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Abstract 
 
The recent surge of Deep Learning has led to breakthrough advancements in almost every 
field of its application. A particular deep learning architecture, arguably the most popular one 
is the Convolution Neural Networks. The interest in convnets has seen an exponential 
increase due to their effectiveness and scalability. CNNs have become the go-to solution for 
image data problems and has provided results that are at par with if not better than human 
standards. The simplicity of the CNN architecture is another big factor of its success. The 
image processing and classification capabilities of CNN have found great usage in medical 
field, making it possible to detect and classify diseases as severe as Cancer effectively for 
the sake of better care. 
 
In this project, we’ve initiated an elaborate study of Convolution Neural Networks, built 
multiple architectures from scratch and furthered our understanding with the preparation of 
an elementary dog-cat CNN classifier model followed by a more extensive CNN model for 
detection of lung cancer in a patient. The project is built on Google’s interactive and versatile 
cloud platform for AI development Google Colaboratory, using the open-source neural 
network library ‘Keras’ for model development and libraries such as matplotlib and 
tensorboard (tensorflow) for result plotting and analysis. Data for training and testing our 
model was extracted from the ‘​LUNA2016 medical image database​’. The model was tuned 
using Grid-Search and achieved over 97% test accuracy in its final iterations. To culminate, 
we have enlisted some future-work prospects like De-convolution/Translated-Convolution, 
implement one or more named CNN networks like Inception or Alexnet, test the model on 
larger images etc. 
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1. ​Introduction 
 
The use of Convolutional Neural Networks can be traced back to the nineties for character 
recognition purposes(Le Cun et al., 1997) but it wasn't until the 2012 AlexNet that it grew to 
the widespread acclaim that we know of today. In less than a decade, researchers have 
progressed from single-digit layers in a CNN model to triple-digits, integrating various other 
data science techniques to create umpteen possible configurations.  
 
The architecture and working of a Convolution Neural Network can be understood better by 
a simple binary image-classification model such as a dog-cat CNN that classifies an image 
as one of the two preset classes, Dog or Cat.  
 
The architecture of CNN models is predominantly similar, beginning with a few convolution 
layers that apply various ​convolution filters​ or ​kernels​ or ​masks ​to the input image. An image 
is represented as a matrix of gray-scale or color intensity values at the pixel represented by 
the matrix cell indices. Each filter/kernel can be thought of as a feature extractor that extracts 
positions of that particular feature represented by the kernel, on the input image. The 
convolution operation hence produces a ​feature map​.  
 
The convolution layer are each followed by a pooling layer generally that sub-samples an 
image to provide lower dimensional matrices for better computations.  
 
A series of convolution + pooling layers are followed by a number of densely or fully 
connected layers after flattening the output. The fully connected layers operate as a typical 
neural network and finally classifies to binary (sigmoid/relu) or multiple classes (softmax). 
 
The medical field is a likely ground for machine learning practice and application, as medical 
regulations allow increased sharing of anonymized data for the sake of better care. The field 
is pretty young and flourishing at the forefront of technology. This problem is interesting and 
promising in that it has impactful implications for the future of healthcare, deep learning 
applications affecting personal decisions, and computer vision in general. 
 
Cancer is a disease that needs no documentation of its perils. It could be present in almost 
any part of the body like lungs, breast, prostate, skin etc. Lung cancer is the leading cause of 
cancer-related deaths worldwide. The National Lung Screening Trial (NLST), a randomized 
control trial in the U.S. including more than 50,000 high-risk subjects, showed that lung 
cancer screening using annual low-dose computed tomography (CT) reduces lung cancer 
mortality by 20% in comparison to annual screening with chest radiography. 
 
