[45147f]: / classification.py

Download this file

112 lines (83 with data), 3.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
"""Classification.ipynb
**
* This file is part of Hybrid CNN-LSTM for COVID-19 Severity Score Prediction paper.
*
* Written by Ankan Ghosh Dastider and Farhan Sadik.
*
* Copyright (c) by the authors under Apache-2.0 License. Some rights reserved, see LICENSE.
*/
"""
from keras.applications import ResNet152V2,DenseNet201,NASNetMobile,Xception
#from keras.applications import DenseNet121
from keras.layers.merge import concatenate
import tensorflow as tf
IMG_WIDTH = 128
IMG_HEIGHT = 128
IMG_CHANNELS = 3
#Build the model
#Branch 1
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
#s = Lambda(lambda x: x / 255)(inputs)
s=inputs
#Make 3 positional Arguments
c1 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
p1= MaxPool2D(pool_size=(2,2))(c1)
p1= Dropout(0.2)(p1)
mid1 = p1
c1_1= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1) #64,128
c2= Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
p2= MaxPool2D(pool_size=(2,2))(c2)
#p2= Dropout(0.5)(p2)
mid2 = p2
mid2 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2)
mid2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2)
mid2 = Dropout(0.2)(mid2)
P1_R = MaxPool2D(pool_size=(2,2))(mid2)
R1=concatenate([c1_1,p2])
R1.shape
#R1=Dropout(0.5)(R1) #Extra
C1_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(R1)
mid1 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1)
mid1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1)
mid1 = Dropout(0.2)(mid1)
mid1_1 = concatenate([C1_R,mid1])
C11_R=Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid1_1)
C11_R=Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(C11_R)
C11_R = MaxPool2D(pool_size=(2,2))(C11_R)
C11_R = Dropout(0.2)(C11_R)
mid2_1 = concatenate([C11_R,P1_R])
mid2_1 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1)
x = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(mid2_1)
densenet = DenseNet201(weights='imagenet', include_top=False)
# input = Input(shape=(SIZE, SIZE, N_ch))
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(s)
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x)
#x = Conv2D(3, (3, 3), padding='same',activation='relu')(x)
x = (Flatten())(x)
#branch 2
c_b_1=Conv2D(3, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
branch_2 = densenet(c_b_1)
branch_2 = GlobalAveragePooling2D()(branch_2)
branch_2= BatchNormalization()(branch_2)
branch_2 = Dropout(0.5)(branch_2)
branch_2= Dense(256, activation='relu')(branch_2)
#concatenate model
final=concatenate([x,branch_2])
final = BatchNormalization()(final)
final = Dropout(0.2)(final)
final = Dense(1024, activation='relu')(final)
final= Dropout(0.2)(final)
final= Dense(512, activation='relu')(final)
final= Dropout(0.2)(final) #Extra
final= Dense(128, activation='relu')(final)
final= Dropout(0.5)(final) #Extra
final= Dense(64, activation='relu')(final)
final= Dropout(0.5)(final) #Extra
#multi output
output = Dense(3,activation = 'softmax', name='root')(final)
# model
model = Model(inputs,output)
optimizer = Adam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=0.1, decay=0.0)#lr=0.002
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])#kullback_leibler_divergence#categorical_crossentropy
model.summary()