzFl5RFEXpE30CVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK4xHMvfGOj84apoBrH\n0kmVstdfx9PWv891V3THHeBbdxn3F9usA4yM5Dqw5GT0yfbXoDasEesMDXXsnZvxhdqckaKeNCLC\nWqz5+RyrMWEExn0Uz8N61uHxXE938iTK8t1zDxcQlpTYua7r1nGcaUWTwVf3Al/H0JdRBhAmRBq9\nx2fyuGe6f/8LU6+YehrrFQvCuU71xO1zwef/n1wXWHd7FvhCrxR96cOH24u1uJhvtNhYcGUs57pQ\nU2Jg7CYRn3Fe1WnWmIiMtHhdCws5VikLSUTU3c325ZeDq+TZzx07scjQPJC6ceXlVmLt7tfPiXOQ\nIZl54j8KHPv99/E8OULFt/sL8OVvZv2P9HStA1UURbGK5zKmigruQtiI/4tIPV8pzEOEA6ZS41Fu\nJWMFS6jm5tr7n7KhgZ+WjNHfFLOZO0pq5peAT4rCPoYjzOnDD9neu9derNdcw7EeedmD/K0xka3f\nT/jx9P77J4JPdqbYegKB7q7lKO4ru30ah4WBa2ySeFo1bo76UaxMHRJi75quWsWxys+NCDt4du1C\nX9w4VuDpGYPqO1KY12p3z5VXOrHWv/ExuEJGdfCB2TUltydr1oDrzDYeQGf1yd7X14m17ZtvwDXi\n5pv5wFQjHjTIMVMDy8FVcIcYNDlrlp1YMzJ4ITOG35Xk8ZPlIUMjW3bN5QYaYttymx0Xp0+giqIo\nNtEFVFEUxSW6gCqKorjE81t4kSCUL1aJiAJeetqxC28dBb6Sfjw0ipYvB9+8+ahcbQv55n3/dNS6\n79rIec8hxpw2eV7ZsBR0bl8pDlCR3xvki+mAWHy7LXOyZi73/vtZab1wDeaWDzbZGs/FlI7j69gw\nIAd8RdvZXv3uVPDVrOG8bsQh/LxDFgm1+L4mdbng4YfZ9omNRmcbq6rHVWLukJpY2X9ZC+ZAPYjX\ne8cttzhmSKAhyf7mW45Z+Nd7wZUy9DAfrFgBvv6noGLA+xi/R3zxRxj57Jnf8RC+227D0zKS+e8q\nmIX3x8xPWfborVk2giQsZ9m+HVyJnTwFIXHxBPAV7xLX6rlX8GdedhnbcXF0PvQJVFEUxSW6gCqK\norjEYxnTli1cGiIrFohwGJOpXyvnm6UnYHEqTL8aPNheuUV9Pf8hxoStuMWjHbt0zXE8T5Y8mOrG\nMm+Rmmot1qwsvq7Z81vBV3YgwLE9lYcVzCgFX89s3mL4+FgqYxFlbGbZjKxja7v2WnBBeYtRirPg\nVh7ctn69xXKb1FQn1vzxBeBKH8+zzWnoUPDlVnM52ATc3cGtUVhoMdann+brahR9w5ep1xio/tFH\nbF95JfpksDk59mIdOdKJtW775+B64gm2K5JQVDvrGDcsZMdjCVzXGBbnHjzY0nU9ftyJ88yo0eDq\nf5rTCdlrMdUlq68yl+PowMT4HsfuqzlFn0AVRVFcoguooiiKS3QBVRRFcYnHMqY5b3AL5ORnsQXy\nxhvZBvEQImrfJdoTt2FJAUwVi8BhU94QtZjzKmvXog9Sm0aJA4gyVFaCq3xMumMbhTFeMWkS23OX\nBYCvqIhtU0xi8WJxUH0KfPKyHjfSvK4x+x4F9b1c8uPfZuTRN3KJW9107I/90U66MCxb5pinigzf\nGC5VonffBdfRo5wDzZhQBb7IUbJ2D4VGvEIMXDsn0S1ujsymVHDlvPMLx153H05Au+tBLjPztxCi\nw1NPOWZo7EhwVeze7dhRi1CkpWIt57rzd+FAwvQ8US5YWGgjSqLDXOLV/8ABcB0cc7djZ/Xi51gf\nK4bMTcdazZK2MnEUQ+dDn0AVRVFcoguooiiKSzyWMcn55YmTGsFXuIf1Qc1qC3mctgsffQtm82Nx\naqq90pD2do7V7xTGClvRBx8EV9kb/PfHNBldUrKMaetWa7FKnc2FC1HX8+yXPAt+4nQsuZAVODIN\nQISZicZGO9e1p4fjlNKPRERylxTZWQa+M7P5M+9fuxdP3LyZ7fx8e+U2WVn8Qcp2LiLKPMRbuJxr\nXwVfytvc7SPL74hQxcnP78KUXLUux5KrW29l+8jzFeCT4pVVtYPBFZknvmdlZdZibW7meyBoTTo6\nZcnVhg3oE59zYS9u76VymLWSu7Q0J86sYevAJTM4r72Gp7312y7HLtyM1zRlnLh3w8K0jElRFMUm\nuoAqiqK4RBdQRVEUl3gsY5IC2GHJOBNpb6coTQgMBB/koIxWvtSNouQp1YMa+z/JSiGctLp2HjpF\n3+kZ47yYPUv4wFDVDmvZ6thGJs8rZMnRZZfhtet3+VeOLatdTMwSpzfftBEZ4vMbzhf6DBwIvkiR\nMMw5heU2Q5rYTo/Fv6/7hRcce1C+PWWuvTO4HCVsUg/4cmL5uL0TFY4K/8YtiIm7MFfnd0iUNUVG\n2giTiIgyh3Hes8jIZbfIlPgaQz596VIOZ8ECcCUO4Tw0Fhx6B3RFG7nl8kD+3Js2gouOiVbO3LZE\ndAoFLMrOJiuIduJLjdZyKQhnqsrJL1JKC76POKfE7DzoE6iiKIpLdAFVFEVxieehcoqiKEqf6BOo\noiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK4RBdQRVEUl/xfWlVxcJiv348AAAAASUVORK5C\nYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  26\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztvX9Yl+X5/39KyIwxMjN/EGOMDJWM\njEzNjOyVMUMjx5wa+mZExvwVGZk4YmS8lZQpGVM0MjNCEufISM3IGCMzdUaOzB9EZEwRfTNzzMgx\npp+/us/zeRWvbTeXx/f4Hsf5+Ot8HU9vOLnv+3V5X+d9/uh26dIlUhRFUf57fP6/dkBRFOX/r+gC\nqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVxia9XtbWVX9HPm4faPfew/f77qK1axXZHB0gF6/wce/Zs\n6vafufnvycsjx9e0oymgNSwsdOywabfjgStWsP3556j178+2x2PN1yuvZF8/+QS1sCPb+cNnn6F4\n/fVsz58P0oL7jzh2bq6d89rSrZvjZy9D8+nenT/U14NWdyHEscPHhoBGkyaxnZdn7ZzS2bOOr3kb\n0NukJ/jXNH+CWScRW7Idu21+Fmjyz4qMtHevejx8/SsD4lAMDXXM8J35II0b953/jIiIevZkOznZ\nnq9t4h7w37YNxYceYnvLFpAWbIt2bOk3EZFnzEX+4ONjxdfsbD6n5rmRbhcXoxYczPbu3aiFHy3n\nD3Fx3+mnPoEqiqK4pJvXPNC2NhZbWkCqaeEni6iZw0GrXLrfsT2hDfgz5X8Plv73ISKaPJn/B9q8\n9iyKvuJB23yS7t3bMdsX54LkN1c8yRYWWvO1tJR9nXJDDWgVLVGOHfPpatAqB89x7K1b8Wfu3Ml2\nXZ2dJ5C2NvZT/nwiovhVHv4wfTpodaOTHTt893rQUg+ylp9v70mJmpocX+NmBoFUHjzbsTN6FoCW\ns6idPwwcCFrN73lHEhVl0dfbb+fv1U03gZTVj3dL8umIiGjCBLaDehj3+HXXsf3119Z8bRdPoL7/\nwrXCJymx0+NKxxc59i23oDZw4D8d+9Kl7nZ8ra1l5x54AKToH/J1rKrCw3zG8JMy7doFWp9g3i2f\nOfPd11+fQBVFUVyiC6iiKIpLdAFVFEVxidcYaF0dx8DCA5pAqzzKcSbPqng8cOhQts+dA6liXJ5j\nx8RYjCsdPsx/yLRpIBU88pFjT52Kh734Itv3349aREAjfwgJsefr/v3sq/H2UjpY+mkUSFP+nOHY\nhaE5oC1axHZTk6XzKmPgx4+jNnIk288+C1LGSY7VmnG8fv3Yjo+3eP0rK9nXQ4dAKvBN/c7fT0QU\nf5zvR/M4OKkWr39TE3+vglZloNjczLbxWjgnqc6xM360EbSawXzPW43XXn2142vBki9Bmj1TvE03\nsm3gncnKlSCFbOJ3DY2NlnytqeHr36MHSOv3Rjh28lbMeqhdzG/az5/HH3nHHV859qVL39cYqKIo\nik10AVUURXGJ10T6cF+RgrQOM1A9MnP3xAnQ8kaXOfa4SSBRlfgxMTH/oZf/CXJLaaRc3co7eAoI\nwMPuvJPtiPE/RvHddy05hxQc4LSvcz0xBSxjFaf5TFm6FA/8gs+53OkRfSsDww5z57ItwzJE1Hio\n1bFDpkeDlpMe6thFfx0PmpnkbA1x/RPWeUCSufvGrUFnnnjCsfvIogoiovfeY9sIC3WFhx9me9Ys\nDMXIkIevkXE3UXxbLw5Cf6rELjkKIz9dIvV/eNueNNIQZYhBnisioscfd8y8fpgeKCMj1hA3VvUh\nLKQ4epTt6vnloEUfF58//tj4oU/Qv0OfQBVFUVyiC6iiKIpLdAFVFEVxifdmIjK2+fLLqP3852zv\n3QtS2jVX84dXQ0Hb2Y0DkjkY/ukaMlXCaG4x4n2uQyz4MA20GTPEhx/+EH+mjKueOdNVDx1mH1/A\nH8zYkYi77qjyB2n0TD6u3yY8LGKnSMeJwL/RLUVjuAwz8UAqaLJBw+zFi/HAX/zCMacewxioDKsW\nFpI9RJeIkt3oT/5ITkdLXdwHj/vwQ8c8f+utIAU8+ih/sBgDldWbZkw+qoPLoHc0Y3w8NqCaP9z4\nS9DSbpdNcrB8tivkB3P8MnHlAtCKaB1/kA2EiKi1g+/dtODNeNyFydb8+4bSdzjuOaV7GWgH+nGa\n5bBheFzRFk5runAtpjiZTVC+C30CVRRFcYkuoIqiKC7x3o0pLo7FIUNAasvk/bfZqUduS2L+uR3F\nu+9m29/fXsVEdjb7aqTcyJyfhCrsFSpTXMaOxcNkJMBmdUdhIVeipDRng5Z8nHtSrj9vbHUOHmTb\nzAeSJVbJyfY73GRmoibuh30PYCzmhhvYli4TYSVQRIS9c5qQwOd0wwbU/F4UXa1eeQW0lKG8ZTZT\nw2QRXXW1xeqeM2f4vJoNKsVN2BAQCVLYfFHxl5QEWm0obz9t9i697z4+r6WlqAUGiEqkCxdAW/Zb\n3sKnB2PVVPQLHA6xdV4DA9nPiRNRK/pYtIP66U9RnDmT/91ODO/I8F57u3ZjUhRFsYouoIqiKC7R\nBVRRFMUl3mOgycksGmWF1Uc5XhDdgmkDMlcgfh7OxJHN4TdvthhXio11fG1YtQOkhQvZNrvx5C9t\n4w9G8KTPwQrH7qwjtSsSEx1fs0KLQMruy/G6PbfMAU02vIk+jsctO8XdwdPT7fhaWclxpdGjUfOb\nyvG4plV4/aWfRkYZeYZxCSgFBlo7p35+7Gv7cewcJuPDjcXVIIXUV/IHeaMQEcn0rJgYe9e/sZG/\nV0Ye0+l/cjqOORJLVk+brspOQpWV9u7VhgY+r2ZlsfwumYMeetVzbNnMHWo4zs9tYWF2fM3KYj+z\nM9tBa73AneVFyJOIiEqmcinnDl9MY1onsrTKyjQGqiiKYhVdQBVFUVzifQuvKIqidIo+gSqKorhE\nF1BFURSX6AKqKIriEl1AFUVRXOK9nV1CgvOGqeW110DqLWt4u3fH48wJjp2xYIG93Lrbb+e3YY88\ngprsS9W7N0gXfTlHzGcr5jNW9+Zcx+hoe7l1aWmcs3bgAGpy5EDbWMxLkxjDTimoXuQ3Rkdb8bWg\ngP2cfWk1irKdoeFM9qZwx8460PkURJs122e7dXN87XXvvaBljeR83htvxOOmvMRzZRrWVoAWFipq\nvX187N2r4eF8r376KWq//z3bI40ZGrL+/a67QJp14inHXrPGYs7ynj3sq0xEJaKcrTztMiMgH4+7\n/nrHrLsBWxrKLpkejx1fFyzgezX3LqP/hjynxkyXxlV8P/oaqyFMTM3J0TxQRVEUm3hNYxo1ild1\no9kK1QzgTkE7krBhamy/Gv4g0/mJqGR0gWMnJNj7n/L0afbVHFq15kHxdGbOYX/nHcds3XcEpMDF\nooFsbq69/9XPnuWTPn8+SGUTuBmu+XSas5eHpbVurQQtcIN4AkhNteNrXR37OX06SPv/9CfHHm48\n8TWu4yc5qPQhwnKWigp753TwYPb1jTdQk/PejU5d2cVhjp11PBk0mjCB7fh4e74WFrKvVVUgNS0v\ncey1a/Ew+QBqjD4HV2tq7H2v2tr4e/WEMWNtzTKuKsvfEAha6gGujKOBA/FAuUPs08eKr+Xl7Gfc\n2ljQZv2IKxPX3JAHGkxjNNYqqBLrpGpOn0AVRVFcoguooiiKS3QBVRRFcYnXt/B7ksTUr+eeA61w\nLMcL+3WARG2DohzbX7Z8J6K//IkuC4MHs212ADrcHO3YEWTEQG+7zTEDJ3pQk13ebSLjcAMGgBR/\ngN/8jZyLnd6rx3E8MXqTMZHtcvgq43PG0LDhxoQCyQnRhd7/nntA+1czh//6dsk5g2uvdczaC+Eg\nrdrJnycZQ9wgBH3IaNVzuRg0yDGXfYkTEsb8hW3zvYPsuGQ0pKeaJPkWHAcAdgX/cfzdSfoNdrKS\n8exUmM5I1DiRu4WF7DKG3MkhlHGdZ5r8N8TN4O5wpz/GAZBfPSk+GN2v8sdxfDRVvnUnovKR/P3r\nzE19AlUURXGJLqCKoigu8d6N6ZZbWLz6atSO8Ba+cuMpkDxHOOk64yQ2Bc65UQyYmjbNXmpISkqn\nA/DkMPJlv8H/M9JvEMnzxnz70lt5JvaUKfZSQ2TSrzl0rWIhb9Nre2NIoa/Y8/Zdgtu09UN5C5ec\nbMnXzZsdP6OW4oC75cvZ9gxoBA2m88kUIiLMzRo1yt71P3yYr785VU5kSFeMwbBIzFyx3TeuP33w\nAdvjx9vztbWVfTUSu9uDOa1KJpwTGYn9zz6L4v33sx0Zac3Xxka+V0Pm4j42fywnoZshBZkRlLYN\n7+OmYr7Hg4Is3auVlY6fhfX4+26+me3nn8fDZFNoY3cPt642VFYURbGMLqCKoigu0QVUURTFJd5j\noAsW8KC2mbkgyVQhmV5BRBS/U6RmGNPIZIlXfr7Fpgfl5Y6vKdswVlM4RKR4mPFRGfiQgT0iouZm\ntqurrflaVMRxpe99DzUZyvL/AzZFKPkbN2UwU1xCQ9m21aABYuDPPANSxl4+x1ddhYel9xcD74KD\nQStp5viUzVLesjI+pytXoiZdkL+fiKj0lxyPmzK4Fg/cupXtrKzL4mv8kDrQUldxTDZ/LmokymeX\nnZgG0viF7N6QS5es+Rofz76uWYNa34e4ZLJtCw5ylBXTiXtng5bRk8u5c3Is3QNiqKS3dyBtvXHI\npfynDRPT8DjZhKiToYL6BKooiuISXUAVRVFc4nUL39TEj++vvopa+nauUDC3aevHckeZ5HE4o7ux\nI8ixQ0Is9oM8y772OoQVE/u+x76OeDIatNI5/G+n3GJsmWQXGYvbopIS9vWKK1D7xz/YNvsTym36\nqJEXUZTteHbssOOrCOF8yxn5+8w2PY8/znZ6Okjlz3/u2HFxFkM4q1c7vs46hKlzDz7ItsxMIiJa\nsoTt1nlZoDXOyHZsm/cq7d/v+Fo/YgRIA1ascOzasbillBlPnod/jD9T9ur86CN7vhYVOb6u70gE\nKXkDf5fie+N3TuyayTNnMGj5szgFMjXVznmVa5XZVClrpqhMMvMGRS/btilTQMp8nG//vDxNY1IU\nRbGKLqCKoigu0QVUURTFJV67MQVN5RhHupE3kzd1v2OnDcR0m5W/Yju5YxtoITKWlmx0AO8CvYo5\nVSm+CsscywJE7MaY3zPlBZHWYpYAzpplyz1AdhOPH42dY2TqVC1FghS5Tvxdq7AEkIxuODbI68ep\na2kDylEUdW5nt2NgsVeH+JsefRS0uHQRD4vDCQBd4ZwIuj36CcZAZXaatw5H1WOzQTsgUnHSjAyX\nLjFsmGPWGNIAEcuMXBQPWu0iUXb8r3+BVvPSR44dRRa55hrHTL4JS3ZT9nLcs2wRvuuQs8eqX8Dr\nHGzcujYImsEpVVlffonic0fZlrPciKCWc/Qt+D6o5hoRIKen6LvQJ1BFURSX6AKqKIriEu+VSIqi\nKEqn6BOooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUlXvNAqaGB3zCZ8wVETemV6Zh3+XUm50+t74/5\nU2PGsB0WZq++eM8eroWVeZZERFEDWvmDrOEmovxJnMuW+vIteODtt7NdUHB5xk9swzxZmac660sc\nP7GmuzjPIpeQiGj4Ks513b/f0nnNy3P8rJuAiZAizY86rsFfJ0//rt/jS8qJE9n28bF3/Wtr+fpH\nDmgDbc9Bf/ZnFx6X1SHq342ZDlnnFzh2drY9X+vq2Fffgfhjwx56yLFzBuA0y4ypDY5dsjcMtIQh\nohWfxZEetHEjX8Dp01GT927//qjJybPm+JEnxZhMPz87vjY2sp+LF6Mm87vlDA8iSBI+PATH1kS0\niPr+6GithVcURbGJ1zSm1FT+nzI/CWsmBk/jeodbjAe3khv5CTT8FXwCrduwhz/YHCqWn89/yO7d\nqMnZ9LJrDRHRzp2Omd0zD6SsoaL6Ji7Omq+JiXxei94zuurIx2fZ1YgIu1jLRzkTW+dVDJWD5rJE\nRB0dbMs2UUREr73mmDu6jQdJjES3ugPx8eFzevHNzhtRJ4zBipnS97g7mNxwEBGFvMnDEWnOHGu+\nFhSwr7NntIM26zE/x16xFn+l/7Jl/EEO7iPCJ6ugIHvfq+HDHV/P7twP0qefsm3eqlVVbBtz86Cz\nW3q6pXtAPIHmbcGmydddx/aUltWg0XZxr5iT8eR2uU8ffQJVFEWxiS6giqIoLtEFVFEUxSXeSzll\nDOz73wdpX2+OK434Iw6ck686mzZUgCS7RWdlWezynZHRabwuYyd3lcoZVgYanTrlmAu+wC4+uRMv\nT7xWvoUN74Edbs4GcPym1xjsxkQjR7J9/Dhq8s3j8OF2fM3O5nP6+usglTzJ3X8Sxp0Fra6ll2Ob\nyRuenfxmm3Jz7V1/kTFgxodTV/IbazOWTwsXsm2+oZUxMY/Hnq9nzrCvRof0hgExjh02zQjKPv+8\nYxYdHQ6S/F5VV1v8Xu3Zw76a7w8eftgxC/4HO3LNPiQGycnhjER4r0ZEWPEV3it8jC9lCmfxvWok\nr9CAW/nXB374IWi1vvyeJzJSO9IriqJYRRdQRVEUl3hPpJfdZ40M5BGTuvMH49E+bxxv2+/4C/7I\nrHEyFQK3IV1Cpv8YU6VyZK/hkZhI39bBaSO507GBbYxoYFuBkYguEX6cf1j5hRjQ4vZmdHpc4bBC\nx04JMDr8yryR4ZbOq5x4JwfWk9GX2hg4J11JCcUTl9zC4R5ME+8aiQf5fBTtxYToYRM28+9fhe2G\nV25h/4xe25A1htPku8jatY5Z2A8H2X0kIiVr5DQ8IqKlSx0zcdEikHrON8I9lthDoxx7aChq/hs3\nOvbsUGPI4QbeKy84io3Tc/thyMcGRSv5ZybO+wi0TWLAnWygTUQ04V6OUFRUYRpj5Fh5X3/3+dUn\nUEVRFJfoAqooiuISXUAVRVFc4j2NKS6Oxb17QbrYzIPDrrgCB1z9+tccO8segWV1963i9Ke33rKY\nbuHxOL42bqgESVQWUvr7cXicl5LE0rsKHHvKFHu+VldzykX0EIwHtfXgFCD/1zeCRj/4AdtGnLdy\nHpedejx2fI2OZj+rN2EJZGMHl0CGzMeYI3QaMVODZNqQrUYSZPi6uBrFv3AgPv+v00CSlz/tEMbq\nYk5wlLaiwt71P32afe37vpFWJwOvZmmhHBxo5uO89RbbH3xg73vV2sprwKZNqMl0QSMdCyb5ZWai\nJge7FRXZ8bW2lv003te0zuD4eOAu43yLlLeMTHyelLH8PXs0jUlRFMUquoAqiqK4xOsWvqKCtxox\nVZhec3Ex96r02WbMDP/739m++27UPhIpBuPHW9tqFBayr7L5EhHuhO64A7X0e7kyJTIJU1xqk0Ra\nQ1qavW1Rezuf9N/9DjWRurJjJ/7/FntJhEOM/ouNvdn3kBBL202xLYrLxDQO2QzIPN9BuzltaPDT\nuL0/8olId/HxuSxdg+qKsWtQ+EJOTysch1u4lAEi3CM6cxERXpvPP7fna3w8X38xz56IqG0kJ0z5\nfx9/5eFP+LCIhRiKqp7P38HoaIuhsauv5l8q0xqJqPX0145tFsbJnqxt5A+ajOq0ttrxFdaqC7ge\n1Q3icxU+Ce/jBeO4j2ruO1jBVLqQ16rOQnj6BKooiuISXUAVRVFcoguooiiKS7yWcsaM5FlCFYTz\neWKmitiWMUvmvlOc/rHdqEbzeVekN4zHbuVdQZZo9ZqbAFr5lg38wWyP/Tp3kamqwhhoXQunP4R3\n2UNGlo/6m7NkREAxVqYDEVFOKJdyhv4ND5PpOImJZAeRfrJ8OcaVwltEp6qfPQFa27t8Tn9qZLdA\nR6n9+8kWBUn8sw4uR+1/13DcM+Wvh40jRUDuqqtAmTXuc8de02UPBaJmtC4Yi0QXiUylkj//GTQZ\nLl25Eq9H9CDZ2d6PbFEvfG03tIjRHE+sX1QLWuSMMY491hevs9nUyQZHj7I9aCLGh8MDOFUwLwn9\nXDST7boZWAI6Bm+H70SfQBVFUVyiC6iiKIpLvFciKYqiKJ2iT6CKoigu0QVUURTFJbqAKoqiuEQX\nUEVRFJd4zQOtreX60gk4CQNqoddPxbEN8Wt5TIUxeQBywKzVbBMR5eZ22nqP5s1j25jbkHOIc8aC\ng/GwxAucd0kpKfZ8LSx0fL34y1+CtOjX/GdkE457yO+d7djm9QgbJHL/2tut+NqtW5XjzIoVY0Cb\nKfLn/LcU4YGDBjlm8locL7L+nBibUlZm7ZzKe3XrVtSyQoV/Tz8NWuVLnOvpqS8ELfVQimPn51u8\nV8PD+SLPn4+ayP1d9imOmBk8mG1zNMWqVWx31nrNFUVF7Os116B28iTbRgu5+A7uh1B2z2rQyvrz\n9Nv4eEu+pqY6fpbekQ/SlCWi/l22BCSCHPb7foftDN99l+32dq2FVxRFsYr3NCbZNebWW0EqG/wU\n/7PdxoAz+dhpPNYVLufqppQUe/9TVlbyE4jZ2zWtQ8ytlw1riYimT3fM0lPRIE25m5tGU58+9v5X\nT0tzfM3ogYOsHnuM7dX4HzeMO4+ah76WzuEmwtaaPzc0OH6W7A0DKaGf6GI0Zw5o9Mwzjpm4Dbsx\nFSWJ4yzOWm9t5etvzLijlSvZzngTZ623vs1VU7t343Gxwy7T9d++3fG14AusxpvdT3SLGjIEj5sy\nhe2HHkJNdkpasMCer6tXO752m5sC0qV33+MPRnlRu1gvmr/ANSZkqZgZX1Bgx9eMDP4lstEzEdUE\n8Hcl6o4rQTv8IXeUiqjH6q5uD9zn2JcuddcnUEVRFJvoAqooiuISXUAVRVFc4vUtfPZQjsdkvY0x\nt/j773fs1rEYxws8zwPIyotbQUvpKQd+4c/sCjIE1NxsiJnilfGbb6J2112OOeX990FqCxjl2NhT\nu4ssXeqYOcXrQWrq97BjZz/yCB53XMR2fvITkOQLUWuIN5YJQ4eC1GsDX/Oz84yWW+JNd9GvsIs5\nncPOXbaQb6EzfnM1aIky86J7d9Bar+LQlu/bxvuAtWvZzsKMiK6w/jTHPWdfwO8OnRBfyd/8BjXp\nuzEA8Vst4S3R/gjHt1f8wxC/5vih+a7DT3SSkp3CiIhozBg7znX2M5djO66oAHEdlywB7cQJtt88\ngl2cvrWOfAf6BKooiuISXUAVRVFc4j2NKT/fEfcMSwVpVLFIRbjuOtBaH+UUp8Df4iMzDJkbNcpa\nukVBAaexyHnORESb13EY4fCJQNAiHhZpLQ/iVrSoJ//NiYn2Uq6KijpPucrLFHPiZf4NEUVty+5M\ngvzgujpLvh4+zDeHkf6Vuou3O8asMSqs5ybBexZXgjZqt0gps5lu078/DxW76RRID3NUhKa0GLlh\nf/yjY54xBvz1kVtmS8UJRATD+moJh5zJaEP0ctxSQn7W1KmoydSdwEB7vpaV8T1g3qwDBjhm6y9+\nAVLgSy85dtxWTFCX4+X9/e3cqzKNLbDjLGgdogBgxVJc79KvFEn35jmVqVl+fprGpCiKYhNdQBVF\nUVyiC6iiKIpLvMZAy8o4rnDHHaj1vUHEEhcvRlEMRjPr41J3c2mfzQYNffqwr2fmZqP42muOWfDo\nEZBkUw6zytPjK1KuoqOt+drQwL6GteDArdRibr5hZA5R8iZu0vKtbiI9erBtq/GJbNCSno6aSLFq\nXY5NOALniql2ZnqNTDEZPtxerO7229nXN94AqeZEH8d+5x08LD2AY6JtcmobEfmvWMEf0tKs+ZqV\nxddfXjYizAYaOBC1EX8U8WPZzYcIb97Jk+2d1/37+byKJjFERPQel3Lmf4YlqanTOQ7ZcK4XaGHn\nxWC3yEhLjW/OOH5+8UUf0EK2ijinmZsk39+IeDgR4QDKykqNgSqKothEF1BFURSXeE9j2riRxWPH\nUFu4kO0//AG1F15wzOHN2OFkP4n+kPv3W9tqxMXxtkhWpRARHTjAtuxVSkR0eCX3Mo3YsAC0lHO8\nZSostNhjcc+ezrdFb73lmOv/MQ2k5HFc4ZUwPwi0khOiqqu62o6vs2d33rdShEUqbnsKJHn+zb6V\nlUNEOlx+vrVz2q3bvxxfjx27ArTw3aLay2z6KvLBlt21A6T0FWIreOaMNV+bmvhe7dcPNdlW8+ab\nUet7soY/iGo2IiLKzGTb0raYiGjwYPb10UdRk74b0Q/Z1vRb2UEjR7Lt8dj5XqWlsZ9Gy19af0Sk\nKt52G4p9+/K/64/3sYw+ZWdrP1BFURSr6AKqKIriEl1AFUVRXOK1GxN99RXb8pU+EbYx2bcPpNJp\nHPfcv8/oVr/cmFdkieJittesQU2WayX2w/lN/TawnWp0v5l/LJcuC7JEzHT25z93zORiowPQvKOO\nWfLpp6jJAS6WqJhY4NgbMlEr2fCkY+8ytPJMTs3a0YIzkSp78LXwkD0uHfuMP4wYAdohERQLMY4L\nFCl46aeNe/X66225BwQt5DSv0vE4T2rKahHLlumARLRjAMePY438p9ZQLgnFYuWuIaubZw/dA1p4\nEncrM0P5lUf6O3bkJiythakAH3xANhBVpd+KK9N0LifvMxXvujOPsWbG67OTGsQnnMjwDfoEqiiK\n4hJdQBVFUVziPY1JURRF6RR9AlUURXGJLqCKoigu0QVUURTFJd7TmGQpp1kfKboB5XTDEiiZfRFu\npuLICVM5OfbKI9vbHV/ve8APpLfe58SOxkM45E6mP5nlaDJzKyzMXilnZSWXnXnGoa+VO9sde8MG\nPE5mWfX9RyOKcljenDlWfN3VrZvj59gnn0RRtsDfuRM10RnIcygfJDkLLz3d3jktLeVzKrPviPA8\nZhopVzEDRKqKmaonOx61tlrztbCQfU3ZGY/ixIlsr1sHUsZo7g6WM7cJNLrnHraPHLH3vSovd3wt\nJ+yQv20b28YcNzoimp6NuLoOtA7RZsr30iU7vmZkOH62ZeaA5P+cmIohUwiJqPF+HpoXcq4WNLgf\nPB4t5VQURbGJLqCKoigu8ZrGtGABbzVyb96IonhmL5z1EUgpE3h7ETISuwbJ7ZStTixEBAPwGifi\nALyQLWL2tmx3Q0R1K7kDT/hCYzsl/63FLRxVVPBJN6pNmo5yiCFoOlZNnH6NB7RtNC6H3JkkJ9s5\nr4fEFj7iX3ifDBvGtux2RUQ0dvGVAAAcUUlEQVTks0YMbvvkE9CGH+Dqpv37LV5/EcKBAWtEVPpL\nPm/mULmG+3gLFzbGqFOSTYo7GSrmhosX+XvlsxereyrOc3XPR/i1ovR/iEbhxmz12p5cwRQZae+8\nyi5H5nWuniTCM+ZkwX/+0zGbHsIQX9A68XdkZdnxdfJkbqhuDgcUHZhm3YoNzNfcxp26/Gbi8Lv2\nE2fED+mjW3hFURSb6AKqKIriEl1AFUVRXOI1Bnr6dOepIWEbRHqSTKEhInr/fcesrfcHSTbSLim5\nPDGwki2YGpQwklNVRk3Hrip7FonuTE8/Ddq5vdw5qqetdAsiIhFbhFwQIqKXXmLbiCudfpnjtd27\n42EyPhUTY+m8bt7Mfm7dClLpAyWOPaV+CWhnZ3HMy5wpFxUgUlrCw+2d07a2Ts9p3VAeZBi+1eiw\nVVXFtkwhIiI6dIhti93za2v5exXZUQParBejHHvN7dipSaZVNRG+WxCN9Sk31973qrGRfQ36Ef5Y\n3zvvdOzTv6sG7dpr2fZ5Fu+P9if5/vDzs+SrjIEbN134hHDHrhsQi8fJvDYzF0tSVqYxUEVRFJvo\nAqooiuISr5VIfXeJXJn+/VGUc8nlBCki6K7aczdWzJipGbYoWMfb9tlXGTk+wdykeE9vrKagnuIR\n/uRJkPa/zbsCHEXXNRIe5J9bsn02iqNHO2bbE0+ABNVHd+Jc8BjZ0TYGB/m55rnnHLNyCTa+/aSK\n7YJ+mKYyex43DO756qugpT3Of3teHtnjKDebPjxkMkgR58U22Rdv+X1Pc1jk97/HHzlyDNtGgluX\nGDJEfOgYAtqa57kSLWd5ImgX1rJthkZkWplNQtZxqM6YqE79RPjjeaPCKyeJQzVFP8T7I7FYDPlL\nxtQht6Qt5O9/3j3YbLxujNiaT5oHWkM/ThsLkyEbom9Pw/sO9AlUURTFJbqAKoqiuEQXUEVRFJd4\n70gfE+OI2aNxGFtWEsfjzgZgCVyvDi6BKtnVB7SE84X8ISXFWrpFr16cbjF9Omr5h0RJ5O7doJVt\n4piT2Y2pqb6NP/j720u5KSvjk25O4xK1roeTMOUmYioPDjOd3XdzimOPGGEpNSQ+3vFzz/wykEb5\ncklc6ec4OO6mm9g2mt9QULOIR0ZFWTunra18/Y0mRpQ2lEs5zVJeuB9kLhAR0aJFbJeX27v+CQmO\nr61rS0CSLmQ1G/FxMUgusQUDyLJE2sfHYnrg+vV8r774Ikint3Jc/LPPQKJRw/h79a1YouwcZalz\nWE0NX/+olRg7blrK6WDm4DjZjS17YRuKBw+yPWqUpjEpiqLYRBdQRVEUl3jdwldX82NxdABWTOTs\n5IqJpCQ8Lui8qDbZtAm0Q6LaZ4jN6p7Vq/kPEbPViQi2Pt+qNhCpGEH1WE3RtFs02w0Ls+ZrUBCf\n1y+/RO3rP/O5W787HLTk397i2I1vYD6Y3IkmJFjawomt5n1f4lZz8GC283pmgwaNiI0/MOfP4x07\nI8PiVlP4Orwefd2/RaR/zcM0lrPrODTRaySebxo5ku2iInu+NjY6vuZvxfCX7Dc+FjPV4NadPx+1\nyHkiTFVZac9X0ag47QI2Ks7zXeDYO8ZguCm2t+h6ZOZYyZs1OtqOr3l5jp8VQ9JAkiG9M6s243Ei\nxjT4MUxWfPxxtlNSvvte1SdQRVEUl+gCqiiK4hJdQBVFUVziPY1pyRKOK9yG5VgxI8VwNlnWSYQd\nToyOQtU9uZQyOtpiDEzElWjmTNTkADSjW3nNUe4WFdWzATQoUQ0MtOZrXBzHQM3MmbAZHvOfMz/7\nGds/+AFqoaFs24or1dU5fjb4Ynww7BCXix4egOWxEXdczR9KS0HbdxXHmaylWxFRXh6f07RQTLmS\ntZOpq/DvkGHOhN6YqgcpZiEhl+VerWnBGGjUJo4rfqvLuyxDDQgAqWYix6Gjoix+ryorHV8L6/He\nlNlJgVuNzlHyOyfvTSKiT0Wppa33IIWFjp+HR6eAFLFclIsa5ZqNWzhWK7PWiHBYRGysxkAVRVGs\noguooiiKS7xv4RVFUZRO0SdQRVEUl+gCqiiK4hJdQBVFUVzitSM9DBUTA9aICFKFlr2OqSHpj4qu\nJosXgybLwfLy7KVb5OdzGovZVcnnAvvTdA6H3AXNT3BsTzOWAFaOFoPzsrOt+VpRwb6aTbDT6rkD\nz75fFIA2YqRw4Zln8MBz59jOy7Pia1QU+7lqFWpyFpvRdJ6OvCLK+IzrnxrK6U/5+fauf2Ul+2re\nqrL5z4hjRrqNxGjjte9P/HxhM+WqoKDzzmGBe0UqlXFzVA7lEkVPfSFo0GYoLc1eGlNuLq8BsnUR\nEaR5eVqwRLJyuSj9vuMO0Mo2fu3Y8fGWzmtcnOPnxa04kcGnSnTjEhMfiAhTxWT3JfPf+vhoGpOi\nKIpNvL+FF4nUFwcOBOn4Z3xc2GJjrsnChY55+ip8Ou37img6sGCBtf8pu3X70nHo0pPPoigT+83/\ngeRwGZlVTYQJwIWF9v5XF+cVkoqJqOALbrZhtC6lkhvFeFjzCVSO5N282YqvISH8pNSYvhrFffsc\nc89MfKob1Vs0kzFGDJ+exk9RfftaTPg+c4bP6c03o7ZEnDezQ4d8AjG3AwMGsB0ZeVlGcJszmqAI\nxKyykEUg5jZr6FC2LY6Ljo/ne6BsUS2Kcpa23AER4aO1kfSfv453gamplu6BhgY+p8a5ad/Kc6/8\njhp/QzNPeqoLxWYi8s/rrEGPPoEqiqK4RBdQRVEUl+gCqiiK4hKvb+FztnD8MuPYMdDCmvc49tnl\n60GTYaWgk9iIuWYsN0uIIntcWvEy/w6juevYULbP7sYGzzLOFN+CbzZPiJdy+8kiMkZjxECrbuMY\n6ObidtDoKvFG2xg2FFXPb0HxjLuncZeIZfbEJtWlvec49pRpPwatXcSV/U6eBO3rfiKUZLMKTqYJ\nmM0rJMZA9dqe0Y59ogfG62M7bJ1JAzlb6MorQVrQk+/BcUY2gUe+JTbeiF+cNNmxbT4VlRVzBkvq\nwkjQ8jP78QejUfWOQRzrjg3GuOPx4/hzbNDUI8yx+7z1FmhbtrDdsyf+7tj6KscON2K14QEt4hM2\nzPkGfQJVFEVxiS6giqIoLvG6hc+Yedax12/F7c3Qofw5yrcVNProPba7dwfpOiPDxBpi2xbVgRvu\nvn157G7U9AjQeootkzlnJvaC7CsZ32UXv+HsJk6W7rVmCWhD/iU+GP0g85ZwArLIFCMioqqt1txj\ngoMds2wnFiBMuemwYzf+8XPQZHvYj6/7K2iX5Mxjm8hE8l/9CqQdvrz9it2K83KOj+EtvJk2NnQe\nB5mCLLj4DQu+4PDH3/+O2mqRLWZOvK6ToZ9+/UDzeVbcR09h794uIdKq9h41ihB+8hO2je957BAx\nh+poM2gTJ9rfwsuvSvavMTQ0TOzMP/4Yj4vdLvb3xsU4PYPPY99Ofq8+gSqKorhEF1BFURSX6AKq\nKIriEq+lnB4Pl3GdOoWabBgxat5w0OQ4lOSdk0Fbdiun26SnWyzlE41P1p/H35k8R6SKvP02HicH\ncRspLjIGSDEx9nytqeGTLn8/EZT2pRVjoteRI2xfey0eJufTdDa/5b/mllscP/etxTn0g0Vjk5bP\n8B4K+2Ajf3jhBfyZMsXI4qz17Gy+V7NmNIE2eR5HMDcPyMADX+b0t4pX8CaP2ZbKH/Lzrfna0q2b\n42tvIz2QNmxwzCxfnMMub8ejR/EwOb9n1Ch736s24au/kR7Wfoxj335JCaDBPDEjxelyzBorLeXr\nP+VqY7bVzp2OWTM9D6SozFjHbtuyAzT/4xznp4gILeVUFEWxiS6giqIoLvHejamtjUVz5md9Pdsy\nhYSI6LHH2DYqUVqn8sjRwECLW3ix3Ty9E7ebfQ9s5w+PP47HyXjDs0YXpwcfZLugwJ6ve/bweRVb\nNiLC/plLl4LUvpS3H367K0GLWcojZysqLJ3Xpib2sxlTURp7c3hh3To87He/Y/vIu7idhq5BZ85Y\nO6c5ObyFMzJ8oKlS9FBMuSuvCnTsuAkX8UCZj7Vjx2UJN+U3Y7hp2DC233sPJJIZYFuNtLXCQWJr\narMfaFERj7YenQhSWAuH8aovYBhPFvVEDcGKutbvfc+xAy2NNZZhkZq3cU2L6VHNH4zGtk0rOaQY\n1M+4/rKiafx43cIriqLYRBdQRVEUl+gCqiiK4hLvMdCLF1k0h+LI7u1GV+0a0WfJaDZEU64U80ri\n4uzFajZudHxtNQbN7BUxkZhDmMYgO7mf7RkGkkwNshZXJKLhwzleZzRVgibkEb51KMpg3jXXoPbI\nI2zn5trxdckSPnEyHkx4rnqdbwQtMTPEsYvGYKcu6FBfVmbv+l95peNrxuNfg/TAA2x/9hkellCf\n7djtC7NAk7e1j8/lmd/kGXIGRTkxwYg70xVXsH333ah98AHbp05dlnht2l6M1+ad5/cZ8GUhgu9V\n2QaMO8cHi1Lr4cOt+Fpb2/l3KqSjgT/IXEAiopdecsySSWUgJRz99zPR9AlUURTFJbqAKoqiuMT7\nFl5RFEXpFH0CVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK4xOtIj8ZGzq0KOX8YxaQktmV+GhHRK6+w\nvdcYLdgiJt1ZrNmNimJfzTphWZfba6aX9nqfpYAG9f9BQfZy6xoaHF93HMXcU9F5i/KnG7NAxYyH\nbld9BdJXX/V3bH9/OzmLhw/zOY0472Uu6aFD+Fnm4crrTUQ1zdxaLirKYi+E9es5X/FQMkh5/cSU\nVrNwX5zT9i3lIPnNFfdDYaE9X7Oy+M3tuHEgNYWOcuygCw2glR/ieyVuPo7YoQMH2LbUIo6IqLyc\n74ERI1Dr+0f+7tD//R+Kctro2rWoyR4PHo8dXzMy+JyOGQNSpW+MY5sDW2UHS/M2Th357/NV9QlU\nURTFJV6fQEN+JBbdN95AUTxZLvsNrsP/I574grbgpLbsYfy/PNZ9dA35lBmyBauN4qp4kFh5ElZM\n/Fw0B9r3fzgXfsQJ8T9QkL2xYsOn8pPEuXOoyca4s17GDjcffsj2pRdwvr1PAD8tXTSayrgl4nUx\nqOyhh0Bb9iqfj/RHBoAGVWtGw+hzwxbYcc5g1p/4qfO22wzx4AnH3PcqVneN2M53od+82aBlB/P9\nYPNebUji6qewe34M2tGXuElx0EpsRNxjrnhCHjIEf6gcOFdkDH/rArLpWtwYY3ik6ByWOgZnv+e3\ncIPli3tx9+Jz7ixZR1bp7doFkmfpWP5gNHc+OCbfsWURGBFR4kr+/nV2SvUJVFEUxSW6gCqKorhE\nF1BFURSXeC3lvCi6PO8yuzxnivic2XKpe3e2ZVdvIlo2kLvzWB0qt38/OygDokT4Nr24GKSGE36O\nHTZ+MB4nu9enpFjzNS2N32zmzceO7UW7OLa4ZQse16MH27/9LWp9T9bwh6goO762tzt+lu/0Aymu\nRXRZGmDEQGWnLtmengi7CNnMbKiu5o7kAdEgRW3hQXJn5+OgNjlMIWRuHP5MGVe0OVQwO9vxtTEJ\no6shQ7hD/sVzGHP0WST+bd+++DP/+le2s7Ls+SruAZiWQEQ0n99vRE8IBEkOHti9Gw+TL+FjYuys\nAQ0N/J0KmxkDWuM6HjInmuETEdGsWWyb7yMq14p4eXi4voVXFEWxiS6giqIoLvGaxpT5K356zwk2\nEunF5K7sCZimkDWBt5PZ23C2edZgmaxsbJm6gmjUWzQgG6RE0VE3ZzluRWWWTZYxM76oihsD4zit\nrgENX43s3cQBxx374IBRoI0V2RjGrD66N4nPcy1mlLhH7G/jhuD+JruY04ayij2gQSK9TPAmouof\nTnPsaHuZYXRxNG/bo+oxVSkngLftD/8Tjws5yPdj4QRMpE+ZK5LV64zm1l3hwgXHNKNNrSd42x64\nKh802fy5JCAXtPKhvL23+K2CdMWO//1fkCpGsj+yAISIyOf7vOPtYTR/jl/LAxFjcLftmjBf0dTb\nGID5k5+wfeR9TKEqu+c1xz774BzQ6lr4+htlCw76BKooiuISXUAVRVFcoguooiiKS7x3pD971hGz\nV/UCScYVRtzSDlrdcY4zytQbIkzToNbWy5PGJGJMRETn77rLsQPMVAzRXCLxzs9BKurgcjQqKbHn\na20t+7oJSzLlMK6sbVjKmT1iu2O33T0eNP/nRNnlU0/Z8VU0PZn1G2x6smZFm2OnZfqDljeT44VZ\nxRg9ysxk28/PYhpbbi6fU7NjhAg6NwzAoFtYsYiXm8fJ9KxRo6z52tTEKTdBK43SVvFuIY/SQBJ9\nT76VORa+U8RLU1Ptndft2zk9rD/ec1FDRc2wHBZIhA1ETp0CKfyrjxy7rs7OPVBdzefUqOSk3r3Z\nPngQtfUd4u2G0fTEM4Hv68rK7/ZTn0AVRVFcoguooiiKS7ymMR1u5m171i6s7qAJPMC8ei+mKkX/\nQnSYufZaPG7Dhv/Ow/+QyvO83Q0ORm2LGG8uKySIiIa+/5RjrzXmSdNzN9pyD8jYFOnYOfMNZ0X7\nm+y+q0Gqu4HTLMJnGolV87HrlRVE/GXN3xJAqjtR4thGS0tasI637bmTMMWtsZmvU0gIWaNuIm+F\nw8lIORIlJmETI0HKnsQ5X1kBOBe8bSinkWGQomssX8728eOYjlQ2kn1IO4XXv3EIX39zxxxu3tiW\nKDzJ2/aU542cI/GHXJyAyVM+ooxux9wdoAUvJ+vIkOKdd6JWsZXDTfHTjSs5SHz/Zs4EqfJnsgEq\npjh9gz6BKoqiuEQXUEVRFJfoAqooiuISrzFQ2UUl4p9GDZzo7HxwUjVI0StWOHbHz36Gv1AOIbGI\nZ6JIjzLyGLZs4bjb9dfjcTJzIbsK47xtO/nvshkDy+khUmd8sUM2DRvGthHokr7mGeVqUDIZiXE+\nt1Qc4lrLGGPOjCyBlS4TEcUM4Fk+lccxFasHN4e3GgMNf0fEC43u+VRVxbashyXsQp6wLh601352\nzLEvXRrYVRcdZClvWXAqaG3jOB3JfxGmOIV8zGlss/eW4g9tDmU72nhf0QUgs+u991D8y18c81tP\nYuKPjK3Cv2OuEfe1gbw95TgmIoIJCSNGoC+193GZb2RLJWjfSmv7DvQJVFEUxSW6gCqKorjEeyWS\noiiK0in6BKooiuISXUAVRVFcoguooiiKS3QBVRRFcYnXPNCcHG4RlbHWSNpbybXwdOQIamLUXcEm\nbIM3exznCFJYmL22WxUVjq91oVizG76J8y4vZuIURDmKwMxXg9pYi77W1PB5jRqJI0YgT9FodZea\nybmu+eeTQYOeXbm5dnyNiXH8bH3nHZAC5cRS2WeNiKoHpTh29E+MpLwvvmC7Tx9r57S2ls+pOSYj\nrJ6nMpr9FRuCOWcyrGo9aHBO4+Ls3at+fvzm9uWXUZPTNc3ea6JPAkwMJaKUXZMdu7DQYpvAkBD2\nVSbNEhGN5zr52pumgRRJYq6M2ZxC9sNIS7Pia10dX//wqkLQCjr4fjQmzMD0Gc+uDNBiDnCOaEWF\ntrNTFEWxitcnUFltQr/8JYpPPMG2aAJLREQ/+IFjDh2GlRbU3Mx2GDbp7RJiFnn4QayMal/IT50H\n9oJEscPOOPYOwgqJ0eIBBKded42ols6fiOTc+oJi/K3ygShsGz4tNSwqsubfN7SIp87CJZjuljGD\nzxsdPYrHtYgP996LP1S2Isq1V5Eii8+MB2IK28TnNKYZzxP00DU78cpdlkUajnID8hMnUKv/B9vJ\ny3EAGpTbyO8RERUOyhOfsBFzlxDn4OwYrNSSxXD5X+FTH5QxmufR8N0G8kf2npQC2t9fZNtsRC0v\nuee660B79bF//3v1CVRRFMUluoAqiqK4RBdQRVEUl3gv5ayudkT5tpKIKGydeGNltCQ/K4a4bViB\nP192oklOtve2MDub38ItXIia34uiU8+xYyiKVkLxW7HLu3wJbnMAWn4++5p6wYgDyjjXXgzYFvXk\neLIxN49SSMSgUlKs+JqWxn6aL1LTNoiOT8YbYZKxpB//GLWkJLb377d2Thsa2Ff5ZpWIaE+xyPyA\nAC3RAtGpy4yPvf4622+9Ze/679vHvo54FLtVQTzZnDIgtT/8AaTyF3hwW1ycPV8TE9nXqVNRix3a\nxB/EcEYioqit/N7hrbfwOJnAUVJiydfCQl5oxAQCIoLv+OS1HpA2z+D3EbNex+wdGb6Pj9e38Iqi\nKFbRBVRRFMUlXrfwo0bx4/uep7ajKJom00cfofbGG45pNin+3vfYTk+3mPBbXu74mlePA67SxnJS\nb8x8bDZcsY1TSvLXYlJ76tjD/CEiwpqv8rzefDNqa37KW4rqHril2LqV7SlT8Ljt4vJkZ9s5rxkZ\nnYdFpC8TfoG/rtef/+zYZfV4vmUqVnS0veufnMy+rg/GYgkZFsnejVu4rACR/jNkCB4nc5zKyuzd\nq5Mn85fO/J2i4fjFdZiq5lMlGv4aoQhIus/Jsefr5s2Or2l7J4Mk+hTD/UCEwxuDWmpBq2zhe8Lj\nsXMPLFvG1//221GT4acwakBRFAPQsmUgFTbzOpKSolt4RVEUq+gCqiiK4hJdQBVFUVziPY0pIcER\nLxaXgOQzKJw/GAGyjHpudJHTgmVVkAvh8diL1cTGOr6Wz9wBkkxPMWfa+YpiVtmrgQizRvLzLcZr\nDx/mk26kf+wYyzG52J1YBls+lgeOGTPeKHCdiOVZatDQ1sZxJf+XV6P42Wdsy9w0Imp7+mnHPv4J\n3l8R82P5w44dlyWNzUy5ktlg5jWu9BVxZuNa0Jtvsj1njjVf29vZV7/5RqmzrJ8+dAg1mbtmpA7C\njV1UZO9evfpqvoDi3QYRUbe7bnDse+/tD9qrr7Ld9xiWVu84z+9FYmPtfK8qK/mcep64BbTDG/kd\nTcSWbNAgBU+WnxJhV5pO1ip9AlUURXGJLqCKoigu8dqNqXwqb9vjWs6gKHplNo3D3pSjRUbF4VDs\n0iJbbFZjRkmXaFrH23ZjTDk0gzHG1NOIv3Ha0Pl+mDYki2ZsEjk1wrF7984DrX4L240T8bi44BrH\nrtgbBdpRX+7AY2wKXSOvVWbmHNDC/yq2QkbfSv+TJx37738hxOwda4msUO6y1DoRK8pkpx7ovkRE\nNFWEH4yKqoaV5Y5tsW8Y7BS3+eaDljd1j2M33nEHaKf28m76hz/EnylTinLIIs8/75hnh2BK4qXu\nnPZXPrcdtL7deL2IzsTjZMvb2FiygueDJY7d+kdMqzwnIiGpLZjilj9DdJg6dQo0eumlf/t79QlU\nURTFJbqAKoqiuEQXUEVRFJd4jYGeP892xcE+oBUf5Jhb0UAs8wwSsYOSSWWgVc+Tn7HDdVeQGQey\n6TkRUe6k/Y5ddgK738x6h+Oea05iCWjecY6BpVls8v3xxxwfeuYZPK/ynO8Yh/Gx2B5cWmp2XZed\ng2wRGsq2nCtFRHjCzTZGIq2pu9l8fPFiK76ZRK/juGdSB2pXXMG2z3GjlE/GPY0ZVGHbxPlPtRVZ\nxrQqMxtJ5s6FlJaCFPICv2toXIRlnvJaWUWkpPUynM2Yz3HPXcZlbZ7B97XsXE9E5CmW70yMOVQu\nqb7zKccONqpcRxXPZnsYviGpnMjrkee4l5lYnaBPoIqiKC7RBVRRFMUl3iuRFEVRlE7RJ1BFURSX\n6AKqKIriEl1AFUVRXKILqKIoikt0AVUURXGJLqCKoigu+X+Y1wZCwEU03QAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  27\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl+X1/498iIyMEVEaGSNnhMwY\nkSkxR4wZKToydOLQMceMKTNy5NSR8WDM+KgzZsxfY44PMXLqjIivqZljfMj8lUNGRERmjDlCR0SO\njIjg+8fns/uc15W8126uHt/H9/E4z7/O7fF+c97Xfd/X+7rOfX6MGBwcJEVRFOXfx+v/tQGKoij/\nv6ITqKIoikt0AlUURXGJTqCKoigu0QlUURTFJd4etQkJziv6gFOHQFVeznJHB56WvrCPD+bPR6U8\n0dd3xGcz818TFUWOrXVTs0DXsqzIkUPLc0E3kJfvyL29+Jn/+AfLo0eTNVuzs9nWwjufHvo/vvAC\nHBZGlvFnTG/C/3vuHMsJCXZsbWvjEI1ly0BVNrfKkTdvxtPuvJPlvDzUjX6BvwOlpVkbU8rMdGy9\ntHErqOrrWY6pXInnbd/O8uHDqGttZXnePHu23nEHj+tDD4GqZWq6I5vjGhnJ8uzZqFu7luXCQnv3\nKhUXs62VlagLCWH5y18GVdILP3TkqrhC0LXMynbk0FA7tubn8zNlPscFK7ocOX1FAOhWr2Y51Pss\n6MqOjHPktLTL26krUEVRFJeM8BgH+vjjjjLqmUdBFRfHcuHqC3jemTOOWNsfA6rYqQN84OVl7Zcy\nNpZ/gWpHJqBy0iSWOztR98UvOuLu8fgdU14Tq9X8fHu/6jk5POjPPos6f3+W16wBVcGfZ/JHjMRf\n9YJe/lXPybH/qx4djbqEj5935Itfmwm6nh6Wg7bjip/GjmU5I8PamA6MGOHY6iWXakR0QSxBF96L\n9/uh+7fwwZ/+BLrQIyWO3NJib1XX3s7jGhiIOp/5yY4c310BujFjWH7vPTzvQOsEPnj9dXv3alIS\nD9jf/w6qtt3HHNnb2MsG+V9y5OrjvqCLD2sX/zHIjq1ypdzdDaqBFbzr8IqLxfPEM9Y+EeeNoLwM\n+fm6AlUURbGJTqCKoigu0QlUURTFJZ7fwv/hD4544AD6B0efb+CDc/2gS93Mfs8dO4zPlD7IG274\nbFZ+BuTbNDo1dWil4R+Rxz+ZjqqU1WPp86BkfIEjh/2mAHSnTrE89UY8b+6t4qATnZKRxteyQb+4\nrNKNTERERz5xRL/Go6A63sPXP+j4cdC1l3I0R9DwTXTwOnGCD3btAt0NW9jPWRpinLjjXZaNV9st\nO4S/3uJao7SU5ZxZDahcscIRq982IjT+/GeW8xaj7n47tn0K+bLjww9BNWoUywGb0Ne9/mqObhHD\nT0REra185W2NalYj+yvNyI9eESW0d24tnrciwpFneeO1qDu4lv4VugJVFEVxiU6giqIoLvEcxnTh\nAivlep2I6I9/dMTY9RjGImNqr70WT5MfYyvchogoIIBDQ7pmpaFShAYt/bgIVH/7G8tVy6vxvLAw\nlm2FWxBRYSHbmn18HirnznXE2jGokyEv4ZsyQAcB4ZbCw4qK2M5Zs1DX2MhyUljL0LZ86Uug2n8L\nB1gnJloM+B4Y4Ht12zbU3XUXy6YvQkT9zxhzGlRPPsmyrYBvIsKQm+ZmUJVM5PC0dO8y0MlA//Vf\nRt2DD7IcEGDP1t27+R5IeaAPdCdO+zjylBvb8ERh6/mZ6aAa/a5IAgkPt2OrSKSomDZ0IoVJ/lSR\nIPTKK6iU4XAzZ2oYk6Ioik10AlUURXGJTqCKoigu8RzGNFWEA03HGJ+CMexLrB2biuf9ZJ0jVpwK\nBpVM87OJzBBsW4v+IZlmtv2mi6AbfIvDqmrPxYMutqOOD4JsBt14YNo0R2zei6qMiSJcyAjHKtzE\nv4XZ2WSFrLmccjfipqtA19HBzu2Mx0JBFx0t/HjjMWxkKmZZWiN1IX//ndPQVlq40BHbDhv+2ufY\n7/kto5bI53WvSodyMaEvO+NDEfMjHfREUF3kmnJUBRzj1Fqaie8khkPK8+J9Qv99oHvjkwWO/O67\n+JyHRLPfs/QJ/My1a8Md2YcssY7nnOSFSaD66q+58M3oN/B+pE5xkf/yF9SdP8/yEGOqK1BFURSX\n6ASqKIriEo9hTAMDHMJw8CDqEg+LfaIsE0NEhd5c/SR7ItYRhdCg4GB7oSF1dfxFyo39jdgyeU3D\nbfpAD1eN+VTJIVn/cNw4a7YGB/O4btqEuuRGzuBoX4zZHUH7ivlAhDsREe43LY3r0qVs5zPPoE4W\nijJrU9bUsJxWmQy6cfVcYejsWXvhNllZbOvy5aiTBa4C1mSiUrhMoKYqEaWd4rqyZWX2bE1LY1vL\nAg1/y5IlLJspNXIbKb8UEVaSys2191zFxzu2Jo3CMD+ZpPTii3jagW+zG61vPoYVytKyxcV2xlXO\nVV71daiUcUyiUtyndIuN7C7p+0tK0jAmRVEUm+gEqiiK4hKdQBVFUVziMYxJ+hISe9B3kE0cqrLM\ncMdlL7ibDxY9D7rdL3JPkhSMfBgeMqwHSjMR5B0OnEL/SO66KEdevA+rsQTXc/gDjRtHtmj7weN8\nUPkGKoVTNOjwHlDNO8whL3tCDN+yTAnMwp5QbpHtembMQF3SGq5ik9OB41ZweDIfGD2xKvOsmPYp\npEtw3CijQ8IKvh9qF5WAKvZgDh8YtpYdTBRH+4drIn9uCPu2o/ZhZ4Hxwg3r7b0TdIGi4JTZWCEs\njP2jRg+AYVE8n/2e3sZ7EDlcph88axP7PYuOYKhW8f2ydJSdkCuvTWIcjbTzGc/y3z/widGtQjST\nSlo7GVTSHZ1Il0dXoIqiKC7RCVRRFMUlnqsxKYqiKEOiK1BFURSX6ASqKIriEp1AFUVRXKITqKIo\niks8l7ObPJnfMBmxldX+nOM81WiC6TNLxFp5G39C5pvbzNlNTGRbjZxmWc6sa/FKUMl4OjNNNrGX\n87YpOdmarbJVRtbIYlSKsoEF5Rgom5Mnin8tWgS6ed38OXv2WMrbPnqUx1T2EyGiFuISdkalQ0gv\nL16EHTspJIRli21SZEuPqEm4Lqg+zX+m6y18aSpvx8NGObuIVhEHPEQutBu2buXrP3Ei6np7WU5Y\nhmUC13+fS/GtutsoywYnJtgb18cfd2zN/wQ788pbMPiM0Q7n2DFH3Hotnpe5V9SjqK62YmtXF4+p\nWSbAKy7WkWP6cdzkvZt77t9vk6MrUEVRFJd4XoHKkjtGdH/8MZFNU28UsBUVl3ZGYxM32ZzM77PZ\n+JnIieRMkYJ9A6gUhWjNX6eAMycdedzMKahc+6/7Qrsh60ucnZX0K/zVq5rOzbnMhCpqXeSIS/8D\nV66///0n4ug/hmsiERHlHuT+7vlj8e+Feh9x5CNHsGnYSy+JA1Holohwu7ISdwPDQpSAqqscD6qL\n/rzq7DZ2GTKDprUVda9/yIV5U4Zrn0Cu0EPX4djJvvA0ciSoVs0QGV/l+/C8L36R5QQj22Y4XH+9\nI+ZGGz3sX3qVZbNcl/geHUYG09kdvFq1ld8XsEwUde/vB11WJK86jy7DgtpFB3mVH1+D9/ht3P/w\nU30K/4muQBVFUVyiE6iiKIpLdAJVFEVxiedUzupqVhqvqGWFE9P94btoniPnT8SKQpLcXHtVvmNj\n+S1c7WJsKnf+Pq4MM/qbWHEFKrsbb7ahQnVVlb03m319jq0DV14JKq+33hrytKMd7DGKeftpVH7r\nWyz7+NixVUZhSH84Efgcl36IFYW2PcbN6OjIEdDR8eMsFxbaG9M9exxbYzbNA9XRSVydyvTJd3Sw\nLIp2ERFRSbmIeujrs2ZrRATfq9LlSYT+UeG6JyIMhJDNEohwmAcG7D1XlJ7O94BRsX3pb9lHvm2q\ncT9+wj75i7OxIr20NTHRkq0tLY6d89Zg9MKe7/I7h6pPsPpT0ix+X3KxB9eT8n1Nbe3l7dQVqKIo\nikt0AlUURXGJ5zAmGZBu7BmefJK38L7njF7bInB9mRFkLxuO2USGo2Sdwi1DnliK08MP44lXXOGI\nVcdvAFWSuW21REMzbw1f34UulK99iXcKQQ8+CLqwdSLMYg7u/Yo/4B7dGUY8sGvExVr/S19QXTOe\nQ3y2ja0CHR3nMJKtnbidHhvHx9i9e5iIxoZHK7Gg8ojRHC41WInJCSV5HDZWsr0PP7PTyBCwhOzB\nmDbScHGtrXHEuNlbQSVdDJGReNpLL30sjq4ga4wdO6Rq27VcjLr96wWgC1rCV3dHJz6PZu9GG2w9\nzNt2oy42kDS+CY73H+Qe9eMx+u1TzQkvh65AFUVRXKITqKIoikt0AlUURXGJ5zCmpCRH2bQO/Vwy\nGsX0Hcisz6iQLtBBU7kUi+EWMuRmxw7UyYohZvUG0cQNYkiI6Mw3vuHI4wcH7dkaGjpkaAg9+yzL\nZm7hzTc74sq4k6D6+c8/cOTBwavt2CoLtEjHHRHtn8vN2RKj8RqXVPI1Tj+TAzooLpOfb29M580b\nOuSqtJRls2KMaMZ38RT68svLWc7MtHiviiIt1b0xoJKpxvX1eFr6KOEvNYr0dM+Zw59h8159/nke\nV5HWSUREr7zC8l/+AqqqqRscedIkPC1ojEi1HqJIx79LRgaHhpnj9sgjLD/3HOpkGJvpV5bz2lDX\nX1egiqIoLtEJVFEUxSWew5hElk7429jfPTzyRj4wqsY09HNowOTpAaCTu9IUiyVuMiJ5S9u4BHVH\nF/N2M3lzPOgqFomYirg40I1fv96afWBPKW8VY0Zin/qlb3PIzbbbjXgksY3eEIL9zY/cbVT1sYHc\nT95559D/z9gzxcWJMT6IW+amPN6GhpNFZGyMrDlKBHEtTaMwE+3UKZYDjaQpw6NjjZx9vG0v8N8A\nOlmvNmqv4f4QqUntzRdBFWSWGbPFb37DshnSJJ77hHr8Ht8Xt0vQLsxUgyKc4XbuAlm6U7peiIju\nvZfllI8wS/HQGA6xSqjB8a6diKFZl0NXoIqiKC7RCVRRFMUlOoEqiqK4xGMYU/uIEY4yyAhTyC/l\nlDgzMkQWNYr/hvH2X5ZusthnaMSITxxbf/UrrMiecUr4Eo3QoOMvvujIF1/AsUhYZ793CxERNTQM\nWeWqK457Tflfh3/S69vfduT0kTtBJ7JnKT7eTsiNrBrUcMpIc+zpccSdB9HPLcNBwudH4HkybCsr\ny96Y+vjwmBpV8M/OznbkcTvQz5XRyX6u4uZY0I146deOPDh4mzVbO8VzFfjYY6Br/tnPHLl6C96P\nmYNbHLnixh+CLnm5SFFta7M3rrm5bIQMByQiOn2aZekrJaLkNezbrDiF6bN0UJSoDw+3YmtWFt+r\nRc1GRf577nHEspuxP9Ntt7H8ox/haTLt3MdHw5gURVGsohOooiiKSzxnIimKoihDoitQRVEUl+gE\nqiiK4hKdQBVFUVyiE6iiKIpLPObCyxJRxfdjLjxdey3Lb7+NugcecMSVedgKIiyM5fR0eyXCLl5k\nW43UfKgQl/IAxjP2EbfX2LULzzt2jOVt2+zZKmNWX34ZY1ZjdnEHybRu7CApc7PNSnd5eSxb68q4\nRQQivvYaqAJ2cbsJs3pcdit/h5JI/A5r17J89qzFEnHJyWzrEqMYgswTl0nTpkG9vaAqO8JdUNPS\nLNqak+PYmtWD+dYyhNV3F9Y7yDjO9Q727cOPlB08k5Mt2nrttY6tode/BypZfsBsfxHVXc0HZmdW\n+YCuXGnH1rvv5ut/662g2jmd899T96XieSJx/qqrcT35pz+xHB6ucaCKoihW8bgClavFrruxn3LA\nuQZHTn5mAegq/swVZRYtwiot4XMm8EH665/Z0H+FrKFs/hqmTGBbd+7FzJjUqdxULO26V0F3ZRx+\nZ1tccw2vOmOiB1D5x9GOOM0oRJt2mCvHpPZjVZmBRbIaE65cXCMGNf2O00P+t+zf3oH/8AEXd/aP\nQ5W5crLFjA8rHPlAiNHkUFT/LpyIY7NW1Nc2a1tviK4QR8lkjdWrHbGIsKpSwmw/Rz5Uid3Rig+K\nBn1rjYZ3/iHiACuODYein/Kqs2UR2pq6hG2VcwURER3hxoIXl+eCym+haCe4ciVZ4aqrHFGuOImI\nUpv57+++HzP4Ujby/LR0KdoSviKRD/bvv+yf1RWooiiKS3QCVRRFcYlOoIqiKC7xnMpZV+co2wKj\nQBXs3c4HRif7ldG1jmy+LZZvbCMiLL4tjI11bC1bXAuqtE6uiF3inw062fAqwr8NdEWVXEUmK8ui\nrQMDPOjmAAUGsmy8Fd669wZHzuxB33J6M/tvSkrs2CqjMGTvPSIi3/JiRy7qxcr5suC4jA4gwkpd\nCQn2xrS2lm3t70edtMHojUd7xor7QZa0IsJy9RkZ1mxdupRt3fZBGirl9TeZOtURd3+MPtmUEaLh\n3Lx59u7VCxccW4+euQFUsj+jeRtH9Bx15KxdQzfOy8+3dA/IqlH/5/+gTjTDywg5BKriSv5O51+9\nALonn2S5oEDfwiuKolhFJ1BFURSXeNzCnzjBW43z51G3dy/L5pZp2TKWYzZ6CP+oqPhcgpPNRtRn\nI9kGs9+Y3LWZoRi5kVV8kJRkzdaVK3lcX8XIKTrwYxGAbBjbN5YDu30IEwKqDnJCQFKSnW3R5Mls\np9mzTJpWPArdIoems8skIRpDX5rOcejLUMHJrkhNHbKgcksvu2JCVySBjrq7WRZbZCLCxuDp6dZs\n7ericTW8NNTYyHLCxHbQnfhrkCNPeQ3DsWQYm5eXxXFtaeFx/e53QXXxhWPm/3bw275hSF2hN7ub\nsrMt2bphg2PnzrEYjpRawy6mCS8Vg042nCu6bQvo4KZfsEC38IqiKDbRCVRRFMUlOoEqiqK4xKMP\nFBo1dcwDXWE0h01k75qMJ8rO9iKNjojoxG0ctjFlyucTxkTeRobqnDmOWPA+NuOqr2fZ9OV2dLB8\n9Kg9W/v6eFxlLQsiovxe9t8U+KMfKecM+7l234c+sOeeY3nnTku27tnj2Fnhjdc/mTjNsSkM/dzh\nYZyemrYIf6PLRmXywdat1sb00iUeU7N2hQydO+mPDcfaSzms5fBhPC+t9PNpKujp3ULSXn4+Vo7B\nlMQNY9i3DCFWRERxcSxbDLlKTmZbK0rRn33oOPuzE7Yb7zqkc9fTi4eYGCu21tWxnWa68KxZLMvn\nnYgoPYTfObSHYQqs6O83ZDEhXYEqiqK4RCdQRVEUl3isxlQ0TYTxtGKIh/8ocWDufUSv84GFmGlx\nhbGEtkX6eM4+Mnfwxd/hrcd0o4e9DBsxq/GYUS228Cnn7Xd0dDoqJ3IM2HzDpUBnOOMrZQduqVMg\nG8xS5aA33+RPfAi3b3SKQzxkSBsRUe6ic448fTr2BA9ezXVE27aSNXxXsGtg5Hz84JPlojpT5TTQ\nSbeNGarVtJm3d+Fkj48+YjnpH0+DrnoRb9s39GPWDJ2DsBpQNd3ClcNs2rrjWd65DuxFd1/CClHZ\nzHDVQWrSuXOgKqjhzKQcTFJyTVQ9P1P+C/GZGlfP7qZWf3w2Co7ztj1nH4bjbXtZzmsNdDl0Baoo\niuISnUAVRVFcohOooiiKSzyGMcmUM9lzhYgod8UlPjCaCe2+mn0Qd92F540LFL40Pz97YUyJiY6t\nuZOwerTMyDPdtbJ9zhnDP5p2RFQZKi7+XEJufPftAV3EWvZtisLlRISpphs3ok6GaqSmWgpjEn2G\njq6oAJUMFSkIwfQ4CFtpbkadjNu6cMHe9ffxcWytO45prlHl7NvaPaUQdPL+vPpq/Mg//IFla2NK\n+FwZWaf0yCMsP/MM6mbPZjno3ElUjhIvJcLDrdnaPWKEY6vxeNCk732PD4yKbDs7OVzMbEMlI66s\nVWOaN48nMtmsiYgymvn6F3fju4Pzv+Tn76GH8CP3rBW+89BQDWNSFEWxiU6giqIoLvFcUFlRFEUZ\nEl2BKoqiuEQnUEVRFJfoBKooiuISnUAVRVFc4jEXnrZscd4wmWXgckYVOXJ6fRboZBigrGxHhPGL\ntlpPEBHRyZP8NkzGxBFRxHzODjbztmWM6DRMk6aaGpYHBuzZ2tbGcYBmrOfOBc878ozNM0F3++0s\nb/gK5lDTG2+wnJ9vxdatW9nOzP4i0FVP5GseHzcAuopK/l3u6cHPlPHEJ09avP6ipUvRmAJQPfww\n55QP/m0i6GSe9uRlWJZRdhDNzLRnq2zpsmEa5ru3hXH8pNkJdcUKlmWpRSJso2Oz9KIsaViTkgIq\n2eA09BN8GR0ZybIZsyxtT0uzZKt8/s3ePCLA2+wuLNP0YzqrQHdoJLd/GaqDrK5AFUVRXOI5jElk\n91QsxuyeF19kedsDRtUYucwbOxZ18tfBZv/qri4uUvtxAKhk0dqIM5hR0zeLq7NMNBYnf/0ryx9+\naO9XvbqaVyDxrVgYuX06Z3EFdWIFmBmrImgobr2V5aIiO7aOGPGuY+dPf3od6GTfPrO2r1x1mgWj\nZfUjX1+LK6WGBsfWNn8cpy9+kSsFDb6AVaVKzvGKz6ziJXcgJSUWbRUN0Gj6dFB5RbLt77yDp40+\nxbuTvntxdyKz6Gw268vN5Xs1PwTvVZlitD8PM6PksxQ80Q90Tcf5GtiydcYMtvPA9zC7L+MwZx8V\nj8ci5cX+XMBcruKJiL7xDZYPHNAVqKIoilV0AlUURXGJTqCKoigu8fgWPqqD/Z51YU2ge/NNfrN9\niLBRF83lY6MwCvk1Hv13bfxMXLyOfXSjn3oKdKNlaXnpvCMin0D2z8xegv6xgwctGiiIPyX8MDIM\ngIiC8kQFKPnalYjef5/l++/Hz/z2t21ZxzzxBI9p9lT0cSWt5TfWVZQEuvO/5reZPt74ht5nlwjL\nSMNuBcOhqIZ9h/INMBHR4AM83l33PQs6Wbv87Fv4PsB8e2yNZ9mGS8tWgkpWKpLVoIiIUsNudGTZ\nKI8I3ybv3DlcAxn5CmPydqz0Pn48H+88/TjoRsz8riMPvowPUmUly+GWyucfuF2MYyVWwC9eHOjI\nsXk43nI66DuC93jEYqNZ5mXQFaiiKIpLdAJVFEVxiccwpsJCDg2QYUtERAeeEQWVzWjw7m5H3D0T\ne1un/Pfn0xe8oYFtjXjVCDK/kbc+VT3Y+zlpVyofyP0TER0K4e30UIG0rjh0iAfd9BPIWBqjUf24\nSi4GfHYJhmOcuIe3JlOmWLK1rMyxc2Ujbrc3zK/jA6OgNnTjM7MTZMxTbKy1MW1q4usfPvIsKmXk\ntoyON3W/+x2ogpdyqFBbm8XrP2ECX/8TJ0A1MIpdSl7TDdeY3LeblZjz8liePNmerfHxbKs5dnJ/\nb3RgXPqwz5CnPc/RWPYKKl+6xHYaz01tPY9pZyeeNmfO2448cuQtoOvtFeFvg9EaxqQoimITnUAV\nRVFcohOooiiKSzyGMcksMyPjDH13Zg6kSNf8FrpGaOBbWx3Z5uw9ciTL688tAN2qX8U6clJIKZ4o\n0k7TR2L8R6tw7SUY7qhhIWIn1p/GD171OPtrMuZjWJUMq8lvxHCMqR9YtO+fiFzGDVPRr5S8lkNY\nKiL3gW5gFoc1eXW0g+6oN1+LGBs2/i/hjZy+d8koeuF7xRWO3NKIDeckof0YqifDbazi789yYyOo\nvN5mn5zpV9z9Do9dyqYxoIOc2TJ87zAsxoi/Y7wjgO9h+Lq3yaoxxkBuac21ZByTvcbXkc1aIhkH\nOV2bli8H3a238pgePw4qCjhy4V/+XV2BKoqiuEQnUEVRFJd43MKH/3GLIxd9gvVAw+dyilFbfxDo\ngqnNkb22bQFd7e38ObGxZA25/brrLiO94YM4R9wfnQ+q/rm83dlouBukW8AmZ7u5WtSqhy6hsn+V\nI37JuDrSjZJsZIZtreHvHI+RWq45upir78T014KuYh33zG7oxS1ZxCYOtzo0MRt0CZFyW3SDBSv/\nFxEe5XvvvaCqW8fVwqJeMULcJCLcjYiotZvHNCrK/M/DQDR87xqJz07rSHZsRJ3HHvYyUinl3s2g\nS+rm+xirWg4T6Tc6fBhUxb0c2pYRGAi6mCWcGRYWhtWxjCgjK8hMrNdfR130eq7AZpQKhmc8oBKr\nTZV5s5tqqJw5XYEqiqK4RCdQRVEUl+gEqiiK4hKPqZwDA5we57URUwdzujmMpuCPd+OJ//3fjhg8\n3gdUbXtFxRObKWft7fxFDF/N1h72YGTWZ4AOQkWuw6rrWS9wKp+tKu9ERFRdzbYeO4Z/8/yj/Ddf\nwXEteZD/7+zZ+JEBXxb+u3fesWNrX59j54nTeB2ndHI+XtRjWB399OmPHfmTT64AnSwwVVhob0wv\nXuR71W+84VuVqcZmk6bWVkesXog+MHkbFRTYs7W9nW01UwsjxgufuOkslP/ZuMehBJXF56qkhG01\nm0sk7OBK71RaikoZxmT4R5ui2bdoqyJ9XR3bafo5pe94Zxi+A6HFix0xZzP6o+U7h9hYrUivKIpi\nFZ1AFUVRXOK5qZyiKIoyJLoCVRRFcYlOoIqiKC7RCVRRFMUlHlM5acMGdpCGhIDq/D0cwmBkztHc\nuSznzm8BXfC0UEe2WeX7xAkOY5jyhlGNRuZrNTejbtYsR8wux3w9mR62Z4/FMKZrr+Vxfe451L30\nkiPWzXgUVKLQP8UvCsbzZKWcsjI7tvr4OHamzccqRrIXXu5yrBqVvIgrSpkFfI4cYdnmmK5fz9ff\nbLAnbV24EHUls0Xio9HEr2AR37s5ORav/549fP23b0edCE+qrsH1jfyve7Z34XkydsfHx5qtV13F\n4/rAA6grF/0BvVZgyq7sJinnCiKi668X53lZGtfUVB5T4zrKSv4Xd+0Hld85kRJthIY1xGU5ckSE\nhjEpiqJYRSdQRVEUl3jcwldP4myjfVgzlwp7eZv86quYFnPwIG/hRtzkD7q7jaQlW0x5mpfb4EMg\nwqKwRoml4Nm8bZdbEiKi2LGyOdm4YVrIVD31niMnRePWOHU7l6ja+Rb24YZMGaNpeUMYb5Ow9s0w\nEG4bM9Fk0yZxcM89oKsQ418xFt0QeybKTBB7hXXlfWV6afp6uTd9wTpjzSC3bdJHQkQ5q2VPe4tr\nDVmM3BzYbdscMf6NN0A1Jq/b+1ziAAAcGUlEQVSIDzZjNaYZx3gsDxwYtoUOH77FBbGzN2KmjjR9\ndTlWjlosHrOCtcYdKYqYU2go2aBuBRdDjzqAPerbtvO2PQ/rKVPJQtFU8B//AF3EKfG8ReCz+E90\nBaooiuISnUAVRVFcohOooiiKSzyncjY1Ocqlv8Qq79uuF/6rXbtAR/X1jpi62BdU8+eznJRkMTTk\n6FHH1oFobFfm1Sp8mUY4Fi1bxrIIdyAiGrjpJv6MwUF7tl66xFWOXsXx+dGPWD46aDiMly51xKJu\nrJHtLbzZmZmWxvXCBb45RNUiIiK/aZMd+eKRBtD1iQrkv/gFfuSq0gl88Prr1sZ03jwOtzFDp2ST\nMTP8q66SuydEdVeDbn8vl/ZPTLR3rzY1sa0yrMvE23hDYfSYA2ShppgYe7Y2NLCtMhyMiGjdOpbH\nGD3uMkv5/qCHH0aldFiPG2fF1v372c7Ec8WoFM9x0VtYOUxGf6Ubze5aFrK/PjRUw5gURVGsohOo\noiiKSzxnIokeyttEL3Mior6f/acj+5jr9w4ODZg0CcN/kqbLsB0s0jscGkbxtj1ibjLoEnq4qdSh\nHW2go2efZdkIfyp/inewQzWVcoXwY0wxxnXSJLGNqMdixLLgc30NqkRClT1ERkeWP2Z3TZwoDnbs\nAN2iTg632fnsVaBrf+tDR8agmOExZw7LKaOeR2X3RyyLArpERFE7Mh159z1bQXfttdbMA2RhYrNm\ncmavCAeS7iUiSp7Pz8uSJXhewlTZnBDdQsNBbtt9w9D90TGdn6X82XV44i9FSNAdd4Aqt5TnhHyj\nvrFbEiM53Ioi8WFoF3da1owB0EGB7SVnQCX6FA4ZbaUrUEVRFJfoBKooiuISnUAVRVFc4tkHKhtV\nGV3MVvQUOHLRWGw4t/Tn7OMwol8oe5b4B0tpXERYOSnCiPeYKHR0//2g273pHUf+ZjSoqEa4oNJs\nOkGlE2w55pYVnWFf0omPa0EnXUlr0a30qfRFK6SksF0f7EHdbX9n+aMQUJXLNE9/9OMGtR4VBxhu\nNhxkUatn+jFURbroi176GejyHzjtyLm3N4EOwvMSLDnriMiv94IjZzbmgS7Lm/2wRZ3toKvw5nul\nL864Hr2GM9USvh0cAnj+FXx/UHz4aUfOLl8AurwTrzuy315s1pffnCeOjO/hFuGwLDyTBKpHHnnX\nkQcfexJ0ZeP5ukau3gm6sM8wpLoCVRRFcYlOoIqiKC7xnIkk+5cb1V/o7bdZfvllUMnsmvXr8TSZ\nCGSzL7gs/Gq6DUb/mPffxVMxHEcWZ0prXAk6cFvExNjLRGpoGDLDJ3UXbz92lhshF9OmOWJbKWbN\nyBqy1goVl5Q4dsaXG5Wh1oi/bzTirvPmLBSz2FDRmUQ+2L/f2pi2tPD1N6J/oHJUeHMFKmWZMcP1\nk93I39nmvZqTw7YaEWDgigmoxK0v+KnMosGNjSxb7AtfVsa2QugaEUU1imdJpnsR0YgpnI32wgtY\nAe34cZZzc+2M6+7dQxfUlkO1oTsDlaJp/IzvY2DdW2+x3NKimUiKoihW0QlUURTFJTqBKoqiuMSj\nD7Sujv0KZpiM9CudXFOFSpmfJh0eRESrV7McEPC5VDgyK4vL1MndP8TQoJtvZjkmBMNGmkUVlzCL\n1Zja2nhcg8cafk5ZTlw6YYiI/uu/WP7mN1EnHX833GDH1qef5jG95RZQ1fZzCFIs4ZhCaX+jaVpT\nM/9mh4fb8yump/OYlsQZTQVlHBOU0ifwK9MZTOWTjdEoLc2arUuXsq1mh4Y0f/EsGfdxYSf78qON\nkLuYsSLEKDjYmq1dXWzrp3yy/qLbxA9/iLp3OXRIVkMiIhoQfn9rVc7q6hw7JyzA5pCvr+FwK3rq\nKTxPhqr5Y/cMuB9CQ9UHqiiKYhOdQBVFUVziOYxJURRFGRJdgSqKorhEJ1BFURSX6ASqKIriEs/V\nmFpaHAfp/jNYOUkWFIoozQbdxTyuqu23HSs1QbiNr6+1cIsRIz5wbH3ooatBVzTrkCPn1CSArmCS\nSO278krQ9Ysy794Ww5j6+jg0xKenC3RLHw1w5G0fGCWgRB5s03ysDhR+WoRqLFhgxdaCArZzJGbj\nQcOzrElHQdfkzyFOMqKJiKhgrqhcHhVlbUwvXmRbzSi2H/yA5QNbzqJShNydeA/v8dtvZ9nX12ID\nxIwMfvEgO7MRQWphfGMRqN7hwmGfSleUWccRERZtPXnSsbVpyhRQ/eM4fw1ZDYsIm9xt3Ig6Wek9\nPt6SrfHxjjEzrsQ056tEUwSz/6VMT5VN5IiIZhzj7hAHDmgqp6IoilU8r0BFAZG4dfhr6JsnCm+Y\nLW+9uT9LTCUW6Dg6u4UPLNYDJeJCC2++eRuqRN+hFdiCiOgA9+jJrcdeSpOe419YrDA4PHymxTpy\nVyUGoZ8/z/L6KRgQPkF0BE7ahS1YMzr417MYSzO6JieOV5btIVi782eirOaIh3G8t2xh+QtfMD5U\nFr2IiiJb+NFFls81gm7GDLY9fS326JKroylL4kEn7xvaYOykhoMM0Bb9w4iIRvySmx09/jielrOM\nv+PAKD/QeUVy8Q5qwDbTw0Is58O/9jVQ5YrWU3v34mlyoynrnxIRjRlzgzXz/knXXl51HqjBgjE5\np/i5NureUN8ZTkCY8QN8pg48LXeHAXQ5dAWqKIriEp1AFUVRXKITqKIoiks8+0DFq1fDVUM9C9kn\nFNGMfU2WPsIFlc2+1yt3sN/Tplvpo4/YD+fTaPSoPsdfM28H+jKKxnPRg4MH8TSjvq49hF8p4MxJ\nUPn7czHiVWOfBh3Vi+IixgUpHiP9N5b694g3wkHTp4Pqscc48mLbg38xTuTj9S+in3N/IEcWJJJF\nhG/1KKG/Vl7HrOtwTLuIHcax/fj2tnaR0SPJFt//viM29IeDaoR412sMOTRp9zKL9JgPqCUKGzlq\nJXodRrBEi2iH/FHGw7xE9Pr6+a9BFS5fi4djBI9bAqLF+xSjuHNBa54jz6ox/MPiPc+BGztBlb6C\ni6eUGHVU/omuQBVFUVyiE6iiKIpLPG/he3occdzqeaBK6OZte2Ag6naO4WX5wPFC0Hntk7VD7QUH\n+awR4VJGscSL0ziMoWjdJdDRL/7hiHPmoCohULoC7IXc1JXyNsLoFo0lCTc/ALqzHewaqa/H85Ij\njQBx28i6mURUWcly5hdex/8rtkUP/eEYqGRbH5tciuRte8yzhutDRMQn7cYYr6q/8dZz5kwj5K6b\nt9f2GjAT0V13OWIKdtmmwUEOVYpatxiVMgLdCMAf6OBQIZuroq9+leUp7x9CZaC4WY3shUM1Po6c\nIBuhEVHxB3wNjA5F7vnFLxwx6VfY1rpqL4dOjjFnPGm3MW/kmS6Uy6ArUEVRFJfoBKooiuISnUAV\nRVFc4tEHmuO/1ZFnLURdSCnLxWeMFLjX33NEs1ZCzm9X8UGSPR9o2UT2ZaWdw7RTv8MitevDD0F3\nfvGjjnzzH4wPNfO+LBEZyXIjZh1iStwf/wi66O+xb+dTRTp2cYpiTs5wLfwful580ZEXrYkAXVWz\nCBupqcEThV/Jl9DnXFPDflyrmbyCrBPo58ybwXLVD57H//wEx66tqlyCOggVwhCeYSFi+370I1Qt\nWsQpmpOnYnjgyZHs59x9z1bQvbGW5VzMSBwWf/oTy1O8W1Ep/I5Nz6AffLNofZaw417QBR6xZZ3g\no48csbTUVAY60toVqBkzptiR5xpp3lHdIuQpGO//f6IrUEVRFJfoBKooiuISj1t4WfPTKLhEc+ey\nPDANMzh+/3uWZ98OKkpr5qW+0Xx2WPzud+Jv3Gq0pxUZVSe+goETf3rmsv/tf5DFAy3ui0R0GImS\no0Rk7IaPXwu6C2t5u7GzE79HzrlMcYTbO7cEvPGGI0caLoPdCzg05P19qHuvh1vcfs0It5Lbqwxr\nMSxEvvVcOaqoBrfiJ97krdif/4YhLhkh4gaQF+Zyx5bI3sHhUYWEmThLH+awv+uuM0585RVHTPlv\ndEUkd9i55iaZrSK0ywhlS57Az3LFcUzVWbw43ZFDp2L1JbNFuhVEqFTAYqyqJgupltxuTEj9IhSr\nBx/G1O1cNW3nzsv/WV2BKoqiuEQnUEVRFJfoBKooiuISj33hKyq4z8xNN6HuwQdZbpiFcTNZPQWO\nbIYx+a7O4oOiInu9W4KD+YssXw6qEn/2M6XvNWoAidzJjFHo6JD9UrKy7PWZSU/ncTUrQK0V4Shm\niFPh727kgx//GJWPPMKyrf5NEybwmN58M6iqlnFan+k7TpjElbz7RmH1K5/Odj4ICrJ3/Z9+mm19\n6y1QbQ1k/3XmF9F3WPgG+0Szlw/gZ8owppgYe7bu2cO2miWX5L17DNNgafduRyw8jGE12ZHiPUR8\nvD1bY2PZVrOh0AqOCWrfiM/OmJvYhP+gPtC9/PIVjhwTY+m5SkxkO40mTBfHss/Zr7sNdNVngh1Z\npiebH+Pjoz2RFEVRrKITqKIoiks8buEVRVGUodEVqKIoikt0AlUURXGJTqCKoigu0QlUURTFJR5z\n4ZuaOF4xvLMWdBN+wHmiIjyNiIgiKkVXSCMms62by3UFB9uLrWxrY1v3GbnZmYu4pNqhI76gk3m5\nWQcxRnTrrP38GZn2bC0sZFvNWM+SO7c4cv67PwTdsmUsmzn0R0s5N51CQ63YmpvLduafSUXlAi4Z\nt/UvmF+e+d7jfGDeHH/9K8vvvWcvXnHDBsfWplnYmiN8vIhDNGMZRV3A2F5sWbFQlHDMyLB3/cvK\neFxlaUMiom3bWP7JT1AnOqVAdw8iovvuY3nVKnu2FhezrWY9jILxIv9dFscgIvLmqaXPG585ET5K\nRUV2bD1xgu184gnUya6sO3agTo5/2eaLqOztZfmGGzQOVFEUxSYeV6DhOziDpywSm8O9voxXSjsb\ncaVEsznzo6YUVYsW/XsGflbkiqyhHjNK4qfxL+AKo6AqFNwxloPTNtmyDsmOE83qIrEZF4m6tJOM\nAq9LRJEhcyG1cjNXJ95gtOh2S363yBozVxjPPeeI0UtwBdoyiotUh54/D7rCEC52bacj+P8QtYtX\nnSlGZF7NNdzgLLMXe3/37eNVZ+0urA+WdSqNPg/kdQ1/9nHQbfvJd/jAGx/P3t4gRzb6n0FmoE06\nxXAVGFXXaBOn7mztTQdV5kJezW00niOj/5wVptzFz3xICK4Ls3r5gZhVibuTq68WB4uxiV+GPxe0\nLi6my6IrUEVRFJfoBKooiuISnUAVRVFc4tEHKh2GaaOMN1S/ZEdG/zWoiljHb2wjtm9H5eHDLCcb\nlaOHgXxDfakXfxeqSTS9a8TqN4kTw/hAvnUjotDl4q38/v1kDVEBiuqNku2iYnZiOZZsH7WMHTGm\nL1l+pC22hrG/MjO6HXRZNXztikqzQCcjL/IDscFf9ET6XJC+7dT3toAu55zw0R/HEA0fOXBXXgm6\n+fOtmQdAVMB3voPKNWtYli0hiKhoLt+7OQdjQSfddxUVZA0Yg8jZoDu0l+eEkefwvKWrONpm2+Nd\nqIQqU+g/d40IX1i40HgnM4r99+MOG85MGWohmv0RERVPkv/38u0TdAWqKIriEp1AFUVRXOJ5Cy+X\nt2YjctEwOu19DA1IH8nFVRcaAb9GB/nPBd9lGFIhI5CztoeDqmgFhz+kTb8AurJW3CbZYn8z93BP\n7MEtZdJG/pvl5fj3Y3t4G129D/fsZzswWNkGmbNk8Vm8VYo28bhd7MFtut9avh9yjUZkVb0W+6sL\nZGhM4Ue4hYMAcGNbXObN90raCxi21LMQ+8tbQ1bqli4tIqzqC33pibrG8L0733DZmI+nLfLyWC47\ng80ae4V5Zv+9bRP4nkhbji6eso132TKPEX3hzRC/iEnCTRYYCLrkhfzcTJuGvo/MuBb6V+gKVFEU\nxSU6gSqKorhEJ1BFURSXePSBFs7i1K3pRvpVjfAXzJmDupL3he9gzBhULixl2WIYE/wZWT2AiOp6\n2XdU1IlFMVauZn9t2fZLoKNGbE5lC9msauwm9A+VCrez33YjJ1N+LyPN75W3JzvyuHFkh/vvZ/mD\nD0BVvZ2vcXxrCehI+so6OkCV5C98vknoOx0OmYGcdndx+jzQjRrFcnYzpmsWjj/qyPsDUZcYKX3i\nNwzfyP/l0ptvOrJvSgroZEGLfnSBUvombiQXYOT5jo00roElIIzJCPNL2pHEB0YIUMeBA44cvQXv\n8f2neCwTjR6Pbsnv4cTgglaj8M10kQNt5MCOrWE58xw2x6RK4Wheie95/omuQBVFUVyiE6iiKIpL\nPG7hjTf+gIxw8ltmVK2Re1TZ6JyIyNiy2OLIEZaPe2MYU8EuETqzejXoFsrvaKSe7F5Q5cgpk8ka\n1Y+I3uSbn0OlCF0ZqG8AlWwhblZqeu89lm0N8aH1px1ZboOJiCpFqEj8OQzFyp3I7p381egW2VnJ\nYSPGRmt4iAye4/64hc/4z1v44Dkc7zb/GEdO7MAwlohp7GJqwEsxLHY8yeWiDA8HFfziDkeu+81p\nVIotdN923LJ/+At79kkSzwg3y6P/BbqV97J9xmNFY1q54lhmZa6hlEVQ7bjxwIMg0xKJMBZrOmYi\nFs0XW/rm8aBrn87zSBBdHl2BKoqiuEQnUEVRFJfoBKooiuKSEYODg0Nr8/NZafgOIOXMqFZe2xPl\nyLFzMfyjeC2HhtjsM0MnTzq21nmjwzIqTPjh1q3D82RzmZlYGab4Ck4JtGprcjKPqxFytf5jDsdY\n9ZdMPE9UDjr/cAGoRv9U/N+tW+3YWlfHdoaFoU6Uxz//cwz/eewxlk1f7cGDLFdUWBzTS5ccW9s6\nMa012J9Dgy55+4HOd6RMScX1hN9Lwlc9c6Y1W6uquH9PUgdWB1p5hqv+bBhrhHkJR//6O/eAatX7\nIgSnoMCarV1dbGtAnlF1S6SkXpyP1YpkaqeZrTr7u2ye3+CgHVubmhw7c3dhunb+orN8YIRbJSzj\nTg5m04WM+n/9TOkKVFEUxSU6gSqKorjE8xZeURRFGRJdgSqKorhEJ1BFURSX6ASqKIriEp1AFUVR\nXOK5pUdfn/OGqemMD6jCl4v8cjO2UsSMttdjmwyZllpcbC8OsKWF49VCK40ycCEh/P8iMU86dFe+\nI++fhDm7Mv87NtaerevXs63XGB1NM8eIfGyZ4E9Ek48UOvLJ72LnSXrhBZarquzYGhrKbxg3Ymm/\n9klcysyM80ubzXGXW8sx7lJWE4uKsjemFRU8puMxpZlWrWLZbIIZF8dyUO9ZVMpY5+xsezGrfn48\nrsbgVXVwDHNpKZ4mY2obG1H3la+wvGqVxfjao0c5vnZsDKhkRUXZFZUIuuh8qo6CjAVOSrJka1GR\nY2fxSIxXldUVN4w3unLKrqxXXw2qS1/nuHBf38vbqStQRVEUl3gMY2pv51/1oJl3oPLb33bEPvkT\nT0Q+J044ctQSzAo6ffpjRx4cvMLaL+WMGWzr44+jLqqGV250222ovP56lpubQdU1i6tMBQRY/FVf\nuZIH3SjwmlzO1Wn27sXTvIizZto78Lcv6NxJPpg82YqtTSNGOHaGf+1roDu6rtaRja8Arc0LOowG\nf3I5UFtrb0xl1pzR/KxqLmdKmavT8BCRpSa3R0SQbUXjxlmzNTub79XCNdgzPW15gCOfM3qtV/dz\nk8FYqgVd7X3ipn/0UWu27t7Ntj7wAOqkfUavPrh3Z81Cnd/xQ3yQkGDH1qQkvv5GGbnJjVy5ytwt\n+a0W2UaLF6NS7FwpIEBXoIqiKDbRCVRRFMUlOoEqiqK4xHMqZ2oqK42GUgN7+W3x3/+Op43+nugU\nZb6hl/6JoCB7PrCGBrb1pZdANSAqVHt98gmeJyrAQ2UmIvzOK1fas3XePLbVLOUtnElNnVjJKvwM\nV8inadNAl7WaKxAVFdnx13YKH+hbx/E+eeIJlqXPk4goYoyIvDBKrneNFY3RbPqVu7ocA2csCADV\ngV+1OXLq6mDQdXayfKgcI0bqzvH424wYkNWYFi1CXddtd/PBzTeDru33v3fkwA/wesiiXnV19mzd\nv59tTYzD7gKy6lV5OZ7XLZpQmveH31rRoG3DBvs+UOOZujiRowdqaozT1vI7mrSwk6CT89qBA/oW\nXlEUxSo6gSqKorjE4xa+upqX7/Fh7aBr6uY2S+Ed1aDriox3ZCMyCHbJWVkWt3ATJji2Lo17HVTb\nvsdL8xZ/DKuShV+NuHWaPZvl4GCLtooEBfr5z0GV+tqjjrxzFBapBXeIEapzYpC/15Qplmx9/nlO\npLgFi02HB4rtrjFw+Y0cipW7DMN0II5k3jxrY5qWxveqUReb7rqL5XFnDoGuqJkTQkR9YCIiihS9\nz2y6G0pK2Nb043iNcwI50Lvg2Ql4oujkmPvRo6CS39na9Seitja21dz+ypCwmDDjOguDLr5wDFSi\nZTylpNixtbaW7Yztx/kILux994GqeCk3xjNqm4PrYaji37oCVRRFcYlOoIqiKC7RCVRRFMUlHn2g\nsujFqm8ZhRa++lVHLPzxO6CSGXAjR+JpXqfspxwSEdGFC46tZ3sw/GfcSOG/Xb4cdLvncHOulDta\nQNcVyA2nrIbcZGc7tlbFFYIqqVs0aBM+LyIi2rRpSN3kWfydT560Y+uIEU84dv7tb4+ALui0aLhm\n5ur95CeOmNGJze+K88S1sBjGJn11weeOgq6kmcNYjGg8ygwT/jLDl1vgzcVlcnIsXv/a2iHDAyGd\n0Ohy1r6C75UdO/A0WdjDqq3CXz/hK1hQSGZB1+4dOgQs4k40x/vrX+eD6mrr/voZm9EJfuBuLhgE\nVU6IqO4g2y1rxxAR5a/p4wMfH/WBKoqi2EQnUEVRFJd4rAe6avstjpz22tugK3vqKUfOftOoTbmD\ns31qI7E2X+xLL/LBZAwpGg6QNTI/FHW7eGt+5++fBt23hDxjBp5XXspyltESezgUBPJWLKcZa5cu\nfZuzNO4mJE1s6dr70U1xcrWoI0rJZIO77uJt+6dqZba2OmI3ashfbEsNjwlVneLwt6Qkskbwq8Kl\ncOutoJOVgsytb2an2LYb2+nVa21ZZyD221vPJIAq469/5f+2bRvogsT2PjeuE3Qnroylz5uHHsLj\nzC+IZ6nxRtBFyVSk9etBd+Ievsen2DJO+BMOXIM1f2m6KFZqZMbJilJmTdOtO9hlkZlJl0VXoIqi\nKC7RCVRRFMUlOoEqiqK4xGMYU18fh4b4zDf8ajIfKywMda+9xrLhdKoYxVXek5M/n9AQWbmbiCj+\nQ/aPdd2NIQ4BhzmMCUrIEFHXXE6zsxrGNDDAg26WnRe5pUfDsJq7LByVfdvzoKO7hcd0iOrZ/y7n\nz/P1v34MfqSX9DOKaldERA1x7DA2e/ekVgr/1J499sZUhLGQ6IhARFhZXPbAIYL8veJK9CvLXj6p\nqfau/6VLPK6+3ZgiDfbJXGIiOv9bTkM1q8PLImdVVfZslV0pZC8jInQZm10JZESY7DtFRBSxkCty\nUUODFVuTkthO43ak/n6WEw9no1J+CTOkTIbnJSdrGJOiKIpNdAJVFEVxieeCyoqiKMqQ6ApUURTF\nJTqBKoqiuEQnUEVRFJfoBKooiuISnUAVRVFcohOooiiKS/4vvNmJnn+Pg6cAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  28\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX1YVmW2/xfoEBFDaIwvZOQxIkUz\nhkjMlHHIIUUzIxPHjIyM0BwyMjVzyMOYqSkZmRIZY2SmZuSQb3mMiHEMzcjIfCGGHEJDMzOGEEnh\n/HFm9lrfW3mmNrfX7/pd1/r8tbZf98NiP/u52fd61otXS0sLKYqiKD8f7//XDiiKovz/ii6giqIo\nLtEFVFEUxSW6gCqKorhEF1BFURSXtPck9upFzlf0Bw/+CFrL4hccu2JEOmiXX85257/vxBcdPJjt\npiavn+rof6SwkNMJZsxAbdcux6yUzhFRqNCosRHPGziQbW9va77u38/XNbxnM4qrVgnnQlHr2dMx\nx6R2BGniRLbj4siOr7m5fE27d0dtxQq2R48GqXn0GMf23rMbz4uKYtviNW3w8nJ8Ld6EmSVDh7I9\nezaeN69nPh8YvweNGMF2UZG9e7WpyXGwb5QPSOUjZjl2Rvt5oGVWjnNsrzdeA+3119s59rhxlt5/\nIqIOHfhifvABSNWBfR371Ck8rW/QUT6YORNFeV3HjLHj66xZ7OeQIaidPu2YheeGgzR3LtuBgXha\nRATbCxde+JrqE6iiKIpLPD6Bdu3K9ltv/QLFen46M/9wy4eMvKANKG7f/rMc/Mncdx/b586hJv4i\nhfbvj9rWrY6Z5Z8Bkvg1KCamrQ4y4esz+eCpp0Abczf/IZVPTkREyd35r/q6U3Gg7fTfZs/Bf9Ne\n3B47dqA2dSr/bBoAUk/xNNKxvh60XR/x3+zo6La7+G9mP8rXLcu/BMWp6x1z4tRs1Gq6O2b2Cj+Q\n0pYuteafpPKSSxy7/N13QRv2HD91vvWWcWLvDx0zNbUdSOO+e1EcPdxmH/9Ng3i09KutBe2Z5fwE\n+oc/4Hmb9wY79tzKfNBW9GE73IKPREQUFOSY+TWxICUFFjr2ypV42u6nNjl28zB8Ov0p6BOooiiK\nS3QBVRRFcYkuoIqiKC7x8lgLX1DgiAETEkAaNYptEQ4jIozdHS/ej2JpKdvJyfa+LXz6af5F5Dfr\nRNSwhmMgqal42muvfevYLUvXoHjoENvZ2fZ87duXfT14EDURM9y5B7+hHdClig+mTMHz1nOcj/z8\nrPi6axdnC0T3qkNRvuki/kRERH/9K9uDBoGU1WWhY6en2/u2OCaGfS1ZfxzFRYscc8zhhSCt68Px\naJ+5GANvGjqSDwoL7b3/nTo5vtZVoq8y8cP8biGjJoUPREYGEWFwr7zcnq/r1vG9asTr6dVXHbOg\nph9I8ov2jRvxNPG1A+XmWroHQkJaz8L5lj/j1K0bap07O+alozEG+sc/sj1rln4LryiKYhVdQBVF\nUVzicQtfXs7bIjP7KD2Ut8Ww1SHMse7SBc9LqBRbqOnT7W01mpv5F9m3D6TcUk63SOlSCNqkLez7\n8g6zQIPXsbmF69rV8bXqb1+DJLN+pk3D07YN4WuXFzQdtOSvn+aDJ5+046sINeRNLceft5WT5eUW\nmYho7Ychjt2rl/GSK9L4wGZYpKiI3/+aGpDC5iY5tnkfy2u8bmgeaM0PPODY3i0t9nwdM8bx9WTO\nOpA6VorCg0ceQe0QpzGdvKQraJDzNGCAPV/j4vi63nEHav/4B9tmeuDYsWzLBYGImsfz++HtbWkL\nn5Li+NmwJBekDSKT0kxj2ra0otWX9O4Z5tjNzbqFVxRFsYouoIqiKC7RBVRRFMUlntOYZIH+2bOo\nVVay7e8P0sklXLole2MQYfledLTFpgcJCezrXXeBdGzIPY59/fV42vHGAMfOnoupOuMfYfc6WoyB\nVVdzbPm8Jgx7+drFrkwCrWipSAkzSiSh7DIy0o6vVVUcq6UeIPVYxek/1RMw/Uf2jiguxpeUfR7y\n8+29/5GRfE3NLJYffmDbLI8NJi6PXfBaMGi3z2T3wi2+/wUF7Ct8J0BEa6/m2PZNN+F5Pbo1OXZJ\nKaa4xUwTaUS7d9v7XKWnO74OO5AF0pZrRTzbiIPT1Vc7ZsPfMc5/+DDb4eF27oGjR/ma+vqi1nGJ\nuD/HjwctayPHOY2vTuAjtm6dxkAVRVGsoguooiiKSzxv4ZOTHTE7AlM85FYorFsDnreGK3qODU8G\nSRb3xMRY3MKLSoRdb1aDFP287KP4AmgtH3zu2NsaseVS3Dev88E999jzVVR4nRcaEVuh6YOxl+bC\nPdxlJpaKQCvaIMIPAQF2fBXbN7Pc7NglnKok31MiLJL67DMMi6Smcshk+XKL779MYzO2acsGrnZs\nszWl3O6ZxT0lJO6HkhJrvm4WvUvjjYt31J+3lMFrcMucdpj77pqFaPL3CAmxd10zM3lrbLbLnTdb\nfO7NzlUypNQem77NquWt/7x5lnyNj+f33wwniOojr8sx9JGayhfuqqvwNJni5uOjW3hFURSr6AKq\nKIriEl1AFUVRXOKxIz1dc41jmukfYTliDpLMSyCCNKLXX0cpvVSUAMZgGVubEPkxZ86gVJLKMTB6\nAwM59b/5jWPn3Inx4KgVnP6EE4jaiIx77t2LmghuLQzFeVJpjRz3HNuHENmNKTmZbJDVjWNw6Xf8\nGrTOv/sd2yJlhYho40buiP7GGwGgmZ3LrTFnDttGzG1yC3drnzz+c9CqZy5z7BMn8CVrb+SuUkZF\ncpuIF/XNk54LAy0nh+/PF1/EWWMTJrBtpuq88QbbZhpXW5AjzOQtRkTQkq0gFSciJHQvu+D/IyKa\nN1s6n0JWGM6dlLK2Yp97GbttOYczyHZ9xPYvjKEbPtQERxdCn0AVRVFcoguooiiKSzynMSmKoiit\nok+giqIoLtEFVFEUxSW6gCqKorhEF1BFURSXeMwDrRM1u8vn45dNR46wnfkClomO+R3/3/nz8TUj\nbuT/a3VMws03Oz+07MUPQYrcxy3iaO5cPE+O6QwNBSllI4/7sDY9kIjWruX6YmNoJQUPF/mWCxag\nKIpzk6NwxIZsG1dVZcnX8nJ+IydORC0wkO2cHNRkQqX8f+b/zcqy9/7HxDi+FsmpoEQU+znnfnr1\nxqmMvr6cp9rY+A/QNm3i/Nb4eHvv/2rxuTLSq6nju+86dtVtt4HWIyLCsU8Z+cOBw4bxwebN9q5r\nr16Or/vfOgBSeHseh1HVHvNZ5VSVGCrB15RNBzp1suPrtm18rxrtNadvGODY5m0sU4Z77MgHbeR6\nbidZWKi18IqiKFbx+AQasHixY+/agZr8C2M8Y8DgJrNIydvsEmsLMb0ssstR1OaKqVLGX+6myy5z\n7Mbv8Sk71RghbYvEDqJq45MfUZQzrPsY5UaiLOSNl1E6PVsMlaMn2+Tfv8nfy8P4koy/6mk9+XfI\nXpIGmnzT98/HIX7hBw9a8c2kbiM/5cRuLwAtaT5XpmzahOfF9xGduxqNErYa2fEqlmwxTmzf9l55\nJYpRcY7Z41e/Qu3cOccMvPtukGJquarPeN5rE/KpM9wfu5xVNPJTZy3O8YNmxFkHsctZqWjctM5W\nMeLs2Y5ZtQa7mE17lh8e28/Ez3jHW8WOb9Ik0Aq/ktV3n1zwx+oTqKIoikt0AVUURXGJLqCKoigu\n8dyN6dlnHbNgmDFx6a5bHbMJG4DDN8nBd96JojllzBaiG0/seBwOtvL9tx07pAv21fG5/37Hbrgc\nv2iLfPBBPsjNteDk/3FSfLva3oi7nv3qK8fuKDrMEBFMxGtsxE7vMj5mi6TZ3HXebMXTc484qMUo\neNFUjnvGBhrxaLPtuyX2CH9ijYF7+XOqHDuvGIfjNQ/nb9rrjfcioHt3ew4K5q3k+3OW6GpFRETL\nOZYd2+c4SPK7hZBAfP97W+zAJIGBCUZKzeVPcScr2b2diOhJEYY35x+uWyF9x25drmnXzjF3GN/X\nJD3/vGOXHUZtxKUc21w5GLWwn3Cv6hOooiiKS3QBVRRFcYnnbkzTpzvi2htxfnVipUibESkERITD\n4I10C8hc9fa2l/C7cKHj67aI6SDFrRdNW41tyP5abpUc2hvdSb2fr01ensUBaBUV/MLGfmPBN9wM\neUY37EY9bBU3eN7yhJGsIn8vW4nU4pqSmW4jE+SvvRakui6c3mLMooN5Xx072rumRUWtDz8T+ecU\nvAibFFNlpWNuTsWUq/jBYmian5+997+hga9rbS1Il/bmEIOZxSQ/Vl/jqHVKHHYRhgoS0ebNfF3N\nhtNJhzMdu8fKDNBGj2b72WcxFDFoUCfHLimxcw+cPMl+btiAWnLlLMfePHAeaDLN8p//xPNmPC6a\nL7eyVukTqKIoikt0AVUURXGJLqCKoigu8ZzGJFJ+vv8epV6rOE/h83NYOijjXsVGPwxZzJ9mVAC2\nCVGiGXclxg4zunAKUuapKtA++4xjoOHvvQdat2KL/gnK6jlGGDkY34LfnRIH63EA2uOPs93rISyP\ne+89PsYkLvecnMix5DVrUPMXWVOxIzA8JKN6t60xSufGx/PB5s1tdZF92MHxODLLRe/ZwrYoTyYi\nmJYYvwaH8R27Mc+xO/u12UVGfGfg9dyfQPrhB7b9duCgNgoUKXj9McUmaymnA6UbYd62sHUr29lB\nmSg+84xj7vsWY6Dbt7O9cOIp0GiKzHs0fkeXyArt5NFGit8NPHGvsgvGQGWF8ogRxovKYLrfhW8A\nfQJVFEVxiS6giqIoLvG8hX/zTcccVfoYSCee5q2ZfMwnIspu5LQhr88eBi2tv+x40+8nuvmfSfHn\n2e+5N1WAlnkzb9srzmIlyt//Lg7uxe6Mg7c20cUgcrtICRs7FrX5Yxy7Vlx/IqJY0TnqwONd8UXv\nEu2ZPsR+qG7pOJf3giuKs0Ar28gVRuWf4ja97w28pY/qiulWyV14255H9sjrxlvI8TNRq72E/QlB\niS69g7sfnZ79EWqXWnMPODaDr2XLUNzCbi5mf+K7GdPolyxh26gMu+cLY9tqCVHgR3Q2FcX+/R3T\nLxDnpo9oFJ+dRUZekdHZywa+ctR8VBRoq5/+0rEDz4JESRGir+5v7gDtWCmf11oIR59AFUVRXKIL\nqKIoikt0AVUURXGJ51JOWcoXFISa+M6/vLYTSH3rd/KBeZ4Mqqxeba3kLC+PS7mSg7Akj0pLHbNJ\npF4QEfmITi20DztO1S3i9KeAAHtlh9XV7GvIzHEoig4w9U89BZL3D/x2+OVgTBKua12dFV9jYtjP\n3r1RW36veI9vvRW0apH+kfME3l8TJrAdFmbvmubns6/GaCsaQOxrdbcBoF1yCdu//CWe5/e+aF8/\nfLg1XzeImUij5AQCIkirMss8mw9zR3jvUydBK9nH6XgxMRbLjuWsoRUrUJPzrU5hqtLJa65x7Ct9\n8R44fZNIwSspseNrXFzr87tkOpLRYStlFfuS+w5+r5ByO9fLtjYTTZ9AFUVRXKILqKIoiks8b+EV\nRVGUVtEnUEVRFJfoAqooiuISXUAVRVFcoguooiiKSzzWwjc1cW7dkCGoyRS1Bx5Abcajog7WHPfx\nsqjZ/u47e/lqGRn8bZjZl0r2+A/ECZIyR7Ti7bdBqtzELxkff3FyFpOu2ATayZt5Eqcc4UCEKbVD\nsWyfvviC7ehoS74WFfEFMJzx+vOjjn3kyPWgBftzXXaTL05dlJMlU1Is5it27er4uvkVnHchy8aN\noazgz9df14A2aFA3x7Y1eoKIiMrKHF/LKBIk2QvBzK0sSOW6+YR92FouqZJ7AeTn2/M1JYXv1Zdf\nLgXt88+5Fj7cmL466U/cVHH5pHLQIH902TIrvpaVST9RWz5M5IWb40PFDZCwCHOE5fShdes0D1RR\nFMUqHtOYjh3jVb3zLqzuqeoz0rF7vPE0aNSrF9uy9ISIKsXkptCWFmt/KeVfIOh2RASPbnJoGxHR\njPvFwCvzyXW8aPyalmbvCSQ7my/68uWovfsu23LiFRFVdeOqCfNJSrpaUGDpCaSw0PEzbNpIkCrG\n8xNQfndspptUOtmxO65ZBtrJPaKhdY8e9q5pVpbjq9dj50B65RXuRD14MJ4md1KpRrOhss/YvfYW\n71VZiTZ3LmqyF3RJKN6r8ORmTuuTj9nHj9u7riUlfF1/Uw1Sy/1Fjj2mHntrrRu9zrG9Eu/C884J\n9ywNlpw3j6/prNB1oFVF8VN9wzX44/osEB3fjcGJGYd4iGNmpj6BKoqiWEUXUEVRFJfoAqooiuIS\njzHQbds4rhBXmw9aPiU5dlLUfjyxstIxz96BXZ5lj3c/i3El+Mb4MeyeD9+8nTkD0rZuHGcymt9A\n4+yEBIvfwsbHO75Wb9kCUsixY3xgdrISqRD5E4pAkkO8rH0LW1fH2QJT8Nv0/FrunA4TvYjweptZ\nDwMHsh0ebu2aLlvG96oROqaFszkrIHIw/h4yBhm/NB406HDVr5+999/Hh+OKPx4D6aWXOji2+XvM\ni+DY3uHERNC6y1je9On2fK2qcnzN3Y7THGQcfuTWyaBVTePYtxlblp85ysuz42t1NX/+588HqXAo\n+zKSjE5tcn0y23HViKyMgACNgSqKothEF1BFURSXeEykFzOjiKZsB639UN7C0/vv44k338z/z9jC\ntV9gDIq3hXzcfuklkIrqeXhdbBcMN8QdLHDs/VEJoIV3k4O6cOvXJm65xTFDZCY3EXQDbhYpX0RE\n3keOOHbgHjwtf2qZOMLkbNeIIogdO7JRO/2ZY+7ccBwkOfvMZN2+ND7Izm79P/5MJvtziMnr2V6g\nRUTc5NhnjaFi8X1Eao6RckczxXS6IgyZtIW6EyKQdTkOg9uxg22zeGXcBk7HWf0B5rHJFDfcaLeR\nG290zKBXvgNp5GecvpgbgelqKXv5c1VcjJ+r1Ss55cloJ+4ekcZVMhZ9GRkhrvGJPniejOEYg/qo\nc2e2T5++4I/VJ1BFURSX6AKqKIriEl1AFUVRXOIxjSk3l1NDUvZimkJcJccZtt33OmgNd3IJVHsj\nylp1CWcD9LSYxlQvBnX5/+UvKE6Z4pj5c7EcLeksx2PKIrB0LrKPiFX5+FyUNCbq1g21rVvZNuv8\n+nD8ZtePGOeUs8lsNT6pENc07PvvQdu5j2PCAxqN+OAeEaA9cQKk6cRltgsXWkwNE81k+m3FRhsy\ntDm5Hst8cwOnO7ZZHjsyVMTLLaZcUXo6v/9mUPa66xwz+9zDIKXtEd87mKljcpCaxbLjkhJeA4Rr\nRETU+QjH3QdMwfux5EN2oeF7XGMC6kXjkeBgK75WVbGfZv+iTz5he/Fi1ESIl8RXDEREFHgju9aj\nlbVKn0AVRVFcoguooiiKSzymMaVE7OaDg76grVkjDnzvBM2PGhx77dt+oCXee+/PdPGn4T9oEB98\n9hloXl9VOPZ/H8bzRu7hbfs7D/wA2j+JS5H8bQ7fExUuNdHRIDX9nX9Oj1NloNFw7hUaffvtIFXN\nzCXbNAjb7Ov517+yPfWtWNB69uTjyy7D11x+RHZ1MqpC2oJI/zK34u+8w/aQ56eDNqE72z5Ls/DE\noP50UZC9VTduRE38HmkzU0DaP5NTtcKnGVVTERHW3JPE5IhEI6MDVEMfTg+UBWZERM0fsh0wfxZo\nSTXzHDsfCxxdEyy6LA15BT+rUVFsx7dg/92yI/yZktEzIqJr1ojPYis/V59AFUVRXKILqKIoikt0\nAVUURXGJxzQm6tePxeJikKpPcGzTnN1z661sT5qEWtldonv9k09elM7ZO9vHgCS7LCXM6YvntWvn\nmOm//QSkrFElfBATY8/XgADH17UvYymfbAhjVpblpXJMer9/P9DCyX7KTYNIY1r033ifyOyk7AkY\nq22O4JQW2WGdiCi8ZzMfWOpGTkSYGtazJ0hjaji2aVTHAmaVsQhHkp+fvZSrpCROuTGbVXXvzraZ\nqfTaa1xKefPNHUDbuZLj/BQWZu+6lpc7vjbdcANIc57gS27GnUXG3Xla+ImL8LkaN44//1NWgySa\nw52XNSZJHtuA/yAHj5WUaBqToiiKTXQBVRRFcYnnLbyiKIrSKvoEqiiK4hJdQBVFUVyiC6iiKIpL\ndAFVFEVxicdaeNl26+RsrBOW4wbMqXspodzeLGYO1kk/LDp0JSZabGeWlsbfhi1ahJpMqLvtNpCq\nP+XcuquvrgEtNZVbzS1fbtHXDh0cX1e/iGMSxg0R4zHMcR8jRjhmwuxwkAr8Rauz/Hwrvq5ezfmK\n40J3g1bXk/NQA86eBK26vqNjh/jiuA9Iyu3b1941TUnhCaKN2Bcgfynn2jb7Y02/9wRx3eQIDyJs\nNdjKVEZX/PrXfK/edBNq4j1uGDISJFmrnTDUyFmUua/V1fZ8nTyZ8yvH46iMffvYNjsvyuP77vsR\ntEcf/YVjZ2VZ+lw9/TRf07vvRk0kLW+rHwCSzLXOvfpp0Ba0f9KxZ8y4sJ/6BKooiuISj2lMO3fy\nE4jZqUQ2kTF7Ahf6cweX2FqsCigaJQaJWWz8KiuRej2ElUgHHuemydCahYiaRXVFO/oKtDNn+Bfz\n8bH4BJqbyxddPHEQEYUNDnZss4qnqR274Pv446DtuosbBUdHW/K1osLxszk0DCRZ3SFHaxMRffop\n2z77jCol0cHW22JD7eZmvle995Wj2NjIdn09auLJLSMnGKQVK9g+etTe+z9vHvs6qzgORdlV6dQp\n1D76yDEXjMWquRmTREWbzadl8WRvtlyqGshP72bj9JDDXG10NBQ/j8HXXMoHp0/b8bWpif18803U\nXn3VMdc+sA2kRK91fGCWTJWWsj19uj6BKoqi2EQXUEVRFJfoAqooiuISjzFQOVDK7Awkv+j2OYvf\nCK59hzs1Jd7rgydeeSXbX35pL1bz+uutfgtXdMkljh3bH7uM597PrbNTxuPv4XUZt25pabEXV6qr\n4+sa0N74NlW0tppeiR3JH3uM7T/8AU9bd5/otD18uB1f8/L4mhpB8MLxHDsaObQJtJBQfs/Hj8eX\nvPxytlv7ZtMVI0eyr7KlEREdfOEFx/6+FO/36P7CBaOLEwZzLQ4VPH6cnfif/wGp+fc8kNF7qBEf\nXbLEMWOnYBZGUXcxEDEvz56v27Y5vk56G/2B6QJGt3qIJ77/PkhND3Iqjq3vFioq+DMVtjUbxcGD\n2fb3BylpDveaN5NeZMh35079Fl5RFMUquoAqiqK4xGMifU7OhW0iIp+tYiCYsb071lMk3MqMeyKq\n2bLFsY3spzaR9C5vffLvxG1x7BNP8IGxvZOZCvX1OABP5nzb5PLLv3bsM2e6guYj0poWrsetSG2X\nRxx7nRyiR0R1gzhtBFPF3dMwlreFfkb6z44dbAcFYZhm1Ci2v8M6ATlPzy7ffOOYZXNwWF3oXL6O\nPV97EbSGH3g37dceQxFwA4SEWHDy/8he08mxu3W7B7SEw1V8YA44F5nrRe/3Ru0iDWukhx5yzOVG\naKxwIl/nKCP6Ebwi07GbZmaABqltkThP3i1hSyY7duPy5aD57trl2CNnY0N1mSkm72kioqVL//PP\n1SdQRVEUl+gCqiiK4hJdQBVFUVziuSN9crIjFo3PAyl2MA8HK9mB67BsMmCmsQTkcMlha+VRrpg+\nnX8Rs7OBrDsMCgJp15ccj4r+I6ZpVK/gsq+QEIspNwUF7KvMTSIiOnfOMccNrAZpdfdZfCDLE4mI\nxo5lu18/K74WFnJqyMjidNDqnnvOsQN++1s8UcTudvpiMxnJgAEWr6kY1Nd0Agf1+SwR95xRjijj\nnJt9E0CKrxdlfmPG2PNVDmu87z7Ujhxhe8oUkJZt4FLTyXuSQSv7858dO9JiiSxVV7Ov06aB1ChK\nJn2N9MCmDzg90DgNPp4BAZbugcJC9tOcHDdhAttmoFNOxDRLZ2WNciupgfoEqiiK4hJdQBVFUVzi\ncQu/YAFv4Wb8DrvqyC2jz+EKkH78kXNX1qzB+dXDxvKTcIDFrUZWFvtqztPOrxVbc2OIfXUjb+Hf\neAPPm/EPTo2gZcvsbYtOnuSLbvgj9ztlpZhWExkhZqofPgxaXCpXVGzbZmlb5OPDfhqxmF0PcUgn\n+ldVoFWcZV+uuw7vm++IuzEF2txqZmc7vkauTANJ7tqz92JnICixM/LWakWnri4Wfa328nJ8HXIt\nfv42bGDbnGEvM9eMt5+C6y/SXPjdu7kS6c/9QJL+mI2M5DU3b/EHHvjWsVtarrDia3o6f/5DQ1Gb\nnMqfm7ih+My47RGu4Ms9Mhw0meKYl6eVSIqiKFbRBVRRFMUluoAqiqK4xHMaU1ERdyQfjOkop0R3\n9I5vvYXnyS7rMoWICGNOGRnWYjWbN3MMxMxUkOG7zz5D7VsOx9DkPiWg7Q/ieFl4uL2Um7592dfA\nQNTW/5V/TKczZ1AUtWW7jfSnLv/g99FaypXoxpRxGNNmMqNF9yeZemPg9dDv4Pjdd//LsePiLKYx\nie755yFay1dPWQhSSHE+H7Rrh+f9gmf3WE1jkil3ZvBQDBgbdheWFm+5k2c9ZdRgp67MKWL2VKdO\nF6UbU/AETPOrESPE5IQKIoyB+vqidtllnKrX0tLOiq/jxvFnavWqZtC82vGH/s47bwBNVpqbXfVF\nph4dOKAxUEVRFKvoAqooiuISz1t4RVEUpVX0CVRRFMUluoAqiqK4RBdQRVEUl3jsSD9mTOvpNrKx\n+5NP4rD60lJOd+jfH0v5Wv5b5DtYTGOaNIl9NZtzDwjlFI+mwE6g+cwV3bJlK3UiogMH2L7nHnup\nIbGxjq/LRheBFPkw/5j+998PWtVsLp/s4XsUX/OWW9i2NKyvUZQcNhua37FjfGDWzspaOnkNiWjY\nUi6X27LFXhpTWRm//5GrsHMUzZzJtpFv0/jAA47tu3YtnienjG3ebO/9j4/nLx6+/BKk6nf5eoXk\nzAKNIiIcs2PqGJDkkMfkZIvpYWIAXlU9fnauuUZ2vcLfo+X+5/nAaO2eMpXTs3Jz7fh6XNyrnTyk\n1e0/FQzHckLCuvE4yQBynPz8NI1JURTFJrqAKoqiuMTjFl7sGGjWNGPglphRffDe6SBFf85bzcWL\nsYKFUo3pU5ZY/oRoPnzddSjEmjuzAAAcnElEQVR+/71jXnIJNtttiXiHDyZOBG1tex74ldh2Fxmx\nbYz4L5SgLe327aCdFTvR8ypYbr/dimsS39//ng9kU1oi6Fy0vxtWqOTwrUHZtTNBu/de7Hhji8iN\nPMTMbEQsZ5Y3Gy23ZFtqX1GxRETnz4m3xdc8VJB+/WuQQsZz9VvJXKyMk/1+v/sO7+Pk/qIsiHBm\nfJs4ccIxfY3wV20tjy9csAArfGggVyMe+ydWVImlwxqdxOA4832r2MPXyuxwdddd4kAueEREe/aw\nHWN08foX+gSqKIriEl1AFUVRXKILqKIoiks8xkBnzfFx7MyzGAPN6MJ5Tfm+2BmGDnN8bl8NSvWX\nXebY/jbLSEVrmJ3vnQZpQDeO3QwadBw0ahQdd3JyQLpqxDx7/klEl6UBEQ0gySO/qCjQRo9mu3zU\nHHxNOcnPFmJwnddtPUA6Qtc6drgRc5r/Mafi5K5aB9o+0eV73DgbTv4LEZMNGYy+Vkfx7+F91VWg\n+Xz1lWM3bzXT8dgeYMPHf1Ev0r78zU5motX84MEoNedwN6a//MX4zMmUq4XYcaot7Ponx1MvNWa1\nydSp/NBM0M7e9ZRjdzbi84UTOV1o5EgLThJhnmUNLjphc0Ram/G9wveLyvnAbMdk5m5eAH0CVRRF\ncYkuoIqiKC7xuIWXFSYZJzClguZyY+Simbj1kSOi1xvZNhM+4G37hRMD3FHuz5ussSNQqxZNnJca\nT+VNPXc7tvclWGwwAAZad2yzj/+mXqQx+RszrP1Eh+f9tfgzi+W17P0yaE3/4NQYH7KEyPH4va8x\nqWuRCL9EYHqLny/XLaUcng1a9bSLFBYRIQxz4BrtFT5s2QKS36uvOvaxb/A0sbu3Su5ivnbdjSKu\nDRs4/CALYYiINnfjbXvNYdSyuvC23ajDahNPP822EVHC61yPv8j+T/l3NAvVcuazbW0LP59f1OvP\nvwHpwQezHDt3Ka5jcYFiC7+xFLTy/ny9+7byY/UJVFEUxSW6gCqKorhEF1BFURSXeIyBVvtzCkPI\nSizXTOvJcc/sQOy4RDnFjlm3fSBIMdP6OXaJEVZtC7I71HkxsLMclO3bJww1kVZlpi1MepJjkMuX\nt80/id85ET8chUEgGXcx5/F16yYOPvgAtLlz2c7EjBLX7BfT+Fb8cA9ofld24IPFi/FEkf5kXtOr\nr+auPS0tRh1rWzBLWyUbNjimmW5TM+FJx+7/OZ6W+IsCcZTQFu+A9I1iQKMxHDCh298cu2oOxot7\nzBZ5X0aXK5Jlt4Sf1bZQSOL+HDgVtIy3he8/4uS4vkHcLazvBiytXeVfQNa58UbHfDr0PpBmTRXJ\ngeONOlJRrnlybzVIU0XaYBE2TXPQJ1BFURSX6AKqKIriEs9D5XJzHbEsCisfIh8QXWTOnQMN9tBm\nhxuZ7Z+QYK3xa3AwN9QdYaQxyWwks9igvp7tvnOxSS1Ud7TSUNUV2dmOrzuj0kASBTV0/C78kami\nGfBR45fc+BK/jykplhrqBgQ4L5oyFrv/yCqUgPlG41+xbc8NxO1kyilRJTN9ur1rKu7V6qF4r4qG\nQtDrmYgoYN9OPjBSynIPcqKdtWtKRMuW8b0qdp5ERBR9SMypFyEUIqIBA/l5pz+07SLKmnlx5sJX\nVLCvZpRE9h83P+Zvvsm2DK8RESXuEolWWVl2fO3a1fHTq/YQSKfpcsf2NZsti47KDUtyQZLXuLxc\n58IriqJYRRdQRVEUl+gCqiiK4hLPMdCCAhZlsJCISJRHHn3nHZCCZWfn994DrWgvpwbFxtqLK3l5\n8fCrjz/G0kLZLMhvfT5oaXuSHDt7Yjlo5CtSM8LC7MXrysr4uppdsGXHdDO2LH+RgwdR69OH7chI\nO742Nzt+Np3Fv7UyUylgDcaO6sa2nor1xRdsJyZaHH4mBvVlj8Kck6AgtsdtTQLt6Hy+H4wQKIUc\nFnl2MTEXJa4Ytg9TeuqGcLqU7+X4I6f9gW+bsWPxNdu1Yzs62uJ17dePBwuW7gbJe6MYwmYGZQeK\n9EWzDfzHH7MdHGzF10oxVC7MC9e05j+JetRDGB8N3s7v/9EdVfiiMnjer5/GQBVFUWyiC6iiKIpL\nPG/hFUVRlFbRJ1BFURSX6AKqKIriEl1AFUVRXOK5I/3Ro06ANGFKMEgyq2mJ0eDkhRfYXn6p0R9b\n1n9ZTA2higpOYxiBHZcqvuAfU/V3jPmuWcP2LP9sfM1rrmF7+HBrvmZlcRpL+ps3g1YnJpmdMHyd\nOJHtopwK0JpD+Xf29raUxiJSWEy2zeWUlriDxnUTNX/D/ozlsWvXsh0QYDHdJi2NfZ2KXYPoHtFJ\n6vrrUZP1icZgvqyBnGKUnm7P1+pqfv/NNC95P5pD5aQmS36JiAo+Yve6tbTYu64dOvB1ffBBkAbs\n4LLcDz/8EbTf/paHNU7BZkyUECW6HoWEWPG1vJyv6WwcgkCFo0Xqopn+J9IIs2rwXk2v+c8lp/oE\nqiiK4hLPT6BiKZ8xIw+k6K78VyR9SQho0I9z0mDQSsQkJJszkSLH8hOYaPH3L4c+dUwYc0SYm17+\n5COg9b37bj4YPrytLjqkb4/ng0GDQAu4lscFB8zBpO/N77/m2PnX4Wsm/fGPfGCrIajcWojCCSKi\nHTvYjuuDXSbqExMd+8xv8a+6L7aNtId8JCsuRk089m7eh/dqfCU/PceewqT2oiBZdIHvRVtYtYpt\n0R+GiIh2Pvw6H+z5GLRxpeJEOeOaiA5+ZMs7gwULHNNs0pIqajd2Pozjq7O/5ad+82kZPqAhIWQD\n2StX7tSIiKiRb7qCKOyxKudOpa/IAu28aoULoE+giqIoLtEFVFEUxSW6gCqKorjEcyXScW7QQTNn\nonbqFNtmrOAbMWC7Vy/U5FeL3t4XpaFuXnuM1SRXcsPf5rkYA9m+nW2z2XLsXDG7pqjInq+TJ3Oj\n4rPLQMq94UXHrjG+vqz7nN+OLr3RnY733ssH+fl2fF23zvmB/RZhLFP2LslbdBK0fVdcwf/v/vtB\n67uHY+mtNal1hWj+HBOBzZ9L+nNT55A1C0Ezv7CXyISRHj0s+iqa9Kz9EWctde3KdkwgNrdpuuEG\nx/YxGwPLYGpKijVfN2/mb7fjA3eCVhE0wLGN3s+0e0cTH8ibhQjTCSw1vtm1i/08dgy1kVE8n+m8\nlCEx7D55K97jskl0a5kt+gSqKIriEl1AFUVRXOJxC9/czI/FZrpF585sR3+A26Jef+Ytk8yuISIa\n96yYpfTJJ/a2RVVV3Lewew+QvPfy2GWvG41EauKKgE2bOoAydKh4DVvJ6URE48bx/JY3hoD07rvJ\njh03Pxa0ug3c5xJGHBNRairbCxda8jUvj28Os99jTQ3bYmwwERH17u2Y2659GCSZDZWba++a1tXx\nvRpgpKMs8+WEaDONSrZjjTyL/S4XvM8juGfMsOdrTAz7KiNhRLi7lSl2RHgf09dfo/hfYkR0eLi9\ne3XTJg6NHcNUPlmDEF+LaY4yVFfdHj+PslVodbWd6yqLE2SvWiL8HFcNTkZRzgM3Fzn55rQyv0uf\nQBVFUVyiC6iiKIpLdAFVFEVxyU+eC39ealCgKHszUpyqt3OjCzmPhojIb5+IM7UyZ8QNkyZxDCQn\n51vQWpaKwJLREAG6ohgBstLLLnPs/jYbNFRXO772GIylbF9+KecgYTDnzBn25/LLQaLTj4rZ7PPm\n2YkriTkzId/iNZWz36vlQB4iCpEdQzx1xEhLs3dNk5Nbv5Hleyzn3BDBgPv9vpEgiWws6tzZYgy8\npMTxddk+LGie/CzHMpsOfQmaD3Fq0LHvfECT5dNWZyLFxzu+7npqM0jff8+22RRl8mH+HgSCkEQY\nT/fzs+JrSQl//s30L9q6lW2j08jmDXxN41s24XmyzDogQGOgiqIoNtEFVFEUxSWeuzEJxjxgPMG+\n+qpjmr0pa0WnHrNICVJD+pE1lj/OI0l/+UtMm4Btu9kaRuQDbduOf0+MxB17iDHQVVPOgDRgPafc\nfPghhhRkB6TTz+Mo4RMPPePYQfOw2sotIY8/zgciNYmIiF56yTG7nTN2zzdyqlp2LVZ3DByY5ti4\nYW4jMqfm7bdBOvreAccOvhUr4xpvvNGxw41UrYSuHzp2ATZqahONv/mNY0/+4QcUN7J/PmcbUBO9\nLDtDyzOiX43CiiZbHF3B2/YjpaglFPN7+d0t2BM2ZD6nNg41UrXavcn28uVt95EIt+3VgX1BW1TD\nx9mDt4MmuzGVlGKa1lnRNCoWMwod9AlUURTFJbqAKoqiuEQXUEVRFJd4joGKuJL/e++hJrpKx/bH\nGCjVcLDk5Cns5D1jkOzoMoCsIdpQL1y6FLVo7o49rtcnIMmyMrMzT5Ms87KJ6FA0b4kfSDuf5FSK\n5mEYk/FeJTqkP/MMaEHnzpFtjj3GcazORj7aNt+Rjn14BUg0/m98jUcZWUPG2CF7PPcc2yI1iYgo\nuP1xPpBTBojI9+xZx26ag7HjgpoqcWTE1duAr+jyLtPBiAhSblKm4r3Rv7+MGmMEOVmWeUbaiy4H\nD+X4YW2qkR60cqVjJoaGgjRsH8dHzRSnyC1Pi6Mn2+oiEREVHmY/zY70x3eI9el/7gDNZ26GY8dE\nR4NW1es/T6HQJ1BFURSX6AKqKIriEs+VSIqiKEqr6BOooiiKS3QBVRRFcYkuoIqiKC7RBVRRFMUl\nHvNAT57kFlFmamXG0k58sGoVaKtPxDm2zLMkwul9JSX22m41NLCvZseykInsT+GUbaDJ9LXwmSNB\nK5lW6NgxMfZ8rapiX430OWoWNcQk2ukREaV8yuMx5AgP83j3bju+Zmaynxn+OCZj3B6u2Z82Dc+L\n7CKmIIr6bSLCXzgkxNo1nTePfTXzef2e47zDjosx71DWYif2MvIcZY6mRV/XrmVfE6/fj6L8oM2f\nj9oLL7BtTDuFm75vX3vt7Pbvd3zdT+EghS8RLS6N+SNph/n+yL7uRdBI1v+3Mirj5zJ9Ol9Tc0Lo\njBlsd++Omkyfzg3F0URJ+7glX36+TuVUFEWxiscn0JoreNF9qBbTnarGc3XHRx/heSNGsC2HdhGd\nP/DJFvKPs/lXZlFPfur0NzrKyB7Kj/1YCNoff3Kvqp+HfGCXvV6JiCiRK4yav/0OpLOiwiLSH6u/\npkwJs+WeQ8ZY/hkF+9JBmyBGfZtP/A03XunYfuYwOtls2SKyyZY5hrxq/rWOffI1bJqb+TFXm+zq\njl18vhVz8+Kx73WbSDyUyQddB6NoTpkTpB3jp+fsFZkoyiF/udipq03MmeOY4f7+qIlGydP3YNct\n2Hg0fornyaba06eTDWTfbvPzv+VOcT2MpulF3WSlZBRovkYF1YXQJ1BFURSX6AKqKIriEl1AFUVR\nXOIxyif773R+HLsqUU6OY/Y4hN1vYl/iDifGDCcqLv5Z/v1kZvTh2NbODthFJfujmx17+qAPQYub\nz62m14cWgWbG0mwhw1UyHEREdMNBjnvebHxDf9ttbKcswpjnhg1sJxlvlWtEgHaUEWMdLi7xlleP\ng0Yff8y2eRHFBAA6bpzXBm65hW3ZuZ+IiNavZ/uGG0DK6MMTAbL+hl3d04NE9yuydVGJmp96yrEb\nf8DvFvxO8Tfv85YGgJbdh2N5TRMyQJNz8zracPLfyPdPvndE8GGevxRjoN6loutazRDQPMV53RIf\nJe4lX+xwtewsZwvUGnHNCBHWLQnCtvNm+P5C6BOooiiKS3QBVRRFcYnHLXywGBxXGIhbmJHv85a5\nZDBuJ267hO0lS/A1ZYqTVd56yzG/us1ohHrTTY5pJq5TI29Rgowsje1i/lSCxZldcv6ZkX9MnV/l\nZN7QUEzxyMk55NiLF18Hmjl+3Qb7h3BT3O1GIcWxY2wXlnYCbeRc8Sb/85/4msW81cK07LaROLUr\n2088AVrTIzzFrHTKOtBEJIpWD38dtOT3+J7Ps7eDp49KedsePToexS1bHHNW98moTeB42HeY4QbZ\nYWlpZI/Rox2z02B8x/buTXbsr4xUxpv6c7N07+5GDlipkUtoA9FEu3w8JsTLzKXMISV4nvgANgfh\nfRyzQabuYSHJv9EnUEVRFJfoAqooiuISXUAVRVFc4rEjfYOXlyOufxX/X5J/gWMnrMIA4ahR4v9t\nQG1tIp+XmGivQQcJXyGNhojK2/OQLRnXJCJKn9rMB6JsjYiwHm3dOnu+ZmSwr2ZQVuTgdNqAJXky\nBcyYm0aXiLjz8uWWrmtAAPsZhWVuI/055auwth+eJ5xrHhgDkvcJkW7SqZO9a1pRwb4auXJNEziN\nxeeUkTol8r923ZACUvRbIga9cKE1X7OyuPFFepQRk5O5M0bKVb24H48ews/jievYvQEtLfaua4cO\n/IP+8heQsvfye5sWtRO03H0cAx3xELoTfO+9fJCfb8XXsjK+psb8QwqZOY4PjLzKolqO65rZVXfd\nxXXnLS2+2kxEURTFJrqAKoqiuMRjGpPspHNe+pEvd2Ip6F6G2oEDjpk9uAAk/x/o4iD7I4pUECKi\nvks5rWlqr69BS+8uSnjMRoKyvMcmsl2MsRevWM89KVO7gATZH3nXPI3imTPiwOjU45KSjXWObUYa\nCmt288Eqo2Rj40bH9DY6+JSJeeaRmDXSNsR7N7LLbpAKvxHX6tFH8TzxHl8/Hrfw6Ws5HebCSSzu\nkJGhihEY4ghbyWGb7EkHQEt6hHeRYYexr63V6iOJmGFfcAJ9le1Kh2wfANq+fWynmM2EN2FHLBt8\n8QXb4vYjIqIM0RLOqzdWUz34INvmx73lHzLcc+F2XPoEqiiK4hJdQBVFUVyiC6iiKIpLPKYxydSQ\nqvbYjafHVJ4fVLEIO7mHFXMcZ9ZhjCvNay/KPjMzraVbVFdzGkOIL6aqzFrCwbZ5URiTLevOaVaR\n87GjTNheLvurqLCYciVTQ666CqSYQI6BltxmxDlFPIqmTAEpK2ieY6enW/L16FH204xjHT7M9oQJ\nIMmZWONGNeB5MnBm8f2nfv3Y17lzQUpew/7kbTdiWaKresl4TBuLGShS3Ly97fna1MS+mu24ZKDb\nzKsZO9Yxj0bh/K7gKSJdsKDAnq/l5eyr7GpFRCP3cqy9cD7OdmrozulBfhuxfLY5MdGxvW2lXMXE\nsJ/mILa9ex1zWMtmkGRJsomctFBdrTORFEVRrKILqKIoiks8b+EVRVGUVtEnUEVRFJfoAqooiuIS\nXUAVRVFcoguooiiKSzzWwlNhofMNU9xSzDuTozrCp+FYgro1nGtldojLmijyxcLD7eWr7dzJ34ZN\nnQpS30aujS7f2wxas/gbIqYXEBFRwYc8JoK+/vri5NaZuX4y186YgphSye3VcodiPus2f84DjIuz\nlAfaqRP7WVuLmmgLFls6D6Si0zwFddZvcQqqTCetq7OYW5uXx762N25rmVspC9GJcN7DypWoNXI7\nMwoJsefrunWt59eKSaiXXuEHkky9NaaWQK+KhAR717WggPOrhWtERJT1Mv+Y3e/hl9GxK0QLuQ/x\nHqDFi9lOSLDia51oZxnw/fcozpzJdiBO7Dz7zDOO3X7QIDxPzntpZa3SJ1BFURSXeE5jmjXLEXfd\ngU8Z8q9h4hHsVTNuDw9jWr30JGgFxdw3xuZfSho3jn8Ro0qHVq1iWz5xEMFfxxPGsCvvb/klO3a0\n6KtsVGy0gMmt5NnUKV2wwitjD+8C3nwTJDpwt/0Kr/37+emji9EZ6scf2f72W9TCT3CT4AEzsYPP\nEDEiPDPT4jUtKOBrKoekE+HTs/n+yyoqeVMTUV33vo4dEGDR17g4x9fmrdhVyfsWfno/rzuY2K1k\nXfokSPLpcNs2e77268f3wO711aBVXH21Y4++HtcR2XBMPsgREQVvzeOD5GQ7vu7f7zgwfSUOv5M9\nlAOu7gDa2hyezpf4PVai0ZVXsj18uD6BKoqi2EQXUEVRFJfoAqooiuISzzFQOajt3XdRk9PZ+vTB\n0+7jDvAti1/F815+me0DB+zFlW6+2fH12Ab81q9zF/Fjfv97PO+TT9geNgw12U3dZuegrKxWu/H0\nI84YEM13iAiHZe3Zg1r2EBEvHTnSiq+zZnH8yxxi17SU40VeD+HAuZYnRCaB0cre64Fb+f+1XG3v\nmooY2HktyWV6hfxmnYhoxQq2ZacoIspd6ePYKSkWY6C5uY6vSTuwW1n+da13z48Zyt/K9+6NL5mT\nwx3IWlosDuurq3N8LdkbgP6Ucsd+syOXbEm/0zcWpP63sHvWujFVVTl+xkzoAZJoSE/zX8Af53fT\nTXxgZkTIeyUmRmOgiqIoNtEFVFEUxSWeE+kPHWLbzKIVW7PG++4DqeUHnhwX0jMdtOr+mCpki0kR\nvG2/6hXUZonJUdMDMVVhYRfhX8+eeGJ/Y1iaLWQuT+fOIA0Vl9zI+aXrrmM7qTIDxRFz7PgmkLvb\nUvNtq2TnUlMjQVpwOR//yjjt9tstOWciYgxrb8sDKXFJmmNnBmWDliGLFYxwSlBQkkUHBSI2k78H\nt/ANj/L9efYsnvbss2xHn8M57FddhUPdbLFzH2/bYw7mtvr/Lr0aJwSePsTrQyn2YaYBf/iDHecE\nxy7jbbtZEJM2UAy9LL4etKMbOGQWvD0fT7ziiv/4c/UJVFEUxSW6gCqKorhEF1BFURSXeIyB5u3g\nQXLJPQ+jKNKYsD0HUVgEp1tU98FGI/TF1z/LwZ/K8l9wnKtiNMa5qD03E1go4mFEhAOoamouhmvn\nI0sNf/1rkHqLdyTRC4dx0Q+cx1Q2KhOkyMoKPgjDAYBuOV5a5dhVhKkhMuVj+TQsj9zcnktO4wMx\nVpcc/b44wnLEtpBwiuOeBUZpsSzfzDiFMfksf/6/t1wHEiVsEnHmBLzebUI2LTFqZP3Gc1OYbanY\nMCYulN8PqvcHbVb9LHGEZddtQVZFl9UbuWwilm9mB8pGOOlBRmwxx/g+xQKynDjN14jVrql0zLrP\nPgPpVs6qowMvdQetqhuXIRt3v4M+gSqKorhEF1BFURSXeNzCJw8R3VfW7AWtfDxXIfQ1ekXWiyIl\n2rIFNDmxHRMf2kZ+FG/bgypRC6st5p+5Brf3x6N4e+H1GHa/eeUV9jC5L9nj4Ycds98vPgFp9wix\nVdyL13z/XN7SRa7ArWj5BN6KWnNVVPT0kEOyiSDlq2EI9oqlYmGbc8+nTbPjm0HB0qN8kGP0WJX5\nQEaD2nSqc+z9NVhpc16vVlvIsJFxfZrX83vc3biPl23ljeTkwTiHHfpazrO3hS+bwJ+XqhEVoPXY\n8qJj592OnZpoFO/9MyKwq1jmKiNd0ALhtUV88M03KIrmxQHPPw/Symi2V/8dO4eNOyxCDz0unNKm\nT6CKoigu0QVUURTFJbqAKoqiuMRzKaeMz8i4DWGT97FTMU1h0VBxMPMq0DoZr2OLpD5crpW3F0sL\nJ32U7NjHN2BaDdVyOkjLMeNF58qUJyM1qg2cfI/jnhuM5kAZOZw6k7mmCbTwZ7lTz8nZmKrT3hhZ\nZAVZciqHYBFB5yLfy7BRTekfuTHSkEV43Xz6iBSrCoyptYUBo4Mdu1s3TDmSv0bKxDF4orgfXziA\nKW7L+xh5TbYQLdL3L9oMUvgGjoGGGR2OwkaN4oPGCNDMVEJbFPXha3KZEVrssWkTH+zaBdrmVI57\nZj7QFbRdwzmVMZosUVzsmF5/wm8BWn4QsWzje4X+/TmW/NZb2Mm+PJTjnq19r6BPoIqiKC7RBVRR\nFMUlnhsqK4qiKK2iT6CKoigu0QVUURTFJbqAKoqiuEQXUEVRFJfoAqooiuISXUAVRVFc8r9/js+f\niK/kegAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  29\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl+X1/4/MMWRE5FgoM2JEpMRI\nGR9F80NGjvw1csyUyBhjjJE5PkYmhsYcH2NqRIzUjBxfx4rQOTI0ZcScHyL8OXJmaMyRGRE0ZmbM\niEy/f3y2+5zXlbxbN5eP7+P7eJznX+f2eL+5uO/7fXFd5z7ndYZcvHiRFEVRlC+O1//rASiKovz/\nik6giqIoLtEJVFEUxSU6gSqKorhEJ1BFURSXDPXkLCwk5xX9oUPomzOH7dhY9NXVsZ07djf4Gocm\nOHZ8PA35dwf6uRw4wOkEGzag78QJtrdtA1f9oeGOvWoVnrZ71QE+GD/e3ljT0nispaXoCwhge/Ro\n9C1f7pjdt6eBq7ub7ehoO9c1K4vvf3lsOTqPH2c7OxtcbRTh2BFNFeA7EpthfZxERLRlC1/TvDz0\n/cd/sH3LLegbN84xYxZOApf8mHnz7I21qoqva+rU99AZFcX2vn3gOnPddY4dcP/94Du3ssSxfX3t\njTUjg8e6dCn6ItbmOHZzShn4Ju3Id+zy0CLwZZ1Ywgdr1lgZa24uj7Pk+Ax0Hj3K9pQp4Lrwm984\nttc11+B5ixbJH3DJceoKVFEUxSVDPOaBJiQ4zoxQXEnGxbEtV6NERMP31Dj25k+SwffXv7Kdn2/v\nL2VlJf8FSpt9Fp1iaZnbh38NS6bV88GoUeCrPRHp2ElJ9sZaUcFjzXhiHPj697/q2N7VlXhiXx/b\nJ0+CqyqKf6/UVEtjzchwxtn9C1xJDhvG9qZNeFpHB9trVl0AX+tx/psdGWnvmnZ28jUNHoqruuTs\nqx27ZnEznrh2rWNWTqsC11CxP7N2TYmovp7HmviXdej8+GO2x45Fn3w+Dx9Gn3weliyxt7LPyeEJ\nwthpnAvl74dvzyk8b/t2x1zdex+48v6QyAf19XbG2tLijLPVJwZcGzeyHRiIp+WfyLj0fySi/Qf5\nWZ0w4dL3X1egiqIoLtEJVFEUxSU6gSqKorjE41v4qkyOe8b1ou/8ebarq9F36BDHPeWLLCKieR/L\nuB6+SR4MaSM4llm2KRF8Ob08+Ak343lVPfx/UzdgvDaquIYuBzfeKA6uuAJ83i+9yAfGW/iajvGO\n3dEHLsrxkWPF38M14roZIVea8HEj/+xYfIym7xJvs7u6wNfREezYkZFkjeDbxjh21cPHwFczdC4f\n3H0QfY+96dhTjGySzEy2U1MHP8Z/kSies7PPPw8+/z/8wbGruhLAl7pKPNcyW4OIKDzc3gAl4hmg\nlSvBtWc+x4xnTMHgYtafOe5ZHofxc/LxsTe+f1K4g+OefcZ3Q16q/OpodMqsh61bwTVBftCES89V\nugJVFEVxiU6giqIoLvG4hZd5vGUrMTWoaK2/Yy9ejOct8OEle+OZDPBdmM9LYZuzd3s4b28yJxvO\nE7wXmx6KLrmb6J+DW/aw40fEkbH0HwQffCAObr8dfOvfmunYC36fA77k2WI7ddJIYzkqfMmWtvBi\n3z5h9khwbS5917HnfYBJ9t3dvIVf/Ztg8OXdKooTaDxZ49ZbHTM1/AD67riDbSMbPHkpPzf7/7se\nfPX/JcIpNJNsUT6Nn7O+KejLWRHv2Kl5H6FTpjGlp6Ovp8fO4EzOnHHMZMLvx0dPsP3aa77gk7/j\n2ak4B2wlPkaPe2SkYU2d8V2VOZdmccpMvq87/eaCa8bjE/kgTbfwiqIoVtEJVFEUxSU6gSqKorjE\nYwy0bFG7Y7ecCANf/nwu3SoqDgHfwoUc2Yiv2wK+c30cZ/DFsMmgCEsR8TSZf0JER+KyHDv6DJac\neYXy2Jua8DMn9V2euFLiGXFNXn8dfAt2cGzZLNdr7eN70BGFKS6Jz9hLCXMQsaPWTRhX3My6JvSt\nlVnga9nI96LoUzyvYAf7Ci2GQEHcpNfIuXvjjQFPu/c6jnu+eCf6srM5PpZvLwQKpc9PP204336b\nbSmCQkT01FNs79kDrtY5BY5tMTuM2kUqX80h/C63x/J32SyR7P6I4/Afn0FfxlYh9pGxc/CDJCO0\nGYUvZXYG8ndjxqII8FFoKPuuNQb6zjuf+3N1BaooiuISnUAVRVFc4nELX9nEW8a0aahwM/0HvPXd\n9c0FeOIh3qP0z8bUAN8usYUOwa3/YMidzFvFkgDcakSXckihPgWrImbPZntSKY6VFi60Nj5AVOcs\nGYUKQGumJPHBGdxSNAlN1qxMVDmiUvvhhrAdrPFYPOULnCjy2s4fR1dhkFQfQpWeQSHiL+2hGN4I\nm+Xn2Lt7MW4g5EDpyYcMRSEIoSSRLeS2Pe/8I+gcMYJtU+ZKqgW99BK4Iv8ormukvesqpTR3dOH3\nY2s6240rG8HnL6t6jHDDZ0oXLZAR1+rYrUaF44yl4t7t2IEniuuds9wfXGU+v/zcn6srUEVRFJfo\nBKooiuISnUAVRVFc4jEGKsMYAQFXg2/XdNED5TwqwUDfoy6MKxVu4rhnQQFZo8QnXxwZSt7HWJ3H\nEFyhmoVCaX8FKgeVHeayupx4sodQgDneYPhEud7+T1BZO+uwiDUvMm6d2QfKAu0bOMVn/HJUuJIl\nsLLlFBFRejHHysww3urtHJ8zOhcNjscfd8zjRtw1bAcPIiEOnV1+HC9rPIkx+fhfzOODJHsx0Lx7\nOvmgF3OnWr+3zLHN6sz4WSIFbJaRHvbtF+lykLSN3x/kBuD7A9Gii2rP4BckKYWfz8Tj2C+pvlp8\n8QsLLYySqKyBk7fMlKpRz9Q6tn+K0S9JXOShk/GaTr+uzbF3DfBzdQWqKIriEp1AFUVRXOK5qZyi\nKIoyILoCVRRFcYlOoIqiKC7RCVRRFMUlOoEqiqK4xGMe6ObN5Lxh+vrX0XfbbdzS4eIHXwXfBT+u\nKV21Cs/Lv1LU7N5335B/e6SfR2WlM9bUOqyFrbqbc+QK/4S6ZLJM18y7k7JjBQVkb6y5uQO+uSvw\nK3HstWvRJztj+huyfKlLOYexqsrOWNvb+f6buZ6Jo7j2mIqLwXduLecLylxBIixFbmuzeE1bWvia\n3oe14D2iN02gKW0nHlDvZzDP8ZNP3nfsixevsjfW06d5rIbeAWAkLQ9ftcSxDx3C/yq75EZE2Luu\nwcH8DHRuM1qliPE1zloDrvhQfj47h2J+bXCT0KqYO9fOWMX9T1qB+dO1y3ncnaNQCyH426JVzY9/\njJ8pJ6/+/kuOU1egiqIoLvG4Ap33hqgS2IzivhefmiY+ZT74vIiVgvr6cI6uGMGrA1sNpYiIum/n\nVWfVVqNq5HdcmjB5Pq5A5V9us/f5UI9Xxz3Tj/Eqc8wY9PWKYqjT/70OnU+I1cqwYeCaOjXX1vAc\nZP81o707Le/jyo+DBw1V4P/zD8d84w3cnRzDlu32kOUnDz4IrtZAFvc9vgdPW1HHq06pZUxENGKE\n6KpI0wc5QDGeruGOvX37cPBJDd8yH9wSnc7kFSj1zAEfHRT97iPsqTHFxooD2WWSiNK6eNVZeX43\n+DJWcDXiZKPJY10dV6ptMQTQ3JKxlledtbFY3dQ5iiuf6urwvPM/55101lhjhS0nhwHQFaiiKIpL\ndAJVFEVxiU6giqIoLvEY5Uts4tiB2acrXDRg24Q93Mgrk6ObhStWgG/JWnsq9JI7hahN49aN6BTB\nzYTFqBqTIF7DNzbh35P4E/KtrL2I7RVXsF0Siko1qz/Kcez8dzCWJWOS/hvwraepQGSDLRtO88G0\naeCTbzZ9fL4Evuef57jnq6/iZ+66q1Ic2WuEdy6Qn6ttffiMpXbxW1+/WAy63XQT26+8Yn7ql8x/\nsEJpKdvlJ1HlSqpxFRjqR4UpnPmwuwtbxyW8INId7rMXA60dIRoGdqHMkXwe01ZhF4C//Y1tM+64\nbZut0TEVoRz33BmLMm/bVrBd3mc8c1OnOuYRH/RFLwr93J+rK1BFURSX6ASqKIriEo9b+Hri7cX0\nK+vBJxPQze29//e/79jJi3A7VTNWphjYU1SWaTaFG1D8uWA2O2sXY/OrapGBZfaQax7N2/ZJgx+i\nw5YAsS064QO+a7gV+2famcvk6Rt/sAR8D9ganKB8K6fYZEHjbaKkUS18YDQNS6x7wrE3T3kTP/RL\nl2dbLB45qqvrA9+eH/O2fVEUuOh3v2Pb92Qr+PbtM7bXlij34TDNZxS+xZdpET4aNORrsunZJ+B7\n6CH+fhYNdoCC8thyx876Boo2y+fx0UfxvJ/+lG0RlSAioj68PXYYyyLqKSnoOrtQiK1PwZTL1lF8\nj7s68LzAQJ5Hggf4sboCVRRFcYlOoIqiKC7RCVRRFMUlnhXpx493nG3PYJlTxB6OjZT1ZYEv5zg3\nP8voWw++0FC2rQp05OQ4Y03uwNSgmvOitHPCBDzvnnscs81If4kI55JU8vKyN9YhQ/iiywtCRC2/\n45jhWKM3ntccLkn8jEqHFD7YssXOWAsLeZxGWZssl0valw8++X93TsF0qw8/ZHvePIv3v77eGauZ\nGpQVd4QPjHgt1Co2NYGrJ4/b3gVevGhtrLm5LNBRsqofnULBJv5MLbhkafHuVfh9bA9kkYywMHvX\ntbaWBpwgkmK5OV7hRowSzhehxrAT+P4kayvfn/JyS2OtqWHRk7hkcMkS3QlvbQFf8yiOj5ux2YQ6\n8Z5hzRoVE1EURbGJTqCKoigu8biFPye2mr4ff4zOl15yzMYrUOFIVsVkRTXjednZbB85Ym2rMX06\nbzXq6vaA76GHpji22af83Xffcux1664F34L3H+GDZcusjbWlhcd69Cj65DbNVAfKGyK2w+np6JQV\nX+vXW9cDlVUnRFhdcvPN6Lv/frYTD+MWftI23hY1N9vbai5ZIu8/+mR0Y8YmQ/5H/GL9UagjKbVL\nk5PtjXX/fh7r/v3oy/Hj6qNzKVj95nv+rGP3XHkl+AIfe4wPcnMvy3VdsxA1aGn7drZleR0RnZvD\nVT2+6XjNY07wNrqlxc513b2bxymnGCKiWbPYXrkSfYeFyJy830RERWtF2tjZs7qFVxRFsYlOoIqi\nKC7RCVRRFMUlHmOgZ88O3BPnL39he96YI+Cbnhft2HV174Kvq4t7kAQF2YsrVVbyWBsaDF+pUBUy\nZOelkrVZyhmzQ5SdFhTYS7mJj+cY2KNYWvrpp2xPKjXidSNGsG2kP1UEsCJ9Road61pUxNfUDLn6\n+bHt73cBnaLGb24x9qCRMV5bvZuIiGjLFmesQ+ahctTrr3MsKzL0HPhqG3wdO2makVIkB2szja2/\n3xnr2T5vcMmy6OBVOeCDe24G82Uwz+ZY29udsd77aBi4/v53trcsNtTcZa8nQyqsoId/r8JCS89A\na6szzrkrUKlKpgOa8fHGhSKtyUxxk03REhI0BqooimITnUAVRVFc4rkSSVEURRkQXYEqiqK4RCdQ\nRVEUl+gEqiiK4hKdQBVFUVzisaUHnT7Nb5iKi9EnctKao1DOblJgGx9UV+N5zz3H9rFj1vLVKio4\nZ9FIkYQ0tAVTsG1DfQfnjCWuTULfQpYTS0y8PHXbQ4074CPaOBQsOgu+nU2czzgjwNAYeEA09di7\n18pYL1zgcZotG/Lu55zJ1Y9jLmPerZwTuLsX80ClZNiMGRbzQCsq+FkNDwdXySHuxGqkAVNZiriO\nxs04F8Vj9/W1N1b5rGYcWoDODtFXwvjOnQ6McGyzbUX9tBI+sFgLX1bGY81JeQ+dAQFsi+6WRER0\n++1sv/UW+mQScUmJlbF2dvI4zalK5taW96DUHc2e7ZhLjmJXzjVHZ/DBzp2aB6ooimITz2lM+fmO\n8/RibFW1eDHbFelYTQN/mczU/+efZ9vSSokIq2bk2IiIvE/yirj1fAT4IuvEX+5Fi8DXepz/vkRG\n2luBSJWjML/3Bvx/Ow9hczzZf0zqABMRLZgvVqv+/nbGKkSKT8eiSLEshJkyBU+L+jb/eO/Vq9Ep\nr7G3t70V6MiR/CDL54+I6IUX2DarTWQFzzSsYAIZH5vVPXJnZ1QU7R7LFWUJ1bizC6ljEfNTW43K\nH/k7R0TYG2turjPWstAScMk+g4lTjCouuezLzARX46Iax46Pt/O9Ki/n75T53YgJF98NqSBFRPSP\nf7AtO1MSUXwDN71sbLz0OHUFqiiK4hKdQBVFUVyiE6iiKIpLPMZApcqzSUKPUDEx3nrS3r1s//rX\n6JOBvJAQe7GaZ5/lsUpJIyK6MJ/frplvYcM2ioZogYHolDGxyEhrYz13jq+r79qBFdv37sUuV2+9\nxa/oZejOJCnJTlyptZXHGXnGeOu/bx/bplSXeLMZsxRjp1Kkp73dXly5pITHKsNvRKj6b4Y5165l\ne/Jk9MnHOifnMr2Fr8brQ6NGsd3Tgz7RELHymmXguuEG+G+X51kdinHO8ZM5++L738fzvvtdto1+\nhBQ9WnyOrTj4unX8/Tdegmze9JFjSwUpIlQZ842LRudXv8r2AO9rdAWqKIriEp1AFUVRXOIxkT6h\no9Kxj4zFJNM20U85IjMefHLv07oJ0y0izwjx5RDswz4Y1n9wt2MvmIXNr7xmcUJsmLG/a9/EKVhm\nAr5M02hrI2v49rHAc0HvEvA1V4uxy25oRJS/Yb1jF2W244fKrm9J2PvaLZGvPuvYGX+4G3y/+MUk\nx37xRTyvi/WUqWVKLjohxaiAbJH724mOXXbXXvDJvG0RXSAizFzJD8frNncrP+M5hrbxYMhYJVLp\noqLQuWsX29/7HrjO3c/b9rQ/Ghf9DbE3nYDf1cHgW8cpR1RaCr5N4rsT2YG939uGcmjiww/xM0vW\n8tY/13g8XPPGG45ZtvojcJ14hW3jK0W+G8scu/slFIYPeqWGPg9dgSqKorhEJ1BFURSX6ASqKIri\nEo8x0PiNHEtprMNmXJCO9Npr6BNpBJHfH4O+Z5+ly4FMT6ncg7HVNKlgYZSWhvVyKWXhSiydNNNh\nbHGahju2TOsxf2hy13pw1dzM1+7cCIxJ+t50k70B/pP2ifwz5lyFvqD/5DhexsaN6GzY4JhpQ6vA\nlS6qIxMGP0SH7m0c98y5Ap/V8me4cdzwExiTzz/Pz8O5WRiT3TK5UxwFWxjlP3n8cbbNfLTsbLZl\nShNhmk3bVozXRfwPxtJtcSScxTeipx4Fnxx6ZNQI8EVsEMFNWRJLRL88ZPPO/xORj5SzAUtgT6/i\nElgzbVDOB7/qxUB3bCz/7kaymYOuQBVFUVyiE6iiKIpLPG7hZSL+mG/7gu+xx3h7P2MzLt8vTOUF\n78Yu1NgkkeKSFUPWkNuJtKgW8K2+fbdjbzaqTVo28LYkJQW38Kaojy2G7+UUlKiomeBLXs76pDXF\nmKqUkMlb6kyjLiL1nnssjvB/kdc0ORZTwzr3cF6XWWkS0sD9tDO3oi++TlR+JaDC12AIeoS3X63Z\nZeDLOi62k9NQcUvqWJq/B5QwBdvbwjdfxfe851t4/4+9ynZe3jg8UaQHStlQIqKIW26xNj6JVNqa\nMgVDHDUBfJ37R+P292Q2KzeZ17WqVCqQ4XfONVIg1YiLDRciu51L8dl4+xYOfWTH4Zdq+FNPiSMM\nC/wLXYEqiqK4RCdQRVEUl+gEqiiK4hKPMdDrr2d72DD0SWHnGQ+NBp/XM1wC2tCAZWVbNso+P/5k\ni6efZnv2ixhcXXEz27/8JZ7nFcd9b1auRN9nYmKWKPsrx71yuvLBN7VYxAWNHj27ZeLP0GzwdX+F\nyw6DLIyRCHvLJMdio5ngDZyqRGYa0yefOGb8yUpwrb6Sf7+8wQ/R4dRijm1F7sGfSQsXDnyiCHT7\nF2OMr21+oWNjH4PBMSlFpNmNxu9Okrzob2AMtCSqwrFzN6aCrzGb08WMwupBsW0b2/GxmB7WP5Tj\nnt592L+rupq/2wV7MG2ppZjfScRYCoHKtMpz4aiq5Ps8p//Jx5aIqPAGkVb5+uvgK6jm9xGFdGl0\nBaooiuISnUAVRVFc4rmpnKIoijIgugJVFEVxiU6giqIoLtEJVFEUxSU6gSqKorjEYx4olZTwG6Y5\nc9AnC6U3bUKfaNF39rsou+a/XNTMlpXZ68qZluaMdfWNmAd4lZBiy9qD+XOy30PNtHJwyVr4hAR7\nnQ5Pn+ZOh3v2oC959gU+kEl4RJiYat4P2V4yJ8fKWGtreZxJUzEHsK2DtREi+lBajVasYLsPO4ue\n27rTsX197V3T3iFDnLH6ffABOmW31WeeQd8hIc5gJP6uD+d67gUL7I2V4uP5e2VI1iX2cD5nNqb6\nQlqwKbX48stsP/mkxbHOneuM9UI1tjy58Ua2j/0Jn4/OM/x8GKmudLZL/F9fXztjranha2q2STl4\n0DGjV+N8JPPHH34YT6uPFTnaRUXalVNRFMUmHlegOSdZxSbUUNXJ3ZHu2L1//CP4/MaOdWyzugM6\nfNlEyMZ83XBlxPIKaecoFPiVf6yyY/G89+Ys4IMEFDceDHJhmTEUV8tne7lyy//YMfA138pNxSbd\nPBF8LetYUNiWyBXcKmN1FjFCVJ5MzcQT589nOxN9ssGYLwp8DYoXq3kB8thU9B334T7ky95E3wdD\nuYKr6Awq7gz1vD9zTVooN2Mzi7jSxfcs+d114Gv7zn2OfeWVeF5qrOx6aLFuSigbec1GZbVjAX9z\n7NoGbOS3bx/bZw8bDRAbhMpVkqHW5pKdPix+POMH+N2gF15wzFlYbAS70/rzhtBz31j6PHQFqiiK\n4hKdQBVFUVyiE6iiKIpLPEZ5ygKFBsnkaehM4beZflK2moha53DcM/JMM/h2901ybKutpURXuV4j\nXivjOGZcK2TCSMd+4ol3wVf1Kcc9jXf3gyLDT7zN/OrXwOe/XajDPPgg+F4WvcgmjRwJvpjvf5MP\n3jQCfS6BF8SLDCV3Gds0G6MJ5fT8LlQqF+LgVGCExwfDP/7B9lgjdCXFypctQ598YV/xDGZhzE+h\ny0Jll2xRtgN8vb3efPCtb4FP9GqE5AEiojvu4Ljnk08OdoTMhbp6x/YaiypHVUv53UJqFMY5w8PD\n+ODmm8F34R3+ntlawc3Yxw9T7kSMx84SIdciQvWzvht+wQd33YUfKh/WAdAVqKIoikt0AlUURXGJ\n50QNka3b6jceXKUr2C5vagLfEz9j+8tfngQ+cwtljeXLHTNH9IgmImrxY4nZ0aHGeWKbtHkzumqW\ny+Z0Fjvg/Y3TP2gENuSjH/6QbUPFOj2dUzU676kBX/Aq3CrbIOKOMY695LuYUrVmET8PFRv6wZcx\nh1OcikoNKVrohoZb5sEwU/Rmy9g6A52jOa9pyiu54Dp5km2zqEHepjyL6s/xfbwt3mYkxE+VKVjT\nMAUss5hTlVKM8IJRr2ANrz0sfmz2or/ufXEwezb4ImXIRz7ThNc5wVIcb/pBfs52fR1F3OmB19g2\nmi+2vMLpb7FGGmNXF9shdGl0BaooiuISnUAVRVFcohOooiiKSzzGQAt81jj2jvnokyGO1EXYGUo2\nZzMynGS/MavpFjR5smOuP4pttRY0cOxQCp0QEdHSpY4572/oAuGJGIsxUBHbTC7FsdbIINg0TB17\nsZrtjGmd4Dv7xBOO7V9WRlYQTbYOGeWRUsxEZIkREVG/DzcU2xOHuUqJG5LpchB0j0gNkmImRESl\npY4Zk4nNzwpLeayVS1vBN+zb3FTMZgy0Me9Fx+73mwm+4ZtYwMTsgJZ0lO9rzgmMeZelX6Z4vXgP\nEjEH05jkl7v/tdfANTQ9w7G9uvBZTeg4II7w3Ypbdl0vrsfQQHTKQPesWeAKEBXKx4/jaSdOsB0y\nQBBUV6CKoigu0QlUURTFJR638PK1vtjpEhGR7yFWlAlfiNvQsCZWGDpVjNn87bFz6XLQGM5bhgVG\n/2raM/CvKRVYzJ7x82YbKUa2EJU7NbMqwDX9t6wWtWtDCfgyxF659QymB324j9MxJlgZJFFVNf99\nbWhA36mOJY4dalTFeMfyVq9nKaa+7F7I6Vc2K9EqUjg1aJSRGpQYLqp9jBKevj4eRWdAJPjkzs8m\nJW/wtv2ltejbNa6HDww1LrruOsf8xkfGh8pqMJvhJrk1N2I1Z1dySMHfiNWtF9GHadOCwXe8h4+N\nhDP3COmwIylF4ArK4+9R0E9x/okU5V39YzGcEH2LkGpKfp8uha5AFUVRXKITqKIoikt0AlUURXHJ\nkIsXLw7oLC/nnjh33IG+oAZWDeqfjzlOQz/lz/TKRpVv6J/U32+vd0tjI/9QQwUdarLMFJcbbmDb\nUL+B/1tRYW+s48bxWPfvB9fqx1mN5zvfwdNCQ9kePhTTcWj7drbvvtvKWNPS+P5X9mL60fqpHMus\nrgYXlOrJS0+E7Ym8vS327qms5GtqyjGJAZURpv/krBQpeFsNGa+6OrYH6InjitpaZ6yp1ajILoX/\nt1RfAB/Ub5p9yGQM8sABa2MNC+NnoD3KUI8XN769C9sLSOWoj4x47bhxbBcV2XkGOkRPrFF//jM6\nxUPYHp4ILtEuieY9ZqRUFRezHR+vPZEURVFsohOooiiKSzxu4RVFUZSB0RWooiiKS3QCVRRFcYlO\noIqiKC7xWMpZW8spDEnzUB2dvvc9tkUZFRER7dvnmJuXYSnfs6JnWm2txTSWpCRnrFUpteBKXcWl\nhcnhOJ7sbLYTuyrBB3IshYX2xtrczIFnM3VGXksjB+jCBlZw98rMAF9uAJeElpTYua5DhvzdGecP\nf4jN72RGTeIebNQlm8pB3hIRptv4+1+Wa1pQh10Q5HCgUR4RJYSfcuyzASi5498rVISCg62Nde5c\n/l498AD6Juzn8sjOOZhyFdzEzQj3X4sliRNG8u9BISH2ruvEifysjhmDvh1cInvq0HvgCtknGica\nz/Gkav69mpvtPKvr1/M1NdX5c2O57FyqthERdXbxGtJUFYsMF50WvL01jUlRFMUmOoEqiqK4xHMa\nk6iYqXrwVXDJHlK+q1A0t/s+VgoK+vUa8AWXsopPZ6e9LbwMNxiaqaBLCz3NiOj99+X/+wR8r7zy\nZceeNMneWLOyeKxmpU5trFApAPPuAAAcP0lEQVRZMjuHbdzIttGMrqiPm6Xl51sa67lzzji9A7DS\npP849wGvbAoDn9Ba/ox+tSygCQqyd03b2viaRnQ1gq81kNXCzB5+kr/8BY8nPCu20GVl9rbFjzzC\nX7prrgHXzkBuiDYjvA18Uh6qJRAraiQxMRZDY1lZzlhz/bAJYMlSsW2X4uNE8BDUHsbQiBSOKiiw\nM9bNm/n+/+lP6JOqWlsCjMpIUUV5OgpV5aRwV2LipcepK1BFURSX6ASqKIriEp1AFUVRXOIxBtra\nynGFbdvQl38t5yMNmY8a6LfeynkjCxfieWuFAvfu3RZjNUeO8C8ig3BEoBpTeRTVutPOC0X49HTw\nVWzivy8ZGfbGeuoUX9evfAV9QW9xw62CHagOIzOCoqLwPNkQa8ECS2OVsTpDNWquD6eKGZcNMrNE\npgsRYahsoLiSK9LSeKxTsQNe0laOK9b2Gjr4UvX9979Hn1T1sqhw1NzM93/SiHbwVe3jeHLqUSM9\nTKqDHT0KrvYAfq7Dwuxd1/h4HmvjfIyBypS0MXdEgGvdOrbNuHNkwGVID5s7l++/DLIaA8gZi/Fx\nKdyV4bcFfLJ7xkDXVFegiqIoLtEJVFEUxSUet/AJCbx8333bI+CrGbPMsYca9UxJk0879qRZw8HX\nvIKbf1FiorWtRns7jzVsK6ZOQa6QVKwlosJArvyQgsVExvY+I8PedjM62hnrkmlYGSW3w4sW4Wn1\nG0/RgMhcLUviv0eO8DU1C6bi4tie0YtbH1n60+aHIZOIxUKUt7bW2jVtbOSxxp/BSrScBv6ZZtGc\nzBSLPlEDvv5ZLCJtU/w5KYnHKlrWExFk1VBzShn4Qoo5rcpoGY8pTxER1sYKc0A6VuqV9HBoxNw1\ny2hD2HlMx9rdwdv9hAQ717W/n8fpvckINcjumEa6Vct8bjgXsxar+yD+GBOjW3hFURSb6ASqKIri\nEp1AFUVRXPJvpzGZSiVLl7LdmPciOidOZNsInpUTl1JlZdmLK8kGaEaPO/LxYduMc4Yc4rhXvR82\nTpOpQsHBFlNuWlv5ogcEoE9eLxloNHz9KzHO691jPzWkqoqvaaofxhXlxSmqxlLO/FiOcycWY8nh\n8uVsx8fbu6a7d/NYhRgYERH96EdsBz2Yhk4hz5R0tAhcN9/Mdl7e5XlWpTgVEWZgydQ0IqLEDo7J\nm/E62bjt2LHLkx5YezIaXPJevvbap+C7+PcP+MB4SdJywt+xbZWdnj7N1/QTrMgm2WNOXkMiotpA\nvo5GZhg8xwO9r9EVqKIoikt0AlUURXGJR0Fl2Wo87+NC8DVOZtXSznG49QkWPcubo1D95Mq3v/AY\n/y1k+k9CE451/+2sFhXSgEv4pG28hDfThmRv66qqQQ+RkSrOZtVUU5NjFp5BQd2CQxw38T7Riue9\n+SbbwcGDHiIR0ejRbNd2YE/wQJEZ1tCA5+Wn8/ZeqnYREd1yCz83Fy/6kC1kiCm/aQY648SNnIBV\nc/nv3OfYoIRFRPR1qb5spLgMAqkOZLZ3l+lAplJXYiDLA7XsmAa+zS/buecmOzt4226Gv47s4LQ6\nr1BUXOr+hNMXVywDFz35QSofWPpiyYq3tDhMm2po4LSpxHBMY5TVfcuWvQa+/F8bN+AS6ApUURTF\nJTqBKoqiuEQnUEVRFJd4VqRfs4adRjMmCJAZdVz9t93GBx/j53vf8E0+ePNNe+kWM2Y4P6h/205w\n7dnDtpniIkv7cn87EZ3f+hbb5eWXRZG884cYIApeKFKpzNwxIbXfmZILruJitm01laPycr6m6RjL\nFgJXn2nilRXb4tjecVjKKePMa9bYS7fZuZPTWGZ0YZwbusqZ17Sujm2pvkSEkuRZWdbGWl7OY80a\njepA5cdZFd3MYpMxSP/frAPf+iEcy7WmxkVENH48f4E//BBc+zexktXDD+Np00SIVl5+Iszcs5XK\nJhXOzHJdmZ4Uvw/T/+rHcoeMlSvxvMbXruKD99/XNCZFURSb6ASqKIriEs9beEVRFGVAdAWqKIri\nEp1AFUVRXKITqKIoiks8lnKWlXFqQM7CC+jcuJFto2tUcyCX/ZmpGF4p3KiJtmyxl26xZIkz1orR\nmKogS+LMysmIv7CSVPKvZoKvZjKrVVNurr2xpqY6Y73wDJayeY0Vijcy/4qI0hZxeVzlohbwQX5Q\nY6OdsVZWOuMs6kAVo/w5XC4nFcaJiBLOs4pNWyiqMcmUp+hoi+k2tbUczDdqDtt8+JrKpoZERGUd\nIm3MfFhlGpPNZ1Vc14rzeF0zRgkFIEOq6chxb8f+TJlnn1DLSkqyN1bRrG1nOnYekGplcjogIrrx\nRralOj0R0QsvsB0RYecZaGvjuSriKHYWaB7B99hsjimz2srjMP3tQjqX73p5aVM5RVEUq3hcgeYQ\n92TZWYfCFjNEduzcDdgqdksfr0C7n0YdySBTPcEW117rmGYr3ZqN3KNpfTX2aIrInu7Ym/7T+Mzz\n6bZGh5w44ZhmXvdwUbDQfBzHKluwfqYpjvln3gK5h3l1ZIqCyNVxwjQUBWnu4FXnyUPgotQe0ecn\nGp+pQfGlLznmkmdQt1K2wSor7gdfyVperdx9N35kUOZpuiw8/rhjZmRicjqNvdMxVz/uDa68X/FK\nP9ro7dM5ir9zVmVFRPHGjLuvQt8bbzhmZubV4AoZxTvWkSNxnWaKkthAfudze1HYM3sFr0Cljg8R\n0YI4sZPbegJ8HR1sh6BWioOuQBVFUVyiE6iiKIpLdAJVFEVxiedKpHHjHOepF14Flwy5yfbJRKgt\nYmqQSGGBgd5sueK99/gXMRvVP/ecY5774X3g8s1kcdf9/4VvxIcNY9vqG+OaGmesaduwD5MUPjBj\nucFdIl5jBOyObGZhB1tjbWnhN5vmW98Zk1k0u7DUH3wFGzlgNP1G7GW/61f2ezcREbW381jDTu4G\nX7MPx+gnTcG4In31q2yb/ak+FX1+Tp2yNtaOIUOcsY768pfBV7WJY7TmcGYsG+fYq1Pw+5g3/Qgf\nREfbe1a3bOHvlaHEUzuFs1SSzuObbxk7NZs7tftxjDoszNL3SvRuqjwcPeB/S0vBGPi58/w8mK8R\n5PXPz9e38IqiKFbRCVRRFMUlHtOY6O9/d0zZO4QIU2piFmMaU4zMG/loHvgq9/EWOs3oMDsoxLb9\nVC+m/4S8845j+zbVg09m1k9YZwxINq9pRN3GQSF60JoJ8a0+rJ8ZvNQYT0+PY9Y8cgxcfmKLHT3w\nDuYLIXden01A5m37T35inNjHfaV3nUxFX5PIh5o7l2wR1iu2sEZW96RX+ZmrqcYtnMSoB6FJPbWX\n/o+D5PSfeVe8vhp9J0XYZuNzuGtsfoXPy9uAz0Zud6Vjl5SQPWTvYiOXTT4TvVMxFJX66CNsv46a\nt1XLZT+vyEEPkYig6KHnDH4Bco8LLduxGG/0FemAo2PXg08WAwyErkAVRVFcohOooiiKS3QCVRRF\ncYnnNKaIiIGdshn41q3gyu/hfj1F38DeLf0i58n74kVr6RYFBZzGYmRN0JbJonzQVBOR6hYpKeh7\nTfSJ/ugja2PNz+exmnG3nACOZdH8+eiUuURGDWhjD8eSbPWZobY2Z5yF1SgYIsPchSsMoRnhTJyF\naUP1S0WKUUKCvXSbpCQWPonD2KVs32WWpDY1sW0KjchLXF9vL41t82a+/2Zl864fi3QgMx0vL88x\n87+HMfCiJu6lZE1MhohqanisybGYkkbbt7Nt5lz94x9sS9URIsraNMmxy8stXVch0CJLkImIRo1i\n2+yXlNVVyAcy3kuED8Dw4ZrGpCiKYhOdQBVFUVzieQsfHc1OQ5sQluxLl4LrdJ+vYw8/047nyQqa\nvXutbTUaG3mrER+FKjo793Fak8xMIsIlvakSE/+Dy9SCubHRGeu52Hhw+RbzliJkYwH43n6b5WEu\nvoN/+0qqWYMnN9fOtqiqiq+pmca0ZSXrgX5mHyqVguQemYho8WLxIRY1Ntvb+Vk1dD1b97zn2LKL\nMRHRJ5+wnfdGBvhiDrM+ZEuLvS38hQt8Xb0aMK2u7DgrWeXMwu9OY0eYY8ePaAMfXOeMDGtj7RVV\nU36vvw6+1dsHTkHK+zpfuwrC6ypVjgoK7FxXuKbPPQu+qiE85wjRLiIimreKq7s+05/7rrvYLijQ\nLbyiKIpNdAJVFEVxiU6giqIoLvEcA83JYSfIoROVn+e4RtZRQ1lcxLm6v4JSzr/6FdsDKZy4YuRI\nZ6z9hnSQ989/7thdP/sZ+EbIAT39NH7mmDFsV1TYG2thIV9XI68mrZjL0GSmGBHGa412SRQ8lON8\ndPXVdsba2emMc/VvBtY5z7sTY3XjUzhWZ6pxBQWJ8/Ls3f/zIlY3dP9+dMoYvfEcXyjmukevqUZJ\n8hlOubIZA5V9hujgQfTJvLbNm9H38stsjxwJrrKjPPacHHtj7e/n2OJRFHqHLCsz42r0jTwEr+98\nB3wtqzjuGxNjZ6z94v57//nP6KzmetnNNxWBSw5teF8n+MhHdFrQNCZFURS76ASqKIriEs9beEVR\nFGVAdAWqKIriEp1AFUVRXKITqKIoikt0AlUURXGJx5YeYWGcA9a+ETsd5jdw3pkpHwYyUKZEnKyF\nLiuzlq+2fj2PdYFfJTplkbuQ/ici7FUi876IiITcP+3ebW2sFRU81oxNWAtPt9/umG13YiuEiN9y\nmwT6/e/xPFnHe+CAnbGGhDjj7D6IUmarV7Mta5uJiLbcJMZ5//3olMmE48dbu6b33svX9MmJxv2X\n+oayWyQRnR7N0mrp6XjaSy+x/dFHFvNAhUygdxTKBK5axXZ2Np7mu2KJY9/74RrwyQ6yJSUWx9ra\nym+ZX8VOoDIXtftGzKGVmhMTfoltXbL8uPutNTm7c+c4Z/kJX3DJ+xo07Cz4KrZyaxop0UhElPkT\nkcs6gPSmrkAVRVFc4nEFCtUuJ9AnVx1XZyaBTy74xhpiPOUbSv/90X0B5AIsyxBULR/LDcfm7ssF\n35YoVj86lY7qRyHmitQSGavEqsMsN8rMdMyIDz5A39SpbD/44MA+W4iLGnQ/riJKZEVP30k87xVx\n/NOfgit/23jHLhpP1nhyJN/HrCa8j9OmsZ28Ix98w8PDHfvQoavBJ1fZNgmewvffbNYoC9O+9jX0\ndXfzqvPJjlbwTX/AUnM2E7kLM5foosIraD5uQ/48gr+DNXOqwFfeIQTOyahidEnyfF511vTNAF/n\nPTv5wFBbHz2aH8JJDYXgW7+OF98LBvi5ugJVFEVxiU6giqIoLtEJVFEUxSUeSznHj+c3m/LtIBH2\nO+vc2gy+7uv4zWZ3N54XHSUakHl5WXtbeOoUjzWEjOZXMu5hvjIWDfEq5uwEV8YZVuqh3Fx7bzbT\n0viim+ORAeSVK9EnJW/MmKeU2n71VStjlZkNZjxu3gfljt05Kwt8UgwrZgP6qKeH7Zoae9f0wgXO\nGDmJ6wIpeHT99XhaTIfIIDHj0fI1eGSkvbG+954z1tRFGHcVIVkqnNoIvu4bOGPj4YfxI8v9RGy/\npOSyXNeabXhdk3v4GTg1De9zyMtCFf6KK/AzZXsDWypnzc3OOMuPTgJXVrjIIDK6J+xO54yNhIAW\n/EyZsZOVpW/hFUVRbKITqKIoiks8pjE98ADbpjAubNtevQl8QW++yfadd4LPP4D7hJ/FnNZBEbJJ\npCDIZH0iothYts3+1U884ZhmSknOYd4WlZFFZL95Q2wWLvTMmeC68CdOZPYyt5vyd7QEFCS804NO\nUSwR7INN/OoOcxO/GEPcumAsb5kxaWSQiO3WwTcxP2rerzmtJWMEhmlKSzkF72ggpuONFtrGw8ki\nQuC3KgDTai6sWO/Yqx/FIotxIlVPhtCIiFbv5XBTHtmjdgevsZKn4H2m49zvPWQ5pg5m+fCzU34y\nEXynq1lQ2dp17e3ln12MxQkyTGd+/xMm9/PBLGyOKe/TQOgKVFEUxSU6gSqKorhEJ1BFURSXeExj\nio7mNBbZ64oIdTdKjerMG29ku68PA52PPcbF+7m59kQP5s7lsZoVmJWhorRP1vWZ/9mIK/YvYvEG\nb2+LAg3R0XzRV6wAV+HRZMcuCDAir7Je1WiOlryB40w1NZbG+sgjPM5XXgFXazHHEiOXJ4OPfvQj\ntkVpKhFR6x/e5fMi7V3Tzk6+/8E7ytEpBG2yFvuDqzyW/++ROEzFia4WZZ9FRfbu/5o1fF3N2LVQ\n4eiemQEuqcuycSOeJh9jLy+Lz2pqKo/VfH8g0uru/QSf1YkT2Tab0clHIiLC0lgPHHDGuf4QxsDj\n4tiO2WgUZcraWXOSmzOH7bY2TWNSFEWxiU6giqIoLvGYxiRXsGbhy6SjYpt0Brch+/fHOHb0KENk\nb6ncJhlbrUEgdxdy3ERE9MkEts3qHrmFNnJDvJ9exwf33Teo8UlO7WB1qJBVuKUomC+2EYZ06ZIe\nDiksj0NfzZkt4mjuYIf4v/z1r2yb2zdBbXoNHAeJdLAJRm9zKehz4MBgBodI0aDJk3ErflRsd8uj\ncKtZH8pqQBtW4GfWrEq3NDqkdRbfxxOGylnScfYFNaAC1vvvs6qR720TwQf36r33Bj/If2FqgEqE\nHuin4ehau5btAxuwwqelN4asI+KIYxei+hNk0u3Ygec99xzbd92FPkO56VLoClRRFMUlOoEqiqK4\nRCdQRVEUl3iMgUZxpdZn0iZKeznOtCUFU5WiU7h0rn0tls6FjR79Rcf4b1H+8hg+mPwQ+Pp/8APH\n7nkH07aCv8+xpJoH94IvWTaasUjIHE6zKJuPgcBw0U5q+SZUlZGZS0aFJPl7iFG6pTC0wrHNlCoh\nRk61IwzFJali1H0GXAdiZcx3PdmisEOk/BzGZyxR9ugSJX9EREdFiL5mOcbq1jdwrG6BUR04GCI3\nCBX2bCNV7TwHt9d3YXrYrrFC9awHn/EjoVyGGj34ITqsTj/m2HmlI8FX+RD7So33Dr6Pi75Ye/HZ\njBkjnwnspeSWe6/kuOeTD2B8OHcif69H70GltrCh4njfPvzQX/yC7WXYn+xf6ApUURTFJTqBKoqi\nuMRjJZKiKIoyMLoCVRRFcYlOoIqiKC7RCVRRFMUlOoEqiqK4xGMeaFsbS4QNNf7nM8+w3WN0e/Dz\nY/vKK9GXt03kaO3da01268gRHmv0PqyxPz2H8xSHlxaAb9ij3Fhi9Wr8zJw4kaM5frw9ibDycn5z\nV1eHvkWL2C4uRp9sBXLvveDaHcs11AkJdiTCzp7la7prF/quuort559H35PDuBXKkfQS8Ml01ZAQ\ne7JrjY081r2Yzkt5Y7iNSE4Dtu0o8xOSdUaO6P67OUdzwgR7Y62t5bHKJqxERNELuY1H1mjsyik7\n1QjVOyIiSjwo8i6XLbM21iVLeKxrfPC7A4X88rklghs97CZMot2zh21r17W9nb9TUvaRiLq/FunY\nQXdimxT629/YNtoPQcfcAbqH6gpUURTFJR7TmPqGDOGe0M/i/0tt4MqPUysqwBcyghs11e/xBp9M\n9i8osCj8umCBM8CCQKxwKSTxl9NYZaT14ApJUrlWVFj5+1sba3Mz/1WftAjFX+lnP2PbEDGWwsCf\naZwnxWArK+2MVa6Uja6CnQH8V93cgTQ1sb2g1CjhkTI9iYnWrunp03xNhxfno1Mq+Bpq22f9gh1b\nroyIiJJCWTWLoqPtPatCqNrrYaxwkUpi8joS4a9R2IMqXqeW8jNvc2VP5845Y9283Rdc806IVa+p\ncrRwoWNWfno3uG64gW1bK9DERL7/9WOXgG/M9jWOPWUKnvfkKPE7GMph0IwuIkJXoIqiKDbRCVRR\nFMUlOoEqiqK4xGMMtLub4wpB/2nEsmTMIxzlqFc/yvPyww/jabJXfXKyvVhNSQmPNXdaK/hqjnO8\nLnkrqnzXp7OKixlzks2oZsywGFc6dcoZa0tPCLhiTrK6e2UvqvGk+bGvMw59UpG9sND+W3hTyH9N\nL8fgZPyNiOiQUNJPfncd+OjTT9nOybF2TYuKeKz5o2sG/H8XZuN181rK8bL+lWvAJ2OOlZWX51k1\nnznZFMHsAuH/8ot8cOut6JRyaRavq4yBZi3CGGj5SqF8b8RAK4jfkWRMbsPPnCA6RLz/vpWxTp/O\n1/SRR9A3axbbnbMxdnx6JT+7w33OgS9jIf++FRWXvv+6AlUURXGJTqCKoigu8ZhIHzSEl+in9+Ey\nfHgmb4XMpmKS227DY9kjOtloJz4YYLtj9FpPvuMOx87wwYZTI/awbWTq0Ixl48SBh+ZaX5Cslbxt\nL+8dOKSQti0NfCVjKx17aAe4PPV8c40slnj0URTN3nY9b31mYWYQlWSKEEqpkRry9tts5+SQLfLn\n8PM5fj4+WLKpmQwhERGlrOJt+z5jO222CbfFzTezPW0a+r72NbYPGU0FE17kLfyQWXjiqlV8LfMG\nPUKBiGOUmzGFOZvYNgpCDgvBbTpUCj6aPt3O2ARmEYwEMhfPY5PL4Tv4OwUVQETU1PT5E5SuQBVF\nUVyiE6iiKIpLdAJVFEVxiccYqCzKH37TVeDavOF9x553HmOgSV8+6dh5t2LMocwHy6xsARV6Zs6N\nEDqoCPw9+gK5U1tFVy64zh4+7Nj+gx4hU36cBQ0qM1EwYr4IM1V0VIIv9wFxD556Cnz3/nGuvQH+\nE5nG9c1v4hWQZY/BZzBtbPNrnDY2bDH+fkmvGTkmlljfwGl2BzYeAd/qXdwcLu8tTGOp8eFYbvIm\nFBqJh4AppvAMBinEEhHwHjpFie4Lk/H+JwQGOvbFv38Avpipwx07z2IQtGIqx+QPHkTfQ89wqlLI\n43hfs7NFieqhOPBdjuCy1N2pPIP3cccOFpOhPux+V9Ob6NizZ+NntvVIUSKjceI/0RWooiiKS3QC\nVRRFcYnHLXz/tdc6tvc114Bv3jXco7rG6F+dHMe+tA3Y27wyW/S2JvQNhvffFwfjQsFXNZ9708fG\n4nlSHSrjQ6yaqRIKVJhsNDjql/O2Ni1vHDrn/8kxZ87Ev28X0vmXNDK1QIOTaGCFqS+C7P3eXo39\n65OyWUXKzy8SfFID9uOP8TOT+l63MjaT48fZzu/AzuhSLSrjPFZNVUw5zQejV4HPqESxRsRKTk9L\nMMI0RHy8+6iR5rVKjE8qcxFRdnYtXQ5kap9ZNSWr34oO/Q/4Iq+/ng+2bcMTo6LYTkwkG8ycKQ7+\nNBp8pSKL6it5+POGCulQKRRGRJQz32h2fwl0BaooiuISnUAVRVFcohOooiiKSzzGQF/dxzHA7m70\nJa3gWEKymZYgAnSVowx18ONCuWmSvRjohLe28MG0n4AvVZSO+WdjKedoGS5ZeB/40i4+K45QVXsw\nJM6/mg/iMMVjZx3/TZOhIiIirxvHOHahUbu2P4jjnhPIDqNGiQMjeFzbJZT0jd5NRU2cppU/GdOY\nNr/L13/e4IfoUDZVxADNmJsYX82e4eiTAbKxY8G1di3Gdq0hbuzu2UYZtAgsXiitB5dXsVCLMpop\nZX1DKDXRTLKFVId64AH0zfs9pzGBGhQR9O/KCsTfsXwqPhM2mDdM3P/t28EXdSdftwlPZYAPAruP\nPw6ujMV8HQeKgesKVFEUxSU6gSqKorjEo6CyoiiKMjC6AlUURXGJTqCKoigu0QlUURTFJTqBKoqi\nuEQnUEVRFJfoBKooiuKS/wsogY+yHsdQ1AAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  30\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztvX1YVWX2/79AYwwZIzIhMjIkUjNS\nIjUqYhhjTB1TMjUzMiLyKTJzzCGHjMzUMTLzKWTIyEjNGMd8ypQxxhAdnyJHiYwcxgiNyAjN0Djf\nPz4ze633XZxqc3P9rt91rddfa7vc5yz22ec+e6+91nv5eDweUhRFUX45vv9fB6AoivL/V3QBVRRF\ncYkuoIqiKC7RBVRRFMUluoAqiqK4pK1Xb12d84i++81B4OrShe3Nq+txvzFjHLN+5XpwXXTRDsf2\neOJ9fmacP019PZcTrFuHvp072S4tRV/nzo45recmcM1rmMAbS5bYi/XMGSfW0an+4CoI5Pf0Wfon\n8HnuedyxE2sLwLd1VB5vpKTYibV7dz6mF1yAvltucczqGUvAFboskzcCA8Hn8/gDju3xXGzvmMbF\nObEeXlYMrmPH2D5+HHdLOzXPsSuHTwOff1cOL8TjsRfrVVfxcb3iCnB1OMix9++PuxXu7MQbixaB\nr2TkSMeOtRlrRQXHumABuC58hT/3777D3Zpee53jWXwv+ErmiM8nLs5KrPX15MQ5fz76ysvZjo9H\n34SDaY49vk0O+Jb+Zg1vjBjxo3HqFaiiKIpLvF+B5uY65saN+OscfmSjY6/ePAh8fzzEV52TV+BL\nXnpp/C+L8GcyelwHxy6Y3A2d8iqothZ9R4445rxlVeibavxfS8irzoLOeFwj18mrObyyL5nEV51b\nQyrxRSetZTslpcUxEhGNj+djs/S+EnSKc+PyyzFOzydjeWPWLPD17n2xldh+wIcfOmaPmiJwzVmV\n4Ni9euFujZP5+E8dhb5J2/niK8RCiD/G6ol4tZy6m+0XXjiM/7lfV8c83HMEuIJoJLUKbXmJ2J+K\ndxrfpu537IU7o8E3ZR9fdaam4kv63MZX3bbK0Duc4u9uTU0Y+A4eZFucJkRENHQ7X3X+4Sz68nfy\nMU5u5n31ClRRFMUluoAqiqK4RBdQRVEUl3jNgaYf5/zQwraYHyy6kPOel16I+02axPbKleiTT0Rt\nUjC/2rFPXt4XfJ3mznXsjG6F4Ju9tsmxq2vw92RMLT+Fw6xay5DH53DgPPDtncF2TEwH8MljF/vp\nLvCVzeEKgqgWR/h/XHYZ22duvhl8fsL23HcefL4R+Y599Gge+PavzBJbmWSNP/6R7ccfB1fI7Qcc\ne0pDFviO/uopxy48fRp8yeM4V52QQPb46CPHHLkBz8cL45PEVg/cbxvH12OSEdDu3dQqdOzomNGH\nsKKG7r/fMR89tRVcF1xwo2MPHYq7DRt2lb34/kvKTM575g3FOJuWDXHsNm3OgS/0OJ8btHYt+ML3\n7uWN5B9fAfQKVFEUxSW6gCqKorjEx6ucXWQkO9u0Adfo3lzi8sILuNsHH7B94AD67riD7agoslbw\ne8jHx4m15yef4HtODHfsX/8a93vzTb5s/+ST4eALP8VlGhQdba84OSeHj6uXwn6aORN94l6oZDre\npixbxnZ+vqXjKhopIO9AhEXVW7agT54r5q2lrGROSrJ3TNPTnVhPvfQSuAK//JI3zEr6wYPZbtcO\nXD4fv+XYHs911mLNy+Oi75R4LEcb/2c+V7//HvfLCZji2HF7s8FX3LOVmj62buVzQNzOExE13XCD\nY497CNcRedtuHFYaMIDtxkY75+r+/XxMzdNRljGZPnkaR0SgLyaGbX//H49Tr0AVRVFcoguooiiK\nS3QBVRRFcYn3Vk4pymEkMgpq9/DG1ygYkbhqDttt8S18rh/t2B5P/M8M86cBqZMNG8C3esujjn0R\nnQCfzHtOnIivuWIFt6cFtzhCgch7rv4dlvnceqt4/zngoo6DOe8Zj+koU+fBClHxfFTPnUPxkiNn\nRVmbmceVag5mDtRMNNliBtd/lRs5UP/j/HesXYuiOFnnRFmLkef3vPWx2Lqu5TH+l7OyZdBoLV76\nEfc9pkU0XzxXPGkN/sNUcc4vwZbLllDdM9GxQSSGiHyHDXPsnHH7wVcZyN+d81jlRg0N1sJzePdd\ntjNOYXt09w+5VLB+ZxnuuGKFY9YNxbyy0Muh/fjnOegVqKIoikt0AVUURXGJ9zKm7GzHWTV8Crjk\n3b3UBiUi2rFDvETXxfiGk8Y6tsfT3l65RVqaE2vJ8uXgihVlTZEDwsHXlQVuaPNfqsEH9x5hYdZi\nrazkkovwwDp0itvfpPLZ4Crcxp1JaaNQAUkKTs2bZ6mMaf9+J87ZW1BtZ7io+DI/f79fibcXXTdE\nRFmrIh07M9NeGduSJXxMJ1z0OviyPmFlIKkNSURUsJI70Uh2nhBR7OQ+jl1SYi9WysjgL1379uiT\n6Y+pU9H3yCOOGTcYu9SK+4sOq8xMe7E++yzHKlvTiChlJ6t+BQTgbgsD+XY/YSd2fxWtFN+z0FA7\nsV58sRNn/otfgUtWzpldUXI7sxeWBtbHcwdThw5axqQoimIVXUAVRVFcoguooiiKS7yXMU2f7pgh\nkzAHKjvgzPKf3r3ZrrgdnT72sjOIyFcaOt5ULRKdFe+9B779AXGOnTQpFHyFY4RSThiqXLeE8ICT\n/P7HOoGv7SjOe26IIWT6ZMc8aLSk7VklWwIxz+uabdscM2MAuvKEArnZ5bniM06bha7C0pDMdrKm\nBctNWkJNjdgYOwx8qSLVHir7jIloylTWrgoI6AM+Y+yQPaSy1fbt4Eq/j/N3L83AtlPPe5x4Lh4+\nGHw0Q+ROMy2qXMkE9913gytvr2gf7Y8nyOEIznsW9UfV/YxF/J2bjWl+9wjZtyGDcZEJvP12xw4I\nQNWozHZc4pS2Ac/HnF6iVK/Dj3//9QpUURTFJbqAKoqiuMR7GZOiKIrSLHoFqiiK4hJdQBVFUVyi\nC6iiKIpLdAFVFEVxifc60KqqZp8wFe7luig5ToKI6MEH2R41CucSXH01S4ZVVFjsL25s5FhTU9En\ne9qhYJCwidxs6pav06OHvVibmpxYfdp8DK6nn77Gsc2+bVmXGNTuDPgOH+MJkj162B/pEd0fZeDG\njWPb7MuX/dyNM7APWk4WjYy0+PnLcxX04oho1iz+b7PywRU2dYRj+7z5hvGiXIfp8VxpL9aSEifW\nsoDYZv9b1IIU2N46iqUPjekasB0WZu+4FhSwxsDonigFdyKYa2hPoEokyCvmtZuATilxuXChnVjz\n8504s44lgyuzNt2xKycvBN+YMWzn5uJL9njwJt7YtUt74RVFUWzi/QpUDuAyBrwn9evHdpeduN/7\nLL780dO44psXh9aQsb72WrP/bcpjeFEtLk7Iv+Ek+OrbcZcQat+0EPGmjz2GXSNykFVmPHZwUNte\nbF9+Jbg6/xsVaKwwdqxjFh94G1wBO+9z7E2d8apuoFA1MkZt0+i2Qgg4cgRZQ7zntNIkcPUbyvEd\nWoG7ZYrBfZ5bUDmsw4x0ag12txFXnd+ir3t3sWGIkR89ynbiFuwMhNbAMHtD7KXqFu1E8efgQO7U\n2X4IO3WkqBQdwy99dQh3sWHvXwsQ0+LKCa9Ay6bzGnTQWKpKdjQ69pJcP3T+ZZdj9mjmbfUKVFEU\nxSW6gCqKorhEF1BFURSXeM+BioFL49vkgGvpDvGE0FTOHjTIMR8uxRxoSMhpx/Z4DDXuFlBxnhWI\nIp9+Gp1iOtS3b3p5kVWrYPNYPOfAoqLM/9wCXnnFMce8hTlQkcqhtUfjwJdXywrZJRsx5/nMSLY3\nb7YQIxFNiWCF7uznUVWJRA681FCGGigGEPa/13h4KSsdRljMgYp4JhkqVmGdWXU+aQPm48rO85Pt\nqOE4HLG+nTzn01oe43/pe4KPa1mXIeDrMJ2fWDcuwu/cQaF6FbQWP4853dhOs5cCpQMH2P7yLL7w\nwJ78ZGC0LMsgomkHWeVo3DicZtBwuVDHstVKLpTjIoy8u1jGKHsnKm6d+B0Px+zcGffrUSoGPvbA\nioj/oVegiqIoLtEFVFEUxSXeb+FF1fPS4Xg7Qf1Y3BfuO4lghnzw8yhSeuut86g1kLXTOSF4W5y2\nl99z6T3GnPr2XCy7fTuWrcT3tBigRIj67sWsAWX051uKIaV4uyHvRYIuwVvjzXKgPBnlTy7J/u1G\n3rhpLPhOnOPC+uOo+0vjg1mIeul3jejs2UoHVTRIhNUeAteQSTzbfP78PPBFvStKl15+GXxVG7hw\n3J6cNhF9+KFjfhuMt/CyscNsUFm+nGfYe74zbn1hIF7zxfm/lL5fCwHi48fQKVJj2SH4vZ63bSBv\nnF8AvhM1raAA95//OGbWujHgOlPKn+PC3D3gezSET94XX8R7+JIYvm1v7ojqFaiiKIpLdAFVFEVx\niS6giqIoLvGuSH/ypOMsDg4GV9yNNzp2mZFXiGpXwRuBWBpCAQFs+/vbE2jYs8eJNWE65g6LNrDw\nRvYyf/CNGsV26Pkq8IG6QFaWvVgrKvigS3UNIqJTpxxz7qdY5vPE3WJwnLFfRWcuMbEm0nHmDMdp\ntPJu6sxlPbIdlojoK1Fh9dZb6OsxU/xNa9a0iuiFqGgiIqLwjix2UnIIm3K7ifKfoKFYNpbWjXPJ\nOTn2BDpWr+ZYR467GHwVu/ngRa4znhfIRD/kPIlo3Tq2fX2txZqczLHmd8FnC00zWSjGt4uRJRbn\nMV1yCfp272a7Uyc7sYrv1JRlkeDK7ifah40c/KZj3KQ5eTK46B//YDs4+Mc/f70CVRRFcYkuoIqi\nKC7xXsZ0/fWOGfeHP4Cr/s9/duyog6jGs6SB1VC++QZf8uqr2U5C0ZyWUVrqmEUb8DJ9/TZ/8387\nhJYX8YboZiAiQ1LGHtNy+RZj3vBT6BTyRU90NgRBb17KtjyQRBQ5WNzSTbMzb72qlo9bmKGVOrAt\nH7d1PbFDJWfcfscuLMculB6i3MQmo5eJ2+8YFHacvYiPd0YIljFRKR//xm1Y/pUzQP5dRWQL+VXq\nvRs7ymSmZNQo/BxlteCUXFQO27SFr4UGDiRr5I8UpWyrj4FPfOUoxvhc/T75xLFPdu0Kvk5z5vBG\nttHh5haRbsvOxfqv8y/wIjTNUGN74YXtjr1x42/BF7xYpCyyUNf2f+gVqKIoikt0AVUURXGJLqCK\noigu8VrGdOYMlzD4n61Dp8jVzf0KlWr+9S+2zSqd4kVirkpUlLVyi61bOVap3E2EY5BM4SgZn6li\n9MTvD/OGxZlIMtbEHRngq58+27E7tMM2yPGPsmL20q9Hgy+xtkC+vp1Yi4udOCtvuw1c4VdcwRuy\nFoiIomu5/W//MixxA4nzqiprx7SpiY/pF1+gT6TjKDYA5/rQwYOOWdAWlcxH9xd5RlvlNkRwXGXb\nMxFBmd/4l1AHfekDfCzL2mGpXtTDPz2/xxUdOvA5cBBnX4XXis/2ELbP1g3lNsh2Rtux/wUX8EZj\no51YIyOdOKu2VYArTIyzKtqO691vf/ulY3t2fwI++uc/2Z44UcuYFEVRbKILqKIoiku8dyIpiqIo\nzaJXoIqiKC7RBVRRFMUluoAqiqK4RBdQRVEUl3jtha+o4Nq6bdvQt3Mn20abNM2ezvVidedRPixo\nvqh7nD3bWr1aVRXHGhKCvvh4tu+8s/nXeOKRM/gPUs4uPd1arNHRHOvQoeiTUmyGghzlTxd1qaew\nh76whocOJCVZqgONi+MnjFIujYiSJ/NIj9de+wh8zz9/jWPL84SIqHBRNW+EhtqrV0xI4Fjvugtc\nZx6Y6NjlhrxA9CKuV8yPN/rkBcnJ9uTsDh/mz79HDfbYF9Rw//3oXGO8pjg5Tjw6G1zDhrFdUmIv\nVho4kI9rW1wuRgfwdFHzc545k20hm0FEREcCW6Fm1c+P4zQXq0cfZfudd8BVVtPJsRctwt3ky1RW\nqpydoiiKVbyWMWVm8i+l2VH02mvcbXLppYngO7moeQHTo9de69gRHo+1X0rZNWVcnIFQ8uEGFH7t\ncbMQtN2+HXzwi2uxayo0lGOtPopXvZU1rIDUtSsq9dxzD8daMLwQfHDpauvKrqzMidPnehSpHTaM\nO2gKFxhC1FL41xy2LbEpqJ2Y6MRa9+674Eodxue40TADV6QNDei76KLTju3xtLcW6/jx/Pm//jr6\n5FWQ1B4nwrsV35tvAt/oq3Y5dkGBvSvQkz4+TqydhIg6EcFdSdX5UHDJhjPz73j4YbZHjrQUqxB/\nJ6n2RATD72jiRPTJ77wx2373n1mdq29fvQJVFEWxii6giqIoLtEFVFEUxSXeWzm3buWhcu0wzymf\ndEc27AefVGqi9u3R9/LLbFtU46GUFCfWojH4NDWhM6uzZK3CXJ5UbjKfFv7tb2ynpdnLK+Xncw4s\n+dRCdLZpw/Y996BPHNeiCFTASmgr1NTj4uzE2r07nxzGRALfVH563bQDldzHv8Hq8EuHbQUfKNw8\n+aS1Y1pXx8c0KLAJfPsP8nVC9FpUv4ISjV69wLX67/yE1lqujggrBqTMPBENGc6KW+tHYoK0+jf3\nOnZoFz/wVRxi5S5rQwWJqEnkQH2ffx58xTFTHDuuHyqHAeakB5lszsmxEuuSJfz5T+iH69HuczwV\nYeNGcFHWwSGOXf322+AL+Z4/Jl9fzYEqiqJYRRdQRVEUl3i9hS8p4cvi2AgcYuUTzAXyPj4oCuut\nhGHJK3wl3M5iGVNjI8fqd/QwOkW+IW16ELieeYbt777D3WRJybx5Fm/hKit5hn1qOLiK2opUiaxG\nJsLUiDFrO/wvT4qXtxOrvC025+vJShGP59/g86wUVdXGPdOZXBZ+9ve3d0zh829A8e/qs/yZh641\nUiYDBrAtT1wimjaAxZdtfv7r13OsR46gT2a4TCqXiXSIWasnJ7xlZ7dKg0rYwfXoFF0pJ2pwHdm3\nj+1Bg74E3wcf8LkbFWXnuJaVNV9yKXtA8mZVU3NMW4ClWLIysLnmFL0CVRRFcYkuoIqiKC7RBVRR\nFMUlXnOg50UJQ9u770anSIqNmIrtkbJ7b9Ys3M3/VCuJSSQnO7HWL8oHV4exSY5dvwJbIGW3phw+\nR0QUHtBKQ8WmTeODbgxkKwzk8qAkMto1RcIs+aMnwZV/jEuHqLjYSqzZ2ZxXMsUiZO6uvBzFRDz7\nuAVy2qpo8M0b3ArlVmTk68dFga9sJecyzfzYkBhxPs6YgU5Zq2dR+OaQ+F71vP12dKamOmZxyAhw\nyZI78+/I6pzDG2lp9s7VxYv5XJWJTSI6+corjt3pvvvA12EdfwdjYvAli8aJVu8RI+zE2tjIcW7Y\ngL6ICMc0W5I9G0QrZ/fuuJ9UE2nmmOoVqKIoikt0AVUURXHJz58L/3ejhP8moQZj3t+JEouwGThr\nW4zhpqAgi6VBYtZ2TnkcuOTtjqnGs/5h/rt8BvcD3/vvc7lFbKzFWMUtHP3mN+AqSGV9SOPuHv4O\ncadHRER1O+3PsJez1n3fwK6Ypnu4K8Z3M54buzsOcuy+FxhdavI2edMma8e0QhzTUMMX8NBDvGGI\nPu4+wB09fecmgY/GjmV7yBBrsW4SsQ68+mp0ivvdaZ0LwCWVo5Yvx92Cfy1UvWyqXJ0548R63Ogq\n9Bc2qv4StRWpibm/xW601avZ3r/fzveqShzTMPkGRFRwnlMho79aDL70j1idaWE5dlvmDOe4m+tE\n1CtQRVEUl+gCqiiK4hJdQBVFUVzys9WYTv3ud+B6eQ7vZ7ZA7t3LtlluIQVv8vMt5hX37OGADFWd\nimOc55o0CXeTKt8TUlFRJmEA71dU1Eo50I+wBCi/lMssfqDUZA5QkkyezHZhYaurfM/umO3YGf33\n4H5SEd7I8c0+yvmojAx7xxTUmN7APFeT+NB9jeOdNp+Pt9l2PGYM29HRFj//wkI+rkYvZ9V9XJ5m\nftzy+YEUWSfC0kGbivRQxmQOP+vdm+1Vq8DVOImVmvr3x93efJPt4GBLsY4YwXGuWIE+Edv6jing\nGtKNldp+8GDhiSfYHjRIc6CKoig20QVUURTFJd5v4RVFUZRm0StQRVEUl+gCqiiK4hJdQBVFUVyi\nC6iiKIpL2npzZmZybV0/bBOngRFcP5W5EiWispbxNENatgx3lKMH5s2z1wtdwbFGjktAp6xhNApT\nI2dwXeLHH38OvmHDLnPswkJ7tXWHD3OsPWqK0CmmRAZ1xN+3uhlce0kdO4Iv7zxrDqSkWIo1L4+f\nMAYGgqtpKPeNm3V+f/87j3B45BEcPXIvt9BT374W6xWFnGFaO5QzXL78K7GFXdueWeLc+BJHT7TG\n9EgiItq40Ym17qZB4Lrkkg8c+4EHrgdf3jiut41K7QO+soNiEqmvb+vULO/eDa7snRyDMVyUzp5l\nu/jDi8F3+H3+PHr0sHMOyLUqqxxlACtmsXye8bWB8lWpXkdENHUq281pYegVqKIoiku8XoFKAdes\nwdhtcsej8tfnA/BlvS+mONXWgm/1DfMce+TPDvOniQwU4sd33YXv+SnHOnJUX/BVfM1DxXwuqgff\n8OGXUWsg54Glr8Or5f7ioufbb3G/+lTu7ugwB+ebp8wQajygk+Oe2Fzu2jDmrdGUbaxUk5uLKjZd\nu77m2DU1k8En5+Rt3tzyGP9HYg1fdRqCS0TEV0A5HfG47e4/27H79TsHPs8fn7IWX3OYsXre+9qx\nZxsiZ0UNfB4vWIA+nzZ8sng8qJrUIqSSlSFlNvRx/i5NmTsXfKMPTnPswslfgS9ppfgMZs8mG2RR\nJm8YJ2vkKbF2NeCSN38+C35XDp8Gvq0N8+in0CtQRVEUl+gCqiiK4hJdQBVFUVziNQc6gNODlJaL\nT/2efZbtzRuvwx2l5JHx2GtkoEis0hSyRWUDP/mPnzsRfDKXS5deijsGBzvme+9h0tGsPLBFbCk/\nTY8tNx5fduZH2t++YwRQyo82k8oxd1R4yYW8YSZPXSKfrHYoRVVxmbwLjykF11/+wvmoBx88Cz7P\n935iy97vt4wVPm8yJhQYSl19L6107KuvDsf9uvAxTmt5iA7VvfnJ+1OD8fnB5+M41qVXZ4NvfyB/\nX8RMRyIi8py29+AduPJKx2x68EFwhUtlKyOZK4pJKKljMfi2xvNxxex5C3j7bbb//Gf0beSJCSeu\nxWcOUJQjH04Q0YEDbCc2E6hegSqKorhEF1BFURSXeFVj8vPj4tTGBhQblqKlPg8PBNcHH7C6a1Ru\nOu4nB3VFR1u770hM5FgnY+UMzHtPaYtF1kfvv9+xE67AY1E1SpQ1WCz69/H53nmjYcPagK8wt86x\nmwKDwCfvktK/eRZ8qyNYiHfkSEsF6hUVTpxbj2GzhBQfjp2Pw9gSTvE8+6JZJfiabUXWqE+fVhH+\n7fMqpnD2DBAlLs88g/u98w7bH38MrvDn+XUqK1tnACKcnETkM3KYY+/bdwH4ohcJMeDBg/E15QeS\nmGgv1upqjrVdO3AduoSbJIz5h9SnN+924MD3hvdTx/J4IqzEWicK/oNefhl9Dz/s2EHDhoEvbzCf\nq2J8PBFh1daECVpIryiKYhVdQBVFUVyiC6iiKIpLvJYxyY6o3Qf8wHfFYC7seBbTcZDW6bscB6N9\nO7mSWoOtgUJAoN048B3uJ0oXtmGpQkRIiGNXPYx/yOFh3MrVw0KM/+P3v+e8Z+EKbB8t2st5T6ll\nQYStjytOPAk+UwjBCmL6V+yMGeBKf4BzXLFGeUvRpKsc+3Dgp+CTFW5Fho5Ki7j7bscsHY+uoI5Z\njj3j+Szwjfsdp7aMw02VIbPE1udki6bbbnNs3+3bwXfrrZz3PIsVYFQ5I8+xwwm/R/UduQQL5VJa\nRl27UI7nEkwDyrxnW6OMaf9G8VzkeUNtBqb3GYlHlwS9+CJvSBUQIgr6+mtqjoPitE45jufGtvOZ\n9FPoFaiiKIpLdAFVFEVxiddb+IKzXJ5SdVkh+MrL2c44a1zq9p/pmI89ZqzR8j50IpabtISicaz5\nZ0hXUnQIlwb9oL3ojjvYNgbcnz9vKzok522+FQrvhaVT8lY8/MhG8A25+HXH9tteAL6gXKEcMw1V\nZVwjunYCRKqDCEuqqk+hpmXoRr6F79GtCXyTJ7fSb3ZfVgYaeh2mDeoOVvGGKVwpOtP8ZesdEe18\njVWljDHsLUIWBB4OxM4Y+fn7HT0MvimLOJG0eTN2Tf2zXNxet9KgyB2v4+uOPs8lgXWiHJCIKOj2\n23nD/CLJzyDNTo/XiJ1cLrlmFKpGbbroIsce+Nln4FvYWegVR/QEX9Yy2X5kdOL9F70CVRRFcYku\noIqiKC7RBVRRFMUlXnOgUo4p7EosYQjbt4833n0X9xNlCrNHYV6JVv77l0X4M0loy4ovTb3i0DmW\neztnd8NWzsmvcO7MX+ZtiChqryjF2LTJQpT/R4goXan8/HXwLdzAQ4PSQ07jjiJ/3Hj5VeibL/6v\npRxo4ouc29z66qvgO9qez4eoxx4DX+QGVhGq2ILlNkP6yRKWTmSNTz5xzLHrDJ+Ubzdrg0TJy5IA\nPG4ToNzGHu1Eyc05FMGnvXvZXrcOi+dkCVhqKu53+hLOT9qMepao5DI6OanxOc57Bhk5clq50jHP\nCMUzIqJtf+NYh7Q8RCIievNNkff+IyrAxcoNORKBiOLKcxzbqNSjxC+Mtt8fQa9AFUVRXKILqKIo\niku8qjEpiqIozaNXoIqiKC7RBVRRFMUluoAqiqK4xGsZU0YGq7x3MySnk2u5VCW/Iw6Hi4lhu0c5\ntoB2GsftoSdPWlT5TknhZO7atehr357thx5C38GDbBsqLuPfEAO+llqMdeFCjnXoUHDt/jzMsY2u\nM6gWW1raG3wZd/AErNmz7cTa1MSfv+/RCvD5XMMtkJ8SKud3+f3vHbt62XrwyTZbf397x3T0aI7V\nLEeZM4dtY24YrZ9V5tgFh6LwNV+6iTd27bL3+R8+zJ//IWw7lOU/sbV47G4R/aTzyrEA6MRy/r/B\nwRbP1aoqjlWWgxFR4xxeA2T5FRG2eqcErEFnZ55YQbGxdmLNz+c4Zb0XEbZvy8WJiA6P4QF35hrn\nS6IN2ddXFekVRVFsoguooigLwZLUAAAc8UlEQVSKS7yXMWVlsVMOgyOCjg6fa7AL4cUXWdLV7Jho\n3547kTyeK+3dakyYwLHW1qJPdEkcHocCzz0mC8WVb74BX/iJXY5tc6jYkiV8uznh0AR0itjTAvHW\nR96J7NiBux0/znZRkaVYL76Yj+lbb4ErPJVVhCpHZeB+ooMNZrIT0Z13sm31VrNDBx6AWIsi1fKO\n0bgLpdE1Yva6UF8iImoU6R0/j8derJ068XGVrT5E2JpkqINB8Lm56IMpf5Zui4koKorP1eXL0df3\ngv28AQPWie5Yzqm6P/wB90tYINIP69dbiXX1ao5z5L/ngW9rL+4wKy3F/dKf4rf3O41rofxORUbq\nUDlFURSr6AKqKIriEl1AFUVRXOJdjUmqxxtqK6fEsHqPMRgrajLnx4RQOBERPf30lb8wxJ9HYf8l\njm2qxkih8VUz0Td0DitNR2/GoXJH/2grOuSuu9g+NHEp+Hpu2ODYmYMx7VI5hnM0pqjQhMFCdZ3C\nyAqipMZUsVm2TCipr6qh5hB/DhERpdWIwV2ZPz2062cja5d+hcdt/qt83P7zH2O/e8TkREN96bg4\nx1H/vYUMHty8T9R55Zy+F1wBc7hccK8hrJ8964yV0ExkeZLfcWMg5Bu8PqyOwCGHN4kKsIR4nEqw\nP5BLrqJbHiIREY0cJT5zYz1K7MJx9++Pn+Sb1/C5catR4hZ5XEw9jMTJAf9Dr0AVRVFcoguooiiK\nS7yWMeXnc2lA8nPd0fnAA2ybg9rErV+HVTng+uYbLjHxeDq0SieK7DwhIgoL5Pe8YyROzX5d6Bmb\n+rljxrC9Zo29kptNmzjWtkYSJfELDqhcBkBE3a6+mjeMAWizQ7g8KyPDTqwyzoHP3AS+jN9widfs\nvYngk+Vgfb7fBa5LLmF782Z7x3TrVo7VnGF29CjbR46gTzRNyRl6RETU8XJR4mKxjCkhgWOdPh19\nied4kGDJxTisL7ZGdPX96lfg2+TD/3fgQIvlYcXFTqwnrolr9r+tWIHbT/yby/OKhi8Bn0zrZGdb\nijUsjBcy47tBk1lQvS4ERaqDarnDLmp4JPhkZ1Jz33+9AlUURXGJLqCKoigu0QVUURTFJd7LmATV\n2zF5FDqHB9nTFqypqJrBec9VKDZEK1ZgDtIWBTTasVfvKkDnTfyeN96IrntFpYjZOffcc7aiQwae\n5VzWtNIk8CVedMyxu4lBaUSEwQ4fDq6MzrLExE7RjWwXvWEd5jLHfs12Tpet4Et7hfOlH36Ir/nt\nvsNiC/NRLSGxHQ8VNCWXss9z6+Ddd+N+shzMOI0pxZTDskRRW5Ez7o9vun4D5zKH9DJKk4YuY3v+\nfHAN/MdisTWxpSEyog82+B0cyCi/IFc/i+vD7njOe4b8GnfL/rtUEjtAVpAnq9Gvm7GSzzOzgqxN\nG857lo3BFtC61J8ezqhXoIqiKC7RBVRRFMUlXm/hZVlPaBc/dIrSgKx2s8E1Q6jfhM1MAd/AleI2\nhIzXbAGNb7zh2CO7dEFnwM2OmTVnGLiiezY6tlE1RH3fF0o9fVE0uiXkN/Bt+7wYVFwq6sgdHf26\nYuWEv5zN3rMnvug6MQw93M4tvBTwDf4Ab9ODhWh1pKkotINn1n87Cefe06i5bJeVkS1M1SfJlOP8\n2eUFZoMvJZ5THyduMI7bd0Y9lCXSu/GxNMShoBxowAB/8PmNGsWvkYviz1Neut6xu0y0dwu/qZyP\nycBtM8FXv5tv25PW4e39bkp2bCmuTERU+gjftuPq0AK6dmX7iivAtbMLl/iZFU4yhSNVm4iIOosG\nuyDUDHfQK1BFURSX6AKqKIriEl1AFUVRXOJdkb6khJ2yH44IZb537kTfU0855tZ38PWlInRmpsWW\nMx8ffqMTJ8BV2dDJscOHYu6I2rRh+4IL0Cfl05980lqsRUXcymeIXNG1137u2OPGXQa+pV+O4A05\nnY2I6J//ZPvAASuxQitvPxwqB+9vnBtLDsY6tpkelW180dEWP/+cnOaHCgr19vwdqFSVXMOlK01T\nMQc2bpx8eXuxlpTwcY3tXIVOUUu1PiQNXP3v5BD8//Uv8BXVcKlOQoLF41pd7cQ697VQcMkhFcFr\nF4OPLryQbbO3dtEitsvK7MS6fj1//kbSdX9//lyjazGXD33fRmlY/iHWikpO1lZORVEUq+gCqiiK\n4hLvt/CKoihKs+gVqKIoikt0AVUURXGJLqCKoigu8a7G1L27kyDd/zqqrTQ0sN2xI+4mBepNpeqk\nY6KVbsoUe+UWVVWczDXUeOjYMbbNqWKy7fPpp8F1SJQG9bSoSL5kCZexmNVIsn028U58y7+t4j9x\n927cL7utKMGZN89OrIsX8xuePg2usgH8fubhjgvY79jFDTg27Lbbzjm2x3OBvc9/zRqO1Tghp23h\ngWBSEZ8Iz88jwzLQKWuwfH3txSrV0w3loJxabvNNG3oSfEWHuBxv1Sp8yZzUPbzRp4+9WJOSnFgP\n/vWv4OolygUP13YCn1wDRNc3EWHFnbWpBKKMqXHAEHBJoabEp3CyAv2RJ0fWx+N+Mu68PC1jUhRF\nsYr3K9Dx4x3TvFKS28ePo++bb7gY/N13sRg86WlDscMSialcIL11JgYkf5GWLQMXpe8TY3bj48HX\nU/5UWkTO3on91BDb2LHPMRu/wwqJkVfysRz5LI5grhvKBeHN6B78cqZOdcwqY45y8P18BXr99e+D\nzxPIootxf/oT+Hr3tifKApzjK9uCGhxBO2+SKFY3LpefuFh0dsxaCb4MYpGc2aiX0zJEoX9FYB9w\nHVvBdvV5vKqT4i7yqoqIiD7+mO0+fcgaYkZ4L1kATwSV9D2MS+JRo1iDNyYGd8vqu1Fs4dwn15iz\nzJtx3RGIuranRe38LaXg+sGV84+hV6CKoigu0QVUURTFJbqAKoqiuMR7J5J4AnfeeAJX+RHvZ2qJ\nyNky27ahb8YMtqdMsSh60Ls3B3TPPeAqjGj+iXFKL35ivP44PjEeEtI6TzZPCuGTTisx75Z9guce\nTRlaCT666y7HLPwTzpJJOs6isZSebl9M5KCRu5SPsx95BFyVtZz/Cl+GAh37R3Gu1qaYyJkzHKt/\nNxQMkQomFe1QTCZyvhDsMJRP8jZwDjIlxeK5evIkn6sHD6KvhlV8i7skg0s+sC8ckAM+euIJtr/6\nylqsOTl8XGMeNgS+hR1u5OtlvnbPljp80WuvZfvzz63Eekp8pwIvvRSdMmEsy1yIUNhECFYTEaot\nx8bqU3hFURSb6AKqKIriEu+38H36OM4qo6Qn7PbbHTt/DGrsyVKhmTPxJRPXTeCNJUvs3RadOePE\nmjAYZ8kUbeG5R5064xymk0frHXvTThy5LKua/P3t3cJViduNMFlxTER++7jMovEoakXWBfCtqRyB\nRETUvz/bYWGWYs3OduJcH4G38ENiqh07eTrqRObHcDphfZd08A1ZNpA3Nm1qnVv4to3oFMKehYPz\nwCVLXCIicLfIiCbesFlIL4r+U7aMANfnXAFI72N1GKSfzNTYCy+wba04nYiouNiJtekWnDvlGyLK\nrIy6qjseZ31SqRtKRDTydnFLHxRkJ1apB2vOpxb5hLnn8Dy+4w629+7F3VI6i3UtMVFv4RVFUWyi\nC6iiKIpLdAFVFEVxifdWTtFzGGC2NX7zjWOapUElK3h+js81XcHn+ZOhPGKJbe3bO/Ym07mK56l/\n8QXmnGIHcN5TCqQQYS43NpasARNijIMnqyqSZ2A5zmuvcVLM8z2KImTM4N9Ca22HwcGOOaT/GfRN\nnumY+TOno28Bz0gaMrYeffGGCoYlZNnM/vlGXZ2YyZM0PRJ9IglatADn1B86xMc0KYnsIRLWebOM\nGV0iEefzq3PguvZaPsfLy1HcxfPld2LLWjMvtJ36pqaCq/SLLxy7n9H3uHEL5w9N4ZM6EZ+tSPfH\ncDlatFgLiIgax3D7+I3bMQcqv36mKJLvgETHbmqiH0WvQBVFUVyiC6iiKIpLvJcxDRnSrG4h6GjK\nzgIiIjFyNX8lrtHJK4RSTlGRtXKLLaI0qJ/hOyzs2FdfRacYz+zz29vA5Xnrb7yRlGSvNCQ52Yl1\nSb98cE04LjQphw8H3+5z3CnV12cP+KJSWYGnrMxSGUtjoxNnXQOWfwXlckdRUQx2G0mlLinFSkTU\nsyfbkZH2ym127+Yypr61G9HXkRV/+p4uwh2llNjDD6Nvo3idhARrsZaVcaw9r8eX9RX6lDRpEu54\n6JBjJq9MBJe4m7ZaxgTlYTPxcy7oxefA6DmYijj64YeOnfYbXGOK1rZCGdNll3HJ3cufgytC6Ooe\n/RvGIm/bY3fOAx+JW38KDdUyJkVRFJvoAqooiuISXUAVRVFc4j0HOm0aO4U6ORHhMBnTJ0oxFpai\nOnb6mFbIfxBRnciBBsn+LCIoYzGHNI2eym2IB1DgiF5+me24OHt5JR+f751YPfs+QGduLtttscos\n+RS3SB49Ci5QxPL1tRPr4cOc/+oxdSD4dj/FxWL9+uHf4PmM1XCmzMc2T9k6OXu2vWNaV8exGuL5\nFDpZlK7dfz86v/+ebaOXr/KZZxw73OJMrIULOdb0GpzDtO255xz7uhr8bgYvznRsn2dQqenrr7kP\ntUMHe8c1M5NjzYpZD74OY3jSQ/06I7d8hGeojXhvIrhkjjwnx1Ks1dV8sMzxGTIRbyhukVBDqzuF\n15PysU9Wls5EUhRFsYouoIqiKC7xfguvKIqiNItegSqKorhEF1BFURSX6AKqKIriEl1AFUVRXOJd\nzu6qq/gJk1Fb2WfvEseWUmJERNm1XKO2MAZ7vWXv6ejRFkcPlJQ4sfrcjNM1X3yRiw+hDpWIMhew\noJZs7yciSgks5A2LvfCNjVxbJwZG/t/bnBIjJwyJsCVzWBrOLGerPniSNzp1shNrfb0TZ3UDjjuR\ndahxHy4G37R/c92fGadfuZCMi4qy9/lv3OjEmrl7ELiyxvJ00yVbwsEnJ1GsCUwDX/4tPPkyOdne\nuZqUxJ//yJHoG/lZNm8YszC27uVzNbEGv1cgMhAdbS3WsDCO1RxaOW+dkAY0RtMce+01x67cjg+q\n5TgSW7XAJ05wnMEnUJZw4Q7u008fdRJ8UCNu1o9KrTvthVcURbGL1zKm4mJe1eO2ZaJTKMMUDC8E\nl/lLJZFz4W12otDixfyHDBsGrvHPcDfMB0bjT0mDUJExJ7WFhLDt798qajxR67LQN5SPc1TfC3HH\n0yyim7cCf/uEqBQlJlo6ruKqvugsKkrLCw5ztHns+WLeMC7rC/eySHRSksXPPyWFP38xRI6IsPvM\naOHKHsDCv1OuQRWn1Q18JTtypMVYKys51rvuQp+Yad7nFA5rvOEGtm+9FXeT4t/FxfZild1o1177\nz2b/3/btN8J2QowQ0jZUpcqm8tVzVJSlWOfNc+IsG4CqUfIuaE2uIfAtus92t08Alzx1g4O1E0lR\nFMUquoAqiqK4RBdQRVEUl3h9Ci9zB1s/XI7Offscc/TU0eA6M7TAsc10lCleb41f/9oxkyahApAc\nFrdrF0r1rF7FT+y6dsU0R8zVV/NGRQXZIiqCB7QVx2NueaZ48F5kVD4U7eDfOymWTYS55UQUK3fN\n+lrOe4r5ckRE5P/X1x079p57wFddE+fYoXtRwae8HAflWUMm3mtqwFU2jitGogbj+0+ZL57YrtgO\nvpG3yEFt9qbKVbfjSoDQ999HZ1cewrjnPszl0ZVXOmafBahwZPzJ1ujRhc/VceMwz7ls2T+a3/Ht\nt9kuLwdX1HDx9N7W90p8yaNm4me1Rn5ZZuwA35JurHAmZmgSEVHwe2t4YwQOo/wfegWqKIriEl1A\nFUVRXOJdjUkUJ5t1E4ePc2G1oftLkQsmOHb1jCXgC13Ll8yUnm6vNEQUfZsB7f7Q37FPnMDdhrQR\npSsbsYyFNm9m+9NPW2Wo3JllWBD9+ONs33037iYLkGUBOBHORquqslQaUlXV/Mkha5eMUqXxS7k0\nbOnXmN6ZEsLpnezsVhp+Nsa43RadHvkdcS54cjcezlfUgOLfUIrToYO9z7+ujj//djgZ3f8SUbp2\n3XXgmz2UY82IwRKnqm6ctwkLax2h6gED0CfnvYcP6g6+U+K2PdBI8UCDSJ8+VmJNSeE48xadAV/B\nOv7+C41sIiI68hA3Lsw9h+eGzOA1V3KnV6CKoigu0QVUURTFJbqAKoqiuMRrGZMUZZh8E/p6HOJH\n/CWd8RF//DrOe1bvjAIfPfHEL43x5yHEC0p6Y4lHbACXqvSZhfGsiuC/sWAW5nHMIWPWEPlD/3E4\nHGzpNdc4dsrKJ8G3axfbR+7G8qfQXGwJtUJMDNvDh4OrcelSx/a7EctblooJd3UNBeDrttZifAL/\neJG/LC1F5+WXO+aGWzHP1bYt7zd6B4qJULeZbHdAMZUWIRRk1rXFz3+0mLp39p/YOpkRwfnkon54\nXBOOifbZsDiyRdAMfp7Rqxc+z5DCQJUbj4AvvJbztT8Y5Cd3tETeUFEud7QL+EYf4mTt6D9EgI+O\nc/nT18YwwqRneosNY+Lkf9ErUEVRFJfoAqooiuISr2VMkZFcGlBRijqaVFvL9uDB6JPDv02RzYAA\ntgsK7JWGREbyH2LEkxnApQpbtuBue05xV8T+VdgVEXoDhxdicS44padzrP/Abo6tc/lWwdR8rB/K\nt3sdSrGMJSyVy1islTEVFztxFhPeFsadF3PAP/8cfEGP3OvYdbVN4OsUwr/ZJ0/aK7cJDeVzNTcX\nfb6D+G0GmO0mooONZs4EV9oqVuexNr+ciBp8fJxYA8xOJIlQPCMiSE0s7JUHrvTzQkd0yhRrsXbv\nzsfVrEZ66qmPHNvz8nvga3z4Ycf2244dXqBdaku79sILnTjrzuK9eNA77zh2Vim26WWuFSk9Q38V\nBsNXVWkZk6Ioik10AVUURXGJLqCKoigu8VrG9OCDYkNKGhFR0nTOHfZ9EHOHTzzE+dLDNdiq1iOi\n8ZfG+LNo/Phjx14bkw2+s6LrcM8MVAeiLf0dM3rzs+gz82WWOP/SS45d8h7moEPEWJaMHVjiMruh\nutnY4uOtheeQd5TznimdMecKEviyvoqI6gaI9s1jOBTp5A6Zn+rR0hAd7ryT7YG52MpZ9W8+xuOf\nw/0ee4ztyPuxVm/MXPy7bBEg8q4NN98MvsoPONaobQvAtySeSwcXzMfXTN9iPIewhEzRBh3HWUOz\nZEng8EvB5yfnCRlrB7QBW5IOazr9rWMHXX4ZOsXaMHiw8X4BYx0zYQOWuBX13EY/hV6BKoqiuEQX\nUEVRFJd4V2NSFEVRmkWvQBVFUVyiC6iiKIpLdAFVFEVxiS6giqIoLvFaB0oZGfyEqV8/9AlJLugZ\nJaLVb7OE/qhRKMl13XUsfVZWZq+/mKqrnVizcnEqp2zH/93vcLeLQjiE/JfxgZpURcvLsxhrfj6/\n0TffgCv9I5biM0elZHddzBsvvwy+uh1coxcUZCnWrCwnzsbpKJ/nN3SgY1cs2AS+yABRr3rAkAGT\nfdHZ2daO6cKF3LOd3tUYzSJHYxiyfPuXsexa9Mwh4KtcwDXD4eGt8/k3jcFaX9/ak45dsK0T+GT5\n5KRJ+JKyLLiuzl6sTU3U7FNm325iuqaotSQiIjlRVo6MJcLZIPX1dmKdN4/jNHvapaZAYCD61rK+\n4oijs8Ell7XQUB3poSiKYhWvZUzFxfzrI0WUiIiiR4lfn1nYbUJCUDfh0EJw/f3vRx3b44mw9ksZ\nHc2xbjMaCOTANfPvCB8rVIa6dQPf1uE5jp2YaO9XPSeHYzWvMpctY1s2cxDhLK4JEdgZlHOMOyzS\n0izFevHFrHDzyVfgCmonBneFhICvYi8PY4vsaKh4jRvH9po11o5pfT0f06lT0Zczs9r874wU9z12\nDH3vvsv2xIn2rkAbG51Y4/r7gesf/zjs2K++ip1ayeUZju3zHN4ReP4krp6ysuzFWlHBimwUCS45\nVC6zHIcHXvhXFnw2ZzUmLBMC7LbOgSFDeCEz7jJo6FDHXL0ZhbG//pptqR9ORLR8OdtLl+oVqKIo\nilV0AVUURXGJLqCKoigu8foUPq50Hm8YCYJIYgWmii0p4Dv+yiuOXfTZdPD5djaGOlli82a2g7at\nAV/QypW8ccstuKP4u9bHo4rTXk7l2hKNISKitJWcd824pRh8Ukz/OUM5aMKASt6oxaeJZpGEDaY8\nwHnP7Lb14Bv/OOeSPotH39vXsOKSZ7zxBFbmQC1y/jzbOWQMh5suFKBSU9EnzlW67z70XWao+thC\nqBOtWoVqZaHHROK7m5E/bseP2j1z8dlCcT8eKmhvpBxRfQjnPSPL94BvzBgxyO/IveD7bBHba41B\ngglSycsSNW+/7dghxmd8pi2fq/v24X7yvJGFRUQ/jPvH0CtQRVEUl+gCqiiK4hLvakyiOL2uHRan\ny4oPOSOKiKjxV/zEv/4zfP1QEiUloaHWyi1KSriMxbydleVAQXOmgW92IKcpMtrOAx/c7gUF2SsN\nWbyYD4px2xgZw7cbZsmVvKUI35YDviEb+LZ1/Xo7ZUxxcXxMTW1pMWqdPvsMfbKKxJw3KEuxsrIs\nFqeLMpbGtSia/de/sm1WKsnt3/8efUL3mjZvthdrbCwfVzOjkXyWP9eyfpiKiErlW+ZqY2Z86Pff\n84avr73jmpfnxLqwAVN16cfFd8k8WeV3x5wDL8ocKSHBTqyvv87fKdk4QYSTJPfuRZ84QcNmYFPD\nm2+y3bevljEpiqJYRRdQRVEUl+gCqiiK4hKvZUyVZznvGb4S84MHYzj/4TcdhzH5idbO4oPgotCe\n56k1iM3l/Ex2aR74amrYHjUK/46MU0W80XMsvqgchhWE5SYt4vRpx6w7j61lc+awfdddnxs+LquZ\nPBnzY+uHy5IXO7Ee5a7bH8wF2z9GlHwtmAy+4p38u2zqOsjPwirTuVzO79B+cP3rX9GObXTrQnzB\n7+SDb+AwOQDPKI1qAStWsD1qFPpyA/h9+hvHKkqIcJxfiyVFFeKzisSOyxZRN5S/Vx23oC8vgL9L\ntzyIKcJIUR+U1TYLfDExCY49kCwhEvGbLsaSqoHtdjj2+jFY4ihz+2aqVooQNYdegSqKorhEF1BF\nURSXeC9j6t2bnXPngquqG7fmmHJ/+bOqHLtwbxj4duxge+FCi2Use/ZwrFLIkwjqakqOYTnWzTfz\nvc+zz2KXVMb1QkZm0CBrsZ44wWUswTfi8ZF1PkvaYWpEVookDz8DvuxlrME6ZYqd4xoaynGaDTxS\n8WrbLny7QmGPMVs/5B8RGWntmI4YwbHKW2QirGJJ+vZ18GV9wrd7ZpNawrp03li40FqsGRkca3w8\n+hLHsAZo9cGT4AsdymVMZ3bgLbxU9fLzs/e92rqVYzVvcaNv4LfZiS7qIuzORl1h4R92OXZSkp1Y\nKyo4zsjaEnSeFakYKSFFBKkfsxRrfSl/FkOGaBmToiiKVXQBVRRFcYkuoIqiKC7xPhPpqquadQVc\nySmB/q9iHjWyP+f1KnZiHiepi5CHp2iyRVUI54fCAsvBt/s/nPc0W/k2buS8p0yVEBHR+++zPWhQ\nS0N0CP5AqMlPxhIgKQkzYYbRPykTZuuwpqRbtyRL0TEy7zlxIvqyunCpWF4qfv79ZUmLnEdDRI33\n3+/Yft7y778QeRjPG5VySSvErKMvvgBf5jvcv1l8EEvKYJSBReRIoLjaQnSuW+eYodOxtZBycx1z\ni1FSlNQPWqRbGqJDYoRQANtpZDoXseRSn4fwBPELEEr7jz0GvoF3ifPD0jkQGcKKYIWHYsEnW81X\nhiSAL6uWc8kn2oeDz2xf/jH0ClRRFMUluoAqiqK4xHsZk6IoitIsegWqKIriEl1AFUVRXKILqKIo\nikt0AVUURXGJLqCKoigu0QVUURTFJf8PJAD6KHNCJ2MAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  31\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9cl+X1/49IRGakZIJExMjxUTJm\nZGpERGTkr5gRiUNHjjnCHzEzp478OOeMqfEhY5bEjIwRqWNEpGZGZGSkZmjk1BgjR0bijIiPmZGD\n7z/bfc7rSt5rN5ff7+P7eJznX+fudOPhft/vi/s69zmv06e7u5sURVGU/xyv/9cBKIqi/P+KLqCK\noigu0QVUURTFJbqAKoqiuEQXUEVRFJd4e/QWF/Mr+o8/Rt/f/uaYlZMLwTVgANuxO7LBl9M/x7Gz\ns6nPdw3031Je7sRa6Z0ErsTdixw76+wa8OVP3unYbaMSwOc/oIsPvLysxVpZSU6smzahr3T6Nsdu\nuWES+JYvZ7twEF5XysxkOyTETqx5eU6cnfMWgMsnOZEPBg3C8zZsYFsGTUR08cVsP/KItWva1sbX\n1H9KLDpTUhwzbe9ccBXnnnTsRbmDwTdsGNvp6fbu1fJyjnXrVvTNm8d2VGALOuUXy7yuK1ey7eNj\n73uVmurEun1GaY//28SKDPwP5845Zt28InANHcq2n5+l69rV5cSZOAWfC0eNYvvgQTxN3qqTJ6Ov\ndve///7rE6iiKIpL+niqA01N5b+Upcnl4KsewE958ZnheOKJE47ZeaoDXD4rl/HBihX2/lI++ij/\nIsOHgys6l2M1/8pcey3bN9yAvvAC8dSVl2cv1tpaJ9bZf4gG14QJbCduxCfpzSn8GaR8iX/V4VGm\nvNxKrA0N/PmHH68G395L4x174EA8L3yM+A/r1oGv4+7pjm3t6YOI6PBhJ9aO4Ahw+f3hST7461/B\n1zw/z7FDMifiz2xsZLuhwVqstbU970Dk8cml+eDzW5rl2B37G/DE06fZjoqyd13nzOHv1axZ6JO7\nHvlYSURUUOCYq9f7gUveLxkZdu6B7Gy+pjnzT4Ivr4R3FgsGFYPPZ1aaY8sdBxFRezvbzc3nj1Of\nQBVFUVyiC6iiKIpLdAFVFEVxice38D/4Adsd4zAfd7xCHJSV4YkLFzqmTCMREd37xxWOfWQF2eP6\n6x2za3IiuBYKO6kdc4dn7k537H6zUi0G1DOdozjv+eFS9K1/SOS2jKTMZ5+xXeSbDr6Fu/i4rfch\nEhHRiy+yHRcXD74xq8X9cOoUnvjSS2wHBoJLvgWNNV6W94o33nBMv9CP0HfTTWz/6EfgOnWM7RDj\nlXjHaX6+wCxe74gu49x6+/g88B0T8dSMzAJfx+JHHbv6+CPgi79XJBY//7z3Qf6TCR895divVCxD\n59//7pgtFfvA5Xs5pwwXf/EF+Jbl2rya//z3fNnuE9AJvl/+Uhz81xXg6zzN/+/2Kh/wzZjx7/9d\nfQJVFEVxiS6giqIoLvFYxiSL0yk4GH27djnmzpGLwJWwMJIPzAL81la2bRb8ZmVxrMePg6t+OZf/\nmNUW/RbO4QOzIFz8jlRTYy3WqCguuaiLwwJ1GjvWMfdeMxVccvdpFgT7ZYr0Q2mplVhnz+Y4v/99\n9I0bx7a5g5e79oiZo9GZnMz2okX2Pv+mJi74PhoGrone3Cxx5q678Lwv+bbpV4YlLlRVxXZxsbVY\ni4r4uspSGSKiBUdFQfr48eArPs1pk7QpWB5It93G9oED9q5rRwdfIJlfIKLKY/w9N79XEXSYD9au\nBd+Ztdx406+fpVI2UcbY+QtMb8h7ddo0PG3u3E/FkS/4HnyQ0yL5+VrGpCiKYhVdQBVFUVyiC6ii\nKIpLPIuJHDnCtql6UFLimAk3vgiu2oJ6x44eZhTVVIj6p6mY4+sN1VO47U2KBxARRY4SraZSrYGI\n6jO5TCMyEFvAaMwYa/FJoDxixhLwPVXGbWe7K8BFcXFsQ86TiDoKWOjBVpHI+js5d9x6C5axffIJ\n22bqWKag29dieYuseMMCnt7ReinnPU1hi4RjnHPbad7Hz4o2z6VGTdmDD1qLT5I+gq9J8VEjRywT\nyMZ7h7QS0co5xWjzfPttewFKfvc7tn/8Y3AFBLAdsd/IH8u6ItHWSUTUr0K0hSfhfeWaIUMc08zJ\n15Q084FxswYG8nlG1/G38rrnQ59AFUVRXKILqKIoiks8lzEJPUioBSCi7ce5hGHipjTwScmjjvG4\nTfdbKLZXhYXWyi1qarg0xKhiotRAoSRkPqeLbVJeKG6LFozg8hdKSLBXGhIf78TaVoYqRzLDIbfs\nRND4QR9+iL60HfbLmLq6+Jp6HaxD58iRjll3EP8ORy0RuqrmPuiWW9iePt3aNQXlKO8mdMpaIaP+\nqyOZO7h8sYqF6GIOz6e7297nf8MN/L0y0gQhyzkekSUjIqLYEv7udBWgBq+Q3yQfH3sqVxkZfF0L\np+G9uvnv3J0mVcSIiPr3Z9vrqiHgq3+VS4ciIy3FWljIeqBbMYUjYwkNxdOMZQ0QonKUmqplTIqi\nKFbRBVRRFMUluoAqiqK4xHMOtK2NnVOmoE/U4tSOwJxD9A5WbSkMRsklKWrt5WUvV1Nayrkas4wh\ny5fzRZ0PPAA+H1E2EjXkU+qJujp7sSYlcazlNz6KTqGmn1SCJR6LF7O9dy+etns321u22Im1sJDj\nNDt55Xie6EajhEUE2iUTSUTkJXKnVlsOpSL9ddeBa50YVpDdbVzv229n26x/k8f19fZizc52Alp0\nLgdcq1axbeZkZfr+hz9EX8DeSj5ITLwgs8Y6J+P96FMilM0Maf22Tfz+wH85qkrRa6+xfeSInVgj\nI504n8qsB5fMJV9+OZ729ddsV5dhyWVhmb9j96Scr0+giqIoLtEFVFEUxSWet/CKoihKj+gTqKIo\nikt0AVUURXGJLqCKoigu0QVUURTFJR7l7Hx8uA6wb1/0PfMM26kjD6Nz/ny2DSmrw2dZdiwiwl5t\nZVsbx2r8k5SZybbZJx+5UYzUkEV4RDjCIDzcWqxyVMb62VizRvff75iHnz8ArojdXM9a2h9rb5cv\nZ7uhwc51veQSjvOr94zPWF7ks2fBVZfJcUatRZ2E7GCuGc3Jsff5n+zTx4l18K23gq/PW2sc+9Zb\nx4KvpkD8Xsa8h6YK/mzCwuzFSjffzG9uL7sMXFJ/wZQRmLOLdSXSfLeAr9j3wmhMNDXxPRDm3YzO\nP/yBbbMwWdaNG9Nl+9zCMpHd3X3txJqU5MRZM78cXBdfzPaYS4zv2549bD/7LLhWTHjHsZct0zpQ\nRVEUq3h8ApWdD4YOMaUG1zh29Cwc8F0bzG0qOZtwwBd0gkTg8Kfe4L+SnySzR4wAX+VuVrhJ7I+K\nMvKpMycX50JnT/OsN+2W9RdxZ0ZaLipAbXyPnzojNuIM+5xT/JSxZBa4KLVMdongX2C3fFW2zbGb\n+08CX4h8WjOeMKJu/J5jF/8aZ7TnHJIDCNeQLQY/9xwfGDfrj3/MT51S0YqIKKciwrGzZTsXEYX9\nQYgtz53b+yD/xZ13sm0MavMWt5ycaUdEdDaGnzqL5+Hs8y5vfuq3+VS0Y4e0Q8BXeRd/z/c+Ugm+\nMd8XXT2NjeC75x5jO2uDmBjHjB2H32N6kQXfm4bjfbzjHKvKjXsOd3XLlkvR8lI6H/oEqiiK4hJd\nQBVFUVyiC6iiKIpLPCb5Mkby8Kvxjcbwq/0seWSkHClLvCHMH7UTnd43/4chfjcaMnlEmak6nXhC\nvj3EV5vNJzhfYp5nvl2+EBTPw6FrHaf5OvsZOblhkzmXa+bHEu64w3psXRM4X3QMQ6GKg9GOnXIt\n+gL+9CfHTivAvBK9+661+CRNMfy2Pyx5F/gKRC6/XxXm6kBWKhcvanUcK4nFk0VEvi7tGKqVHRIh\nGKllSJdmLcQ8X763qCbJszeub85B/vzmjEJJrurhrLoW/z4q5NN9Kx1z9Vx8e1++Qaoe+ZMVTp/+\nTv/bpZfi8Zw4rsJo9o1Ap6Ekdj70CVRRFMUluoAqiqK4xHOdjijqHnT0KPquv94xf/MaCq3CgKmF\nxj7E3HteAHz++DwcZ+2d7thywBQRUU4obz2mzMDtZs5aUeJiPN33hr3TuXQp9Br0PSpGk+cfOgS+\ns2IA1reyC1deaSk6Rv7zY7H+HNIdAX/G0rDCRt7wTl6OW7ugrcZWzxJhr4iSIzlEjnDg2nbvRPBN\nHMCF1a1zcTsd/7YsB7M0v5yI6C9/ccziU2vBlZO83bHHj8fTokZ2Ofbho8azz4tX2ItPUDODP6/Y\nMhRGjn9HlCTedx+eKNSgF2/EBEjxEL5f0ox5lG5ZQZxOiBGC7kRE8Z/yenDTTXhecxUvgSFrF4Bv\nwUiOs6ekiD6BKoqiuEQXUEVRFJfoAqooiuISzzlQkefsB4lNglxmwKs4VKxuq0jW3ZuC532P2/wo\nPZ1sAblNoz1Olnh0rTSyGSO5xqWfISaRPWKXOMLcWW94+mm2zdSyLAk7swtLnFLL+DoXncPkUXwJ\nC01UTyUrbN3KtswjEhFFVYg8k6HQknFuIx98MwZ8dMkldoIzkRfVUOGQFS7mwMG9V3Ar35if4Wfc\nVcElT1afNGbPZvuGG8CVPV+UC+43JvkNGuSYwwqMXLIhSmILWeVlUnglt2IHY7cmTTwmhsxVVIAv\nbZOM3Shzc8myrXzdOubj96Z6P78DaS5DH63dyLYceEhEi43BfedDn0AVRVFcoguooiiKSzxv4XNz\nHXPFRlRi2cW7Capeb3QXyQ4aMeeciOjMOlYY6vcdg/wuvPUW26HjUOVpzEyOwcvck4j6nNRMP3At\nXcpbOotVTFQUJ1Ie9xrlJ7/+tWNWVuF2Y/ch3ravuRznm6dPlltjLMdwiyxjyu6PqlEtmVzyE+SL\n87SbT3N3yQsv4M+cmcx2QO9DdDi8icuRIuIGgy9oIavqpBlpmparxbZ9Fkpcya2/H94avUPUoG3+\nOBpcKcFi227mTYTPTP1EmPV5loBuqFGjwJcxg8uqQAOYiCJ38f1Sv/AM/lC5PmTY2cLnz+DvSpYv\nKlX5+nLXVus12FF56XpOMZ38Kw7YDLvo33dM6ROooiiKS3QBVRRFcYkuoIqiKC7p093d3bO3poad\nJSXou0b0IP7oR+CqPMQq9KbCUeRKUWOzZYu9OTMyVimlT4TJrCVL0Cf+3+yhOGdGttLFxtqbiSNn\nTZkiSnffzfacx74Hvro/sbr7/v14XsbfRU70kUfsxNrWxtfUKA2D5JjhK9rDGWNzzNSuXWwHBVmc\nMzRwIMcq2giJiJre/tSx4+LwtOZRokWzrAx8rX/n54uAAIuxNjVxrN7GawgPA7yat3KeN6QdZ/s0\nD+ByrJAQe7FmZ/O9aqqupW7i/PGJl18GX+CHH/KBOdxJ1pINHmwl1vp6jtP8bqQnd/QYS5sYUeD/\n5z/jifIlwNSpOhNJURTFJrqAKoqiuMTzFl5RFEXpEX0CVRRFcYkuoIqiKC7RBVRRFMUluoAqiqK4\nxHMvfHU1v2Eya7nmzWN7yhT0iZEKZzKxL7vf0To+iIq6MHWAr78Orqf2RDn2nCkt4Ks7EeTYa3G6\nAo0TqnxpafZq61pauGYt6A7UCoBJgEY9a8fdLMu1Zw+eFhjIdmSkpVjXrOFrahb0ymI7Y3xk+CqW\nKWx4fBv4mq/nSZ826xUpPNyJdee6BnAlTBYTLPv2xfOeeMIxu2ZhX3ZXXw7Pu7vbWqwLFvDnn2Ko\nPY75ksdIJK7FURhCzY6K3jHum2eeYTs62lqsmzdzrAMHoi/hLzxGJeeLueCTvforV4KLQm4T9c0f\nfWQl1vx8jjNr3GHwlR7kuuTUXUbvvdQQePFFcFU/w3XX8fHnv1f1CVRRFMUlHp9Am0L5L2DgIPT1\nE38OtweiMPIGIcRbfsgQTZadF4UWB4yJWeRme88H0z7ngz3YiRQluj1mLMHhaAmjLsD8asK/zoee\nOIL/5sE1jr194HTwjRXiPOaGwBTusUHhgEWOPQ6FeChMXLe6kfgZQydIJg74C5klVKNCLE5b//nP\nHTPBtwZ9sjPJ6O7p9GWZJZ+++JDhZT46WSIvhofVlX9iDKsbGeqYcgdEZHzmk1GNi376U7aP4D3V\nG1KeFp+Rh52mryEGJUWvzM6gkC+/tBQdIxu4iPDL0SgazDbfgWuO/P0aXv0IfPEkdzLh5/139QlU\nURTFJbqAKoqiuEQXUEVRFJd4zIGGvSPyV5s3o1O8sp74AuZjJt4b6thdM54Fn9cvfvEfhvgdefhh\nxzzzyefgWk9CEXupkcxduNAxZ45HV8shuiDEB3NupWuokVv5+1WOKV/IExH5j+X/19+UOSooYHvn\nzl7HSESUUcXKWV2zUKlKJraiQsvRN0xcyFdeQd9HIs/0zju9DdGhaQK/BTbzweFmBYHA53LOyZb/\nCduak47nm/+7HcRAxo3HMQfaPoWVzLKOLwJfoS/nx+lgFfgybuW8p8U3C1jeIStviKhTVDQseBCn\n9TUn87U7eBB/ZPP+k46Ncy7c41PB92f0WpyqKH+FZf2NoZJLlzpm+B4cjtk1gydA9PSkqU+giqIo\nLtEFVFEUxSUe1Ziqq7k41ZzFFrVhDh8YKrUL9vAjdO7jRmnIRRfxQWenvUJqWfS9Ywf6ZKF3Iw6w\nXjaWt7srlneBD0Sk09LsxZqa6sRanlwKrqRG3qZFV+AWTmQbYGY7Ee7gfXzsFKh39OnjxOlniGbL\nAuRFA3DTKLIpFPAmbv3LvfneSEqyWEgvxZ9FeQ0RUeulvC0O+G+jkFreG1J4mwgn4h05Yi/W0aM5\n1hkzwFUZmuXYZqlaxADRBDJpEvjyf3LAsbOyLF7XqVM5VrkXJqKutbxN9zprDI5bvtwxo3ev6clF\nCQl2Yk1K4rWqfG0z+Nr6c6LAnL0nSwojT2EZI5SDzZ2rhfSKoig20QVUURTFJbqAKoqiuMRjGVN8\niWjRO3sWfHt/zrm7Bx/E82TViNf114Nv+yoehjXxOwb5Xdh8DecLU7yxxAMSHx98AK4VwzjntGgJ\nlq2MG8dlDAkWYvwX50RuLclsj9u92zFzczEHKmdxFWXuw/P2iM8nNrbXMRIR+YkhW4s2RoBPlgrl\nGhVVXof4Mz48AktKkgIvTHss3HTY10cBMu8tk8VEVH9isGOb+bEwo+3TFk/N5M9uzoll4BsvQj+F\nlUHUFcjCN4eeOwC+YUbJmzVE3rMmGb8fI0XK2Nu7H/jk0aZN+CND+tu/B2RuvTMQ8+4DxCrnNXY0\n+CJFz2nLNBQ+Chpl9C+fB30CVRRFcYkuoIqiKC7xrAcqXuOfNQQor87lLfz8+XgaqK+Mw+6Fib6y\nVMCeGk/KF6KU5oc/ROfXXzumnBFORBR2jONZE4g6gqtf5m1rgsU9vPfbb/PBLbegU5QLyRILIqM6\npyQXfIeX87YFN9vuOXHddY597iEsd5PbS69znXiiCHToWOOHzhNqWDbVuL75xjFzBmDZzE/Xsx1w\nCEtV9h/jexDmhxMRTZ5sLz6BnK++4tQK8C1L5lnrQUa6geZzriTy2DFwnZpfaS0+QKRDRoWia+NG\ntucYv0fnY4859o6h+HnExPC2PcJWFkeovPnsrwVXcWO0Y6cZ7X21Y3nbftSofkwfJ75wfn50PvQJ\nVFEUxSW6gCqKorhEF1BFURSXeM6BitKltk8wBxZ0FXc2pd5zD/hSZc/hiGngqznIuQQ7xTb/5Fe/\ncsycBzHPmZ3JZRNh7U14nkjgduyuB9dll1mMTyL7Yo0yL5lzGoQdiZRewCUYTZuwjClCKmdFoJK9\nDcyKjvFCcCk90wd8RcFcRubz1lt44syZliP7J+KammOPAp4W+TnDmf4zTkg2iJImIqJwmeRLTCRb\nHBIqX8bYK1p+inOZ57Bzkobt4DKi3/wGfSmHRIlRfBZdCDZswOOs/VzmR+++Cz7ZFJ0Rg+8W6s7a\nytILxPSA+Flh4KqW+eFdu8DXX5RipYdifnz7Ic6PT+xBNkqfQBVFUVyiC6iiKIpLPKoxKYqiKD2j\nT6CKoigu0QVUURTFJbqAKoqiuEQXUEVRFJd4rANNTGSZfLMOcNkprjXLIpS5Kitju6UM+1ITV3Ff\namWlxdED+flOrNuHYh3cjTeybUrvbQkU/+80rFnN2MixFhbai7W+nq9r5C5j8qNogK/PfApckatS\n+cCYaHlI9EaP6O62E+vNN/MbRjmKhYgoV/TiG7V1ed4swyfHuxARasYVFVm7plOn8jXdMhmnK567\n/37H9n7/fTxRyLW1nMM60KAD2/hg0iR792plJV9Xs7gyJYVto0a4vDHSsZM2GddVyk1WVtqLdc4c\njlXO4iDCcSSzZoGrehDH98c/4mnrt4miyuZmO7HW1jpxNgdHgyvk5Sf54JJLwLczmCU7EwbV9fzz\no6J0pIeiKIpNPJYxLVrEf9XXXPMkOuWMaHNm/OOPs20+uQQHs11aau0vZXg4x7pkCfrSt/Ls7Qlf\n4QzzV24WXSpSJoeINn/D56WkWHxaTkvji24Ozf7LX9h+9VVw5e3n3i1jvheljhBdVJGRVmI9c4av\nqTGnDRqKdq40xJ1Fq00RpYMrfYoQ0/X3t3ZNOzs5Vp+j2FHWGsBPbgFf48Ax+RS1fUkNuGQj0pYt\n9j7/0lKO9eOP0bf4JzwzXXbXEBEdzuTdSth1GI6vbJvr6LB3rxYVObEmVuBnKcMb8QP8Jxs/5Fvc\nHIC4IFl8BiEhVmLt6uJrOnIk+urH845oexwqQ008JXYrxuTM7D3cfZaTc/7PX59AFUVRXKILqKIo\nikt0AVUURXGJ51bOLVvYaSQWSveHO3bqUCMHJt8smq/vdwjZ5/Jye7maiRM5VnOKlcAvGJWlZb40\ne4Sh6i3e3tLnn1uLtbWV8zVPGqllmYZZ8Pvh4Ev8Pk8IyEVBegr/LxGerbfwbW18TU3ZIJkElepb\nRNScy+r4IbmGMtDQoWxnZdn7/Bct4lhhJILxbw4bBq76hx927EijRGPnZM45JiRYzIFfcgnHevXV\n6BPxpfbH+3GVGN4XMgDV8zsvv9yxfWx9/kR0+DDfq/IyEhH5LOTPtut3vwOfV2urY68owOqGZQf5\n3YKtNaCmhuOM/QC/VHU3z3XsqJmR4IP3HsZ9TGvXsl1crDlQRVEUm+gCqiiK4hKPW3hZxmLOqA4Z\nIbbCV10FvtL/5q1m6mljcJgchpWTY22rkZrKsZYOwwFXxaE8e9uo+aais6I43ZgnDqVa9fX2tnAt\nLT3WeBT7Zji2rI0mIsoYKgRf5faCCIuap061Xhpysi/+yMAJE/jAKP+g00KlVg6QJ6LOiu2O7eNj\ncVt88iRf06VLwVU/j+/ByINYZA9b+h04VWznWL5vbG7hT/Tp48RqjOOjkJtu4oPdu8HXdpqFq/0n\n3Qy+w89wY0VEhL1Y5dbY3MIHVYlrada5ycJ6YzpidXuUY8fHW4r1ySf58//Zz8BVuJGvW8Y4Q1C9\npIRtX19wpR7k8qfSUi1jUhRFsYouoIqiKC7RBVRRFMUlHsVE2i/lbf+nezBXWrWWyyjSh2IL3OTb\nRLrgiSfwh4ohbjYpTRYtmg8/C760B1nAIm2D8e+PbXTMU7fdBi6/r/l3xrFpvSNvU5Bjz5yZAb7T\nogJr7FjjxK0iJ2aU45wSIhSDphpCEy6ZNIntP31p5MpXcX6wbT7mnP3PtvCBFA8hIp920ao4GMtb\nesWePWxXVIArUkzAi92QBr6a/hP5QKrgEFFCo2wJNcpfekHgnXc6dvtrr6FT5OGajuNdF3ZIlDUN\nHAi+iGFyjJu956LYB0Qp3UMPga8ykO/dAaF43m/vZfuXv4wCn/yo4uPJDqKVdXQMXjfoiDVK3Ba0\n831stoCWUiocnQ99AlUURXGJLqCKoigu8dyJNHw4O2X5EREtevArx37ssb+B7803r3FsYwcHFQ2p\nqfbKLRoauNzCbESZMoVtU9Lw+HG2S2fuRKesI0pMtFdyM3CgE2uXUf5R9Spf8oRfYakKzZ7tmLVD\ncSs69BYOb7CtTpR9+zgYWe5BhC1cck9GRPQV3xtNN+OMeim5um+fxTKmjAwn1sJRWDqXsZRTBS0H\nT4IvaC2XqjRlolJPWLAoMvLxsRZrRwffq34jjIHjos4ucT7ON5eVa2ELk8AHZUTV1faua2KiE+vs\nq7Az6sor2TYr2R5+mFN8H36I3X+yWigkxM49kJfH19RMfcnv/8kN+DskbWTFpfIRy8BXM45TU7Gx\nWsakKIpiFV1AFUVRXKILqKIoiks8lzGJhOUAQ3X+mKj4eOaZa8AXKcqYjAYvSn36aXGUQbYIz+Wf\nFV5QAL7YOP47IQXxiYhKZ4n2yJWrwNf5xhuO7eMpV/wfsuzBzx07Lg59MTJ/M2QIOoXSf/TthpK9\nORXAAsPvH+3Yr78+GnxBG0TpkqnUJFRtjE5O2rfhwpQGlY/nvOcPrjKcv/qVYwbt3oI+0aN84gS6\nOq+92LGHWfz8/ZYv4AOjHK3mOOc9K+Py8MRpPde41S3lMj4sGuolQgJqfS4q0tdNKXLsG2/8h3Hi\nW47V2DgJPFIsrdjorHXL73/PtpmSl0JRE9Yngu+vfxUHN14MPvm+pLqazos+gSqKorhEF1BFURSX\neC5jUhRFUXpEn0AVRVFcoguooiiKS3QBVRRFcYnHMibZckj33IO+O+5wzLrh2K4XRXV8YCiug1J1\nUJC1lrOWFm7lMgSwyVv8lrHtxuA4EV/lZGwBlGUtGRn22g5BPf/IDeh87z22ZZ8pEfTLNbdje5xU\n2k9LsxSrbOU1S6reYQV02rYNfeKapp7AUpzSdqF+tH27vZbD55/nWL/8En1yAt+hQ+B6agMr95gt\ngLI70ppyOhF1CkV6nx//GJ1COihhFrZ5yjbY9JgGPO/dd9mePt1arGlpfK8WLzkMPp+REY7d2X4G\nT2xklbPig1iulnaOy58oPd1OrB0dTpytX+F3I+DrZsfuDMRrWlV1fpuIKG+eUK8PC9NWTkVRFJvo\nAqooiuISz1v4u+9mW269ieipg9GOPWcKPha3HeRHZv8Rx/Bnym1pUBDZQm6/mtfjlrL4M+6EiN2E\nXUodr7zi2ImmVNN117Gd8Tk7yF/BAAAchklEQVTZonQVX58VGw+Ab5EY3tb5BZaYjRrFdsOuFvDt\n2MHXMg2Fmtwj0jZdv/0tuLykSq0cIkdEdOONjln6XAK4Wjay4pW9T5+IxBzyLjHrnYjoxCdi3pwx\nN1CmPoxZdN8S2LVF1TaOZ2IuKgofPs3fpZ33P48nykF+G1A0evM1rCqVQvYo3sFKVrMvRSWrzl21\nbHtHg89H5D/SDi0C39RjrHq1BZubXFN/jLftkS8/is7XX+e4AgPBNb6EhZK/Jai8i7vCUlEYy0Gf\nQBVFUVyiC6iiKIpLdAFVFEVxiedWzgUL2CnLVoiInnuObTN3OF2UNV1/Pfrk/1tUdGFKgwo6wNdy\nmvMjQWebwPctOSSJLHnx87MWa3k5x5r0yHB0ypIgo66idgQrTo29BcM59D5/VJGRdkpuYmM5zpp2\nQzlJ5EDTK1DhRmLeGrvFXDybEwloyBC+AKasksgdPjV5O7jmnMvnA0NWvWMKJ5P9/CzGWlnpxLr6\nCF67xec4f7d56CPgS7mES/BKT+N5qUP38cHo0fZi7ezk62oOwHvzTcfsWoVq/l7tbXwg3jMQEWXt\n5fUhP9/Sdd3GieX6q1H9KXI+55lbX0BZJZEe/db0jORktjs7VZFeURTFKrqAKoqiuMRzGZPc3orZ\n2kQE253aeTgzOXqu6K75n/8BX8MS7kII/24xfic2bGC7yxc7EYLKROeDMfv7zFEuKeo3BUtuJqTw\nzzF2Ib0iNJTt+s1HwBdZwCUfeYG4LRohqoW8PvsMfOvEjLdCbKhyjcwgdJytB59fJs/MXluA20nZ\nwSPn8hERpcY0iyNjoFpvEP9QzZuYlpLzEOeMqAMfiZQCTZ4MLr+jsC3uZYDMmXF8vRZ//CQ6xbVL\nudvo7pkvOrwWohAzhV6gmiuZg7nlFvSJui9j5iSFlQiRbTlFjjxnzVzz5z87ZsAo3MLLtepRo8Ip\nfz6n9LpCsVZp3rx//8/qE6iiKIpLdAFVFEVxiS6giqIoLvGcA+3bl21Zf0IEg7oGPGOUOD0p8jrG\nFLfwP4gkxCNYptEbZA7UzMfkeQt5JkNyR+brPvjNTvDd/Kql4AxkWukqYwDa+ps4t3UchYNoyhS2\nu664AnyF778vjuwNa/sXMAiNiNrWcd67AtPK8JGLmW1ERBQ6nQcQ2hzUl/9rbrXN8t0HvuAYkb98\nwUhmf/IJ26Ycj0yCncQ2xt7QL1koUskPlYhqb+fvRLR3J554221syxobIqpcyTnqxJ6ryv5j9v4w\nx7HHPI19ly03cK4x7EQt+EqHLnPs1P6ogNZu3BM2yGjkdweFP5mITtE+PsJ4lVN/mvOekRuLwBcX\n9+/7TPUJVFEUxSW6gCqKorjE8xZe7IVbMleAK0iUBpgCxhHB/GNbL8ZSlS/u4y2KzTKmrBmi82Hj\nRvC1P/yYYw/44gvw7RG7NnOedEyMreiQl1+WtT0o/iu3DXn9l4GPSvi6tnyC21+Y0x5pZwsvdYjH\nz0Bh5KgpsY496Y814BMVJd+qfvMxVYstkRXMc9FpCc6p35HM3SdzpMIYESpJCRFgIqK2o7xt9+99\niIyo48k7nQGuBSVz+KDAULl6i2et0xNPgGvMGFvBIa+KNNaYe+8Fn1SySh2EscoMw/YqzClciFtA\npsXqTmC3mVRZythg1Ph5iy+5kU5JXCVUpBKxpPBf6BOooiiKS3QBVRRFcYkuoIqiKC7xqMZUXc1q\nPPEFU9G5RPQODsO2sr0f9HPsMfuxVW3BX+c6dl6ePYWbwkKO1ZzFtiJOKLAMHQq+/ArO0RqdfHTp\npWwHBNiLdcUKjnXZQmzXW5HL184UepeK6X4b88G37FSW/PlWYu0Sw8+8br8dfEUz+Jqa7Zpzjmfz\ngdE6W7OBh6HFxlpUOPre9/hGNloH6QZuLS6Mw7bjjFBRumbK8cjY8/KsxQrX9VWjVk4q/ZsS6eIG\n3UnYdizLxWyqXCUm8r1qXlYpejVjBvoyiHONdaMwzxs192Y+eOcdO7GeOcOf/44d6BPlkit+hK3T\n8j1H/B1GKEJtimJjVY1JURTFJrqAKoqiuMSzoLKiKIrSI/oEqiiK4hJdQBVFUVyiC6iiKIpLPLZy\nlpZyCQMqiRMdPs3lP6b60cQqodxj9ENWeic5dmKivXKL2lqO9dpr0RdwZRf/f3vwb0a4GM42aPZs\nPFHWbVgsY8nO5lhzJqOKzZmR0Y5tKmI/8ADbYwY2gK9oNzfGpqfbua6trRyn+RnL2XcmUnE/PdMH\nnYGBbDc32ytjmjiRk/lGWR3cEJdcAq74Em6dfeMNVFzqfl3IYcXHX5iSK+Oeq43h9sHo06gORiNG\n8P93LAhc0R89zwfTp1+YoXLmTVBQwHZJCfqmTWPbUGSD8qyEBDuxpqZynJNQkb51HA+xk2sBEWH7\n7iFD/kxK5/v7axmToiiKTTw+gabu4eJsilvS4/83cUcW/gdZWS2fOIioTPzRsqlb+PHHbEdvQB2/\nM+tY5y/a15iJ8957jtl5443gyn2U/6hlkz3godzQWV2yiZ9AzUL6Me9zcXL5ICxOTp8mC/L7kQ0C\nnmaBkoBZszCWTLZPGqKmg7/+2rFXHEdNy2W7sQDcGrIIXjypERGKRLzwArjkg9LQoYPxPFmQHR9P\ntqh/6SPHjhzUAr5GIW4THIfXKuQAP/ZHzzPmE4nRzTBWvLdUVDhmYTs20yQvZYGZAbkoNiP7ARqN\nB7viGfg7W0E81S77EH//FbeK3fM5XI9AENjspFm1iu1lhrDPP9EnUEVRFJfoAqooiuISXUAVRVFc\n4rkTqajIcTbEYF4xPLDDsSt34Rz2TZvYLp2G81BaRnHiMyjI3lv4tjZ+Y+w/wHjTJt4QRhekgat2\npRAaMUQIikewiGpamkXhi+pqvuhSCZYIxKDzt+Kc6pkz2fbbZAjDylxqcbGdWMUb2NSZ+Db98cfZ\nDthgDNv+yU/YfvZZ9Mnk2FdfWbumeXn8+ZtzmHKqxEykUaPAVzjyKcfOGFsPvqb+LEwdFvZ/R0wG\n1IYN4Zu9i1k0+uqr8bSgqmI+SEuzFmtkJMcqqyuIiCpPiOsqcqVE5HFIWfNyficREmLnuu7cyXGO\nG4c+mQKvTHkefC23c77U1CCRv298/Pnj1CdQRVEUl+gCqiiK4hKPW/jYWH4srllejU75fGsWyorS\ngMOnsDTkuuv+4djd3X3tbYuzs51YsykHXJ/zxFtZtURERPv6c3nK5gfwd0x5RpSR7NxpL9baWr7o\nshiZiOjcObZNAUZx3LbyKXD5zxQ1YZWVVmJNT+fPv+jADegcPpxto94q/jSmbSTVx8UkrIYGa9d0\n6lSOdctQo+jsFR5lXDj7ALgyxosSl3U4SwmGfVm6pkREVF/vxLr9OM6vmtgtOhRkiQ0R9ZnBe9Hb\nb78UfHfdxfbixfbSDfK6/u536JMzkVKG4Fysuv48M2vtWjyveMlhPoiIsBJrczPH+dvfok9U1UEz\nChHqFW8eNBd8L73EdmmpbuEVRVGsoguooiiKS3QBVRRFcYnHVk6oojCGOZdWcLvgwYN43poZPCxl\n/kLMgT70UN//MMTvRsJ+znvuXIdCGzUnOO+2PgbLGGjGG455kSHe8a0SI0ukruN2zdKx+9EpWg27\n3n4HXF6N/Hv5i7nsRERpoZyDKiY7FK3lUjWaYdTNLFzomIX7o8BV/XdR1nTrreBrCubfAYu0eseW\n/qLMbigK2NCddzqmLAUjIqJ1PPeoaBjO/k4/PYcuCCJnPDEzBH2i9bl+wz5wdb/K4iItI7DNM2he\nkjgqJ1tI3Y+A91HcJDRUxPD+UfBFlXG52royQxRlGt87tB1nuLtFli4dxVDI6xXOK3fdhEIjtK3V\nMVNuPwyuIUMi/u2/q0+giqIoLtEFVFEUxSUey5ji47k0oDpuBfgWnWZ1kqoqcNGAAWyb51WO5PNs\n6oHKMoaQChz5K/chXbfdBi6vv/2ND8z9nax/OnDAXhlLYiJfdKPbBBRgzJYaKR1klj/JdMOWLXZi\nHT6c43z/fXC1nOLOJEPyFbI9hogTVDzZ/Pxpzhwn1kX9scRLjtw1NVZlfOYU4chRovuqs9NarLJr\nJuEu/LGLfsGXfA0tAl/aCU4xmBVXfidE2io83FqsQUEcqyn5KbfK5ufss0p8701ZsZdfZvvIESux\nbt7McYqMDRER+W8VSS1zBreseZJjjIlo76ecXhkzRsuYFEVRrKILqKIoikt0AVUURXGJxzImmRI8\nk4yKzO3z2a7bhGVD9Je/OGbTcDwvsV0qwmP5S28IOdfk2K0pqJAf8BmXJ3g99BCeKKWjxo9Hn5yX\nYpNBg9g2ysMWLeW828qVOPfGR+RHa9uxxCLalMqxQO0zR/jnN2KJR9B+Lr9auxYVrhL3iFbK5ai4\nD2rxiZir7A3hVfyzGnKxlXRZGbe5SpEgIqLwAjG/K24++Oq/+caxseGyd3iLb13XP/AdxDRRErj6\nNSyruu4Kts3xPddey6V6Ab2OkJG51viN+DlXBXNu8QB2yNJFk/l7H+WL905+MP9exiwL18gWbVOp\nKlrWOElpJiJadB9PB1g+CFy0VwhMjRlz/n9Xn0AVRVFcoguooiiKSzwLKiuKoig9ok+giqIoLtEF\nVFEUxSW6gCqKorhEF1BFURSXeKwDpdGj+Q2TqIkjIhwvsQ1l137/e7Y/+wxPk0MZfXws9kI3NTmx\n9rm2P7jefJMl9WL/dxv46LLL2DZqMn36c01mZ6e9WOWoFDkWgYjIq4qlvxZVoWSZLKFMi2sGX9BY\n7tttabETK4x0mVmETtlgLnv0iah4CsupTZ6Mp/kvyeCDwkJr1xTGjzSi1F92DEv9GR8xJVZxJWL9\nLNRQiAxu4wN/f3v36pYtTqxnUlLA1W/2bD7YuhXPu1SM8TAavsvjOPakJHv3aloaX9dBRp3kfFE2\nK+uwiQgb5+UIVyJKv4c1JoqKLMWal8drVX/8/qfu4nvO7OeX40ZMWYof/pClDru7k7UXXlEUxSYe\ny5jkrHVTNDm+irtNWubhELegATzrurKqH/iGDWM7PNzeX8qiIo71j39E3xNPsL3f0C+W8USdxsFY\noHBUXW0tVh+fnp9AMzPZ3m008ci/kCdn4eC0Pr9Nduzu7ig7sa5Z48Q54Q1UBpIPSokHUXGrYRp3\noQh9YCIi8qsSYr9JSRdEjelbA/eqtjh23dCp4JMjy80nkMg9hXyQkWEv1qws/tIZLS7ll/Cc8qR1\n8eCjj7hrpvCXH4ErY6UQZm5uthZrQwPfq+GHUKg57xiLOIvmQyIiWr2abb/LjXCuv57t+norsebk\ncJzZ3tjB1TaL713ZeEhEtHEj28aDK73xBndQdXeff/idPoEqiqK4RBdQRVEUl+gCqiiK4hKPOdDD\nhzmvYAo5Ry1nhRtasgR8q9/ioWmLg3GI25l7OMfTr5/Ft/CxsfyLGK/acko4P5QdV4vnSRlyQ678\n3LPPOrZ3d7e9WLu6+O32bvwbFhvIylZBceHgk/ma48fxR4oZb9TWZue6Jiby5y//bSIi//lCmUcm\nEomgXCChEfOR8hJbVaTPyODP37xZxevjMyvzwNXvrHjTXlYGPjjeufOCVIy0+OJoPfniPWMQ5hzr\nQjnnGDW0A3wNJ/wc2+a7BVq2jK9rgKHz9P3vs21U6Rz+Hg9vkxMqiIhO8MxJioqyE2tSEt+r5mAJ\n+f5m2VhjwJ2QxupzB37fXnop2LF7ulf1CVRRFMUluoAqiqK4xGMh/QcfsJ3S+Cj4ymeyaK23MfsM\nBE2n3NPjz+xJpNQNWSO5BOk46uLSqFHiwNiLFsdwqcrQWVgsHm1uTW0hBlm1X/8I/ptLeBth1B/D\nbC5zm5IeLLcmWIDvFpkWkLPuiIjW3HWXY2/2ng6+CRPY7ot14pQ4UjYAGDPRe4Os2H/gAfTdfbdj\n9vPtAlent79j+xg1Ll1V1Y5t9UlDTGALkpXcRDRqFEs37/0mCXwkd8lG2ixcpq06cHvfG0qHcYla\n6udPonPPHrZzc8EVIffNmfiFDJKfVVQG2UCWoJnNG6+8wnZCLn43dq7c59g/+1kw+BJHyOYATLX8\nC30CVRRFcYkuoIqiKC7RBVRRFMUlnhXpRQlDSya26wXdMdyxm7YdAV/wtfzG3+ftt/FnymRaZaW1\ncou8PC5jMFOX+Ws575U+C/9myFbDuDg8L2GoyIGEhVmLtaWFY62oQJ+cf2XmOaUQS/wjN6PzSZGf\nirLTyinFRJKT0ZeVy/nL1XNR2GTx3+Y4dmkMljG99Rbb69fbK7epr+dYzYFr8nMNyl0AvuKRXNaU\ndhB9iY3sq6y0F6tskX7tNfSl/JnbYJ8KxO/cnPksbtN0tBN8clBdSIi9WCsrOdbE/TggUtak1Rwd\nDK7YGJFrlsl7Ilq0kkuu1qyxFGtHBy9kZsL+llvYNibOFR/knPO5c3iaTCtXV2sZk6IoilV0AVUU\nRXGJ5y18YqLj7CjBWdt+fxBbRqOEAaRYZKkDEdEpUfNUXHxBujtmP4YlB1I5KPI0diIVN3LXVFo7\n6kGWDmKtyNRUi90dSUl80WWtEBHl7OJ4THWYLBLxme0dcuB5TY2dWBsaOE6jNuTMQe6Y6ne0Ds+r\nqmLb3PvLOHNyLsi22NzCy61Z/Mg2dAqB0MrcBnDJLdyWLfY+/+JijjXtKKpqgeZnaCj6hgxhe/x4\n9MkWpoQEe/fqDTfwFv5qHP4uv8o//zmeljJfxDp8OPg6d3B5mC1N4KYmvqby9iMiyojjzzV1OXYb\nlU5nfeDstyeBT3b7FRfrFl5RFMUquoAqiqK4RBdQRVEUl3ieiSRUdWTqiohowVftfCBa5YiIaMcO\nttetA1f2SlaoRx373lF9jPOera3ok+m78eOjwScV4Fe/lgW+xd1SSQrbFXtDWn+hslOAvkkiDZPy\nfSO3eE4M9GlvB1fLJm5lDeptgP+kI5DzRet/ivnBxQc5l1xzDq9prPcux272xnx08Er+1G3+9fY/\nxtcq9piRBBW5xKNX3AauYeJmad8BLtoSKlX4UeW8N6Sd4J+1PQa/BRMPiX/HyB1Cec4po3/6QnEz\nl8tVji1Gn/xiLV2KvpdecszVb4wG15KLeVBad/cVvY+RiMJe4XcyGW++Cb6g5TyRANq6iah1FH/h\nltyKPkOc7bzoE6iiKIpLdAFVFEVxiecyJkVRFKVH9AlUURTFJbqAKoqiuEQXUEVRFJfoAqooiuIS\nj3Wgsr/Y/8RhdC5f7pidJVvA5VMiRmMEo0w+FYjCx/Jyaz27q1dzrK+/jr5p09hO32OMEBD1dG0b\ncAqilAjz87PXC93ayrG+9x76YmLEv3mqCXwT5nJN5Y9+hOc1NrK9YoWlWLdt4zeMr76KPjmywZiC\nmT+DxySYUgil56bywZYt9nq2V6zgWM1meHGv0nxj3ovQM4w/jnWO8n+1OkG0rc2JtfqgP7hkqefO\nTLwf6eGHHbN1z0fgCuhzkg8GD7YX6759fF3lzUlEp8Qkzub38GX0yBs5BK/PPgNf82n+na1J79XV\nOQHs/SYKXGM+FJ+rHAlKRNWjuNY3flA9/kxZax0bq73wiqIoNvH4BOq/VazchhpPxwZ+6lxniDGd\nOpXu2HnJxoArU2LIEg89xPaVV6JPPp2Zqqmdm/ivvD+hSC08ZY3GboreEPAlP1keP46dOkeENvXw\n4egbOJDttMmoKhQ+lv+qr0AdXtd03MpdGocGolJN9AnxJGmocWUVsMJQ1vwp+ENXGaq1lojewWK/\ntcFTwbf65QjHXiynjxFBu8m03eiS894SE3sfo4No6zs3chG4YFbcsLHg6xRK4QH3xeLPlGpMFhl+\nP9/37xuz38/8jZ86o9aiGDV98gnbxlN/2UheVxYYp7lG7Gy/9/vfo09uSeV2lIhCheLS7MciwXff\nfWzH9/DP6hOooiiKS3QBVRRFcYkuoIqiKC7xrMYkVc9lQoiIFp7gRFvhUEOp5sarHHP1elQxWjz8\nwqjIPP442xs3ok++hG39eRH4Ao6xylADoVp11X7O/8yxlwKFN4EFBZjnlGra5nC80hIe1DU4EN/e\nmgL1NpD/fvTYLnQKJXeaMQN9Is9oKvFcncw559TeBiioXSjeWA9bDr7FU/hz7TyEqlLypWzGeByO\nlxF6VBwl9DZEh+0jOO85MRTjgZvVyNef/YJzjj5nT4Jv8ys8qC0lpfcx/ou9e9n2Sb4TfIOv4RfT\n5X/Ct/BJ64TS/gV67yGpyyx0bO95heAb3Mj3RsMxH/DJVzsNl94AvoaHUIH/fOgTqKIoikt0AVUU\nRXGJZzUmOVRMDiwnwtogY+4zvfAC24bwb9GQRxw7Pd1ecXJDAxenhy/EmpPq+TwQL35dEvjqlvLj\nvbeR0IgsESUma9ZYizU8nGMVmtVERFS+UZR9GQGFj2Qxal9fPK/+oNhie3nZibWoiD9/Y8BZYSMX\ndmQ8a8yol0MFd6BKcc14FhCOjbVYnC6K/qc+hyVXW0Zwuqk6Bmebx+dO5AMjD1I8vtSx09Isxpqd\nzdfV6DToquKBa2YqSvYHyFn3RESJG8Q9X1lpLdakJL5XN7yIP9b/TrGlLysDX/0xTimY6aWQozv5\nwNIAPNlIs/hto+bstdccc/ufvgLXrl1sr2nEtYE+Es0KBw5oIb2iKIpNdAFVFEVxiS6giqIoLvGY\nAy0q4rxC+lbMD8Se4txhzcoa8LWN4DYz/3lGscobb7D96af28kqPPsq/iCFeINv1Tlx7Lbj6CduP\nDP7xD7Zt5RUJ8zWyPdNk5kw8lmmm1EE70SlrjjIyrMRaV8dxRr3yKDq//JLt665Dn7xu//u/6JM5\n8UcesXZNq6s5VjPnFjWf78fsGLxXcwblOXbbTOwr9D93YQQ6Nm/mWC+6CH1J3pyvp759wSdba/0y\nje+VzFHn5FiLtaWFYw26Dm/Ws+Kz9P3FL8DXsZRLG81Bbnfcwfb69XZyy3l5HOeC00YvsywHGzMG\nXEE/42vaYCxHNUJLZ+LE88epT6CKoigu0QVUURTFJR638FK30lQ4Oi5UTIxKJSj/qZuGXUpCfpGC\nguyVhixbxrGa5R/NC/P5AKSZCDuszNogWSuyc6e1WCsrOVZzmy7LKszqMBm6WcYiz7NVcnO0Tx8n\nzq4/430ybBjbXr/F7X2zmBEeMns2/lA5+H7SJHspnCefdALcPGguuFJa+fNvnpIFPtlEVVOCnUhQ\nRhYUZC/WtDS+mMnJ6CrjEpxiX0O7duVKtt99F32bN7NdXGwt1tGj+V7d52soQIkavOKxT4GrooLt\n8iX7wFd0iLvTbJUySu3idevQN2sW20GnsfOr9XLuUrvsMjzv5ZfZTknRLbyiKIpVdAFVFEVxiS6g\niqIoLvHcypmfzyUMqzB31LKrZxUjIbhNa9ai+gllZsqfby1X09TEORCZZyUi6vfi8z2fuHChYxb+\n+lNw/eAHbI8ZY7GVr7nZifWS/woBl+yO278fT5PlIEbqjNJixPyksDArsXaIHKjfPfeA7/BKLmOL\n8DYUheQcLHkzEBEtXsz2V19dkFydIWIESj0NcZhXFBVutHOhURomf4+ICHufv4+PE2u7ofI+QCTw\n8v+BudysCqGLbs52kq3W/fpdmBzoZCwPqonjtlg56oyIqHQtl4BtfmMw+L7+mm1b+fraWo7TGN1E\nXS9vc+zwh7DNt+F+kb8fPhxP3C1GFOTlaQ5UURTFJrqAKoqiuMTzFl5RFEXpEX0CVRRFcYkuoIqi\nKC7RBVRRFMUluoAqiqK4RBdQRVEUl+gCqiiK4pL/A0Y4ir4KzAq4AAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "Convolution layer:  3  Chhanel No:  32\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADnCAYAAABIUA6gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX9UVeeV97fUEGOJMYRESoglxBql\nBA01Yoghllpi0BBDqBBkGEstReNQS6xSpAzDIhStQynjr1LC61CDP4YyDsUfoYZaSogaYqi1xFBi\nGWMIJpRYQwxVi+8fMzl7fx/lNj33cb3rXWt//tpnbe5lc+65D+fZZ+/vHnXlyhVSFEVR/n58/l8H\noCiK8v8ruoAqiqK4RBdQRVEUl+gCqiiK4hJdQBVFUVwy2pOzpYWcR/QhIeirqmJ7cHDk9yjbMIzH\n5bxm5+TQqE8R46ciMZFjrf/GXvA13TDfseO2JuILn3rKMQveXAyuohuf44O1a63FevYsxzrh7HF0\n1tU5ZsmYInDlnUznA/kBEFFOrq9jl5XZOa/79nGc8QFH0TlmDNtTpoDrjmCOpbAQX7ZkCdtjx9r7\n/OnBB51YE25/BVwNM8R5DA8H35E7+Xp48UV8y1mz2I6Lsxfr+fN8Xv1uwbf1eecdPli1Cl+YlOSY\nFxfgdexbXMAHRUXWYk1I4Fgbyk+hs7GR7Q8/HPE9jj++Fo4jggf4wN/fTqxtbVxO1N6OvhUraETf\naF4CC/ZEgqvoTAYfVFdfM069A1UURXGJxzvQGL9jfPAL/K/+zDPPOPaEt9rwheJfd1ExrtEFWe+J\nozs+ZZh/mxkzxMFPfgK+uIVn+SA/H3zN58R/nTeNN33sMTvBGfzrv7K9ftrvwHd+Fd8t5XW04AtT\nCtk2bu2Sk0ssRcfE1/F/4Nq51eBL/WATH7z9NviysviOf88efM/lk5r4IC7O+yD/l/rv8vW59k70\nBT3Jd2e9S/LAFyUunCU7JoKvYHA1H8SttxDl/yA3DzkPP4xOcUdEfX3guiB2S2M/+gh8y97n62aL\n9yE6BAaKA+O7E3my1rGPbWjGF4o7/YhDu9F3SPxd2dnehkhERHmN0Y5dkou7jN4+XoOC3n8ffLsG\n+VotSunEN80/9zd/r96BKoqiuEQXUEVRFJfoAqooiuISjznQokbODw4N4ROqkn8V+SEjV0MnTjjm\nrFmZXoT36cnrE7kUI89BwcFsd3eD69U/8t9VFIJ5Pio/xHZNjZcRMvLpLnVg4rV7KtuRfn74wq98\nhe3XXgPX3nK2o6K8DPATRKCpjanoCwhwzKYvPAOuontfcOzIRqxsuF4kNoonpqWl4Out4898cwfm\nitsL2b7rLnzPuA7OezaRPXLOiZzsTsxzbxSf4+xVmFccI1KQsZfPg2/LqOXiaLPXMX7CyZNsR5yr\nBd/xNfw5FxwyKljaRc74nJFLlKUYlpCpY3M9Cnp0Gh/8+7+DLzn/fj54/nnwndpQ79ihI/xevQNV\nFEVxiS6giqIoLhnlUc6upoadhw+jb+NGtvv7wVXfyuVJst6aiCh+7kU+8PW1V0hdWcmxGuUWVFzs\nmOs+wJTCn//MdknhRfBlZHFBeHW1xaLv4WGOVRRHExHR0JBjHi/dB66IEN62NR0eB764OvF3VVba\niTU+3omzJgVjSZ/VxQcdHeCrPLfIsTMD6sEHdU01NfbOaW+vE+vx/iBwRUzhz3VzlS/4ZHYnKwvf\nUmSiyN/f3ue/aBEXp5uNBrJsyH+FkTaZzyU3NHUquFoGORUVE2Mv1uFhjtVnxwvovPtutiEvZZQO\nvY6NLfT002yfP28l1lOnOM7Qfmz6OPv5mY7929/i6+L+8XM0olN2CIWGaiG9oiiKTXQBVRRFcYku\noIqiKC7xWMbUNonFK6LnzgXf8RO89m7Zgi2ZW84KoQMzCdotciWW2riIiOjQIcc83/0euNasYXvr\n1mPgu/LfXI7T2Y2tfCtX2gtPUrGRz122IW5Bv/ylY5oCLvJvjDPaJyvCK/k9vQ3wE0SbI7T0ERHt\n3Mm2UW7lJ342tQ5FL2q34nVki85znPeM6DfaCstZQGLW3NXgEulxuuUWfJn/DtGu+gyWanmDTBea\nFYBh/VzW1LYCy4bkR36z8ToPWh5e4bMqx7FzqAx8waJD+tmHsLX0ykecMrzw5fngG3vVhe09ocGc\n5z7y/kzwHdrG9po/YysvbdjgmOv+D65jTz/Nx7gyMHoHqiiK4hJdQBVFUVzisYwpLo5LA5o2GLqV\ncmsudQGJ4PF/V0oBuJYuZbul5fqUhuy+jNvGgSoupenpwddF9ogym9mz0Sm7lqKjrcW6bh3HKis6\niIgmHuKOp+bgdPDFfoVDyPg6fm7Vxb18EBRkJdb0dI7T1HzdIiR/JvxXJTpFWVNiH3bFyJ2/r6/F\n0rCuLtaDPTEZXOPHsx0bYFzHTzzhmKd//UdwbdvGdkHBdSpjM/fwX/oS20eOoE9+eYy0SU4IX8e2\n9GCJiGj5cifWzhX4WYZd5nM5EBwBvsWiMcks1Yp6QGgE+/jYiTUujs/pt7+Nvr/8he05c9B38KBj\ndoYvAlfYH0X51fz5WsakKIpiE11AFUVRXKILqKIoiks8t3Ju2uQ44/4LyziacrlUpKwjFnyyMidu\nkjFHRTJCe5QbOjs5XxdWlYNOKdUiVISIiOjSJbbfegtcXbmszjR5ssW80sCAE2tlnT+4pgnhGDNf\nm/xVMUvGkHpP2MNqRA0NdmKtqeFzKqo9iAhP21e/ir6KLKHsPR9LWEJHcZ7x1Cl757S2lmNNHWO0\nj545w7bRckjbtztmxmAFuOSUg+XL7cWakcGxGtWBlNrKqko1szDnmB4oNKG+9S18oazHWrzYWqyn\nT3OsE9uN83rjjY7Zez9+zmlp1/wxIiK6/Xa2a2rsnNeiIo5T/m4iolA/LmtsOIylSgsWsO0zJwZ8\nnVu5pCws7Npx6h2ooiiKS3QBVRRFcYnnLbyiKIoyInoHqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVx\niUc5O+gvz0KJsFFfudOxr7yJJVL+s7gXef/+kd8/KspibWVbGz8NMyTi9rXy+Iv583Eq55UXRZ2q\nObZEFulZ7IWn6mqO1SxaE5J1ncFxI75F2AqsvYUe34ICO7GeOsVxGs3wo6bd49hX/nIDvu6nP2X7\nBvT55/LokYEBi5//+vXcCz8JJesS513gg9ZW8A0++qhjx9yPD1RljWBR0XUak9GO4ydkwW1o+25w\nibbtq3w0aRLbkZHXRbdhzReMOtA33mDbGGk6sIB1HKQWARGRD9nvhc/M5Dgrh1BDArQYjam89Mor\njrnv+XfBJVX3tA5UURTFMp7LmJqaHGebH94NRQeKOzdz7rNQijl7CyrjyHHm8fH2/quHhvJ/oB07\n0PeR0HqN/RgHXKXv4g4KKXZDRNTOOryUk2Mv1rw8jtXUmy7IF/+dDUXn3lzulAl66G7w0ZNPsl1W\nZiXWtjaO0xxRP20aD7j7/vdxwJ28HMxLo2aG6PbJzrZ2TmfO5FjNjYScMZibi75xJ/kOsKEPhXjl\n5uD8eYt3yxUVTqwt01H+WjRGUWUazowvaeVOmfJycIGok4+PvVjLyvi8muPcZYOXqZEs/w6z+Us2\nBkZEWIpVDMCs98M70EQ/0cFlBiMulnWv4xr38MNsR0frHaiiKIpVdAFVFEVxiS6giqIoLvH4FF4+\neQ2chK6SnaHsMwaOZcw97dg//rHxuj5WDaL4arLFqlVsR20ynsKJJ5SdSaiQLx/KyZwnEeZ4bFIS\nwMO58voN5aisLLaNfA2c51278HXmcDoLHDjAdpHfevDdfDM/6ZYq80REXXNZUSgvGBWFjkRxzi/K\nQoyf8Oqrf3Vsn47fgq/kXBUfZGFS9nQpD25bMANclJJiLz4gKckxY7bjee0IFxUExuPrvBWcd87r\ny0dfPueWS0psBPk/5GSJCgbjCXbxNlahLxvMBN9yebAAY536KI9okw/yveHUbP7Od2xD3/g5nNuM\n3YDf/5pJRY79ta/h60L7ZYUE5sc/Qe9AFUVRXKILqKIoiks8buF3XeLhbMm5OHBpcBIX8mYENOAL\nZ69wzJIVK8DVtUSIFH/6OP8myxdw2qB2fA34UpN4ZnTYdkwbbN/OKQW8ZSeqOHzt23avufdexyyZ\n8AK4jt/HA9oihjCegc9wJcV7v8fys7DtYrBbJm6n3HLypDzC/MbWrWynhrSB7/JDPHFuxs9xCx/1\nYpE4wO2UN9x882ccu6gxEnwB4RzD8kHcMst5iJcv43tWDqaKI5zR7hUyNyKFkIkou32hY8dm4aA2\nWYK1pA7Fn3sPdYkje9+s6p1jHTstDeOBFNeQMRxP5nXq6sD1xo9lLmrkZpG/h+Bgtr/4RfTFdvN3\no2h0EfgK5ophjMZaVRDOjQNFIywFegeqKIriEl1AFUVRXKILqKIoiks8t3LGxLAzH0sRpAiD0Y1I\no7/3PcfOI6ypKGkXOY+mJnvtcWVlTqxnF2Np0Jtvsi1bzIiIKqdt4gOzNEj8jbR2rb1Y9+51Yj0S\ngMO4og4+xwcPPICvk4IepkKDHN728cdWYr14kdv4fH/4HPgSX1vr2KONTLpsgfz4Y/TddBPbCQkW\n2yPj4/lanYH1SE2zOe8VtzEBXydK3M786EfgCpZ9xxYFOo4c4fMa9V0cZCavuTt+vBZccrCf0Jwh\nIqLqMaJwaPPm63Kt0ksvoU/0du47g/nR+MBjjh2zEnPSsn25qcnONSDbo825kTk/nerY9c9h3VRi\ngGiXNftRf/c7tufP11ZORVEUm+gCqiiK4hKPW/jhUaNYt9DYTjaXcolN7AksqZC39iUbUalHNtr4\n+9vbwgUF8S28UY1AhYVsX7qEaky3385b36oqcNETT3CdxpUrwfa2RUI5hoaGwFU9mkuQMuacAh8t\nXsz21Knguh4z7Fta+JyaGQN5jlsWYGkQLeRSHHO4vVT1Gknhxg2dnRxrWLdRVjd9OtvG3rcpkDtY\n4pZOBB/Ebkm3kohoYIBjNWRWaWK+6KITHUtEhN1mRs1V/QkuXUpMtJgaycnha9WUKxPpj0VpvuDa\nPUb8HaJsj4io7cucmrB2DTQ0OHGeCsc0TWghx1I9B0scM3q4lK4zBUucwnLF+zQ06BZeURTFJrqA\nKoqiuEQXUEVRFJd4LmN64QWeM/LRYnBldoiyiflYipP3Mh//53/iW77xuFCbWb/eWq7mwgXOK/X3\no08qaRspOTq1k3O5Za3Yr7VWVJF8/LHFvNKFC3zSZVKYCAOUdStE2MtnvK5hDLfa2ioPkir/Uu2K\niGh5uCj/MFSjOrs5H2Yqdcl05OnT9s5pRgbHWr2qE52iz2/dFszJy7Kq7KyL4CvbyH+HzYkEx45x\nrKZif+wg5287J2EuLyyY1ZjMUi2Y32WzjKm314k1Z0MQuMrSuFQJemKJIEneO+QPLlkRWV1t57wm\nJvI5NTpHoas0NWUYnbIf1XhhTQCXQ6anqyK9oiiKVXQBVRRFcYnnLbyiKIoyInoHqiiK4hJdQBVF\nUVyiC6iiKIpLdAFVFEVxieepnMePO0+Y1u1Huao13xX1VLLQkghnQZj9s7IwMCHBXr3ae+85scam\n3AEu2VK8fKgMfLLJuyEgA1ylpWy3tV2fOtDUpWNH/LEdOz6C476+zzr2hLdwjAYdPsx2To6VWBct\n4to66G0movMbuadY/moiorgZA449QFgD6P+K0CIYQSLMFRkZ/DTUaNwv8OPPvGhoNfjg4vDzG/n9\nw8LsxSq+V6fH4/dKjkrBkSpE9bPFtWtqtsk6zN27rcW6axdfA8m/zQNfyzyWqnz3XXxd8mUeVdN0\nO9aQS/kHa5KGol71WB/Wq0aG8PW4eSdej8sP8tgiU7KzZZBl+GJitA5UURTFKh7LmLq6+L/P5FZj\nhrtU0TXVXeUdqSFSeuRdVryJirJ4VyfuQOPS8A60aQb/56wNR4Fn2QliNNRQ5KDotomJsRbr6dN8\nXo1/elTzqBgyd/vt4Buey0pGJ07g6+RQLWsqV6tX88UxbRr69oo7Sam+RISKyq2t4Lo4nbu9fH3t\nff779vE5jR+Pd+fZO6Md2/yMU1u5o65sEg7Ak8K/y5fbi1V+/hMPVIIvvZXVuMyuOXlHKj9vIqKV\nK8V7jNA14wbZ4WWeO3nz7p8Pk+Bp1yN8Lg3hsOtyrZ49y3FOuBU7ypZ9mzvKvvtdfN2rr7Kd/N+o\nKpZxkncrI3VM6R2ooiiKS3QBVRRFcYkuoIqiKC7x+BR+ci4/obq4sx58vttE7qavD3x5B3hQVknK\ncfBF/aRQHBh5VS/IK+e8Z9M/vgC+6E2c92x7CBXp6czvHTO9HJ/Qzp3Lf0e6MfvLG6SQznvT48BX\n8acmx55gfDrJ5fwUdlIWDs6TavrZ2d7HSESQ92y7G5+k+uXycXk5vmzjOVaGGtvaBD55qUw0BOC9\nYc4ccZCPqjoV4w849uZzqDou5aE2FKJLVmHYBIYQfPaz4Kup4vzdkddR5T3qTa586JyBVRFhh+V3\nCatJvKF6IatDHZmA6lAyB7pgAeaPc97k83x2TgH4zCGENnjxRbbTZ58B35Yv7OGDVqxeaDwnzqPx\nWchJFiOhd6CKoigu0QVUURTFJR7LmI4f59IAMT+KiLA6Je6gUZwsaoMKArFMQ5ZCxMdbLGO6eNGJ\nNa8Qtz4lcttulAbJyuWmFEwpyHKLsDB7sa5bx+f1c59DX/qsLseOXjIZfKZQrCSoVOzbKyqsxCrj\nvO8+9H3pS2xP+CZu7Zbdydu+LX9aBD565BG2n3nG3uc/ebIT64WOLnCN7RZpJDnrm4jo6acd88IQ\n3k+MPSDSVomJ1yXW4ZMYq8+CeMcebtyHvo1ieGN3N76nFNi2WPQvZ9j//OfoWz9NpMo+wqaP+gAu\nx0rcg+kGKHuzdF6bmjjOuG8bdVPyO28qg8sSzPZ29MlFr7pay5gURVFsoguooiiKS3QBVRRFcYnH\nHGhlJecVMgMbwBezgfNeLcGp+ELZA2eKHkhfUZG1XI3MgZi/Us6NShjfAr6ydq5Pyukzcrnh4Wyn\np9vLge3e7cS66wrmCJPv55xYaiHmQGuni1Yz2S5JRHT5MtsTJ1qJNTKSz+mCBegrSuM4F+VjnPK0\nmWGGLhTiGceP2zunx46NOKjvwiEeHGh0llIccZlVwxCWlMlLNS7OYr5+716O9e670ff662ybvZwi\nX3tV+6xUdBk71lqsAwN8DfiX4vdjcwhfj2ZracJn+LlD5904dDKsUVzHq1dbiVUO6otciTWHLcX8\nnX/lFXydFEVqacX7SaktExmprZyKoihW0QVUURTFJR57AjJDeHsTXYilKlJF6NSUWvCF0inHzi4P\nBd/c2WzjO3qH3PksW4Y+uaWkM7jXyBnPJS4DwajGIrUZUQnRO8rO8LZ9MTb4UOp3eDtsbpsf+xlv\nofYH1qBT7qEstfgcmyO6nfxwwPvwJI5ld7jR3bNxI9sLDqBvyhQrsV2F/JCNUhVZ8RMXiJ1xdLjH\nMWcY5zvoZLM4ivUuPonQyD22F4U0I3v+07GbH1wLvtghMe/eFGEVc9ip2l6H3223XXLsBx/E78cc\nsXps24avm9fK2/awubilbsrnLTUmTdwTKdenP/wBfDHbuDMrxihV2ncfXw/xG+PBR3Pnil+AnX+f\noHegiqIoLtEFVFEUxSW6gCqKorjEYxlTQQGXBjzzDPqksrNUkCEizEGlpKBP5iCys62VW9xxB8f6\n3skBdIoeyMQDmeCqrxu5jCFmFaun09Gj9spYioqcWI88iko1Ub8WeaYzqCpDg4OOmReIeS5QvYqI\nsBOraI+FMikikD8aPnwUXD633erYvb//AHxBB0Xu1mJp2PAwf/5SZZyIKOp2zslXHsSc/MGDbJs5\nZ5kCCwqyWMYkZiJBAETUFM65trhBVEDLPsTqaBUnjeyhlA6KjrYWa0ICn9eGjafRKa9PYw5V9eEw\nx84YrAAfjFOorLQTa0WFE+f5JShHJsMMa8XW8tRDvB7I1D0R0W23cXvqlSuf1TImRVEUm+gCqiiK\n4hKPW3hFURRlZPQOVFEUxSW6gCqKorhEF1BFURSX6AKqKIriEs/z8TZtcp4wFZzFQtAiEvWLISH4\nOlkT1tgIrmMruH5xJIkoN2Rnc73apUvok6r9R46gT0qWiTJLIiLyP9nGBxZr606d4lhB3o2I2rZy\nPWf0md34uhncQ2/KsqVveZAPXnnFSqznz3Oce/agzyj7A2Td3fJglEG8MJd7lseOtVhbmZ3NT0Pl\nB06EOgFS4IAIxzbI+kQi1DMLCrIWa1kZn9eVK9Hn0yrkFjs6wLdvEtc3xo9pBh+tFX3zlj5/IiI6\nepTP686d6BM9/au3hYFL/qgpdddWLuqGZ860E+v69U6czTNQdk8q/51vRS2Ex9bw92//rYYsp1zX\nSkq0DlRRFMUmHu9AF/2a7zp3p+GdBAXMY/upp9D38stsP/ssuPqS6LpQseSYY09OiQRf1x6hYnPv\nV/CF3/ueY/rPm4e+D7CLxhahB7kb4mI7/keMPiDOs/gPT0QUmnaIbUNs9/yLrBQ7zvsQiQibxtK/\nfSv4LovBgaNfeglfOF3c1gdPB9cBIc6UmEjWiD3B3S4pK9An55evRYEjuq+cu+jSUHCKxuXDoD5v\nQ3TICREdRhtwOFxCK989BQaiitE3otg+G4LqUJu+yp+/oY3lHX19bJtTDcX1edtt6Drdzee15TAO\neTw/hTv8bF2rcisZuz0DXOc3iEmWhojV/u+Lbec3Xgdf0xJWmRtJNUrvQBVFUVyiC6iiKIpLdAFV\nFEVxiedWzrY2dpqPC2Vu5MMP0ffWW4555A/+4Ip6Xqgh2VJiIcKhYvLpKRGtrmKV95If4q8cLeXr\nzb9RyvosXmwv1kWLnFhPleKT9tB8fhJ49keo9P+nP7EdaOTr5McRFmbp6fbp03xOf/c79N18M9vd\nmMeDYyOPC8fNzdbO6cWL/GR7xgz0ySGDzY0X0CkkeGT+kYho2y84PP8rV6zFeuQIxwrqW0T4yNhQ\nVr/wZVZ5F2JYRER09DCripGPj7VY+0eN4mGNX/4y+IYPciWAT/974Cvaeodjz5oFLorzs1/dsmgR\nn1OzQkQWZZiKW2UbxHmTJTlEdOok53FDQ3WonKIoilV0AVUURXGJ50J6KaJr3BfLWdtj23HW+rK1\nvG3f8g9t4APhV5uM5j+li3BO+fp+LmtYV4opi4cfZruq1HxTfp/qxabPC8S2cbtR110gtnAT/tQJ\nvhsCuVjZbBYAodgwFI12jUxplJejTww12/VZLBtJbuXym/oZJeA7s5C3fSh76x1yxtrxg7idXPbP\nvJ00VXNrg3nbbuzgyF9eHBaJ2iUGlH0Fy+pq2/ma6+gwruNNPPRs+/Z94DvVw/dCoagZ7RXHXuTv\nS1wjfmI+h/m7XXAgGnxFl8UYxj/cCb6am7k8Mh1f5prdwXxOhzeUgc+nWBR2mR/yYZ5yWb8TheEn\nGY0110LvQBVFUVyiC6iiKIpLdAFVFEVxicccaAtxLqsqsAl8NYOcZyo4iC1nW77LQ7zisjDJ0TRb\n5CMKcKCaN+x6g0UBku/GIWctS1jAZM0hbHRr6OcYzBIHUzvBGqLmqOC2/wBXSyDnh2KMAVj+ASf5\nQNbmEF1dSmSB1ZO45XA94UCxmiEWNknvNj5HkaBNPLgcfaUy0WytkY9i+rgc7MiNi8C3bp04MHLO\nqT+8n+1/+id0phyg64LskTUGB6YW3u3YHR0o0EFVVY45uc5oLc3KEgfYOukNcUOitRh+B4Ewy9JV\nRjLzif1sG+VP7eLRSnq6txH+L/v59/lMx/Zh2rHDMVPvfwNcVaLt90wVuCjRT6x5Eddu5tQ7UEVR\nFJfoAqooiuISj1t4KfgjZ2QTEWxDk5LuQJ/YXppdCGaXkC2S+zfxwcNPgi+mm8usKgNxu5mZfJNj\nT7z9Y/CdLpSz17FUxyv6+9n+61/BFePHqlLnU7AcadwGEbvZbiFbkSwhUxoZhRPBJ6USl72PaZEt\nL67iAyPVcLF8s2Pb22gS0WwuR4l6fS+4cgq5g6csxChjEdv2mG34GbeKpqnhYbLGrmf4eky+HXU9\ni+p4275+oVECGMAtVjF1WFI0SUiHVleTPUTaYGAbKrL5i9LBie04wx627atWgSvkeqTGTor0llAK\nIyKiz33OMWsDc8BVuZ1LnrLvweuGxtxMfwu9A1UURXGJLqCKoigu0QVUURTFJZ7VmMrK2GnMZ5El\nDLV7xoIr9STn6u7Yivkx2R2Yl2dxJk5MDMcq59wQQZsnyJMTQRlJzgnMgZX1CMn0+nprse7axcox\nyX5G3uWBBxxzXzvmluOHOM+U145y7k88wXZUlKXzWlTE51TkGImIZuayIvrRNKOkZgXXhnR14//o\nyat4JhI1NFg7p/X1fE4TRxvTE2S+2MyPiVq1hhRUv0r48AU+sKjG1dbGsZqlchUhog3RUAcrK+dz\nmbMC2w6HR3NG2cfH3vcqNpZjFdVAREQ0KpB/zR1isgMRUWcat/CaYm1PikcUvb2WYq2s5GvVmNHW\n9eijjj35ZiOvKX62eiVOh5CqXhERqsakKIpiFV1AFUVRXOJ5C68oiqKMiN6BKoqiuEQXUEVRFJfo\nAqooiuISj62ceXlcwmAOsYq7JMpvDBkjIbZCR1/GHGtdHdtlZRbLmOLi+BcZ8TSHc9tbbi6+7GgA\nq3w3rUSVb9HFRrt3W4y1oWHEWDdv5f9py4dQWRvKWoyakqDvsmS+rdIQOajrP/5jCHyvvcYtkeHh\n+DrfblbSP+2HikJpaWy3tNg7pxERHOvxNGNQm/ylprL+tGmOObUYxw7sFZf4SEPFXNHUxJ//AVR8\nmtnKn7kZavRh9i37A7Yk3nor2yUlFmPt7eVYzb5soQB2/KTvSC5KnI0TAgZGc3mev7+dWPftG3mo\nnBShjyxH+afqOTWOnbHE6NedN4/tpiYtY1IURbGJLqCKoigu8biFl8JJcWnYFdNSx7flgW/iNl02\n/qwwGn/kbsomF/aw+Km5TQ8QzSfmPHXa0+iYM4wmFUPr1hpdU7gbZ6Mxir4imLefF1finPJuIThT\n9RpuN3u75bxz7AxzixzhPntjJa4CAAAcUklEQVQ2qhhFNooOs4d+gC8UCkcTjRPeUiq3gZYmihHR\n8Y2scLTuFTxv/yWuwbZSQzX7N79xzKlT0RW6ErqmvI7xE2r7WZz3QD8K9R7dyWLktGcP+Jqn87Z9\nix+Kbae3WhokaLC6PMix17e2ojM/3zEjPv95cCVvZGHwxPvxIh8s5Y4vf3+yQvwSsT4ZymSyg2tM\nbg34Msb38sGew+CrTOI1ZaSzq3egiqIoLtEFVFEUxSW6gCqKorjEYw5UMnASSxFCxND5KmMYU1ES\nq5rs3x8Bvk2b6LowtoPVuyv6sP7j9CoeOFaQdgp8i1JCHfu22/A9zdItW0zelufYFeeMRGs/F4GZ\n+eLLoj6sPhcH552/PNOxbY1qiytlxaU4o6YmXajj13wdc06LekQZUQ++52xxxWXbS4FSXDEPNmxK\nwzzX41WidGVrHfgoONgx61cZCvDFl+l6IMtsDLF2okbOydO994JLfv504gT4RDrSKlKE6+yNOJVg\ngijzeeyHseD75jflD84H38SeFnGAAyldI+umjHMTEsJrUNhKzDm3FXKec9ZCVDjLPCgHaepQOUVR\nFKvoAqooiuISz51ISV2OvWztZPDJrbgsdyEiWvYDvmUuLERf0QS5h3+GrCGHSonuEiLs6Dh3LhR8\nuwu5a4amTAFfZdX1+f+yaxqLzT5ubL3G/orbX5YYvQ+yMaJ250zwpQaLcoxxQWSDmYM88OzoCtxq\nle7kbVh67mbw7U7ilMmiOpzRPjhI14WmJ8R1Ne9r4AsR5XgDhSj+7L/DQ05p4UIboV1F/BgxSK7U\nyH+JPX3ZoUhwSS3oOKP966ryPEscOsS2HDJJRJSUxNv2/T+/gE6xKNQnoVD1pXfZTvYyvk/YtZ8T\nV8mbVoCvcRJfq9O3NoFPzhj0yTKKlX7xC7bffZeuhd6BKoqiuEQXUEVRFJfoAqooiuISz2VMopcT\nyhKIyKeQy1gWyrY+QtGgd97B1xWe4Lznlk8Z5KdC5kCNXs6ylaKMZQy2JC4q5Ja43StawFdXx3m/\nTIudcq+9xnbyDfXoFEnCWUbXoc9Cbi1MNaaRnf2Q854TvA+RiPA0XlyA54b62TRz4KMeecqxjdNN\nu7fZbzklIiI5LMxI1o0VtVRjR+Ml3/QFvh7nzAAX+RrlMLY4Np5zh5EPvYFOUVZlpOShRfqxH+EF\nOecDttes8TpEh7J7OEec8CI+sxCh0qVL+Fkm9/MFkvAUJvNHy88q+byFKImSp4qBcDJxS0SrxNJg\ndHnSwYNsb9yD7bGyk3akiju9A1UURXGJLqCKoigu8biFr2zkbWHmjGPgiznE2/YZxtYnfQaXBuVU\noaDu9epEoiEh+Gvufe65xzEX3fUKuGCEvJh1T0TUtEEqs2JHlTd0dIiDM9gZk0pc8lH7mRfAR9/6\nFtvt7eCaIFMYlvINsmPG7HSRXVorsGqE7rrrM4799tsfgC+vmJV/S0rIGpsHOU1zoBh9Ugc4LwU7\n0U4KgSG4Foho40k+j4a0tVdEdlTzwdNPg2/zTpYnWj4at5QNgRzP88/jewaliU6gNc1kjbNn+fcX\n49z0lnP8nagzGrxuyOJyocRHngNf9tm1jo1FZe4p2sOxFAxiR1nfEG/AY1sx3Ri+klORRuMXRf9R\nfP+iUf3sE/QOVFEUxSW6gCqKorhEF1BFURSXeMyBZi4Q7YHF2HL2wx9y+17UWVTrPvIhl9uUVRna\nQKWi/sUXB1F5hUxgQJKRIJm3+0eYj6m8nfMx1GiUrYSEWAoOgXzREhzWlrJEHGz8d3yh/LvuvBN9\nDz9sIzRAtsA29Bg54EdYhf7UpB+Dq2kV57+ysm4Fn5kvtcXyOZx3X74Qp4r1kmhtHY89j9mHhALP\n5dngK/vVz8TR617H+AktkzIcO6YYh8O19nG2dfwCzGWnvs0PEI6HYElRbjDnPVGLyjtWD3HOcP3b\ne8GX+xxfE4dRzJ0Wi5Rh9qG14KsYkn8X5nndAkpVRu1c7Acc9/A//zP4qvw4B2rM96Pk6b/lg8Wa\nA1UURbGKLqCKoiguGXXlypW//VOKoijKVegdqKIoikt0AVUURXGJLqCKoigu8azGlJHBCdLSUnB1\n9vMge1MN23/+g47dsm7k1smgIDI0173gvfecWGsO3AGu9Nu4jCHxeRxwVb+Qiz5qKB18soopJsZe\nrLW15MS6wFBc2r+f7eQXM9Ap5XjMiXNysl9NjZVYz5/nOKdPR9+pldyEl3o4G3y1i/l8n77PGCg2\nKCYAhIVZO6cJCRyrEBEjIuzsDQhA3/KUAcfO2+APvpQUtiMi7H3+ixZxrLt3DqNTygVdxqF2nYM8\n1E0qIRERjRtzkQ98fa3FWlTEsRYswHbuRaWsmG9ejgmzxBDKjRvRKcdU+PjYibW62olzYCF+b/z3\nc0vmkUlYjvTyy2znzEDFsV3vshpbcvK1P3+9A1UURXGJ5ztQKVghx4YSUd1BvssrOBwPvsz7+K6z\nssco650iBvsQ3il6hRgYk35iA7jW3cZjds3/lG2BfNeZPmSIMHz7WbZft1dInbpAaCAaQ6NuXyBk\nK4x50TNn8f+7o7PxvE4+zMddZIdxxasdOylpPfgaQviuc1sWvq6gmO86Zxn/t/sDWVwGJ/54h9wF\nVa5A0QvZudC7EMUk5F1nyRycl0N1QmkkAl/nDVKI5cireA/zhS9w0b9/FZ7znnD+PAxZUxoTwk0p\nFttT8I7dKCbfvWyZYyduw11IQh+LaeYM4rkr+4FoZlmLRfauEVXwpSfxDjQ3l+OOOoF3ma+N4bvM\nY3449yv5JtkglEDXQu9AFUVRXKILqKIoikt0AVUURXGJxxzovlLOJQUbTzYLzghBAEOIuPKkyCW9\n+jb4dv2K857JtoZCE8ETy2UfYu5oS594uv7yOfBJIeayeZgDy3n8cXvxSW65hW2RRyJC8V9TNPlo\nKz8K7+rBioGuVVKUwY6gcmI3n8e5c9En83i+pZjjSkpigYYIQ4CCXulhOxIFMbxBPui9cOM08I0V\nA72C+vBJ8rx5IhN7CBUxutL475psIcZPeIpHRtGEn+C5q3+Hz10iIfGzOXd+nlCkR+ppR9jT/qYP\nPxQHX/4yOsVAoe4ezIHSkiWOWWZcHzl/4r/RmlC1eF6w/meo2t7UztdZ3CFUDAmZzXnPyFWx4Lvq\ngck10DtQRVEUl+gCqiiK4hLPYiLDw45z81Zca0XVkFnhRNWrOkd2ygrgyEh7hfSnT/Mf8rOfoe+u\nu9iWex0iOvIED+YxpqHSmgdEWVNsrLVYT5/m4mRTH7NhCY85jt2Im7jmYLFtN7VKZaV7YqKVWPft\n4zjj51wAX2g4j7E91dgJvuOXuVTp44/xPR94gG0fH3vF6U1NHGvcAdTYrAjhjWK2XzX4IMB/+Af0\nyfHIERH2rtW9e7no+0FsNPDv5yK0fmNID/QAvPUW+PadDHXs+Hh757W5mc/rmTPok+FF3YfXB9RZ\nDaHm7bAfpx+sXQMzZzpxZk4/Cq7KIf7eRHdj+Z+cDv7uu/iW8uPXQnpFURTL6AKqKIriEl1AFUVR\nXOIxB9rZyfkPMz+4fMFpPli5Ep2y/+vzn0efnIMdGmotV3PqFMfa2oo+qclgzv6OCRZzws0kz2wx\nI8eW6AERHTvGsS5davi+wSUYCS9imU/DSpGTNQUaZFK6udlKrDJXO/GQ0ZIrh8YbOa5jkxY59p49\n4IKX5eRYFJN58EG+kL/2NXANr+ScqNE5C5iCKYmHuXWS1q+3FmtDA5/XhAPL0fmKEN957TVwHevg\n+53IfGyfvlC3z7HHjrV4XtPT+bzOmAGuaj8uXcoYjddHQTfnHY2X0Qkxeiwvz06sAwN8Tv234Nwz\nepDFja5ayBYudMzNh7G5WF4P0dGaA1UURbGKLqCKoigu8diJJLsQlh8w1EiyxN5sPI6RBaTgHhFR\nfj7bFucxhWbFsW1ol14M51vzq0SVZPrBTEXIXEAMKrV4wx/+wPaqVYaznEcZh881OnWksKXo9CAi\nTDdYQo41LgvuR6dsRTJSH5H93NG1fTAOfPPm0XWh6DHe+hasRI1Nn4Mcz5w5GE9sK3fJ7LpUAL6K\nYO7EMvpsvEJeVgmG5mf6fXyB1ly+CL7IcpHvCQ8H39itoqcnB8u4vKEti7fm0RuwrC4jgPfi0Sdw\nPLFsTpTlQER46dhCZrD8H3sMfOt+yd//NeNx5HlTP/uWh6NSU04df+ejo6/9e/UOVFEUxSW6gCqK\norhEF1BFURSXeMyBTp3K9rI7G8D30RK2a+69B3zVn2OVaVPFZ+KeCrouvPoq20abo6xciNuWiq+T\nyRqzPVKWClnMgSY/L/JwhpKVzCfLcg8ignqstgDMSUeXi/xdkR31dFnys2gp5tWefYjt76yaCL62\nUs4lmTneoPa/rfLthoKT4nOdY5SjiQRZz0pUqz+2gM9bcvdu8O0T5Vg2Wd8hPn+ZaCaihaLT+OKN\nN4Kv9SV+ZmDmEX3OnKbrQfSzogToX/4FnSKZ3zZ+NbiOE+ePE2b04uug7C2UbBDaKsqojKTrA7NF\neVI/DpOKfVRUJ/3kJ+ArmyXmU9G1rwW9A1UURXGJLqCKoigu8azGpCiKooyI3oEqiqK4RBdQRVEU\nl+gCqiiK4hJdQBVFUVzisQ60rY0lovqNVmhZ39fXh76f/pTt554b2RcVZU926+JFjtX3zCnwtZzh\nWjOQryOiou3sK1hi1NL97ndsz59/fSTCBgfRJ/vxTa07MbKzZSnKh8X0iOP0dCuxnj/P59SczCJL\nZn/5S/Ql7xWjR0bjJVYxnUdqZGdblF1rbnZizTuI0xVlzaQx0eWqkSoSn3MDfODvby3W2Fg+r81z\nsGb37Le4LvUvf8HX7djB9ppl59Ep/7CZM+2d18xMvlYNCcVjJ3wd26xZlrXX1eVGrP/2b2yvXWsl\n1sREPqcBAeiTn39gIPpi14o61w7sk6cnn2S7tlbl7BRFUWzi8Q5UCv50HcS7s4TtfNtZf2Ym+OQ/\nKrPRBodPjSVb+G7lDqfOuaidI/8bxnxmB/gK5n2VD3YeAl91AHdXZHgdIdOUxneLceHYpTEcGOTY\n7/+mC3wTfs+CyuZ/WTpg3FpZYFwPd+1E9uAtaHUHK/McwFHb9EAp/33vv4++FQ/Q9UF2G/WgK66H\nlYK2t2eCT96RBGOTCoWH+zt2jaEn7Q3wneibA76//pXtiUP4+a/x41v9uCRU6pozh7+Defh19A4P\nwtnt7XwHag5yS0kR8RTiDPtbbuFOxTU2YiSi+j/e79gVc1ByLfWPvA0+cs9a8NENNzhmyfdxAmJe\nCu5Wr4XegSqKorhEF1BFURSX6AKqKIriEs+tnE1N7DRU53uDOcdhpEbgwbI5+6xytBiitXmztaeF\nCQn8FK5h+/mRf7CqCo9FgjR9PCpO5eayHRZm74nxvn0ca/wZVPIGpXHjCTYlJTlm2UrMSeeE1PNB\nYqL1J5v1wYYmu3gsP7B9H7j8Szl33DxvPfjksICmJnvnNC+PY73lFvSt2SOetO7dC77h8Zzn9KlD\nNSaYKjZ5srVYJ0/mWLvCUeU93Y8/R7NAo76407E3HwoD3/IOkdutrLT3FD42ltcAORGBCD7MuCTM\nczZt49x+UVUQ+ArGC0W27GwrsRYV8Tk1B0emDorvmJSuJyIaM8YxW6bjNR5zTqwHCQn6FF5RFMUm\nuoAqiqK4xOMWvqSEb4vz/FAIWd7umtv03dt5GFZXjy/4ZEF2fLzFQur33uM/xBhyNjydBVW3b8eX\npffxFrNrIYrCNjaybXWGeWIix9rejj4xya/39x+AK6hfiAEb9WEDxZsd29/fUqz3389xfv3r6JPd\nE54ql400RM62CMcuK7N4TuvrOVZj4BrEZzQn7FvKW2Y5RJGIKHmqON8REdZizczk75W5o9y5k21T\njFyGntpXBr6aABa8Tk+3eF5FGu/UJBzIJy9BswRMXh4lS7EcqPIgN69kZlqKddOmEdONXQ8sduzJ\n57DcSqbFriqkLy5mu6xMt/CKoig20QVUURTFJbqAKoqiuMRzGVNvLzvN8h+R5zp7Lw5cm3Ar50Az\nsjAHWr3y+uSVKis5r5Q5CweH0eHDjtk5G1v5ZA4qeiMOnGvJqnXsmBh7eaWaGo41LQ19Po2idMJQ\nvhhetXokF4WdtF/GBHmll14CV20S/z5TaEbMvqOcWW3gG54V7dg+PvbOaUUFn9PsFcPoFCocGS8t\nBld+Pttm1djEQL6OydfXWqybN3Os5hxD+Ywge45xHYukY2/+ZnBJcZ/aWos50Jtu4mvg5ZfRJ6cO\nGhdyzRAPYTPzvNljRFlRZqaVWLOzRz6nOe38va6YVQu+7C1icuZdd+ELZRnb+vWaA1UURbGJLqCK\noigu8byFv3DBcQ4MoXKS/+X3HLu68Q7wyfKLib/YhO/5zjtsl5TY22pUVvIf0toKrl3zWUoneclN\n+LqvfY1tUxxSlkNY7ESReqAD5SjzI0NPmIJqPBdDJjv2E0/gW77wAtvWyphaWvicGvvb9K28Fa95\n9AXwyT3bshOoGnSTOP02y5iam3kLF9uIM+zzxnDJT8kQ+gby2ee/FLuCKuZwmsKmdumFCxzr2G7c\npp8P4TKvcY/cD77UqawyVLukCXw5B7jEyGp52N13O7EOGTJXYx57jA+M0rHz+VweOO5MJ/igVquo\nyE6sBQV8rZqtkb/5DdvG7Hfy82M7JQVcvXu45Cko6NrnVO9AFUVRXKILqKIoikt0AVUURXGJR0X6\nyu2c9zRLVQ4f5rynnHNEhBUvjS9jDqy26gJdD8oGuTwpJy0EfMlDojToq18Fn5Td7/RDKe/LIpUS\nQfYoCOG855lV6JPq7glbsVZpYyPnQF8w0o5mCY4NugK5PE1WrBBh6oh+/WvwVc7gMhVzrs+Wbx4T\nR5FkC5meC92DbY7btomDg37gExVu1L+wHnzTQ6yEdhVj21v44FvfAt+473zHsY9sRWX12qmsMtbS\ngW2VnmY7ecVHHznmGDkjiIhowQK2580D18dC3H2cOZZCypzZQtZKGRdr9RTOx2YUYp57VzJ/5snG\ncLeDB9lOT6dronegiqIoLtEFVFEUxSWey5gURVGUEdE7UEVRFJfoAqooiuISXUAVRVFcoguooiiK\nSzxWD3Z1cc+unKZIRFS9lGXKYnKjwSdVoMTQOyIiWt8t6rDq6+317DY0OLHWnEsAV3qSqD01R2jI\nvlxRE0pEqMsWHX1dJkjKiQJERL/8JdswTZKIen/+imP734nhtL3EDwNjY+30Qk+cyHGa8nlyvESt\nH0oEHvkG14FG/Rl7tmnWLLbHjbN2TtvaONYTJ9CX2Vfk2NXBBeDLePc5xz7++Frw1dWxXVRksb/8\n2DG+Vk9gLays55U1qkREFVmip1zq3hGhbkNMjL1YV69mmcAhnLAqp19md+NEy4FCHgFkTliRWhk1\nNXbO66hRQ06cV94ZQKcsWjZkOYsGWRuhIMno2Zc/qyM9FEVR7OLxDnTyJBamTUkx1lqxqpv/8Vvy\n+a5jXBJ2TMzaxpX/2BPgJeJ2YXYh3oFeHM0dVb5G58fqx99w7PXn8G5pczfHvhxvsr2ipFH0NeXj\nbUbkmB4+eBGVo+RNxhhjcJYpImuD08XcMZWdi60YO3Zwh0rt9wPBB91H0AZE+F99tzGH3QuiA1i5\nalv7ZPBlXu5x7IwzeLdMGzY4ZkT3MXBF0B5xVES2SCzmu879+9EnN0FbnsTrMWguX4/5+TgXfryY\nIY+y4F7yyCOOmYviUBRUx3eZRxbj0MnXxMauNw2HNUK7HRmi0S658mtWTirYigLvRdN5zTk+F9W4\nCgJ4fj11G+2Wcrc0AnoHqiiK4hJdQBVFUVyiC6iiKIpLPGv4rFzpmHFXqbVz3mvPHnTRZX5bU8Vn\nypS/J7y/A/FIMHRFPPrEo81F970BrnwxC2tRMeZr5cAxq8yYwfbCheiTjzbLy8E19p7POXbzzz8A\nX+yQfIKI+THXiEfvFdOrwRX4XIZj1wRjfjB9lhjGlnQQfNftAhAKP5XmRdfPH3JZRyy4znEKlIqy\nMJdLN95oKzpAfsRHjqBPPvlP347XY+8J4+myBNTi7alc7Rqc79hn69CXLSbZRVVhTj4qPIQPphvX\nuKx8sYW4rib1GD7xvMYQXKIpU4Ic29eQnHvsB5xL3b+IronegSqKorhEF1BFURSXeNzC75vHpQnx\nfr3gO/JHFlSOkVs2IqLL/Pg/h5rRNygFbVHA2Ctk9b4xVE7ewm/fjq5p09jeuxd9IMwbgeUPXpGV\n5Zg1J/EcpPeI7bC5FZVzuXuM91ws5p2//jrZIOFEiWNfMt5SlipdVe0h69o++1n0rVljJbarkOVR\nxlCx0+O5bCxnJ5YxrbtHzCg3hH5blnIZFxbGeIes4pG9GkREEyawXZOPQwU7+7g8KzgYXzfuRCMf\nRNrbwiffzzHkbcPysKJ8/t4XrMLBkscO8NDJyMEW8NEPfmAtvk9YtIJ/v/m1oZ28HtT1YVpENi7E\nbtsAvv3fkbPu8XWfoHegiqIoLtEFVFEUxSW6gCqKorjEYw40vlRkfmbPBl+UKMXZ9ydsyowP6HDs\n+nNYNrKxmO1mIz3qFTI+s33w1Vcd03dnDbj27uUWxdBtKDQxsJLzkf7eR8i8/75jphu5I5mH6yzG\nIWdhS/lcxj71FPjyHuMkZQnZQQqImHml1Cs81a7h5sU0Ig+iIAq98473gV2Dzj7+hMIOY8nV0p1c\nctW0YgH4dhWyvWblXPBt3Mh2jMUkqNSz8e02BCxE6WDOWWzlLCvlnGP6Ul/jXfk6rhlhAJorhBpQ\nyTzMZRYcFCcFyqiIIvPFMwOR8yciorffthWdw+5AIWbyq3vBN3knf49N8R6pyTJ6Ka4Nr7B2D625\ndgpU70AVRVHcoguooiiKSzx3Ism5z1/8Irhq/8wdCju34cvio1jUMvEs1g2Nz0fVFmt0cNrgqjIe\nsY1cfQL3N+vbxa2/H84MF40WVI27Qq9Yd4LP3Q2574HvzjvZTm5E/UXY+z37LLiyHrcWnsOgVPjp\nw1nr6y7xFs2c/d7fz2U0GVI4lIh6p3AaIojsEXZZqPrIGeFE1HSAVcX2HUClrmNVQoGpGFvqdodL\nzU17aky+SSKGtDR0ClktU4NX1j/VBBtiobKMj0Zom3HDmTOOuW8Q8xigwvalL+HrZBufeA8iooI3\nOeVj7ayKFMKuh3CN6ZrNKRyagSkcWQ8Wm4slhc3feEEcXTtNpXegiqIoLtEFVFEUxSW6gCqKorjE\ncw5UKJwML8DcQeqPf+zYs8pxHgrl/pZtQ9Io1u+UOAr9dFF+GmRZzw03gOtUca1jrx80FLDbOXdU\n0pcBLrPNzhbf+Q7bvtOmgm/490Itqhw/nqEPP3TsMUY9Rs+LHzv2xIkWgiRsc6WDqKq0ZvQhPjAV\npUT9U8IezONKIaoCrBrzis2t3K7ZfiICfAtFl2NCQBv4TgfwqIGJ5gduqPNYIznZMS8uxHxlWh0f\nF/fgyyaL8p/MfixWqzxXSdcFMZgp/l5UAIsPFL3PXzJyueIBwtmOd8FV5HdUHFlq5xbXYPKf8VzU\nL+AHGPPm4cvGnuBYmudgRvb0w3yBjvSV0jtQRVEUl+gCqiiK4pJRV65c+ds/pSiKolyF3oEqiqK4\nRBdQRVEUl+gCqiiK4hJdQBVFUVyiC6iiKIpLdAFVFEVxyf8F3TVa4mOI31AAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 64 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "metadata": {
        "id": "uxhvqZ_jdr8X",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 51
        },
        "outputId": "f9d5d2fb-d767-456f-9b29-90ad1bc27f36"
      },
      "cell_type": "code",
      "source": [
        "model.evaluate(test_data, test_labels[:,0])"
      ],
      "execution_count": 49,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "442/442 [==============================] - 0s 162us/step\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[0.21940971263663261, 0.9162895914116597]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 49
        }
      ]
    },
    {
      "metadata": {
        "id": "M39SxQTDhKb2",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#definition of confusion matrix\n",
        "def confusion_matrix(pred_arr,test_labels):\n",
        "  fp = 0\n",
        "  tp = 0\n",
        "  fn = 0\n",
        "  tn = 0\n",
        "  r,c = pred_arr.shape\n",
        "  for i in range(0,r):\n",
        "    if (int)(pred_arr[i]) == test_labels[i]:\n",
        "      if (int)(pred_arr[i]) == 1:\n",
        "        tp = tp + 1;\n",
        "      else:\n",
        "        tn = tn + 1;\n",
        "    else:\n",
        "      if (int)(pred_arr[i]) == 1:\n",
        "        fp = fp + 1;\n",
        "      else: \n",
        "        fn = fn + 1 ;\n",
        "  print(\"True Positive:\",tp,\n",
        "       \"\\nFalse Positive:\",fp,\n",
        "       \"\\nTrue Negative:\",tn,\n",
        "       \"\\nFalse Negative:\",fn)\n",
        "  return tp,fp,tn,fn"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "MPy0AAfYhKfE",
        "colab_type": "code",
        "outputId": "b19391c6-c1c2-41f4-d046-46ee28e38f39",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 86
        }
      },
      "cell_type": "code",
      "source": [
        "pre = model.predict(test_data)\n",
        "pre = pre > 0.5\n",
        "tp,fp,tn,fn = confusion_matrix(pre,test_labels[:,0])"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "True Positive: 208 \n",
            "False Positive: 5 \n",
            "True Negative: 226 \n",
            "False Negative: 3\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "wdvQT4g0gHyc",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 2346
        },
        "outputId": "bcbf7702-1596-49bc-dd91-9933cfba0d99"
      },
      "cell_type": "code",
      "source": [
        "model.get_config()"
      ],
      "execution_count": 50,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "{'build_input_shape': [None, 40, 40, 1],\n",
              " 'layers': [{'class_name': 'Conv2D',\n",
              "   'config': {'activation': 'relu',\n",
              "    'activity_regularizer': None,\n",
              "    'bias_constraint': None,\n",
              "    'bias_initializer': {'class_name': 'Zeros', 'config': {}},\n",
              "    'bias_regularizer': None,\n",
              "    'data_format': 'channels_last',\n",
              "    'dilation_rate': (1, 1),\n",
              "    'filters': 16,\n",
              "    'kernel_constraint': None,\n",
              "    'kernel_initializer': {'class_name': 'VarianceScaling',\n",
              "     'config': {'distribution': 'uniform',\n",