Due to the absence of any true remedy or cure for the disease, detection in the early stage is 
crucial in preventing its spread. In this project, we are interested to train a convolution neural 
network and then use the trained model to solve a binary image classification problem to 
classify as positive or negative results. 
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2. Background 
 
Before getting started with model construction and tuning we gleaned all the necessary 
knowledge from sources like 
 

● Deeplearning.ai by Andrew Ng Course 1-2  
● Deeplearning.ai by Andrew Ng Course 4 
● Keras documentation 
● Towards-data-science blogs 

 
The deeplearning.ai courses provided an elaborate explanation of Neural Networks and 
CNN with the development of elementary layers, activations and back-propagation 
mechanisms without any predefined framework. This helped in getting a robust 
understanding of the maths involved and the use of each parameter or argument that is used 
later on. The course then talked about improving neural networks by use of hyperparameter 
tuning, regularization, and optimization. It explained about the training-validation-test data 
split, bias and variance, normalization, gradient-checking, types of regularization, weight 
initialization, overfitting/underfitting and other such significant aspects of model creation and 
optimization.  
 
Course-4 of the specialization got us introduced with the use of Convolution Neural 
Networks for computer vision tasks. It got us familiar with the CNN building blocks and 
vocabulary, talking more about the mathematical operations involved in convolution. We 
created our first CNN model as a programming assignment and moved on to create another 
one from scratch, this time a cat-dog image classifier. 
 

 
 
 
The elaborate Keras documentation next helped us to build our first Convolution Neural 
Network to classify images with a ‘Dog’ or ‘Cat’ label. The model was built using the 
sequential ​API in Keras and consists of three ​convolution-2D ​layers followed by a 
max-pooling-2D ​layer each. The final out is then flattened and fed to a densely connected 
layer feeding it to the final output layer with one node operating the sigmoid function and 
providing output: 
 0 for cat 
 1 for dog 
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The model inputs images of dimensions 150 x 150, using 2000 images for training and 800 
images for validation. The number of images is further increased by making use of the 
Image Processing class in Keras called ImageDataGenerator which generates batches of 
tensor image data with real-time data augmentations such as zooming, flipping, scaling etc. 
The model was compared on ​categorical crossentropy​ and ​binary crossentropy​ loss 
functions and ​RMSprop ​optimizer and ​adagrad ​optimizers.  
 
After getting a good grasp at model creation and tuning, we needed to visualize and analyze 
the model results and its architecture. The Python libraries such as ​seaborn ​and ​matplotlib 
were a great help in achieving the purpose. The tensorflow visualization toolkit, ​TensorBoard 
opened new horizons however. It made it easier to understand, debug and optimize the 
Tensorflow code. It also made it easier to present our model architecture through block 
diagrams and flow charts and analyze the accuracy and loss through graphs with a large 
number of other unexplored features which we never seem to end. All this was possible with 
a few lines of code to enable tensorboard on our already existing model definition and see it 
all on a locally hosted browser window.  
 

 
 
Figure : Tensorboad graphs for training and validation acc/loss of the Cat-Dog CNN model 
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Our final task was to apply our learnings to create a Cancer prediction CNN model. We 
indulged ourselves into extensive Research Paper readings and learned as much as we 
could about Cancer and the application of Deep Learning to the Medical domain. We 
decided to move forward with the detection of Lung Cancer nodule model as the model was 
matched our caliber and the data was freely available from the ​LUNA2016 Medical Image 
Database.  
 
 

 
Examples of cancerous images 
 

 
Examples of non-cancerous images 
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3. Deep Learning 

3.1 Artificial Neural Network 
An ANN mimics the working of a human neural system by operating on hidden layers 
consisting of neurons that are connected to each other and activate on stimuli from the 
neighbouring neurons. The various methods involved and terminology related to ANNs have 
been briefed below. 
 
Preprocessing 
Deep neural network (Convolution neural network in this case) is used. The Deep neural 
network uses multiple hidden layers between input and output layers. Every hidden layer can 
have different no. of units. In fact, no. of hidden layers and units in each hidden layer are 
also hyperparameters for the deep learning algorithm.Here ‘L’ stands for the no. of hidden 
layers in a neural Network. In deep learning networks, each layer of units trains on a distinct 
set of features based on the previous layer’s output. The further we advance into the neural 
net, the more complex the features nodes can recognize, since they aggregate and 
recombine features from the previous layers. Due to this property deep nets can handle very 
large high dimensional data with large no. of parameters. 
 
