|
a |
|
b/vgg16 & vgg19.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"id": "37e884ed", |
|
|
7 |
"metadata": {}, |
|
|
8 |
"outputs": [], |
|
|
9 |
"source": [ |
|
|
10 |
"# Importing necessary libraries\n", |
|
|
11 |
"import os\n", |
|
|
12 |
"import random\n", |
|
|
13 |
"import shutil\n", |
|
|
14 |
"import numpy as np\n", |
|
|
15 |
"import matplotlib.pyplot as plt\n", |
|
|
16 |
"from keras.preprocessing.image import ImageDataGenerator\n", |
|
|
17 |
"from keras.applications import VGG16, VGG19, ResNet50, InceptionV3, Xception\n", |
|
|
18 |
"from keras.models import Model\n", |
|
|
19 |
"from keras.layers import Dense, GlobalAveragePooling2D\n", |
|
|
20 |
"from keras.optimizers import Adam\n", |
|
|
21 |
"from keras.callbacks import ModelCheckpoint\n", |
|
|
22 |
"from sklearn.metrics import classification_report, confusion_matrix\n", |
|
|
23 |
"\n", |
|
|
24 |
"# Setting random seed for reproducibility\n", |
|
|
25 |
"np.random.seed(42)\n", |
|
|
26 |
"random.seed(42)\n", |
|
|
27 |
"\n", |
|
|
28 |
"# Define constants\n", |
|
|
29 |
"NUM_CLASSES = 2\n", |
|
|
30 |
"IMG_SIZE = (224, 224)\n", |
|
|
31 |
"BATCH_SIZE = 32\n", |
|
|
32 |
"TRAIN_DIR = 'train'\n", |
|
|
33 |
"VAL_DIR = 'val'\n", |
|
|
34 |
"TEST_DIR = 'test'\n", |
|
|
35 |
"TRAIN_SPLIT = 0.7\n", |
|
|
36 |
"VAL_SPLIT = 0.1\n", |
|
|
37 |
"TEST_SPLIT = 0.2\n", |
|
|
38 |
"test_samples = 280" |
|
|
39 |
] |
|
|
40 |
}, |
|
|
41 |
{ |
|
|
42 |
"cell_type": "code", |
|
|
43 |
"execution_count": 2, |
|
|
44 |
"id": "3a76b0e6", |
|
|
45 |
"metadata": {}, |
|
|
46 |
"outputs": [], |
|
|
47 |
"source": [ |
|
|
48 |
"# Define the base directory where the image data is located\n", |
|
|
49 |
"BASE_DIR = r\"C:\\Users\\mohit\\Downloads\\DIP Assignment 2\\Data\"" |
|
|
50 |
] |
|
|
51 |
}, |
|
|
52 |
{ |
|
|
53 |
"cell_type": "code", |
|
|
54 |
"execution_count": 3, |
|
|
55 |
"id": "e3142f03", |
|
|
56 |
"metadata": {}, |
|
|
57 |
"outputs": [], |
|
|
58 |
"source": [ |
|
|
59 |
"# Set the paths for training, validation, and test data\n", |
|
|
60 |
"TRAIN_DIR = os.path.join(BASE_DIR, 'train')\n", |
|
|
61 |
"VAL_DIR = os.path.join(BASE_DIR, 'val')\n", |
|
|
62 |
"TEST_DIR = os.path.join(BASE_DIR, 'test')" |
|
|
63 |
] |
|
|
64 |
}, |
|
|
65 |
{ |
|
|
66 |
"cell_type": "code", |
|
|
67 |
"execution_count": 4, |
|
|
68 |
"id": "0bfbe95a", |
|
|
69 |
"metadata": {}, |
|
|
70 |
"outputs": [], |
|
|
71 |
"source": [ |
|
|
72 |
"# Load and preprocess the data\n", |
|
|
73 |
"train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)\n", |
|
|
74 |
"val_datagen = ImageDataGenerator(rescale=1./255)\n", |
|
|
75 |
"test_datagen = ImageDataGenerator(rescale=1./255)" |
|
|
76 |
] |
|
|
77 |
}, |
|
|
78 |
{ |
|
|
79 |
"cell_type": "code", |
|
|
80 |
"execution_count": 5, |
|
|
81 |
"id": "77eeebb9", |
|
|
82 |
"metadata": {}, |
|
|
83 |
"outputs": [ |
|
|
84 |
{ |
|
|
85 |
"name": "stdout", |
|
