211 lines (210 with data), 39.7 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"id": "00b82428",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" id age gender height weight ap_hi ap_lo cholesterol gluc smoke \\\n",
"0 0 18393 2 168 62.0 110 80 1 1 0 \n",
"1 1 20228 1 156 85.0 140 90 3 1 0 \n",
"2 2 18857 1 165 64.0 130 70 3 1 0 \n",
"3 3 17623 2 169 82.0 150 100 1 1 0 \n",
"4 4 17474 1 156 56.0 100 60 1 1 0 \n",
"\n",
" alco active cardio \n",
"0 0 1 0 \n",
"1 0 1 1 \n",
"2 0 0 1 \n",
"3 0 1 1 \n",
"4 0 0 0 \n",
"The average age of smokers 52.30366281251596\n",
"The most repeated age of smokers 55.85205479452055\n",
"The percent of smokers that get heart diseases is 47.47933214459394\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"cardio_data = pd.read_csv('cardio_train.csv', sep=';')\n",
"print(cardio_data.head())\n",
"smokers = cardio_data[cardio_data['smoke'] == 1]\n",
"average_age = smokers['age'].mean()\n",
"mode_age = smokers['age'].mode()[0]\n",
"print('The average age of smokers ', average_age / 365)\n",
"print('The most repeated age of smokers ', mode_age / 365)\n",
"smokers_heart_disease = smokers[smokers['cardio']==1]\n",
"smokers__heart_disease = smokers[smokers['cardio']==0]\n",
"percent_of__smokers = smokers_heart_disease.size/smokers.size*100\n",
"print('The percent of smokers that get heart diseases is ',percent_of__smokers)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b882d2a1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The percent of non-smokers that get heart diseases is 50.21071266312607\n"
]
}
],
"source": [
"nonsmokers = cardio_data[cardio_data['smoke'] == 0]\n",
"nonsmokers_heart_disease = nonsmokers[nonsmokers['cardio']==1]\n",
"nonsmokers__heart_disease = nonsmokers[nonsmokers['cardio']==0]\n",
"percent_of_non_smokers = nonsmokers_heart_disease.size/nonsmokers.size*100\n",
"print('The percent of non-smokers that get heart diseases is ',percent_of_non_smokers)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cc7922cd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" HeartDisease BMI Smoking AlcoholDrinking Stroke PhysicalHealth \\\n",
"0 No 16.60 Yes No No 3.0 \n",
"1 No 20.34 No No Yes 0.0 \n",
"2 No 26.58 Yes No No 20.0 \n",
"3 No 24.21 No No No 0.0 \n",
"4 No 23.71 No No No 28.0 \n",
"\n",
" MentalHealth DiffWalking Sex AgeCategory Race Diabetic \\\n",
"0 30.0 No Female 55-59 White Yes \n",
"1 0.0 No Female 80 or older White No \n",
"2 30.0 No Male 65-69 White Yes \n",
"3 0.0 No Female 75-79 White No \n",
"4 0.0 Yes Female 40-44 White No \n",
"\n",
" PhysicalActivity GenHealth SleepTime Asthma KidneyDisease SkinCancer \n",
"0 Yes Very good 5.0 Yes No Yes \n",
"1 Yes Very good 7.0 No No No \n",
"2 Yes Fair 8.0 Yes No No \n",
"3 No Good 6.0 No No Yes \n",
"4 Yes Very good 8.0 No No No \n"
]
}
],
"source": [
"cardio_data_2 = pd.read_csv('heart_data.csv')\n",
"print(cardio_data_2.head())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9bb3ff25",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The percent of smokers that get heart diseases is 12.157715983867543\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs0UlEQVR4nO3df1SUdaLH8Q8gDP6IH+oKsrHKuVv+SK+UFpLlua3IlNYezLYwbpGy2rbQlahMSlGrzV/HSrOk2jY7Z/OuebtyS4mYqxW7OqFglJqYd9eytgYthElcxxGe+0eX5zrhFm4zEX7fr3M4x3meL9/nO+Mfz/s888wQZlmWJQAAAAOFd/UCAAAAugohBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYPbp6AT9kbW1t+vTTT3XeeecpLCysq5cDAAA6wbIsffnll0pKSlJ4+Ddf8yGEvsGnn36q5OTkrl4GAAD4B3z88cc6//zzv3HMWYdQVVWVli9frtraWn322WfauHGjsrKyJEl+v1/z5s1TeXm5/vKXvyg2NlYZGRlasmSJkpKS7DkaGxt155136tVXX1V4eLimTp2qlStXqk+fPvaY9957T/n5+dq5c6d+9KMf6c4779ScOXMC1rJhwwbNnz9fH374oS644AItXbpUkyZNsvdblqUFCxbo2WefVVNTk8aNG6c1a9boggsu6NRzPe+88yR99ULGxMSc7Uv1jfx+vyorK5WZmanIyMigzg0AQHcQqnOh1+tVcnKyfR7/JmcdQi0tLRo1apRmzJih66+/PmDf8ePHtWvXLs2fP1+jRo3S0aNHNXv2bP385z9XTU2NPS4nJ0efffaZXC6X/H6/pk+frlmzZmndunX2E8jMzFRGRoZKS0u1e/duzZgxQ3FxcZo1a5Ykafv27Zo2bZoWL16sa6+9VuvWrVNWVpZ27dqlESNGSJKWLVumVatW6YUXXlBKSormz58vp9Op999/X9HR0d/6XNvfDouJiQlJCPXq1UsxMTGEEADASKE+F3bqthbrO5Bkbdy48RvH7Nixw5JkffTRR5ZlWdb7779vSbJ27txpj3nttdessLAw669//atlWZb11FNPWfHx8ZbP57PH3HfffdaQIUPsxzfeeKM1efLkgGOlpaVZt99+u2VZltXW1mYlJiZay5