Usable  Function 
 
Sigmoid function 
  
A Sigmoid function is a mathematical function which has a “S” shaped curve. The sigmoid 
function is represented by the equation 
 
σ(t)=1/(1+e^(-t) ) 
 
The sigmoid function have a domain of real numbers and returns the value -1, 1 or 0, 1 
depending upon the convention used. The values of  
σ(t) depends 
 
if t→ ∞       then σ(t)=1 
if t→ -∞    then σ(t)=0  
 
 
 
 
 Hyperbolic tangent function (tanh) 
  
The hyperbolic tangent function is similar to cosine and sine function. It is represented by the 
equation 
tanx h=〖(e〗^x-e^(-x)) / (e^x+e^(-x)) 
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The functions has a domain of real numbers and returns a values [0,1] 
if h→ ∞       then tanx(h)=1 
if h→ -∞    then tanx(h)=0 
 
The slope of the function is given by 
 
if tanx(h)=g(h) 
 
g^' (h)=1-tanx(h)^2 
 
 
 
ReLU and leaky ReLU activation function 
  
The ReLU activation function is defined by the equation  
f(z)=(0,z)  
where z is the input to the neuron. 
  
The leaky ReLU activation function is defined by the equation 
f(z)=(0.01z,z)  
 
 
 
Gradient descent 
Gradient descent is a first-order iterative optimization algorithm. To find a local minimum of a 
function using gradient descent, one takes steps proportional to the negative of the gradient 
(or of the approximate gradient) of the function at the current point. 
  
Loss (error) function 
The loss or error function is used to calculate the accuracy of the model. It is given by 
equation  
L(ŷ,y)= -(y□log log (ŷ)  +(1-y) □log log (1-ŷ)  ) 
Here y is the true label and ŷ is the predicted label. 
So, 
if y=1       L(ŷ,y)= -□log log (ŷ)  
this means we want log ŷ to be as big as possible. (ŷ is close to 1). 
if y=0       L(ŷ,y)= -□log log (ŷ)  
this means we want log (1-ŷ) to be large and ŷ should be small. (ŷ is close to 0). 
 
Cost function  
Cost function is the average of all the values of loss function which means we need smallest 
possible value of cost function. 
It is defined by 
J(w,b)=1/m∑L(ŷ^i,y^i) 
J(w,b)=-1/m∑(y^i □log log (ŷ^i )  +(1-y^i ) □log log (1-ŷ^i )  ) 
We need to define values of w, b such that it minimizes the cost function. 
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3.2 Convolution Neural Network 
Convolution Neural Network is a class of Deep Neural Network. It is used on image data and 
used to analyze the different features of the images. The concept of CNN is derived from 
biological process. Like neurons are connected with each other, nodes of CNN are 
connected with each other and transfer values or signals.  
CNN is highly used in image classification. But the process may need some preprocessing 
depending on the nature of the dataset.  
Tuning is the most important part in CNN, i.e accuracy on getting correct classification.  
Two very important terms regarding Neural Network are parameter and hyperparameter. 
There are difference between them. Parameters are those which the model learns from 
training data like weights and biases. Prediction process needs the help of parameters. 
Parameters are the confidence of neural network. These are the keys of machine learning 
algorithms. On the other hyperparameters are provided to the model, for example number of 
hidden layers and nodes, activation functions, number of filters kernel size, stride, pooling, 
learning rate etc. hyperparameters often help to estimate parameters. It’s on the hand of the 
developer to set the hyperparameters carefully. Mainly hyperparameters are tuned to 
increase the efficiency of the model.  
 

3.3 Deep Learning Libraries (TensorFlow and Keras) 
 
Tensorflow 
It is an open source software library supporting high performance numerical operations on 
variety of platforms like CPU,GPU,TPU.  AI organization of Google developed this. It 
provides various support in many scientific domain like machine learning, deep learning etc. 
 
