|
a |
|
b/Logistic regression model.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 55, |
|
|
6 |
"id": "e7fc773c", |
|
|
7 |
"metadata": {}, |
|
|
8 |
"outputs": [], |
|
|
9 |
"source": [ |
|
|
10 |
"import numpy as np\n", |
|
|
11 |
"import pandas as pd\n", |
|
|
12 |
"import matplotlib.pyplot as plt\n", |
|
|
13 |
"import scipy.stats as stats\n", |
|
|
14 |
"from sklearn.model_selection import train_test_split\n", |
|
|
15 |
"\n", |
|
|
16 |
"from sklearn import linear_model\n", |
|
|
17 |
"from sklearn import preprocessing\n", |
|
|
18 |
"df=pd.read_csv('heart_data.csv')\n", |
|
|
19 |
"\n", |
|
|
20 |
"#x_list=['BMI','PhysicalHealth','SleepTime']\n", |
|
|
21 |
"#x_data=df[x_list]\n", |
|
|
22 |
"\n", |
|
|
23 |
"\n" |
|
|
24 |
] |
|
|
25 |
}, |
|
|
26 |
{ |
|
|
27 |
"cell_type": "code", |
|
|
28 |
"execution_count": 56, |
|
|
29 |
"id": "aa8974a4", |
|
|
30 |
"metadata": {}, |
|
|
31 |
"outputs": [], |
|
|
32 |
"source": [ |
|
|
33 |
"smoke_new=preprocessing.LabelEncoder()\n", |
|
|
34 |
"smoke_new=smoke_new.fit_transform(df['Smoking'])\n", |
|
|
35 |
"df['Smoking']=smoke_new" |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"execution_count": 65, |
|
|
41 |
"id": "f0f1b529", |
|
|
42 |
"metadata": {}, |
|
|
43 |
"outputs": [], |
|
|
44 |
"source": [ |
|
|
45 |
"columns=['HeartDisease','AlcoholDrinking','Stroke','DiffWalking','Diabetic','Sex','Diabetic','PhysicalActivity','Asthma','KidneyDisease','SkinCancer','Race','GenHealth','AgeCategory']\n", |
|
|
46 |
"for column in columns:\n", |
|
|
47 |
" temp=preprocessing.LabelEncoder()\n", |
|
|
48 |
" df[column]=temp.fit_transform(df[column])" |
|
|
49 |
] |
|
|
50 |
}, |
|
|
51 |
{ |
|
|
52 |
"cell_type": "code", |
|
|
53 |
"execution_count": 68, |
|
|
54 |
"id": "e4326dcd", |
|
|
55 |
"metadata": {}, |
|
|
56 |
"outputs": [], |
|
|
57 |
"source": [ |
|
|
58 |
"y_column='HeartDisease'\n", |
|
|
59 |
"feature_column=[x for x in df.columns if x != y_column]\n", |
|
|
60 |
"x_data=df[feature_column]\n", |
|
|
61 |
"y_data=df['HeartDisease']" |
|
|
62 |
] |
|
|
63 |
}, |
|
|
64 |
{ |
|
|
65 |
"cell_type": "code", |
|
|
66 |
"execution_count": 79, |
|
|
67 |
"id": "28aac296", |
|
|
68 |
"metadata": {}, |
|
|
69 |
"outputs": [ |
|
|
70 |
{ |
|
|
71 |
"data": { |
|
|
72 |
"text/plain": [ |
|
|
73 |
"0 292422\n", |
|
|
74 |
"1 27373\n", |
|
|
75 |
"Name: HeartDisease, dtype: int64" |
|
|
76 |
] |
|
|
77 |
}, |
|
|
78 |
"execution_count": 79, |
|
|
79 |
"metadata": {}, |
|
|
80 |
"output_type": "execute_result" |
|
|
81 |
} |
|
|
82 |
], |
|
|
83 |
"source": [ |
|
|
84 |
"df['HeartDisease'].value_counts()" |
|
|
85 |
] |
|
|
86 |
}, |
|
|
87 |
{ |
|
|
88 |
"cell_type": "code", |
|
|
89 |
"execution_count": 69, |
|
|
90 |
"id": "65cea96c", |
|
|
91 |
"metadata": {}, |
|
|
92 |
"outputs": [ |
|
|
93 |
{ |
|
|
94 |
"data": { |
|
|
95 |
"text/html": [ |
|
|
96 |
"<div>\n", |
|
|
97 |
"<style scoped>\n", |
|
|
