|
a |
|
b/HIMA/activity.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 10, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import pandas as pd\n", |
|
|
10 |
"import numpy as np\n", |
|
|
11 |
"import matplotlib.pyplot as plt\n", |
|
|
12 |
"heart_data = pd.read_csv('../heart_data.csv')" |
|
|
13 |
] |
|
|
14 |
}, |
|
|
15 |
{ |
|
|
16 |
"cell_type": "code", |
|
|
17 |
"execution_count": 11, |
|
|
18 |
"metadata": {}, |
|
|
19 |
"outputs": [], |
|
|
20 |
"source": [ |
|
|
21 |
"heart_data['HeartDisease'] = heart_data['HeartDisease']\n", |
|
|
22 |
"allactive = heart_data['PhysicalActivity']\n", |
|
|
23 |
"Active = heart_data[heart_data['PhysicalActivity']=='Yes']\n", |
|
|
24 |
"notActive = heart_data[heart_data['PhysicalActivity']=='No']\n" |
|
|
25 |
] |
|
|
26 |
}, |
|
|
27 |
{ |
|
|
28 |
"cell_type": "code", |
|
|
29 |
"execution_count": 12, |
|
|
30 |
"metadata": {}, |
|
|
31 |
"outputs": [ |
|
|
32 |
{ |
|
|
33 |
"data": { |
|
|
34 |
"text/plain": [ |
|
|
35 |
"count 319795\n", |
|
|
36 |
"unique 2\n", |
|
|
37 |
"top Yes\n", |
|
|
38 |
"freq 247957\n", |
|
|
39 |
"Name: PhysicalActivity, dtype: object" |
|
|
40 |
] |
|
|
41 |
}, |
|
|
42 |
"execution_count": 12, |
|
|
43 |
"metadata": {}, |
|
|
44 |
"output_type": "execute_result" |
|
|
45 |
} |
|
|
46 |
], |
|
|
47 |
"source": [ |
|
|
48 |
"allactive.describe()" |
|
|
49 |
] |
|
|
50 |
}, |
|
|
51 |
{ |
|
|
52 |
"cell_type": "code", |
|
|
53 |
"execution_count": 13, |
|
|
54 |
"metadata": {}, |
|
|
55 |
"outputs": [ |
|
|
56 |
{ |
|
|
57 |
"data": { |
|
|
58 |
"text/html": [ |
|
|
59 |
"<div>\n", |
|
|
60 |
"<style scoped>\n", |
|
|
61 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
62 |
" vertical-align: middle;\n", |
|
|
63 |
" }\n", |
|
|
64 |
"\n", |
|
|
65 |
" .dataframe tbody tr th {\n", |
|
|
66 |
" vertical-align: top;\n", |
|
|
67 |
" }\n", |
|
|
68 |
"\n", |
|
|
69 |
" .dataframe thead th {\n", |
|
|
70 |
" text-align: right;\n", |
|
|
71 |
" }\n", |
|
|
72 |
"</style>\n", |
|
|
73 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
74 |
" <thead>\n", |
|
|
75 |
" <tr style=\"text-align: right;\">\n", |
|
|
76 |
" <th></th>\n", |
|
|
77 |
" <th>BMI</th>\n", |
|
|
78 |
" <th>PhysicalHealth</th>\n", |
|
|
79 |
" <th>MentalHealth</th>\n", |
|
|
80 |
" <th>SleepTime</th>\n", |
|
|
81 |
" </tr>\n", |
|
|
82 |
" </thead>\n", |
|
|
83 |
" <tbody>\n", |
|
|
84 |
" <tr>\n", |
|
|
85 |
" <th>count</th>\n", |
|
|
86 |
" <td>247957.00000</td>\n", |
|
|
87 |
" <td>247957.000000</td>\n", |
|
|
88 |
" <td>247957.000000</td>\n", |
|
|
89 |
" <td>247957.000000</td>\n", |
|
|
90 |
" </tr>\n", |
|
|
91 |
" <tr>\n", |
|
|
92 |
" <th>mean</th>\n", |
|
|
93 |
" <td>27.81011</td>\n", |
|
|
94 |
" <td>2.377634</td>\n", |
|
|
95 |
" <td>3.488121</td>\n", |
|
|
96 |
" <td>7.100050</td>\n", |
|
|
97 |
" </tr>\n", |
|
|
98 |
" <tr>\n", |
|
|
99 |
" <th>std</th>\n", |
|
|
100 |
" <td>5.90583</td>\n", |
|
|
101 |
" <td>6.479349</td>\n", |
|
|
102 |
" <td>7.353138</td>\n", |
|
|
103 |
" <td>1.320686</td>\n", |
|
|
104 |
" </tr>\n", |
|
|
105 |
" <tr>\n", |
|
|
106 |
" <th>min</th>\n", |
|
|
107 |
" <td>12.02000</td>\n", |
|
|
108 |
" <td>0.000000</td>\n", |
|
|
109 |
" <td>0.000000</td>\n", |
|
|
110 |
" <td>1.000000</td>\n", |
|
|
111 |
" </tr>\n", |
|
|
112 |
" <tr>\n", |
|
|
113 |
" <th>25%</th>\n", |
|
|
114 |
" <td>23.74000</td>\n", |
|
|
115 |
" <td>0.000000</td>\n", |
|
|
116 |
" <td>0.000000</td>\n", |
|
|
117 |
" <td>6.000000</td>\n", |
|
|
118 |
" </tr>\n", |
|
|
119 |
" <tr>\n", |
|
|
120 |
" <th>50%</th>\n", |
|
|
121 |
" <td>26.79000</td>\n", |
|
|
122 |
" <td>0.000000</td>\n", |
|
|
123 |
" <td>0.000000</td>\n", |
|
|
124 |
" <td>7.000000</td>\n", |
|
|
125 |
" </tr>\n", |
|
|
126 |
" <tr>\n", |
|
|
127 |
" <th>75%</th>\n", |
|
|
128 |
" <td>30.79000</td>\n", |
|
|
129 |
" <td>1.000000</td>\n", |
|
|
130 |
" <td>3.000000</td>\n", |
|
|
131 |
" <td>8.000000</td>\n", |
|
|
132 |
" </tr>\n", |
|
|
133 |
" <tr>\n", |
|
|
134 |
" <th>max</th>\n", |
|
|
135 |
" <td>94.85000</td>\n", |
|
|
136 |
" <td>30.000000</td>\n", |
|
|
137 |
" <td>30.000000</td>\n", |
|
|
138 |