Keras 
Keras is a high level API on Neural Network. Which is developed in python language and 
can run on Tensorflow, Theano and CNTK. 

➢ It is very user friendly 
➢ It is well documented. 
➢ It is scalable. 
➢ It runs on CPU and GPU. 
➢ It allows very fast and easy prototyping. 

3.4 TensorBoard  
The computations you'll use TensorFlow for - like training a massive deep neural network - 
can be complex and confusing. To make it easier to understand, debug, and optimize 
TensorFlow programs, we've included a suite of visualization tools called TensorBoard. You 
can use TensorBoard to visualize your TensorFlow graph, plot quantitative metrics about the 
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execution of your graph, and show additional data like images that pass through it. When 
TensorBoard is fully configured, it looks like this: 
 
The computations of Tensorflow can be sometimes very complex and very confusing. But 
when it comes to in the form of graph i.e when a very complex thing is visualized in certain 
matter it becomes easy to interpret. Tensorboard offers nothing but visualizing the 
computations.  
 
 

 
 
Figures above and below : Cat-Dog model visualization through TensorBoard graphs 
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4. Lung Cancer debrief 
 
In simple words cancer is abnormal growth of cells, and ultimately to the 
stoppage of the essential cellular functions of the organism. These cells are generally called 
‘tumor cells’ and they often clump together into lumps to form ‘tumors’. They also carry the 
potential to invade to other parts of the body of the organism and have detrimental effects 
there. 
 
 
Lung cancer can be divided into four stages depending on severity as following 

● Stage 1: Cancer is found in the lung only. 

● Stage 2: Cancer is grown to nearby lymph nodes. 

● Stage 3: Cancer is in the lung and lymph nodes are grown in the middle of the chest. 

● Stage 3A: Cancer is found in lymph nodes only on the same side of the chest where it 

first started.. 

● Stage 3B: Cancer has spread to lymph nodes on the opposite side of the chest or to 

lymph nodes above the collarbone. 

● Stage 4: Cancer has spread to both lungs, into the area around the lungs, or to distant 

organs. 

Early symptoms may include 

● Bad painful cough 

● Cough with phlegm or blood 

● Heavy chest pain while deep breathing, laughing, coughing or any other muscular 

activities near chest 

● shortness of breath 

● weakness and fatigue 

● loss of appetite and weight loss 

4.1 Causes 
About ninety percent of lung cancer cases involve smoking. Smoking causes destruction of 
lung tissues,  lung can repair them but heavy smoking makes lung stopping it’s natural 
behaviour. 
A radioactive gas Radon, is the second leading cause, according to the American Lung 
Association. 
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Breathing in other hazardous substances can also cause lung cancer if it happens over a 
long  period of time. A type of lung cancer called mesothelioma is almost always caused by 
exposure to asbestos. 
Other substances that can cause lung cancer are: 

● nickel 
● petroleum products 
● uranium 
● arsenic 
● Cadmium  
● Chromium  

Inherited genetic mutations may be the reason to develop lung cancer, especially if you 
smoke or are exposed to other carcinogens. 
But above all there may be no specific reason for lung cancer. 

4.2 RIsk factors 

Above all the biggest risk factor is smoking. Inhaling toxic substances increases risk of 

getting lung cancer. Secondhand smoke is also a major risk factor. Other rish facors may 

include family health history, previous therapy or health history etc. 

4.3 Diagnosis 

● Imaging tests​: An abnormal lump can be seen on X-ray. MRI, CT, and PET scans. 
These scans produce more detail and find smaller lesions. 

● Sputum cytology​: Microscopic examination of phlegm of cough can determine if 
cancer cells are present. 