|
86 |
"output_type": "stream", |
|
|
87 |
"text": [ |
|
|
88 |
"Found 980 images belonging to 2 classes.\n", |
|
|
89 |
"Found 140 images belonging to 2 classes.\n", |
|
|
90 |
"Found 280 images belonging to 2 classes.\n" |
|
|
91 |
] |
|
|
92 |
} |
|
|
93 |
], |
|
|
94 |
"source": [ |
|
|
95 |
"train_generator = train_datagen.flow_from_directory(TRAIN_DIR,target_size=IMG_SIZE,batch_size=BATCH_SIZE,class_mode='categorical')\n", |
|
|
96 |
"\n", |
|
|
97 |
"val_generator = val_datagen.flow_from_directory(VAL_DIR,target_size=IMG_SIZE,batch_size=BATCH_SIZE,class_mode='categorical')\n", |
|
|
98 |
"\n", |
|
|
99 |
"test_generator = test_datagen.flow_from_directory(TEST_DIR,target_size=IMG_SIZE,batch_size=BATCH_SIZE,class_mode='categorical',shuffle=False)" |
|
|
100 |
] |
|
|
101 |
}, |
|
|
102 |
{ |
|
|
103 |
"cell_type": "code", |
|
|
104 |
"execution_count": 6, |
|
|
105 |
"id": "221f07fe", |
|
|
106 |
"metadata": {}, |
|
|
107 |
"outputs": [], |
|
|
108 |
"source": [ |
|
|
109 |
"# Define function for creating transfer learning models\n", |
|
|
110 |
"def create_transfer_model(base_model, num_classes):\n", |
|
|
111 |
" x = base_model.output\n", |
|
|
112 |
" x = GlobalAveragePooling2D()(x)\n", |
|
|
113 |
" x = Dense(1024, activation='relu')(x)\n", |
|
|
114 |
" predictions = Dense(num_classes, activation='softmax')(x)\n", |
|
|
115 |
" model = Model(inputs=base_model.input, outputs=predictions)\n", |
|
|
116 |
" return model\n", |
|
|
117 |
"\n", |
|
|
118 |
"# Define VGG16 model\n", |
|
|
119 |
"vgg16_base = VGG16(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))\n", |
|
|
120 |
"vgg16_model = create_transfer_model(vgg16_base, NUM_CLASSES)\n", |
|
|
121 |
"\n", |
|
|
122 |
"# Define VGG19 model\n", |
|
|
123 |
"vgg19_base = VGG19(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))\n", |
|
|
124 |
"vgg19_model = create_transfer_model(vgg19_base, NUM_CLASSES)" |
|
|
125 |
] |
|
|
126 |
}, |
|
|
127 |
{ |
|
|
128 |
"cell_type": "code", |
|
|
129 |
"execution_count": 7, |
|
|
130 |
"id": "4c47d0fd", |
|
|
131 |
"metadata": {}, |
|
|
132 |
"outputs": [], |
|
|
133 |
"source": [ |
|
|
134 |
"# Compile the models\n", |
|
|
135 |
"optimizer = Adam(learning_rate=0.0001)\n", |
|
|
136 |
"vgg16_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])\n", |
|
|
137 |
"vgg19_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])" |
|
|
138 |
] |
|
|
139 |
}, |
|
|
140 |
{ |
|
|
141 |
"cell_type": "code", |
|
|
142 |
"execution_count": 8, |
|
|
143 |
"id": "b1063daa", |
|
|
144 |
"metadata": {}, |
|
|
145 |
"outputs": [], |
|
|
146 |
"source": [ |
|
|
147 |
"# Define checkpoint callback to save the best model during training\n", |
|
|
148 |
"checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)" |
|
|
149 |
] |
|
|
150 |
}, |
|
|
151 |
{ |
|
|
152 |
"cell_type": "code", |
|
|
153 |
"execution_count": 9, |
|
|
154 |
"id": "d9c6cb6b", |
|
|
155 |
