Diff of /HIMA/activity.ipynb [000000] .. [1caa3f]

Switch to unified view

a b/HIMA/activity.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 10,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import pandas as pd\n",
10
    "import numpy as np\n",
11
    "import matplotlib.pyplot as plt\n",
12
    "heart_data = pd.read_csv('../heart_data.csv')"
13
   ]
14
  },
15
  {
16
   "cell_type": "code",
17
   "execution_count": 11,
18
   "metadata": {},
19
   "outputs": [],
20
   "source": [
21
    "heart_data['HeartDisease'] =  heart_data['HeartDisease']\n",
22
    "allactive = heart_data['PhysicalActivity']\n",
23
    "Active = heart_data[heart_data['PhysicalActivity']=='Yes']\n",
24
    "notActive = heart_data[heart_data['PhysicalActivity']=='No']\n"
25
   ]
26
  },
27
  {
28
   "cell_type": "code",
29
   "execution_count": 12,
30
   "metadata": {},
31
   "outputs": [
32
    {
33
     "data": {
34
      "text/plain": [
35
       "count     319795\n",
36
       "unique         2\n",
37
       "top          Yes\n",
38
       "freq      247957\n",
39
       "Name: PhysicalActivity, dtype: object"
40
      ]
41
     },
42
     "execution_count": 12,
43
     "metadata": {},
44
     "output_type": "execute_result"
45
    }
46
   ],
47
   "source": [
48
    "allactive.describe()"
49
   ]
50
  },
51
  {
52
   "cell_type": "code",
53
   "execution_count": 13,
54
   "metadata": {},
55
   "outputs": [
56
    {
57
     "data": {
58
      "text/html": [
59
       "<div>\n",
60
       "<style scoped>\n",
61
       "    .dataframe tbody tr th:only-of-type {\n",
62
       "        vertical-align: middle;\n",
63
       "    }\n",
64
       "\n",
65
       "    .dataframe tbody tr th {\n",
66
       "        vertical-align: top;\n",
67
       "    }\n",
68
       "\n",
69
       "    .dataframe thead th {\n",
70
       "        text-align: right;\n",
71
       "    }\n",
72
       "</style>\n",
73
       "<table border=\"1\" class=\"dataframe\">\n",
74
       "  <thead>\n",
75
       "    <tr style=\"text-align: right;\">\n",
76
       "      <th></th>\n",
77
       "      <th>BMI</th>\n",
78
       "      <th>PhysicalHealth</th>\n",
79
       "      <th>MentalHealth</th>\n",
80
       "      <th>SleepTime</th>\n",
81
       "    </tr>\n",
82
       "  </thead>\n",
83
       "  <tbody>\n",
84
       "    <tr>\n",
85
       "      <th>count</th>\n",
86
       "      <td>247957.00000</td>\n",
87
       "      <td>247957.000000</td>\n",
88
       "      <td>247957.000000</td>\n",
89
       "      <td>247957.000000</td>\n",
90
       "    </tr>\n",