              "      'mode': 'fan_avg',\n",
              "      'scale': 1.0,\n",
              "      'seed': None}},\n",
              "    'kernel_regularizer': None,\n",
              "    'kernel_size': (3, 3),\n",
              "    'name': 'conv2d_31',\n",
              "    'padding': 'same',\n",
              "    'strides': (1, 1),\n",
              "    'trainable': True,\n",
              "    'use_bias': True}},\n",
              "  {'class_name': 'MaxPooling2D',\n",
              "   'config': {'data_format': 'channels_last',\n",
              "    'name': 'max_pooling2d_4',\n",
              "    'padding': 'same',\n",
              "    'pool_size': (2, 2),\n",
              "    'strides': (2, 2),\n",
              "    'trainable': True}},\n",
              "  {'class_name': 'Conv2D',\n",
              "   'config': {'activation': 'relu',\n",
              "    'activity_regularizer': None,\n",
              "    'bias_constraint': None,\n",
              "    'bias_initializer': {'class_name': 'Zeros', 'config': {}},\n",
              "    'bias_regularizer': None,\n",
              "    'data_format': 'channels_last',\n",
              "    'dilation_rate': (1, 1),\n",
              "    'filters': 32,\n",
              "    'kernel_constraint': None,\n",
              "    'kernel_initializer': {'class_name': 'VarianceScaling',\n",
              "     'config': {'distribution': 'uniform',\n",
              "      'mode': 'fan_avg',\n",
              "      'scale': 1.0,\n",
              "      'seed': None}},\n",
              "    'kernel_regularizer': None,\n",
              "    'kernel_size': (5, 5),\n",
              "    'name': 'conv2d_32',\n",
              "    'padding': 'same',\n",
              "    'strides': (1, 1),\n",
              "    'trainable': True,\n",
              "    'use_bias': True}},\n",
              "  {'class_name': 'MaxPooling2D',\n",
              "   'config': {'data_format': 'channels_last',\n",
              "    'name': 'max_pooling2d_5',\n",
              "    'padding': 'same',\n",
              "    'pool_size': (2, 2),\n",
              "    'strides': (2, 2),\n",
              "    'trainable': True}},\n",
              "  {'class_name': 'Conv2D',\n",
              "   'config': {'activation': 'relu',\n",
              "    'activity_regularizer': None,\n",
              "    'bias_constraint': None,\n",
              "    'bias_initializer': {'class_name': 'Zeros', 'config': {}},\n",
              "    'bias_regularizer': None,\n",
              "    'data_format': 'channels_last',\n",
              "    'dilation_rate': (1, 1),\n",
              "    'filters': 64,\n",
              "    'kernel_constraint': None,\n",
              "    'kernel_initializer': {'class_name': 'VarianceScaling',\n",
              "     'config': {'distribution': 'uniform',\n",
              "      'mode': 'fan_avg',\n",
              "      'scale': 1.0,\n",
              "      'seed': None}},\n",
              "    'kernel_regularizer': None,\n",
              "    'kernel_size': (7, 7),\n",
              "    'name': 'conv2d_33',\n",
              "    'padding': 'same',\n",
              "    'strides': (1, 1),\n",
              "    'trainable': True,\n",
              "    'use_bias': True}},\n",
              "  {'class_name': 'MaxPooling2D',\n",
              "   'config': {'data_format': 'channels_last',\n",
              "    'name': 'max_pooling2d_6',\n",
              "    'padding': 'same',\n",
              "    'pool_size': (2, 2),\n",
              "    'strides': (2, 2),\n",
              "    'trainable': True}},\n",
              "  {'class_name': 'Flatten',\n",
              "   'config': {'data_format': 'channels_last',\n",
              "    'name': 'flatten_2',\n",
              "    'trainable': True}},\n",
              "  {'class_name': 'Dense',\n",
              "   'config': {'activation': 'relu',\n",
              "    'activity_regularizer': None,\n",
              "    'bias_constraint': None,\n",
              "    'bias_initializer': {'class_name': 'Zeros', 'config': {}},\n",
              "    'bias_regularizer': None,\n",
              "    'kernel_constraint': None,\n",
              "    'kernel_initializer': {'class_name': 'VarianceScaling',\n",
              "     'config': {'distribution': 'uniform',\n",
              "      'mode': 'fan_avg',\n",
              "      'scale': 1.0,\n",
              "      'seed': None}},\n",
              "    'kernel_regularizer': None,\n",
              "    'name': 'dense_3',\n",
              "    'trainable': True,\n",
              "    'units': 1024,\n",
              "    'use_bias': True}},\n",
              "  {'class_name': 'Dropout',\n",
              "   'config': {'name': 'dropout_2',\n",
              "    'noise_shape': None,\n",
              "    'rate': 0.2,\n",
              "    'seed': None,\n",
              "    'trainable': True}},\n",
              "  {'class_name': 'Dense',\n",
              "   'config': {'activation': 'linear',\n",
              "    'activity_regularizer': None,\n",
              "    'bias_constraint': None,\n",
              "    'bias_initializer': {'class_name': 'Zeros', 'config': {}},\n",
              "    'bias_regularizer': None,\n",
              "    'kernel_constraint': None,\n",
              "    'kernel_initializer': {'class_name': 'VarianceScaling',\n",
              "     'config': {'distribution': 'uniform',\n",
              "      'mode': 'fan_avg',\n",
              "      'scale': 1.0,\n",
              "      'seed': None}},\n",
              "    'kernel_regularizer': None,\n",
              "    'name': 'dense_4',\n",
              "    'trainable': True,\n",
              "    'units': 1,\n",
              "    'use_bias': True}},\n",
              "  {'class_name': 'Activation',\n",
              "   'config': {'activation': 'sigmoid',\n",
              "    'name': 'activation_52',\n",
              "    'trainable': True}}],\n",
              " 'name': 'sequential_2'}"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 50
        }
      ]
    },
    {
      "metadata": {
        "id": "8KALC1VJ6sjJ",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "#fuction for grid search\n",
        "def create_network(optimizer='adam'):\n",
        "    \n",
        "        input_shape = (40,40,1)\n",
        "        batch_size = 104\n",
        "        model = Sequential()\n",
        "        img_width, img_height = 40, 40\n",
        "        model.add(Conv2D(CONV1_NUM_FILTERS, kernel_size=(CONV1_KERNEL_SIZE[0],CONV1_KERNEL_SIZE[1]), strides=(1, 1), padding = 'same',\n",
        "                 activation='relu',\n",
        "                 input_shape=input_shape))\n",
        "      \n",
        "        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2),padding = 'same'))\n",
        "        \n",
        "        model.add(Conv2D(CONV2_NUM_FILTERS, kernel_size=(CONV2_KERNEL_SIZE[0],CONV2_KERNEL_SIZE[1]), strides=(1, 1), padding = 'same',\n",
        "                 activation='relu'))        \n",
        "\n",
        "        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2),padding = 'same'))\n",
        "\n",
        "        model.add(Conv2D(CONV3_NUM_FILTERS, kernel_size=(CONV3_KERNEL_SIZE[0],CONV3_KERNEL_SIZE[1]), strides=(1, 1), padding = 'same',\n",
        "                 activation='relu'))        \n",
        "\n",
        "        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2),padding = 'same'))\n",
        "                \n",
        "        \n",
        "        # densely connected layer\n",
        "        # image size has been reduced to 10x10 so we will add a fully-connected layer with 1024 neurons\n",
        "        model.add(Flatten())\n",
        "        model.add(Dense(1024, activation='relu'))\n",
        "\n",
        "        # dropout\n",
        "        model.add(Dropout(0.2))\n",
        "\n",
        "        # readout layer\n",
        "        model.add(Dense(1))\n",
        "        model.add(Activation('sigmoid'))\n",
        "\n",
        "        # Compile neural network\n",
        "        model.compile(loss='binary_crossentropy', # Cross-entropy\n",
        "                    optimizer=optimizer, # Optimizer\n",
        "                    metrics=['accuracy']) # Accuracy performance metric\n",
        "    \n",
        "        # Return compiled network\n",
        "        return model"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "p13t442RF8O1",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 28322
        },
        "outputId": "b62b8053-95d1-448b-d05a-bed806f465ba"
      },
      "cell_type": "code",
      "source": [
        "neural_network = KerasClassifier(build_fn=create_network, verbose=1)\n",
        "# Create hyperparameter space\n",
        "epochs = [40,45]\n",
        "batches = [150,250,300]\n",
        "optimizers = ['adam']\n",
        "trd = np.concatenate((train_data, validation_data), axis=0)\n",
        "ted = np.concatenate((train_labels[:,0], validation_labels[:,0]), axis=0)\n",
        "# Create hyperparameter options\n",
        "hyperparameters = dict(optimizer=optimizers, epochs=epochs, batch_size=batches)\n",
        "# Create grid search\n",
        "grid = GridSearchCV(cv=3,estimator=neural_network, param_grid=hyperparameters)\n",
        "\n",
        "# Fit grid search\n",
        "grid_result = grid.fit(trd, ted)\n",
        "#grid_result = grid.fit(t, t_labels[:,0],validation_data=(validation_data, validation_labels[:,0]))"
      ],
      "execution_count": 26,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
            "Instructions for updating:\n",
            "Colocations handled automatically by placer.\n",
            "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n",
            "Instructions for updating:\n",
            "Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n",
            "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
            "Instructions for updating:\n",
            "Use tf.cast instead.\n",
            "Epoch 1/40\n",
            "1670/1670 [==============================] - 4s 2ms/step - loss: 0.5527 - acc: 0.6982\n",
            "Epoch 2/40\n",
            "1670/1670 [==============================] - 0s 135us/step - loss: 0.3869 - acc: 0.8269\n",
            "Epoch 3/40\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 0.2944 - acc: 0.8760\n",
            "Epoch 4/40\n",
            "1670/1670 [==============================] - 0s 117us/step - loss: 0.2332 - acc: 0.9060\n",
            "Epoch 5/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 0.1822 - acc: 0.9353\n",
            "Epoch 6/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 0.1803 - acc: 0.9269\n",
            "Epoch 7/40\n",
            "1670/1670 [==============================] - 0s 117us/step - loss: 0.1405 - acc: 0.9491\n",
            "Epoch 8/40\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 0.1255 - acc: 0.9527\n",
            "Epoch 9/40\n",
            "1670/1670 [==============================] - 0s 112us/step - loss: 0.0970 - acc: 0.9641\n",
            "Epoch 10/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 0.0898 - acc: 0.9689\n",
            "Epoch 11/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 0.0748 - acc: 0.9695\n",
            "Epoch 12/40\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 0.0575 - acc: 0.9826\n",
            "Epoch 13/40\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0388 - acc: 0.9832\n",
            "Epoch 14/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 0.0475 - acc: 0.9844\n",
            "Epoch 15/40\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 0.0282 - acc: 0.9898\n",
            "Epoch 16/40\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 0.0321 - acc: 0.9886\n",
            "Epoch 17/40\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 0.0216 - acc: 0.9922\n",
            "Epoch 18/40\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0138 - acc: 0.9964\n",
            "Epoch 19/40\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0132 - acc: 0.9964\n",
            "Epoch 20/40\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 0.0109 - acc: 0.9970\n",
            "Epoch 21/40\n",
            "1670/1670 [==============================] - 0s 118us/step - loss: 0.0102 - acc: 0.9976\n",
            "Epoch 22/40\n",
            "1670/1670 [==============================] - 0s 126us/step - loss: 0.0052 - acc: 1.0000\n",
            "Epoch 23/40\n",
            "1670/1670 [==============================] - 0s 117us/step - loss: 0.0176 - acc: 0.9934\n",
            "Epoch 24/40\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 0.0061 - acc: 1.0000\n",
            "Epoch 25/40\n",
            "1670/1670 [==============================] - 0s 117us/step - loss: 0.0032 - acc: 1.0000\n",
            "Epoch 26/40\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 0.0013 - acc: 1.0000\n",
            "Epoch 27/40\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 9.5736e-04 - acc: 1.0000\n",
            "Epoch 28/40\n",
            "1670/1670 [==============================] - 0s 118us/step - loss: 0.0012 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 8.1808e-04 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1670/1670 [==============================] - 0s 118us/step - loss: 4.8381e-04 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 3.9806e-04 - acc: 1.0000\n",
            "Epoch 32/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 3.2127e-04 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 2.7786e-04 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1670/1670 [==============================] - 0s 121us/step - loss: 2.5201e-04 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 2.1693e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1670/1670 [==============================] - 0s 116us/step - loss: 2.1287e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 2.0145e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 1.9234e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 1.9104e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 1.5337e-04 - acc: 1.0000\n",
            "836/836 [==============================] - 0s 127us/step\n",
            "1670/1670 [==============================] - 0s 41us/step\n",
            "Epoch 1/40\n",
            "1671/1671 [==============================] - 1s 426us/step - loss: 0.5435 - acc: 0.7086\n",
            "Epoch 2/40\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 0.4178 - acc: 0.8288\n",
            "Epoch 3/40\n",
            "1671/1671 [==============================] - 0s 117us/step - loss: 0.3066 - acc: 0.8839\n",
            "Epoch 4/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.2354 - acc: 0.9234\n",
            "Epoch 5/40\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.2254 - acc: 0.9210\n",
            "Epoch 6/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.1618 - acc: 0.9437\n",
            "Epoch 7/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.1271 - acc: 0.9581\n",
            "Epoch 8/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.0870 - acc: 0.9731\n",
            "Epoch 9/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0917 - acc: 0.9665\n",
            "Epoch 10/40\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.0612 - acc: 0.9808\n",
            "Epoch 11/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0536 - acc: 0.9850\n",
            "Epoch 12/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0536 - acc: 0.9832\n",
            "Epoch 13/40\n",
            "1671/1671 [==============================] - 0s 118us/step - loss: 0.0417 - acc: 0.9868\n",
            "Epoch 14/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.0265 - acc: 0.9922\n",
            "Epoch 15/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.0160 - acc: 0.9958\n",
            "Epoch 16/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.0075 - acc: 0.9988\n",
            "Epoch 17/40\n",
            "1671/1671 [==============================] - 0s 118us/step - loss: 0.0066 - acc: 0.9982\n",
            "Epoch 18/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.0034 - acc: 1.0000\n",
            "Epoch 19/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0022 - acc: 1.0000\n",
            "Epoch 20/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 0.0014 - acc: 1.0000\n",
            "Epoch 21/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 22/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 9.5171e-04 - acc: 1.0000\n",
            "Epoch 23/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 6.7279e-04 - acc: 1.0000\n",
            "Epoch 24/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 6.0114e-04 - acc: 1.0000\n",
            "Epoch 25/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 5.0715e-04 - acc: 1.0000\n",
            "Epoch 26/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 4.0901e-04 - acc: 1.0000\n",
            "Epoch 27/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 3.9672e-04 - acc: 1.0000\n",
            "Epoch 28/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 4.0017e-04 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 3.4401e-04 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 3.1035e-04 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 2.7260e-04 - acc: 1.0000\n",
            "Epoch 32/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 2.4578e-04 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 2.3679e-04 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 2.4079e-04 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 2.2336e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 2.1604e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.9877e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 1.7097e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.5430e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 1.6586e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 170us/step\n",
            "1671/1671 [==============================] - 0s 43us/step\n",
            "Epoch 1/40\n",
            "1671/1671 [==============================] - 1s 447us/step - loss: 0.5206 - acc: 0.7319\n",
            "Epoch 2/40\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.3502 - acc: 0.8600\n",
            "Epoch 3/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.2594 - acc: 0.9013\n",
            "Epoch 4/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 0.1985 - acc: 0.9258\n",
            "Epoch 5/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.1658 - acc: 0.9414\n",
            "Epoch 6/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.1211 - acc: 0.9599\n",
            "Epoch 7/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.1049 - acc: 0.9629\n",
            "Epoch 8/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0650 - acc: 0.9767\n",
            "Epoch 9/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0432 - acc: 0.9898\n",
            "Epoch 10/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0273 - acc: 0.9934\n",
            "Epoch 11/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0189 - acc: 0.9958\n",
            "Epoch 12/40\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 0.0147 - acc: 0.9970\n",
            "Epoch 13/40\n",
            "1671/1671 [==============================] - 0s 117us/step - loss: 0.0242 - acc: 0.9934\n",
            "Epoch 14/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 0.0179 - acc: 0.9964\n",
            "Epoch 15/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0112 - acc: 0.9982\n",
            "Epoch 16/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 0.0067 - acc: 0.9988\n",
            "Epoch 17/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0101 - acc: 0.9982\n",
            "Epoch 18/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 0.0028 - acc: 0.9994\n",
            "Epoch 19/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0015 - acc: 1.0000\n",
            "Epoch 20/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0012 - acc: 1.0000\n",
            "Epoch 21/40\n",
            "1671/1671 [==============================] - 0s 128us/step - loss: 7.3797e-04 - acc: 1.0000\n",
            "Epoch 22/40\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 5.3449e-04 - acc: 1.0000\n",
            "Epoch 23/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 3.9411e-04 - acc: 1.0000\n",
            "Epoch 24/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 3.3551e-04 - acc: 1.0000\n",
            "Epoch 25/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 2.9541e-04 - acc: 1.0000\n",
            "Epoch 26/40\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 2.7295e-04 - acc: 1.0000\n",
            "Epoch 27/40\n",
            "1671/1671 [==============================] - 0s 128us/step - loss: 2.3977e-04 - acc: 1.0000\n",
            "Epoch 28/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 2.2223e-04 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 2.3144e-04 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 2.0171e-04 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 1.7516e-04 - acc: 1.0000\n",
            "Epoch 32/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.7044e-04 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 1.8740e-04 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 2.3034e-04 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.5873e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 1.3067e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 1.3918e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 9.4846e-05 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 1.0110e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 1.1449e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 184us/step\n",
            "1671/1671 [==============================] - 0s 42us/step\n",
            "Epoch 1/45\n",
            "1670/1670 [==============================] - 1s 587us/step - loss: 0.5313 - acc: 0.7156\n",
            "Epoch 2/45\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.3883 - acc: 0.8162\n",
            "Epoch 3/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 0.3097 - acc: 0.8707\n",
            "Epoch 4/45\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 0.2328 - acc: 0.9024\n",
            "Epoch 5/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 0.1984 - acc: 0.9257\n",
            "Epoch 6/45\n",
            "1670/1670 [==============================] - 0s 121us/step - loss: 0.1595 - acc: 0.9377\n",
            "Epoch 7/45\n",
            "1670/1670 [==============================] - 0s 129us/step - loss: 0.1429 - acc: 0.9437\n",
            "Epoch 8/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 0.1130 - acc: 0.9599\n",
            "Epoch 9/45\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 0.0848 - acc: 0.9707\n",
            "Epoch 10/45\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 0.0770 - acc: 0.9743\n",
            "Epoch 11/45\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 0.0766 - acc: 0.9749\n",
            "Epoch 12/45\n",
            "1670/1670 [==============================] - 0s 127us/step - loss: 0.0588 - acc: 0.9820\n",
            "Epoch 13/45\n",
            "1670/1670 [==============================] - 0s 119us/step - loss: 0.0477 - acc: 0.9832\n",
            "Epoch 14/45\n",
            "1670/1670 [==============================] - 0s 127us/step - loss: 0.0405 - acc: 0.9856\n",
            "Epoch 15/45\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0289 - acc: 0.9904\n",
            "Epoch 16/45\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 0.0188 - acc: 0.9946\n",
            "Epoch 17/45\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 0.0128 - acc: 0.9970\n",
            "Epoch 18/45\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 0.0101 - acc: 0.9988\n",
            "Epoch 19/45\n",
            "1670/1670 [==============================] - 0s 121us/step - loss: 0.0082 - acc: 0.9970\n",
            "Epoch 20/45\n",
            "1670/1670 [==============================] - 0s 126us/step - loss: 0.0068 - acc: 0.9994\n",
            "Epoch 21/45\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 0.0041 - acc: 0.9994\n",
            "Epoch 22/45\n",
            "1670/1670 [==============================] - 0s 118us/step - loss: 0.0031 - acc: 0.9988\n",
            "Epoch 23/45\n",
            "1670/1670 [==============================] - 0s 127us/step - loss: 0.0019 - acc: 1.0000\n",
            "Epoch 24/45\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0016 - acc: 1.0000\n",
            "Epoch 25/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 0.0010 - acc: 1.0000\n",
            "Epoch 26/45\n",
            "1670/1670 [==============================] - 0s 124us/step - loss: 9.7136e-04 - acc: 1.0000\n",
            "Epoch 27/45\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 9.1186e-04 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 5.8555e-04 - acc: 1.0000\n",
            "Epoch 29/45\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 5.4908e-04 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1670/1670 [==============================] - 0s 126us/step - loss: 4.1918e-04 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1670/1670 [==============================] - 0s 126us/step - loss: 6.9578e-04 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1670/1670 [==============================] - 0s 122us/step - loss: 4.4042e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1670/1670 [==============================] - 0s 123us/step - loss: 0.0019 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0023 - acc: 0.9994\n",
            "Epoch 36/45\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 0.0018 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1670/1670 [==============================] - 0s 121us/step - loss: 0.0020 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 9.0884e-04 - acc: 0.9994\n",
            "Epoch 39/45\n",
            "1670/1670 [==============================] - 0s 121us/step - loss: 0.0016 - acc: 0.9994\n",
            "Epoch 40/45\n",
            "1670/1670 [==============================] - 0s 126us/step - loss: 0.0032 - acc: 0.9994\n",
            "Epoch 41/45\n",
            "1670/1670 [==============================] - 0s 120us/step - loss: 0.0039 - acc: 0.9988\n",
            "Epoch 42/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 0.0025 - acc: 0.9994\n",
            "Epoch 43/45\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 0.0020 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1670/1670 [==============================] - 0s 128us/step - loss: 7.9430e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1670/1670 [==============================] - 0s 125us/step - loss: 3.5344e-04 - acc: 1.0000\n",
            "836/836 [==============================] - 0s 217us/step\n",
            "1670/1670 [==============================] - 0s 42us/step\n",
            "Epoch 1/45\n",
            "1671/1671 [==============================] - 1s 538us/step - loss: 0.5437 - acc: 0.7080\n",
            "Epoch 2/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.4120 - acc: 0.8217\n",
            "Epoch 3/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.3137 - acc: 0.8803\n",
            "Epoch 4/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.2392 - acc: 0.9120\n",
            "Epoch 5/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.1870 - acc: 0.9402\n",
            "Epoch 6/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.1554 - acc: 0.9509\n",
            "Epoch 7/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 0.1269 - acc: 0.9611\n",
            "Epoch 8/45\n",
            "1671/1671 [==============================] - 0s 117us/step - loss: 0.1004 - acc: 0.9635\n",
            "Epoch 9/45\n",
            "1671/1671 [==============================] - 0s 132us/step - loss: 0.0622 - acc: 0.9820\n",
            "Epoch 10/45\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0523 - acc: 0.9826\n",
            "Epoch 11/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 0.0364 - acc: 0.9916\n",
            "Epoch 12/45\n",
            "1671/1671 [==============================] - 0s 118us/step - loss: 0.0329 - acc: 0.9910\n",
            "Epoch 13/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.0242 - acc: 0.9928\n",
            "Epoch 14/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.0194 - acc: 0.9940\n",
            "Epoch 15/45\n",
            "1671/1671 [==============================] - 0s 128us/step - loss: 0.0092 - acc: 0.9988\n",
            "Epoch 16/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0055 - acc: 0.9982\n",
            "Epoch 17/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 0.0037 - acc: 1.0000\n",
            "Epoch 18/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 0.0020 - acc: 1.0000\n",
            "Epoch 19/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 0.0015 - acc: 1.0000\n",
            "Epoch 20/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.0013 - acc: 1.0000\n",
            "Epoch 21/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 9.0196e-04 - acc: 1.0000\n",
            "Epoch 22/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 6.9242e-04 - acc: 1.0000\n",
            "Epoch 23/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 8.7947e-04 - acc: 1.0000\n",
            "Epoch 24/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 5.4557e-04 - acc: 1.0000\n",
            "Epoch 25/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 5.2677e-04 - acc: 1.0000\n",
            "Epoch 26/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 6.8765e-04 - acc: 1.0000\n",
            "Epoch 27/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 3.8855e-04 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 4.4169e-04 - acc: 1.0000\n",
            "Epoch 29/45\n",
            "1671/1671 [==============================] - 0s 129us/step - loss: 3.5169e-04 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 3.1534e-04 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 2.5734e-04 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 2.5806e-04 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 2.6530e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 1.7713e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.5908e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 1.5681e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 1.5155e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 1.4470e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1671/1671 [==============================] - 0s 129us/step - loss: 1.5322e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.3595e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1671/1671 [==============================] - 0s 128us/step - loss: 1.2467e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 1.1036e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 1.0531e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1671/1671 [==============================] - 0s 129us/step - loss: 1.0204e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 9.4211e-05 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 244us/step\n",
            "1671/1671 [==============================] - 0s 43us/step\n",
            "Epoch 1/45\n",
            "1671/1671 [==============================] - 1s 607us/step - loss: 0.5280 - acc: 0.7265\n",
            "Epoch 2/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 0.3432 - acc: 0.8618\n",
            "Epoch 3/45\n",
            "1671/1671 [==============================] - 0s 129us/step - loss: 0.2635 - acc: 0.8941\n",
            "Epoch 4/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.1890 - acc: 0.9425\n",
            "Epoch 5/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.1679 - acc: 0.9408\n",
            "Epoch 6/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.1293 - acc: 0.9557\n",
            "Epoch 7/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 0.0857 - acc: 0.9731\n",
            "Epoch 8/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0624 - acc: 0.9814\n",
            "Epoch 9/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.0855 - acc: 0.9755\n",
            "Epoch 10/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0453 - acc: 0.9856\n",
            "Epoch 11/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.0344 - acc: 0.9922\n",
            "Epoch 12/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.0223 - acc: 0.9964\n",
            "Epoch 13/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 0.0130 - acc: 0.9982\n",
            "Epoch 14/45\n",
            "1671/1671 [==============================] - 0s 129us/step - loss: 0.0152 - acc: 0.9970\n",
            "Epoch 15/45\n",
            "1671/1671 [==============================] - 0s 120us/step - loss: 0.0091 - acc: 0.9988\n",
            "Epoch 16/45\n",
            "1671/1671 [==============================] - 0s 128us/step - loss: 0.0067 - acc: 0.9982\n",
            "Epoch 17/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.0065 - acc: 0.9982\n",
            "Epoch 18/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 0.0051 - acc: 0.9994\n",
            "Epoch 19/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 0.0039 - acc: 0.9994\n",
            "Epoch 20/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 0.0039 - acc: 0.9994\n",
            "Epoch 21/45\n",
            "1671/1671 [==============================] - 0s 119us/step - loss: 0.0036 - acc: 0.9988\n",
            "Epoch 22/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 0.0018 - acc: 1.0000\n",
            "Epoch 23/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 8.0987e-04 - acc: 1.0000\n",
            "Epoch 24/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 5.2110e-04 - acc: 1.0000\n",
            "Epoch 25/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 4.7184e-04 - acc: 1.0000\n",
            "Epoch 26/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 3.5962e-04 - acc: 1.0000\n",
            "Epoch 27/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 3.4306e-04 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 2.7791e-04 - acc: 1.0000\n",
            "Epoch 29/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 2.5751e-04 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 2.3010e-04 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 3.7653e-04 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1671/1671 [==============================] - 0s 127us/step - loss: 2.8345e-04 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 2.0581e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 2.1586e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 2.1271e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 1.7489e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 1.3666e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 1.1153e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1671/1671 [==============================] - 0s 122us/step - loss: 1.0154e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1671/1671 [==============================] - 0s 123us/step - loss: 1.0134e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1671/1671 [==============================] - 0s 124us/step - loss: 1.1034e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 8.6220e-05 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1671/1671 [==============================] - 0s 121us/step - loss: 9.1627e-05 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1671/1671 [==============================] - 0s 125us/step - loss: 7.7372e-05 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1671/1671 [==============================] - 0s 126us/step - loss: 8.3668e-05 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 268us/step\n",
            "1671/1671 [==============================] - 0s 44us/step\n",
            "Epoch 1/40\n",
            "1670/1670 [==============================] - 1s 722us/step - loss: 0.5814 - acc: 0.6665\n",
            "Epoch 2/40\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 0.4431 - acc: 0.7832\n",
            "Epoch 3/40\n",
            "1670/1670 [==============================] - 0s 104us/step - loss: 0.3575 - acc: 0.8509\n",
            "Epoch 4/40\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.2952 - acc: 0.8683\n",
            "Epoch 5/40\n",
            "1670/1670 [==============================] - 0s 102us/step - loss: 0.2329 - acc: 0.8952\n",
            "Epoch 6/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.2016 - acc: 0.9204\n",
            "Epoch 7/40\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 0.1770 - acc: 0.9347\n",
            "Epoch 8/40\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 0.1553 - acc: 0.9431\n",
            "Epoch 9/40\n",
            "1670/1670 [==============================] - 0s 101us/step - loss: 0.1367 - acc: 0.9533\n",
            "Epoch 10/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.1080 - acc: 0.9611\n",
            "Epoch 11/40\n",
            "1670/1670 [==============================] - 0s 98us/step - loss: 0.0961 - acc: 0.9635\n",
            "Epoch 12/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0727 - acc: 0.9784\n",
            "Epoch 13/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0589 - acc: 0.9796\n",
            "Epoch 14/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0565 - acc: 0.9796\n",
            "Epoch 15/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0412 - acc: 0.9862\n",
            "Epoch 16/40\n",
            "1670/1670 [==============================] - 0s 98us/step - loss: 0.0337 - acc: 0.9886\n",
            "Epoch 17/40\n",
            "1670/1670 [==============================] - 0s 101us/step - loss: 0.0281 - acc: 0.9916\n",
            "Epoch 18/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0251 - acc: 0.9928\n",
            "Epoch 19/40\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 0.0275 - acc: 0.9922\n",
            "Epoch 20/40\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0240 - acc: 0.9910\n",
            "Epoch 21/40\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 0.0199 - acc: 0.9958\n",
            "Epoch 22/40\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0208 - acc: 0.9958\n",