" <td>24.000000</td>\n", |
|
|
139 |
" </tr>\n", |
|
|
140 |
" </tbody>\n", |
|
|
141 |
"</table>\n", |
|
|
142 |
"</div>" |
|
|
143 |
], |
|
|
144 |
"text/plain": [ |
|
|
145 |
" BMI PhysicalHealth MentalHealth SleepTime\n", |
|
|
146 |
"count 247957.00000 247957.000000 247957.000000 247957.000000\n", |
|
|
147 |
"mean 27.81011 2.377634 3.488121 7.100050\n", |
|
|
148 |
"std 5.90583 6.479349 7.353138 1.320686\n", |
|
|
149 |
"min 12.02000 0.000000 0.000000 1.000000\n", |
|
|
150 |
"25% 23.74000 0.000000 0.000000 6.000000\n", |
|
|
151 |
"50% 26.79000 0.000000 0.000000 7.000000\n", |
|
|
152 |
"75% 30.79000 1.000000 3.000000 8.000000\n", |
|
|
153 |
"max 94.85000 30.000000 30.000000 24.000000" |
|
|
154 |
] |
|
|
155 |
}, |
|
|
156 |
"execution_count": 13, |
|
|
157 |
"metadata": {}, |
|
|
158 |
"output_type": "execute_result" |
|
|
159 |
} |
|
|
160 |
], |
|
|
161 |
"source": [ |
|
|
162 |
"Active.describe()" |
|
|
163 |
] |
|
|
164 |
}, |
|
|
165 |
{ |
|
|
166 |
"cell_type": "code", |
|
|
167 |
"execution_count": 14, |
|
|
168 |
"metadata": {}, |
|
|
169 |
"outputs": [ |
|
|
170 |
{ |
|
|
171 |
"name": "stdout", |
|
|
172 |
"output_type": "stream", |
|
|
173 |
"text": [ |
|
|
174 |
"Percentage of active people that don't have heart disease 92.9467609303226\n", |
|
|
175 |
"Percentage of active people that have heart disease 7.053239069677404\n" |
|
|
176 |
] |
|
|
177 |
} |
|
|
178 |
], |
|
|
179 |
"source": [ |
|
|
180 |
"print(\"Percentage of active people that don't have heart disease\", 100 * Active[Active[\"HeartDisease\"] == \"No\"].size / Active.size )\n", |
|
|
181 |
"print(\"Percentage of active people that have heart disease\", 100 * Active[Active[\"HeartDisease\"] == \"Yes\"].size / Active.size )" |
|
|
182 |
] |
|
|
183 |
}, |
|
|
184 |
{ |
|
|
185 |
"cell_type": "code", |
|
|
186 |
"execution_count": 15, |
|
|
187 |
"metadata": {}, |
|
|
188 |
"outputs": [ |
|
|
189 |
{ |
|
|
190 |
"data": { |
|
|
191 |
"text/html": [ |
|
|
192 |
"<div>\n", |
|
|
193 |
"<style scoped>\n", |
|
|
194 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
195 |
" vertical-align: middle;\n", |
|
|
196 |
" }\n", |
|
|
197 |
"\n", |
|
|
198 |
" .dataframe tbody tr th {\n", |
|
|
199 |
" vertical-align: top;\n", |
|
|
200 |
" }\n", |
|
|
201 |
"\n", |
|
|
202 |
" .dataframe thead th {\n", |
|
|
203 |
" text-align: right;\n", |
|
|
204 |
" }\n", |
|
|
205 |
"</style>\n", |
|
|
206 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
207 |
" <thead>\n", |
|
|
208 |
" <tr style=\"text-align: right;\">\n", |
|
|
209 |
" <th></th>\n", |
|
|
210 |
" <th>BMI</th>\n", |
|
|
211 |
" <th>PhysicalHealth</th>\n", |
|
|
212 |
" <th>MentalHealth</th>\n", |
|
|
213 |
" <th>SleepTime</th>\n", |
|
|
214 |
" </tr>\n", |
|
|
215 |
" </thead>\n", |
|
|
216 |
" <tbody>\n", |
|
|
217 |
" <tr>\n", |
|
|
218 |
" <th>count</th>\n", |
|
|
219 |
" <td>71838.000000</td>\n", |
|
|
220 |
" <td>71838.000000</td>\n", |
|
|
221 |
" <td>71838.000000</td>\n", |
|
|
222 |
" <td>71838.000000</td>\n", |
|
|
223 |
" </tr>\n", |
|
|
224 |
" <tr>\n", |
|
|
225 |
" <th>mean</th>\n", |
|
|
226 |
" <td>30.103974</td>\n", |
|
|
227 |
" <td>6.802876</td>\n", |
|
|
228 |
" <td>5.314374</td>\n", |
|
|
229 |
" <td>7.086806</td>\n", |
|
|
230 |
" </tr>\n", |
|
|
231 |
" <tr>\n", |
|
|
232 |
" <th>std</th>\n", |
|
|
233 |
" <td>7.441630</td>\n", |
|
|
234 |
" <td>11.014781</td>\n", |
|
|
235 |
" <td>9.618466</td>\n", |
|
|
236 |
" <td>1.777442</td>\n", |
|
|
237 |
" </tr>\n", |
|
|
238 |
" <tr>\n", |
|
|
239 |
" <th>min</th>\n", |
|
|
240 |
" <td>12.020000</td>\n", |
|
|
241 |
" <td>0.000000</td>\n", |
|
|
242 |
" <td>0.000000</td>\n", |
|
|
243 |
" <td>1.000000</td>\n", |
|
|
244 |
" </tr>\n", |
|
|
245 |
" <tr>\n", |
|
|
246 |
" <th>25%</th>\n", |
|
|
247 |
" <td>25.020000</td>\n", |
|
|
248 |
" <td>0.000000</td>\n", |
|
|
249 |
" <td>0.000000</td>\n", |
|
|
250 |
" <td>6.000000</td>\n", |
|
|
251 |
" </tr>\n", |
|
|
252 |
" <tr>\n", |
|
|
253 |
" <th>50%</th>\n", |
|
|
254 |
" <td>29.050000</td>\n", |
|
|
255 |
" <td>0.000000</td>\n", |
|
|
256 |
" <td>0.000000</td>\n", |
|
|
257 |
" <td>7.000000</td>\n", |
