--- a +++ b/autoencoder.py @@ -0,0 +1,93 @@ +"""Autoencoder.ipynb + +** + * This file is part of Hybrid CNN-LSTM for COVID-19 Severity Score Prediction paper. + * + * Written by Ankan Ghosh Dastider and Farhan Sadik. + * + * Copyright (c) by the authors under Apache-2.0 License. Some rights reserved, see LICENSE. + */ + +""" +#denoising with autoencoder + classification +from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D,concatenate,SeparableConv2D +from keras.models import Model +import tensorflow as tf + +IMG_WIDTH = 128 +IMG_HEIGHT = 128 +IMG_CHANNELS = 3 + +densenet = DenseNet201(weights='imagenet', include_top=False) +#Build the model +inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) +#s = Lambda(lambda x: x / 255)(inputs) +s=inputs + +############ +# Encoding # +############ + +# Conv1 # +x_128 = Conv2D(filters = 16, kernel_size = (3, 3), activation='relu', padding='same')(inputs) #128,128,16 +x = MaxPooling2D(pool_size = (2, 2), padding='same')(x_128)#64,64,16 + +# Conv2 # +x_64 = Conv2D(filters = 8, kernel_size = (3, 3), activation='relu', padding='same')(x)#64,64,8 +x_32 = MaxPooling2D(pool_size = (2, 2), padding='same')(x_64)#32,32,8 + +# Conv 3 # +x_32_1 = Conv2D( 8, (3, 3), activation='relu', padding='same')(x_32) #32,32,8 +#x = MaxPooling2D(pool_size = (2, 2), padding='same')(x) + +# Conv 4 # +#x = Conv2D( 8, (3, 3), activation='relu', padding='same')(x) #16 +#x = MaxPooling2D(pool_size = (2, 2), padding='same')(x) +# Conv 5 # +#x = Conv2D( 8, (3, 3), activation='relu', padding='same')(x) #8 +encoded_16 = MaxPooling2D(pool_size = (2, 2), padding='same')(x_32_1) #16,16,8 +#conv 6 +#x = Conv2D( 8, (3, 3), activation='relu', padding='same')(x) +#encoded = MaxPooling2D(pool_size = (2, 2), padding='same')(x) + +############ +# Decoding # +############ + +# DeConv1 +y_16 = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded_16)#16,16,8 +y_32 = UpSampling2D((2, 2))(y_16)#32,32,8 + +y_32=concatenate([x_32,y_32])#32,32,8 + +#temp_32=MaxPooling2D(pool_size = (2, 2), padding='same')(x_64) +#y_32= + +# DeConv2 +y_32= Conv2D(8, (3, 3), activation='relu', padding='same')(y_32)#32,32,8 +y_64= UpSampling2D((2, 2))(y_32) #64,64,8 +y_64=concatenate([x_64,y_64]) #64,64,8 + +# DeConv2 +y_64 = Conv2D(16, (3, 3), activation='relu', padding='same')(y_64)#64,64,16 +y_128= UpSampling2D((2, 2))(y_64)#128,128,16 + +y_128=concatenate([y_128,x_128]) + +# DeConv2 +#x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) +#x = UpSampling2D((2, 2))(x) + +# DeConv2 +#x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) +#x = UpSampling2D((2, 2))(x) + +# Deconv3 +#x = Conv2D(16, (3, 3), activation='relu')(x) +#x = UpSampling2D((2, 2))(x) +decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(y_128)#128,128,3 + +decoded=concatenate([decoded,inputs ]) +decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(decoded) + +x=Conv2D(3, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(decoded)