"metadata": {}, |
|
|
156 |
"outputs": [ |
|
|
157 |
{ |
|
|
158 |
"name": "stderr", |
|
|
159 |
"output_type": "stream", |
|
|
160 |
"text": [ |
|
|
161 |
"C:\\Users\\mohit\\AppData\\Local\\Temp\\ipykernel_25572\\2039408895.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.\n", |
|
|
162 |
" vgg16_history = vgg16_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])\n" |
|
|
163 |
] |
|
|
164 |
}, |
|
|
165 |
{ |
|
|
166 |
"name": "stdout", |
|
|
167 |
"output_type": "stream", |
|
|
168 |
"text": [ |
|
|
169 |
"Epoch 1/5\n", |
|
|
170 |
"30/30 [==============================] - 269s 9s/step - loss: 0.6998 - accuracy: 0.5190 - val_loss: 0.7125 - val_accuracy: 0.5000\n", |
|
|
171 |
"Epoch 2/5\n", |
|
|
172 |
"30/30 [==============================] - 286s 10s/step - loss: 0.6402 - accuracy: 0.6118 - val_loss: 0.4709 - val_accuracy: 0.8281\n", |
|
|
173 |
"Epoch 3/5\n", |
|
|
174 |
"30/30 [==============================] - 470s 16s/step - loss: 0.2767 - accuracy: 0.9008 - val_loss: 0.1435 - val_accuracy: 0.9531\n", |
|
|
175 |
"Epoch 4/5\n", |
|
|
176 |
"30/30 [==============================] - 503s 17s/step - loss: 0.1493 - accuracy: 0.9473 - val_loss: 0.1466 - val_accuracy: 0.9609\n", |
|
|
177 |
"Epoch 5/5\n", |
|
|
178 |
"30/30 [==============================] - 504s 17s/step - loss: 0.1644 - accuracy: 0.9494 - val_loss: 0.0989 - val_accuracy: 0.9688\n" |
|
|
179 |
] |
|
|
180 |
}, |
|
|
181 |
{ |
|
|
182 |
"name": "stderr", |
|
|
183 |
"output_type": "stream", |
|
|
184 |
"text": [ |
|
|
185 |
"C:\\Users\\mohit\\AppData\\Local\\Temp\\ipykernel_25572\\2039408895.py:3: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.\n", |
|
|
186 |
" vgg19_history = vgg19_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])\n" |
|
|
187 |
] |
|
|
188 |
}, |
|
|
189 |
{ |
|
|
190 |
"name": "stdout", |
|
|
191 |
"output_type": "stream", |
|
|
192 |
"text": [ |
|
|
193 |
"Epoch 1/5\n", |
|
|
194 |
"30/30 [==============================] - 570s 19s/step - loss: 0.7282 - accuracy: 0.5042 - val_loss: 0.6897 - val_accuracy: 0.5156\n", |
|
|
195 |
"Epoch 2/5\n", |
|
|
196 |
"30/30 [==============================] - 558s 19s/step - loss: 0.6453 - accuracy: 0.6983 - val_loss: 0.4191 - val_accuracy: 0.8672\n", |
|
|
197 |
"Epoch 3/5\n", |
|
|
198 |
"30/30 [==============================] - 544s 18s/step - loss: 0.3698 - accuracy: 0.8576 - val_loss: 0.1742 - val_accuracy: 0.9297\n", |
|
|
199 |
"Epoch 4/5\n", |
|
|
200 |
"30/30 [==============================] - 547s 18s/step - loss: 0.2672 - accuracy: 0.9040 - val_loss: 0.1718 - val_accuracy: 0.9375\n", |
|
|
201 |
"Epoch 5/5\n", |
|
|
202 |
"30/30 [==============================] - 354s 12s/step - loss: 0.2497 - accuracy: 0.9146 - val_loss: 0.2170 - val_accuracy: 0.8984\n" |
|
|
203 |
] |
|
|
204 |
} |
|
|
205 |
], |
|
|
206 |
"source": [ |
|
|
207 |
"# Train the models\n", |
|
|
208 |