            "Epoch 23/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0134 - acc: 0.9976\n",
            "Epoch 24/40\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 0.0091 - acc: 0.9994\n",
            "Epoch 25/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0101 - acc: 0.9976\n",
            "Epoch 26/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0105 - acc: 0.9964\n",
            "Epoch 27/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0103 - acc: 0.9976\n",
            "Epoch 28/40\n",
            "1670/1670 [==============================] - 0s 98us/step - loss: 0.0069 - acc: 0.9994\n",
            "Epoch 29/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0059 - acc: 0.9988\n",
            "Epoch 30/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0029 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1670/1670 [==============================] - 0s 101us/step - loss: 0.0030 - acc: 0.9994\n",
            "Epoch 32/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0017 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0012 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0014 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 7.1464e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 6.2339e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 5.8310e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 5.0894e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 4.9269e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1670/1670 [==============================] - 0s 102us/step - loss: 4.1773e-04 - acc: 1.0000\n",
            "836/836 [==============================] - 0s 335us/step\n",
            "1670/1670 [==============================] - 0s 33us/step\n",
            "Epoch 1/40\n",
            "1671/1671 [==============================] - 1s 708us/step - loss: 0.6093 - acc: 0.6433\n",
            "Epoch 2/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.4755 - acc: 0.7762\n",
            "Epoch 3/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.3956 - acc: 0.8348\n",
            "Epoch 4/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.3232 - acc: 0.8761\n",
            "Epoch 5/40\n",
            "1671/1671 [==============================] - 0s 101us/step - loss: 0.2583 - acc: 0.9102\n",
            "Epoch 6/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.2115 - acc: 0.9222\n",
            "Epoch 7/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.1774 - acc: 0.9414\n",
            "Epoch 8/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.1387 - acc: 0.9581\n",
            "Epoch 9/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.1133 - acc: 0.9695\n",
            "Epoch 10/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0935 - acc: 0.9713\n",
            "Epoch 11/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0820 - acc: 0.9808\n",
            "Epoch 12/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0603 - acc: 0.9797\n",
            "Epoch 13/40\n",
            "1671/1671 [==============================] - 0s 104us/step - loss: 0.0461 - acc: 0.9868\n",
            "Epoch 14/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0356 - acc: 0.9886\n",
            "Epoch 15/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0279 - acc: 0.9928\n",
            "Epoch 16/40\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 0.0232 - acc: 0.9940\n",
            "Epoch 17/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0191 - acc: 0.9946\n",
            "Epoch 18/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0180 - acc: 0.9958\n",
            "Epoch 19/40\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 0.0111 - acc: 0.9976\n",
            "Epoch 20/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0073 - acc: 0.9982\n",
            "Epoch 21/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0078 - acc: 0.9982\n",
            "Epoch 22/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0053 - acc: 0.9988\n",
            "Epoch 23/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0038 - acc: 1.0000\n",
            "Epoch 24/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0036 - acc: 0.9994\n",
            "Epoch 25/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0020 - acc: 1.0000\n",
            "Epoch 26/40\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.0017 - acc: 1.0000\n",
            "Epoch 27/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0014 - acc: 1.0000\n",
            "Epoch 28/40\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0013 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 9.0563e-04 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 6.8055e-04 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 7.8335e-04 - acc: 1.0000\n",
            "Epoch 32/40\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 7.4935e-04 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 5.0609e-04 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 6.6155e-04 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 5.7283e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 7.3051e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 4.7687e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 3.4146e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 2.5982e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 2.2336e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 341us/step\n",
            "1671/1671 [==============================] - 0s 34us/step\n",
            "Epoch 1/40\n",
            "1671/1671 [==============================] - 1s 708us/step - loss: 0.5911 - acc: 0.6906\n",
            "Epoch 2/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.4057 - acc: 0.8253\n",
            "Epoch 3/40\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.3179 - acc: 0.8713\n",
            "Epoch 4/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.2433 - acc: 0.9048\n",
            "Epoch 5/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.2043 - acc: 0.9276\n",
            "Epoch 6/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.1573 - acc: 0.9509\n",
            "Epoch 7/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.1364 - acc: 0.9563\n",
            "Epoch 8/40\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.1002 - acc: 0.9695\n",
            "Epoch 9/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0731 - acc: 0.9779\n",
            "Epoch 10/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0567 - acc: 0.9826\n",
            "Epoch 11/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0480 - acc: 0.9874\n",
            "Epoch 12/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0404 - acc: 0.9880\n",
            "Epoch 13/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0251 - acc: 0.9946\n",
            "Epoch 14/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0202 - acc: 0.9952\n",
            "Epoch 15/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0139 - acc: 0.9976\n",
            "Epoch 16/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0102 - acc: 0.9988\n",
            "Epoch 17/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0082 - acc: 0.9994\n",
            "Epoch 18/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0046 - acc: 0.9994\n",
            "Epoch 19/40\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0041 - acc: 0.9988\n",
            "Epoch 20/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0036 - acc: 0.9994\n",
            "Epoch 21/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0020 - acc: 1.0000\n",
            "Epoch 22/40\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 0.0020 - acc: 0.9994\n",
            "Epoch 23/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0014 - acc: 1.0000\n",
            "Epoch 24/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 8.5048e-04 - acc: 1.0000\n",
            "Epoch 25/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0010 - acc: 1.0000\n",
            "Epoch 26/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 8.2846e-04 - acc: 1.0000\n",
            "Epoch 27/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 6.0172e-04 - acc: 1.0000\n",
            "Epoch 28/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 5.7156e-04 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 4.6145e-04 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 4.8809e-04 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 4.5803e-04 - acc: 1.0000\n",
            "Epoch 32/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 4.7200e-04 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 3.3768e-04 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 3.0641e-04 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 2.6282e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 2.4899e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 2.7367e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 2.6420e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 2.3683e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 2.3484e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 410us/step\n",
            "1671/1671 [==============================] - 0s 32us/step\n",
            "Epoch 1/45\n",
            "1670/1670 [==============================] - 1s 743us/step - loss: 0.5947 - acc: 0.6707\n",
            "Epoch 2/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.4474 - acc: 0.7778\n",
            "Epoch 3/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.3761 - acc: 0.8263\n",
            "Epoch 4/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.3053 - acc: 0.8653\n",
            "Epoch 5/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.2448 - acc: 0.9030\n",
            "Epoch 6/45\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 0.2077 - acc: 0.9162\n",
            "Epoch 7/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.1783 - acc: 0.9299\n",
            "Epoch 8/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.1433 - acc: 0.9509\n",
            "Epoch 9/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.1259 - acc: 0.9569\n",
            "Epoch 10/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.1009 - acc: 0.9635\n",
            "Epoch 11/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0805 - acc: 0.9689\n",
            "Epoch 12/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0653 - acc: 0.9784\n",
            "Epoch 13/45\n",
            "1670/1670 [==============================] - 0s 100us/step - loss: 0.0573 - acc: 0.9814\n",
            "Epoch 14/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0459 - acc: 0.9868\n",
            "Epoch 15/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0334 - acc: 0.9916\n",
            "Epoch 16/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0270 - acc: 0.9922\n",
            "Epoch 17/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0275 - acc: 0.9910\n",
            "Epoch 18/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0202 - acc: 0.9946\n",
            "Epoch 19/45\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 0.0174 - acc: 0.9958\n",
            "Epoch 20/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0209 - acc: 0.9922\n",
            "Epoch 21/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0134 - acc: 0.9970\n",
            "Epoch 22/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0090 - acc: 0.9988\n",
            "Epoch 23/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0088 - acc: 0.9982\n",
            "Epoch 24/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0055 - acc: 0.9988\n",
            "Epoch 25/45\n",
            "1670/1670 [==============================] - 0s 103us/step - loss: 0.0050 - acc: 0.9994\n",
            "Epoch 26/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0061 - acc: 0.9988\n",
            "Epoch 27/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0038 - acc: 0.9994\n",
            "Epoch 28/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0023 - acc: 1.0000\n",
            "Epoch 29/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0018 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0014 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 8.4462e-04 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 8.6333e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 8.0498e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 6.0671e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 5.7625e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 4.4912e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 4.7466e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 4.0305e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 3.4919e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 3.1563e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1670/1670 [==============================] - 0s 102us/step - loss: 2.8186e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 2.8566e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1670/1670 [==============================] - 0s 100us/step - loss: 2.6586e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 2.6300e-04 - acc: 1.0000\n",
            "836/836 [==============================] - 0s 460us/step\n",
            "1670/1670 [==============================] - 0s 33us/step\n",
            "Epoch 1/45\n",
            "1671/1671 [==============================] - 1s 834us/step - loss: 0.5763 - acc: 0.6882\n",
            "Epoch 2/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.4349 - acc: 0.8151\n",
            "Epoch 3/45\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 0.3640 - acc: 0.8474\n",
            "Epoch 4/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.2879 - acc: 0.8941\n",
            "Epoch 5/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.2357 - acc: 0.9174\n",
            "Epoch 6/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.1867 - acc: 0.9336\n",
            "Epoch 7/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.1592 - acc: 0.9515\n",
            "Epoch 8/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.1389 - acc: 0.9569\n",
            "Epoch 9/45\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 0.1075 - acc: 0.9719\n",
            "Epoch 10/45\n",
            "1671/1671 [==============================] - 0s 103us/step - loss: 0.0896 - acc: 0.9743\n",
            "Epoch 11/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0665 - acc: 0.9826\n",
            "Epoch 12/45\n",
            "1671/1671 [==============================] - 0s 103us/step - loss: 0.0543 - acc: 0.9838\n",
            "Epoch 13/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.0467 - acc: 0.9868\n",
            "Epoch 14/45\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0323 - acc: 0.9916\n",
            "Epoch 15/45\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0270 - acc: 0.9916\n",
            "Epoch 16/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0216 - acc: 0.9922\n",
            "Epoch 17/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0193 - acc: 0.9946\n",
            "Epoch 18/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0121 - acc: 0.9976\n",
            "Epoch 19/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0083 - acc: 0.9994\n",
            "Epoch 20/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0082 - acc: 0.9970\n",
            "Epoch 21/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0076 - acc: 0.9982\n",
            "Epoch 22/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0046 - acc: 0.9988\n",
            "Epoch 23/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.0039 - acc: 0.9994\n",
            "Epoch 24/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0022 - acc: 1.0000\n",
            "Epoch 25/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0018 - acc: 1.0000\n",
            "Epoch 26/45\n",
            "1671/1671 [==============================] - 0s 101us/step - loss: 0.0013 - acc: 1.0000\n",
            "Epoch 27/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 9.9790e-04 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 9.5852e-04 - acc: 1.0000\n",
            "Epoch 29/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 8.0674e-04 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 7.8172e-04 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 5.5745e-04 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 5.4732e-04 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1671/1671 [==============================] - 0s 101us/step - loss: 5.4933e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 4.8002e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 3.7420e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 3.6412e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 2.9737e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 3.4885e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 3.3689e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 3.3300e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 2.5974e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 2.8576e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 2.2731e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 2.4249e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 2.1675e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 518us/step\n",
            "1671/1671 [==============================] - 0s 35us/step\n",
            "Epoch 1/45\n",
            "1671/1671 [==============================] - 1s 866us/step - loss: 0.6050 - acc: 0.6732\n",
            "Epoch 2/45\n",
            "1671/1671 [==============================] - 0s 112us/step - loss: 0.4165 - acc: 0.8133\n",
            "Epoch 3/45\n",
            "1671/1671 [==============================] - 0s 108us/step - loss: 0.3380 - acc: 0.8761\n",
            "Epoch 4/45\n",
            "1671/1671 [==============================] - 0s 105us/step - loss: 0.2714 - acc: 0.8881\n",
            "Epoch 5/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.2091 - acc: 0.9240\n",
            "Epoch 6/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.1653 - acc: 0.9479\n",
            "Epoch 7/45\n",
            "1671/1671 [==============================] - 0s 101us/step - loss: 0.1294 - acc: 0.9563\n",
            "Epoch 8/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.1043 - acc: 0.9689\n",
            "Epoch 9/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0923 - acc: 0.9707\n",
            "Epoch 10/45\n",
            "1671/1671 [==============================] - 0s 103us/step - loss: 0.0699 - acc: 0.9803\n",
            "Epoch 11/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0488 - acc: 0.9874\n",
            "Epoch 12/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.0364 - acc: 0.9898\n",
            "Epoch 13/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 0.0354 - acc: 0.9928\n",
            "Epoch 14/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0254 - acc: 0.9940\n",
            "Epoch 15/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0165 - acc: 0.9982\n",
            "Epoch 16/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0142 - acc: 0.9976\n",
            "Epoch 17/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0132 - acc: 0.9982\n",
            "Epoch 18/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0121 - acc: 0.9982\n",
            "Epoch 19/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0108 - acc: 0.9982\n",
            "Epoch 20/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0069 - acc: 0.9988\n",
            "Epoch 21/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0068 - acc: 0.9982\n",
            "Epoch 22/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0055 - acc: 0.9994\n",
            "Epoch 23/45\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 0.0029 - acc: 0.9994\n",
            "Epoch 24/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 0.0027 - acc: 0.9994\n",
            "Epoch 25/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0026 - acc: 0.9994\n",
            "Epoch 26/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0036 - acc: 0.9988\n",
            "Epoch 27/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0028 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 0.0039 - acc: 0.9988\n",
            "Epoch 29/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0035 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0031 - acc: 0.9994\n",
            "Epoch 31/45\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 0.0027 - acc: 0.9994\n",
            "Epoch 32/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0017 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1671/1671 [==============================] - 0s 101us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 6.6251e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 5.5511e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1671/1671 [==============================] - 0s 103us/step - loss: 5.1963e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 4.5705e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 3.4293e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 2.7730e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 2.9983e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 2.4354e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 1.9474e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 2.1058e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 1.8298e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1671/1671 [==============================] - 0s 102us/step - loss: 1.6882e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 0s 542us/step\n",
            "1671/1671 [==============================] - 0s 34us/step\n",
            "Epoch 1/40\n",
            "1670/1670 [==============================] - 2s 994us/step - loss: 0.6056 - acc: 0.6371\n",
            "Epoch 2/40\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 0.5224 - acc: 0.7599\n",
            "Epoch 3/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.4926 - acc: 0.7467\n",
            "Epoch 4/40\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.4037 - acc: 0.8144\n",
            "Epoch 5/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.3640 - acc: 0.8353\n",
            "Epoch 6/40\n",
            "1670/1670 [==============================] - 0s 90us/step - loss: 0.3112 - acc: 0.8527\n",
            "Epoch 7/40\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.2666 - acc: 0.8874\n",
            "Epoch 8/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.2279 - acc: 0.9060\n",
            "Epoch 9/40\n",
            "1670/1670 [==============================] - 0s 90us/step - loss: 0.2079 - acc: 0.9228\n",
            "Epoch 10/40\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.1765 - acc: 0.9383\n",
            "Epoch 11/40\n",
            "1670/1670 [==============================] - 0s 99us/step - loss: 0.1499 - acc: 0.9503\n",
            "Epoch 12/40\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.1316 - acc: 0.9557\n",
            "Epoch 13/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.1137 - acc: 0.9617\n",
            "Epoch 14/40\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.1013 - acc: 0.9641\n",
            "Epoch 15/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0880 - acc: 0.9713\n",
            "Epoch 16/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0796 - acc: 0.9737\n",
            "Epoch 17/40\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0781 - acc: 0.9731\n",
            "Epoch 18/40\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.0738 - acc: 0.9719\n",
            "Epoch 19/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0690 - acc: 0.9760\n",
            "Epoch 20/40\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.0560 - acc: 0.9784\n",
            "Epoch 21/40\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.0450 - acc: 0.9820\n",
            "Epoch 22/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0388 - acc: 0.9868\n",
            "Epoch 23/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0336 - acc: 0.9874\n",
            "Epoch 24/40\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 0.0278 - acc: 0.9928\n",
            "Epoch 25/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0247 - acc: 0.9934\n",
            "Epoch 26/40\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.0228 - acc: 0.9922\n",
            "Epoch 27/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0206 - acc: 0.9940\n",
            "Epoch 28/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0283 - acc: 0.9916\n",
            "Epoch 29/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0236 - acc: 0.9922\n",
            "Epoch 30/40\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0217 - acc: 0.9952\n",
            "Epoch 31/40\n",
            "1670/1670 [==============================] - 0s 90us/step - loss: 0.0212 - acc: 0.9910\n",
            "Epoch 32/40\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0172 - acc: 0.9952\n",
            "Epoch 33/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0100 - acc: 0.9982\n",
            "Epoch 34/40\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.0096 - acc: 0.9982\n",
            "Epoch 35/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0086 - acc: 0.9982\n",
            "Epoch 36/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0097 - acc: 0.9982\n",
            "Epoch 37/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0066 - acc: 0.9988\n",
            "Epoch 38/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0061 - acc: 0.9994\n",
            "Epoch 39/40\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0050 - acc: 0.9994\n",
            "Epoch 40/40\n",
            "1670/1670 [==============================] - 0s 89us/step - loss: 0.0034 - acc: 0.9994\n",
            "836/836 [==============================] - 1s 687us/step\n",
            "1670/1670 [==============================] - 0s 31us/step\n",
            "Epoch 1/40\n",
            "1671/1671 [==============================] - 2s 966us/step - loss: 0.6197 - acc: 0.6290\n",
            "Epoch 2/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.4664 - acc: 0.7893\n",
            "Epoch 3/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.3978 - acc: 0.8396\n",
            "Epoch 4/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.3301 - acc: 0.8749\n",
            "Epoch 5/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.2942 - acc: 0.8929\n",
            "Epoch 6/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.2418 - acc: 0.9204\n",
            "Epoch 7/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.2067 - acc: 0.9330\n",
            "Epoch 8/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.1746 - acc: 0.9420\n",
            "Epoch 9/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.1479 - acc: 0.9557\n",
            "Epoch 10/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.1150 - acc: 0.9635\n",
            "Epoch 11/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0902 - acc: 0.9737\n",
            "Epoch 12/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0717 - acc: 0.9797\n",
            "Epoch 13/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0573 - acc: 0.9844\n",
            "Epoch 14/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0533 - acc: 0.9820\n",
            "Epoch 15/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0385 - acc: 0.9886\n",
            "Epoch 16/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0252 - acc: 0.9946\n",
            "Epoch 17/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0186 - acc: 0.9964\n",
            "Epoch 18/40\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0130 - acc: 0.9976\n",
            "Epoch 19/40\n",
            "1671/1671 [==============================] - 0s 88us/step - loss: 0.0102 - acc: 0.9982\n",
            "Epoch 20/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0046 - acc: 1.0000\n",
            "Epoch 21/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0037 - acc: 1.0000\n",
            "Epoch 22/40\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0035 - acc: 1.0000\n",
            "Epoch 23/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0037 - acc: 0.9994\n",
            "Epoch 24/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0047 - acc: 0.9988\n",
            "Epoch 25/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0029 - acc: 1.0000\n",
            "Epoch 26/40\n",
            "1671/1671 [==============================] - 0s 89us/step - loss: 0.0027 - acc: 0.9994\n",
            "Epoch 27/40\n",
            "1671/1671 [==============================] - 0s 89us/step - loss: 0.0015 - acc: 1.0000\n",
            "Epoch 28/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 8.7349e-04 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 6.8601e-04 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 6.6915e-04 - acc: 1.0000\n",
            "Epoch 32/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 5.1671e-04 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 4.6958e-04 - acc: 1.0000\n",
            "Epoch 34/40\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 4.2323e-04 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 3.8559e-04 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 3.5816e-04 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 3.5170e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 3.1197e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 2.9983e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 2.9690e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 1s 662us/step\n",
            "1671/1671 [==============================] - 0s 40us/step\n",
            "Epoch 1/40\n",
            "1671/1671 [==============================] - 2s 1ms/step - loss: 0.6180 - acc: 0.6816\n",
            "Epoch 2/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.4440 - acc: 0.8013\n",
            "Epoch 3/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.3692 - acc: 0.8432\n",
            "Epoch 4/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.2981 - acc: 0.8755\n",
            "Epoch 5/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.2499 - acc: 0.9048\n",
            "Epoch 6/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.2087 - acc: 0.9216\n",
            "Epoch 7/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.1635 - acc: 0.9425\n",
            "Epoch 8/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.1429 - acc: 0.9527\n",
            "Epoch 9/40\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.1129 - acc: 0.9617\n",
            "Epoch 10/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0904 - acc: 0.9695\n",
            "Epoch 11/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0740 - acc: 0.9785\n",
            "Epoch 12/40\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 0.0621 - acc: 0.9803\n",
            "Epoch 13/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0534 - acc: 0.9856\n",
            "Epoch 14/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0372 - acc: 0.9898\n",
            "Epoch 15/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0294 - acc: 0.9934\n",
            "Epoch 16/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0212 - acc: 0.9976\n",
            "Epoch 17/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0199 - acc: 0.9976\n",
            "Epoch 18/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0181 - acc: 0.9958\n",
            "Epoch 19/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0133 - acc: 0.9964\n",
            "Epoch 20/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0083 - acc: 0.9982\n",
            "Epoch 21/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0073 - acc: 0.9988\n",
            "Epoch 22/40\n",
            "1671/1671 [==============================] - 0s 89us/step - loss: 0.0051 - acc: 0.9988\n",
            "Epoch 23/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0045 - acc: 0.9988\n",
            "Epoch 24/40\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0041 - acc: 0.9994\n",
            "Epoch 25/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0028 - acc: 0.9994\n",
            "Epoch 26/40\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0026 - acc: 1.0000\n",
            "Epoch 27/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0029 - acc: 0.9994\n",
            "Epoch 28/40\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0036 - acc: 1.0000\n",
            "Epoch 29/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0016 - acc: 1.0000\n",
            "Epoch 30/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0012 - acc: 1.0000\n",
            "Epoch 31/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0019 - acc: 0.9994\n",
            "Epoch 32/40\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0024 - acc: 1.0000\n",
            "Epoch 33/40\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 0.0035 - acc: 0.9994\n",
            "Epoch 34/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0023 - acc: 1.0000\n",
            "Epoch 35/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 36/40\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0012 - acc: 1.0000\n",
            "Epoch 37/40\n",
            "1671/1671 [==============================] - 0s 89us/step - loss: 8.3478e-04 - acc: 1.0000\n",
            "Epoch 38/40\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 5.2375e-04 - acc: 1.0000\n",
            "Epoch 39/40\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 4.1805e-04 - acc: 1.0000\n",
            "Epoch 40/40\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 3.7443e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 1s 706us/step\n",
            "1671/1671 [==============================] - 0s 34us/step\n",
            "Epoch 1/45\n",
            "1670/1670 [==============================] - 2s 1ms/step - loss: 0.5884 - acc: 0.6856\n",
            "Epoch 2/45\n",
            "1670/1670 [==============================] - 0s 89us/step - loss: 0.4222 - acc: 0.8012\n",
            "Epoch 3/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.3434 - acc: 0.8425\n",
            "Epoch 4/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.3021 - acc: 0.8683\n",
            "Epoch 5/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.2513 - acc: 0.8904\n",
            "Epoch 6/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.2101 - acc: 0.9102\n",
            "Epoch 7/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 0.1910 - acc: 0.9251\n",
            "Epoch 8/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.1613 - acc: 0.9407\n",
            "Epoch 9/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.1347 - acc: 0.9479\n",
            "Epoch 10/45\n",
            "1670/1670 [==============================] - 0s 89us/step - loss: 0.1065 - acc: 0.9623\n",
            "Epoch 11/45\n",
            "1670/1670 [==============================] - 0s 98us/step - loss: 0.0853 - acc: 0.9671\n",
            "Epoch 12/45\n",
            "1670/1670 [==============================] - 0s 88us/step - loss: 0.0724 - acc: 0.9754\n",
            "Epoch 13/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0540 - acc: 0.9808\n",
            "Epoch 14/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0406 - acc: 0.9856\n",
            "Epoch 15/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0308 - acc: 0.9916\n",
            "Epoch 16/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0316 - acc: 0.9916\n",
            "Epoch 17/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0345 - acc: 0.9862\n",
            "Epoch 18/45\n",
            "1670/1670 [==============================] - 0s 89us/step - loss: 0.0339 - acc: 0.9904\n",
            "Epoch 19/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 0.0231 - acc: 0.9964\n",
            "Epoch 20/45\n",
            "1670/1670 [==============================] - 0s 90us/step - loss: 0.0331 - acc: 0.9916\n",
            "Epoch 21/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0183 - acc: 0.9970\n",
            "Epoch 22/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0143 - acc: 0.9982\n",
            "Epoch 23/45\n",
            "1670/1670 [==============================] - 0s 90us/step - loss: 0.0085 - acc: 0.9988\n",
            "Epoch 24/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0057 - acc: 1.0000\n",
            "Epoch 25/45\n",
            "1670/1670 [==============================] - 0s 89us/step - loss: 0.0054 - acc: 0.9994\n",
            "Epoch 26/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 0.0034 - acc: 0.9994\n",
            "Epoch 27/45\n",
            "1670/1670 [==============================] - 0s 94us/step - loss: 0.0025 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 0.0022 - acc: 0.9994\n",
            "Epoch 29/45\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 0.0020 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1670/1670 [==============================] - 0s 95us/step - loss: 0.0013 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1670/1670 [==============================] - 0s 90us/step - loss: 9.4048e-04 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 8.9547e-04 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 7.0030e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 6.5361e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 6.2114e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 5.6589e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 4.7762e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1670/1670 [==============================] - 0s 86us/step - loss: 4.0809e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1670/1670 [==============================] - 0s 97us/step - loss: 4.3098e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 3.6202e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1670/1670 [==============================] - 0s 92us/step - loss: 3.6499e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 3.5395e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1670/1670 [==============================] - 0s 91us/step - loss: 3.2763e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1670/1670 [==============================] - 0s 96us/step - loss: 3.0331e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1670/1670 [==============================] - 0s 93us/step - loss: 2.5216e-04 - acc: 1.0000\n",