cvt/c3NTVZDofD+vd///dOPb/m5mZLktXc3Nyp8Wfj5MmTVllZmXXy5Mmgzw0AQHcQqnPh2Zy/Q36PUHNzs8LCwhQXFydJcrvdiouL05gxY+wxGRkZCg8PV3V1taZMmSK3263x48crKirKHuN0OrV06VIdPXpU8fHxcrvdKioqCjiW0+lUWVmZJOngwYPyeDzKyMiw98fGxiotLU1ut1vZ2dkd1urz+eTz+ezHXq9X0lfF6vf7v/Nrcbr2+YI9LwAA3UWozoVnM19IQ+jEiRO67777NG3aNPutJY/HowEDBgQuokcP9e3bVx6Pxx6TkpISMCYhIcHeFx8fL4/HY287fczpc5z+e2ca83WLFy/WokWLOmyvrKxUr169OvWcz5bL5QrJvAAAdBfBPhceP36802NDFkJ+v1833nijLMvSmjVrQnWYoCouLg64ytR+s1VmZmZI7hFyuVyaOHEi9wgBAIwUqnNh+zs6nRGSEGqPoI8++khbt24NiIjExEQdPnw4YPypU6fU2NioxMREe0xDQ0PAmPbH3zbm9P3t2wYOHBgwJjU19YzrdjgccjgcHbZHRkaGLFZCOTcAAN1BsM+FZzNX0L9Zuj2CDhw4oP/+7/9Wv379Avanp6erqalJtbW19ratW7eqra1NaWlp9piqqqqA9/hcLpeGDBmi+Ph4e8yWLVsC5na5XEpPT5ckpaSkKDExMWCM1+tVdXW1PQYAAJjtrEPo2LFjqqurU11dnaSvbkquq6vToUOH5Pf7dcMNN6impkYvvviiWltb5fF45PF4dPLkSUnSsGHDdPXVV2vmzJnasWOHtm3bpoKCAmVnZ9vfNXTzzTcrKipKeXl52rt3r9avX6+VK1cGvG01e/ZsVVRUaMWKFaqvr9fChQtVU1OjgoICSV99ZK6wsFAPP/ywXnnlFe3evVu33nqrkpKS7O89AgAAhjvbj6S98cYblqQOP7m5udbBgwfPuE+S9cYbb9hzfPHFF9a0adOsPn36WDExMdb06dOtL7/8MuA47777rnXFFVdYDofD+vGPf2wtWbKkw1peeukl68ILL7SioqKsiy66yNq8eXPA/ra2Nmv+/PlWQkKC5XA4rAkTJlj79+/v9HPl4/MAAITOD+Hj82GWZVldUmDdgNfrVWxsrJqbm0Nys3R5ebkmTZrEPUIAACOF6lx4Nudv/vo8AAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWyP/oKr7ZiIWvy9ca1tXL6LQPl0zu6iUAABA0XBECAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGOusQ6iqqkrXXXedkpKSFBYWprKysoD9lmWppKREAwcOVM+ePZWRkaEDBw4EjGlsbFROTo5iYmIUFxenvLw8HTt2LGDMe++9pyuvvFLR0dFKTk7WsmXLOqxlw4YNGjp0qKKjozVy5EiVl5ef9VoAAIC5zjqEWlpaNGrUKD355JNn3L9s2TKtWrVKpaWlqq6uVu/eveV0OnXixAl7TE5Ojvbu3SuXy6VNmzapqqpKs2bNsvd7vV5lZmZq0KBBqq2t1fLly7Vw4UI988wz9pjt27dr2rRpysvL0zvvvKOsrCxlZWVpz549Z7UWAABgrjDLsqx/+JfDwrRx40ZlZWVJ+uoKTFJSku6++27dc889kqTm5mYlJCRo7dq1ys7O1r59+zR8+HDt3LlTY8aMkSRVVFRo0qRJ+uSTT5SUlKQ1a9bogQcekMfjUVRUlCRp7ty5KisrU319vSTppptuUktLizZt2mSvZ+zYsUpNTVVpaWmn1vJ1Pp9PPp/Pfuz1epWcnKzPP/9cMTEx/+jLdEZ+v18ul0vza8LlawsL6tyhtGehs6uXAAA4R7SfCydOnKjIyMigzev1etW/f381Nzd/6/m7R9COKungwYPyeDzKyMiwt8XGxiotLU1ut1vZ2dlyu92Ki4uzI0iSMjIyFB4erurqak2ZMkVut1vjx4+3I0iSnE6nli5dqqNHjyo+Pl5ut1tFRUUBx3c6nfZbdZ1Zy9ctXrxYixYt6rC9srJSvXr1+odfl2/y0Ji2kMwbKl9/+xEAgO/K5XIFdb7jx493emxQQ8jj8UiSEhISArYnJCTY+zwejwYMGBC4iB491Ldv34AxKSkpHeZo3xcfHy+Px/Otx/m2tXxdcXFxQFy1XxHKzMzkitD/4YoQACBYQnlFqLOCGkLdncPhkMPh6LA9MjIyqP9Bp/O1hcnX2n1CKFSvAwDAXME+z57NXEH9+HxiYqIkqaGhIWB7Q0ODvS8xMVGHDx8O2H/q1Ck1NjYGjDnTHKcf4++NOX3/t60FAACYLaghlJKSosTERG3ZssXe5vV6VV1drfT0dElSenq6mpqaVFtba4/ZunWr2tralJaWZo+pqqqS3++3x7hcLg0ZMkTx8fH2mNOP0z6m/TidWQsAADDbWYfQsWPHVFdXp7q6Oklf3ZRcV1enQ4cOKSwsTIWFhXr44Yf1yiuvaPfu3br11luVlJRkf7Js2LBhuvrqqzVz5kzt2LFD27ZtU0FBgbKzs5WUlCRJuvnmmxUVFaW8vDzt3btX69ev18qVKwPu35k9e7YqKiq0YsUK1dfXa+HChaqpqVFBQYEkdWotAADAbGd9j1BNTY2uuuoq+3F7nOTm5mrt2rWaM2eOWlpaNGvWLDU1NemKK65QRUWFoqOj7d958cUXVVBQoAkTJig8PFxTp07VqlWr7P2xsbGqrKxUfn6+Ro8erf79+6ukpCTgu4Yuv/xyrVu3TvPmzdP999+vCy64QGVlZRoxYoQ9pjNrAQAA5vpO3yN0rvN6vYqNje3U9xCcLb/fr/Lycs3ZEdGtbpb+cMnkrl4CAOAc0X4unDRpUtA/NdbZ8zd/awwAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYKegi1trZq/vz5SklJUc+ePfVP//RPeuihh2RZlj3GsiyVlJRo4MCB6tmzpzIyMnTgwIGAeRobG5WTk6OYmBjFxcUpLy9Px44dCxjz3nvv6corr1R0dLSSk5O1bNmyDuvZsGGDhg4dqujoaI0cOVLl5eXBfsoAAKCbCnoILV26VGvWrNHq1au1b98+LV26VMuWLdMTTzxhj1m2bJlWrVql0tJSVVdXq3fv3nI6nTpx4oQ9JicnR3v37pXL5dKmTZtUVVWlWbNm2fu9Xq8yMzM1aNAg1dbWavny5Vq4cKGeeeYZe8z27ds1bdo05eXl6Z133lFWVpaysrK0Z8+eYD9tAADQDYVZp1+qCYJrr71WCQkJeu655+xtU6dOVc+ePfX73/9elmUpKSlJd999t+655x5JUnNzsxISErR27VplZ2dr3759Gj58uHbu3KkxY8ZIkioqKjRp0iR98sknSkpK0po1a/TAAw/I4/EoKipKkjR37lyVlZWpvr5eknTTTTeppaVFmzZtstcyduxYpaamqrS0tMPafT6ffD6f/djr9So5OVmff/65YmJigvkyye/3y+VyaX5NuHxtYUGdO5T2LHR29RIAAOeI9nPhxIkTFRkZGbR5vV6v+vfvr+bm5m89f/cI2lH/z+WXX65nnnlGH3zwgS688EK9++67+tOf/qRHH31UknTw4EF5PB5lZGTYvxMbG6u0tDS53W5lZ2fL7XYrLi7OjiBJysjIUHh4uKqrqzVlyhS53W6NHz/ejiBJcjqdWrp0qY4ePar4+Hi53W4VFRUFrM/pdKqsrOyMa1+8eLEWLVrUYXtlZaV69er1XV6Wv+uhMW0hmTdUeGsRABBsLpcrqPMdP36802ODHkJz586V1+vV0KFDFRERodbWVv3mN79RTk6OJMnj8UiSEhISAn4vISHB3ufxeDRgwIDAhfboob59+waMSUlJ6TBH+774+Hh5PJ5vPM7XFRcXB4RT+xWhzMxMrgj9H64IAQCCJZRXhDor6CH00ksv6cUXX9S6det00UUXqa6uToWFhUpKSlJubm6wDxdUDodDDoejw/bIyMig/gedztcWJl9r9wmhUL0OAABzBfs8ezZzBT2E7r33Xs2dO1fZ2dmSpJEjR+qjjz7S4sWLlZubq8TERElSQ0ODBg4caP9eQ0ODUlNTJUmJiYk6fPhwwLynTp1SY2Oj/fuJiYlqaGgIGNP++NvGtO8HAABmC/qnxo4fP67w8MBpIyIi1Nb21b0wKSkpSkxM1JYtW+z9Xq9X1dXVSk9PlySlp6erqalJtbW19pitW7eqra1NaWlp9piqqir5/X57jMvl0pAhQxQfH2+POf047WPajwMAAMwW9BC67rrr9Jvf/EabN2/Whx9+qI0bN+rRRx/VlClTJElhYWEqLCzUww8/rFdeeUW7d+/WrbfeqqSkJGVlZUmShg0bpquvvlozZ87Ujh07tG3bNhUUFCg7O1tJSUmSpJtvvllRUVHKy8vT3r17tX79eq1cuTLgHp/Zs2eroqJCK1asUH19vRYuXKiamhoVFBQE+2kDAIBuKOhvjT3xxBOaP3++fv3rX+vw4cNKSkrS7bffrpKSEnvMnDlz1NLSolmzZqmpqUlXXHGFKioqFB0dbY958cUXVVBQoAkTJig8PFxTp07VqlWr7P2xsbGqrKxUfn6+Ro8erf79+6ukpCTgu4Yuv/xyrVu3TvPmzdP999+vCy64QGVlZRoxYkSwnzYAAOiGgv49QucSr9er2NjYTn0Pwdny+/0qLy/XnB0R3epm6Q+XTO7qJQAAzhHt58JJkyYF/VNjnT1/87fGAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsUISQn/961/1r//6r+rXr5969uypkSNHqqamxt5vWZZKSko0cOBA9ezZUxkZGTpw4EDAHI2NjcrJyVFMTIzi4uKUl5enY8eOBYx57733dOWVVyo6OlrJyclatmxZh7Vs2LBBQ4cOVXR0tEaOHKny8vJQPGUAANANBT2Ejh49qnHjxikyMlKvvfaa3n//fa1YsULx8fH2mGXLlmnVqlUqLS1VdXW1evfuLafTqRMnTthjcnJytHfvXrlcLm3atElVVVWaNWuWvd/r9SozM1ODBg1SbW2tli9froULF+qZZ56xx2zfvl3Tpk1TXl6e3nnnHWVlZSkrK0t79uwJ9tMGAADdUJhlWVYwJ5w7d662bdumP/7xj2fcb1mWkpKSdPfdd+uee+6RJDU3NyshIUFr165Vdna29u3bp+HDh2vnzp0aM2aMJKmiokKTJk3SJ598oqSkJK1Zs0YPPPCAPB6PoqKi7GOXlZWpvr5eknTTTTeppaVFmzZtso8/duxYpaamqrS09Fufi9frVWxsrJqbmxUTE/OdXpev8/v9Ki8v15wdEfK1hgV17lD6cMnkrl4CAOAc0X4unDRpkiIjI4M279mcv3sE7aj/55VXXpHT6dQvfvELvfXWW/rxj3+sX//615o5c6Yk6eDBg/J4PMrIyLB/JzY2VmlpaXK73crOzpbb7VZcXJwdQZKUkZGh8PBwVVdXa8qUKXK73Ro/frwdQZLkdDq1dOlSHT16VPHx8XK73SoqKgpYn9PpVFlZ2RnX7vP55PP57Mder1fSV/9Rfr//O782p2ufzxEe1A4NuWC/DgAAc7WfU0J1ju2MoIfQX/7yF61Zs0ZFRUW6//77tXPnTv3bv/2boqKilJubK4/HI0lKSEgI+L2EhAR7n8fj0YABAwIX2qOH+vbtGzAmJSWlwxzt++Lj4+XxeL7xOF+3ePFiLVq0qMP2yspK9erVq7MvwVl5aExbSOYNFe6xAgAEm8vlCup8x48f7/TYoIdQW1ubxowZo0ceeUSSdPHFF2vPnj0qLS1Vbm5usA8XVMXFxQFXkLxer5KTk5WZmRmSt8ZcLpfm14TL19Z93hrbs9DZ1UsAAJwj2s+FEydODPpbY50V9BAaOHCghg8fHrBt2LBhevnllyVJiYmJkqSGhgYNHDjQHtPQ0KDU1FR7zOHDhwPmOHXqlBobG+3fT0xMVENDQ8CY9sffNqZ9/9c5HA45HI4O2yMjI4P6H3Q6X1tYt7pHKFSvAwDAXME+z57NXEH/1Ni4ceO0f//+gG0ffPCBBg0aJElKSUlRYmKitmzZYu/3er2qrq5Wenq6JCk9PV1NTU2qra21x2zdulVtbW1KS0uzx1RVVQW8D+hyuTRkyBD7E2rp6ekBx2kf034cAABgtqCH0F133aW3335bjzzyiP7nf/5H69at0zPPPKP8/HxJUlhYmAoLC/Xwww/rlVde0e7du3XrrbcqKSlJWVlZkr66gnT11Vdr5syZ2rFjh7Zt26aCggJlZ2crKSlJknTzzTcrKipKeXl52rt3r9avX6+VK1cGvLU1e/ZsVVRUaMWKFaqvr9fChQtVU1OjgoKCYD9tAADQDQX9rbFLL71UGzduVHFxsR588EGlpKTo8ccfV05Ojj1mzpw5amlp0axZs9TU1KQrrrhCFRUVio6Otse8+OKLKigo0IQJExQeHq6pU6dq1apV9v7Y2FhVVlYqPz9fo0ePVv/+/VVSUhLwXUOXX3651q1bp3nz5un+++/XBRdcoLKyMo0YMSLYTxsAAHRDQf8eoXMJ3yPUEd8jBAAIlh/C9wjxt8YAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGCskIfQkiVLFBYWpsLCQnvbiRMnlJ+fr379+qlPnz6aOnWqGhoaAn7v0KFDmjx5snr16qUBAwbo3nvv1alTpwLGvPnmm7rkkkvkcDj005/+VGvXru1w/CeffFKDBw9WdHS00tLStGPHjlA8TQAA0A2FNIR27typp59+Wv/8z/8csP2uu+7Sq6++qg0bNuitt97Sp59+quuvv97e39raqsmTJ+vkyZPavn27XnjhBa1du1YlJSX2mIMHD2ry5Mm66qqrVFdXp8LCQv3yl7/U66+/bo9Zv369ioqKtGDBAu3atUujRo2S0+nU4cOHQ/m0AQBANxGyEDp27JhycnL07LPPKj4+3t7e3Nys5557To8++qh+9rOfafTo0Xr++ee1fft2vf3225KkyspKvf/++/r973+v1NRUXXPNNXrooYf05JNP6uTJk5Kk0tJSpaSkaMWKFRo2bJgKCgp0ww036LHHHrOP9eijj2rmzJmaPn26hg8frtLSUvXq1Uu/+93vQvW0AQBAN9IjVBPn5+dr8uTJysjI0MMPP2xvr62tld/vV0ZGhr1t6NCh+slPfiK3262xY8fK7XZr5MiRSkhIsMc4nU7dcccd2rt3ry6++GK53e6AOdrHtL8Fd/LkSdXW1qq4uNjeHx4eroyMDLnd7jOu2efzyefz2Y+9Xq8kye/3y+/3/+Mvxhm0z+cIt4I6b6gF+3UAAJir/ZwSqnNsZ4QkhP7whz9o165d2rlzZ4d9Ho9HUVFRiouLC9iekJAgj8djjzk9gtr3t+/7pjFer1d/+9vfdPToUbW2tp5xTH19/RnXvXjxYi1atKjD9srKSvXq1esbnvE/7qExbSGZN1TKy8u7egkAgHOMy+UK6nzHjx/v9Nigh9DHH3+s2bNny+VyKTo6OtjTh1RxcbGKiorsx16vV8nJycrMzFRMTExQj+X3++VyuTS/Jly+trCgzh1KexY6u3oJAIBzRPu5cOLEiYqMjAzavO3v6HRG0EOotrZWhw8f1iWXXGJva21tVVVVlVavXq3XX39dJ0+eVFNTU8BVoYaGBiUmJkqSEhMTO3y6q/1TZaeP+fonzRoaGhQTE6OePXsqIiJCERERZxzTPsfXORwOORyODtsjIyOD+h90Ol9bmHyt3SeEQvU6AADMFezz7NnMFfSbpSdMmKDdu3errq7O/hkzZoxycnLsf0dGRmrLli327+zfv1+HDh1Senq6JCk9PV27d+8O+HSXy+VSTEyMhg8fbo85fY72Me1zREVFafTo0QFj2tratGXLFnsMAAAwW9CvCJ133nkaMWJEwLbevXurX79+9va8vDwVFRWpb9++iomJ0Z133qn09HSNHTtWkpSZmanhw4frlltu0bJly+TxeDRv3jzl5+fbV2x+9atfafXq1ZozZ45mzJihrVu36qWXXtLmzZvt4xYVFSk3N1djxozRZZddpscff1wtLS2aPn16sJ82AADohkL2qbFv8thjjyk8PFxTp06Vz+eT0+nUU089Ze+PiIjQpk2bdMcddyg9PV29e/dWbm6uHnzwQXtMSkqKNm/erLvuuksrV67U+eefr9/+9rdyOv//HpabbrpJR44cUUlJiTwej