"vgg16_history = vgg16_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])\n", |
|
|
209 |
"vgg19_history = vgg19_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])" |
|
|
210 |
] |
|
|
211 |
}, |
|
|
212 |
{ |
|
|
213 |
"cell_type": "code", |
|
|
214 |
"execution_count": 10, |
|
|
215 |
"id": "865704d7", |
|
|
216 |
"metadata": {}, |
|
|
217 |
"outputs": [ |
|
|
218 |
{ |
|
|
219 |
"name": "stderr", |
|
|
220 |
"output_type": "stream", |
|
|
221 |
"text": [ |
|
|
222 |
"C:\\Users\\mohit\\AppData\\Local\\Temp\\ipykernel_25572\\1392354301.py:2: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate`, which supports generators.\n", |
|
|
223 |
" vgg16_scores = vgg16_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)\n" |
|
|
224 |
] |
|
|
225 |
}, |
|
|
226 |
{ |
|
|
227 |
"name": "stdout", |
|
|
228 |
"output_type": "stream", |
|
|
229 |
"text": [ |
|
|
230 |
"VGG16 Test Loss: 0.07796119153499603\n", |
|
|
231 |
"VGG16 Test Accuracy: 0.97265625\n" |
|
|
232 |
] |
|
|
233 |
}, |
|
|
234 |
{ |
|
|
235 |
"name": "stderr", |
|
|
236 |
"output_type": "stream", |
|
|
237 |
"text": [ |
|
|
238 |
"C:\\Users\\mohit\\AppData\\Local\\Temp\\ipykernel_25572\\1392354301.py:6: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate`, which supports generators.\n", |
|
|
239 |
" vgg19_scores = vgg19_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)\n" |
|
|
240 |
] |
|
|
241 |
}, |
|
|
242 |
{ |
|
|
243 |
"name": "stdout", |
|
|
244 |
"output_type": "stream", |
|
|
245 |
"text": [ |
|
|
246 |
"VGG19 Test Loss: 0.14393511414527893\n", |
|
|
247 |
"VGG19 Test Accuracy: 0.94140625\n" |
|
|
248 |
] |
|
|
249 |
} |
|
|
250 |
], |
|
|
251 |
"source": [ |
|
|
252 |
"# Evaluate the models on test data\n", |
|
|
253 |
"vgg16_scores = vgg16_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)\n", |
|
|
254 |
"print(\"VGG16 Test Loss:\", vgg16_scores[0])\n", |
|
|
255 |
"print(\"VGG16 Test Accuracy:\", vgg16_scores[1])\n", |
|
|
256 |
"\n", |
|
|
257 |
"vgg19_scores = vgg19_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)\n", |
|
|
258 |
"print(\"VGG19 Test Loss:\", vgg19_scores[0])\n", |
|
|
259 |
"print(\"VGG19 Test Accuracy:\", vgg19_scores[1])" |
|
|
260 |
] |
|
|
261 |
}, |
|
|
262 |
{ |
|
|
263 |
"cell_type": "code", |
|
|
264 |
"execution_count": 15, |
|
|
265 |
"id": "0a38cb63", |
|
|
266 |
"metadata": {}, |
|
|
267 |
"outputs": [ |
|
|
268 |
{ |
|
|
269 |
"name": "stderr", |
|
|
270 |
"output_type": "stream", |
|
|
271 |
"text": [ |
|
|
272 |
"C:\\Users\\mohit\\AppData\\Local\\Temp\\ipykernel_25572\\2218791254.py:8: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.predict`, which supports generators.\n", |
|
|
273 |
" vgg16_predictions = vgg16_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)\n" |
|
|
274 |
] |
|
|
275 |
}, |
|
|
276 |
{ |
|
|
277 |
"name": "stdout", |
|
|
278 |
"output_type": "stream", |
|
|
279 |
"text": [ |
|
|
280 |