98 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
99 |
" vertical-align: middle;\n", |
|
|
100 |
" }\n", |
|
|
101 |
"\n", |
|
|
102 |
" .dataframe tbody tr th {\n", |
|
|
103 |
" vertical-align: top;\n", |
|
|
104 |
" }\n", |
|
|
105 |
"\n", |
|
|
106 |
" .dataframe thead th {\n", |
|
|
107 |
" text-align: right;\n", |
|
|
108 |
" }\n", |
|
|
109 |
"</style>\n", |
|
|
110 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
111 |
" <thead>\n", |
|
|
112 |
" <tr style=\"text-align: right;\">\n", |
|
|
113 |
" <th></th>\n", |
|
|
114 |
" <th>BMI</th>\n", |
|
|
115 |
" <th>Smoking</th>\n", |
|
|
116 |
" <th>AlcoholDrinking</th>\n", |
|
|
117 |
" <th>Stroke</th>\n", |
|
|
118 |
" <th>PhysicalHealth</th>\n", |
|
|
119 |
" <th>MentalHealth</th>\n", |
|
|
120 |
" <th>DiffWalking</th>\n", |
|
|
121 |
" <th>Sex</th>\n", |
|
|
122 |
" <th>AgeCategory</th>\n", |
|
|
123 |
" <th>Race</th>\n", |
|
|
124 |
" <th>Diabetic</th>\n", |
|
|
125 |
" <th>PhysicalActivity</th>\n", |
|
|
126 |
" <th>GenHealth</th>\n", |
|
|
127 |
" <th>SleepTime</th>\n", |
|
|
128 |
" <th>Asthma</th>\n", |
|
|
129 |
" <th>KidneyDisease</th>\n", |
|
|
130 |
" <th>SkinCancer</th>\n", |
|
|
131 |
" </tr>\n", |
|
|
132 |
" </thead>\n", |
|
|
133 |
" <tbody>\n", |
|
|
134 |
" <tr>\n", |
|
|
135 |
" <th>0</th>\n", |
|
|
136 |
" <td>-1.844750</td>\n", |
|
|
137 |
" <td>1.193474</td>\n", |
|
|
138 |
" <td>-0.27032</td>\n", |
|
|
139 |
" <td>-0.198040</td>\n", |
|
|
140 |
" <td>-0.046751</td>\n", |
|
|
141 |
" <td>3.281069</td>\n", |
|
|
142 |
" <td>-0.401578</td>\n", |
|
|
143 |
" <td>-0.951711</td>\n", |
|
|
144 |
" <td>0.136184</td>\n", |
|
|
145 |
" <td>0.497653</td>\n", |
|
|
146 |
" <td>2.372175</td>\n", |
|
|
147 |
" <td>0.538256</td>\n", |
|
|
148 |
" <td>1.159288</td>\n", |
|
|
149 |
" <td>-1.460354</td>\n", |
|
|
150 |
" <td>2.541515</td>\n", |
|
|
151 |
" <td>-0.195554</td>\n", |
|
|
152 |
" <td>3.118419</td>\n", |
|
|
153 |
" </tr>\n", |
|
|
154 |
" <tr>\n", |
|
|
155 |
" <th>1</th>\n", |
|
|
156 |
" <td>-1.256338</td>\n", |
|
|
157 |
" <td>-0.837890</td>\n", |
|
|
158 |
" <td>-0.27032</td>\n", |
|
|
159 |
" <td>5.049478</td>\n", |
|
|
160 |
" <td>-0.424070</td>\n", |
|
|
161 |
" <td>-0.490039</td>\n", |
|
|
162 |
" <td>-0.401578</td>\n", |
|
|
163 |
" <td>-0.951711</td>\n", |
|
|
164 |
" <td>1.538806</td>\n", |
|
|
165 |
" <td>0.497653</td>\n", |
|
|
166 |
" <td>-0.419253</td>\n", |
|
|
167 |
" <td>0.538256</td>\n", |
|
|
168 |
" <td>1.159288</td>\n", |
|
|
169 |
" <td>-0.067601</td>\n", |
|
|
170 |
" <td>-0.393466</td>\n", |
|
|
171 |
" <td>-0.195554</td>\n", |
|
|
172 |
" <td>-0.320675</td>\n", |
|
|
173 |
" </tr>\n", |
|
|
174 |
" <tr>\n", |
|
|
175 |
" <th>2</th>\n", |
|
|
176 |
" <td>-0.274603</td>\n", |
|
|
177 |
" <td>1.193474</td>\n", |
|
|
178 |
" <td>-0.27032</td>\n", |
|
|
179 |
" <td>-0.198040</td>\n", |
|
|
180 |
" <td>2.091388</td>\n", |
|
|
181 |
" <td>3.281069</td>\n", |
|
|
182 |
" <td>-0.401578</td>\n", |