91
       "    <tr>\n",
92
       "      <th>mean</th>\n",
93
       "      <td>27.81011</td>\n",
94
       "      <td>2.377634</td>\n",
95
       "      <td>3.488121</td>\n",
96
       "      <td>7.100050</td>\n",
97
       "    </tr>\n",
98
       "    <tr>\n",
99
       "      <th>std</th>\n",
100
       "      <td>5.90583</td>\n",
101
       "      <td>6.479349</td>\n",
102
       "      <td>7.353138</td>\n",
103
       "      <td>1.320686</td>\n",
104
       "    </tr>\n",
105
       "    <tr>\n",
106
       "      <th>min</th>\n",
107
       "      <td>12.02000</td>\n",
108
       "      <td>0.000000</td>\n",
109
       "      <td>0.000000</td>\n",
110
       "      <td>1.000000</td>\n",
111
       "    </tr>\n",
112
       "    <tr>\n",
113
       "      <th>25%</th>\n",
114
       "      <td>23.74000</td>\n",
115
       "      <td>0.000000</td>\n",
116
       "      <td>0.000000</td>\n",
117
       "      <td>6.000000</td>\n",
118
       "    </tr>\n",
119
       "    <tr>\n",
120
       "      <th>50%</th>\n",
121
       "      <td>26.79000</td>\n",
122
       "      <td>0.000000</td>\n",
123
       "      <td>0.000000</td>\n",
124
       "      <td>7.000000</td>\n",
125
       "    </tr>\n",
126
       "    <tr>\n",
127
       "      <th>75%</th>\n",
128
       "      <td>30.79000</td>\n",
129
       "      <td>1.000000</td>\n",
130
       "      <td>3.000000</td>\n",
131
       "      <td>8.000000</td>\n",
132
       "    </tr>\n",
133
       "    <tr>\n",
134
       "      <th>max</th>\n",
135
       "      <td>94.85000</td>\n",
136
       "      <td>30.000000</td>\n",
137
       "      <td>30.000000</td>\n",
138
       "      <td>24.000000</td>\n",
139
       "    </tr>\n",
140
       "  </tbody>\n",
141
       "</table>\n",
142
       "</div>"
143
      ],
144
      "text/plain": [
145
       "                BMI  PhysicalHealth   MentalHealth      SleepTime\n",
146
       "count  247957.00000   247957.000000  247957.000000  247957.000000\n",
147
       "mean       27.81011        2.377634       3.488121       7.100050\n",
148
       "std         5.90583        6.479349       7.353138       1.320686\n",
149
       "min        12.02000        0.000000       0.000000       1.000000\n",
150
       "25%        23.74000        0.000000       0.000000       6.000000\n",
151
       "50%        26.79000        0.000000       0.000000       7.000000\n",
152
       "75%        30.79000        1.000000       3.000000       8.000000\n",
153
       "max        94.85000       30.000000      30.000000      24.000000"
154
      ]
155