1JTU1VRUdHhBmoAAGCmMMuyutfnt79HXq9XsbGxam5uDsnN0uXl5ZqzI6Jb3SP04ZLJXb0EAMA5ov1cOGnSpKDfLN3Z8zd/awwAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYKeggtXrxYl156qc477zwNGDBAWVlZ2r9/f8CYEydOKD8/X/369VOfPn00depUNTQ0BIw5dOiQJk+erF69emnAgAG69957derUqYAxb775pi655BI5HA799Kc/1dq1azus58knn9TgwYMVHR2ttLQ07dixI9hPGQAAdFNBD6G33npL+fn5evvtt+VyueT3+5WZmamWlhZ7zF133aVXX31VGzZs0FtvvaVPP/1U119/vb2/tbVVkydP1smTJ7V9+3a98MILWrt2rUpKSuwxBw8e1OTJk3XVVVeprq5OhYWF+uUvf6nXX3/dHrN+/XoVFRVpwYIF2rVrl0aNGiWn06nDhw8H+2kDAIBuKMyyLCuUBzhy5IgGDBigt956S+PHj1dzc7N+9KMfad26dbrhhhskSfX19Ro2bJjcbrfGjh2r1157Tddee60+/fRTJSQkSJJKS0t133336ciRI4qKitJ9992nzZs3a8+ePfaxsrOz1dTUpIqKCklSWlqaLr30Uq1evVqS1NbWpuTkZN15552aO3fut67d6/UqNjZWzc3NiomJCerr4vf7VV5erjk7IuRrDQvq3KH04ZLJXb0EAMA5ov1cOGnSJEVGRgZt3rM5f/cI2lH/jubmZklS3759JUm1tbXy+/3KyMiwxwwdOlQ/+clP7BByu90aOXKkHUGS5HQ6dccdd2jv3r26+OKL5Xa7A+ZoH1NYWChJOnnypGpra1VcXGzvDw8PV0ZGhtxu9xnX6vP55PP57Mder1fSV/9Rfr//O7wKHbXP5wgPaYcGXbBfBwCAudrPKaE6x3ZGSEOora1NhYWFGjdunEaMGCFJ8ng8ioqKUlxcXMDYhIQEeTwee8zpEdS+v33fN43xer3629/+pqNHj6q1tfWMY+rr68+43sWLF2vRokUdtldWVqpXr16dfNZn56ExbSGZN1TKy8u7egkAgHOMy+UK6nzHjx/v9NiQhlB+fr727NmjP/3pT6E8TNAUFxerqKjIfuz1epWcnKzMzMyQvDXmcrk0vyZcvrbu89bYnoXOrl4CAOAc0X4unDhxYtDfGuuskIVQQUGBNm3apKqqKp1//vn29sTERJ08eVJNTU0BV4UaGhqUmJhoj/n6p7vaP1V2+pivf9KsoaFBMTEx6tmzpyIiIhQREXHGMe1zfJ3D4ZDD4eiwPTIyMqj/QafztYV1q3uEQvU6AADMFezz7NnMFfRPjVmWpYKCAm3cuFFbt25VSkpKwP7Ro0crMjJSW7Zssbft379fhw4dUnp6uiQpPT1du3fvDvh0l8vlUkxMjIYPH26POX2O9jHtc0RFRWn06NEBY9ra2rRlyxZ7DAAAMFvQrwjl5+dr3bp1+q//+i+dd9559j09sbGx6tmzp2JjY5WXl6eioiL17dtXMTExuvPOO5Wenq6xY8dKkjIzMzV8+HDdcsstWrZsmTwej+bNm6f8/Hz7is2vfvUrrV69WnPmzNGMGTO0detWvfTSS9q8ebO9lqKiIuXm5mrMmDG67LLL9Pjjj6ulpUXTp08P9tMGAADdUNBDaM2aNZKkf/mXfwnY/vzzz+u2226TJD322GMKDw/X1KlT5fP55HQ69dRTT9ljIyIitGnTJt1xxx1KT09X7969lZubqwcffNAek5KSos2bN+uuu+7SypUrdf755+u3v/2tnM7/v4flpptu0pEjR1RSUiKPx6PU1FRVVFR0uIEaAACYKeTfI9Sd8T1CHfE9QgCAYPkhfI8Qf2sMAAAYixACAADGIoQAAICxCCEAAGAsQggAABgr5H90FQAAfD8Gz9387YN+QBwRlpZd1rVr4IoQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNCTTz6pwYMHKzo6WmlpadqxY0dXLwkAAPwAnPMhtH79ehUVFWnBggXatWuXRo0aJafTqcOHD3f10gAAQBfr0dULCLVHH31UM2fO1PTp0yVJpaWl2rx5s373u99p7ty5AWN9Pp98Pp/9uLm5WZLU2Ngov98f1HX5/X4dP35cPfzham0LC+rcofTFF1909RIAAH9Hj1MtXb2Es9KjzdLx42364osvFBkZGbR5v/zyS0mSZVnfPtg6h/l8PisiIsLauHFjwPZbb73V+vnPf95h/IIFCyxJ/PDDDz/88MPPOfDz8ccff2srnNNXhD7//HO1trYqISEhYHtCQoLq6+s7jC8uLlZRUZH9uK2tTY2NjerXr5/CwoJ71cbr9So5OVkff/yxYmJigjo3AADdQajOhZZl6csvv1RSUtK3jj2nQ+hsORwOORyOgG1xcXEhPWZMTAwhBAAwWijOhbGxsZ0ad07fLN2/f39FRESooaEhYHtDQ4MSExO7aFUAAOCH4pwOoaioKI0ePVpbtmyxt7W1tWnLli1KT0/vwpUBAIAfgnP+rbGioiLl5uZqzJgxuuyyy/T444+rpaXF/hRZV3E4HFqwYEGHt+IAADDFD+FcGGZZnflsWfe2evVqLV++XB6PR6mpqVq1apXS0tK6elkAAKCLGRFCAAAAZ3JO3yMEAADwTQghAABgLEIIAAAYixACAADGIoRC6LbbblNYWJiWLFkSsL2srCzof7IDAIAfCsuylJGRIafT2WHfU089pbi4OH3yySddsLKOCKEQi46O1tKlS3X06NGuXgoAAN+LsLAwPf/886qurtbTTz9tbz948KDmzJmjJ554Queff34XrvD/EUIhlpGRocTERC1evPjvjnn55Zd10UUXyeFwaPDgwVqxYsX3uEIAAIIvOTlZK1eu1D333KODBw/Ksizl5eUpMzNTF198sa655hr16dNHCQkJuuWWW/T555/bv/sf//EfGjlypHr27Kl+/fopIyNDLS0tIVknIRRiEREReuSRR/TEE0+c8TJgbW2tbrzxRmVnZ2v37t1auHCh5s+fr7Vr137/iwUAIIhyc3M1YcIEzZgxQ6tXr9aePXv09NNP62c/+5kuvvhi1dTUqKKiQg0NDbrxxhslSZ999pmmTZumGTNmaN++fXrzzTd1/fXXK1Rfe8gXKobQbbfdpqamJpWVlSk9PV3Dhw/Xc889p7KyMk2ZMkWWZSknJ0dHjhxRZWWl/Xtz5szR5s2btXfv3i5cPQAA393hw4d10UUXqbGxUS+//LL27NmjP/7xj3r99dftMZ988omSk5O1f/9+HTt2TKNHj9aHH36oQYMGhXx9XBH6nixdulQvvPCC9u3bF7B93759GjduXMC2cePG6cCBA2ptbf0+lwgAQNANGDBAt99+u4YNG6asrCy9++67euONN9SnTx/7Z+jQoZKkP//5zxo1apQmTJigkSNH6he/+IWeffbZkN5nSwh9T8aPHy+n06ni4uKuXgoAAN+rHj16qEePr/7O+7Fjx3Tdddeprq4u4OfAgQMaP368IiIi5HK59Nprr2n48OF64oknNGTIEB08eDA0awvJrDijJUuWKDU1VUOGDLG3DRs2TNu2bQsYt23bNl144YWKiIj4vpcIAEBIXXLJJXr55Zc1ePBgO46+LiwsTOPGjdO4ceNUUlKiQYMGaePGjSoqKgr6ergi9D0aOXKkcnJytGrVKnvb3XffrS1btuihhx7SBx98oBdeeEGrV6/WPffc04UrBQAgNPLz89XY2Khp06Zp586d+vOf/6zXX39d06dPV2trq6qrq/XII4+opqZGhw4d0n/+53/qyJEjGjZsWEjWQwh9zx588EG1tbXZjy+55BK99NJL+sMf/qARI0aopKREDz74oG677bauWyQAACGSlJSkbdu2qbW1VZmZmRo5cqQKCwsVFxen8PBwxcTEqKqqSpMmTdKFF16oefPmacWKFbrmmmtCsh4+NQYAAIzFFSEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsQghAABgLEIIAAAYixACAADG+l9BzK35TiSH8AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"smokers = cardio_data_2[cardio_data_2['Smoking']=='Yes']\n",
