Diff of /classification.py [000000] .. [7a2365]

Switch to unified view

a b/classification.py
1
# -*- coding: utf-8 -*-
2
"""Classification.ipynb
3
**
4
 * This file is part of Hybrid CNN-LSTM for COVID-19 Severity Score Prediction paper.
5
 *
6
 * Written by Ankan Ghosh Dastider and Farhan Sadik.
7
 *
8
 * Copyright (c) by the authors under Apache-2.0 License. Some rights reserved, see LICENSE.
9
 */
10
"""
11
from keras.applications import ResNet152V2,DenseNet201,NASNetMobile,Xception
12
#from keras.applications import DenseNet121
13
from keras.layers.merge import concatenate
14
import tensorflow as tf
15
16
IMG_WIDTH = 128
17
IMG_HEIGHT = 128
18
IMG_CHANNELS = 3
19
 
20
#Build the model
21
#Branch 1
22
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
23
24
#s = Lambda(lambda x: x / 255)(inputs)
25
s=inputs
26
27
#Make 3 positional Arguments
28
c1 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
29
p1=  MaxPool2D(pool_size=(2,2))(c1)
30
p1=  Dropout(0.2)(p1)
31
32
mid1 = p1
33
34
c1_1= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1) #64,128
35
36
c2=  Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
37
p2=   MaxPool2D(pool_size=(2,2))(c2)
38
#p2= Dropout(0.5)(p2)
39
40
mid2 = p2
41
mid2 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2)
42
mid2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2)
43
mid2 =  Dropout(0.2)(mid2)
44
P1_R = MaxPool2D(pool_size=(2,2))(mid2)
45
46
              
47
R1=concatenate([c1_1,p2])
48
R1.shape
49
50
#R1=Dropout(0.5)(R1) #Extra
51
            
52
C1_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(R1)
53
mid1 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1)
54
mid1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1)
55
mid1 =  Dropout(0.2)(mid1)
56
            
57
mid1_1 = concatenate([C1_R,mid1])
58
59
C11_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1_1)
60
C11_R=Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(C11_R)
61
C11_R = MaxPool2D(pool_size=(2,2))(C11_R)
62
C11_R =  Dropout(0.2)(C11_R)
63
64
mid2_1 = concatenate([C11_R,P1_R])
65
66
mid2_1 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1)
67
x = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1)
68
69
densenet = DenseNet201(weights='imagenet', include_top=False)
70
71
# input = Input(shape=(SIZE, SIZE, N_ch))
72
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(s)
73
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x)
74
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x)
75
x = (Flatten())(x)
76
77
#branch 2
78
79
c_b_1=Conv2D(3, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
80
81
branch_2 = densenet(c_b_1)
82
    
83
branch_2 = GlobalAveragePooling2D()(branch_2)
84
branch_2= BatchNormalization()(branch_2)
85
branch_2 = Dropout(0.5)(branch_2)
86
branch_2= Dense(256, activation='relu')(branch_2)
87
88
#concatenate model
89
90
final=concatenate([x,branch_2])
91
final = BatchNormalization()(final)
92
final = Dropout(0.2)(final)
93
final = Dense(1024, activation='relu')(final)
94
final= Dropout(0.2)(final)
95
final= Dense(512, activation='relu')(final)
96
final= Dropout(0.2)(final) #Extra
97
final= Dense(128, activation='relu')(final)
98
final= Dropout(0.5)(final) #Extra
99
final= Dense(64, activation='relu')(final)
100
final= Dropout(0.5)(final) #Extra
101
102
#multi output
103
output = Dense(3,activation = 'softmax', name='root')(final)
104
      
105
# model
106
model = Model(inputs,output)
107
108
optimizer = Adam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=0.1, decay=0.0)#lr=0.002
109
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])#kullback_leibler_divergence#categorical_crossentropy
110
model.summary()
111