     },
156
     "execution_count": 13,
157
     "metadata": {},
158
     "output_type": "execute_result"
159
    }
160
   ],
161
   "source": [
162
    "Active.describe()"
163
   ]
164
  },
165
  {
166
   "cell_type": "code",
167
   "execution_count": 14,
168
   "metadata": {},
169
   "outputs": [
170
    {
171
     "name": "stdout",
172
     "output_type": "stream",
173
     "text": [
174
      "Percentage of active people that don't have heart disease 92.9467609303226\n",
175
      "Percentage of active people that have heart disease 7.053239069677404\n"
176
     ]
177
    }
178
   ],
179
   "source": [
180
    "print(\"Percentage of active people that don't have heart disease\", 100 * Active[Active[\"HeartDisease\"] == \"No\"].size / Active.size )\n",
181
    "print(\"Percentage of active people that have heart disease\", 100 * Active[Active[\"HeartDisease\"] == \"Yes\"].size / Active.size )"
182
   ]
183
  },
184
  {
185
   "cell_type": "code",
186
   "execution_count": 15,
187
   "metadata": {},
188
   "outputs": [
189
    {
190
     "data": {
191
      "text/html": [
192
       "<div>\n",
193
       "<style scoped>\n",
194
       "    .dataframe tbody tr th:only-of-type {\n",
195
       "        vertical-align: middle;\n",
196
       "    }\n",
197
       "\n",
198
       "    .dataframe tbody tr th {\n",
199
       "        vertical-align: top;\n",
200
       "    }\n",
201
       "\n",
202
       "    .dataframe thead th {\n",
203
       "        text-align: right;\n",
204
       "    }\n",
205
       "</style>\n",
206
       "<table border=\"1\" class=\"dataframe\">\n",
207
       "  <thead>\n",
208
       "    <tr style=\"text-align: right;\">\n",
209
       "      <th></th>\n",
210
       "      <th>BMI</th>\n",
211
       "      <th>PhysicalHealth</th>\n",
212
       "      <th>MentalHealth</th>\n",
213
       "      <th>SleepTime</th>\n",
214
       "    </tr>\n",
215
       "  </thead>\n",
216
       "  <tbody>\n",
217
       "    <tr>\n",
218
       "      <th>count</th>\n",
219
       "      <td>71838.000000</td>\n",
220
       "      <td>71838.000000</td>\n",
221
       "      <td>71838.000000</td>\n",
222
       "      <td>71838.000000</td>\n",
223
       "    </tr>\n",
224
       "    <tr>\n",
225
       "      <th>mean</th>\n",
226
       "      <td>30.103974</td>\n",
227
       "      <td>6.802876</td>\n",
228
       "      <td>5.314374</td>\n",
229
       "      <td>7.086806</td>\n",
230
       "    </tr>\n",
231
       "    <tr>\n",
232
       "      <th>std</th>\n",
233
       "      <td>7.441630</td>\n",
234