"smokers['HeartDisease'].hist()\n",
"smokers_heart_disease = smokers[smokers['HeartDisease']=='Yes']\n",
"smokers__heart_disease = smokers[smokers['HeartDisease']=='No']\n",
"percent_of__smokers = smokers_heart_disease.size/smokers.size*100\n",
"print('The percent of smokers that get heart diseases is ',percent_of__smokers)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7e85f38d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The percent of non-smokers that get heart diseases is 6.03341370078824\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxvUlEQVR4nO3dfXRU1b3/8c8kJBNCSQjSZJJlhFQtDxKJwDWND1RKyBByuUZpKw9VRAqVFW4lqUDjL8RAvA3iBQVBUx8QuoQremtTL6QhY6yllTFIaIogcJFCqUsmWHkYCXUyJPP7w5VzGYOa1BlTst+vtWbp2fs7e/Y5/LE/65w9E1sgEAgIAADAQBHdPQEAAIDuQhACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABirV3dP4J9ZW1ub3n//ffXt21c2m627pwMAADohEAjoo48+UkpKiiIiPv+eD0Hoc7z//vtKTU3t7mkAAIB/wF//+lddfvnln1tDEPocffv2lfTJhYyLiwvp2H6/X7W1tcrJyVFUVFRIxwYA4FIQrrXQ6/UqNTXVWsc/D0Hoc7Q/DouLiwtLEIqNjVVcXBxBCABgpHCvhZ3Z1sJmaQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADG6nIQ2r59uyZNmqSUlBTZbDZVVVUF9dtstou+HnnkEatm0KBBHfqXLVsWNM6ePXt08803KyYmRqmpqVq+fHmHubz00ksaMmSIYmJilJ6erurq6qD+QCCg0tJSJScnq3fv3srOztahQ4e6esoAAKCH6tXVNzQ3N2vEiBG65557dPvtt3foP378eNDxb37zG82aNUuTJ08Oal+6dKlmz55tHfft29f6f6/Xq5ycHGVnZ6uyslJvv/227rnnHvXr109z5syRJO3YsUNTp05VRUWF/vVf/1WbNm1Sfn6+du/ereHDh0uSli9frtWrV2vDhg1KS0vT4sWL5XQ69c477ygmJqarpx4Ww8u2yddq6+5pdNrRZXndPQUAAEKmy0EoNzdXubm5n9nvcDiCjn/9619r7Nix+sY3vhHU3rdv3w617TZu3KiWlhatW7dO0dHRuuaaa9TY2KiVK1daQWjVqlWaMGGCFixYIEkqLy+Xy+XSmjVrVFlZqUAgoMcee0wlJSW69dZbJUm/+MUvlJSUpKqqKk2ZMqWrpw4AAHqYLgehrmhqatLWrVu1YcOGDn3Lli1TeXm5rrjiCk2bNk2FhYXq1euT6bjdbo0ZM0bR0dFWvdPp1MMPP6xTp04pISFBbrdbRUVFQWM6nU7rUd2RI0fk8XiUnZ1t9cfHxyszM1Nut/uiQcjn88nn81nHXq9XkuT3++X3+//xC3ER7ePZIwIhHTfcQn0dAADmal9TwrXGdkZYg9CGDRvUt2/fDo/QfvzjH2vkyJHq37+/duzYoeLiYh0/flwrV66UJHk8HqWlpQW9JykpyepLSEiQx+Ox2i6s8Xg8Vt2F77tYzadVVFRoyZIlHdpra2sVGxvb2dPukvLRbWEZN1w+vQ8LAIAvy+VyhXS8c+fOdbo2rEFo3bp1mj59eof9OBfeybn22msVHR2tH/3oR6qoqJDdbg/nlD5XcXFx0Ny8Xq9SU1OVk5OjuLi4kH6W3++Xy+XS4l0R8rVdOnuE9pY5u3sKAIAeon0tHD9+vKKiokI2bvsTnc4IWxD6/e9/r4MHD2rz5s1fWJuZmanz58/r6NGjGjx4sBwOh5qamoJq2o/b9xV9Vs2F/e1tycnJQTUZGRkXnYfdbr9oEIuKigrpP9CFfG22S2qzdLiuAwDAXKFeZ7syVth+R+jZZ5/VqFGjNGLEiC+sbWxsVEREhBITEyVJWVlZ2r59e9AzPpfLpcGDByshIcGqqaurCxrH5XIpKytLkpSWliaHwxFU4/V6VV9fb9UAAACzdfmO0NmzZ/Xuu+9ax0eOHFFjY6P69++vK664QtIngeOll17SihUrOrzf7Xarvr5eY8eOVd++feV2u1VYWKgf/OAHVsiZNm2alixZolmzZmnRokXau3evVq1apUcffdQa57777tO3v/1trVixQnl5eXrhhRe0a9cuPfXUU5I++T2j+fPn66GHHtLVV19tfX0+JSVF+fn5XT1tAADQA3U5CO3atUtjx461jtv31MyYMUPr16+XJL3wwgsKBAKaOnVqh/fb7Xa98MILKisrk8/nU1pamgoLC4P25sTHx6u2tlYFBQUaNWqUBgwYoNLSUuur85J0ww03aNOmTSopKdEDDzygq6++WlVVVdZvCEnSwoUL1dzcrDlz5uj06dO66aabVFNT80/zG0IAAKB72QKBwKX1/e2vkNfrVXx8vM6cOROWzdLV1dVauDPyktojxA8qAgBCpX0tnDhxYsg3S3d2/eZvjQEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACM1eUgtH37dk2aNEkpKSmy2WyqqqoK6r/77rtls9mCXhMmTAiqOXnypKZPn664uDj169dPs2bN0tmzZ4Nq9uzZo5tvvlkxMTFKTU3V8uXLO8zlpZde0pAhQxQTE6P09HRVV1cH9QcCAZWWlio5OVm9e/dWdna2Dh061NVTBgAAPVSXg1Bzc7NGjBihtWvXfmbNhAkTdPz4cev1X//1X0H906dP1759++RyubRlyxZt375dc+bMsfq9Xq9ycnI0cOBANTQ06JFHHlFZWZmeeuopq2bHjh2aOnWqZs2apT/+8Y/Kz89Xfn6+9u7da9UsX75cq1evVmVlperr69WnTx85nU59/PHHXT1tAADQA/Xq6htyc3OVm5v7uTV2u10Oh+Oiffv371dNTY3eeustjR49WpL0+OOPa+LEifrP//xPpaSkaOPGjWppadG6desUHR2ta665Ro2NjVq5cqUVmFatWqUJEyZowYIFkqTy8nK5XC6tWbNGlZWVCgQCeuyxx1RSUqJbb71VkvSLX/xCSUlJqqqq0pQpU7p66gAAoIfpchDqjNdff12JiYlKSEjQd77zHT300EO67LLLJElut1v9+vWzQpAkZWdnKyIiQvX19brtttvkdrs1ZswYRUdHWzVOp1MPP/ywTp06pYSEBLndbhUVFQV9rtPptB7VHTlyRB6PR9nZ2VZ/fHy8MjMz5Xa7LxqEfD6ffD6fdez1eiVJfr9ffr//y1+YC7SPZ48IhHTccAv1dQAAmKt9TQnXGtsZIQ9CEyZM0O233660tDQdPnxYDzzwgHJzc+V2uxUZGSmPx6PExMTgSfTqpf79+8vj8UiSPB6P0tLSgmqSkpKsvoSEBHk8HqvtwpoLx7jwfRer+bSKigotWbKkQ3ttba1iY2M7ewm6pHx0W1jGDZdP78MCAODLcrlcIR3v3Llzna4NeRC68E5Lenq6rr32Wl155ZV6/fXXNW7cuFB/XEgVFxcH3WXyer1KTU1VTk6O4uLiQvpZfr9fLpdLi3dFyNdmC+nY4bS3zNndUwAA9BDta+H48eMVFRUVsnHbn+h0RlgejV3oG9/4hgYMGKB3331X48aNk8Ph0IkTJ4Jqzp8/r5MnT1r7ihwOh5qamoJq2o+/qObC/va25OTkoJqMjIyLztVut8tut3doj4qKCuk/0IV8bTb5Wi+dIBSu6wAAMFeo19mujBX23xF677339OGHH1phJCsrS6dPn1ZDQ4NV89prr6mtrU2ZmZlWzfbt24Oe8blcLg0ePFgJCQlWTV1dXdBnuVwuZWVlSZLS0tLkcDiCarxer+rr660aAABgti4HobNnz6qxsVGNjY2SPtmU3NjYqGPHjuns2bNasGCB3nzzTR09elR1dXW69dZbddVVV8np/OSRytChQzVhwgTNnj1bO3fu1BtvvKF58+ZpypQpSklJkSRNmzZN0dHRmjVrlvbt26fNmzdr1apVQY+t7rvvPtXU1GjFihU6cOCAysrKtGvXLs2bN0+SZLPZNH/+fD300EN65ZVX9Pbbb+uuu+5SSkqK8vPzv+RlAwAAPUGXH43t2rVLY8eOtY7bw8mMGTP05JNPas+ePdqwYYNOnz6tlJQU5eTkqLy8POiR08aNGzVv3jyNGzdOERERmjx5slavXm31x8fHq7a2VgUFBRo1apQGDBig0tLSoN8auuGGG7Rp0yaVlJTogQce0NVXX62qqioNHz7cqlm4cKGam5s1Z84cnT59WjfddJNqamoUExPT1dMGAAA9kC0QCFxa39/+Cnm9XsXHx+vMmTNh2SxdXV2thTsjL6k9QkeX5XX3FAAAPUT7Wjhx4sSQb5bu7PrN3xoDAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGKvLQWj79u2aNGmSUlJSZLPZVFVVZfX5/X4tWrRI6enp6tOnj1JSUnTXXXfp/fffDxpj0KBBstlsQa9ly5YF1ezZs0c333yzYmJilJqaquXLl3eYy0svvaQhQ4YoJiZG6enpqq6uDuoPBAIqLS1VcnKyevfurezsbB06dKirpwwAAHqoLgeh5uZmjRgxQmvXru3Qd+7cOe3evVuLFy/W7t279fLLL+vgwYP6t3/7tw61S5cu1fHjx63Xv//7v1t9Xq9XOTk5GjhwoBoaGvTII4+orKxMTz31lFWzY8cOTZ06VbNmzdIf//hH5efnKz8/X3v37rVqli9frtWrV6uyslL19fXq06ePnE6nPv74466eNgAA6IF6dfUNubm5ys3NvWhffHy8XC5XUNuaNWt0/fXX69ixY7riiius9r59+8rhcFx0nI0bN6qlpUXr1q1TdHS0rrnmGjU2NmrlypWaM2eOJGnVqlWaMGGCFixYIEkqLy+Xy+XSmjVrVFlZqUAgoMcee0wlJSW69dZbJUm/+MUvlJSUpKqqKk2ZMqWrpw4AAHqYLgehrjpz5oxsNpv69esX1L5s2TKVl5friiuu0LRp01RYWKhevT6Zjtvt1pgxYxQdHW3VO51OPfzwwzp16pQSEhLkdrtVVFQUNKbT6bQe1R05ckQej0fZ2dlWf3x8vDIzM+V2uy8ahHw+n3w+n3Xs9XolffLIz+/3f6nr8Gnt49kjAiEdN9xCfR0AAOZqX1PCtcZ2RliD0Mcff6xFixZp6tSpiouLs9p//OMfa+TIkerfv7927Nih4uJiHT9+XCtXrpQkeTwepaWlBY2VlJRk9SUkJMjj8VhtF9Z4PB6r7sL3Xazm0yoqKrRkyZIO7bW1tYqNje3KqXda+ei2sIwbLp/ehwUAwJf16adJX9a5c+c6XRu2IOT3+/X9739fgUBATz75ZFDfhXdyrr32WkVHR+tHP/qRKioqZLfbwzWlL1RcXBw0N6/Xq9TUVOXk5AQFuVDw+/1yuVxavCtCvjZbSMcOp71lzu6eAgCgh2hfC8ePH6+oqKiQjdv+RKczwhKE2kPQX/7yF7322mtfGCIyMzN1/vx5HT16VIMHD5bD4VBTU1NQTftx+76iz6q5sL+9LTk5OagmIyPjovOw2+0XDWJRUVEh/Qe6kK/NJl/rpROEwnUdAADmCvU625WxQv47Qu0h6NChQ3r11Vd12WWXfeF7GhsbFRERocTERElSVlaWtm/fHvSMz+VyafDgwUpISLBq6urqgsZxuVzKysqSJKWlpcnhcATVeL1e1dfXWzUAAMBsXb4jdPbsWb377rvW8ZEjR9TY2Kj+/fsrOTlZ3/3ud7V7925t2bJFra2t1n6c/v37Kzo6Wm63W/X19Ro7dqz69u0rt9utwsJC/eAHP7BCzrRp07RkyRLNmjVLixYt0t69e7Vq1So9+uij1ufed999+va3v60VK1YoLy9PL7zwgnbt2mV9xd5ms2n+/Pl66KGHdPXVVystLU2LFy9WSkqK8vPzv8w1AwAAPUSXg9CuXbs0duxY67h9T82MGTNUVlamV155RZI6PH767W9/q1tuuUV2u10vvPCCysrK5PP5lJaWpsLCwqC9OfHx8aqtrVVBQYFGjRqlAQMGqLS01PrqvCTdcMMN2rRpk0pKSvTAAw/o6quvVlVVlYYPH27VLFy4UM3NzZozZ45Onz6tm266STU1NYqJienqaQMAgB7IFggELq3vb3+FvF6v4uPjdebMmbBslq6urtbCnZGX1B6ho8vyunsKAIAeon0tnDhxYsg3S3d2/eZvjQEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACM1eUgtH37dk2aNEkpKSmy2WyqqqoK6g8EAiotLVVycrJ69+6t7OxsHTp0KKjm5MmTmj59uuLi4tSvXz/NmjVLZ8+eDarZs2ePbr75ZsXExCg1NVXLly/vMJeXXnpJQ4YMUUxMjNLT01VdXd3luQAAAHN1OQg1NzdrxIgRWrt27UX7ly9frtWrV6uyslL19fXq06ePnE6nPv74Y6tm+vTp2rdvn1wul7Zs2aLt27drzpw5Vr/X61VOTo4GDhyohoYGPfLIIyorK9NTTz1l1ezYsUNTp07VrFmz9Mc//lH5+fnKz8/X3r17uzQXAABgLlsgEAj8w2+22fSrX/1K+fn5kj65A5OSkqKf/OQnuv/++yVJZ86cUVJSktavX68pU6Zo//79GjZsmN566y2NHj1aklRTU6OJEyfqvffeU0pKip588kn9v//3/+TxeBQdHS1J+ulPf6qqqiodOHBAknTHHXeoublZW7ZssebzrW99SxkZGaqsrOzUXL6I1+tVfHy8zpw5o7i4uH/0Ml2U3+9XdXW1Fu6MlK/VFtKxw+nosrzungIAoIdoXwsnTpyoqKiokI3blfW7V8g+VdKRI0fk8XiUnZ1ttcXHxyszM1Nut1tTpkyR2+1Wv379rBAkSdnZ2YqIiFB9fb1uu+02ud1ujRkzxgpBkuR0OvXwww/r1KlTSkhIkNvtVlFRUdDnO51O61FdZ+byaT6fTz6fzzr2er2SPvmH8vv9X+7ifEr7ePaIfziHdotQXwcAgLna15RwrbGdEdIg5PF4JElJSUlB7UlJSVafx+NRYmJi8CR69VL//v2DatLS0jqM0d6XkJAgj8fzhZ/zRXP5tIqKCi1ZsqRDe21trWJjYz/jrL+c8tFtYRk3XD69DwsAgC/L5XKFdLxz5851ujakQehSV1xcHHSXyev1KjU1VTk5OWF5NOZyubR4V4R8bZfOo7G9Zc7ungIAoIdoXwvHjx8f8kdjnRXSIORwOCRJTU1NSk5OttqbmpqUkZFh1Zw4cSLofefPn9fJkyet9zscDjU1NQXVtB9/Uc2F/V80l0+z2+2y2+0d2qOiokL6D3QhX5vtktojFK7rAAAwV6jX2a6MFdLfEUpLS5PD4VBdXZ3V5vV6VV9fr6ysLElSVlaWTp8+rYaGBqvmtddeU1tbmzIzM62a7du3Bz3jc7lcGjx4sBISEqyaCz+nvab9czozFwAAYLYuB6GzZ8+qsbFRjY2Nkj7ZlNzY2Khjx47JZrNp/vz5euihh/TKK6/o7bff1l133aWUlBTrm2VDhw7VhAkTNHv2bO3cuVNvvPGG5s2bpylTpiglJUWSNG3aNEVHR2vWrFnat2+fNm/erFWrVgU9trrvvvtUU1OjFStW6MCBAyorK9OuXbs0b948SerUXAAAgNm6/Ghs165dGjt2rHXcHk5mzJih9evXa+HChWpubtacOXN0+vRp3XTTTaqpqVFMTIz1no0bN2revHkaN26cIiIiNHnyZK1evdrqj4+PV21trQoKCjRq1CgNGDBApaWlQb81dMMNN2jTpk0qKSnRAw88oKuvvlpVVVUaPny4VdOZuQAAAHN9qd8R6un4HaGO+