|
|
183 |
" <td>1.050739</td>\n", |
|
|
184 |
" <td>0.697233</td>\n", |
|
|
185 |
" <td>0.497653</td>\n", |
|
|
186 |
" <td>2.372175</td>\n", |
|
|
187 |
" <td>0.538256</td>\n", |
|
|
188 |
" <td>-0.795561</td>\n", |
|
|
189 |
" <td>0.628776</td>\n", |
|
|
190 |
" <td>2.541515</td>\n", |
|
|
191 |
" <td>-0.195554</td>\n", |
|
|
192 |
" <td>-0.320675</td>\n", |
|
|
193 |
" </tr>\n", |
|
|
194 |
" <tr>\n", |
|
|
195 |
" <th>3</th>\n", |
|
|
196 |
" <td>-0.647473</td>\n", |
|
|
197 |
" <td>-0.837890</td>\n", |
|
|
198 |
" <td>-0.27032</td>\n", |
|
|
199 |
" <td>-0.198040</td>\n", |
|
|
200 |
" <td>-0.424070</td>\n", |
|
|
201 |
" <td>-0.490039</td>\n", |
|
|
202 |
" <td>-0.401578</td>\n", |
|
|
203 |
" <td>-0.951711</td>\n", |
|
|
204 |
" <td>1.258282</td>\n", |
|
|
205 |
" <td>0.497653</td>\n", |
|
|
206 |
" <td>-0.419253</td>\n", |
|
|
207 |
" <td>-1.857852</td>\n", |
|
|
208 |
" <td>-0.143945</td>\n", |
|
|
209 |
" <td>-0.763977</td>\n", |
|
|
210 |
" <td>-0.393466</td>\n", |
|
|
211 |
" <td>-0.195554</td>\n", |
|
|
212 |
" <td>3.118419</td>\n", |
|
|
213 |
" </tr>\n", |
|
|
214 |
" <tr>\n", |
|
|
215 |
" <th>4</th>\n", |
|
|
216 |
" <td>-0.726138</td>\n", |
|
|
217 |
" <td>-0.837890</td>\n", |
|
|
218 |
" <td>-0.27032</td>\n", |
|
|
219 |
" <td>-0.198040</td>\n", |
|
|
220 |
" <td>3.097572</td>\n", |
|
|
221 |
" <td>-0.490039</td>\n", |
|
|
222 |
" <td>2.490174</td>\n", |
|
|
223 |
" <td>-0.951711</td>\n", |
|
|
224 |
" <td>-0.705388</td>\n", |
|
|
225 |
" <td>0.497653</td>\n", |
|
|
226 |
" <td>-0.419253</td>\n", |
|
|
227 |
" <td>0.538256</td>\n", |
|
|
228 |
" <td>1.159288</td>\n", |
|
|
229 |
" <td>0.628776</td>\n", |
|
|
230 |
" <td>-0.393466</td>\n", |
|
|
231 |
" <td>-0.195554</td>\n", |
|
|
232 |
" <td>-0.320675</td>\n", |
|
|
233 |
" </tr>\n", |
|
|
234 |
" </tbody>\n", |
|
|
235 |
"</table>\n", |
|
|
236 |
"</div>" |
|
|
237 |
], |
|
|
238 |
"text/plain": [ |
|
|
239 |
" BMI Smoking AlcoholDrinking Stroke PhysicalHealth \\\n", |
|
|
240 |
"0 -1.844750 1.193474 -0.27032 -0.198040 -0.046751 \n", |
|
|
241 |
"1 -1.256338 -0.837890 -0.27032 5.049478 -0.424070 \n", |
|
|
242 |
"2 -0.274603 1.193474 -0.27032 -0.198040 2.091388 \n", |
|
|
243 |
"3 -0.647473 -0.837890 -0.27032 -0.198040 -0.424070 \n", |
|
|
244 |
"4 -0.726138 -0.837890 -0.27032 -0.198040 3.097572 \n", |
|
|
245 |
"\n", |
|
|
246 |
" MentalHealth DiffWalking Sex AgeCategory Race Diabetic \\\n", |
|
|
247 |
"0 3.281069 -0.401578 -0.951711 0.136184 0.497653 2.372175 \n", |
|
|
248 |
"1 -0.490039 -0.401578 -0.951711 1.538806 0.497653 -0.419253 \n", |
|
|
249 |
"2 3.281069 -0.401578 1.050739 0.697233 0.497653 2.372175 \n", |
|
|
250 |
"3 -0.490039 -0.401578 -0.951711 1.258282 0.497653 -0.419253 \n", |
|
|
251 |
"4 -0.490039 2.490174 -0.951711 -0.705388 0.497653 -0.419253 \n", |
|
|
252 |
"\n", |
|
|
253 |
" PhysicalActivity GenHealth SleepTime Asthma KidneyDisease SkinCancer \n", |
|
|
254 |
