--- a +++ b/classification.py @@ -0,0 +1,111 @@ +# -*- coding: utf-8 -*- +"""Classification.ipynb +** + * This file is part of Hybrid CNN-LSTM for COVID-19 Severity Score Prediction paper. + * + * Written by Ankan Ghosh Dastider and Farhan Sadik. + * + * Copyright (c) by the authors under Apache-2.0 License. Some rights reserved, see LICENSE. + */ +""" +from keras.applications import ResNet152V2,DenseNet201,NASNetMobile,Xception +#from keras.applications import DenseNet121 +from keras.layers.merge import concatenate +import tensorflow as tf + +IMG_WIDTH = 128 +IMG_HEIGHT = 128 +IMG_CHANNELS = 3 + +#Build the model +#Branch 1 +inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) + +#s = Lambda(lambda x: x / 255)(inputs) +s=inputs + +#Make 3 positional Arguments +c1 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) +p1= MaxPool2D(pool_size=(2,2))(c1) +p1= Dropout(0.2)(p1) + +mid1 = p1 + +c1_1= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1) #64,128 + +c2= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) +p2= MaxPool2D(pool_size=(2,2))(c2) +#p2= Dropout(0.5)(p2) + +mid2 = p2 +mid2 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2) +mid2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2) +mid2 = Dropout(0.2)(mid2) +P1_R = MaxPool2D(pool_size=(2,2))(mid2) + + +R1=concatenate([c1_1,p2]) +R1.shape + +#R1=Dropout(0.5)(R1) #Extra + +C1_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(R1) +mid1 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1) +mid1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1) +mid1 = Dropout(0.2)(mid1) + +mid1_1 = concatenate([C1_R,mid1]) + +C11_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1_1) +C11_R=Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(C11_R) +C11_R = MaxPool2D(pool_size=(2,2))(C11_R) +C11_R = Dropout(0.2)(C11_R) + +mid2_1 = concatenate([C11_R,P1_R]) + +mid2_1 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1) +x = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1) + +densenet = DenseNet201(weights='imagenet', include_top=False) + +# input = Input(shape=(SIZE, SIZE, N_ch)) +#x = Conv2D(3, (3, 3), padding='same',activation='relu')(s) +#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x) +#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x) +x = (Flatten())(x) + +#branch 2 + +c_b_1=Conv2D(3, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) + +branch_2 = densenet(c_b_1) + +branch_2 = GlobalAveragePooling2D()(branch_2) +branch_2= BatchNormalization()(branch_2) +branch_2 = Dropout(0.5)(branch_2) +branch_2= Dense(256, activation='relu')(branch_2) + +#concatenate model + +final=concatenate([x,branch_2]) +final = BatchNormalization()(final) +final = Dropout(0.2)(final) +final = Dense(1024, activation='relu')(final) +final= Dropout(0.2)(final) +final= Dense(512, activation='relu')(final) +final= Dropout(0.2)(final) #Extra +final= Dense(128, activation='relu')(final) +final= Dropout(0.5)(final) #Extra +final= Dense(64, activation='relu')(final) +final= Dropout(0.5)(final) #Extra + +#multi output +output = Dense(3,activation = 'softmax', name='root')(final) + +# model +model = Model(inputs,output) + +optimizer = Adam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=0.1, decay=0.0)#lr=0.002 +model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])#kullback_leibler_divergence#categorical_crossentropy +model.summary() +