4.4 Treatment 

● Self-care 
● Quitting smoking 
● Medications 
● Chemotherapy and Targeted therapy 
● Surgery 
● Pulmonary lobectomy and Video-Assisted thoracoscopic surgery 
● Medical procedure 
● Thoracotomy and Radiation therapy 
● Supportive care 
● Palliative care 
● Specialists 
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5. Methodology 
 

5.1 Problem Statement 
The Goal of the project is to train a Convolution Neural Network for binary image 
classification i.e  detecting whether a person has lung cancer or not , which includes 
following tasks: 
● Fetch and Preprocess the whole dataset. 
● Train a Neural network on the training data. 
● Optimize the network to improve accuracy. 
● Compare the performances of Algorithms used. 
 
Inputs: The inputs to the network are 40*40 pixel image snippets. 
Outputs: The output of the network is the class label for the input image. 
 
 

5.2 Data source 
Publicly available ​LIDC/IDRI database​ is used. This data uses the ​Creative 
Commons Attribution 3.0 Unported License​. Scans with a slice thickness greater 
than 2.5 mm were excluded. In total, 888 CT scans are included.Each radiologist  
marked lesions they identified as non-nodule, nodule < 3 mm, and nodules >= 3 mm. 
 
Data Description : 
Total 2948 images are used. 
The data includes three datasets: 
● Training Data: Contains total 2064 grayscale images 
● Validation data: Contains 442 grayscale images  
● Testing data: Contains 442 grayscale images 
 Image size 40*40 pixels 

5.3 Model 
The model is implemented using the ​Sequential ​API in Keras. It consists of three 
Convolution-2D layers with 16, 32 and 64 kernels of size (3,3), (5,5) and (7,7) respectively 
each followed by a Maxpooling-2D layer of size (2,2) pooling with a stride of 2. Maxpooling 
layers reduce the dimensionality of data thereby reducing the number of parameters, leading 
to a reduction in training time and tackling overfitting. Pooling layers downsample each 
feature map independently. They reduce the height and width, keeping the depth constant. 
In the end we have fully connected layers that flatten the last convolution layer’s output and 
connect every node of the present layer with the other node of the next layer. Neurons in a 
fully connected layer have full connections to all activations in the previous layer, as they 
have in regular Neural Networks. We need the Flattening layers since the output of both 

http://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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convolution and pooling layers are 3D volumes, but a fully connected layer expects a 1D 
vector of numbers. The Flattening operation simply involves arranging the 3D volume of 
numbers into a 1D vector. The flatten output becomes an input to the fully connected layers. 
We then implement grid search to find the best values for hyperparameters optimizer, 
epochs and batch size. 
 

5.3.1 Model description 
 
Convolution Layer 1 
 

Kernel size  (3,3) 

Number of filters 16 

Strides (1,1) 

Padding Same 

Activation Relu 

 
 
Convolution Layer 2 
 

Kernel size  (5,5) 

Number of filters 32 

Strides (1,1) 

Padding Same 

Activation Relu 

 
 
Convolution Layer 3 
 

Kernel size  (7,7) 

Number of filters 64 

Strides (1,1) 

Padding Same 

Activation Relu 
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5.3.2 Model Summary 

 
 

5.3.3 Model Configuration 
{'layers': [{'class_name': 'Conv2D', 

   'config': {'activation': 'relu', 

    'activity_regularizer': None, 

    'batch_input_shape': (None, 40, 40, 1), 

    'bias_constraint': None, 

    'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

    'bias_regularizer': None, 

    'data_format': 'channels_last', 

    'dilation_rate': (1, 1), 

    'dtype': 'float32', 
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    'filters': 16, 