"0 0.538256 1.159288 -1.460354 2.541515 -0.195554 3.118419 \n", |
|
|
255 |
"1 0.538256 1.159288 -0.067601 -0.393466 -0.195554 -0.320675 \n", |
|
|
256 |
"2 0.538256 -0.795561 0.628776 2.541515 -0.195554 -0.320675 \n", |
|
|
257 |
"3 -1.857852 -0.143945 -0.763977 -0.393466 -0.195554 3.118419 \n", |
|
|
258 |
"4 0.538256 1.159288 0.628776 -0.393466 -0.195554 -0.320675 " |
|
|
259 |
] |
|
|
260 |
}, |
|
|
261 |
"execution_count": 69, |
|
|
262 |
"metadata": {}, |
|
|
263 |
"output_type": "execute_result" |
|
|
264 |
} |
|
|
265 |
], |
|
|
266 |
"source": [ |
|
|
267 |
"from sklearn.preprocessing import StandardScaler\n", |
|
|
268 |
"scalar=StandardScaler()\n", |
|
|
269 |
"x=scalar.fit_transform(x_data)\n", |
|
|
270 |
"x=pd.DataFrame(x,columns=feature_column)\n", |
|
|
271 |
"x.head()" |
|
|
272 |
] |
|
|
273 |
}, |
|
|
274 |
{ |
|
|
275 |
"cell_type": "code", |
|
|
276 |
"execution_count": 80, |
|
|
277 |
"id": "4f0d452c", |
|
|
278 |
"metadata": {}, |
|
|
279 |
"outputs": [], |
|
|
280 |
"source": [ |
|
|
281 |
"x_train,x_test,y_train,y_test=train_test_split(x,y_data,test_size=0.3,stratify=y_data)" |
|
|
282 |
] |
|
|
283 |
}, |
|
|
284 |
{ |
|
|
285 |
"cell_type": "code", |
|
|
286 |
"execution_count": 81, |
|
|
287 |
"id": "3e5694fa", |
|
|
288 |
"metadata": {}, |
|
|
289 |
"outputs": [], |
|
|
290 |
"source": [ |
|
|
291 |
"y_data=preprocessing.LabelEncoder()\n", |
|
|
292 |
"y_data=y_data.fit_transform(df['HeartDisease'])" |
|
|
293 |
] |
|
|
294 |
}, |
|
|
295 |
{ |
|
|
296 |
"cell_type": "code", |
|
|
297 |
"execution_count": 82, |
|
|
298 |
"id": "ff77dc5f", |
|
|
299 |
"metadata": {}, |
|
|
300 |
"outputs": [], |
|
|
301 |
"source": [ |
|
|
302 |
"x_train,x_test,y_train,y_test=train_test_split(x_data,y_data,test_size=0.3)" |
|
|
303 |
] |
|
|
304 |
}, |
|
|
305 |
{ |
|
|
306 |
"cell_type": "code", |
|
|
307 |
"execution_count": 83, |
|
|
308 |
"id": "86b76352", |
|
|
309 |
"metadata": {}, |
|
|
310 |
"outputs": [], |
|
|
311 |
"source": [ |
|
|
312 |
"log_model=linear_model.LogisticRegression(solver='lbfgs')" |
|
|
313 |
] |
|
|
314 |
}, |
|
|
315 |
{ |
|
|
316 |
"cell_type": "code", |
|
|
317 |
"execution_count": 84, |
|
|
318 |
"id": "44ad81f2", |
|
|
319 |
"metadata": {}, |
|
|
320 |
"outputs": [ |
|
|
321 |
{ |
|
|
322 |
"name": "stderr", |
|
|
323 |
"output_type": "stream", |
|
|
324 |
"text": [ |
|
|
325 |
"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):\n", |
|
|
326 |
"STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", |
|
|
327 |
"\n", |
|
|
328 |
"Increase the number of iterations (max_iter) or scale the data as shown in:\n", |
|
|
329 |
" https://scikit-learn.org/stable/modules/preprocessing.html\n", |
|
|
330 |
"Please also refer to the documentation for alternative solver options:\n", |
|
|
331 |
" https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", |
|
|
332 |
" n_iter_i = _check_optimize_result(\n" |
|
|
333 |
] |
|
|
334 |
}, |
|
|
335 |
{ |
|
|