"9/9 [==============================] - 23s 3s/step\n" |
|
|
281 |
] |
|
|
282 |
} |
|
|
283 |
], |
|
|
284 |
"source": [ |
|
|
285 |
"# Get the number of test samples\n", |
|
|
286 |
"num_test_samples = test_generator.n\n", |
|
|
287 |
"\n", |
|
|
288 |
"# Calculate the number of steps for prediction\n", |
|
|
289 |
"num_prediction_steps = num_test_samples // test_generator.batch_size + 1\n", |
|
|
290 |
"\n", |
|
|
291 |
"# Generate predictions for all test samples\n", |
|
|
292 |
"vgg16_predictions = vgg16_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)\n", |
|
|
293 |
"\n", |
|
|
294 |
"# Convert predictions to class labels\n", |
|
|
295 |
"vgg16_predicted_labels = np.argmax(vgg16_predictions, axis=1)" |
|
|
296 |
] |
|
|
297 |
}, |
|
|
298 |
{ |
|
|
299 |
"cell_type": "code", |
|
|
300 |
"execution_count": 16, |
|
|
301 |
"id": "38f80e7c", |
|
|
302 |
"metadata": {}, |
|
|
303 |
"outputs": [ |
|
|
304 |
{ |
|
|
305 |
"name": "stderr", |
|
|
306 |
"output_type": "stream", |
|
|
307 |
"text": [ |
|
|
308 |
"C:\\Users\\mohit\\AppData\\Local\\Temp\\ipykernel_25572\\903632277.py:8: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.predict`, which supports generators.\n", |
|
|
309 |
" vgg19_predictions = vgg19_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)\n" |
|
|
310 |
] |
|
|
311 |
}, |
|
|
312 |
{ |
|
|
313 |
"name": "stdout", |
|
|
314 |
"output_type": "stream", |
|
|
315 |
"text": [ |
|
|
316 |
"9/9 [==============================] - 30s 3s/step\n" |
|
|
317 |
] |
|
|
318 |
} |
|
|
319 |
], |
|
|
320 |
"source": [ |
|
|
321 |
"# Get the number of test samples\n", |
|
|
322 |
"num_test_samples = test_generator.n\n", |
|
|
323 |
"\n", |
|
|
324 |
"# Calculate the number of steps for prediction\n", |
|
|
325 |
"num_prediction_steps = num_test_samples // test_generator.batch_size + 1\n", |
|
|
326 |
"\n", |
|
|
327 |
"# Generate predictions for all test samples\n", |
|
|
328 |
"vgg19_predictions = vgg19_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)\n", |
|
|
329 |
"\n", |
|
|
330 |
"# Convert predictions to class labels\n", |
|
|
331 |
"vgg19_predicted_labels = np.argmax(vgg19_predictions, axis=1)" |
|
|
332 |
] |
|
|
333 |
}, |
|
|
334 |
{ |
|
|
335 |
"cell_type": "code", |
|
|
336 |
"execution_count": 17, |
|
|
337 |
"id": "c1afa985", |
|
|
338 |
"metadata": {}, |
|
|
339 |
"outputs": [], |
|
|
340 |
"source": [ |
|
|
341 |
"# Get true class labels\n", |
|
|
342 |
"true_labels = test_generator.classes" |
|
|
343 |
] |
|
|
344 |
}, |
|
|
345 |
{ |
|
|
346 |
"cell_type": "code", |
|
|
347 |
"execution_count": 18, |
|
|
348 |
"id": "5900fa6e", |
|
|
349 |
"metadata": {}, |
|
|
350 |
"outputs": [], |
|
|
351 |
"source": [ |
|
|
352 |
"# Calculate classification report\n", |
|
|
353 |
"vgg16_report = classification_report(true_labels, vgg16_predicted_labels)" |
|
|
354 |
] |
|
|
355 |
}, |
|
|
356 |
{ |
|
|
357 |
"cell_type": "code", |
|
|
358 |