    'kernel_constraint': None, 

    'kernel_initializer': {'class_name': 'VarianceScaling', 

     'config': {'distribution': 'uniform', 

      'mode': 'fan_avg', 

      'scale': 1.0, 

      'seed': None}}, 

    'kernel_regularizer': None, 

    'kernel_size': (3, 3), 

    'name': 'conv2d_11', 

    'padding': 'same', 

    'strides': (1, 1), 

    'trainable': True, 

    'use_bias': True}}, 

  {'class_name': 'MaxPooling2D', 

   'config': {'data_format': 'channels_last', 

    'name': 'max_pooling2d_10', 

    'padding': 'same', 

    'pool_size': (2, 2), 

    'strides': (2, 2), 

    'trainable': True}}, 

  {'class_name': 'Conv2D', 

   'config': {'activation': 'relu', 

    'activity_regularizer': None, 

    'bias_constraint': None, 

    'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

    'bias_regularizer': None, 

    'data_format': 'channels_last', 

    'dilation_rate': (1, 1), 

    'filters': 32, 

    'kernel_constraint': None, 

    'kernel_initializer': {'class_name': 'VarianceScaling', 

     'config': {'distribution': 'uniform', 

      'mode': 'fan_avg', 

      'scale': 1.0, 

      'seed': None}}, 

    'kernel_regularizer': None, 

    'kernel_size': (5, 5), 

    'name': 'conv2d_12', 

    'padding': 'same', 

    'strides': (1, 1), 

    'trainable': True, 

    'use_bias': True}}, 

  {'class_name': 'MaxPooling2D', 

   'config': {'data_format': 'channels_last', 

    'name': 'max_pooling2d_11', 

    'padding': 'same', 

    'pool_size': (2, 2), 
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    'strides': (2, 2), 

    'trainable': True}}, 

  {'class_name': 'Conv2D', 

   'config': {'activation': 'relu', 

    'activity_regularizer': None, 

    'bias_constraint': None, 

    'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

    'bias_regularizer': None, 

    'data_format': 'channels_last', 

    'dilation_rate': (1, 1), 

    'filters': 64, 

    'kernel_constraint': None, 

    'kernel_initializer': {'class_name': 'VarianceScaling', 

     'config': {'distribution': 'uniform', 

      'mode': 'fan_avg', 

      'scale': 1.0, 

      'seed': None}}, 

    'kernel_regularizer': None, 

    'kernel_size': (7, 7), 

    'name': 'conv2d_13', 

    'padding': 'same', 

    'strides': (1, 1), 

    'trainable': True, 

    'use_bias': True}}, 

  {'class_name': 'MaxPooling2D', 

   'config': {'data_format': 'channels_last', 

    'name': 'max_pooling2d_12', 

    'padding': 'same', 

    'pool_size': (2, 2), 

    'strides': (2, 2), 

    'trainable': True}}, 

  {'class_name': 'Flatten', 

   'config': {'data_format': 'channels_last', 

    'name': 'flatten_4', 

    'trainable': True}}, 

  {'class_name': 'Dense', 

   'config': {'activation': 'relu', 

    'activity_regularizer': None, 

    'bias_constraint': None, 

    'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

    'bias_regularizer': None, 

    'kernel_constraint': None, 

    'kernel_initializer': {'class_name': 'VarianceScaling', 

     'config': {'distribution': 'uniform', 

      'mode': 'fan_avg', 

      'scale': 1.0, 

      'seed': None}}, 

    'kernel_regularizer': None, 
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    'name': 'dense_7', 

    'trainable': True, 

    'units': 1024, 

    'use_bias': True}}, 

  {'class_name': 'Dropout', 

   'config': {'name': 'dropout_4', 

    'noise_shape': None, 

    'rate': 0.2, 

    'seed': None, 

    'trainable': True}}, 

  {'class_name': 'Dense', 

   'config': {'activation': 'linear', 

    'activity_regularizer': None, 

    'bias_constraint': None, 

    'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

    'bias_regularizer': None, 

    'kernel_constraint': None, 

    'kernel_initializer': {'class_name': 'VarianceScaling', 

     'config': {'distribution': 'uniform', 

      'mode': 'fan_avg', 

      'scale': 1.0, 

      'seed': None}}, 

    'kernel_regularizer': None, 

    'name': 'dense_8', 

    'trainable': True, 

    'units': 1, 

    'use_bias': True}}, 

  {'class_name': 'Activation', 

   'config': {'activation': 'sigmoid', 

    'name': 'activation_4', 

    'trainable': True}}], 

 'name': 'sequential_5'} 

 

