|
a |
|
b/MOA/AgeHypo.py |
|
|
1 |
import numpy as np |
|
|
2 |
import pandas as panda |
|
|
3 |
import matplotlib.pyplot as plt |
|
|
4 |
from scipy.stats import norm |
|
|
5 |
import statistics |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
|
|
|
9 |
db = panda.read_csv('cardio_train.csv') |
|
|
10 |
|
|
|
11 |
Age = db.loc[db.cardio == 1].age |
|
|
12 |
Age /= 356 |
|
|
13 |
Age = np.floor(Age) |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
ageMean = Age.mean() |
|
|
18 |
ageMedian = Age.median() |
|
|
19 |
ageMode = Age.mode() |
|
|
20 |
ageSD = Age.std() |
|
|
21 |
|
|
|
22 |
ageQ25,ageQ75 = np.percentile(Age,[25,75]) |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
plt.boxplot(Age) |
|
|
26 |
plt.title("BoxPlot Of The Age") |
|
|
27 |
plt.ylabel("Age") |
|
|
28 |
plt.show() |
|
|
29 |
|
|
|
30 |
# Data Is Clean Already |
|
|
31 |
|
|
|
32 |
unique,count = np.unique(Age, return_counts=True) |
|
|
33 |
|
|
|
34 |
r = statistics.correlation(unique,count) |
|
|
35 |
print("Correlation Between Age And Heart Disease = " + str(r)) |
|
|
36 |
|
|
|
37 |
x,y = np.polyfit(unique,count,1) |
|
|
38 |
plt.scatter(unique,count) |
|
|
39 |
plt.plot(unique,x*unique + y) |
|
|
40 |
|
|
|
41 |
plt.title("Best Linear Fit Of The Data") |
|
|
42 |
plt.ylabel("Frequency") |
|
|
43 |
plt.xlabel("Age") |
|
|
44 |
plt.show() |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
plt.hist(Age,10) |
|
|
48 |
plt.title("Histogram Of The Age Column Of Patient") |
|
|
49 |
plt.ylabel("Frequency") |
|
|
50 |
plt.xlabel("Age") |
|
|
51 |
plt.show() |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
AgeRightSide = Age.loc[Age >= ageMean] |
|
|
55 |
AgeLeftSide = Age.loc[Age <= ageMean] |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
rightSideMean = AgeRightSide.mean() |
|
|
59 |
leftSideMean = AgeLeftSide.mean() |
|
|
60 |
|
|
|
61 |
print("Data Mean = " + str(ageMean)) |
|
|
62 |
print("Right Side Mean = " + str(rightSideMean)) |
|
|
63 |
print("Left Side Mean = " + str(leftSideMean)) |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
rightSideCount = AgeRightSide.count() |
|
|
67 |
leftSideCount = AgeLeftSide.count() |
|
|
68 |
|
|
|
69 |
PhighAge = (rightSideCount) * 100 / (Age.count()) |
|
|
70 |
PLowAge = (leftSideCount) * 100 / (Age.count()) |
|
|
71 |
|
|
|
72 |
print("Propability Of High Age And Heart Disease = " + str(PhighAge)) |
|
|
73 |
print("Propability Of Low Age And Heart Disease = " + str(PLowAge)) |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
|