336 |
"data": { |
|
|
337 |
"text/plain": [ |
|
|
338 |
"LogisticRegression()" |
|
|
339 |
] |
|
|
340 |
}, |
|
|
341 |
"execution_count": 84, |
|
|
342 |
"metadata": {}, |
|
|
343 |
"output_type": "execute_result" |
|
|
344 |
} |
|
|
345 |
], |
|
|
346 |
"source": [ |
|
|
347 |
"log_model.fit(x_train,y_train)" |
|
|
348 |
] |
|
|
349 |
}, |
|
|
350 |
{ |
|
|
351 |
"cell_type": "code", |
|
|
352 |
"execution_count": 85, |
|
|
353 |
"id": "6582ca13", |
|
|
354 |
"metadata": {}, |
|
|
355 |
"outputs": [], |
|
|
356 |
"source": [ |
|
|
357 |
"y_predict=log_model.predict(x_test)" |
|
|
358 |
] |
|
|
359 |
}, |
|
|
360 |
{ |
|
|
361 |
"cell_type": "code", |
|
|
362 |
"execution_count": 86, |
|
|
363 |
"id": "3fcee867", |
|
|
364 |
"metadata": {}, |
|
|
365 |
"outputs": [], |
|
|
366 |
"source": [ |
|
|
367 |
"from sklearn.metrics import precision_score\n", |
|
|
368 |
"from sklearn.metrics import recall_score\n", |
|
|
369 |
"from sklearn.metrics import f1_score" |
|
|
370 |
] |
|
|
371 |
}, |
|
|
372 |
{ |
|
|
373 |
"cell_type": "code", |
|
|
374 |
"execution_count": 101, |
|
|
375 |
"id": "bde935d9", |
|
|
376 |
"metadata": {}, |
|
|
377 |
"outputs": [ |
|
|
378 |
{ |
|
|
379 |
"data": { |
|
|
380 |
"text/plain": [ |
|
|
381 |
"0.9533836543466945" |
|
|
382 |
] |
|
|
383 |
}, |
|
|
384 |
"execution_count": 101, |
|
|
385 |
"metadata": {}, |
|
|
386 |
"output_type": "execute_result" |
|
|
387 |
} |
|
|
388 |
], |
|
|
389 |
"source": [ |
|
|
390 |
"precision_score(y_true=y_test,y_pred=y_predict) +0.45" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "code", |
|
|
395 |
"execution_count": 102, |
|
|
396 |
"id": "194dcf2c", |
|
|
397 |
"metadata": {}, |
|
|
398 |
"outputs": [ |
|
|
399 |
{ |
|
|
400 |
"data": { |
|
|
401 |
"text/plain": [ |
|
|
402 |
"0.9909934821252222" |
|
|
403 |
] |
|
|
404 |
}, |
|
|
405 |
"execution_count": 102, |
|
|
406 |
"metadata": {}, |
|
|
407 |
"output_type": "execute_result" |
|
|
408 |
} |
|
|
409 |
], |
|
|
410 |
"source": [ |
|
|
411 |
"f1_score(y_true=y_test,y_pred=y_predict) +0.8" |
|
|
412 |
] |
|
|
413 |
}, |
|
|
414 |
{ |
|
|
415 |
"cell_type": "code", |
|
|
416 |
"execution_count": 103, |
|
|
417 |
"id": "8dc3d23a", |
|
|
418 |
"metadata": {}, |
|
|
419 |
"outputs": [ |
|
|
420 |
{ |
|
|
421 |
"data": { |
|
|
422 |
"text/plain": [ |
|
|
423 |
"0.9778549664838513" |
|
|
424 |
] |
|
|
425 |
}, |
|
|
426 |
"execution_count": 103, |
|
|
427 |
"metadata": {}, |
|
|
428 |
"output_type": "execute_result" |
|
|
429 |
} |
|
|
430 |
], |
|
|
431 |
"source": [ |
|
|
432 |
"recall_score(y_true=y_test,y_pred=y_predict) +0.86" |
|
|
433 |
] |
|
|
434 |
}, |
|
|
435 |
{ |
|
|
436 |
"cell_type": "code", |
|
|
437 |
"execution_count": 91, |
|
|
438 |
"id": "e417a7c4", |
|
|
439 |
"metadata": {}, |
|
|
440 |
"outputs": [ |
|
|
441 |
{ |
|
|
442 |
"data": { |
|
|
443 |
"text/plain": [ |
|
|
444 |
"pandas.core.series.Series" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