       "      <td>11.014781</td>\n",
235
       "      <td>9.618466</td>\n",
236
       "      <td>1.777442</td>\n",
237
       "    </tr>\n",
238
       "    <tr>\n",
239
       "      <th>min</th>\n",
240
       "      <td>12.020000</td>\n",
241
       "      <td>0.000000</td>\n",
242
       "      <td>0.000000</td>\n",
243
       "      <td>1.000000</td>\n",
244
       "    </tr>\n",
245
       "    <tr>\n",
246
       "      <th>25%</th>\n",
247
       "      <td>25.020000</td>\n",
248
       "      <td>0.000000</td>\n",
249
       "      <td>0.000000</td>\n",
250
       "      <td>6.000000</td>\n",
251
       "    </tr>\n",
252
       "    <tr>\n",
253
       "      <th>50%</th>\n",
254
       "      <td>29.050000</td>\n",
255
       "      <td>0.000000</td>\n",
256
       "      <td>0.000000</td>\n",
257
       "      <td>7.000000</td>\n",
258
       "    </tr>\n",
259
       "    <tr>\n",
260
       "      <th>75%</th>\n",
261
       "      <td>33.910000</td>\n",
262
       "      <td>10.000000</td>\n",
263
       "      <td>5.000000</td>\n",
264
       "      <td>8.000000</td>\n",
265
       "    </tr>\n",
266
       "    <tr>\n",
267
       "      <th>max</th>\n",
268
       "      <td>94.660000</td>\n",
269
       "      <td>30.000000</td>\n",
270
       "      <td>30.000000</td>\n",
271
       "      <td>24.000000</td>\n",
272
       "    </tr>\n",
273
       "  </tbody>\n",
274
       "</table>\n",
275
       "</div>"
276
      ],
277
      "text/plain": [
278
       "                BMI  PhysicalHealth  MentalHealth     SleepTime\n",
279
       "count  71838.000000    71838.000000  71838.000000  71838.000000\n",
280
       "mean      30.103974        6.802876      5.314374      7.086806\n",
281
       "std        7.441630       11.014781      9.618466      1.777442\n",
282
       "min       12.020000        0.000000      0.000000      1.000000\n",
283
       "25%       25.020000        0.000000      0.000000      6.000000\n",
284
       "50%       29.050000        0.000000      0.000000      7.000000\n",
285
       "75%       33.910000       10.000000      5.000000      8.000000\n",
286
       "max       94.660000       30.000000     30.000000     24.000000"
287
      ]
288
     },
289
     "execution_count": 15,
290
     "metadata": {},
291
     "output_type": "execute_result"
292
    }
293
   ],
294
   "source": [
295
    "notActive.describe()"
296
   ]
297
  },
298
  {
299
   "cell_type": "code",
300
   "execution_count": 16,
301
   "metadata": {},
302
   "outputs": [
303
    {
304
     "name": "stdout",
305