B0hAECo/DP8jhB/awwAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgrJAHoUGDBslms3V4FRQUSJJuueWWDn333ntv0BjHjh1TXl6eYmNjlZiYqAULFuj8+fNBNa+//rpGjhwpu92uq666SuvXr+8wl7Vr12rQoEGKiYlRZmamdu7cGerTBQAAl7CQB6G33npLx48ft14ul0uS9L3vfc+qmT17dlDN8uXLrb7W1lbl5eWppaVFO3bs0IYNG7R+/XqVlpZaNUeOHFFeXp7Gjh2rxsZGzZ8/Xz/84Q+1bds2q2bz5s0qKirSgw8+qN27d2vEiBFyOp06ceJEqE8ZAABcokIehL7+9a/L4XBYry1btujKK6/Ut7/9basmNjY2qCYuLs7qq62t1TvvvKPnn39eGRkZys3NVXl5udauXauWlhZJUmVlpdLS0rRixQoNHTpU8+bN03e/+109+uij1jgrV67U7NmzNXPmTA0bNkyVlZWKjY3VunXrQn3KAADgEtUrnIO3tLTo+eefV1FRkWw2m9W+ceNGPf/883I4HJo0aZIWL16s2NhYSZLb7VZ6erqSkpKseqfTqblz52rfvn267rrr5Ha7lZ2dHfRZTqdT8+fPtz63oaFBxcXFVn9ERISys7Pldrs/c74+n08+n8869nq9kiS/3y+/3/+PX4iLaB/PHhEI6bjhFurrAAAwV/uaEq41tjPCGoSqqqp0+vRp3X333VbbtGnTNHDgQKWkpGjPnj1atGiRDh48qJdfflmS5PF4gkKQJOvY4/F8bo3X69Xf//53nTp1Sq2trRetOXDgwGfOt6KiQkuWLOnQXltbawW1UCsf3RaWccOlurq6u6cAAOhh2rfRhMq5c+c6XRvWIPTss88qNzdXKSkpVtucOXOs/09PT1dycrLGjRunw4cP68orrwzndL5QcXGxioqKrGOv16vU1FTl5OQEPb4LBb/fL5fLpcW7IuRrs33xG/5J7C1zdvcUAAA9RPtaOH78eEVFRYVs3PYnOp0RtiD0l7/8Ra+++qp1p+ezZGZmSpLeffddXXnllXI4HB2+3dXU1CRJcjgc1n/b2y6siYuLU+/evRUZGanIyMiL1rSPcTF2u112u71De1RUVEj/gS7ka7PJ13rpBKFwXQcAgLlCvc52Zayw/Y7Qc889p8TEROXl5X1uXWNjoyQpOTlZkpSVlaW333476NtdLpdLcXFxGjZsmFVTV1cXNI7L5VJWVpYkKTo6WqNGjQqqaWtrU11dnVUDAAAQliDU1tam5557TjNmzFCvXv930+nw4cMqLy9XQ0ODjh49qldeeUV33XWXxowZo2uvvVaSlJOTo2HDhunOO+/Un/70J23btk0lJSUqKCiw7tbce++9+vOf/6yFCxfqwIEDeuKJJ/Tiiy+qsLDQ+qyioiI9/fTT2rBhg/bv36+5c+equblZM2fODMcpAwCAS1BYHo29+uqrOnbsmO65556g9ujoaL366qt67LHH1NzcrNTUVE2ePFklJSVWTWRkpLZs2aK5c+cqKytLffr00YwZM7R06VKrJi0tTVu3blVhYaFWrVqlyy+/XM8884yczv/bv3LHHXfogw8+UGlpqTwejzIyMlRTU9NhAzUAADCXLRAIXFrf3/4Keb1excfH68yZM2HZLF1dXa2FOyMvqT1CR5d9/qNOAAA6q30tnDhxYsg3S3d2/eZvjQEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYK+RBqKysTDabLeg1ZMgQq//jjz9WQUGBLrvsMn3ta1/T5MmT1dTUFDTGsWPHlJeXp9jYWCUmJmrBggU6f/58UM3rr7+ukSNHym6366qrrtL69es7zGXt2rUaNGiQYmJilJmZqZ07d4b6dAEAwCUsLHeErrnmGh0/ftx6/eEPf7D6CgsL9T//8z966aWX9Lvf/U7vv/++br/9dqu/tbVVeXl5amlp0Y4dO7RhwwatX79epaWlVs2RI0eUl5ensWPHqrGxUfPnz9cPf/hDbdu2zarZvHmzioqK9OCDD2r37t0aMWKEnE6nTpw4EY5TBgAAl6CwBKFevXrJ4XBYrwEDBkiSzpw5o2effVYrV67Ud77zHY0aNUrPPfecduzYoTfffFOSVFtbq3feeUfPP/+8MjIylJubq/Lycq1du1YtLS2SpMrKSqWlpWnFihUaOnSo5s2bp+9+97t69NFHrTmsXLlSs2fP1syZMzVs2DBVVlYqNjZW69atC8cpAwCAS1BYgtChQ4eUkpKib3zjG5o+fbqOHTsmSWpoaJDf71d2drZVO2TIEF1xxRVyu92SJLfbrfT0dCUlJVk1TqdTXq9X+/bts2ouHKO9pn2MlpYWNTQ0BNVEREQoOzvbqgEAAOgV6gEzMzO1fv16DR48WMePH9eSJUt08803a+/evfJ4PIqOjla/fv2C3pOUlCSPxyNJ8ng8QSGovb+97/NqvF6v/v73v+vUqVNqbW29aM2BAwc+c+4+n08+n8869nq9kiS/3y+/39+Fq/DF2sezRwRCOm64hfo6AADM1b6mhGuN7YyQB6Hc3Fzr/6+99lplZmZq4MCBevHFF9W7d+9Qf1xIVVRUaMmSJR3aa2trFRsbG5bPLB/dFpZxw6W6urq7pwAA6GFcLldIxzt37lyna0MehD6tX79++uY3v6l3331X48ePV0tLi06fPh10V6ipqUkOh0OS5HA4Ony7q/1bZRfWfPqbZk1NTYqLi1Pv3r0VGRmpyMjIi9a0j3ExxcXFKioqso69Xq9SU1OVk5OjuLi4rp/85/D7/XK5XFq8K0K+NltIxw6nvWXO7p4CAKCHaF8Lx48fr6ioqJCN2/5EpzPCHoTOnj2rw4cP684779SoUaMUFRWluro6TZ48WZJ08OBBHTt2TFlZWZKkrKws/cd//IdOnDihxMRESZ8kxbi4OA0bNsyq+fSdCZfLZY0RHR2tUaNGqa6uTvn5+ZKktrY21dXVad68eZ85V7vdLrvd3qE9KioqpP9AF/K12eRrvXSCULiuAwDAXKFeZ7syVsg3S99///363e9+p6NHj2rHjh267bbbFBkZqalTpyo+Pl6zZs1SUVGRfvvb36qhoUEzZ85UVlaWvvWtb0mScnJyNGzYMN15553605/+pG3btqmkpEQFBQVWSLn33nv15z//WQsXLtSBAwf0xBNP6MUXX1RhYaE1j6KiIj399NPasGGD9u/fr7lz56q5uVkzZ84M9SkDAIBLVMjvCL333nuaOnWqPvzwQ33961/XTTfdpDfffFNf//rXJUmPPvqoIiIiNHnyZPl8PjmdTj3xxBPW+yMjI7VlyxbNnTtXWVlZ6tOnj2bMmKGlS5daNWlpadq6dasKCwu1atUqXX755XrmmWfkdP7fY5s77rhDH3zwgUpLS+XxeJSRkaGampoOG6gBAIC5bIFA4NL62tJXyOv1Kj4+XmfOnAnLHqHq6mot3Bl5ST0aO7osr7unAADoIdrXwokTJ4Z8j1Bn12/+1hgAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWCEPQhUVFfqXf/kX9e3bV4mJicrPz9fBgweDam655RbZbLag17333htUc+zYMeXl5Sk2NlaJiYlasGCBzp8/H1Tz+uuva+TIkbLb7brqqqu0fv36DvNZu3atBg0apJiYGGVmZmrnzp2hPmUAAHCJCnkQ+t3vfqeCggK9+eabcrlc8vv9ysnJUXNzc1Dd7Nmzdfz4ceu1fPlyq6+1tVV5eXlqaWnRjh07tGHDBq1fv16lpaVWzZEjR5SXl6exY8eqsbFR8+fP1w9/+ENt27bNqtm8ebOKior04IMPavfu3RoxYoScTqdOnDgR6tMGAACXoF6hHrCmpiboeP369UpMTFRDQ4PGjBljtcfGxsrhcFx0jNraWr3zzjt69dVXlZSUpIyMDJWXl2vRokUqKytTdHS0KisrlZaWphUrVkiShg4dqj/84Q969NFH5XQ6JUkrV67U7NmzNXPmTElSZWWltm7dqnXr1umnP/1pqE8dAABcYkIehD7tzJkzkqT+/fsHtW/cuFHPP/+8HA6HJk2apMWLFys2NlaS5Ha7lZ6erqSkJKve6XRq7ty52rdvn6677jq53W5lZ2cHjel0OjV//nxJUktLixoaGlRcXGz1R0REKDs7W263+6Jz9fl88vl81rHX65Uk+f1++f3+f/AKXFz7ePaIQEjHDbdQXwcAgLna15RwrbGdEdYg1NbWpvnz5+vGG2/U8OHDrfZp06Zp4MCBSklJ0Z49e7Ro0SIdPHhQL7/8siTJ4/EEhSBJ1rHH4/ncGq/Xq7///e86deqUWltbL1pz4MCBi863oqJCS5Ys6dBeW1trhbRQKx/dFpZxw6W6urq7pwAA6GFcLldIxzt37lyna8MahAoKCrR371794Q9/CGqfM2eO9f/p6elKTk7WuHHjdPjwYV155ZXhnNLnKi4uVlFRkXXs9XqVmpqqnJwcxcXFhfSz/H6/XC6XFu+KkK/NFtKxw2lvmbO7pwAA6CHa18Lx48crKioqZOO2P9HpjLAFoXnz5mnLli3avn27Lr/88s+tzczMlCS9++67uvLKK+VwODp8u6upqUmSrH1FDofDaruwJi4uTr1791ZkZKQiIyMvWvNZe5PsdrvsdnuH9qioqJD+A13I12aTr/XSCULhug4AAHOFep3tylgh/9ZYIBDQvHnz9Ktf/Uqvvfaa0tLSvvA9jY2NkqTk5GRJUlZWlt5+++2gb3e5XC7FxcVp2LBhVk1dXV3QOC6XS1lZWZKk6OhojRo1Kqimra1NdXV1Vg0AADBbyO8IFRQUaNOmTfr1r3+tvn37Wnt64uPj1bt3bx0+fFibNm3SxIkTddlll2nPnj0qLCzUmDFjdO2110qScnJyNGzYMN15551avny5PB6PSkpKVFBQYN2xuffee7VmzRotXLhQ99xzj1577TW9+OKL2rp1qzWXoqIizZgxQ6NHj9b111+vxx57TM3Nzda3yAAAgNlCHoSefPJJSZ/8aOKFnnvuOd19992Kjo7Wq6++aoWS1NRUTZ48WSUlJVZtZGSktmzZorlz5yorK0t9+vTRjBkztHTpUqsmLS1NW7duVWFhoVatWqXLL79czzzzjPXVeUm644479MEHH6i0tFQej0cZGRmqqanpsIEaAACYyRYIBC6t729/hbxer+Lj43XmzJmwbJaurq7Wwp2Rl9QeoaPL8rp7CgCAHqJ9LZw4cWLIN0t3dv3mb40BAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwVq/ungAAAAiNQT/d2t1T6BJ7ZEDLr+/eOXBHCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABjLiCC0du1aDRo0SDExMcrMzNTOnTu7e0oAAOCfQI8PQps3b1ZRUZEefPBB7d69WyNGjJDT6dSJEye6e2oAAKCb9fggtHLlSs2ePVszZ87UsGHDVFlZqdjYWK1bt667pwYAALpZr+6eQDi1tLSooaFBxcXFVltERISys7Pldrs71Pt8Pvl8Puv4zJkzkqSTJ0/K7/eHdG5+v1/nzp1TL3+EWttsIR07nD788MPungIA4DP0Ot/c3VPokl5tAZ0716YPP/xQUVFRIRv3o48+kiQFAoEvnkPIPvWf0N/+9je1trYqKSkpqD0pKUkHDhzoUF9RUaElS5Z0aE9LSwvbHC81A1Z09wwAAD3JtDCO/dFHHyk+Pv5za3p0EOqq4uJiFRUVWcdtbW06efKkLrvsMtlsob1r4/V6lZqaqr/+9a+Ki4sL6dgAAFwKwrUWBgIBffTRR0pJSfnC2h4dhAYMGKDIyEg1NTUFtTc1NcnhcHSot9vtstvtQW39+vUL5xQVFxdHEAIAGC0ca+EX3Qlq16M3S0dHR2vUqFGqq6uz2tra2lRXV6esrKxunBkAAPhn0KPvCElSUVGRZsyYodGjR+v666/XY489pubmZs2cObO7pwYAALpZjw9Cd9xxhz744AOVlpbK4/EoIyNDNTU1HTZQf9XsdrsefPDBDo/iAAAwxT/DWmgLdOa7ZQAAAD1Qj94jBAAA8HkIQgAAwFgEIQAAYCyCEAAAMBZBKIzuvvtu2Ww2LVu2LKi9qqoq5L9UDQDAP4tAIKDs7Gw5nc4OfU888YT69eun9957rxtm1hFBKMxiYmL08MMP69SpU909FQAAvhI2m03PPfec6uvr9fOf/9xqP3LkiBYuXKjHH39cl19+eTfO8P8QhMIsOztbDodDFRUVn1nzy1/+Utdcc43sdrsGDRqkFSv4y6YAgEtbamqqVq1apfvvv19HjhxRIBDQrFmzlJOTo+uuu065ubn62te+pqSkJN15553629/+Zr33v//7v5Wenq7evXvrsssuU3Z2tpqbm8MyT4JQmEVGRupnP/uZHn/88YveBmxoaND3v/99TZkyRW+//bbKysq0ePFirV+//qufLAAAITRjxgyNGzdO99xzj9asWaO9e/fq5z//ub7zne/ouuuu065du1RTU6OmpiZ9//vflyQdP35cU6dO1T333KP9+/fr9ddf1+23365w/ewhP6gYRnfffbdOnz6tqqoqZWVladiwYXr22WdVVVWl2267TYFAQNOnT9cHH3yg2tpa630LFy7U1q1btW/fvm6cPQAAX96JEyd0zTXX6OTJk/rlL3+pvXv36ve//722bdtm1bz33ntKTU3VwYMHdfbsWY0aNUpHjx7VwIEDwz4/7gh9RR5++GFt2LBB+/fvD2rfv3+/brzxxqC2G2+8UYcOHVJra+tXOUUAAEIuMTFRP/rRjzR06FDl5+frT3/6k37729/qa1/7mvUaMmSIJOnw4cMaMWKExo0bp/T0dH3ve9/T008/HdZ9tgShr8iYMWPkdDpVXFzc3VMBAOAr1atXL/Xq9cmfNz179qwmTZqkxsbGoNehQ4c0ZswYRUZGyuVy6Te/+Y2GDRumxx9/XIMHD9aRI0fCM7ewjIqLWrZsmTIyMjR48GCrbejQoXrjjTeC6t544w1985vfVGRk5Fc9RQAAwmrkyJH65S9/qUGDBlnh6NNsNptuvPFG3XjjjSotLdXAgQP1q1/9SkVFRSGfD3eEvkLp6emaPn26Vq9ebbX95Cc/UV1dncrLy/W///u/2rBhg9asWaP777+/G2cKAEB4FBQU6OTJk5o6dareeustHT58WNu2bdPMmTPV2tqq+vp6/exnP9OuXbt07Ngxvfzyy/rggw80dOjQsMyHIPQVW7p0qdra2qzjkSNH6sUXX9QLL7yg4cOHq7S0VEuXLtXdd9/dfZMEACBMUlJS9MYbb6i1tVU5OTlKT0/X/Pnz1a9fP0VERCguLk7bt2/XxIkT9c1vflMlJSVasWKFcnNzwzIfvjUGAACMxR0hAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIz1/wGDmeeWo0o/nAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nonsmokers = cardio_data_2[cardio_data_2['Smoking']=='No']\n",
"nonsmokers['HeartDisease'].hist()\n",
"nonsmokers_heart_disease = nonsmokers[nonsmokers['HeartDisease']=='Yes']\n",
"nonsmokers_non_heart_disease = nonsmokers[nonsmokers['HeartDisease']=='No']\n",
"percent_of_non_smokers = nonsmokers_heart_disease.size/nonsmokers.size*100\n",
"print('The percent of non-smokers that get heart diseases is ',percent_of_non_smokers)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "49605c69",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"vscode": {
"interpreter": {
"hash": "3bd8617b38ef4fa5b1c1552c94826c5d43d8082c101bf117576360b493384e0f"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}