"execution_count": 19, |
|
|
359 |
"id": "67dfb41f", |
|
|
360 |
"metadata": {}, |
|
|
361 |
"outputs": [], |
|
|
362 |
"source": [ |
|
|
363 |
"# Calculate classification report\n", |
|
|
364 |
"from sklearn.metrics import classification_report\n", |
|
|
365 |
"\n", |
|
|
366 |
"# Get the ground truth labels\n", |
|
|
367 |
"ground_truth_labels = test_generator.classes\n", |
|
|
368 |
"\n", |
|
|
369 |
"# Get the predicted labels\n", |
|
|
370 |
"vgg19_predicted_labels = np.argmax(vgg19_predictions, axis=1)\n", |
|
|
371 |
"\n", |
|
|
372 |
"# Calculate classification report\n", |
|
|
373 |
"classification_report_vgg19 = classification_report(ground_truth_labels, vgg19_predicted_labels, zero_division=1)" |
|
|
374 |
] |
|
|
375 |
}, |
|
|
376 |
{ |
|
|
377 |
"cell_type": "code", |
|
|
378 |
"execution_count": 20, |
|
|
379 |
"id": "3e69c923", |
|
|
380 |
"metadata": {}, |
|
|
381 |
"outputs": [ |
|
|
382 |
{ |
|
|
383 |
"name": "stdout", |
|
|
384 |
"output_type": "stream", |
|
|
385 |
"text": [ |
|
|
386 |
"vgg16 Classification Report:\n", |
|
|
387 |
" precision recall f1-score support\n", |
|
|
388 |
"\n", |
|
|
389 |
" 0 0.95 0.99 0.97 140\n", |
|
|
390 |
" 1 0.99 0.94 0.96 140\n", |
|
|
391 |
"\n", |
|
|
392 |
" accuracy 0.96 280\n", |
|
|
393 |
" macro avg 0.97 0.96 0.96 280\n", |
|
|
394 |
"weighted avg 0.97 0.96 0.96 280\n", |
|
|
395 |
"\n", |
|
|
396 |
"vgg19 Classification Report:\n", |
|
|
397 |
" precision recall f1-score support\n", |
|
|
398 |
"\n", |
|
|
399 |
" 0 0.87 0.99 0.93 140\n", |
|
|
400 |
" 1 0.98 0.86 0.92 140\n", |
|
|
401 |
"\n", |
|
|
402 |
" accuracy 0.92 280\n", |
|
|
403 |
" macro avg 0.93 0.92 0.92 280\n", |
|
|
404 |
"weighted avg 0.93 0.92 0.92 280\n", |
|
|
405 |
"\n" |
|
|
406 |
] |
|
|
407 |
} |
|
|
408 |
], |
|
|
409 |
"source": [ |
|
|
410 |
"print(\"vgg16 Classification Report:\")\n", |
|
|
411 |
"print(vgg16_report)\n", |
|
|
412 |
"\n", |
|
|
413 |
"print(\"vgg19 Classification Report:\")\n", |
|
|
414 |
"print(classification_report_vgg19)" |
|
|
415 |
] |
|
|
416 |
}, |
|
|
417 |
{ |
|
|
418 |
"cell_type": "code", |
|
|
419 |
"execution_count": null, |
|
|
420 |
"id": "b52bd648", |
|
|
421 |
"metadata": {}, |
|
|
422 |
"outputs": [ |
|
|
423 |
{ |
|
|
424 |
"name": "stdout", |
|
|
425 |
"output_type": "stream", |
|
|
426 |
"text": [ |
|
|
427 |
"Epoch 1/5\n", |
|
|
428 |
"30/30 [==============================] - 608s 21s/step - loss: 0.1287 - accuracy: 0.9599\n", |
|
|
429 |
"Epoch 2/5\n", |
|
|
430 |
"30/30 [==============================] - 802s 27s/step - loss: 0.1328 - accuracy: 0.9620\n", |
|
|
431 |
"Epoch 3/5\n", |
|
|
432 |
"15/30 [==============>...............] - ETA: 6:36 - loss: 0.0728 - accuracy: 0.9854" |
|
|
433 |
] |
|
|
434 |
} |
|
|
435 |
], |
|
|
436 |
"source": [ |
|
|
437 |
"import matplotlib.pyplot as plt\n", |
|
|
438 |
"\n", |
|
|
439 |
"# Train the VGG16 model and obtain the training history\n", |