            "836/836 [==============================] - 1s 711us/step\n",
            "1670/1670 [==============================] - 0s 33us/step\n",
            "Epoch 1/45\n",
            "1671/1671 [==============================] - 2s 1ms/step - loss: 0.6096 - acc: 0.6715\n",
            "Epoch 2/45\n",
            "1671/1671 [==============================] - 0s 112us/step - loss: 0.5082 - acc: 0.7648\n",
            "Epoch 3/45\n",
            "1671/1671 [==============================] - 0s 105us/step - loss: 0.4748 - acc: 0.7953\n",
            "Epoch 4/45\n",
            "1671/1671 [==============================] - 0s 99us/step - loss: 0.3916 - acc: 0.8366\n",
            "Epoch 5/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.3483 - acc: 0.8618\n",
            "Epoch 6/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.3077 - acc: 0.8743\n",
            "Epoch 7/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.2568 - acc: 0.9168\n",
            "Epoch 8/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.2217 - acc: 0.9240\n",
            "Epoch 9/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.1790 - acc: 0.9431\n",
            "Epoch 10/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.1508 - acc: 0.9545\n",
            "Epoch 11/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.1270 - acc: 0.9617\n",
            "Epoch 12/45\n",
            "1671/1671 [==============================] - 0s 88us/step - loss: 0.1067 - acc: 0.9677\n",
            "Epoch 13/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0878 - acc: 0.9773\n",
            "Epoch 14/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0742 - acc: 0.9803\n",
            "Epoch 15/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0608 - acc: 0.9838\n",
            "Epoch 16/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0477 - acc: 0.9868\n",
            "Epoch 17/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0423 - acc: 0.9886\n",
            "Epoch 18/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0362 - acc: 0.9892\n",
            "Epoch 19/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0334 - acc: 0.9880\n",
            "Epoch 20/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0232 - acc: 0.9946\n",
            "Epoch 21/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0227 - acc: 0.9934\n",
            "Epoch 22/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0185 - acc: 0.9940\n",
            "Epoch 23/45\n",
            "1671/1671 [==============================] - 0s 89us/step - loss: 0.0226 - acc: 0.9940\n",
            "Epoch 24/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0279 - acc: 0.9916\n",
            "Epoch 25/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0216 - acc: 0.9946\n",
            "Epoch 26/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0198 - acc: 0.9934\n",
            "Epoch 27/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0155 - acc: 0.9964\n",
            "Epoch 28/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0176 - acc: 0.9952\n",
            "Epoch 29/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0127 - acc: 0.9940\n",
            "Epoch 30/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0099 - acc: 0.9982\n",
            "Epoch 31/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0078 - acc: 0.9970\n",
            "Epoch 32/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0067 - acc: 0.9976\n",
            "Epoch 33/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0040 - acc: 0.9994\n",
            "Epoch 34/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0037 - acc: 0.9994\n",
            "Epoch 35/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0029 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0031 - acc: 0.9994\n",
            "Epoch 37/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0028 - acc: 0.9994\n",
            "Epoch 38/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0023 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0026 - acc: 0.9994\n",
            "Epoch 40/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0022 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0017 - acc: 0.9994\n",
            "Epoch 42/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0011 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 7.8623e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 7.0945e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 6.6912e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 1s 823us/step\n",
            "1671/1671 [==============================] - 0s 34us/step\n",
            "Epoch 1/45\n",
            "1671/1671 [==============================] - 2s 1ms/step - loss: 0.6194 - acc: 0.6529\n",
            "Epoch 2/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.4475 - acc: 0.8007\n",
            "Epoch 3/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.3549 - acc: 0.8588\n",
            "Epoch 4/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.2843 - acc: 0.8977\n",
            "Epoch 5/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.2318 - acc: 0.9162\n",
            "Epoch 6/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.1953 - acc: 0.9306\n",
            "Epoch 7/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.1503 - acc: 0.9527\n",
            "Epoch 8/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.1236 - acc: 0.9569\n",
            "Epoch 9/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0881 - acc: 0.9701\n",
            "Epoch 10/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0850 - acc: 0.9737\n",
            "Epoch 11/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0671 - acc: 0.9773\n",
            "Epoch 12/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0552 - acc: 0.9814\n",
            "Epoch 13/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0385 - acc: 0.9904\n",
            "Epoch 14/45\n",
            "1671/1671 [==============================] - 0s 100us/step - loss: 0.0286 - acc: 0.9946\n",
            "Epoch 15/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0230 - acc: 0.9940\n",
            "Epoch 16/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0185 - acc: 0.9970\n",
            "Epoch 17/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 0.0174 - acc: 0.9964\n",
            "Epoch 18/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 0.0118 - acc: 0.9976\n",
            "Epoch 19/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0085 - acc: 0.9982\n",
            "Epoch 20/45\n",
            "1671/1671 [==============================] - 0s 98us/step - loss: 0.0055 - acc: 0.9994\n",
            "Epoch 21/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0038 - acc: 1.0000\n",
            "Epoch 22/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0045 - acc: 0.9988\n",
            "Epoch 23/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 0.0024 - acc: 1.0000\n",
            "Epoch 24/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 0.0026 - acc: 0.9994\n",
            "Epoch 25/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 0.0015 - acc: 1.0000\n",
            "Epoch 26/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 0.0012 - acc: 1.0000\n",
            "Epoch 27/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 0.0013 - acc: 1.0000\n",
            "Epoch 28/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 9.9008e-04 - acc: 1.0000\n",
            "Epoch 29/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 7.9811e-04 - acc: 1.0000\n",
            "Epoch 30/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 6.2390e-04 - acc: 1.0000\n",
            "Epoch 31/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 5.4578e-04 - acc: 1.0000\n",
            "Epoch 32/45\n",
            "1671/1671 [==============================] - 0s 90us/step - loss: 5.1213e-04 - acc: 1.0000\n",
            "Epoch 33/45\n",
            "1671/1671 [==============================] - 0s 97us/step - loss: 5.1294e-04 - acc: 1.0000\n",
            "Epoch 34/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 4.1586e-04 - acc: 1.0000\n",
            "Epoch 35/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 4.4240e-04 - acc: 1.0000\n",
            "Epoch 36/45\n",
            "1671/1671 [==============================] - 0s 91us/step - loss: 4.6432e-04 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 3.5520e-04 - acc: 1.0000\n",
            "Epoch 38/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 3.2789e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 3.1179e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 3.1183e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "1671/1671 [==============================] - 0s 92us/step - loss: 2.6084e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "1671/1671 [==============================] - 0s 96us/step - loss: 2.8258e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "1671/1671 [==============================] - 0s 94us/step - loss: 2.8240e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "1671/1671 [==============================] - 0s 93us/step - loss: 2.9810e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "1671/1671 [==============================] - 0s 95us/step - loss: 2.4046e-04 - acc: 1.0000\n",
            "835/835 [==============================] - 1s 888us/step\n",
            "1671/1671 [==============================] - 0s 33us/step\n",
            "Epoch 1/45\n",
            "2506/2506 [==============================] - 2s 920us/step - loss: 0.5571 - acc: 0.7079\n",
            "Epoch 2/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.4029 - acc: 0.8312\n",
            "Epoch 3/45\n",
            "2506/2506 [==============================] - 0s 95us/step - loss: 0.3177 - acc: 0.8735\n",
            "Epoch 4/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.2654 - acc: 0.8998\n",
            "Epoch 5/45\n",
            "2506/2506 [==============================] - 0s 96us/step - loss: 0.2095 - acc: 0.9250\n",
            "Epoch 6/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.1776 - acc: 0.9377\n",
            "Epoch 7/45\n",
            "2506/2506 [==============================] - 0s 94us/step - loss: 0.1579 - acc: 0.9453\n",
            "Epoch 8/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.1252 - acc: 0.9577\n",
            "Epoch 9/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.1164 - acc: 0.9613\n",
            "Epoch 10/45\n",
            "2506/2506 [==============================] - 0s 94us/step - loss: 0.0958 - acc: 0.9689\n",
            "Epoch 11/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.0966 - acc: 0.9713\n",
            "Epoch 12/45\n",
            "2506/2506 [==============================] - 0s 98us/step - loss: 0.0804 - acc: 0.9725\n",
            "Epoch 13/45\n",
            "2506/2506 [==============================] - 0s 90us/step - loss: 0.0684 - acc: 0.9733\n",
            "Epoch 14/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0533 - acc: 0.9828\n",
            "Epoch 15/45\n",
            "2506/2506 [==============================] - 0s 89us/step - loss: 0.0393 - acc: 0.9864\n",
            "Epoch 16/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0268 - acc: 0.9920\n",
            "Epoch 17/45\n",
            "2506/2506 [==============================] - 0s 90us/step - loss: 0.0304 - acc: 0.9912\n",
            "Epoch 18/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0210 - acc: 0.9960\n",
            "Epoch 19/45\n",
            "2506/2506 [==============================] - 0s 90us/step - loss: 0.0194 - acc: 0.9952\n",
            "Epoch 20/45\n",
            "2506/2506 [==============================] - 0s 95us/step - loss: 0.0141 - acc: 0.9972\n",
            "Epoch 21/45\n",
            "2506/2506 [==============================] - 0s 90us/step - loss: 0.0139 - acc: 0.9968\n",
            "Epoch 22/45\n",
            "2506/2506 [==============================] - 0s 92us/step - loss: 0.0101 - acc: 0.9988\n",
            "Epoch 23/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.0068 - acc: 0.9992\n",
            "Epoch 24/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0052 - acc: 0.9988\n",
            "Epoch 25/45\n",
            "2506/2506 [==============================] - 0s 89us/step - loss: 0.0037 - acc: 0.9996\n",
            "Epoch 26/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.0035 - acc: 1.0000\n",
            "Epoch 27/45\n",
            "2506/2506 [==============================] - 0s 92us/step - loss: 0.0084 - acc: 0.9972\n",
            "Epoch 28/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.0115 - acc: 0.9972\n",
            "Epoch 29/45\n",
            "2506/2506 [==============================] - 0s 94us/step - loss: 0.0407 - acc: 0.9904\n",
            "Epoch 30/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0243 - acc: 0.9936\n",
            "Epoch 31/45\n",
            "2506/2506 [==============================] - 0s 94us/step - loss: 0.0146 - acc: 0.9948\n",
            "Epoch 32/45\n",
            "2506/2506 [==============================] - 0s 92us/step - loss: 0.0114 - acc: 0.9956\n",
            "Epoch 33/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.0097 - acc: 0.9964\n",
            "Epoch 34/45\n",
            "2506/2506 [==============================] - 0s 94us/step - loss: 0.0087 - acc: 0.9976\n",
            "Epoch 35/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 0.0049 - acc: 0.9996\n",
            "Epoch 36/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0025 - acc: 1.0000\n",
            "Epoch 37/45\n",
            "2506/2506 [==============================] - 0s 93us/step - loss: 0.0017 - acc: 0.9992\n",
            "Epoch 38/45\n",
            "2506/2506 [==============================] - 0s 94us/step - loss: 7.0743e-04 - acc: 1.0000\n",
            "Epoch 39/45\n",
            "2506/2506 [==============================] - 0s 90us/step - loss: 5.1232e-04 - acc: 1.0000\n",
            "Epoch 40/45\n",
            "2506/2506 [==============================] - 0s 92us/step - loss: 4.1114e-04 - acc: 1.0000\n",
            "Epoch 41/45\n",
            "2506/2506 [==============================] - 0s 90us/step - loss: 3.7313e-04 - acc: 1.0000\n",
            "Epoch 42/45\n",
            "2506/2506 [==============================] - 0s 91us/step - loss: 3.0778e-04 - acc: 1.0000\n",
            "Epoch 43/45\n",
            "2506/2506 [==============================] - 0s 89us/step - loss: 3.0153e-04 - acc: 1.0000\n",
            "Epoch 44/45\n",
            "2506/2506 [==============================] - 0s 92us/step - loss: 2.7708e-04 - acc: 1.0000\n",
            "Epoch 45/45\n",
            "2506/2506 [==============================] - 0s 89us/step - loss: 2.6314e-04 - acc: 1.0000\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "qwFx1l2cF8Rm",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1615
        },
        "outputId": "fbdd41ce-238c-4de8-acd5-a843feee432d"
      },
      "cell_type": "code",
      "source": [
        "best_para = grid_result.best_params_\n",
        "print(\"best parameters:\",best_para)\n",
        "best_est = grid_result.best_estimator_\n",
        "\n",
        "# Fit the best algorithm to the data. \n",
        "best_est.fit(train_data, train_labels[:,0], validation_data=(validation_data, validation_labels[:,0]))\n",
        "acc = best_est.score(test_data, test_labels[:,0])\n",
        "print(\"accuracy: {:5.2f}%\".format(100*acc))"
      ],
      "execution_count": 27,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "best parameters: {'batch_size': 300, 'epochs': 45, 'optimizer': 'adam'}\n",
            "Train on 2064 samples, validate on 442 samples\n",
            "Epoch 1/45\n",
            "2064/2064 [==============================] - 3s 1ms/step - loss: 0.5912 - acc: 0.6478 - val_loss: 0.4246 - val_acc: 0.7602\n",
            "Epoch 2/45\n",
            "2064/2064 [==============================] - 0s 107us/step - loss: 0.4431 - acc: 0.8009 - val_loss: 0.4138 - val_acc: 0.8235\n",
            "Epoch 3/45\n",
            "2064/2064 [==============================] - 0s 101us/step - loss: 0.3609 - acc: 0.8522 - val_loss: 0.4541 - val_acc: 0.8348\n",
            "Epoch 4/45\n",
            "2064/2064 [==============================] - 0s 99us/step - loss: 0.2919 - acc: 0.8803 - val_loss: 0.3765 - val_acc: 0.8529\n",
            "Epoch 5/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.2147 - acc: 0.9264 - val_loss: 0.4278 - val_acc: 0.8484\n",
            "Epoch 6/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 0.1809 - acc: 0.9346 - val_loss: 0.4035 - val_acc: 0.8529\n",
            "Epoch 7/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.1444 - acc: 0.9540 - val_loss: 0.3821 - val_acc: 0.8348\n",
            "Epoch 8/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 0.1201 - acc: 0.9608 - val_loss: 0.3869 - val_acc: 0.8507\n",
            "Epoch 9/45\n",
            "2064/2064 [==============================] - 0s 96us/step - loss: 0.0907 - acc: 0.9729 - val_loss: 0.4489 - val_acc: 0.8552\n",
            "Epoch 10/45\n",
            "2064/2064 [==============================] - 0s 100us/step - loss: 0.0702 - acc: 0.9787 - val_loss: 0.5454 - val_acc: 0.8439\n",
            "Epoch 11/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.0551 - acc: 0.9840 - val_loss: 0.5978 - val_acc: 0.8529\n",
            "Epoch 12/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.0435 - acc: 0.9859 - val_loss: 0.7798 - val_acc: 0.8145\n",
            "Epoch 13/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.0405 - acc: 0.9874 - val_loss: 0.6568 - val_acc: 0.8145\n",
            "Epoch 14/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.0276 - acc: 0.9927 - val_loss: 0.6772 - val_acc: 0.8235\n",
            "Epoch 15/45\n",
            "2064/2064 [==============================] - 0s 100us/step - loss: 0.0204 - acc: 0.9952 - val_loss: 0.8177 - val_acc: 0.8213\n",
            "Epoch 16/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 0.0151 - acc: 0.9971 - val_loss: 0.9010 - val_acc: 0.8122\n",
            "Epoch 17/45\n",
            "2064/2064 [==============================] - 0s 99us/step - loss: 0.0147 - acc: 0.9971 - val_loss: 0.9096 - val_acc: 0.8326\n",
            "Epoch 18/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 0.0109 - acc: 0.9985 - val_loss: 0.9785 - val_acc: 0.8235\n",
            "Epoch 19/45\n",
            "2064/2064 [==============================] - 0s 99us/step - loss: 0.0103 - acc: 0.9971 - val_loss: 1.0283 - val_acc: 0.8122\n",
            "Epoch 20/45\n",
            "2064/2064 [==============================] - 0s 96us/step - loss: 0.0091 - acc: 0.9981 - val_loss: 1.0918 - val_acc: 0.8122\n",
            "Epoch 21/45\n",
            "2064/2064 [==============================] - 0s 104us/step - loss: 0.0051 - acc: 0.9990 - val_loss: 1.0754 - val_acc: 0.8213\n",
            "Epoch 22/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0032 - acc: 1.0000 - val_loss: 1.1516 - val_acc: 0.8213\n",
            "Epoch 23/45\n",
            "2064/2064 [==============================] - 0s 104us/step - loss: 0.0040 - acc: 0.9995 - val_loss: 1.1404 - val_acc: 0.8077\n",
            "Epoch 24/45\n",
            "2064/2064 [==============================] - 0s 94us/step - loss: 0.0031 - acc: 1.0000 - val_loss: 1.0882 - val_acc: 0.8281\n",
            "Epoch 25/45\n",
            "2064/2064 [==============================] - 0s 103us/step - loss: 0.0017 - acc: 1.0000 - val_loss: 1.2513 - val_acc: 0.8145\n",
            "Epoch 26/45\n",
            "2064/2064 [==============================] - 0s 95us/step - loss: 0.0014 - acc: 1.0000 - val_loss: 1.2431 - val_acc: 0.8122\n",
            "Epoch 27/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 0.0010 - acc: 1.0000 - val_loss: 1.2474 - val_acc: 0.8258\n",
            "Epoch 28/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 7.5318e-04 - acc: 1.0000 - val_loss: 1.2877 - val_acc: 0.8213\n",
            "Epoch 29/45\n",
            "2064/2064 [==============================] - 0s 99us/step - loss: 6.7972e-04 - acc: 1.0000 - val_loss: 1.2814 - val_acc: 0.8100\n",
            "Epoch 30/45\n",
            "2064/2064 [==============================] - 0s 100us/step - loss: 6.2062e-04 - acc: 1.0000 - val_loss: 1.3142 - val_acc: 0.8190\n",
            "Epoch 31/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 5.5035e-04 - acc: 1.0000 - val_loss: 1.3328 - val_acc: 0.8190\n",
            "Epoch 32/45\n",
            "2064/2064 [==============================] - 0s 102us/step - loss: 5.0225e-04 - acc: 1.0000 - val_loss: 1.3447 - val_acc: 0.8167\n",
            "Epoch 33/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 4.8357e-04 - acc: 1.0000 - val_loss: 1.3472 - val_acc: 0.8213\n",
            "Epoch 34/45\n",
            "2064/2064 [==============================] - 0s 99us/step - loss: 4.0763e-04 - acc: 1.0000 - val_loss: 1.3672 - val_acc: 0.8122\n",
            "Epoch 35/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 3.7267e-04 - acc: 1.0000 - val_loss: 1.3906 - val_acc: 0.8167\n",
            "Epoch 36/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 3.1027e-04 - acc: 1.0000 - val_loss: 1.4012 - val_acc: 0.8122\n",
            "Epoch 37/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 2.9302e-04 - acc: 1.0000 - val_loss: 1.4183 - val_acc: 0.8100\n",
            "Epoch 38/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 2.7790e-04 - acc: 1.0000 - val_loss: 1.4105 - val_acc: 0.8145\n",
            "Epoch 39/45\n",
            "2064/2064 [==============================] - 0s 100us/step - loss: 2.6282e-04 - acc: 1.0000 - val_loss: 1.4141 - val_acc: 0.8122\n",
            "Epoch 40/45\n",
            "2064/2064 [==============================] - 0s 100us/step - loss: 2.7733e-04 - acc: 1.0000 - val_loss: 1.4271 - val_acc: 0.8167\n",
            "Epoch 41/45\n",
            "2064/2064 [==============================] - 0s 97us/step - loss: 2.4271e-04 - acc: 1.0000 - val_loss: 1.4232 - val_acc: 0.8145\n",
            "Epoch 42/45\n",
            "2064/2064 [==============================] - 0s 101us/step - loss: 2.2467e-04 - acc: 1.0000 - val_loss: 1.4455 - val_acc: 0.8122\n",
            "Epoch 43/45\n",
            "2064/2064 [==============================] - 0s 93us/step - loss: 2.2762e-04 - acc: 1.0000 - val_loss: 1.4607 - val_acc: 0.8145\n",
            "Epoch 44/45\n",
            "2064/2064 [==============================] - 0s 98us/step - loss: 2.2468e-04 - acc: 1.0000 - val_loss: 1.4643 - val_acc: 0.8122\n",
            "Epoch 45/45\n",
            "2064/2064 [==============================] - 0s 99us/step - loss: 2.1316e-04 - acc: 1.0000 - val_loss: 1.4802 - val_acc: 0.8122\n",
            "442/442 [==============================] - 0s 48us/step\n",
            "accuracy: 90.50%\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "metadata": {
        "id": "x4XeXULgF8U5",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        "from keras import backend as K\n",
        "import math\n",
        "input_shape = (40,40,1)\n",
        "\n",
        "def plot_conv_output(values):\n",
        "    # Number of filters used in the conv. layer.\n",
        "    num_filters = values.shape[3]\n",
        "\n",
        "    # Number of grids to plot.\n",
        "    # Rounded-up, square-root of the number of filters.\n",
        "    num_grids = math.ceil(math.sqrt(num_filters))\n",
        "    \n",
        "    # Create figure with a grid of sub-plots.\n",
        "    fig, axes = plt.subplots(num_grids, num_grids)\n",
        "\n",
        "    # Plot the output images of all the filters.\n",
        "    for i, ax in enumerate(axes.flat):\n",
        "        # Only plot the images for valid filters.\n",
        "        if i<num_filters:\n",
        "            # Get the output image of using the i'th filter.\n",
        "            img = values[0, :, :, i]\n",
        "\n",
        "            # Plot image.\n",
        "            ax.imshow(img, interpolation='nearest', cmap='binary')\n",
        "        \n",
        "        # Remove ticks from the plot.\n",
        "        ax.set_xticks([])\n",
        "        ax.set_yticks([])\n",
        "    \n",
        "    # Ensure the plot is shown correctly with multiple plots\n",
        "    # in a single Notebook cell.\n",
        "    plt.show()"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "metadata": {
        "id": "iBCJvBcrF8X8",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 248
        },
        "outputId": "82685cfd-dad4-4f89-bad5-4d55eb73c8ab"
      },
      "cell_type": "code",
      "source": [
        "output_conv1 = K.function(inputs=[model.input],\n",
        "                          outputs=[model.layers[0].output])\n",
        "image1 = test_data[1]\n",
        "layer_output1 = output_conv1([[image1]])[0]\n",
        "plot_conv_output(values=layer_output1)\n"
      ],
      "execution_count": 53,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUMAAADnCAYAAACEyTRLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvVuIJOd5Pv50VVefz93T03PY2V2t\ntLuSJSuOFWIr/jkBJcQmJIEQfBdylbsQSAKBXMdXAZPrEEMuAoFAIAFjCMGWHExsKQqKdu2V1nue\n2Tn3ubq7Dl3dXf+L+j/vfDU7O7Oyd7Q92npA7Kq3p6frq/re7z087/PGfN9HhAgRIjzv0J71F4gQ\nIUKEeUBkDCNEiBABkTGMECFCBACRMYwQIUIEAJExjBAhQgQAQPy4f7x69ap/69Yt1Ot1AEAikYDr\nukgkEtA0DZoW2FLf9zEejzGZTJBKpaDrOgDAcRy4rotYLAZd1+F5HgBgNpvBtm14nodSqYRCoQAA\nSKfT8H0fo9EIw+EQk8kk+JLxOHzfRzKZRDqdxmw2AwCMRiOMx2MAQDKZRC6XAwDEYjH86Ec/wvLy\ncuyprtZTxre+9S3/r/7qr5DNZgEAk8kE+XweqVQKpmkinU4DCNada5lKpRCLBZc1nU6haRomk4ms\nLRBc/2g0gud5iMViiMeD21wul2EYBmKxGCaTCQaDgXwO36dpGgzDAADoug7btjEej+XnAEDTNPz9\n3/89vvGNb8zz+p51mkS0tqeHI9f2WGN48+ZNbGxsoFgsAgDu3bsHz/OwtLQEy7Jg2zaAYNNwo3ie\nJ5uMxi6fz4uxBCBGdHV1FdlsFnt7ewCA4XCIVqsF13WxtLQkv3c2m4kxHA6H6Ha7AIBMJhMypPw+\n29vbWF5e/rlW6dPEP//zPyOdTosRT6fT0DQNw+EQ5XIZqVQKQLCOk8kEiUQCvu9jOp0CODicJpMJ\n0uk0EokEAGAwGEDXdWSzWWiaJodZMpnEYDDAZDKB67pyaJVKJVnjTCYj92c4HELTNJRKJSSTSTmE\nMpmM/D1ChM8KjjWGAFCpVNBqtQAEHsS5c+cAAPv7++JxFItFuK4L3/cRj8eRTCYBBJusXq9jPB6j\n3+/LJsvlcshms9B1HQ8fPkSz2QQQeDS5XA6vvvoqyuUyhsMhgMAYpNNpTKdT6LqOixcvBl8+Hsdk\nMoFlWfB9Hzs7OwAgRmHe4fs+arWaeIC6rqPdbsMwDOTzefT7fQCBceM1maYpRozGMJvNIpVKwbIs\nAIFHTiPLewQAnU4HjuPIz1YqFfm9lmVB13WkUikxdLFYDLVaDb7vy0EGAOPxWJ6JCBE+K4hyhhEi\nRIiAJ/AMd3Z2xOMoFosYDAbY3NzEZDIRD03TNPHqXNdFJpMBAFSrVYzHY+zt7WE6nUq4ZhgGJpMJ\nRqMRdF3H5cuX5f0q8vn8I9+HIaVcQDwuofLnP//5T3TxzxqJRALlclm8Ndu24fu+eIj0jHVdRzqd\nxmg0gqZpsgb0CkulEkzTFE8ykUigWCxC0zTE43Hx9HRdx/LysuQlGYb3+33xUJmXJWazGXq9XijN\nYZqmrHmECGcJjuPIc38YJxpD0zQl1Op0OpLYv3jxonyoaZpiAEejkYRfjuNgfX0dnufhwoULYuxc\n10U6nX7sl3pekMlk0O/3xehNp1OMx2OYpgnf9+UwyOVy0HUduq4jl8tJzjAWi6FYLMK2bZimKYWP\narWKYrGIRCKBXC4n9yaXy6Fer0sag7nd1dVVLC4uolAooFAohO6LaZoYDofyO/nahQsXTndxnmP8\n3d/9Hf78z//8WX+NzyS+/e1v40//9E+P/LcTjWE8HpdKpe/7uHDhAhqNBoDAOAKBZ2jbNlqtVsir\n2N7exng8xrlz57CysiI5Q27O5x2GYaDf74vH5bquGB21yp5IJDAcDqHrOlzXFU+9XC5jMpnIAcVD\nqF6vo1QqoVKpYHV1VV7P5/PIZrNIJpMhj7FSqaBWq6FYLCKZTMp9MgwDpmkCAFKplFTuu91u6D5H\neLr4x3/8x8gYPgGm0ykePnyIzc1NuK4rzsPrr7+OZDKJ27dvIxaL4cUXX5Sf+eijjx77eScaQ9Jl\ngGDTMETr9/tS1Z1MJnAcB4lEAouLi7LJ4vE41tbWQoYwwgFs28ZsNgsdNplMRrw5GsbxeCxUGc/z\nxFM3DENC5VqtJofU4uIiFhcXcfHiRZw7d04ekkwmg2KxiFqthkKh8ET35KhUxdLSkhjGCI9ifX0d\n6+vrAICNjQ3cv38f4/EY0+kUL7zwAoAg/fDRRx/BMAxxFoBgzzD9FCGAbdtot9vY3NzEgwcPJKIx\nDAPdbhd7e3twHAerq6sAgHfffRfvvvsuSqUS3nrrLezu7gII2BHHsUxONIa6rsuGiMfj6Ha7GAwG\n6PV6cF0XQJBLrFQqqFQqQt8AAg+F3LbTxHg8fqSCPBqNhL83r/A8D7Zti9ErFApIJpPihTF8dhwH\nk8kE8Xgc2WxWPOtEIgHDMFCpVNBoNKTSv7a2hvPnz+PFF19EqVSSA2xhYeGpffezUrE/bTBPe/fu\nXdy+fRvvvfce7t+/Lw6E67owDAOtVguz2QwbGxsAgOvXr8M0Tbz55psoFouyYXVdx1tvvfVsLmZO\nMBwOYVkW/vu//xtAQOlzXRd37tzB1taWREyGYQjP1jRNsTs7OzvY2dnBV7/6Vdy9e1c+JxaL4Zd+\n6Zce+3sjdy1ChAgR8ASeYaPRADUPLctCr9eD4zjQNA2Li4sAgvB5PB7D8zxYliVhHDtKTgu2bWM4\nHB7p8QyHw7n3DNk5Qs+N39eyrFB3TSwWQyaTke4TetqGYaBYLKJer6PRaEh49cILL+CFF17A8vIy\nisViiGsY4enho48+wr/8y78AgPBl9/b2MJlMxKvP5/MolUr42c9+hlqtJlGApmn4f//v/2F1dRUP\nHz4McXn/8i//8tlc0Bxga2sLnufh7bffxne/+10AwVpNp1Nsb28DAHq9HgBIPaLZbGI8HqNUKgEI\n9sUbb7yBQqGADz/8UN6fTCbxhS984bG/+8RdkkgkJIk+HA7h+z5KpRLS6bRsytFohF6vh3Q6jUwm\nI5uPbXXVajWUcGfI96SwbRvpdBqe52E4HEqIput6yBCqD5ppmmKs5xWTyQTFYlGMIUnkJFara8aW\nxOl0KiFYPp+XqvzCwoLkDOv1OgqFArLZbGQITwmbm5v49re/jTt37gAInsV+vw/XdTGbzYQYn0wm\n0Ww2kUwmsby8LJX88+fPo1KpYHt7G7u7u5K/nUwmkj983tDr9TCbzfDee+/hn/7pnyQF8corr8i+\n931fHKxKpQLbttHv93H16lVxJhzHged5uHnzJnq9XqiTi8XEo3DiTlHb30jl0HUdjuNIjM68SK1W\nw3g8RrvdBhA8ILVaDfF4HK7rSqFAzTep/LhUKgVN06DreqjdK5/PYzKZoNfroVwuP7LB6ZESasva\nPMMwjFD7m8q9zGazkpN1HAez2Uy6e1QjSeNYqVSkfZF5xeedunSa+Pd//3d8+OGHQjFaWFjA/v4+\nms1mqOjIzqyFhYVQ0arf72N/fx/JZDIUwdDbfx5BKt73vvc9bG5u4rXXXgMALC8vY3d3V/Y1c+au\n66LT6aDRaCCfz0tb72QyQTKZhGEYWF5eFrvjOM6x9Ysn4hnSEi8sLGA2m8kv5aYsFArI5XLQNA3t\ndltueL1eRyaTged5YjCBA2Poui729vZCAgD8k8RhIDDCtm0jn88jHo8LSZkGkEaCP696s/OMVCol\nIgxAYNR930ehUJCUBBCsM3mGKtl5NBqhVquhXq+LVw4ExvB53VCfBj788ENsbGzgi1/8ohStJpMJ\nKpUKlpaW0G63hXZmWZZQmobDoaQ+4vE4FhcXUa1WYRiGPMuWZeHu3buPNCB8lsE1abVauH79Otrt\nNt588028+uqrAAIqVyqVksYDOmGmaUqBkFErEPBpi8Ui0uk0XNeV/TWdTqWAdRRONIa2bUu4mU6n\ncefOHUynUywvL4eoGZqmodVqYTweS/l6Npuh2WwiFovB930JBzVNw2w2w2g0Qrlclmq1ZVkYj8dI\nJpNIJpPiGbmuK0IB9CKB4BSNx+MhJRf1+8w7DMMQlx4IPOlEIoHpdIp2uy3eRbFYxHQ6FVUZbpx0\nOh3KCap/MkyL8PRx9+5drK2t4cKFCyIO8vDhQ6TTacRiMQwGA4lMstksYrEYEokEEomEhMnnzp0L\n9ZMzEnrw4IFEVs8L6BzZto3t7W3UajW8/PLL4jw1m03k83nYtg3LsmSvMy1k2zYymYy8X9M0JJNJ\naUbgXuj1ehiNRo/9HvNvMSJEiBDhU8CJnuHi4qJ4HA8ePIDjOHjppZeQSqXkBIvH49JWls1mxV3d\n3t6W7grP88SSa5omBGOV1MvfM51OQ3qGLNb4vi+nLxCcpvQyJ5NJKB/Aat48YzqdwnEcWYNYLCZ5\nkEQiIaFSLBaTKrJpmuJFFItFWJaFTqeDer0uXgp1DCOcDorFouhB0tNgzmpzcxPj8RiXLl2S929t\nbcmzzb1BCTWGfXy93W4/VyGyin6/j9lshqWlpRCbolarwbIs3Lp1C4PBQIjruVwOOzs7YgfUmkQs\nFhPbwJRZs9mUivNReKIOlM3NTQCQEDiVSqHT6ciGSyQSGI1GSCQSyGQyYohs20Y8Hkev10M8HpeL\nYy/z4bY8urPc/MyPHS4EqDkAXjTL7wAkvJ53uK6LYrEo6zgcDmXt1Cq54zgoFAqYzWawLEvWzfM8\nkVIzTVPoGWtra2ciTXBW0Wg0sLOzg7t378q9q1arGI1G6Ha7qFQqcjAPBgN0u11JcfD94/EYCwsL\nUiykjJ2aTnresL+/L1qZ9+/fl/DZMAyMRiOk02mUy2V5fWtrCzs7O0ilUqF1Y/2CeXTm3m3bPtZJ\nONEYbm5uysZaXFxEOp3GYDBAJpOR/Mf+/j46nQ5KpZIYJyA4LVlFVtvLRqMR8vn8sXmtcrl85OtU\nXgaCB4csdLVCnclkzkSHBK+f1XpWHimWQKOez+fh+z663W5IiZrdK4ZhYHt7+6l2mER4PKbTKba2\nttButyV66XQ6cF0XKysrSCaTePjwIQDg1q1bIr5bq9WE2sF+cB5i9F6oAv88gm299+7dE4FjIDB6\n0+lUKEf37t0DELQ9GoaBUqkk9DIA4mD0+32h/QEHqlCPw4nGMJVKicXN5/MiDz+dTnH37l0AwWZe\nXl7GwsICxuOxhHHsx2SRhEYskUhgNpuJUVWNIgVcDy8SE6dUdgYCDzKZTB5p+M5CmKjrOvb398W9\nZ7Kda8J1HwwGUohqNBpiDB3HkTUuFovSasQ0xFlYg7MI13WxtbWF/f19iVrovQPA7u6u7I3t7W2s\nrKygXq9jYWFBwucLFy7Ixl9fX8f+/j6AMJXteUOj0cCNGzekeMh9QWdnNpthd3dXyNeu66JSqWBh\nYQGpVArnz58HALz44otoNpv4/ve/j42NjVDRRBUpPowTjeHS0lIo72cYhrDBeZpdunQJi4uLME0T\nvV5PQr3ZbCaE6263K0rUVGvJZDJYXFwMCQkcRRKmAaRgAT2mhYWFx6qnnIVqKhW6afR0XUcymYSu\n65hOp7Lu3W4Xk8kES0tLyGQyUoEcjUbwfV8q86y09/t9UbuO8PTx2muv4Y033sAHH3wgURD7zD3P\nw927d2XDVqtVXL58GdlsFufPn8eXv/xlAMDFixfx/e9/H7du3UKn0wmllp7XkQqXLl3CtWvX8PLL\nL0PXdXn+6TgNBgPs7e1JraJUKuGll15CqVSCYRjSgbW2toaf/OQn+PGPfwzDMOTAGo/Hx3qGUWIp\nQoQIEfCEPENaU7Z3dbtdzGYzrK2tAQgs9P7+vrTTMIzL5XKSWFZjd/KwFhcXMZ1OhcV/WD2ZuZPR\naCR8QpIvAUjOcjKZhIZSAQhNi5tXTKfTkFirpmnIZrNyIpJcCkASx6ZpSgFpMpkIp2oymeDmzZsA\nAm8kk8ng0qVLskYRnh7S6TT++I//GFeuXJE1f++997C+vo7JZILd3V2JXq5cuYLPfe5zouzEvXH/\n/n18//vfx927d6Fpmtzr8Xj83Op9Xrp0CZ/73OdQKBQQi8XEA7xx4wbu3r2LZDIZSiG88sor0qXi\n+7541//zP/+D7373u1hfX8fVq1flddYqHocn6k0+THnp9XpCjAYCOsBoNBL5KW7uTCaDyWQi4RvJ\n26lUCr1eT0LBo0Jjta0vmUwe21N4+AEaDodnwhiyF1kdrMXhS9PpNJQz0XUdpmmGhBpU429ZlrDr\n2eKVTqexsrJyJopJZxFf+tKXpIK/t7eHZrMJ27bhOA6uXLkCAHj55Zfl0L93754UVj766CN873vf\nE7oYU07FYlF0+Z5HvPLKK1KY4oGysbEhY3Q1TZMxIVevXoXneeh0OhgMBrIvyLKgY8FuoGw2e6xe\nwYnGUK2MxWIxaSHjHBP+8mKxKPksXkQ8HhdjWiqVpBpk2zY2NjYwHA5h27bQCnq9HrLZLAqFAjzP\nk2rSSeozNIR8oBzHORPFA3p19HRd15VuG9UjZ8EKCCsBsV95Op2KmAUQrMPu7i52dnaQz+dRq9We\nwdU9H6CXnkwmcf78efT7fcRiMTGGmqbh+vXruH37NtrttrSYdTod6dnf3t6WqGhtbe255RkCQWFJ\n0zR88MEHePfddwEEOfOVlRVhoLBQMh6PcffuXayvr8O2bfESs9msKLqr6vtXrlw51pacaAzv3r0r\nxYilpSWYpimFFG5KkhwZwtEQkUNFjpXKA0wkEqjVasjn81IQ4KhRUnGOKoI8bqCLKpKaz+flIZ1n\nxGIx6LoeEnFlRZmeNgBp0aOQBatjvu/LYUPiORCEz3t7e7h37x4KhUJkDE8RfBZffPFFMWyWZYlX\nf/PmTdy/fx/r6+u4cOGC3KNer4fJZALbtpFMJkPCvJ1O59hw7rOOtbU1XL9+XTy6YrGIUqkkTBN1\nv2xsbGBnZyckNXjt2jU0m00kEgmk02lp9iiXy1K1PwonGsNqtSqn1nA4xGg0Qi6XQyKREKoMOx40\nTRMxBQAyEH04HMrcDSDwdJaWlpBIJGDbtuQSudkBhGSQiPF4/Igh9DxPvofKTTwr0lVq9TCZTAo/\nikRy4EDAgQZPXV8aVFUZ23Vd0Xq0bVs89Sh/+PRBI2aaJh48eIDNzU1RHgIC8YFer4fV1VWUSiXc\nuHEDAHDnzh24rot6vS6bHTiImuj9PK9YXl7GK6+8AiBgjYxGI+zs7GA6ncpzTBZFqVRCuVzGxx9/\nDCBYW84AMgxDPEPHcULaBocRVZMjRIgQAU/gGZbLZfHcHMdBtVqVvkx6Yqz+sOWOYRz1+eLxuIy7\n5OdQUcKyLPGAqEwzGAxCRRGG5Ie1yFi9VrthiLPSkmcYhqzLbDaD4ziSN1Q7bTgfRW3pIumaniXX\nKxaLSR5xb29P5ms8797GaeD1118HEORyd3d3kUqlUK1WQ146pxU+ePBAqs+Li4u4cuWKpJFUhabT\nnhl0FvDLv/zL2NraAhCkGq5fvw4g6FNmCqLZbIpyU7vdls6USqWCy5cvo9/vi40AEOIcHoUTjWG3\n2xWKi2EYGI/HcBwHtVpN2l9s28ZgMJCwTG2Y5pBzTdMkB9DpdOB5nuS7GOs7jiPsc7Xq0+l0pO0G\nQGg6FhOirMACQa7yNMcNPC1QzVoVcaUBVClKHKo1mUwwm80eeT+1H9VuCKorFwqFUM4kGv5+Onjx\nxRclJ/jgwQN51ldWVpDNZnHr1i00m81Ql8R0OsX6+noohTSZTI4VE3ie8PnPfx5AsCb7+/swDAOz\n2Uwq+AsLC1haWsJPf/pT3L59W6QDL126BMuy0Gw2hbEBHIgkPw4nGkN1ri8rNGyvYxV4b28Ps9kM\nuVwupKVHtWVN07C/vx9SwC6Xy6LbpyrR5nI5mbBHjyadTgsXcTAYhAoLwIHcP/9flQafd0ynU/Gk\n6SXTW2Sug9SLw+M5dV2HYRii6sv71Gw2ZS0Hg4GcsIlEAq+88sqZyaeeJWiahq9+9auIx+PodDq4\nevUqgKCCee3aNdy/fx/lclm4uaZpYmtrS3izdDjUw+55Bw8Ox3FEI6HVakml/vLly7hx4wbef/99\nLC4uiprN3t4eNjY2UKvVsLi4KHbK87xjBUxO3BWxWExK/ax0xmIxDIdDqcx4nodsNotUKgXbtkNV\nTUrxmKYpxqpSqQgXSKWE+L4vCX/f94VbyH7ObrcrIpnEcDiEpmkhIQgWHOYd0+lUGvwJJnxJuwEg\n3M5EIiGK10BwnTzpPM+TCjpDLyaduRa6rqNarWJpaSlStTkF1Go1nD9/HplMBvV6HUAg1MBh5vl8\nXhL4d+7cga7ruHjxYmhsRTwef25J14/DlStXRBqt0WjIUPj19XW8//77SKVSuHr1qnjj9+7dQz6f\nx6VLlzAajWRt8/n8sYpAJxrDCxcuhIQXgGCzkTQNHHiMlJhS5f1JHlYFH1hlpuQXjQF7bV3XRalU\nknCBhpNaZ2qHhvrw0BioebV5xmw2w2w2C+kZMm3A/mQgSBNMJhMkEolQOoAdKFQ64Tqm02kJJ9S1\nKJfLuHfvHizLQqPRkPtxFtbqrIA5RN6jd999F5Zl4cqVKygWi7h//z6AID9+4cIFZDIZbG1tyb0o\nFArPrWrNcXjrrbdgGEaINvfOO+9gPB7j1VdfRalUkqaDYrGIpaUleJ6HZrMpqTR2wz0OkXsQIUKE\nCHgCz7DX60lnRzKZRCaTkWowLW4mk5HwOZfLSXjLPmbmGVUdPmoODgYD+Xz2GLN4wCo2PSPOOVDH\nMLLlhl4iEHiqZyEM9H0/NL9F0zS4rivtdywUeZ4Xqpbz/ayOMb3A66f8ETmc/FlWqB3HkQFGAOZ+\npOpZBJ/RSqWC3/iN3xDFFHp9iURCBn8VCgVhZlCSLcKj+MpXviIdPUDgRb/xxhtiF1Q7kkqloOu6\niFEDgS07zus+0RhSZgoINiupH2ybAw6G2TCfxXCNA+dpCEk34MD54XAI0zRDYrCU6Op0OnJxDB9r\ntZrMbOZFd7tdTKdTaJomF01hiHkHdRpprHRdh23bKBQKoale2WxWNpdafadRpMCrmkv1PE/WkukN\nVvrj8TiGw6Ek85PJZFTBPCX84R/+IV5//XV0u1386Ec/kjnLnHldqVTEKAKBFiLvS4QwaCdYnPrN\n3/xNPHz4EJPJBLdu3ZKpnZTFo36C+vwfJ4B8ojHM5XJiWCjvn06nQ+oqKuXDsiwxSqyMknrDE8/3\nfViWJc3XNAYcCM0CDY2qpmmoVCoyApCvT6dTEZz1fV+q0mdh/gkQfH91YhrHssbjcdi2LcaNhSny\n0dSOEnb+6LouG0rVnYzFYqHWRKrkZLPZkCrQ8vIyVldXo1nLp4CXXnoJAPDDH/5QDjKOd02lUshm\ns+JQFAqFqIByArgvvvKVr2B3dxcfffQRfvCDH4jRe+mll8RuqW2N6XT6FxN33dvbC8lpA5CbR+MT\ni8WE/MsZykCwKbnBS6WSPAi2bQv3UNM0+YI0ALFYTDw+IDhFKe2tzl6huOt4PJaKMgCZFzLvYPGH\nlKPpdIparYbZbCZDsIBgHVXDplKdYrGY/Duvmco34/EYhmGI8RwOh9jd3UW/30cikZA0RKvVkkJO\nZAxPD77vC+dTnf9tGEZozOWdO3dEdCDC8Wg0GnjnnXfQarWEZ8gIM5VKoVgsSpXZ8zwRnTkKJxrD\nUqkkfJ9+vy/Ex8FgIKEb/2QISw+FFWf2CNLD5NB3IDCk3MTMO7quK14gAAkBu90uDMMQ48wwU+1p\nJs5ChTSZTIZmua6traFUKqHT6YROMeZS6TWq4TBzgPTW+Rq9TnVdBoMBHMeBYRiIxWJCXtV1HSsr\nK1EV85Rx7tw5MYDNZlMYFerQtc3NTezs7ETG8BPAsizk83mxF5yWR84nDaDqSB2F+a8yRIgQIcKn\ngBM9w4sXLwpRdGtrS7w3dpwAB6o1s9kM7XZbcnYk+XI+LD0PeoXT6VR4hUSxWEStVgt1kcxmM1Gy\nTaVS4nmmUikJtw/juNzAvMD3fRkZCQRVeY4zVCXJmBNlzzIxHA5lndR+1ul0KpJfHKQDINQBlEql\npPrcarWws7MjBasIp4M333xTPENGOb1eD51OBw8ePAAQeO/0cCI8GUqlEi5fvixpn62tLXieB9d1\nMRqNpLAym81+sbnJg8EgFE7RBaVoABCEZewBVCV2SJ/hA8DwLpfLSf5vNBqJ68oiCUndNGhUee73\n+yiXy7K5OYSddBuVHH4WjCEnqjG8HQ6HUhk+rGfIoVhqryXvxeHcK2W9eEDxEJpMJkKAp2YiEGzM\nTqeDZrOJZrMZjRw9JZw7d05UrO/evSuGUB0y32g0ovX/hOCQrR/96EcAgn2RSqWkA45pvFqtJjnb\no3CiMfQ8TzxAx3FEz5AjAADIJmXeisYvFovJBlR1xTRNQ7/fh+u6SKfT8iDQqNHA0Rj0+30xFLZt\nSw6g2WyiXq+HZkvw889C/y1nnvCQYFWeVCEeNiyG8O8E802sHKvqPzSEg8FADhv+Ht4Xetj9fh+t\nVgsPHjxAsViUClxUTHn6oGT9cDhEtVrFxx9/jNFoJAf5wsJCNKbhE2J5eRmXL1+W8awcn7G+vo5W\nqxVyKg7396s40WJQnBUIPDFOvB8MBqH2r1QqJao26nzkWCyGdDotHDogoJCweplOp6Uq7Xme9Nuq\nX5wbncO7uYmXlpaQy+WkCspqsqoGPc/IZrOi9AOE+4tJpwEglWLVCwQCuSdd12Xz8ACYzWbC5RyP\nx6G2O3rQav92t9vFw4cPkclkpMccCDyZKGR7uqAY7Llz5/Dxxx9jPB6j3+9LCmM0GuH+/fvP9RyU\nnwevvfaa7INOp4Of/vSn0uZIWzAajUS05Cg8kTHkL+HsE3VwORBYYpKqqZYCBJudnRAUbAAgitjs\nlFBJ20CwqTkqgJ+vqmbz9VgsBsuyYJomkslkqAn7LCh/MPznzWKVl3lAXoPv+zJTmsR3IEgH1Ot1\nJJNJDIdD8Rr5c7FYTCbnqb+Tg7joMbquK5Jf6iE0GAzw2muvHdvcHuHnx8svv4z3338f1WpV8vLq\nZL0InwxUs+l2u/j4448lYlUMaWdcAAAgAElEQVR5vMdFjFE1OUKECBHwhErX9Nwmkwkcx4HneahU\nKpJbYnsX+2DpMZqmGRr3yR5YcubG43FIt48KN4lEArlcLhQmMtxeXFwMDZxiyE3iMX/XWQiTqfKj\nesQkr5NIDgRpiHw+L2MoiXQ6LZVnVqEBSCjNWdPqzxiGIcUW/l569VtbW+I1AsE6quo2EZ4+Ll++\njI2NDSlSjkYjXLx48Rl/q7ONcrmMhYUFlMtl4eECgR1R5yQdxonGkNphJ2FhYeGRm7i4uCitSKeF\nyWSChw8fot1u46c//SmA4IGikOk849q1a/i1X/s1Kf6QVM0QlukJdVzCYDCQ3ChFM9iSR2OoVpzV\nnmUeGhz5ys8ljSeTyaBWqwmTv1aryUEV4emj1WphNBpJeAcEoR71OyM8Ofb39/GDH/wAQCDt9eGH\nH2I8HuOVV14RWbVCoYCvfe1rj/2M2FkQQY0QIUKE00aUM4wQIUIERMYwQoQIEQBExjBChAgRAETG\nMEKECBEARMYwQoQIEQBExjBChAgRAETGMEKECBEARMYwQoQIEQCc3IFy1hnZc639n8lk/G9+85uo\nVqsAAmGEbreLWq0GXdellZGdJY7jiFgGANFqy+fzGI/HMlqUUwpTqRSq1aqo03BqICXSqE5DcQiK\nwapTDCnmm8/npWOl3W7jr//6r4E5Xt9vfOMb/ne+8x35zpwrw7VQJd/Udk51TKcqnMHXKbOmtlDy\nvWwbpcISEHQVqeIb6vupu6lOPAQCAYd33313btcWgP+tb31L2kX39/cBQOTo2P7meR4ymQym0ym6\n3a6oU3GSZaFQkCFnwIEozOLiInzfF7FWjrz1fR/Ly8si0Oo4DqbTKeLxOAaDgTy3tVoNxWIRjuOE\nZjX1ej387d/+LXzfP3Jt51/07zOMfD6PfD4vG4etcgBCKj/cxNxkfH86nZZxraoYLh9Kyq1RwZoD\noorFIrLZrHyO67qiR6n2iqtSYKqk2HGacPOCVCqFZDIpRobDs4bDoQjfAhD9SGo8cmMmEgkxYHwP\n36/rOuLxuEiiAZD7wwOGv1eVVePoSiDok3VdVzYrN2w8Hpe/zzPS6TQ2NjYABIfpxYsXRQqO7Z/F\nYlF67YvFokjvxWIx1Go1aJqGXq8nz1M2m5Ue/Ha7HXrOarWaSMrx0Kcq03A4RKFQwKuvvgogaLuj\ncDRVrYBgvx0nnBuFyREiRIiAyDN8pqCcP70RSvu32+3Q+IRkMilqPp7niTdSLpeRTCaxt7eHwWAg\nXiL1JZPJpMyWBoKTt1Qqycxkaujl83lUKhVks1nRkgSC8KTb7WI8Hodmz5wFFRtOEaQHSO3Lw17X\nbDYTL48/p/5JAQw17KUXrc685oxwqoyr4huxWAy5XA65XE7uHRB4h4PBAJZliSfped6ZENTd39+X\nMLler6PT6eDmzZtIJpMi9MGRtaVSKRTRMHRutVqIxWLy3HI9OF+pXq8DCMaBVKtVGIaBVqslYzIq\nlQoA4MKFC2g0GuKVW5aFpaUlTKdT7OzsiLr4wsIC3n777cdeU2QMnyEmkwlM0wyFAzSIxWJR5IZU\neTLbtuXhSSQSkmfMZDJYWloCEBjDZDKJfD6PZDIpGzOTySCXy0HTNHS7XXmYyuUy6vW6hJIMt3u9\nnsyyVpXKVUmweYY6m1idN31Y7i2ZTIbCY+BAXZ3K4DRinMWbz+dRLpdD94KhOdMNQHCP+TPFYlEU\nh6gs5DiO/AcczMGZZzB9wENxb28P/X4f1WoVi4uLIvnnuq4MbOv1emI8LctCv99HKpUKSfJx5G0+\nn0ej0RBVcKZo+v0+VlZWxEiqaR3DMOQAU8eBfuELXwh991/5lV957HVFxvAZYjweh5S74/E4stks\ncrlcSHfNsiy4ritSW+pweU4MXF5eFmOYTqdRrVZRq9WQTCZDXk4ikUAikcDq6mrIS1HB16k/eRhn\nYdgWEGxGVctOVUg/PBeDHjc9RxaU+DNM2pfLZVSrVdn4PFAKhQLy+TxyuRxKpZLcI0qxZbNZFAqF\n0O/lXGvbtsUYW5aF7e3tT2N5fm7EYjFkMhmJLCaTCS5cuIB8Pg/LsuTQTKVSGA6HME1TtDeBQJbf\nMAwsLS0hnU7LtVerVRSLRVSrVSwvL4unNx6PkclknsqwrLfeeuux/3bmjCEHoQOQKXqDwQDLy8vi\nngOB9PdxQo7zANu24fu+GJ9MJiP/eZ6HbrcL4MBb5NwYehccB1qv17G2tiZV6UKhgEajIeHE00Y8\nHodlWfI95hHj8Riu60r4SS+PxQ81LKVxV4VtOahM1/VQyLa0tITl5WU0Gg00Gg05MKrVKgqFAkql\nEsrlsqz9UWNsT8Jpa4A+DViWJQaf6RrLsuTgBiCjKHhAsJBBkeZMJgPXdcXo8YDJ5XLwPE/Wbnl5\n+amlZg57iirm0hju7Ozgxo0b2N3dBRAYjeFwKEaBYQQH6SQSCSwsLIRGlF65cgW/93u/98yu4Ulg\n2zYMw5CcXj6fx2w2w3A4xGg0kqoZZ5OkUinJ6wHBCV2tVlGv1x/ZmD/PJjwOHEhFfPDBB/jKV77y\nVH/H04Rt25hMJiEqDXODanWYtBlWmFXhXFbkq9WqhGwXL17E0tISzp07h7W1NfHGmYt9Gpj3qYSs\nftNA+b4P0zRhWRYcx5E1TyaToojPuUlAkOtLp9Oits7nf2FhQcbkVioVEYtWaVBPCtM04fv+I/nX\nqJocIUKECCdgLjxD5h7+93//F+vr61hfX8fe3p6QOfv9PgzDkBwQPSNd15HJZIR7pBYizoJcvaZp\nKBaLkoRnxdO2bYzHY7nObDYrc2PUqYGcFcM8S61Wk895WqAXdfh05syOeYWmaY+Qo7kuqsfIEQu+\n78MwDPEMWVgpl8toNBpYW1sDAKyurmJtbQ0XL17E+fPn5d49TzAMA6VSSVIKnIvEYhHTU+TF9no9\nDIdDWdtsNovJZILJZBKam86IiDnZw88xOZ+Py3UT3W4XsVhM8ry81yfti2duDH/yk5/gnXfeAQCs\nr6+j2+2i1Wqh3++LkeSi9vt9pNNpcX3V17m4QDgPNM/IZrMol8sSPnAWNekevOm6rgu9RaWLAAdF\nl2Kx+FSNIKHOaVYx78Rr5geZOmEnDf/O52M2mwl5WjWYLLKQjsR8bL1ex9LSEur1+nNpCAnO8gYg\noXG5XEYul5Nno91uS36/UCjIevX7fTiOI80BHN42nU5RrVaRy+XgOA46nQ4AhOahZzKZ0EhcpiYO\n5zCJ2Wwm3xM4oEwdhWdqDFutFv7rv/4LH330EYDggpgrU6fG+b4P27aRTqeRyWRCDyw9KLZDEadh\nGJ42eCOZG3RdVzof1Ol4LAQwj0W+n2EYslnnuZjxLKC2GwIQg3fUQckWOlJGAMh0QVKUuJErlQrK\n5bLkuZ5XqF0zvu8LT7XT6YgTM5vNkEqlZOY3Iz3XdVEulyXaI52J0c1kMkGz2ZRnWm0fVQsr+Xwe\nvu/Dsqwj87WMsFSaE73Fo/BMjeHNmzcxmUwkvGMvoq7rKBQKsqj9fh/ZbFbK8DR6bKNKpVJIp9MS\nGqsD0ucdw+FQTk9OrDNNU0jWQLAeLKCQBsL3P0ninlQH8gWfFL7vy4N4+ESd9yQ/PVper6ZpcF0X\n4/FYwi0AQpDm80Lvgp5lOp2WNjEgIJxns9nn/vBRuaa1Wg2GYWB3dxej0UjWhvQhz/PQ6XTkXrAV\nbzQaSXEQCJ4ptSWSnxOLxeB5HsbjsXA8CdUQqu1+TH18kqLWMzOGtm2j0+mgUqnIxuLCjMdj9Ho9\nWfBisSinthqyMWem5tCAsxMmM7RnKGcYhoQQKoWG/EBSF7hehmFI/7DjOEcaKNVbfpJ8y2HEYrEj\nQ4t5n6pIz5rfnR0QqkACEDxz6vxowvO80HqpxpL363kFeZGs9sbjcWxsbGAymaBer8ta8eBhGEzv\nml1WQOBpU2Ch2+1C0zTk83ksLS1JuEuBETYQ8PNc10Umk5HIkXaAXUCfFFE1OUKECBHwDD1D13VD\n4QkQ5AyohmHbtng6uVwOlmVJFwHDRIYw/DyG1Z1O50y0jFFmiyHbaDSCaZrSvkXQ5R+NRphOp/Jv\nruui0+kgn88jHo8f6RmqKjSfVA3lcV4hcBB6zyvYRkcPkJw28goZRfBPtSWMr08mE/T7fZimKaEb\ni1vPMxKJBM6dOyfRwYMHD+D7PlZXVzGdTqXwwZw+e415L9rtNizLkpCYn1MqlRCLxVAsFlGr1eTe\n8N7FYrHQc8euFubTD4MpJXrys9lMPvMoPLO7ymppr9eTTgsKEui6/ogOn2VZoaICEIQ+vu8jmUwK\nWRk46D6YdzCnxVzHYDCArusolUpIp9OyMZkktm0b2WxW1oCFl0wm80S5kSfdxKrRJEn5cEVZrdDN\nI+LxuDwfwEE/LalZzDsxzcCNS6PIvm9uToZ1lmU9dUL7WYOu6xgMBmL0EokEVlZW4Hkednd3Q4Ih\ndFB835fnVdM0JJNJmKYJ27bFWHW7XTQaDckzMm3Bw7/VasFxHAmfH/fMk5HB38uwmummx+GZGcNk\nMol+v4+dnR0xYmqeL5PJyEWYponBYADP85DNZkM5RnZlTKfTUHVr3jcrEHgh/X5frp/5Egos0Bj2\nej24rivKJ7y24XAoJx95cMfhSfMoXHcagl/ks54VVE+Of04mE2iahkKhIBttOBwK/ULVIwQg3sv+\n/r50Q41Go7m/9tOG7/vY2dkRo1cqleA4DkzTRKVSkbbYnZ0d7O3tIZPJCBMEgKjPuK6LWCwmhdP9\n/X1cuXJFBBjU/Da9v1Kp9MihznvMQ4qHHjuIVPbJcXhmxtAwDFFtYc8iNzZPHp4qzWYTlmUJp46n\nOhvlXdd9xKieBYFMJqJ5WlHxhDQhXk+73RZ+ZTqdlhO23+8jkUigWCw+FaUThi301HVdf6wxnHdl\nFRan1EORHgkry8DBBuGzxw3F6uVsNkO73Uaz2QQQrLnKb3seMRqNpA8bOFAHoijInTt3AASRS61W\nQyaTCaWtmKqg+KsqJce1VoVwKYNGY8p7SpVr0m0YBZimidFoJFXrJ8UzTX7UajVRugAOFsmyLAyH\nQ+lyGAwGcioUi0U5edbW1kSzbGdnRxZVVSuZZ8RiMZHNAiA6ebFYDKZpyvXoui5Vd9d1xUiSixmP\nxzEajZ6YaX8U+v2+8BuZlzmOVDzv1XpyClVFIGocHg77eS2qXL8q8zUcDsUYPnjwAOvr66JW8zwi\nl8uhVqvJHrNtW9aXBykAXLlyBbquY2trC6Zphig05XIZmUxGGi2AYP9fu3ZNRlvQ6JGrCBzkD4HA\nofJ9Xw4uleGgyqg9KZ7v5EeECBEi/P94pp7hyy+/jN3dXTkx9vb2sLW1hV6vB8uyJJeQTqdFIWRh\nYQGNRkM+Y319XUJkhtuH+5TnFUdVt+LxOMbjMbrdrngs5XI51LakDtZh3/LOzo6cjK+99ton+h6U\nRUskEkin0+L1ULbqKMz7+nqeJ8U14ECJmn+n10EPUOUjEup72D1x48YNLC4uol6vY2Vl5VO7nnnD\n1taWpAoKhYLMdFF7k6fTKba2ttDpdKS1ke9nBMLCFQDcunULtm2jXC6HNCGpGASEi4Bqj7n6+UDg\nzQ+HQxiG8cSqN8/UGK6uruKLX/yiLMb+/j5GoxGGw6EoLAPBpmQLlFp9tSwL+/v7kiNgWEm3fd7B\nAhCvn7lOTrBjMp9EdLaHqarLDJ1brZY8GCsrK08UxvH3jsdjEZUFDkQujsu3zHuYrGlaSFAUCPcn\nM2fIsIu0m8NkchpOHkTb29u4ceMG6vV66OB4njCbzVAul+XaTdNEu91GMplEtVqVA6Xb7YraNXU6\ngeA+DAYD2LaNYrEoxo50qHa7jXa7LYexZVkoFArSiaJ2qKiHnIputxtSeX8SPHOL8corr+DBgwcA\nDroEOEmMzfG1Wg2+7+Phw4cyCQsINm273Uav13tkOtxZSHCzD1kVq+XoxNlsFupAAYIciZoo5nwO\n5vhYWOp2uyK3fhz40KoVeuDJKDifNB/zaYPzX4hEIiFUG87mUP/tqI4aXddlzQnbtrG/v4+7d++G\nlK6fJ9AAsVACBN5eOp3GbDaT53E6naJcLiMej8O2bTlQKDaSy+UQj8fFk8zlcmi1WtjY2AjNi5lM\nJrh48aIwKU4Sep3NZqE2VZVRMLdCDQRPhnq9jna7jVgsJmV3AFJQ4UnDXmYWTyjkqPKPfh5ByE8b\nrN7SGFKdhgn+wwaHYyV5cw3DgK7rInirJvx3d3dDyt9H4eeVOXscyXWeQDFRhslca/X/gQMeJf/O\nzcLii1pt5udSUWVnZ0ck+k9a688abt++Lemqer2O/f39R9TlWazivuXBQU+co2wZ6XG2NV8nj7FY\nLIp48+OeWfXekqIGICSFd9IhPxfGkDmu27dvS65ne3tbFokD0qmCwSozJf8p7EADqM6umHeoeUNW\nc4GDShkQDlcZKgPBYcBTWPUYmY9RiatPE+r0t3kFOYNq3o9rpIp98DBJJBKPTMlTZ6OonuNkMsFw\nOJRwDni+jOF4PMbFixfFKWF6iwaL+VX2gsdiMdTrdfHoqB3gOE7oMCoUClhaWoKmabAsS7idxWIR\npmk+VnFGPfQIVphVnuFJOBsWI0KECBFOGXPhGRIvv/wytra2sLu7i3w+L4nSfr8Py7JQKpXgeR62\ntrYABCeCOt5S5dnNu6oKcKCAooa3AIQ7yJAgm82GVFjUPloSgMvlsrw+HA4Rj8cxGAxOLac179Xk\no6r05LDy//mnruuPKGMDBznVwxVmy7KEB8pQ7iwMIHtaoJwcuZez2QyNRkPmbNNLK5fLkke0LEua\nBabTaUjJRtUXGAwGEu3Rk5zNZhgMBmi1WlJ04fc4Kvph2umT1g3mzhiur6+j0+lgOp1iY2MDQHDR\nhUIBk8kEW1tbkr+p1+tIpVIwTTM0CpJGYt5BYrBKomYuTlX0BiB9suylBYJwjUYzm83KQ8Dmdwpu\nniQ5RYb/J8FZOGzU6jHDJoZU3ECHhYGPGgeg5mPZdmaaJlqtFnZ2dgAcjLk8K+mZXxSmacqBYhiG\nqLSXy2V5bmn0KHTBwmc8Hg8d0jSMFHBIJpNC1wECyh0Q3M+XXnpJDqxutwvHcdBoNEIUHVXCS31O\n57Yd73F45ZVX0Gq1ZGEAiJT4jRs3HknE9no9zGazkICBZVlnon/Utm0Z1E4wH0clGiDIjXL2LOkH\nwIHqjWEYoWqdYRgoFAqwLAudTkdO2MPqzDwwHkdPOA7zvr5sx1ONG2k0qsHienLjHW7fY/WZB7Dj\nOLAsC61WC4VCQZ5FDolXOXGfZbA9Fghy9DyUDcOQnKEqDKwWPziqdTQahXRL4/E4FhYW4Hkeer1e\niFdLClq325VcYiKRwPLyMmKxWEiJSIXKIT0Jc2cM19bWcPXqVfR6PREfcBwH169fl9GY3IjdbhfT\n6VQEXnkynIUEP3DgztNIcQ4yq+EkkfM64/G4VJSBA+oHvRW+zmE97XY7NKKRhhMITmP1/cfhKM9x\n3oUwVFl6ACIMTCkoXg9nJTOyOMqjUKXA1I3barWwubkJIPDkKchLSthnFTy8eRBQVGUymci4UCBY\no0wmI2usUsh4wKgUsnQ6jX6/j2aziVgsJsbTdV3s7+9LXz7HfTYaDfi+j/39fSnmEBz/+kn4xnNn\nDAHgjTfeQLFYlBDk2rVr0qit8vIoh89ZCnyQVa9q3sEhT0Cw0bhZVRI5q3KGYcDzPLnOTCYjXiFP\nTyAIE3iKzmazUEi4sLAgVegnzakc5QXOO89QnS0NHORhD1/LZDI5ks6kvu9wakLXdRG0UHUReYhN\np9Nju3fOOtLpNFZWVh4ZZAYgtA/5PDqOI5PwgIPxE4zomMbhXPRSqYRkMikHULfblSgxmUwKpWdn\nZweO42BlZQWapold8DwvFAXxu6lD1o7C85HgiBAhQoQTMLfu00svvSQnQKfTwYULFySXQDe91Wph\nMpnAMIyQSsVRA4zmEaxe8uRixZh5KYZqHBRFThxPXI5NVAspQODVOI4jHo+aD4vH4xIWHpbnYmih\n4qjZM/wd8wx1XQhWjFW2gdrnrWro8d4wb8g1ZIitet7AQZRyuH3v3LlzZ+JZ/KTY2dkJpV/U54oR\nRzqdFtKz2u7pui5s25Z9yzV0XVdG3vb7feETq/xZ0zTx8ccfA4DwFwuFQkgKT9UuME0zNBvlOMz1\nXaKr++abbyKZTGJ1dRX379/HzZs3AQSFBeYlyHYHDrTp5h2ke9C4s/WLeT7eXMoZMV+oDkPne/kw\nAgcCpDRi/PxUKoVkMgnXdUXbDwgoEPz8o4whczs/b8fKs4QaIjEnyNY8ADI8nmGyqpBM46gqYNMQ\nkiCvGlP+u+M4QsZ2HAeXLl06VmH5LEIdxcqcIMNelSqjPmdM+/R6PaRSKdTrdRmtABzMOKYzoDo3\nnueh3W7D9305XJgO8n0fy8vLIpxBJwAIDDKN6XA4PLaVb66NIVGv1/H1r38dd+/exX/+539KLnF5\neVkeZrW/9CwJNViWJRuKpyLpH6phoqdDEU0AoR5bdTYM8zbc0DRi9Fb4AKkeY6FQOHKGCmcKHxZz\nnffDhkl51QOkeIN67ez0IX1G7fo5XKwCDu4DPR51GD0QGN1+vy8VT9M04TgOPve5z32mDGKtVpN9\nyIObxT8eQOze4TPOtSVVjkpTzGknEgkMh0NomoZKpSLv7/V6ImRsmqZQ0ehM1Ot1aJoWyrGrvfnq\nyIYzbwyJS5cuYWFhQap1k8kEo9FIBiippOOzAMdx0O12xQPO5/PihanGjUbP93156Ai+rrbvcXA2\nOXSHHyqe4tzIhULhsQl/GsPDh8u8e4nciCrPUJ3jyw2oEvbV0F8t1KlCo+R6HqX0TSn7QqEgzyj5\nofl8Hi+++OKpXvOniYcPH8qBSFpbNpsNPVdMMfD6+dxOJhMZ45HJZORzPM8TLqIqQBKLxVAoFOD7\nPnZ3d6WYxUFxrVYLuq4LrYkFFY7/4P46iTVxpowhEORgWFofDodS3aOrztfPguy/4zjwfV9uErlU\nvA61f3Y6nYboBsABPYadLHxI6D0yj8qTmvM+KPDAh/OktTo8jwKYf9I151GrHSdUPVENOw8e5kaP\nui61Ug8cXLtqPKl52O/3kcvlxEvhDOylpSWsra19JrzD0WiEpaUlMVy7u7vQNE16tlXdSN/3H5He\nY3qL4ypUsjT7ltXKfj6fF2WqYrEonT6DwQDb29tyWNMYUlWbWp9PynyIqskRIkSIgDPoGV6+fBm3\nb98GECRkKYRKQVi+flZC5Wq1KnmM0Wgk18OQmFArvaqnRw+QuUYgLEXF/BY/PxaLiYqw2p3xScFT\nfl5B1RlVs5EJeuDAu1Ory+PxOETWJzlYVa1RCdv8WQBSSWXyX1UT2tzcxObmJvb397G6uvrpLMAp\nIpvNolarYX19HUCQkyuVSqGOJuCAHzubzUJ6o5z+SE+SYTLb6FjgUiv1+XwexWJRcrLAQdsth0gx\nh6kOq/okOHPGsFwu49KlSwCAO3fuIJlMYjQaodvtigE8qio6j0in06Hm/uFwCNd1H9FfUyuf6oZm\ncUSd9gYEDyuNgTo2Vc2LqXJhtm0/QkM5CWeh91vVXeQUNSCsYUgc1ZsMHAjo8nW1kHL4M5jbVYnu\nvV4POzs72NzcxNbWllQ8552adBJUib1qtfoI7QuAdPWQdM3cHVM6h/cpx050Oh0Mh0P5rHq9LhMz\nu92u/Ew2m0W73cb29jaq1ap8H9u2ZdQAU0JAcC+P6x0/c8YQCDiIQKB/yA3N1jXgQEl33kFvRRVY\ncBwHuVwulEBmvvBwHy0LJGrlmGDlmfw3AMLpYmWPxq/b7WJrawtra2tPrv0254IE3FgEDxF6ewTz\nhPSmD3vJ7NtWZ/ICkNZIvl9de4oTA0Fea39/HxsbG7h9+7a0sPEZPqtIJBJSJPI8TxgcatsdJfrZ\nK89nix1Tvu9LBZpggY8q2EC4sq/yiTm7ZzabodVq4aOPPgIQRC0vvPACVlZWhHYHnFz0O5PGkH2I\nv/VbvyWVLNu25YE96tSeR0wmE/R6vdBG48ZUFYA5DJtJano46XQaqVRKFFnU+R6qF3RYJJYFFhrV\ndrstLVJLS0tP5FXPeyGAHh2NFekzqmcNhA8alVrD1xi6qUZSpRupA8zVzyHIGLh//35ovIJhGLhw\n4cJpL8OpgXJdQODp5XI5eJ4Hy7Lk+jVNk0PJdV15nrl+NHiU9mIap1wuQ9d1Map8nR6lKoCcz+cx\nHo9x//59GSA3nU6Rz+elgv2kz+qZNIbE0tISvvzlL4sEuzqM/izA87wQb5BeHGeg8GTM5/PIZrMY\njUZy0gIHJ914PIZlWaFcTSwWQyqVesQYHkWuHo1GaDabEkqyM+U4LcR51zOk53GYB6iKeRDsWVY7\nbZgPVOdnAI9W0Y9KLRwOx0ajER4+fBhSKWeV8yyq3JDxwOeDEYpt26IuDUCoTMyl8tp5gFNpicaT\nQ6MYWnPNqT9Ajqf6+fF4HJubmzBNUz6/2WziwYMHSKfTyOVysk9OOuTnO9aJECFChE8JZ9ozBIIu\nlNdeew0bGxuigE33et5BPhW9CHoo7FGmh6ZW3mzbljSBpmkYDoehKjLfT8Kx+vlqLykVgIAD1RFy\nNXmCHucZzrv3zTZC5u7UJLr6J6vDDHF5XfSe6WUf9fnxePwRziL7mdXPZ5/55uamhGzJZBL5fB7l\ncvnEaW/zhkQigXK5LAVL0zRlDdWpdECQA6RCEj03qoQbhoFyuRzqFuI944RM4KAdDwhrcjqOg36/\nj0wmEyLYs/uHnjif81Kp9NnpQHkcOp0O4vG4GIlYLIZf/dVffcbf6mT82Z/9Gf7mb/7mkc32OOVp\ndqeorXCfVKX6qKrxk1aSmds5C6T23/3d3z3ymlQdQ+BAoIEdP2oVmT+vrvHhyjJfpwFkGkJN/jMX\nmUwmhT1Qr9cl8c/Q8HOMglsAACAASURBVCzhL/7iL571V3gENM6c1Mf7SS0D3/fxhS984RHtQyI2\n750EESJEiPBp4GwdRxEiRIhwSoiMYYQIESIgMoYRIkSIACAyhhEiRIgAIDKGESJEiAAgMoYRIkSI\nACAyhhEiRIgAIDKGESJEiAAgMoYRIkSIAOCEdrz/+I//8L/2ta99Wt/lNDDXooZ/9Ed/5Pf7fZkl\n0Wq1MJ1O0Wg0RKsNgIxBtSwrJL01HA5Dijaq5BcQ6CUWCgV5nWNJPc9DLpeTFjDOUeEMFvbzUnGE\nSjbsVmq1Wnj77beBOV7ft99+2/+d3/kdUfgpFAowDAP9fh+6rktbHBV/2P/Na1dVUlKplHwOlVko\nXMo+XEpz+b4vbYvAwahK13WRTCblfa7rSh84pxkCwYTEUqmEDz74YG7XFsCZbVv7h3/4B/zJn/zJ\nkWt7rDFkA3WE00GtVhO5eAAyA9pxnNAIRVXbbTqdinHLZrOoVCpwHAej0eiRYdnZbFZkwohEIoF6\nvY50Oi2jQ6k7RxFTdZA69eni8Tg6nY58z3nHbDZDLpeTxn5Ou6P6saqVxzGz6jpRaDebzSKTyYjQ\nLkdZptPpkHGjweOYV4psUOi1VCqFxGP58xyozjWdzWZzL492lrG9vf3Yf4vC5AgRIkTACZ4hPYEI\npwN6DaryMuegAJAQjCoo2WwWw+FQwuDFxUXMZjMRtaU8UTKZhKZpSKVS4iEBQaiYzWaRz+dl8BTf\nn81mUSwWQzLptm3DNE3xePh7jpoZPG+gPBQ9MSqhU1mZ155KpUTUVh0X0ev1kEqlUKlU4HleyIum\nCGkikRAv3Pd9pNNppNNplEol8RiHw6EM98rlcnJPGT7zPtDz5NiHCKeD995777H/dqwxPAtDf84y\n+v1+SHPPdV24risbh0aJeSuGvJw9MZvN0O12MZlMQoPLKYdeqVSQy+UkP5bNZmWAlG3bsmHT6TTy\n+TwKhQIymYyEbNyg1PnjVLKz8FwwxaCOP5hOp6IJqaouU7MwmUyKwY/FYsjlcjLwnCmIUqkkxjCX\ny0k4zMOEYTXzq9SmzGQyqNVq8n6qL9MQMjRWB9xHePr4+OOPH/tvxxpD3rgIpwMm71VtPXV2gzqp\nbTwehzYqAPHa8vk8FhYWxOjl83ksLy+j0WigUChI3iyVSsmYxlwu95n2QFgI4hoyB+j7PnK5XGgW\nCTEcDkPeMgec+74vRa5yuYxisYh8Po9Go4FGowEgyP/m83mZS8N8ey6Xg2EYMseGnmEikYDneTIG\nk0ZbzRVHOBmO42B3dxeu64q94j1h0UrFcUOhjjWG86QY3W63EYvF0G63Rcl2dXUVmqbhgw8+wHQ6\nxcLCAoDAiP/rv/4rvvnNbz7Lr3wiXNfFeDwWD5Aeh2EYmE6n4olRgZoeBkFl4VKphEajIaKVS0tL\nuHjxohQQaCRVr++zDk5TY3jreR7i8ThSqRSSyWRIuJWVXfVesIKv6zqy2ays4eLiImq1Gs6dO4cL\nFy6IN14oFFCpVJDJZJDP57G4uAgAn9iwHacu/rxiOBzKmND9/X2xS77vY3t7G6ZpYjQayRhW3/dx\n+/ZtNBoNvP766yED+PWvf/2xv+fYnfGs1IxN08THH3+Mvb09AAGVY2trS3I7akjR7XahaZpUSPn6\n+++//0y++yeBbdswDEO+dyqVklGL6iByypqzAqnOjc3lcqhUKlhdXcXy8jIA4Pz586hWq8hms7JZ\nnzYGg0FIgn3eoGmaDNACDkaH0uPms21ZlnhohmGIJ8HRoZlMBsViUQ7alZUVvPDCC7h06RLq9boM\nK19dXY0M2VOA67owTRPNZhPXr18HENyj4XCIW7duYX9/X9ac43GHwyHG47FQmq5fv45+v48vfelL\naLfbElFlMhn8+q//+mN/d1RNjhAhQgSc4Bl+2ifdu+++i62tLezs7GB/f18sPcnIQOCRMPSJxWKo\nVqsoFovo9/totVoAAi+AM13nGRzlSW+E3sx0OsV0Og2FbOp8X7XwkUqlUCqVUK/XxTMsFoswDOPU\nvEIgGDw/z56hOsAcOFgrVvDpMbLanEgkQnNImONjkaRerwMAXnjhBbz00kuo1+uoVqsyDP55ST+c\nJvb29rC3twfHcfC9730P165dAxCkIEzTxNbWFjRNw8OHDwEEhb1qtYr19XXU63Wsr68DCGzElStX\n4DgO7ty5I2F1JpPBH/zBHzz29x97Bz/JoKFfBD/+8Y/lz2azidFoBNM05aIzmQxSqRR2dnYwnU4l\nrCwUCkgkEnAcJ1SFY0fBvKNUKomLDyCUvOe0MYIbmwRhINjwLJBks9nQsOzTJswzhJ9XxGIxJBIJ\nOTgymQxmsxls28ZsNntkIiFJ11y3dDqNRCIBXdeRy+XEGC4tLaFcLkteMDKCvzg4/H1zcxO2beOH\nP/wh/u3f/k0KfJqmYX9/XwaX8SArlUrY29uDZVnIZrMSDrPY9fDhQ4xGI3kGer2e5HKPwjPPGf7s\nZz/DjRs3AATGIJFIoN/vYzAYSOUtm82i0+kgkUggn8+HJo91Oh2kUilpJQOCpDVzPPOMTCaD0Wgk\nhoVcNcdxQsl8z/OE6jGbzUIPQyaTEa+HuUS1A+K0oHIj5xEsfHAjAIHHwNwrowu12qzrumwkvlYq\nlaRFDoCsd7VajXKETwk7OzsAAgbAgwcP8IMf/ACdTgcvvPACgINxriwsspg1m83Q7/fRaDRgGIbc\n03Q6LW2XhUJB7II68fAoPFNj6Hkebt68KR5RuVyG7/swDEMMIBCQv+n5dLtdMZKsspImQiORTqfl\ntJlneJ4nrXVAEN6Ox2N0u10J6YDgpheLRSSTSfR6PbmhpMmwxYzG89OgzKhGZh7B9APXkC1v2WxW\n2hcBiPcXj8dDhtC2beTzeTF+apFLrS5H+MXAgx8I0mHXrl2D4zh44403pDrcbDZRKpXgOE6I42rb\ntlDKTNOUVJrneeIgqIyY2WyGzc1NLC0tHfldninpend3F6lUSh604XAolbudnR20220AwQObzWZh\nWZZ0VgCQCiBJwzQCnufJaTPPGAwG8H1fjHssFkO320U8Hkc+n5d8Fg2eyisEDvpYaVTprX0aKYJP\nK4Xy84ICCFwTEtHH4zF6vZ6EyYZhYDabyexizt5lbnY2m4koA6HyCCP8YlB74Tc3N7GxsYGVlRVc\nvXo1JFSSTqfRarWEKwoENQ32z6vOAO8P02e8d/1+X/bUkd/lNC80QoQIEc4KjvUMT7MaCQRhrtpp\n4bouLMuCruuYTCaSp+GJrus6NE0T685ODdd14XleKFF63AkwL2BvK78r+5Kr1eojCieTySSUDAaC\niq6u62g2m9A0TZj3nwbmvSVvMplIYh0Icn3kpcZiMQmJfd+X1Mx4PA55457nwTRNIfwCAela1/W5\n94zPCtQq/u7uLnRdx+LiIkajkaTplpeX0Wq10Ol04Pu+FEE0TcPOzo6kMvhM5nI56LouHURMiezv\n7x9bSzjWGJ52klzTNPT7fXGHdV1Hq9XC3t4e4vG4fHHHcdBsNjGbzUJN7clkUpLYqhYdk63zjnw+\nj06nI9fPfmHmBNUcFh8E6uwBkM2qEtKBIBF92jm9eS+gTKdT5PN5CZ0cx5G0hKrlCBy0xqk9ywCk\nna/VamFzcxNAUE0+CwftWYJqrAqFAkajEba2tmRvF4tFTKdT5HI56a0Hgq40y7KQSqVg27ak27h/\n0uk0bNuW1Md4PD7WLhxrDI/T/noaYDWYpy67LsgfpMc4HA7R7XbFCPJhHI1GePHFF5FOp9Fut8UY\nqm1Y84xer4fRaCTXwwoo86A0bsyVFAoF6LouhmgymcA0TUwmE6ysrISu/7TBPM+8gsUTFqjYY3w4\nn1oqleC6LrrdrlTzCbbq7e3tyeuqiG6EpwMWOyeTCYbDIfb29pDJZORera+vw/M8rKyswPM8PHjw\nAEDgIFD9Jx6PSySbTCbh+z5M0ww5T/F4/NhD/JmKu+q6DtM0xRjSECaTyVCVaWNjA+12G4lEApVK\nRYxkPp/HhQsXkMlk0Ol0sL+/DwAijjrvME1TWoqAIJnP/lkgqKIBQaGlWCyG2g2BYGMy0T+dTqX6\n/mn0lM+7MaS0GZ8VpliYsFdbuuidZ7NZuS5N06QwlUqlpAGg3W6fCabCWQILn4uLi7h79y5arRZW\nVlbk0OGemM1m2N/fl+aK8XiMRqOBTCaDQqGAc+fOAQhYKffu3cP29jYsywqJ5R7n1R9rDPnAnBaW\nlpZCZGGSYYfDoYQtQOA+W5aFhYUFUVwBgCtXruDy5cvodrvodrviDY7HYzEk8wzSPAiKCGiahl6v\nF2LOkzRM4jBwQP8wDAODwUAq6NVqVSS5fh5QICKfz4fCybMEVtnpXcTjcWiaJlVlGsl2uy1kazW1\nwJyj4ziSswWAra0t3L9/H1euXHksRSPCJ8PLL78MAPi///s/JBIJ1Go1YVAAkGd+MBhge3tbDqZG\no4GVlRX4vo98Pi/3I5fL4Z133sHPfvYz0aMEIGInj8PZfNIjRIgQ4SnjWM9QHWxzWvjt3/5t8fQ2\nNzdx584dYY/THbYsC9VqFQsLC6jX68Kzq9VqGI/HaLVaoUFGqlc171D5UfRcqHOoDnbi6UYWPv/O\nELnZbMrrPFHPnTuH1dXVT/ydnqR7Zd6LCJqmhfKD8Xhc/gMO2glJ0KV+IT3GWCwmHDWK2wJB6uIn\nP/kJarUafv3Xf/3n9r4jHIAR6GuvvYZr165JyyQr9pubm3BdF9lsNlTkunr1KtbW1oRlwWdyY2MD\n169fh2maqFarYseoF/o4HGsMP4280OrqKn7/938fAPCd73wH169fR6vVgu/7kpspl8u4cOECVldX\nkUgkJDd28+ZN9Pt92LYN13UlvOv3+8eKOM4LqE9II85ql23bmEwmctM5pS2dTod6lhlKeJ4X6s3+\n/9q7tt42rqu7hvfhRaIk6mY7TgMrFxuN7aRJgzRJgaBo3bRIWrToS4H+g/ygvvZf9KFAk7QFgqIF\nmjqIa8uWbV0piaSGHJJDzgzJ72G+tXmGkmj5EmsYnQUEjiiJIg/P2Wdf1l670WigUqmIsaTO4bPE\nacm7nRTsYWXoy5wTAKFcAMMWLVaO+fO8mAzDCKUmGo0GyuUybt++jbm5OVy9ehXA8+n6+a7jgw8+\nwL/+9S88fPgQrutKBX9jYyMU7r744osAgjQbawtspwSCVIZlWSgUCsIiAAL5tXGpv0goXXMDvvji\ni5iZmcH29jb6/b5Qayil7rou1tfXpVSeSCTQ6XSEekNjqHKRogzONGGuk++x2WweEmrIZDKiXkNQ\nYIDVNG4Gz/PkeaPOB/y2QJVj7mF2KvCSpGEcDAbwfV8Kd7xQfN/HYDCQHJPaDeH7Pur1OtbW1uRw\nXbly5bm+v+8qPv74Y3zxxRf4+uuvcffuXQDBBcQIp1Qqyf87joNyuSyFU15MdIY8z4NlWeIMnDt3\nbiw/dKwxfN4tbSsrK3j11Vdh2zYcxwkp2lqWhY2NDdRqtZCho3Hc39+XEIhtelEHy/48cKQDUGGZ\nIRsNHudp8L3x9+jl8IDbto1sNouFhQV5jmcNVSEniqBiDS8aSqJRPJfrwnCMw6BUmpN68ah0Jtd1\nUa/XUa1WJUpRhTU0nhwrKytoNpv4+uuv5SJnEwILXXx8e3sbW1tb2N/fx/nz56VoSiOaSqWQSCSk\nxzmXy2F/f1+k7kYx1hg+b4MyOzuL69evo16v45tvvglZ8VqthlarBdM0ZWPu7OyImg1FDoDAY5qE\n3uR+vx8aCu+6rjzGeb7AME9IQ8iDHIvFRJtPfdz3fVEEb7fbh6SNngWiftnEYjF0Oh25MHK5HPr9\nvnjdfP2cPAiEhzGpYwFUsi49THrdpH/UarXn2gH0XcbKygrOnTsnVWbOr+l0OkgkErKfbdtGo9GQ\nqY937twBEOgiUt5PHZXhed7YOoiuJmtoaGjgEZ7hacgUXblyBbdu3cKDBw+kgMDukvn5eTSbTayt\nrQEIPCn2mar9oqrmX5SRzWZD6QDmrpgoZuUrlUrBdV3hytEDVEVtVdFXJo0ty8LBwYF4mKZpPjOP\nLurteFwX5ggNw0Cr1YJhGIjFYiEirjpXhv8yZ9vpdKS1j4/TW2ShChh6I1rN5umRz+dx6dIlUa3a\n2NjA6uoqgCAioWfYaDRkDvjm5qZ0zC0vL6NYLKJer2MwGEjxyzCMsW2qY40hCxXPE9PT07h8+TJq\ntZrE/r7vi8z6V199JVXmpaUl6T9MJBIhMdRJyd+4rhuieSQSCTl8PICsdHIcAI0lqR/5fF6GowMQ\nqTPbtrG3tyeXRC6Xe2ait1GvJsfj8UOq4IPBAP1+H77vS2qCSuFcVzWXSOGGWCwWoj81m03s7e0h\nm83Kgd3d3UWxWJRKp8bT4dVXX5Vz4boutra2kMvlQmEyRV3JKmFucGlpCY1GQ/qV+Tz9fn+sXRhr\nDE+rB/Pdd9/F3bt3ZabB5cuXMT8/j4cPH6Ldbkt1aGZmRrpP5ufnQ4O5JwG2bYc01mKxGPr9vnRJ\n0OBwNABHXNIri8fj8pjjOPKh53I5EYkFhtqD7FZ5Fp1Fk9CZokYIzKP2ej2R8gcC75xFFd/3Q91Q\nvJxUz7HVaknesdVqSdKeXUK5XO5boTKdNVy5ckX22Pb2Nl544QUZGUqjd/HiRXz55Ze4c+cOLl++\nLIXV3d1dNBoNlEolZDIZmbL5qBENp6paMw6XL1+WkKNQKODhw4cynpIb07Is7O/vC+1E9VYm4bC2\nWq0QERgYiooOBgOhCqmzUdRhRplMBrFYDI7jSJ8yACGncpAWL4mdnR0pxqgyVk8yx+PbqlI/K7CA\nwnCYDAOSqBkukUOo/hwA8SI5I4XeSL/fh2ma0gvOtUsmk8jn8xK2TcIMnqjjtddeAxBUh23bxurq\nKhYWFmQcwNraGm7fvo1isYjz589LZX9nZwelUglLS0vY3d0VO0YRlOMw9hSc5hyRt956C2+88QYA\n4P79+yiXy5idnUW9Xg/lAzm4Rx3mQ15i1EHWPD039tJynoMqbcYPlPNQ+PscZER5LwDyGBAcUt6M\ng8EAqVQKzWYTpmnKGj2JMYy6UAN7k/k6eSGoRGxgODeZULU1AYToOACEiO04juhJAhB5KRLh6X3P\nz89HvvIedfz4xz8WPdOLFy/KxXT79m0MBgO89tprMAxDjCH7m7vdrqjn83Hbto/13KPvPmloaGg8\nB4x1CU57HCRv3ZWVFezv78uoUGJzc1MS4oPBQMK+bDYrmmdRBrsfmDMkMZgDi1RytSrsSi8nnU4L\nads0TfHwWPHsdruH+rSZUlhcXJT1ehL1laiHyUA4VcLhYQyT1aLVKMEdGA6UYl8yPwsWZTzPE/Vx\nIGgB4/MbhiGjRQeDgeS4NJ4MU1NTuHr1qtQF/vrXvwII9jLrCczv8nH28zNvCATK8ONYJmONoWp4\nThvvvvsuer0eqtUq7t+/DyAwhszVqEN62H0RdbAYwiowpaIcx0EymQz1JvMw9no9+dBJ0ubzqJ+X\nGmKrxQISt0nKBoJCzszMDGZnZ08c/kadukTlb1XpmnOmGUIDQ51DgikIrnG324VhGPI1ye+Uk+c6\n2LYt+dleryeMB+YtX3rppefzxr+jWFlZwcrKCiqVCi5dugQgyLlXKhUYhoG7d+8K+6VUKgmxfnZ2\nVs5Xp9MZW9waaww5PyIqeP/997GzsyPdJdPT04jH45JT40bOZrP43ve+d4qv9GQoFotYX18PidWy\n4TydTocKWDSS3W43dHg9zztEGSA3jpw6GlLLsuA4DnK5XKgSats2Ll68iGKxGPlc4ElBw0fs7+/L\nOqgdJZypwwuFxo1VZyopqzlEdqE4jiPrxTkcDx8+DIkLU8mdquxRH7EadZRKJdy4cQNA0LF2584d\nrK+vo1wuy4W1vLwslxz7/wGERmYchbHGkKoRUcLy8rK0PS0uLsL3/RAdBQg27GmH+CeBZVloNpvi\nxdKrYJM5P7hkMolmsymVTBo+JvbJqVM9Q24G1UjW63UYhiGq4aQiUNnmcdgDUVcFSqVSKBQKKJfL\nAIZVYF40NGI0eoZhhEaLkrfKNVbDZNd1QyR4Pn+tVoPneeh0OsI/zOfzaDQaiMViWFxc1MbwGYBO\n2jvvvINms4kvv/wSlmWF9jO5uqSeAcFnVy6Xj22bHGsMozoBjPLet27dkgoS598CgTL2+vr6qb2+\nk6JSqSCfz4sRZ7UXGB5SYJgDZOisVpYBhEJo/ptMJuU/Pk7lZs6e5iaZmZmRPuaTUkKepAL9PBGP\nx1GtViWnx4PB9WWKgMo0lEFTJb/YE8txAUBY7QZAKHx2XVdk6ZmamJ+fh2EYWFxcRKVSOVWGxncN\npmkil8vBsizMzs7KOSLNjFxQhskqE+Mo6GqyhoaGBh7hGZLcGDVQO+7evXuwLEsmxDE3MClDe1gB\nZjjMyjhvMDXHNRgMJJSjV6N6gJyPAkD0DYFwF1Gn0wmRhvk9Ktvs7e0hlUqdKFccdaVr5vToLTCs\nZ0sjXz89Ba6Z2t9NlgK5hcBQ55Ae5WjRit0pasqBXRC7u7u4ePEigOjl4ycVhUJBwl61aJXL5VCv\n10P94/F4fKzewljPMKoVQ9M0YZomXnrpJQlH2JmhyipFHcViUaS32PHAvNUoLQQ4uiOIEmC+70sx\niUx7tp+RvtPr9UI5FBpQiuPu7u6eeNRDlJgGR4ES75lMJqRerRKogcAYqsUm5gNZnWclWf2MDMOQ\nTihKSzEFAQShM5+HYVq1WsXDhw/lP41ng5dffhnXr1/HuXPn5DMCIF1DJMbH43FMT08/uex/1IsQ\n165dQ7lcRjwex927d0OCBFFP8ANBBbJer4f0DHu9HrLZbMhz46E0DCPUjcJWPlZD1XwIqSRqYSWT\nySAejx9Sx7EsC1tbW8hkMpiampLnKZVKE1tdTiaTISFQYDgHWaUq0RNXFcPVnz9K9FX9Xa4tPxuu\nN733RCKBVquFzc1NFItFKZYtLi7KnF+NJ8f09DR+8pOfYG9vT1RrmGNvt9sSPQHD4tdxmBie4VFI\npVL4+OOPkc/n4TgONjY25HuTINZAkVAaH4bD/B4/uFQqhWQyKZ4IHx+lwqiiBOQjjn6GvV5PPE8+\nDwdw8SCzKPXSSy8dy4+LuioQDRmNmOM44tnRQwSGbXscIMXPgi2OLJ6ohSXO3KABHP27qvH0fR+2\nbaNcLmN6elrCtEQigcuXLz/RwC6NMC5duoQf/OAHwjO2LAt3795Fr9dDJpORz7Tb7WJ/f//YkSBj\njWFUw+RRfPjhh9jZ2QnNTZ6EnGG9XpeDSMRiMemX5QGk2gwf54eeTqfFsxnlJKoHVa1K82fVjhUq\nAG9tbaHb7YrHaJom5ubmjlTIjnoHSjweR7fblT1BCTR2m/CyJImafcXMO/u+LxV3NQfIC4t0LrXK\nTOOprg3DcMdxsLW1FepDHwwGssYaT4ePPvpILu4vvvgCq6urkjriZ9dsNseyIHQ1WUNDQwMRVLp+\nUly9elXUWVqt1nOb7Pe0UEM2ehqu64baC/kYu1OYD6X4KBB4PvQASSpmrpEFBBZT0uk0crmchNCU\nsGIVm3+3Wq2iWq0im80eulGjnobwPA+NRiPUc8y+YVbtgcCDzGazSCaToUp9IpEIVd1HW/a41nwe\npjKY91Xn13DQl1rFZpNAqVTSnuEzAiW/1tfXMT09Lc0XjHA9zxtr08YaQz75JGBpaUloC4ZhTAS5\n9U9/+pOoeQNDcVeGsarqMuXLE4mEGKt2uy3VTrVnGRhO1FNJ1yy0sHNCNWjMjak90ZwuVqvVMBgM\n5PF+v4/d3V0Z2BNFzM/P49NPPw29dwCyVursaWBIYFeFdtnfDAyJ7arGIfOGAOQzoXAGv47H43Jp\n0cACQb6XuatqtaoN4jPA559/DgD4xz/+gfX1dSSTSSwvL8tFls/nx44QNqKe+9HQ0NB4HtA5Qw0N\nDQ1oY6ihoaEBQBtDDQ0NDQDaGGpoaGgA0MZQQ0NDA4A2hhoaGhoAtDHU0NDQAKCNoYaGhgYAbQw1\nNDQ0ADyiHQ/ApLenRHOIyxATu77/+c9/cP369ciur2mag1E9zlqthtnZWQDBDF0gaLMzTRO2bcts\nGCBoq0ulUjK+lbJmmUwGhULh0CwN13XhOA583w9Jq3GWMlvC2PtMMVm1jxkIlIz+v68+smuLCd63\n/48j1zbaU300IguOGY0qRnt9+/1+SBVdFQKmQAUVqoFANo0GrFqtSp/4qJyZOoz+KHGQUYGL43Qg\nKTMVdQ3R7zJ0mKyhoaEB7RlqjKDf78sA9F6vh1wuh0wmc2guy5///Gf89Kc/Pa2X+UhwHMKo/L5l\nWcjlcigWi/KzsVgM+XwenU5HPEa+10ajgW63e+ysXarQPOmYCYbT/HsM4zWeP7QxPEPg9DaqNDMk\nK5fLODg4kCFIDNkog29ZFizLknzazMwMvv7661N7HydBt9uV9woMla45a1cFZbZardYhvbt2u41S\nqRT5MQcaTw9tDL/jsCxLvKNut4t6vQ7LstDtdlGtVgEExrDT6SCRSGBqakq8k0KhgMFgAMuyQtqH\nlUrlWE8pKuj3+3BdVzw9Fj5GMRgM0Gq14DhOaNgTEKzXzMxMaP6JxncXkTaGnGPSbrcxGAzQbDZR\nr9dlaly1WsXOzg4ODg6QTqclgb2wsIBPPvlkYie7PQscHBxgZ2cnpN7cbrdh2/YhlerFxcXQcCrO\nDWk2m0gmk5ifn8fy8rIYFtu28etf//r5vqHHBPfM6Nxkgu+R6uHpdFoKLMRpGcHt7W2cO3fuVP72\npKHX62F/fx+e52Fvbw8AsLOzg8XFRRHopVc/Pz+PbreL8+fPH/lckTOGW1tbuH//Ph48eIB79+4B\nCDYHN7dhGKjX6wACesL09LTMrSWSySS2trbw6aefnsp7OG0cHBxgd3dXPB5Wfm3blnCRw4iAwAMk\njSQWi8nmYZ6QFL4doQAAE6BJREFUHqI6uvSdd945nTd3QjSbzSNHxnqeB8dxpAqcy+UOGcHnBY4m\nyGazodf58OFDbQxHUK/XsbW1hc3NTdy/fx9AkM/d39/HwcEB5ubmZJ83m02cP38erVYLrVZLPt9s\nNos//OEPxxpDXU3W0NDQQEQ8w5s3bwIAvvrqK9y/fx/7+/uoVCool8sAgnDZcRzJA5Hztby8LPOF\nE4mEhMWVSgX//e9/T+fNnCJYEGG4m06n0Wg0oJKPmROLxWKyXpwvm0wmkUwmhUtHTzyRSKBSqcjz\nJJPJyA8LSyQShzw+z/PQbDYRj8clfOasEr7XZw0WpJLJJJrNpoTnnHeTTCZD8605KlZjOHTs888/\nx82bN7Gzs4NqtSrz0X3fR6PRgO/7mJubkxx4Pp+Hbduo1WpIpVJS+PN9H7/5zW+O/Xunbgxv3ryJ\nv/zlLwCAf//737AsC41GA5VKRYbxxGIx6RBIJpOygYHAfWZegJvIcRyZf3uWwM3DKXD1eh3ValWM\n2+zsLPr9vgyWIgzDkMHnmUxGDmaj0QjNBWYVll0bUcZoxZhD4fP5PPr9fsjweZ4XKpw8LXzfF6PH\nS8myLLRaLfk7nJqnEr0BSFfKWUe1WsVXX30FAPjss8+wsbGBer0O27ZlCmY8Hhe70Gq1QjOvaRcy\nmYwM+Wq320cW0YhTNYasaDIHyFvU8zyZzMafM00Tpmmi3W6Lh8Lpb9zgNJLqbXBWoB5A13XRbDal\nc4KTAufn50NtY+pEOE516/V6chiz2awUEWgsgeEkuSiDxpoXRLfbxfT0NHq9nuTpgMMdH6TiqJzK\nceBaeJ6HdDqNXq+HTqcjz5NKpeB5noxo5evipcQh9ox2EonEMzXMk4hOp4ONjQ3873//AwApjHS7\nXakdAIFx63Q6KBaLaDQacuaLxSJ834dpmjIuFECINnYUTtUYbm5uotFoCJXjtddew+7uLkzTRKPR\nkH5Q3uKs/KljGNPpNDKZDOLxuBhPUkTOEji+Ehhy6rLZLEqlkoSL9JyTyWTIGNIzyufz8rtAYAwN\nwwhdUkDgjR8cHEQ+VCZvEoAwDSqVCgzDCHm2KutADVdPAl7k9Kjj8bi0+AHDXuRUKoVOp3PoAspk\nMqGLm+mKswzHcXBwcCBsEl5inuchHo/LpQxAWCS+78uZN00TzWZT9jXPhTpn/CicqjFsNBqo1+uy\n8V544QUUi0WkUik8ePBANtJgMEC320UikUA6nQ7N7+XXvV5PboBGoxF5Hty3AXqAvu+j1+tJSoHr\nyJDCNE0kEgkJJekN8ve4YXi4Pc+TIewAZPZylMHB72q4XK1W4bouLly4cOTvdDqdx4oo1Io8+5tZ\niadHSo+R87Dp1fAiZ56Wv6d64GcVrBnQiM3OzqLdbmN5eRnFYjFE8eLscNM05SLrdDpywakRZrPZ\nHEue19VkDQ0NDZyyZ8g2L9u2AQw9vXPnzsH3fbkB2u22hHZqNTkWi0luIJlMhoi0dLHPIuhp9Pt9\n8faAYL0ajQZ2d3eRz+dRKpUABLdno9GQsEJd31wuJ7w8Pk8ikRibiI4CRj0Adt2USqUjq8ZqX/JJ\noYbb9KIJrhW9v8FgEArb6RnycfVvd7vdx3od3zVYloV2ux2SU+P+SyaT4u17nif1BdM0JR9YKBSQ\nTqclrcb1HAwGYxsxTs0Yuq4rbV7Mu2xubiKVSmFqagq5XE5yUoPBAI7joNVqSX8pMOyd5eHl4yyo\nnGVks1lppSNM05S84GAwkHV3HEfa8QqFguSsGGJwPflcruseEm6IGniQWGH0PA+FQuHIKnir1UK/\n338iA08jxtRNt9uVqjWAkI6hYRiSyjEMA9lsFolEQvYvMfr1WUO73Uaj0RDBkGazKWky7j0gSAcl\nEgk0m02pHPPxfD6PdDodojPxuY7DqRlDVnmq1WqIOU5uXL/fF4/Rtm00m81DlJDp6Wmp1nU6HcmN\nqVSFswhW3Nm6SAPgui5isRimpqbg+75sjE6nA9M0kc1mQxVk/k6v14Nt22IM6ZFHWbyg0WiIkQMC\nqo1KySJ2dnbged6hrgTXdeG67iO7U1QhCN/34ft+SAsRCNaXFWbuTR7Yowp9Zz1n2Ol0UK1WpYps\nWRbS6TR83w+dc3JlXddFLpeTfcsOq3Q6LXQcIIiYRgV/VZxqmOx5XqhqxM3EgglfuOM4cF1XQgsa\nxGw2i3w+j3q9jt3dXSFddjqdM72hWJ3vdDoSWgBhj6Pb7coapVIpZLNZTE1NYWZmRsLnWCyG/f19\nlMtl8XgASPgdZWPI1AovglEvlkyFer2OpaWlQ+ETL+RHGUO1Ig8gRP7n47VaTbwYeimq9ziKs84z\nZK887QJl1xzHCRHSO52O7OO5ublQAdEwDExNTaFWq4kxNE0z5CWO4lSNYS6XkyobAMkJ0vKrggGZ\nTAZLS0tYWFgQFeOZmRlhoR8cHMhN4jgOFhYWTuEdRQP5fB75fB4XL17E3t6eXBIUaVBTDkCg3lwo\nFCTMYOjH5ve9vT05zPx+1EUw1ArtKLrdrhyQubm5kLYh80vdbvdE9CyVH6h2khCWZQljgh41EEQ1\nx63hWc8ZvvHGG/jss89QqVTkMc/zUK1W4TiOXO50norFIorFolziDI2TySQsy5L9XygUxnqG0U36\naGhoaDxHnKpn+Mknn2Bra0v6iPf29iR5SpIlENy+mUwGpVIJFy5cCIVxrVZLNOnUggBv/rOOhYUF\n4bzt7u5Km2M8HpcwbXl5GXNzc2g2m9jd3ZWecMqAxePxkPcEnJ681UkxroCm8s34vtibzHA6k8mc\nSM1mtCDDfBWT//RKTNMMPedR81KAwAM66zlvAHj//fdlH1YqFViWhXK5jFgsJmmgVCqFfD4v3EN6\n5QcHBzAMQ1glqjcY2Q6UVCqF3/72t5Ib2N7eFoOYyWQk4c18VrfbxerqKjY3NwEEGzmTycC2bZGn\nIs563qVarSKTyYQKB4VCQTpJ2KFCVCoVNBqNEMWEHROGYYQIw1HvSwYO5whd1xUDSCI0EIT8am8y\nf0/tXHgcUD+SOcnBYIDZ2VmUSiXE4/FQNVkFw2fmKs863n77bTx48ABAsDa3bt2Sz01tCmARxfd9\nSS+wutztdlGpVEL99eMq9afeRnDhwgX87Gc/AxB4Lpubm/Jm1Ylhg8EAlUolVCEsFArI5/PY3t4O\njVycBB7ct425uTm4ris5QiDgtpVKJZHEZw6w0WjAsix4nodMJhO6eVutljwPvZpJaHXk50+vmIeA\nXheN4WgnDaORJzGE5Ayqz2+aphhC9i2r3weC/c2ohowKDeCDDz4AEORdqWGownEcmKYpHiDZEVtb\nW4jH4yLewPVUu6iOwqkbQwB49913AQC3bt3CxsYGEomEUEOA4W3LBDRvANu24fu+/Ms3HY/HpbJ0\nlpFMJnH//n1JRJMkTJ4hDQQr+ORsclPZti1qNdlsVi4b0m2iXERhQ79q7EhAz+Vyxx4K/rzqQZxU\n3sswDOTzeZmVzMfoudTrdSlS0SunwIZajT5rIiPHgS21KysrmJubw8LCQohnCAS2oVariZArHwOG\n3jY/i0cVpiJhDIlr167h1q1b6Ha72N7elhfPBmvDMOC6rpTXqQnHsI+3LoUbzjoMw8DMzIwcZF4k\n/X4/RAGhpl48HpcbFQg884WFBWSz2ZC0FCv+UQ6XKUtG46ZqPKpiFKPgz7O7IR6PPxa5nIO2+Dvk\nwTFMV40gq8zsuVdfu8YQr7/+Ol5++WW0Wi2sra2Fzj/XsNVqyeMzMzPC7cxkMmIXxjEMAF1N1tDQ\n0AAQMc/w8uXLePXVV7G/v49utytJbcdx0O12xdqrt248HpfcliqbNI5ceZageoa2bUsSmtU2YFhQ\nYD8nw2SO1SThmt5LJpOJtFcI4JBeoeu6knxnOHsUGIIxz3pc1Xcc1LXyPA/tdltCc3ov3K+FQgHx\neFwX/8agVCrh9ddfR6vVkkmOAESPgN4+w2K2+jIyoDcYi8XG5mMjZQyz2SzefPNNlMtl1Ov1ULM7\nx1wyzAOG1STqF6q9iZMgQPq8QPoItfJs2w4Vomg4WE1Wq/iu64r01yRVOVWRD2Co2ZhKpQ4dCLbK\nZbNZ2Tf9fv+J0y2maYbk5HK5HJLJJDzPE+ZEOp1GsViUNI+aqzzrvclH4b333kO1WsXa2loolcGe\n5VQqJevWarVk7KsqgqHS9Y5CpIwhALz55ptYXV3F7u6uVARbrRYODg4ADPs8gWHzO5PUfNM0kBph\nUEiUWoasrPZ6PWxtbWF7exvpdFqqxbZtS26QGwuYjN5Z8k55QFKpVEjbjvA8D7ZtH/IUU6lUSAuR\na5VIJE6UQyTPkMIjfE00xMViUabjpdNpuYBGx7hqBJiamsIPf/hD1Go13L17F0Ag7FKr1SR3yLVT\ni2TsWwaGvfnHIZIW48aNG0gkErhz5w6AYHQi23Aolw5AQmQeTm50HWYcD479BIbrVC6X4TiO8Dlp\n9NibS+VmrvtRggdRg+M4Iu0EBO9VLUzwPdq2HSpg0Oipl6tK2j1JP7aqrKTSkNTwfDAYSNoil8vJ\nZ6EjmuPxyiuvhPiiAKRwuru7K4aOBPd2ux1imTzqEoukMSwWi/jFL34hG4c5LioV8zCqkj70eACI\nmrPGYahhH9eLmpCzs7MyvAgIDAb14FT14Emodh41tEp93cyLcuaISoUBhgOlqKP3OLOV4/H4IS4m\nja9a2QcC49rr9UKeZ5QFME4b3//+9+XCYBfV2toaksmk8GNJzWs2mygUCrLm3M/HQVeTNTQ0NBBR\nzxAIXN0bN24ACCSper0eqtVqqCK3t7cn6iJUwAG0nuHjgh4hOYaqXhxndJDLCUxGznA0VcLuGmAY\nGgNBHlUtDI0SntU5J08DetajIrBM+zDaGadmoxHgjTfeABBIff3zn/+E53nY3NyUfdtut1Gr1TA1\nNYWpqSnxJFOpVHRHhZ4Ub7/9tnRPrK6uYm1tDUBwWKenp5HNZkOb+qxPF3tczMzMiBxavV6Xzh92\ncPBfhhuTcFgZ9jIcphHyfR/JZDJk9PizarWRxnKU9kJQPuqk3SKjeVbXdeF5nlTpRxkSGo/GuXPn\n8Ktf/Upk/CgSvb29jVarJbJ0Kk2K8n9HYSKMIQC89dZbMo6RijRUdKaog1r9m4T+2aghkUjA9305\nmJlMRugL9A6ByfC8i8Ui6vW6HAS1cJHJZMTA0TsjZWv0IuXMboLD6CkQcBRO2r7H1kjHcUJFK53v\nPjkMw8Avf/lLtFotfPPNNwCCPG+j0UCxWBQuMjAchXEcJsYYAkHytFwuY319HUBQZeaQFzXxPBgM\ntDF8ArTb7dBhJL+TBkIdw7C/vx/p/u9Wq4W9vT0sLy+HHleLRsBwhMFRcv0cQ6kaSHpux5F3adwe\nVXGnISThnRd5KpXSnuFjwjRN4SHy62KxKEpX6meuKmWPYqKMIRB0qfz9738HEHh/iURCpNUZ3p1E\nrl3jMOgFcfO4riuy6uzVJaKeirBtG9PT04f2ged5oWFW1MGjEjVBnUw12gCOp211Op1D0nPjQGVs\n5mVV46q5ho+PlZUVuZzn5uZkot6o8RuX79ZXkIaGhgYm0DM8f/48XnnlFQBBNfnevXuSO1Q7JMYl\nSjWORiKRwMzMjBQd2D/LwgLzYBSNjTIymcyhMP6oAglly0aJ6L1eD5lM5lDISqI/wefj/nucfJ9p\nmjL3l2i327qv/glx6dIlAMDq6irK5fIhlWv2LB+HiTOGAHDlyhUAwM2bN6VTQNXh42ApjccDZyar\ng6LS6bQMkFIFS6MeJmcymUNFDE7MU5kHatikin8eR35WW7vU7gYOMX8cQrpKwOaat9tt3UH1hPjR\nj34EIKgl7OzsyPQ8rqcq5nAUJtIYXr9+HUBwA6iacNzInU5Hs/ifEOxfBoL5KY1GA1tbW2g2m3LB\nTEIHSi6Xg+/7Ukmk8eJ7Yy6JFWQaTyr5jHuPFBtOJpPy/NR7VEcInASc+80Dq/vqnx4ffvghyuWy\n9Ker+pzjnKSJXvXf/e538DwPf/vb30KyXRTx1Hg6GIaB6elpWJYVUmLh+Msnkbd6XiBJn8YvlUrJ\nXBP1UKhyZN1uV4yhWnjp9XriSbIAQ5K6asQoDAA8XoFJNaonFYLQOB5LS0v4yU9+IoR2siAo33Yc\nJtoYAsDvf/97tNttlMtlbGxsABgeVo2nB/u+5+bm5MA6jhNpQwgEZOvBYBCai0Ou5GAwkIqvSppu\ntVpiBGmQSJVRCefsygHCPcccOPQkKQT+PfYqazwdrl69isFggGq1KpSbRqMxlmWiryANDQ0NfAc8\nQwD46KOPsL29Ld6gqnmo8XQwDEOksLimk5AzZE8xXytVj5lHHM0pU+xWfZwhr9q5EIvFpGCnzlkG\ngjB7tD2PPciPM+RpEtZ3EnDt2jXcvn0bq6urAIIUx7hq/3fCGJ4/fx7vvPOOJMUnpfvk3r17eOut\nt0LjLGOxmCT/Rw06QzvO5AWC98pJdaOJ916vB9/35YBPTU3BMAw4jiM6ekAQ+lmWJTN7eXAvXLiA\nq1ev4saNG/j5z3+Oa9eufTsL8S3gj3/845Gh/HFGKZfLHaILjSvCHWWwjiJbnzR3zc+02WxGvh3v\n5s2beP3110/7ZZwIb775pnwGnU4H77333rE/a2iJcQ0NDQ2dM9TQ0NAAoI2hhoaGBgBtDDU0NDQA\naGOooaGhAUAbQw0NDQ0A2hhqaGhoAAD+D1FsT7hxrRuEAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 16 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "metadata": {
        "id": "adgYWtgLF8md",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 284
        },
        "outputId": "90fdc013-e8fb-4f78-a034-894cb560bfb4"
      },
      "cell_type": "code",
      "source": [
        "plt.imshow(np.squeeze(test_data[1]))"
      ],
      "execution_count": 54,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<matplotlib.image.AxesImage at 0x7f48be401470>"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 54
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD6CAYAAACI7Fo9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHi9JREFUeJztnW2MXFd5x//7MvviXb8kcbJ2nFAr\nSnTUKh+qpBUENSaAaShK4ENCEYUIJZFKKxyhBipC+cKLBCURTQVELYi0IbGKAkICB1AEISWpGiQS\nSJApcBorsR3HdmyvvfZuvN6X2e2HnXHHd/7P7HlmZme9e/6/L945PnPvOefeZ+49//Oc5+man5+H\nEGJ1073cDRBCLD0ydCEyQIYuRAbI0IXIABm6EBkgQxciA3qb/WII4X4AbwIwD+CjMcZn29YqIURb\nacrQQwhvAXBVjPG6EMIfAvg3ANdZ9ScnJ88u1vf392NqagpdXV20bk9PT13Z9PQ0rTs7O1tXViqV\naN1yuVxXNjc3R+uytqWUDQ4OYnJyEt3d9S9K7PxWOfs+wMfGgvlHWN9nfattQ29vL2ZnZ82xZdeH\nXRuAj7lVl7XXaoN1PzWqVyqVMDMzY7ar+n8ptNouC6sN7PquW7fOPFmzr+5vB/A9AIgx/g7ABSGE\ndSlftG7i1YDHEFcSq/WardZ+MZrt6SYAR2s+H62UCSHOQ5qeoxdo+H7S399/zq/n4OCg6+DWa9H5\nyPDw8HI3YUno6+sz/6+/vz+p7HykUTu99+lSMDAw0JbjNGvoB3HuE/xSAIesylNTU2f/rs5jV+Mc\nfXh4GBMTE6tujt7X14fp6elVN0ev6kVWu1bgHN08TrOG/mMAnwHwtRDCNQAOxhjHrcrFQWj0hPbc\nCOw4vb28S2zArA09qQbFvu89JrsRrD4wrLFZzHi9dbu7u80f3Nof8sVg42PdD6zcGl9233jm4OwH\n1zLSVt8wreOye9R6QHjfmJqao8cYnwHwyxDCMwC+DOAjzRxHCNEZmp6jxxjvaWdDhBBLRz7rC0Jk\njAxdiAyQoQuRAe1aR29IURGdm5szlw2YemqplExV9SxHWOopU8iZus3U8d7eXvp9aynPo+AyddtS\nodlxLeWf9a1W7e3t7cXMzIyp8KeeH/CtBrAxs5R/dgw2NrXH7O/vP3s8T7vYOFjXl425dT8zhd3y\nX/CszAB6oguRBTJ0ITJAhi5EBsjQhciAjohxtSJSX18fpqamTNc+Jl5YoggT3iyhg20OsOqmik6W\n/7vHf50d48yZM8ntslwhmVhjjTkTkopC1tzcXMsuw1YbrP6ePn06+VxMtGLnqh3DtWvX4vXXX0+q\nu9hxLdGMXR+rD6mCIsBFyUbCrp7oQmSADF2IDJChC5EBMnQhMkCGLkQGdER1L6rjMzMzpgufJ1hA\nqxFIPG64rF1MlbWUWk9ADKtdnkAbHhWZ9bf4/dnZWTPABDuXJ0iFpbqzdg0NDdG67PqyNoyP/398\nlE2bNmHfvn115VUmJyeT22WFEFuzZk1dmaXQs3vMur7sGCEEWhfQE12ILJChC5EBMnQhMqDZTC03\nAPgOgP+pFO2OMd7VrkYJIdpLK2LcUzHGW1MqFkWznp4el0toO4Q7T4RNhrXfuMj8/DwVzSx3W3Zc\nS1D0uLWy/loCGatb6366fv16jI6O4uTJk/T7TMiamJigdZkgaIl8nn3fTNBj/T116tTZv9/4xjfi\nZz/7GQCfGMew3FpZe60+MKHRI/JJjBMic1p5ov9RCGEXgAsBfCbG+JM2tUkI0Wa6rN0xjQghbAHw\nZwC+DeAKAP8J4MoYI303LJfL86s1AaEQ5xFmWpimDL1ICOEXAN4XY3yZ/f/JkyfPnmT9+vU4efKk\na6teO+boi8VFqyV1Pl5k7dq1GB8fdzm2eOLAeeKEtXOOfsUVV+Cll15adXP0T3ziE/jiF78IYHXM\n0e+66672pk0OIXwghPDxyt+bAIwAeLWZYwkhlp5m5+i7APxHCOE9APoA/K312g74VHfPK77nKe1J\nspga/MJywfWo40yNt8aAPektd1kWtIGVATgbfKGW11577ezf1Sf6kSNH6Pdrn5KNjmm1wXr6j42N\nJZUB/F5gY1us9/Of/9xslwV78h49epTUBB0z9jQGFt52i1iBRVj5XXfZK9xNGXoloeLNzXxXCNF5\ntLwmRAbI0IXIABm6EBnQkf3oRSGru7vblYrIErI8yy8Ma7mKtY0JYVYUWI9IyLD2jbNyS0RiAtmJ\nEydo3f3799eVHTx48Ozf27dvx+7du02BjQlko6OjtC5bsmJtBbjAZfU3dV9/8V7cvXu3WdeznGn1\ngQlvltj66qv1C1fWvWDtabfQE12IDJChC5EBMnQhMkCGLkQGyNCFyICOqO5FFbtUKrnynnk2n1iK\npienW4rrpHX+crlMFXprowo7hrX5ZLFNGrUw18tqxNMiTO0tbvI4duyY6ea5d+/eujJrA4ynD9Zm\nFwZT461VkVqq7WSrAZb7KTuupYKznH9Wvzz99Wy4AfREFyILZOhCZIAMXYgMkKELkQEdEeMYHjdP\ny62ViWmeqDMed1kmplnnZ8e1+stcLz11rb3cTIyz9pOn7BGfmJjAgQMH6PdfeumlujJPHyzx0ZNW\nKjUyUbGv1c9MrGVCGuAT41jfrBgC7B6zhGhrzCz0RBciA2ToQmSADF2IDJChC5EBSWJcCOFqAN8H\ncH+M8ashhMsBPAKgB8AhALfFGE23nlpBoVQqoVwuu3J1e7zdrON6gjCmnssKGOlJ/8QEI8uLjgkw\n1v5sJtJZAg7zsiruJx8dHTX3mHu8Dj3Xl9W1vNXYODJPs6JoVv3MAj560l21477zhAn37JUHEp7o\nIYQhAF8B8NOa4s8CeCDGeD2APQDucJ1VCNFRUl7dpwC8C8DBmrIbsBDyGQAeA7C9vc0SQrSTRZ//\nMcZZALOFTI1DNa/qRwBsbnSMvr6+c17lrPXJ1UCpVHKFyfJw8cUX15VdddVVtO62bdvaeu6dO3e2\n9XjnC1ac+NVGOxxmzDQwVWrnhgMDAzhz5syKm6Oz7xfnoaVSCTMzMzQ9kOUkweayVl12Ux46dIjW\nZU4sVt3jx483rLtz50588IMfxIsvvpjcLktnSE2dBKTFfKuSOkevvb/GxsawYcMGAK3P0a05s+e+\n8+g1rG1sF2KVZlX3iRDCYOXvLTj3tV4IcZ7R7BP9CQC3ANhZ+ffxRpWLT9nZ2Vnz1zI19RHgS7PE\n1Frr6ZAasbXYr1KphNnZWfpW4fnFt5R0po576lp7mNne8WPHjtV9tsaFTSmsJxF7+lvt8rhDpz79\ni/dSdZrliYPgeUpbqwSpeGImNGJRQw8hXAvgSwC2ApgJIdwK4AMAHgohfBjAPgDfdJ1VCNFRUsS4\nX2JBZS/yjra3RgixJMgzTogMkKELkQEd2Y9eFGbm5+dN8SI1MKNVbq3Rs7VtaxmLwUSg4vcHBwcx\nMzPjEhTZEpDVLtYGK6AgO4ZVl4lhRSGqXC7TJSiAC42WaHbRRRfVlVl76tmyn7UUx8Y85ZpXv8eu\nz+DgYF0ZwO87az86E+Os68COa/XXSo9loSe6EBkgQxciA2ToQmSADF2IDJChC5EBHVHd2WZ/jyuj\nVZepvZarKVMvLRdHpsCmusUCXO31bE7wpPexVhnWrFmT3AamAhfHoNEGIJZSyaq/du3aujJrbK1x\nYDDVnd03xbJqOz0bSti5rD6wsfW4r7JNQICiwAohCDJ0ITJAhi5EBsjQhciAZXOB9aSlsUIzMQHF\nEkWYe6G11zc1vzkTnHp6eqjYYrWL9c3qLxuzjRs30rrMrdQSgaw878XP1t53Jhh5XH4tF2c2Dtb+\nbnZcS8hiMHHLs8fcEu48eFKMeYRKQE90IbJAhi5EBsjQhcgAGboQGdBsSqaHAFwLoJqj574Y4w+X\npolCiFZJCQ7JUjIBwCdjjD9IOUkxrvv09LSpADMl3VIeGZb6yc5nKf9MIWdKq6WYs+972mWNjRX4\ngcGirVqKNVNwiyr21NSUGezAUs0ZbGwst+WUdlVhbWOqe/Feqt4D7PpY7WJux5ZCz9R8z3hZ7t9e\nmk3JJIRYQTSbkgkAdoQQ7sZCSqYdMcZjdV8WQpwXdKUu9IcQPg3gWGWO/nYAozHGF0II9wC4LMa4\nw/puuVye96Q/EkI0hbktrinPuBhj7Xx9F4B/aVS/dv60bt06nDp1ypyHenJts2N4toNac6Vm5+h9\nfX2Ynp6m3/d4Alpjw45hzZtZnrSnnnqK1t2zZ09d2YEDB87+/fTTT2Pbtm112VuqrNQ5+tGjR89m\nmWHXwdoCvG7durqydszR2diMj48n122UMLIpQw8hfBfA38cYX8JCcoffNKpfvJC9vb3mwHhcCVP2\nG1dhg2vdNCz6J7vo7FxdXV2uVFEM68ZnY2aNF+sD26Nuta1404yNjZnjxfrrTRnEYNFprR+21H3f\nxR/n6mc2jp6EjtbYsnZZKajYD7m177xTKZm+AuDREMJpABMAbnedVQjRUVpJyfTdtrdGCLEkyDNO\niAyQoQuRATJ0ITLgvIsCaynZDKaUWsdlyrC1fJKqsBdV0lKphJmZGVcfmJJuBZ7wuNayaKubN2+m\ndX//+98vetz5+XnzXJ4lQlbXUvNTxrwKW1VhSnixrPqZXQdLSR8ZGUlqKwAcPny4rswK4MHwRnu1\n0BNdiAyQoQuRATJ0ITJAhi5EBnREjKsVSnp7ezE7O9uyq6tV7vG7tlxNU6KiAna0WI+rKqvridZq\nwcQ4sgMRAPDaa6/VlRWjyIYQsHfvXvp9Ji5ZApvl/slgY24dl40jE1WLexaqn4eHh+vqMp92gMcF\nsPYBsP567mdLjPPEaAD0RBciC2ToQmSADF2IDJChC5EBMnQhMqAjqntRIWykGDKV0aM2W+q2J7ps\nqgsrU3p7e3tdqwGsvVaeNk9eOqYMb9q0ida95ppr6sqKSvrVV19tjtf+/fvryvbt20frnjp1qq7M\nik7LxtEKWHLBBRfUlTElvUi1TyxXHWurdVwrIAbrgzWOnlxx3tBseqILkQEydCEyQIYuRAakpmS6\nF8D1lfpfAPAsgEcA9AA4BOC2GCN3WRJCLDspwSHfCuDqGON1IYSLADyPhfRMD8QYvxNC+DyAO7BI\nyOcilmsfE62spO+e/ehel8EiqaGl5+fnTTGtleMCPmGHiY+Way2LGHv55ZfXfbZCDzMX2Npw0bV4\nRCTWXku4Y6Iku8eKLrTVPjExzboOTDSzrrlHmGV12bUB7HGwSLn7nwbw3srfYwCGsBAsclel7DEA\n211nFUJ0lJQosGUA1Z+7OwH8CMCNNa/qRwDw0CVCiPMCT0qm9wD4BwB/DuDFGOMllfIrATwcY3yz\n9d25ubn5Vl+dhRCL0lpKphDCjQA+BeCdMcaTIYSJEMJgjHESwBYskmm1dk5STVu0VHN0K6YYm7Na\n21Q9MdBqGRgYwJkzZ2gfPI48FlbfGGzOaDmAsPl0bRy5O++8Ew8++CB++9vf0u/HGOvKXnjhBVqX\ntcFzHay5KdtSyq5Z7Rx979692Lp1KwDfHJ1tAbbm6Oy41lZbNve37n02DidOnKB1gTQxbj2A+wBs\njzEerxQ/AeAWADsr/z7e6BhFQ2+0Z5x1zHobYDe+Jfa0muQxNf2Ttde+HSmKPHv4PTDBZ8uWLXWf\nrdxeR44cqSvbuHEjrcuupfWjz4zHMijm2ZYSiLL6w8PqWsEhWXutgI/MqK37nxmvJcZZHpEWKY+T\n9wHYCODbNYELPgTgGyGEDwPYB+CbrrMKITpKihj3dQBfJ//1jvY3RwixFEghEyIDZOhCZIAMXYgM\nWLb96J694JbSypR0S11nx7CU8FSF3Dq/Z4+5Z689a5dHzbeUWhYtlaXRsr7PlOFLLrmE1mXjcPz4\ncVKTq9PWeKW6QxdXaqqf2RhY6jhbIrTaZcUsYDCb8MQmaISe6EJkgAxdiAyQoQuRATJ0ITKgI2Ic\nwxIZWLklsDHxwhJFUoM7Wm1IFT+s/eiePeqWUMncg63+MiHJ04aiYNTb22umKLrooovqyqxgiWxP\n+8mTJ2ldJv5Z4iNzS2XXrHjNq5+ZO7XHNZcF4wS48Gb5urPjWm3wulTriS5EBsjQhcgAGboQGSBD\nFyIDZOhCZEBHVPeimlgul1uOlNqonMEUdkuxZqpoioIL2Mq2paSzcs8qg+Wmycqt4zLFuPj9DRs2\n0LRHAE+HZEWzWb9+fV2Zpbqz6zA5OUnrpgaOKParGuzBCqrBYONlubWy+8FzL3hcfhuhJ7oQGSBD\nFyIDZOhCZECzKZneDeBaAKOVKvfFGH+4JC0UQrRMsymZngTwyRjjD1JOUhQO5ufnTUHC46rqES9Y\nueVeyOoyscWzH93jmmvhcWtlbbP2kzP3z2Lo4f7+fhrmGABGRkbqyiw3Txat1Yqgevjw4boyS/Ri\nOctZ3eIxq31n18zKr87uO6sP7LhWZNfUSMNWGxqR8kR/GsAvKn9XUzK1FjtZCNFRmk3JVAawI4Rw\nNxZSMu2IMR5bslYKIVqi2ZRMfwJgNMb4QgjhHgCXxRh3WN8tl8vzrSZQEEIsSntTMmEhbXKVXVgk\nZXKtk8Pw8DCdp51tKZmzemJseWKwedJCpczR16xZg9OnT7vm6OwH0BNPz0rT5HHUYMeojeMWQkCM\nEa+++ir9/iuvvFJXtn//flp3z549dWUvv/wyrcvm6CxtEcBjvi02Rz9+/DguvPBCAFw78MzRPY48\nnjm6dX1ZGywnJSBhea0mJdNN1ZRMIYTvhhCuqFS5AcBvFjuOEGL5aDYl078DeDSEcBrABIDbGx2A\nRYH1JBe08LgBsiec9ZRl6jR78rK3j+7u7oa55VKOYfXLk9PNSs7HYO0tjkGpVDr79EvBesKxwBOW\nYu1JKsmecOwNpBgQo/qZvRFYsD5Yqx+pqwGAPQ6MtqvuDVIyKd+aECsEecYJkQEydCEyQIYuRAZ0\nZD+6FXmTwYQhS5xix7HqeqLLpgqFVookJpR49iB7xDzLrZW1zRKMWH+Le7nXrFlj9oG1d9OmTbQu\nWx7zLJlZS6JMeGPtYv0C+HhZ52JYYh67Ph63Zc990wg90YXIABm6EBkgQxciA2ToQmSADF2IDOiI\n6s4CT7TDzZPhCfDQDjfcVmHt9USStcaGjaM15inBPnp6eszxYgEptmzZknwuK0gFi+I6OjpKavIN\nHSzibLEP1TqeqLket2Xmxmsp5ky5t1ZgrDGz0BNdiAyQoQuRATJ0ITJAhi5EBnREjWL70T0Cmyfi\nigUTkqw2MDEsVYCZm5tztctTl2EJdx4xjpWza1ZNX1SEja21H56JU9bedSamWW1IHcdi6qXNmzcD\n4KLXkSNH6DFSIxBZ5ZbbMhP/rGhMSskkhKhDhi5EBsjQhciAlEwtawA8BGAEwACAzwH4NYBHsJDI\n4RCA22KMvhV8IUTHSBHjbgbwXIzx3hDCHwD4CYD/BvBAjPE7IYTPA7gDDUI+M884y+OHiReW0MG8\ngzzx4z052lPFDyvdlCet1FLljrf6wNpQFIwGBgZcYp4Fy6VujQ0Lwrhu3Tpal3nnsTzmR48ePefz\n1q1bAfCQ1dY9ygRBaz86GxvrfmYCpnV9LVHSIiU45KM1Hy8HcAALIZ7/plL2GICPY5HY7kKI5SN5\neS2E8AyAywDcBOCJmlf1IwA2L0HbhBBtIjklEwCEEP4YwMMANscYL66UXQng4Rjjm63vzc3NzXtD\n3wgh3DSfkimEcC2AIzHGVyq51noBjIcQBmOMkwC2ADjY6Bi1ThL9/f2YmppyxS/zzNHbsdOtWaop\nmRjWPJT90LZjjp56rhSGhobw+uuvu+boxUQJVU6cOFFXZqUSYnN0y4nl4MH6W5Clhaqdo3/rW9/C\n+9//fgB8jm6limLXZ6nm6NYuNRbP7sCBA7QukLa8tg3AxwAghDACYBjAEwBuqfz/LQAeTziOEGKZ\nSJmj/yuAB0MI/wVgEMBHADwH4OEQwocB7MMiWVtqXRz7+/sxOTnp+lWznnDsiWw9OVldT3RZ9n0r\n2utSKf+paaEA7mpq1U2Jptvd3W2OFxsbywU2ZY94FaYsM9UeAC655JKk7xeV9Orx2BPdUrbZNbMU\nejZmlgssGwfrrdP7Npqiuk8C+CvyX+9wnUkIsWxIIRMiA2ToQmSADF2IDFi2/eie5QhricGT85zR\nqnBniXHs+5ZYkxKYsVG5R6j0+DIwt2WPMGT1gQV8tO4F5u5qpUliQhZbtisuQVVdZ1NdaK3jWngE\nNracaN37nrRdgJ7oQmSBDF2IDJChC5EBMnQhMkCGLkQGdER1L7oSNto0f+bMmboyS6VkKrInuILl\nEsrO1+rmEev7niAVnsiunv4yinW7urpcm2IshZ+5f3rceC33UXbNmFvshRdeSD8z11pLXWdKuGdl\nyFo5YMfw3PuN0BNdiAyQoQuRATJ0ITJAhi5EBixbgnDP/l2P8NCOqKisbur3rSiwnnZZeNx7PWPG\njlssK5fLrn32Fq1eB0uMGxwcrCtjLqwjIyP0czU1Uy2WGHfs2LG6Mut+9rhDM/HRGhtvFFg90YXI\nABm6EBkgQxciA5pNyXQrgGsBjFaq3Rdj/OEStVEI0SLNpmR6BsAnY4w/WNLWCSHaQrMpmVzUqoz9\n/f2YnZ011WamMlpqM1OBLbWZuSIulfsow6Mse+Knt2McPRFuU8/liRhr4Vk5YAEehoeH68re8IY3\n0M9MST98+DA914YNG5LbxVy6LVgADmscrSi7Fs2mZLobwI4Qwt1YSMm0I8ZYP1JCiPOCZlMy/R2A\n0UrmlnsAXBZj3GF9TymZhOgIbU/JtDvGWM2NswuLZFKtTeBQTe+zVK/ullPHUry6F8uq6aZY3Xbs\nQmJ98OzAa/bVfXh4GBMTE2aiBc+re6tTIKsPbOfX6OhoXVltooa3ve1tePLJJwEAv/rVr+rqPv/8\n8/Rce/bsqSsbGxujddmru7V7jTnSeF7dWVqqKs2mZPpaCOGKyv/fAOA3CccRQiwTzaZkmgDwaAjh\ndOXv2xsdoPYXbGhoCNPT065Ip1Zdj2DkiYrKnlypT62urq6WI9FakV2XSvRKETV7enpcIqGFR1BM\ndUUG+DVjUWQtF9itW7fW1bVcYJkbLkvpZJUzV1eg9Si/jWglJdOfus4khFg2pJAJkQEydCEyQIYu\nRAbI0IXIgI4EnmARRa0AAq061lgqpSfHWeo6ODtXuVym3/esQbdDaWV9ayUoR6PVBI86nprXzntc\nVs6CMxSV+OrnK6+8sq6udY9aOdkYTLk/ffo0reuJLutZ6QD0RBciC2ToQmSADF2IDJChC5EBHRHj\niqJGqVRy7W32YIk1ngimbHNB6oaDcrns2ivsifxpCXoMzz73Vo5pHdcj3HkE2FajBxeFtOpnz2Yb\ntinFcpc9ceJEXZklxrE+WBtgvC6weqILkQEydCEyQIYuRAbI0IXIABm6EBnQEdW9qHg3CmLgicDq\nCQ/VamilVNW+t7e35XBJHtdcT5AKC9bf4rmsnHIAXzmw2pUa1APgCrsVtIG5q7JzFce26ibLxtZS\n+C+99NK6MhZFFgCOHz9eVzY+Pk7relYvLNdYCz3RhcgAGboQGSBDFyIDZOhCZIArgYMQYmWiJ7oQ\nGSBDFyIDZOhCZIAMXYgMkKELkQEydCEyoCO+7lVCCPcDeBOAeQAfjTE+28nzt5sQwtUAvg/g/hjj\nV0MIlwN4BEAPgEMAbosx+pySzwNCCPcCuB4L98cXADyLFd6vEMIaAA8BGAEwAOBzAH6NFd6vVDr2\nRA8hvAXAVTHG6wDcCeDLnTr3UhBCGALwFQA/rSn+LIAHYozXA9gD4I7laFsrhBDeCuDqynV6J4B/\nxiroF4CbATwXY3wLgL8E8E9YHf1KopOv7m8H8D0AiDH+DsAFIYT6vLYrhykA7wJQm33+BgC7Kn8/\nBmB7h9vUDp4G8N7K32MAhrAK+hVjfDTGeG/l4+UADmAV9CuVTr66bwLwy5rPRytlPKreeU6McRbA\nbAihtnio5tXvCIDNHW9Yi8QYywBer3y8E8CPANy40vtVJYTwDIDLANwE4InV0q/FWE4xrrVN2+c/\nK7p/IYT3YMHQdxT+a0X3K8b4ZgDvBrAT5/ZlRfdrMTpp6Aex8ASvcikWBJDVxEQIYbDy9xac+1q/\nYggh3AjgUwD+IsZ4EqugXyGEaytiKWKML2DhbXZ8pfcrlU4a+o8B3AoAIYRrAByMMfJQGyuXJwDc\nUvn7FgCPL2NbmiKEsB7AfQBuijFWw6Os+H4B2AbgYwAQQhgBMIzV0a8kOrp7LYTwj1gY8DkAH4kx\n/rpjJ28zIYRrAXwJwFYAMwBeBfABLCzhDADYB+D2GCOPfXSeEkL4awCfBvC/NcUfAvANrOx+DQJ4\nEAtC3CCAzwB4DsDDWMH9SkXbVIXIAHnGCZEBMnQhMkCGLkQGyNCFyAAZuhAZIEMXIgNk6EJkgAxd\niAz4P0mGWnSJMqDYAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "metadata": {
        "id": "HgycuqAfF8pI",
        "colab_type": "code",
        "colab": {}
      },
      "cell_type": "code",
      "source": [
        ""
      ],
      "execution_count": 0,
      "outputs": []
    }
  ]
}