|
|
258 |
" </tr>\n", |
|
|
259 |
" <tr>\n", |
|
|
260 |
" <th>75%</th>\n", |
|
|
261 |
" <td>33.910000</td>\n", |
|
|
262 |
" <td>10.000000</td>\n", |
|
|
263 |
" <td>5.000000</td>\n", |
|
|
264 |
" <td>8.000000</td>\n", |
|
|
265 |
" </tr>\n", |
|
|
266 |
" <tr>\n", |
|
|
267 |
" <th>max</th>\n", |
|
|
268 |
" <td>94.660000</td>\n", |
|
|
269 |
" <td>30.000000</td>\n", |
|
|
270 |
" <td>30.000000</td>\n", |
|
|
271 |
" <td>24.000000</td>\n", |
|
|
272 |
" </tr>\n", |
|
|
273 |
" </tbody>\n", |
|
|
274 |
"</table>\n", |
|
|
275 |
"</div>" |
|
|
276 |
], |
|
|
277 |
"text/plain": [ |
|
|
278 |
" BMI PhysicalHealth MentalHealth SleepTime\n", |
|
|
279 |
"count 71838.000000 71838.000000 71838.000000 71838.000000\n", |
|
|
280 |
"mean 30.103974 6.802876 5.314374 7.086806\n", |
|
|
281 |
"std 7.441630 11.014781 9.618466 1.777442\n", |
|
|
282 |
"min 12.020000 0.000000 0.000000 1.000000\n", |
|
|
283 |
"25% 25.020000 0.000000 0.000000 6.000000\n", |
|
|
284 |
"50% 29.050000 0.000000 0.000000 7.000000\n", |
|
|
285 |
"75% 33.910000 10.000000 5.000000 8.000000\n", |
|
|
286 |
"max 94.660000 30.000000 30.000000 24.000000" |
|
|
287 |
] |
|
|
288 |
}, |
|
|
289 |
"execution_count": 15, |
|
|
290 |
"metadata": {}, |
|
|
291 |
"output_type": "execute_result" |
|
|
292 |
} |
|
|
293 |
], |
|
|
294 |
"source": [ |
|
|
295 |
"notActive.describe()" |
|
|
296 |
] |
|
|
297 |
}, |
|
|
298 |
{ |
|
|
299 |
"cell_type": "code", |
|
|
300 |
"execution_count": 16, |
|
|
301 |
"metadata": {}, |
|
|
302 |
"outputs": [ |
|
|
303 |
{ |
|
|
304 |
"name": "stdout", |
|
|
305 |
"output_type": "stream", |
|
|
306 |
"text": [ |
|
|
307 |
"Percentage of non active people that don't have heart disease 86.24126506862663\n", |
|
|
308 |
"Percentage of non active people that have heart disease 13.758734931373368\n" |
|
|
309 |
] |
|
|
310 |
} |
|
|
311 |
], |
|
|
312 |
"source": [ |
|
|
313 |
"print(\"Percentage of non active people that don't have heart disease\", 100 * notActive[notActive[\"HeartDisease\"] == \"No\"].size / notActive.size )\n", |
|
|
314 |
"print(\"Percentage of non active people that have heart disease\", 100 * notActive[notActive[\"HeartDisease\"] == \"Yes\"].size / notActive.size )" |
|
|
315 |
] |
|
|
316 |
}, |
|
|
317 |
{ |
|
|
318 |
"cell_type": "code", |
|
|
319 |
"execution_count": 17, |
|
|
320 |
"metadata": {}, |
|
|
321 |
"outputs": [ |
|
|
322 |
{ |
|
|
323 |
"data": { |
|
|
324 |
"text/plain": [ |
|
|
325 |
"<AxesSubplot: >" |
|
|
326 |
] |
|
|
327 |
}, |
|
|
328 |
"execution_count": 17, |
|
|
329 |
"metadata": {}, |
|
|
330 |
"output_type": "execute_result" |
|
|
331 |
}, |
|
|
332 |
{ |
|
|
333 |
"data": { |
|
|
334 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNklEQVR4nO3df1DUdeLH8deCsEi14I8EGUm5q1SU/IFFZDlfE1l/XJNll5pTaqSXA01IZdEZaTZRdlaamv3Wm6s767q4UkJ2KPVS0qQo8dSzTsccW7QUVrGWFfb7R8PnXLEE243k/XzMMON+Pu9975uPf3ye89nPLja/3+8XAACAgcLaegEAAABthRACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYKwObb2AX7PGxkYdOHBAF1xwgWw2W1svBwAAtIDf79fRo0eVkJCgsLCfvuZDCP2EAwcOKDExsa2XAQAAzsJXX32lHj16/OQYQugnXHDBBZJ+OJAOhyOoc/t8PpWWliozM1MRERFBnRsAgHNBqM6FHo9HiYmJ1nn8pxBCP6Hp7TCHwxGSEIqOjpbD4SCEAABGCvW5sCW3tXCzNAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjNWhrRdguv5z18rbYGvrZbTY3sfHtvUSAAAIGq4IAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYrQqhwsJCXX755brgggvUrVs3jRs3Trt27QoY8/333ys7O1tdunTR+eefr/Hjx6u6ujpgzL59+zR27FhFR0erW7duuu+++3TixImAMevWrdPgwYNlt9t18cUXa8WKFc3Ws3TpUvXq1UtRUVFKS0vTli1bWr0WAABgrlaF0Pr165Wdna2PPvpILpdLPp9PmZmZqqurs8bMmjVL7777rt58802tX79eBw4c0I033mjtb2ho0NixY1VfX69NmzZp5cqVWrFihQoKCqwxe/bs0dixYzV8+HBVVlYqNzdXd9xxh9auXWuNWbVqlfLy8vTwww/rk08+0YABA+R0OnXw4MEWrwUAAJjN5vf7/Wf75EOHDqlbt25av369hg0bptraWl144YV6/fXXddNNN0mSdu7cqb59+6q8vFxXXnml3nvvPf3ud7/TgQMHFBcXJ0lavny57r//fh06dEiRkZG6//77tWbNGlVVVVmvNXHiRNXU1KikpESSlJaWpssvv1xLliyRJDU2NioxMVF33XWXHnjggRat5Uw8Ho9iYmJUW1srh8NxtofptHw+n4qLizV7S7i8Dbagzh1Kex8f29ZLAAC0E03nwjFjxigiIiJo87bm/N3h57xQbW2tJKlz586SpIqKCvl8PmVkZFhj+vTpo4suusiKj/LycqWkpFgRJElOp1MzZ87U9u3bNWjQIJWXlwfM0TQmNzdXklRfX6+Kigrl5+db+8PCwpSRkaHy8vIWr+VUXq9XXq/XeuzxeCT98B/l8/nO6hj9mKb57GFn3aFtItjHAQBgrqZzSqjOsS1x1iHU2Nio3NxcDR06VP3795ckud1uRUZGKjY2NmBsXFyc3G63NebkCGra37Tvp8Z4PB599913OnLkiBoaGk47ZufOnS1ey6kKCws1b968ZttLS0sVHR39Y4fiZ5k/pDEk84ZKcXFxWy8BANDOuFyuoM53/PjxFo896xDKzs5WVVWVPvzww7Od4lcnPz9feXl51mOPx6PExERlZmaG5K0xl8ulh7aGydt47rw1VjXX2dZLAAC0E03nwpEjRwb9rbGWOqsQysnJ0erVq7Vhwwb16NHD2h4fH6/6+nrV1NQEXImprq5WfHy8NebUT3c1fZLr5DGnfrqrurpaDodDHTt2VHh4uMLDw0875uQ5zrSWU9ntdtnt9mbbIyIigvofdDJvo+2cukcoVMcBAGCuYJ9nWzNXqz415vf7lZOTo7ffflvvv/++kpKSAvanpqYqIiJCZWVl1rZdu3Zp3759Sk9PlySlp6dr27ZtAZ/ucrlccjgcSk5OtsacPEfTmKY5IiMjlZqaGjCmsbFRZWVl1piWrAUAAJitVVeEsrOz9frrr+uf//ynLrjgAutem5iYGHXs2FExMTHKyspSXl6eOnfuLIfDobvuukvp6enWzcmZmZlKTk7WrbfeqgULFsjtdmvOnDnKzs62rsbceeedWrJkiWbPnq3bb79d77//vt544w2tWbPGWkteXp6mTJmiIUOG6IorrtAzzzyjuro6TZs2zVrTmdYCAADM1qoQeu655yRJ//d//xew/dVXX9XUqVMlSU8//bTCwsI0fvx4eb1eOZ1OLVu2zBobHh6u1atXa+bMmUpPT9d5552nKVOm6JFHHrHGJCUlac2aNZo1a5YWLVqkHj166KWXXpLT+b/7UyZMmKBDhw6poKBAbrdbAwcOVElJScAN1GdaCwAAMNvP+h6h9o7vEWqO7xECAATLr+F7hPhbYwAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWK0OoQ0bNui6665TQkKCbDabioqKAvZPnTpVNpst4GfUqFEBYw4fPqzJkyfL4XAoNjZWWVlZOnbsWMCYzz//XNdcc42ioqKUmJioBQsWNFvLm2++qT59+igqKkopKSkqLi4O2O/3+1VQUKDu3burY8eOysjI0O7du1v7KwMAgHaq1SFUV1enAQMGaOnSpT86ZtSoUfr666+tn7/+9a8B+ydPnqzt27fL5XJp9erV2rBhg2bMmGHt93g8yszMVM+ePVVRUaEnn3xSc+fO1QsvvGCN2bRpkyZNmqSsrCx9+umnGjdunMaNG6eqqiprzIIFC7R48WItX75cmzdv1nnnnSen06nvv/++tb82AABohzq09gmjR4/W6NGjf3KM3W5XfHz8afft2LFDJSUl+vjjjzVkyBBJ0rPPPqsxY8boT3/6kxISEvTaa6+pvr5er7zyiiIjI9WvXz9VVlbqqaeesoJp0aJFGjVqlO677z5J0vz58+VyubRkyRItX75cfr9fzzzzjObMmaPrr79ekvTnP/9ZcXFxKioq0sSJE1v7qwMAgHam1SHUEuvWrVO3bt3UqVMnXXvttXr00UfVpUsXSVJ5ebliY2OtCJKkjIwMhYWFafPmzbrhhhtUXl6uYcOGKTIy0hrjdDr1xBNP6MiRI+rUqZPKy8uVl5cX8LpOp9N6q27Pnj1yu93KyMiw9sfExCgtLU3l5eWnDSGv1yuv12s99ng8kiSfzyefz/fzD8xJmuazh/mDOm+oBfs4AADM1XROCdU5tiWCHkKjRo3SjTfeqKSkJH355Zd68MEHNXr0aJWXlys8PFxut1vdunULXESHDurcubPcbrckye12KykpKWBMXFycta9Tp05yu93WtpPHnDzHyc873ZhTFRYWat68ec22l5aWKjo6uqWHoFXmD2kMybyhcup9WAAA/Fwulyuo8x0/frzFY4MeQidfaUlJSdFll12m3/72t1q3bp1GjBgR7JcLqvz8/ICrTB6PR4mJicrMzJTD4Qjqa/l8PrlcLj20NUzeRltQ5w6lqrnOtl4CAKCdaDoXjhw5UhEREUGbt+kdnZYIyVtjJ/vNb36jrl276osvvtCIESMUHx+vgwcPBow5ceKEDh8+bN1XFB8fr+rq6oAxTY/PNObk/U3bunfvHjBm4MCBp12r3W6X3W5vtj0iIiKo/0En8zba5G04d0IoVMcBAGCuYJ9nWzNXyL9HaP/+/fr222+tGElPT1dNTY0qKiqsMe+//74aGxuVlpZmjdmwYUPAe3wul0u9e/dWp06drDFlZWUBr+VyuZSeni5JSkpKUnx8fMAYj8ejzZs3W2MAAIDZWh1Cx44dU2VlpSorKyX9cFNyZWWl9u3bp2PHjum+++7TRx99pL1796qsrEzXX3+9Lr74YjmdP7yl0rdvX40aNUrTp0/Xli1btHHjRuXk5GjixIlKSEiQJN1yyy2KjIxUVlaWtm/frlWrVmnRokUBb1vdfffdKikp0cKFC7Vz507NnTtXW7duVU5OjiTJZrMpNzdXjz76qN555x1t27ZNt912mxISEjRu3LifedgAAEB70Oq3xrZu3arhw4dbj5viZMqUKXruuef0+eefa+XKlaqpqVFCQoIyMzM1f/78gLecXnvtNeXk5GjEiBEKCwvT+PHjtXjxYmt/TEyMSktLlZ2drdTUVHXt2lUFBQUB3zV01VVX6fXXX9ecOXP04IMP6pJLLlFRUZH69+9vjZk9e7bq6uo0Y8YM1dTU6Oqrr1ZJSYmioqJa+2sDAIB2yOb3+8+tz2//gjwej2JiYlRbWxuSm6WLi4s1e0v4OXWP0N7Hx7b1EgAA7UTTuXDMmDFBv1m6pedv/tYYAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWq0Now4YNuu6665SQkCCbzaaioqKA/X6/XwUFBerevbs6duyojIwM7d69O2DM4cOHNXnyZDkcDsXGxiorK0vHjh0LGPP555/rmmuuUVRUlBITE7VgwYJma3nzzTfVp08fRUVFKSUlRcXFxa1eCwAAMFerQ6iurk4DBgzQ0qVLT7t/wYIFWrx4sZYvX67NmzfrvPPOk9Pp1Pfff2+NmTx5srZv3y6Xy6XVq1drw4YNmjFjhrXf4/EoMzNTPXv2VEVFhZ588knNnTtXL7zwgjVm06ZNmjRpkrKysvTpp59q3LhxGjdunKqqqlq1FgAAYC6b3+/3n/WTbTa9/fbbGjdunKQfrsAkJCTonnvu0b333itJqq2tVVxcnFasWKGJEydqx44dSk5O1scff6whQ4ZIkkpKSjRmzBjt379fCQkJeu655/THP/5RbrdbkZGRkqQHHnhARUVF2rlzpyRpwoQJqqur0+rVq631XHnllRo4cKCWL1/eorWcicfjUUxMjGpra+VwOM72MJ2Wz+dTcXGxZm8Jl7fBFtS5Q2nv42PbegkAgHai6Vw4ZswYRUREBG3e1py/g3qP0J49e+R2u5WRkWFti4mJUVpamsrLyyVJ5eXlio2NtSJIkjIyMhQWFqbNmzdbY4YNG2ZFkCQ5nU7t2rVLR44cscac/DpNY5pepyVrAQAAZusQzMncbrckKS4uLmB7XFyctc/tdqtbt26Bi+jQQZ07dw4Yk5SU1GyOpn2dOnWS2+0+4+ucaS2n8nq98nq91mOPxyPph2L1+Xw/9au3WtN89rCzviDXJoJ9HAAA5mo6p4TqHNsSQQ2hc11hYaHmzZvXbHtpaamio6ND8przhzSGZN5QOfWGdAAAfi6XyxXU+Y4fP97isUENofj4eElSdXW1unfvbm2vrq7WwIEDrTEHDx4MeN6JEyd0+PBh6/nx8fGqrq4OGNP0+ExjTt5/prWcKj8/X3l5edZjj8ejxMREZWZmhuQeIZfLpYe2hsnbeO7cI1Q119nWSwAAtBNN58KRI0cG/R6hlgpqCCUlJSk+Pl5lZWVWbHg8Hm3evFkzZ86UJKWnp6umpkYVFRVKTU2VJL3//vtqbGxUWlqaNeaPf/yjfD6fdWBcLpd69+6tTp06WWPKysqUm5trvb7L5VJ6enqL13Iqu90uu93