5.3.4 Visualization of the model 
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Figure : tensorboard graph representation of model 
 

5.3.5 Hyperparameter Tuning  
The model was trained on different combinations of hyperparameters and the performance 
in each case was recorded as below: 
 
1. 
epochs = [ 10,25] 
batches = [50,100,104] 
optimizers = ['SGD', 'adam'] 
Cross validation = 10 
Best parameter combination 
{'batch_size': 104, 'epochs': 25, 'optimizer': 'adam'} 

Accuracy on test data: 97.05% 

 

2. 
epochs = [25,35] 
batches = [50,104,150] 
optimizers = ['adam'] 
Cross validation = 10 
Best parameter combination 
{'batch_size': 150, 'epochs': 25, 'optimizer': 'adam'} 

Accuracy on test data: 97.29% 
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3. 
epochs = [20,25,40] 
batches = [200,150] 
optimizers = ['adam'] 
Cross validation = 10 
Best parameter combination 
{'batch_size': 200, 'epochs': 40, 'optimizer': 'adam'} 

 

Accuracy on test data: 96.38% 

 
4. 
epochs = [20,25,40] 
batches = [200,150] 
optimizers = ['adam'] 
Cross validation = 3 
Best parameter combination 
{'batch_size': 200, 'epochs': 40, 'optimizer': 'adam'} 

Accuracy on test data: 97.51% 
 
5. 
epochs = [40,45] 
batches = [200,250] 
optimizers = ['adam'] 
Cross validation = 3 
Best parameter combination 
{'batch_size': 250, 'epochs': 40, 'optimizer': 'adam'} 

Accuracy on test data: 96.83% 

 

6. 
epochs = [40,45] 
batches = [150,250,300] 
optimizers = ['adam'] 
Cross validation = 3 
Best parameter combination 
{'batch_size': 150, 'epochs': 45, 'optimizer': 'adam'} 
Accuracy on test data: 97.29% 
 
7. 
epochs = [40,45] 
batches = [150,250,300] 
optimizers = ['adam'] 
Cross validation = 3 
Best parameter combination 
{'batch_size': 300, 'epochs': 45, 'optimizer': 'adam'} 
Accuracy on test data: 97.51% 
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5.3.6 Results and Discussion 
The best combination of parameters calculated from grid search i.e parameters of 7th 
experiment was used to train the model. The model achieved an accuracy of 97.51%. The 
final loss and accuracy graphs for training and validation have been plotted using 
tensorboard as below: 
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5.3.7 Confusion Matrix 
After finding the best combination of hyperparameters for our model, we ran a further 
analysis to find misclassified images of the final test results and calculated confusion matrix 
to determine why it was not close to 100%. Our model has classified more examples as 
negative when they should be positive than vice versa which might be because of the nature 
of some of the positive examples. It is likely that it would be just as difficult for a human to 
classify those images as a doctor.Also, there is always a possibility of the data being wrongly 
classified. 
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Confusion matrix 
 
 

 Predicted Positive Class Predicted Negative Class 

Actual Positive Class 208 8 

Actual Negative Class 4 222 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.Conclusion and Future Scope 
 
In this project, we explored the very powerful Convolution Networks and applied it to predict 
the presence of lung cancer in a patient using an image snippet of a scan. Experimentation 
showed that CNN was highly efficient in performing the task and the accuracy was further 
improved by optimization of hyperparameters. The images used specify a predetermined 
section of the lung and the model is also rather simple but still we were able to get 
ground-breaking results.  
 
We plan to explore Deconvolution, Transpose-Convolution for Upscaling and other possible 
extensions of CNN. For the Cancer model, we would like to implement one or more of the 
named CNN networks like Inception or Alexnet using transfer learning and compare the 
workings and result with the previous models. The current model works on images of 40 x 40 
dimensions, increasing which might be plausible to perform testing on larger scans, possibly 
of the entire lung instead of a predetermined section. 
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