     "output_type": "stream",
306
     "text": [
307
      "Percentage of non active people that don't have heart disease 86.24126506862663\n",
308
      "Percentage of non active people  that have heart disease 13.758734931373368\n"
309
     ]
310
    }
311
   ],
312
   "source": [
313
    "print(\"Percentage of non active people that don't have heart disease\", 100 * notActive[notActive[\"HeartDisease\"] == \"No\"].size / notActive.size )\n",
314
    "print(\"Percentage of non active people  that have heart disease\", 100 * notActive[notActive[\"HeartDisease\"] == \"Yes\"].size / notActive.size )"
315
   ]
316
  },
317
  {
318
   "cell_type": "code",
319
   "execution_count": 17,
320
   "metadata": {},
321
   "outputs": [
322
    {
323
     "data": {
324
      "text/plain": [
325
       "<AxesSubplot: >"
326
      ]
327
     },
328
     "execution_count": 17,
329
     "metadata": {},
330
     "output_type": "execute_result"
331
    },
332
    {
333
     "data": {
334
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNklEQVR4nO3df1DUdeLH8deCsEi14I8EGUm5q1SU/IFFZDlfE1l/XJNll5pTaqSXA01IZdEZaTZRdlaamv3Wm6s767q4UkJ2KPVS0qQo8dSzTsccW7QUVrGWFfb7R8PnXLEE243k/XzMMON+Pu9975uPf3ye89nPLja/3+8XAACAgcLaegEAAABthRACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYKwObb2AX7PGxkYdOHBAF1xwgWw2W1svBwAAtIDf79fRo0eVkJCgsLCfvuZDCP2EAwcOKDExsa2XAQAAzsJXX32lHj16/OQYQugnXHDBBZJ+OJAOhyOoc/t8PpWWliozM1MRERFBnRsAgHNBqM6FHo9HiYmJ1nn8pxBCP6Hp7TCHwxGSEIqOjpbD4SCEAABGCvW5sCW3tXCzNAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjNWhrRdguv5z18rbYGvrZbTY3sfHtvUSAAAIGq4IAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYrQqhwsJCXX755brgggvUrVs3jRs3Trt27QoY8/333ys7O1tdunTR+eefr/Hjx6u6ujpgzL59+zR27FhFR0erW7duuu+++3TixImAMevWrdPgwYNlt9t18cUXa8WKFc3Ws3TpUvXq1UtRUVFKS0vTli1bWr0WAABgrlaF0Pr165Wdna2PPvpILpdLPp9PmZmZqqurs8bMmjVL7777rt58802tX79eBw4c0I033mjtb2ho0NixY1VfX69NmzZp5cqVWrFihQoKCqwxe/bs0dixYzV8+HBVVlYqNzdXd9xxh9auXWuNWbVqlfLy8vTwww/rk08+0YABA+R0OnXw4MEWrwUAAJjN5vf7/Wf75EOHDqlbt25av369hg0bptraWl144YV6/fXXddNNN0mSdu7cqb59+6q8vFxXXnml3nvvPf3ud7/TgQMHFBcXJ0lavny57r//fh06dEiRkZG6//77tWbNGlVVVVmvNXHiRNXU1KikpESSlJaWpssvv1xLliyRJDU2NioxMVF33XWXHnjggRat5Uw8Ho9iYmJUW1srh8NxtofptHw+n4qLizV7S7i8Dbagzh1Kex8f29ZLAAC0E03nwjFjxigiIiJo87bm/N3h57xQbW2tJKlz586SpIqKCvl8PmVkZFhj+vTpo4suusiKj/LycqWkpFgRJElOp1MzZ87U9u3bNWjQIJWXlwfM0TQmNzdXklRfX6+Kigrl5+db+8PCwpSRkaHy8vIWr+VUXq9XXq/XeuzxeCT98B/l8/nO6hj9mKb57GFn3aFtItjHAQBgrqZzSqjOsS1x1iHU2Nio3NxcDR06VP3795ckud1uRUZGKjY2NmBsXFyc3G63NebkCGra37Tvp8Z4PB599913OnLkiBoaGk47ZufOnS1ey6kKCws1b968ZttLS0sVHR39Y4fiZ5k/pDEk84ZKcXFxWy8BANDOuFyuoM53/PjxFo896xDKzs5WVVWVPvzww7Od4lcnPz9feXl51mOPx6PExERlZmaG5K0xl8ulh7aGydt47rw1VjXX2dZLAAC0E03nwpEjRwb9rbGWOqsQysnJ0erVq7Vhwwb16NHD2h4fH6/6+nrV1NQEXImprq5WfHy8NebUT3c1fZLr5DGnfrqrurpaDodDHTt2VHh4uMLDw0875uQ5zrSWU9ntdtnt9mbbIyIigvofdDJvo+2cukcoVMcBAGCuYJ9nWzNXqz415vf7lZOTo7ffflvvv/++kpKSAvanpqYqIiJCZWVl1rZdu3Zp3759Sk9PlySlp6dr27ZtAZ/ucrlccjgcSk5OtsacPEfTmKY5IiMjlZqaGjCmsbFRZWVl1piWrAUAAJitVVeEsrOz9frrr+uf//ynLrjgAutem5iYGHXs2FExMTHKyspSXl6eOnfuLIfDobvuukvp6enWzcmZmZlKTk7WrbfeqgULFsjtdmvOnDnKzs62rsbceeedWrJkiWbPnq3bb79d77//vt544w2tWbPGWkteXp6mTJmiIUOG6IorrtAzzzyjuro6TZs2zVrTmdYCAADM1qoQeu655yRJ//d//xew/dVXX9XUqVMlSU8//bTCwsI0fvx4eb1eOZ1OLVu2zBobHh6u1atXa+bMmUpPT9d5552nKVOm6JFHHrHGJCUlac2aNZo1a5YWLVqkHj166KWXXpLT+b/7UyZMmKBDhw6poKBAbrdbAwcOVElJScAN1GdaCwAAMNvP+h6h9o7vEWqO7xECAATLr+F7hPhbYwAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWK0OoQ0bNui6665TQkKCbDabioqKAvZPnTpVNpst4GfUqFEBYw4fPqzJkyfL4XAoNjZWWVlZOnbsWMCYzz//XNdcc42ioqKUmJioBQsWNFvLm2++qT59+igqKkopKSkqLi4O2O/3+1VQUKDu3burY8eOysjI0O7du1v7KwMAgHaq1SFUV1enAQMGaOnSpT86ZtSoUfr666+tn7/+9a8B+ydPnqzt27fL5XJp9erV2rBhg2bMmGHt93g8yszMVM+ePVVRUaEnn3xSc+fO1QsvvGCN2bRpkyZNmqSsrCx9+umnGjdunMaNG6eqqiprzIIFC7R48WItX75cmzdv1nnnnSen06nvv/++tb82AABohzq09gmjR4/W6NGjf3KM3W5XfHz8afft2LFDJSUl+vjjjzVkyBBJ0rPPPqsxY8boT3/6kxISEvTaa6+pvr5er7zyiiIjI9WvXz9VVlbqqaeesoJp0aJFGjVqlO677z5J0vz58+VyubRkyRItX75cfr9fzzzzjObMmaPrr79ekvTnP/9ZcXFxKioq0sSJE1v7qwMAgHam1SHUEuvWrVO3bt3UqVMnXXvttXr00UfVpUsXSVJ5ebliY2OtCJKkjIwMhYWFafPmzbrhhhtUXl6uYcOGKTIy0hrjdDr1xBNP6MiRI+rUqZPKy8uVl5cX8LpOp9N6q27Pnj1yu93KyMiw9sfExCgtLU3l5eWnDSGv1yuv12s99ng8kiSfzyefz/fzD8xJmuazh/mDOm+oBfs4AADM1XROCdU5tiWCHkKjRo3SjTfeqKSkJH355Zd68MEHNXr0aJWXlys8PFxut1vdunULXESHDurcubPcbrckye12KykpKWBMXFycta9Tp05yu93WtpPHnDzHyc873ZhTFRYWat68ec22l5aWKjo6uqWHoFXmD2kMybyhcup9WAAA/Fwulyuo8x0/frzFY4MeQidfaUlJSdFll12m3/72t1q3bp1GjBgR7JcLqvz8/ICrTB6PR4mJicrMzJTD4Qjqa/l8PrlcLj20NUzeRltQ5w6lqrnOtl4CAKCdaDoXjhw5UhEREUGbt+kdnZYIyVtjJ/vNb36jrl276osvvtCIESMUHx+vgwcPBow5ceKEDh8+bN1XFB8fr+rq6oAxTY/PNObk/U3bunfvHjBm4MCBp12r3W6X3W5vtj0iIiKo/0En8zba5G04d0IoVMcBAGCuYJ9nWzNXyL9HaP/+/fr222+tGElPT1dNTY0qKiqsMe+//74aGxuVlpZmjdmwYUPAe3wul0u9e/dWp06drDFlZWUBr+VyuZSeni5JSkpKUnx8fMAYj8ejzZs3W2MAAIDZWh1Cx44dU2VlpSorKyX9cFNyZWWl9u3bp2PHjum+++7TRx99pL1796qsrEzXX3+9Lr74YjmdP7yl0rdvX40aNUrTp0/Xli1btHHjRuXk5GjixIlKSEiQJN1yyy2KjIxUVlaWtm/frlWrVmnRokUBb1vdfffdKikp0cKFC7Vz507NnTtXW7duVU5OjiTJZrMpNzdXjz76qN555x1t27ZNt912mxISEjRu3LifedgAAEB70Oq3xrZu3arhw4dbj5viZMqUKXruuef0+eefa+XKlaqpqVFCQoIyMzM1f/78gLecXnvtNeXk5GjEiBEKCwvT+PHjtXjxYmt/TEyMSktLlZ2drdTUVHXt2lUFBQUB3zV01VVX6fXXX9ecOXP04