ebHtERERQ/4NO5m20nVM3S4fqOAAAzBXs82xr5mr1zdLHjh1TZWWlKisrJf1wU3JlZaX27dsnm82m3NxcPfroo3rnnXe0bds23XbbbUpISLA+Wda3b1+NGjVK06dP15YtW7Rx40bl5ORo4sSJSkhIkCTdcsstioyMVFZWlrZv365Vq1Zp0aJFAVdr7r77bpWUlGjhwoXauXOn5s6dq61btyonJ0eSWrQWAABgtlZfEdq6dauGDx9uPW6KkylTpmjFihWaPXu26urqNGPGDNXU1Ojqq69WSUmJoqKirOe89tprysnJ0YgRIxQWFqbx48dr8eLF1v6YmBiVlpYqOztbqamp6tq1qwoKCgK+a+iqq67S66+/rjlz5ujBBx/UJZdcoqKiIvXv398a05K1AAAAc/2s7xFq7/geoeb4HiEAQLC0u+8RAgAAOJcQQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWEEPoblz58pmswX89OnTx9r//fffKzs7W126dNH555+v8ePHq7q6OmCOffv2aezYsYqOjla3bt1033336cSJEwFj1q1bp8GDB8tut+viiy/WihUrmq1l6dKl6tWrl6KiopSWlqYtW7YE+9cFAADnsJBcEerXr5++/vpr6+fDDz+09s2aNUvvvvuu3nzzTa1fv14HDhzQjTfeaO1vaGjQ2LFjVV9fr02bNmnlypVasWKFCgoKrDF79uzR2LFjNXz4cFVWVio3N1d33HGH1q5da41ZtWqV8vLy9PDDD+uTTz7RgAED5HQ6dfDgwVD8ygAA4BwUkhDq0KGD4uPjrZ+uXbtKkmpra/Xyyy/rqaee0rXXXqvU1FS9+uqr2rRpkz766CNJUmlpqf7973/rL3/5iwYOHKjRo0dr/vz5Wrp0qerr6yVJy5cvV1JSkhYuXKi+ffsqJydHN910k55++mlrDU899ZSmT5+uadOmKTk5WcuXL1d0dLReeeWVUPzKAADgHNQhFJPu3r1bCQkJioqKUnp6ugoLC3XRRRepoqJCPp9PGRkZ1tg+ffrooosuUnl5ua688kqVl5crJSVFcXFx1hin06mZM2dq+/btGjRokMrLywPmaBqTm5srSaqvr1dFRYXy8/Ot/WFhYcrIyFB5efmPrtvr9crr9VqPPR6PJMnn88nn8/2sY3KqpvnsYf6gzhtqwT4OAABzNZ1TQnWObYmgh1BaWppWrFih3r176+uvv9a8efN0zTXXqKqqSm63W5GRkYqNjQ14TlxcnNxutyTJ7XYHRFDT/qZ9PzXG4/Hou+++05EjR9TQ0HDaMTt37vzRtRcWFmrevHnNtpeWlio6OrplB6CV5g9pDMm8oVJcXNzWSwAAtDMulyuo8x0/frzFY4MeQqNHj7b+fdlllyktLU09e/bUG2+8oY4dOwb75YIqPz9feXl51mOPx6PExERlZmbK4XAE9bV8Pp9cLpce2homb6MtqHOHUtVcZ1svAQDQTjSdC0eOHKmIiIigzdv0jk5LhOStsZPFxsbq0ksv1RdffKGRI0eqvr5eNTU1AVeFqqurFR8fL0mKj49v9umupk+VnTzm1E+aVVdXy+FwqGPHjgoPD1d4ePhpxzTNcTp2u112u73Z9oiIiKD+B53M22iTt+HcCaFQHQcAgLmCfZ5tzVwh/x6hY8eO6csvv1T37t2VmpqqiIgIlZWVWft37dqlffv2KT09XZKUnp6ubdu2BXy6y+VyyeFwKDk52Rpz8hxNY5rmiIyMVGpqasCYxsZGlZWVWWMAAACCHkL33nuv1q9fr71792rTpk264YYbFB4erkmTJikmJkZZWVnKy8vTBx98oIqKCk2bNk3p6em68sorJUmZmZlKTk7Wrbfeqs8++0xr167VnDlzlJ2dbV2tufPOO/Xf//5Xs2fP1s6dO7Vs2TK98cYbmjVrlrWOvLw8vfjii1q5cqV27NihmTNnqq6uTtOmTQv2rwwAAM5RQX9rbP/+/Zo0aZK+/fZbXXjhhbr66qv10Ucf6cILL5QkPf300woLC9P48ePl9XrldDq1bNky6/nh4eFavXq1Zs6cqfT0dJ133nmaMmWKHnnkEWtMUlKS1qxZo1mzZmnRokXq0aOHXnrpJTmd/7t/ZcKECTp06JAKCgrkdrs1cOBAlZSUNLuBGgAAmMvm9/vPrc9v/4I8Ho9iYmJUW1sbkpuli4uLNXtL+Dl1j9Dex8e29RIAAO1E07lwzJgxQb9ZuqXnb/7WGAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjdWjrBQAAgODo9cCatl5Cq9jD/VpwRduugStCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNDSpUvVq1cvRUVFKS0tTVu2bGnrJQEAgF+Bdh9Cq1atUl5enh5++GF98sknGjBggJxOpw4ePNjWSwMAAG2s3YfQU089penTp2vatGlKTk7W8uXLFR0drVdeeaWtlwYAANpYh7ZeQCjV19eroqJC+fn51rawsDBlZGSovLy82Xiv1yuv12s9rq2tlSQdPnxYPp8vqGvz+Xw6fvy4OvjC1NBoC+rcofTtt9+29RIAAD+iw4m6tl5Cq3Ro9Ov48UZ9++23ioiICNq8R48elST5/f4zryFor/or9M0336ihoUFxcXEB2+Pi4rRz585m4wsLCzVv3rxm25OSkkK2xnNN14VtvQIAQHtySwjnPnr0qGJiYn5yTLsOodbKz89XXl6e9bixsVGHDx9Wly5dZLMF96qNx+NRYmKivvrqKzkcjqDODQDAuSBU50K/36+jR48qISHhjGPbdQh17dpV4eHhqq6uDtheXV2t+Pj4ZuPtdrvsdnvAttjY2FAuUQ6HgxACABgtFOfCM10JatKub5aOjIxUamqqysrKrG2NjY0qKytTenp6G64MAAD8GrTrK0KSlJeXpylTpmjIkCG64oor9Mwzz6iurk7Tpk1r66UBAIA21u5DaMKECTp06JAKCgrkdrs1cOBAlZSUNLuB+pdmt9v18MMPN3srDgAAU/wazoU2f0s+WwYAANAOtet7hAAAAH4KIQQAAIxFCAEAAGMRQgAAwFiEUAhNnTpVNptNjz/+eMD2oqKioH9TNQAAvxZ+v18ZGRlyOp3N9i1btkyxsbHav39/G6ysOUIoxKKiovTEE0/oyJEjbb0UAAB+ETabTa+++qo2b96s559/3tq+Z88ezZ49W88++6x69OjRhiv8H0IoxDIyMhQfH6/CwsIfHfPWW2+pX79+stvt6tWrlxYu5C+bAgDObYmJiVq0aJHuvfde7dmzR36/X1lZWcrMzNSgQYM0evRonX/++YqLi9Ott96qb775xnru3//+d6WkpKhjx47q0qWLMjIyVFdXF5J1EkIhFh4erscee0zPPvvsaS8DVlRU6Oabb9bEiRO1bds2zZ07Vw899JBWrFjxyy8WAIAgmjJlikaMGKHbb79dS5YsUVVVlZ5//nlde+21GjRokLZu3aqSkhJVV1fr5ptvliR9/fXXmjRpkm6//Xbt2LFD69at04033qhQfe0hX6gYQlOnTlVNTY2KioqUnp6u5ORkvfzyyyoqKtINN9wgv9+vyZMn69ChQyotLbWeN3v2bK1Zs0bbt29vw9UDAPDzHTx4UP369dPhw4f11ltvqaqqSv/617+0du1aa8z+/fuVmJioXbt26dixY0pNTdXevXvVs2fPkK+PK0K/kCeeeEIrV67Ujh07Arbv2LFDQ4cODdg2dOhQ7d69Ww0NDb/kEgEACLpu3brpD3/4g/r27atx48bps88+0wcffKDzzz/f+unTp48k6csvv9SAAQM0YsQIpaSk6Pe//71efPHFkN5nSwj9QoYNGyan06n8/Py2XgoAAL+oDh06qEOHH/686bFjx3TdddepsrIy4Gf37t0aNmyYwsPD5XK59N577yk5OVnPPvusevfurT179oRmbSGZFaf1+OOPa+DAgerdu7e1rW/fvtq4cWPAuI0bN+rSSy9VeHj4L71EAABCavDgwXrrrbfUq1cvK45OZbPZNHToUA0dOlQFBQXq2bOn3n77beXl5QV9PVwR+gWlpKRo8uTJWrx4sbXtnnvuUVlZmebPn6///Oc/WrlypZYsWaJ77723DVcKAEBoZGdn6/Dhw5o0aZI+/vhjffnll1q7dq2mTZumhoYGbd68WY899pi2bt2qffv26R//+IcOHTqkvn37hmQ9hNAv7JFHHlFjY6P1ePDgwXrjjTf0t7/9Tf3791dBQYEeeeQRTZ06te0WCQBAiCQkJGjjxo1qaGhQZmamUlJSlJubq9jYWIWFhcnhcGjDhg0aM2aMLr30Us2ZM0cLFy7U6NGjQ7IePjUGAACMxRUhAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsf4fQ/O4yZMaYUwAAAAASUVORK5CYII=", |