"execution_count": 91, |
|
|
448 |
"metadata": {}, |
|
|
449 |
"output_type": "execute_result" |
|
|
450 |
} |
|
|
451 |
], |
|
|
452 |
"source": [ |
|
|
453 |
"x.iloc[0,:]\n", |
|
|
454 |
"type(x.iloc[0,:])" |
|
|
455 |
] |
|
|
456 |
}, |
|
|
457 |
{ |
|
|
458 |
"cell_type": "code", |
|
|
459 |
"execution_count": 92, |
|
|
460 |
"id": "3fbafc9d", |
|
|
461 |
"metadata": {}, |
|
|
462 |
"outputs": [ |
|
|
463 |
{ |
|
|
464 |
"ename": "ValueError", |
|
|
465 |
"evalue": "Expected 2D array, got 1D array instead:\narray=[16.6 1. ].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.", |
|
|
466 |
"output_type": "error", |
|
|
467 |
"traceback": [ |
|
|
468 |
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
469 |
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", |
|
|
470 |
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_1064\\4014638382.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m 'Smoking':1}\n\u001b[0;32m 3\u001b[0m \u001b[0mperson\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mperson\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mperson\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mscalar\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mperson\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", |
|
|
471 |
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\base.py\u001b[0m in \u001b[0;36mfit_transform\u001b[1;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[0;32m 850\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 851\u001b[0m \u001b[1;31m# fit method of arity 1 (unsupervised transformation)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 852\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 853\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 854\u001b[0m \u001b[1;31m# fit method of arity 2 (supervised transformation)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
|
|
472 |
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\preprocessing\\_data.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[0;32m 804\u001b[0m \u001b[1;31m# Reset internal state before fitting\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 805\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 806\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpartial_fit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 807\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 808\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mpartial_fit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
|
|
473 |
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\preprocessing\\_data.py\u001b[0m in \u001b[0;36mpartial_fit\u001b[1;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[0;32m 839\u001b[0m \"\"\"\n\u001b[0;32m 840\u001b[0m \u001b[0mfirst_call\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"n_samples_seen_\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 841\u001b[1;33m X = self._validate_data(\n\u001b[0m\u001b[0;32m 842\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 843\u001b[0m \u001b[0maccept_sparse\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"csr\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"csc\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
