--- a +++ b/train.py @@ -0,0 +1,36 @@ +# -*- coding: utf-8 -*- +"""train.ipynb + +** + * This file is part of Hybrid CNN-LSTM for COVID-19 Severity Score Prediction paper. + * + * Written by Ankan Ghosh Dastider and Farhan Sadik. + * + * Copyright (c) by the authors under Apache-2.0 License. Some rights reserved, see LICENSE. + */ + +""" + +#EPOCHS=70 +annealer = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=1e-3) +checkpoint = ModelCheckpoint('Model.h5', verbose=1, save_best_only=True) +# Generates batches of image data with data augmentationV +datagen = ImageDataGenerator(rotation_range=360, # Degree range for random rotations + width_shift_range=0.2, # Range for random horizontal shifts + height_shift_range=0.2, # Range for random vertical shifts + zoom_range=0.2, # Range for random zoom + horizontal_flip=True, # Randomly flip inputs horizontally + vertical_flip=True) # Randomly flip inputs vertically + +datagen.fit(X_train) +# Fits the model on batches with real-time data augmentation +hist = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=BATCH_SIZE), + steps_per_epoch=X_train.shape[0] //BATCH_SIZE, + epochs=EPOCHS, + verbose=2, + callbacks=[annealer, checkpoint], + validation_data=(X_val, Y_val)) + +#model.save("check.h5") +#model.fit(X_train,Y_train,batch_size=BATCH_SIZE,steps_per_epoch=X_train.shape[0] // BATCH_SIZE, epochs=EPOCHS) +