|
|
335 |
"text/plain": [ |
|
|
336 |
"<Figure size 640x480 with 1 Axes>" |
|
|
337 |
] |
|
|
338 |
}, |
|
|
339 |
"metadata": {}, |
|
|
340 |
"output_type": "display_data" |
|
|
341 |
} |
|
|
342 |
], |
|
|
343 |
"source": [ |
|
|
344 |
"Active['HeartDisease'].hist()" |
|
|
345 |
] |
|
|
346 |
}, |
|
|
347 |
{ |
|
|
348 |
"cell_type": "code", |
|
|
349 |
"execution_count": 18, |
|
|
350 |
"metadata": {}, |
|
|
351 |
"outputs": [ |
|
|
352 |
{ |
|
|
353 |
"data": { |
|
|
354 |
"text/plain": [ |
|
|
355 |
"<AxesSubplot: >" |
|
|
356 |
] |
|
|
357 |
}, |
|
|
358 |
"execution_count": 18, |
|
|
359 |
"metadata": {}, |
|
|
360 |
"output_type": "execute_result" |
|
|
361 |
}, |
|
|
362 |
{ |
|
|
363 |
"data": { |
|
|
364 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNklEQVR4nO3df1DUdeLH8deCsEi14I8EGUm5q1SU/IFFZDlfE1l/XJNll5pTaqSXA01IZdEZaTZRdlaamv3Wm6s767q4UkJ2KPVS0qQo8dSzTsccW7QUVrGWFfb7R8PnXLEE243k/XzMMON+Pu9975uPf3ye89nPLja/3+8XAACAgcLaegEAAABthRACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYKwObb2AX7PGxkYdOHBAF1xwgWw2W1svBwAAtIDf79fRo0eVkJCgsLCfvuZDCP2EAwcOKDExsa2XAQAAzsJXX32lHj16/OQYQugnXHDBBZJ+OJAOhyOoc/t8PpWWliozM1MRERFBnRsAgHNBqM6FHo9HiYmJ1nn8pxBCP6Hp7TCHwxGSEIqOjpbD4SCEAABGCvW5sCW3tXCzNAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjNWhrRdguv5z18rbYGvrZbTY3sfHtvUSAAAIGq4IAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYrQqhwsJCXX755brgggvUrVs3jRs3Trt27QoY8/333ys7O1tdunTR+eefr/Hjx6u6ujpgzL59+zR27FhFR0erW7duuu+++3TixImAMevWrdPgwYNlt9t18cUXa8WKFc3Ws3TpUvXq1UtRUVFKS0vTli1bWr0WAABgrlaF0Pr165Wdna2PPvpILpdLPp9PmZmZqqurs8bMmjVL7777rt58802tX79eBw4c0I033mjtb2ho0NixY1VfX69NmzZp5cqVWrFihQoKCqwxe/bs0dixYzV8+HBVVlYqNzdXd9xxh9auXWuNWbVqlfLy8vTwww/rk08+0YABA+R0OnXw4MEWrwUAAJjN5vf7/Wf75EOHDqlbt25av369hg0bptraWl144YV6/fXXddNNN0mSdu7cqb59+6q8vFxXXnml3nvvPf3ud7/TgQMHFBcXJ0lavny57r//fh06dEiRkZG6//77tWbNGlVVVVmvNXHiRNXU1KikpESSlJaWpssvv1xLliyRJDU2NioxMVF33XWXHnjggRat5Uw8Ho9iYmJUW1srh8NxtofptHw+n4qLizV7S7i8Dbagzh1Kex8f29ZLAAC0E03nwjFjxigiIiJo87bm/N3h57xQbW2tJKlz586SpIqKCvl8PmVkZFhj+vTpo4suusiKj/LycqWkpFgRJElOp1MzZ87U9u3bNWjQIJWXlwfM0TQmNzdXklRfX6+Kigrl5+db+8PCwpSRkaHy8vIWr+VUXq9XXq/XeuzxeCT98B/l8/nO6hj9mKb57GFn3aFtItjHAQBgrqZzSqjOsS1x1iHU2Nio3NxcDR06VP3795ckud1uRUZGKjY2NmBsXFyc3G63NebkCGra37Tvp8Z4PB599913OnLkiBoaGk47ZufOnS1ey6kKCws1b968ZttLS0sVHR39Y4fiZ5k/pDEk84ZKcXFxWy8BANDOuFyuoM53/PjxFo896xDKzs5WVVWVPvzww7Od4lcnPz9feXl51mOPx6PExERlZmaG5K0xl8ulh7aGydt47rw1VjXX2dZLAAC0E03nwpEjRwb9rbGWOqsQysnJ0erVq7Vhwwb16NHD2h4fH6/6+nrV1NQEXImprq5WfHy8NebUT3c1fZLr5DGnfrqrurpaDodDHTt2VHh4uMLDw0875uQ5zrSWU9ntdtnt9mbbIyIigvofdDJvo+2cukcoVMcBAGCuYJ9nWzNXqz415vf7lZOTo7ffflvvv/++kpKSAvanpqYqIiJCZWVl1rZdu3Zp3759Sk9PlySlp6dr27ZtAZ/ucrlccjgcSk5OtsacPEfTmKY5IiMjlZqaGjCmsbFRZWVl1piWrAUAAJitVVeEsrOz9frrr+uf//ynLrjgAutem5iYGHXs2FExMTHKyspSXl6eOnfuLIfDobvuukvp6enWzcmZmZlKTk7WrbfeqgULFsjtdmvOnDnKzs62rsbceeedWrJkiWbPnq3bb79d77//vt544w2tWbPGWkteXp6mTJmiIUOG6IorrtAzzzyjuro6TZs2zVrTmdYCAADM1qoQeu655yRJ//d//xew/dVXX9XUqVMlSU8//bTCwsI0fvx4eb1eOZ1OLVu2zBobHh6u1atXa+bMmUpPT9d5552nKVOm6JFHHrHGJCUlac2aNZo1a5YWLVqkHj166KWXXpLT+b/7UyZMmKBDhw6poKBAbrdbAwcOVElJScAN1GdaCwAAMNvP+h6h9o7vEWqO7xECAATLr+F7hPhbYwAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWK0OoQ0bNui6665TQkKCbDabioqKAvZPnTpVNpst4GfUqFEBYw4fPqzJkyfL4XAoNjZWWVlZOnbsWMCYzz//XNdcc42ioqKUmJioBQsWNFvLm2++qT59+igqKkopKSkqLi4O2O/3+1VQUKDu3burY8eOysjI0O7du1v7KwMAgHaq1SFUV1enAQMGaOnSpT86ZtSoUfr666+tn7/+9a8B+ydPnqzt27fL5XJp9erV2rBhg2bMmGHt93g8yszMVM+ePVVRUaEnn3xSc+fO1QsvvGCN2bRpkyZNmqSsrCx9+umnGjdunMaNG6eqqiprzIIFC7R48WItX75cmzdv1nnnnSen06nvv/++tb82AABohzq09gmjR4/W6NGjf3KM3W5XfHz8afft2LFDJSUl+vjjjzVkyBBJ0rPPPqsxY8boT3/6kxISEvTaa6+pvr5er7zyiiIjI9WvXz9VVlbqqaeesoJp0aJFGjVqlO677z5J0vz58+VyubRkyRItX75cfr9fzzzzjObMmaPrr79ekvTnP/9ZcXFxKioq0sSJE1v7qwMAgHam1SHUEuvWrVO3bt3UqVMnXXvttXr00UfVpUsXSVJ5ebliY2OtCJKkjIwMhYWFafPmzbrhhhtUXl6uYcOGKTIy0hrjdDr1xBNP6MiRI+rUqZPKy8uVl5cX8LpOp9N6q27Pnj1yu93KyMiw9sfExCgtLU3l5eWnDSGv1yuv12s99ng8kiSfzyefz/fzD8xJmuazh/mDOm+oBfs4AADM1XROCdU5tiWCHkKjRo3SjTfeqKSkJH355Zd68MEHNXr0aJWXlys8PFxut1vdunULXESHDurcubPcbrckye12KykpKWBMXFycta9Tp05yu93WtpPHnDzHyc873ZhTFRYWat68ec22l5aWKjo6uqWHoFXmD2kMybyhcup9WAAA/Fwulyuo8x0/frzFY4MeQidfaUlJSdFll12m3/72t1q3bp1GjBgR7JcLqvz8/ICrTB6PR4mJicrMzJTD4Qjqa/l8PrlcLj20NUzeRltQ5w6lqrnOtl4CAKCdaDoXjhw5UhEREUGbt+kdnZYIyVtjJ/vNb36jrl276osvvtCIESMUHx+vgwcPBow5ceKEDh8+bN1XFB8fr+rq6oAxTY/PNObk/U3bunfvHjBm4MCBp12r3W6X3W5vtj0iIiKo/0En8zba5G04d0IoVMcBAGCuYJ9nWzNXyL9HaP/+/fr222+tGElPT1dNTY0qKiqsMe+//74aGxuVlpZmjdmwYUPAe3wul0u9e/dWp06drDFlZWUBr+VyuZSeni5JSkpKUnx8fMAYj8ejzZs3W2MAAIDZWh1Cx44dU2VlpSorKyX9cFNyZWWl9u3bp2PHjum+++7TRx99pL1796qsrEzXX3+9Lr74YjmdP7yl0rdvX40aNUrTp0/Xli1btHHjRuXk5GjixIlKSEiQJN1yyy2KjIxUVlaWtm/frlWrVmnRokUBb1vdfffdKikp0cKFC7Vz507NnTtXW7duVU5OjiTJZrMpNzdXjz76qN555x1t27ZNt912mxISEjRu3LifedgAAEB70Oq3xrZu3arhw4dbj5viZMqUKXruuef0+eefa+XKlaqpqVFCQoIyMzM1f/78gLecXnvtNeXk5GjEiBEKCwvT+PHjtXjxYmt/TEyMSktLlZ2drdTUVHXt2lUFBQUB3zV01VVX6fXXX9ecOXP04IMP6pJLLlFRUZH69+9vjZk9e7bq6uo0Y8YM1dTU6Oqrr1ZJSYmioqJa+2sDAIB2yOb3+8+tz2//gjwej2JiYlRbWxuSm6WLi4s1e0v4OXWP0N7Hx7b1EgAA7UTTuXDMmDFBv1m6pedv/tYYAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWq0Now4YNuu6665SQkCCbzaaioqKA/X6/XwUFBerevbs6duyojIwM7d69O2DM4cOHNXnyZDkcDsXGxiorK0vHjh0LGPP555/rmmuuUVRUlBITE7VgwYJma3nzzTfVp08fRUVFKSUlRcXFxa1eCwAAMFerQ6iurk4DBgzQ0qVLT7t/wYIFWrx4sZYvX67NmzfrvPPOk9Pp1Pfff2+NmTx5srZv3y6Xy6XVq1drw4YNmjFjhrXf4/EoMzNTPXv2VEVFhZ588knNnTtXL7zwgjVm06ZNmjRpkrKysvTpp59q3LhxGjdunKqqqlq1FgAAYC6b3+/3n/WTbTa9/fbbGjdunKQfrsAkJCTonnvu0b333itJqq2tVVxcnFasWKGJEydqx44dSk5O1scff6whQ4ZIkkpKSjRmzBjt379fCQkJeu655/THP/5RbrdbkZGRkqQHHnhARUVF2rlzpyRpwoQJqqur0+rVq631XHnllRo4cKCWL1/eorWcicfjUUxMjGpra+VwOM72MJ2Wz+dTcXGxZm8Jl7fBFtS5Q2nv42PbegkAgHai6Vw4ZswYRUREBG3e1py/g3qP0J49e+R2u5WRkWFti4mJUVpamsrLyyVJ5eXlio2NtSJIkjIyMhQWFqbNmzdbY4YNG2ZFkCQ5nU7t2rVLR44cscac/DpNY5pepyVrAQAAZusQzMncbrckKS4uLmB7XFyctc/tdqtbt26Bi+jQQZ07dw4Yk5SU1GyOpn2dOnWS2+0+4+ucaS2n8nq98nq91mOPxyPph2L1+Xw/9au3WtN89rCzviDXJoJ9HAAA5mo6p4TqHNsSQQ2hc11hYaHmzZvXbHtpaamio6ND8przhzSGZN5QOfWGdAAAfi6XyxXU+Y4fP97isUENofj4eElSdXW1unfvbm2vrq7WwIEDrTEHDx4MeN6JEyd0+PBh6/nx8fGqrq4OGNP0+ExjTt5/prWcKj8/X3l5edZjj8ejxMREZWZmhuQeIZfLpYe2hsnbeO7cI1Q119nWSwAAtBNN58KRI0cG/R6hlgpqCCUlJSk+Pl5lZWVWbHg8Hm3evFkzZ86UJKWnp6umpkYVFRVKTU2VJL3//vtqbGxUWlqaNeaPf/yjfD6fdWBcLpd69+6tTp06WWPKysqUm5trvb7L5VJ6enqL13Iqu90uu93ebHtERERQ/4NO5m20nVM3S4fqOAAAzBXs82xr5mr1zdLHjh1TZWWlKisrJf1wU3JlZaX27dsnm82m3NxcPfroo3rnnXe0bds23XbbbUpISLA+Wda3b1+NGjVK06dP15YtW7Rx40bl5ORo4sSJSkhIkCTdcsstioyMVFZWlrZv365Vq1Zp0aJFAVdr7r77bpWUlGjhwoXauXOn5s6dq61btyonJ0eSWrQWAABgtlZfEdq6dauGDx9uPW6KkylTpmjFihWaPXu26urqNGPGDNXU1Ojqq69WSUmJoqKirOe89tprysnJ0YgRIxQWFqbx48dr8eLF1v6YmBiVlpYqOztbqamp6tq1qwoKCgK+a+iqq67S66+/rjlz5ujBBx/UJZdcoqKiIvXv398a05K1AAAAc/2s7xFq7/geoeb4HiEAQLC0u+8RAgAAOJcQQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWEEPoblz58pmswX89OnTx9r//fffKzs7W126dNH555+v8ePHq7q6OmCOffv2aezYsYqOjla3bt1033336cSJEwFj1q1bp8GDB8tut+viiy/WihUrmq1l6dKl6tWrl6KiopSWlqYtW7YE+9cFAADnsJBcEerXr5++/vpr6+fDDz+09s2aNUvvvvuu3nzzTa1fv14HDhzQjTfeaO1vaGjQ2LFjVV9fr02bNmnlypVasWKFCgoKrDF79uzR2LFjNXz4cFVWVio3N1d33HGH1q5da41ZtWqV8vLy9PDDD+uTTz7RgAED5HQ6dfDgwVD8ygAA4BwUkhDq0KGD4uPjrZ+uXbtKkmpra/Xyyy/rqaee0rXXXqvU1FS9+uqr2rRpkz766CNJUmlpqf7973/rL3/5iwYOHKjRo0dr/vz5Wrp0qerr6yVJy5cvV1JSkhYuXKi+ffsqJydHN910k55++mlrDU899ZSmT5+uadOmKTk5WcuXL1d0dLReeeWVUPzKAADgHNQhFJPu3r1bCQkJioqKUnp6ugoLC3XRRRepoqJCPp9PGRkZ1tg+ffrooosuUnl5ua688kqVl5crJSVFcXFx1hin06mZM2dq+/btGjRokMrLywPmaBqTm5srSaqvr1dFRYXy8/Ot/WFhYcrIyFB5efmPrtvr9crr9VqPPR6PJMnn88nn8/2sY3KqpvnsYf6gzhtqwT4OAABzNZ1TQnWObYmgh1BaWppWrFih3r176+uvv9a8efN0zTXXqKqqSm63W5GRkYqNjQ14TlxcnNxutyTJ7XYHRFDT/qZ9PzXG4/Hou+++05EjR9TQ0HDaMTt37vzRtRcWFmrevHnNtpeWlio6OrplB6CV5g9pDMm8oVJcXNzWSwAAtDMulyuo8x0/frzFY4MeQqNHj7b+fdlllyktLU09e/bUG2+8oY4dOwb75YIqPz9feXl51mOPx6PExERlZmbK4XAE9bV8Pp9cLpce2homb6MtqHOHUtVcZ1svAQDQTjSdC0eOHKmIiIigzdv0jk5LhOStsZPFxsbq0ksv1RdffKGRI0eqvr5eNTU1AVeFqqurFR8fL0mKj49v9umupk+VnTzm1E+aVVdXy+FwqGPHjgoPD1d4ePhpxzTNcTp2u112u73Z9oiIiKD+B53M22iTt+HcCaFQHQcAgLmCfZ5tzVwh/x6hY8eO6csvv1T37t2VmpqqiIgIlZWVWft37dqlffv2KT09XZKUnp6ubdu2BXy6y+VyyeFwKDk52Rpz8hxNY5rmiIyMVGpqasCYxsZGlZWVWWMAAACCHkL33nuv1q9fr71792rTpk264YYbFB4erkmTJikmJkZZWVnKy8vTBx98oIqKCk2bNk3p6em68sorJUmZmZlKTk7Wrbfeqs8++0xr167VnDlzlJ2dbV2tufPOO/Xf//5Xs2fP1s6dO7Vs2TK98cYbmjVrlrWOvLw8vfjii1q5cqV27NihmTNnqq6uTtOmTQv2rwwAAM5RQX9rbP/+/Zo0aZK+/fZbXXjhhbr66qv10Ucf6cILL5QkPf300woLC9P48ePl9XrldDq1bNky6/nh4eFavXq1Zs6cqfT0dJ133nmaMmWKHnnkEWtMUlKS1qxZo1mzZmnRokXq0aOHXnrpJTmd/7t/ZcKECTp06JAKCgrkdrs1cOBAlZSUNLuBGgAAmMvm9/vPrc9v/4I8Ho9iYmJUW1sbkpuli4uLNXtL+Dl1j9Dex8e29RIAAO1E07lwzJgxQb9ZuqXnb/7WGAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjdWjrBQAAgODo9cCatl5Cq9jD/VpwRduugStCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNDSpUvVq1cvRUVFKS0tTVu2bGnrJQEAgF+Bdh9Cq1atUl5enh5++GF98sknGjBggJxOpw4ePNjWSwMAAG2s3YfQU089penTp2vatGlKTk7W8uXLFR0drVdeeaWtlwYAANpYh7ZeQCjV19eroqJC+fn51rawsDBlZGSovLy82Xiv1yuv12s9rq2tlSQdPnxYPp8vqGvz+Xw6fvy4OvjC1NBoC+rcofTtt9+29RIAAD+iw4m6tl5Cq3Ro9Ov48UZ9++23ioiICNq8R48elST5/f4zryFor/or9M0336ihoUFxcXEB2+Pi4rRz585m4wsLCzVv3rxm25OSkkK2xnNN14VtvQIAQHtySwjnPnr0qGJiYn5yTLsOodbKz89XXl6e9bixsVGHDx9Wly5dZLMF96qNx+NRYmKivvrqKzkcjqDODQDAuSBU50K/36+jR48qISHhjGPbdQh17dpV4eHhqq6uDtheXV2t+Pj4ZuPtdrvsdnvAttjY2FAuUQ6HgxACABgtFOfCM10JatKub5aOjIxUamqqysrKrG2NjY0qKytTenp6G64MAAD8GrTrK0KSlJeXpylTpmjIkCG64oor9Mwzz6iurk7Tpk1r66UBAIA21u5DaMKECTp06JAKCgrkdrs1cOBAlZSUNLuB+pdmt9v18MMPN3srDgAAU/wazoU2f0s+WwYAANAOtet7hAAAAH4KIQQAAIxFCAEAAGMRQgAAwFiEUAhNnTpVNptNjz/+eMD2oqKioH9TNQAAvxZ+v18ZGRlyOp3N9i1btkyxsbHav39/G6ysOUIoxKKiovTEE0/oyJEjbb0UAAB+ETabTa+++qo2b96s559/3tq+Z88ezZ49W88++6x69OjRhiv8H0IoxDIyMhQfH6/CwsIfHfPWW2+pX79+stvt6tWrlxYu5C+bAgDObYmJiVq0aJHuvfde7dmzR36/X1lZWcrMzNSgQYM0evRonX/++YqLi9Ott96qb775xnru3//+d6WkpKhjx47q0qWLMjIyVFdXF5J1EkIhFh4erscee0zPPvvsaS8DVlRU6Oabb9bEiRO1bds2zZ07Vw899JBWrFjxyy8WAIAgmjJlikaMGKHbb79dS5YsUVVVlZ5//nlde+21GjRokLZu3aqSkhJVV1fr5ptvliR9/fXXmjRpkm6//Xbt2LFD69at04033qhQfe0hX6gYQlOnTlVNTY2KioqUnp6u5ORkvfzyyyoqKtINN9wgv9+vyZMn69ChQyotLbWeN3v2bK1Zs0bbt29vw9UDAPDzHTx4UP369dPhw4f11ltvqaqqSv/617+0du1aa8z+/fuVmJioXbt26dixY0pNTdXevXvVs2fPkK+PK0K/kCeeeEIrV67Ujh07Arbv2LFDQ4cODdg2dOhQ7d69Ww0NDb/kEgEACLpu3brpD3/4g/r27atx48bps88+0wcffKDzzz/f+unTp48k6csvv9SAAQM0YsQIpaSk6Pe//71efPHFkN5nSwj9QoYNGyan06n8/Py2XgoAAL+oDh06qEOHH/686bFjx3TdddepsrIy4Gf37t0aNmyYwsPD5XK59N577yk5OVnPPvusevfurT179oRmbSGZFaf1+OOPa+DAgerdu7e1rW/fvtq4cWPAuI0bN+rSSy9VeHj4L71EAABCavDgwXrrrbfUq1cvK45OZbPZNHToUA0dOlQFBQXq2bOn3n77beXl5QV9PVwR+gWlpKRo8uTJWrx4sbXtnnvuUVlZmebPn6///Oc/WrlypZYsWaJ77723DVcKAEBoZGdn6/Dhw5o0aZI+/vhjffnll1q7dq2mTZumhoYGbd68WY899pi2bt2qffv26R//+IcOHTqkvn37hmQ9hNAv7JFHHlFjY6P1ePDgwXrjjTf0t7/9Tf3791dBQYEeeeQRTZ06te0WCQBAiCQkJGjjxo1qaGhQZmamUlJSlJubq9jYWIWFhcnhcGjDhg0aM2aMLr30Us2ZM0cLFy7U6NGjQ7IePjUGAACMxRUhAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsf4fQ/O4yZMaYUwAAAAASUVORK5CYII=", |
|
|
365 |
"text/plain": [ |
|
|
366 |
"<Figure size 640x480 with 1 Axes>" |
|
|
367 |
] |
|
|
368 |
}, |
|
|
369 |
"metadata": {}, |
|
|
370 |
"output_type": "display_data" |
|
|
371 |
} |
|
|
372 |
], |
|
|
373 |
"source": [ |
|
|
374 |
"Active['HeartDisease'].hist()" |
|
|
375 |
] |
|
|
376 |
} |
|
|
377 |
], |
|
|
378 |
"metadata": { |
|
|
379 |
"kernelspec": { |
|
|
380 |
"display_name": "Python 3", |
|
|
381 |
"language": "python", |
|
|
382 |
"name": "python3" |
|
|
383 |
}, |
|
|
384 |
"language_info": { |
|
|
385 |
"codemirror_mode": { |
|
|
386 |
"name": "ipython", |
|
|
387 |
"version": 3 |
|
|
388 |
}, |
|
|
389 |
"file_extension": ".py", |
|
|
390 |
"mimetype": "text/x-python", |
|
|
391 |
"name": "python", |
|
|
392 |
"nbconvert_exporter": "python", |
|
|
393 |
"pygments_lexer": "ipython3", |
|
|
394 |
"version": "3.11.0" |
|
|
395 |
}, |
|
|
396 |
"orig_nbformat": 4, |
|
|
397 |
"vscode": { |
|
|
398 |
"interpreter": { |
|
|
399 |
"hash": "9328ff5b7eb661541ab3edfa5748581be07fc9da53f0de3fac60dfd343d1146b" |
|
|
400 |
} |
|
|
401 |
} |
|
|
402 |
}, |
|
|
403 |
"nbformat": 4, |
|
|
404 |
"nbformat_minor": 2 |
|
|
405 |
} |