|
a |
|
b/classification.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
"""Classification.ipynb |
|
|
3 |
** |
|
|
4 |
* This file is part of Hybrid CNN-LSTM for COVID-19 Severity Score Prediction paper. |
|
|
5 |
* |
|
|
6 |
* Written by Ankan Ghosh Dastider and Farhan Sadik. |
|
|
7 |
* |
|
|
8 |
* Copyright (c) by the authors under Apache-2.0 License. Some rights reserved, see LICENSE. |
|
|
9 |
*/ |
|
|
10 |
""" |
|
|
11 |
from keras.applications import ResNet152V2,DenseNet201,NASNetMobile,Xception |
|
|
12 |
#from keras.applications import DenseNet121 |
|
|
13 |
from keras.layers.merge import concatenate |
|
|
14 |
import tensorflow as tf |
|
|
15 |
|
|
|
16 |
IMG_WIDTH = 128 |
|
|
17 |
IMG_HEIGHT = 128 |
|
|
18 |
IMG_CHANNELS = 3 |
|
|
19 |
|
|
|
20 |
#Build the model |
|
|
21 |
#Branch 1 |
|
|
22 |
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) |
|
|
23 |
|
|
|
24 |
#s = Lambda(lambda x: x / 255)(inputs) |
|
|
25 |
s=inputs |
|
|
26 |
|
|
|
27 |
#Make 3 positional Arguments |
|
|
28 |
c1 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) |
|
|
29 |
p1= MaxPool2D(pool_size=(2,2))(c1) |
|
|
30 |
p1= Dropout(0.2)(p1) |
|
|
31 |
|
|
|
32 |
mid1 = p1 |
|
|
33 |
|
|
|
34 |
c1_1= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1) #64,128 |
|
|
35 |
|
|
|
36 |
c2= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) |
|
|
37 |
p2= MaxPool2D(pool_size=(2,2))(c2) |
|
|
38 |
#p2= Dropout(0.5)(p2) |
|
|
39 |
|
|
|
40 |
mid2 = p2 |
|
|
41 |
mid2 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2) |
|
|
42 |
mid2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2) |
|
|
43 |
mid2 = Dropout(0.2)(mid2) |
|
|
44 |
P1_R = MaxPool2D(pool_size=(2,2))(mid2) |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
R1=concatenate([c1_1,p2]) |
|
|
48 |
R1.shape |
|
|
49 |
|
|
|
50 |
#R1=Dropout(0.5)(R1) #Extra |
|
|
51 |
|
|
|
52 |
C1_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(R1) |
|
|
53 |
mid1 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1) |
|
|
54 |
mid1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1) |
|
|
55 |
mid1 = Dropout(0.2)(mid1) |
|
|
56 |
|
|
|
57 |
mid1_1 = concatenate([C1_R,mid1]) |
|
|
58 |
|
|
|
59 |
C11_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1_1) |
|
|
60 |
C11_R=Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(C11_R) |
|
|
61 |
C11_R = MaxPool2D(pool_size=(2,2))(C11_R) |
|
|
62 |
C11_R = Dropout(0.2)(C11_R) |
|
|
63 |
|
|
|
64 |
mid2_1 = concatenate([C11_R,P1_R]) |
|
|
65 |
|
|
|
66 |
mid2_1 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1) |
|
|
67 |
x = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1) |
|
|
68 |
|
|
|
69 |
densenet = DenseNet201(weights='imagenet', include_top=False) |
|
|
70 |
|
|
|
71 |
# input = Input(shape=(SIZE, SIZE, N_ch)) |
|
|
72 |
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(s) |
|
|
73 |
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x) |
|
|
74 |
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x) |
|
|
75 |
x = (Flatten())(x) |
|
|
76 |
|
|
|
77 |
#branch 2 |
|
|
78 |
|
|
|
79 |
c_b_1=Conv2D(3, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s) |
|
|
80 |
|
|
|
81 |
branch_2 = densenet(c_b_1) |
|
|
82 |
|
|
|
83 |
branch_2 = GlobalAveragePooling2D()(branch_2) |
|
|
84 |
branch_2= BatchNormalization()(branch_2) |
|
|
85 |
branch_2 = Dropout(0.5)(branch_2) |
|
|
86 |
branch_2= Dense(256, activation='relu')(branch_2) |
|
|
87 |
|
|
|
88 |
#concatenate model |
|
|
89 |
|
|
|
90 |
final=concatenate([x,branch_2]) |
|
|
91 |
final = BatchNormalization()(final) |
|
|
92 |
final = Dropout(0.2)(final) |
|
|
93 |
final = Dense(1024, activation='relu')(final) |
|
|
94 |
final= Dropout(0.2)(final) |
|
|
95 |
final= Dense(512, activation='relu')(final) |
|
|
96 |
final= Dropout(0.2)(final) #Extra |
|
|
97 |
final= Dense(128, activation='relu')(final) |
|
|
98 |
final= Dropout(0.5)(final) #Extra |
|
|
99 |
final= Dense(64, activation='relu')(final) |
|
|
100 |
final= Dropout(0.5)(final) #Extra |
|
|
101 |
|
|
|
102 |
#multi output |
|
|
103 |
output = Dense(3,activation = 'softmax', name='root')(final) |
|
|
104 |
|
|
|
105 |
# model |
|
|
106 |
model = Model(inputs,output) |
|
|
107 |
|
|
|
108 |
optimizer = Adam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=0.1, decay=0.0)#lr=0.002 |
|
|
109 |
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])#kullback_leibler_divergence#categorical_crossentropy |
|
|
110 |
model.summary() |
|
|
111 |
|