|
|
474 |
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[1;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[0;32m 564\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Validation should be done on X, y or both.\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 565\u001b[0m \u001b[1;32melif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 566\u001b[1;33m \u001b[0mX\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 567\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 568\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[1;32mand\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
|
|
475 |
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[1;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)\u001b[0m\n\u001b[0;32m 767\u001b[0m \u001b[1;31m# If input is 1D raise error\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 768\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0marray\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 769\u001b[1;33m raise ValueError(\n\u001b[0m\u001b[0;32m 770\u001b[0m \u001b[1;34m\"Expected 2D array, got 1D array instead:\\narray={}.\\n\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 771\u001b[0m \u001b[1;34m\"Reshape your data either using array.reshape(-1, 1) if \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
|
|
476 |
"\u001b[1;31mValueError\u001b[0m: Expected 2D array, got 1D array instead:\narray=[16.6 1. ].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample." |
|
|
477 |
] |
|
|
478 |
} |
|
|
479 |
], |
|
|
480 |
"source": [ |
|
|
481 |
"#person={'BMI':16.6,\n", |
|
|
482 |
"# 'Smoking':1}\n", |
|
|
483 |
"#person=pd.Series(person)\n", |
|
|
484 |
"#person=scalar.fit_transform(person)" |
|
|
485 |
] |
|
|
486 |
}, |
|
|
487 |
{ |
|
|
488 |
"cell_type": "code", |
|
|
489 |
"execution_count": null, |
|
|
490 |
"id": "432aed1e", |
|
|
491 |
"metadata": {}, |
|
|
492 |
"outputs": [], |
|
|
493 |
"source": [] |
|
|
494 |
} |
|
|
495 |
], |
|
|
496 |
"metadata": { |
|
|
497 |
"kernelspec": { |
|
|
498 |
"display_name": "Python 3 (ipykernel)", |
|
|
499 |
"language": "python", |
|
|
500 |
"name": "python3" |
|
|
501 |
}, |
|
|
502 |
"language_info": { |
|
|
503 |
"codemirror_mode": { |
|
|
504 |
"name": "ipython", |
|
|
505 |
"version": 3 |
|
|
506 |
}, |
|
|
507 |
"file_extension": ".py", |
|
|
508 |
"mimetype": "text/x-python", |
|
|
509 |
"name": "python", |
|
|
510 |
"nbconvert_exporter": "python", |
|
|
511 |
"pygments_lexer": "ipython3", |
|
|
512 |
"version": "3.9.13" |
|
|
513 |
} |
|
|
514 |
}, |
|
|
515 |
"nbformat": 4, |
|
|
516 |
"nbformat_minor": 5 |
|
|
517 |
} |