|
|
440 |
"vgg16_history = vgg16_model.fit(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5)\n", |
|
|
441 |
"\n", |
|
|
442 |
"# Plot the training loss curve\n", |
|
|
443 |
"plt.plot(vgg16_history.history['loss'])\n", |
|
|
444 |
"plt.title('vgg16 Training Loss')\n", |
|
|
445 |
"plt.xlabel('Epoch')\n", |
|
|
446 |
"plt.ylabel('Loss')\n", |
|
|
447 |
"plt.show()" |
|
|
448 |
] |
|
|
449 |
}, |
|
|
450 |
{ |
|
|
451 |
"cell_type": "code", |
|
|
452 |
"execution_count": null, |
|
|
453 |
"id": "5f87edd6", |
|
|
454 |
"metadata": {}, |
|
|
455 |
"outputs": [], |
|
|
456 |
"source": [ |
|
|
457 |
"import matplotlib.pyplot as plt\n", |
|
|
458 |
"\n", |
|
|
459 |
"# Train the VGG16 model and obtain the training history\n", |
|
|
460 |
"vgg19_history = vgg19_model.fit(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=10)\n", |
|
|
461 |
"\n", |
|
|
462 |
"# Plot the training loss curve\n", |
|
|
463 |
"plt.plot(vgg19_history.history['loss'])\n", |
|
|
464 |
"plt.title('vgg19 Training Loss')\n", |
|
|
465 |
"plt.xlabel('Epoch')\n", |
|
|
466 |
"plt.ylabel('Loss')\n", |
|
|
467 |
"plt.show()" |
|
|
468 |
] |
|
|
469 |
}, |
|
|
470 |
{ |
|
|
471 |
"cell_type": "code", |
|
|
472 |
"execution_count": null, |
|
|
473 |
"id": "f66c546c", |
|
|
474 |
"metadata": {}, |
|
|
475 |
"outputs": [], |
|
|
476 |
"source": [ |
|
|
477 |
"plt.plot(vgg16_history.history['accuracy'])\n", |
|
|
478 |
"plt.title('VGG16 Training Accuracy')\n", |
|
|
479 |
"plt.xlabel('Epoch')\n", |
|
|
480 |
"plt.ylabel('Accuracy')\n", |
|
|
481 |
"plt.show()" |
|
|
482 |
] |
|
|
483 |
}, |
|
|
484 |
{ |
|
|
485 |
"cell_type": "code", |
|
|
486 |
"execution_count": null, |
|
|
487 |
"id": "ba32e996", |
|
|
488 |
"metadata": {}, |
|
|
489 |
"outputs": [], |
|
|
490 |
"source": [ |
|
|
491 |
"plt.plot(vgg19_history.history['accuracy'])\n", |
|
|
492 |
"plt.title('VGG19 Training Accuracy')\n", |
|
|
493 |
"plt.xlabel('Epoch')\n", |
|
|
494 |
"plt.ylabel('Accuracy')\n", |
|
|
495 |
"plt.show()" |
|
|
496 |
] |
|
|
497 |
}, |
|
|
498 |
{ |
|
|
499 |
"cell_type": "code", |
|
|
500 |
"execution_count": null, |
|
|
501 |
"id": "b3533667", |
|
|
502 |
"metadata": {}, |
|
|
503 |
"outputs": [], |
|
|
504 |
"source": [] |
|
|
505 |
} |
|
|
506 |
], |
|
|
507 |
"metadata": { |
|
|
508 |
"kernelspec": { |
|
|
509 |
"display_name": "Python 3 (ipykernel)", |
|
|
510 |
"language": "python", |
|
|
511 |
"name": "python3" |
|
|
512 |
}, |
|
|
513 |
"language_info": { |
|
|
514 |
"codemirror_mode": { |
|
|
515 |
"name": "ipython", |
|
|
516 |
"version": 3 |
|
|
517 |
}, |
|
|
518 |
"file_extension": ".py", |
|
|
519 |
"mimetype": "text/x-python", |
|
|
520 |
"name": "python", |
|
|
521 |
"nbconvert_exporter": "python", |
|
|
522 |
"pygments_lexer": "ipython3", |
|
|
523 |
"version": "3.9.13" |
|
|
524 |
} |
|
|
525 |
}, |
|
|
526 |
"nbformat": 4, |
|
|
527 |
"nbformat_minor": 5 |
|
|
528 |
} |