IMP6pJLLlFRUZH69+9vjZk9e7bq6uo0Y8YM1dTU6Oqrr1ZJSYmioqJa+2sDAIB2yOb3+8+tz2//gjwej2JiYlRbWxuSm6WLi4s1e0v4OXWP0N7Hx7b1EgAA7UTTuXDMmDFBv1m6pedv/tYYAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWq0Now4YNuu6665SQkCCbzaaioqKA/X6/XwUFBerevbs6duyojIwM7d69O2DM4cOHNXnyZDkcDsXGxiorK0vHjh0LGPP555/rmmuuUVRUlBITE7VgwYJma3nzzTfVp08fRUVFKSUlRcXFxa1eCwAAMFerQ6iurk4DBgzQ0qVLT7t/wYIFWrx4sZYvX67NmzfrvPPOk9Pp1Pfff2+NmTx5srZv3y6Xy6XVq1drw4YNmjFjhrXf4/EoMzNTPXv2VEVFhZ588knNnTtXL7zwgjVm06ZNmjRpkrKysvTpp59q3LhxGjdunKqqqlq1FgAAYC6b3+/3n/WTbTa9/fbbGjdunKQfrsAkJCTonnvu0b333itJqq2tVVxcnFasWKGJEydqx44dSk5O1scff6whQ4ZIkkpKSjRmzBjt379fCQkJeu655/THP/5RbrdbkZGRkqQHHnhARUVF2rlzpyRpwoQJqqur0+rVq631XHnllRo4cKCWL1/eorWcicfjUUxMjGpra+VwOM72MJ2Wz+dTcXGxZm8Jl7fBFtS5Q2nv42PbegkAgHai6Vw4ZswYRUREBG3e1py/g3qP0J49e+R2u5WRkWFti4mJUVpamsrLyyVJ5eXlio2NtSJIkjIyMhQWFqbNmzdbY4YNG2ZFkCQ5nU7t2rVLR44cscac/DpNY5pepyVrAQAAZusQzMncbrckKS4uLmB7XFyctc/tdqtbt26Bi+jQQZ07dw4Yk5SU1GyOpn2dOnWS2+0+4+ucaS2n8nq98nq91mOPxyPph2L1+Xw/9au3WtN89rCzviDXJoJ9HAAA5mo6p4TqHNsSQQ2hc11hYaHmzZvXbHtpaamio6ND8przhzSGZN5QOfWGdAAAfi6XyxXU+Y4fP97isUENofj4eElSdXW1unfvbm2vrq7WwIEDrTEHDx4MeN6JEyd0+PBh6/nx8fGqrq4OGNP0+ExjTt5/prWcKj8/X3l5edZjj8ejxMREZWZmhuQeIZfLpYe2hsnbeO7cI1Q119nWSwAAtBNN58KRI0cG/R6hlgpqCCUlJSk+Pl5lZWVWbHg8Hm3evFkzZ86UJKWnp6umpkYVFRVKTU2VJL3//vtqbGxUWlqaNeaPf/yjfD6fdWBcLpd69+6tTp06WWPKysqUm5trvb7L5VJ6enqL13Iqu90uu93ebHtERERQ/4NO5m20nVM3S4fqOAAAzBXs82xr5mr1zdLHjh1TZWWlKisrJf1wU3JlZaX27dsnm82m3NxcPfroo3rnnXe0bds23XbbbUpISLA+Wda3b1+NGjVK06dP15YtW7Rx40bl5ORo4sSJSkhIkCTdcsstioyMVFZWlrZv365Vq1Zp0aJFAVdr7r77bpWUlGjhwoXauXOn5s6dq61btyonJ0eSWrQWAABgtlZfEdq6dauGDx9uPW6KkylTpmjFihWaPXu26urqNGPGDNXU1Ojqq69WSUmJoqKirOe89tprysnJ0YgRIxQWFqbx48dr8eLF1v6YmBiVlpYqOztbqamp6tq1qwoKCgK+a+iqq67S66+/rjlz5ujBBx/UJZdcoqKiIvXv398a05K1AAAAc/2s7xFq7/geoeb4HiEAQLC0u+8RAgAAOJcQQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWEEPoblz58pmswX89OnTx9r//fffKzs7W126dNH555+v8ePHq7q6OmCOffv2aezYsYqOjla3bt1033336cSJEwFj1q1bp8GDB8tut+viiy/WihUrmq1l6dKl6tWrl6KiopSWlqYtW7YE+9cFAADnsJBcEerXr5++/vpr6+fDDz+09s2aNUvvvvuu3nzzTa1fv14HDhzQjTfeaO1vaGjQ2LFjVV9fr02bNmnlypVasWKFCgoKrDF79uzR2LFjNXz4cFVWVio3N1d33HGH1q5da41ZtWqV8vLy9PDDD+uTTz7RgAED5HQ6dfDgwVD8ygAA4BwUkhDq0KGD4uPjrZ+uXbtKkmpra/Xyyy/rqaee0rXXXqvU1FS9+uqr2rRpkz766CNJUmlpqf7973/rL3/5iwYOHKjRo0dr/vz5Wrp0qerr6yVJy5cvV1JSkhYuXKi+ffsqJydHN910k55++mlrDU899ZSmT5+uadOmKTk5WcuXL1d0dLReeeWVUPzKAADgHNQhFJPu3r1bCQkJioqKUnp6ugoLC3XRRRepoqJCPp9PGRkZ1tg+ffrooosuUnl5ua688kqVl5crJSVFcXFx1hin06mZM2dq+/btGjRokMrLywPmaBqTm5srSaqvr1dFRYXy8/Ot/WFhYcrIyFB5efmPrtvr9crr9VqPPR6PJMnn88nn8/2sY3KqpvnsYf6gzhtqwT4OAABzNZ1TQnWObYmgh1BaWppWrFih3r176+uvv9a8efN0zTXXqKqqSm63W5GRkYqNjQ14TlxcnNxutyTJ7XYHRFDT/qZ9PzXG4/Hou+++05EjR9TQ0HDaMTt37vzRtRcWFmrevHnNtpeWlio6OrplB6CV5g9pDMm8oVJcXNzWSwAAtDMulyuo8x0/frzFY4MeQqNHj7b+fdlllyktLU09e/bUG2+8oY4dOwb75YIqPz9feXl51mOPx6PExERlZmbK4XAE9bV8Pp9cLpce2homb6MtqHOHUtVcZ1svAQDQTjSdC0eOHKmIiIigzdv0jk5LhOStsZPFxsbq0ksv1RdffKGRI0eqvr5eNTU1AVeFqqurFR8fL0mKj49v9umupk+VnTzm1E+aVVdXy+FwqGPHjgoPD1d4ePhpxzTNcTp2u112u73Z9oiIiKD+B53M22iTt+HcCaFQHQcAgLmCfZ5tzVwh/x6hY8eO6csvv1T37t2VmpqqiIgIlZWVWft37dqlffv2KT09XZKUnp6ubdu2BXy6y+VyyeFwKDk52Rpz8hxNY5rmiIyMVGpqasCYxsZGlZWVWWMAAACCHkL33nuv1q9fr71792rTpk264YYbFB4erkmTJikmJkZZWVnKy8vTBx98oIqKCk2bNk3p6em68sorJUmZmZlKTk7Wrbfeqs8++0xr167VnDlzlJ2dbV2tufPOO/Xf//5Xs2fP1s6dO7Vs2TK98cYbmjVrlrWOvLw8vfjii1q5cqV27NihmTNnqq6uTtOmTQv2rwwAAM5RQX9rbP/+/Zo0aZK+/fZbXXjhhbr66qv10Ucf6cILL5QkPf300woLC9P48ePl9XrldDq1bNky6/nh4eFavXq1Zs6cqfT0dJ133nmaMmWKHnnkEWtMUlKS1qxZo1mzZmnRokXq0aOHXnrpJTmd/7t/ZcKECTp06JAKCgrkdrs1cOBAlZSUNLuBGgAAmMvm9/vPrc9v/4I8Ho9iYmJUW1sbkpuli4uLNXtL+Dl1j9Dex8e29RIAAO1E07lwzJgxQb9ZuqXnb/7WGAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjdWjrBQAAgODo9cCatl5Cq9jD/VpwRduugStCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNDSpUvVq1cvRUVFKS0tTVu2bGnrJQEAgF+Bdh9Cq1atUl5enh5++GF98sknGjBggJxOpw4ePNjWSwMAAG2s3YfQU089penTp2vatGlKTk7W8uXLFR0drVdeeaWtlwYAANpYh7ZeQCjV19eroqJC+fn51rawsDBlZGSovLy82Xiv1yuv12s9rq2tlSQdPnxYPp8vqGvz+Xw6fvy4OvjC1NBoC+rcofTtt9+29RIAAD+iw4m6tl5Cq3Ro9Ov48UZ9++23ioiICNq8R48elST5/f4zryFor/or9M0336ihoUFxcXEB2+Pi4rRz585m4wsLCzVv3rxm25OSkkK2xnNN14VtvQIAQHtySwjnPnr0qGJiYn5yTLsOodbKz89XXl6e9bixsVGHDx9Wly5dZLMF96qNx+NRYmKivvrqKzkcjqDODQDAuSBU50K/36+jR48qISHhjGPbdQh17dpV4eHhqq6uDtheXV2t+Pj4ZuPtdrvsdnvAttjY2FAuUQ6HgxACABgtFOfCM10JatKub5aOjIxUamqqysrKrG2NjY0qKytTenp6G64MAAD8GrTrK0KSlJeXpylTpmjIkCG64oor9Mwzz6iurk7Tpk1r66UBAIA21u5DaMKECTp06JAKCgrkdrs1cOBAlZSUNLuB+pdmt9v18MMPN3srDgAAU/wazoU2f0s+WwYAANAOtet7hAAAAH4KIQQAAIxFCAEAAGMRQgAAwFiEUAhNnTpVNptNjz/+eMD2oqKioH9TNQAAvxZ+v18ZGRlyOp3N9i1btkyxsbHav39/G6ysOUIoxKKiovTEE0/oyJEjbb0UAAB+ETabTa+++qo2b96s559/3tq+Z88ezZ49W88++6x69OjRhiv8H0IoxDIyMhQfH6/CwsIfHfPWW2+pX79+stvt6tWrlxYu5C+bAgDObYmJiVq0aJHuvfde7dmzR36/X1lZWcrMzNSgQYM0evRonX/++YqLi9Ott96qb775xnru3//+d6WkpKhjx47q0qWLMjIyVFdXF5J1EkIhFh4erscee0zPPvvsaS8DVlRU6Oabb9bEiRO1bds2zZ07Vw899JBWrFjxyy8WAIAgmjJlikaMGKHbb79dS5YsUVVVlZ5//nlde+21GjRokLZu3aqSkhJVV1fr5ptvliR9/fXXmjRpkm6//Xbt2LFD69at04033qhQfe0hX6gYQlOnTlVNTY2KioqUnp6u5ORkvfzyyyoqKtINN9wgv9+vyZMn69ChQyotLbWeN3v2bK1Zs0bbt29vw9UDAPDzHTx4UP369dPhw4f11ltvqaqqSv/617+0du1aa8z+/fuVmJioXbt26dixY0pNTdXevXvVs2fPkK+PK0K/kCeeeEIrV67Ujh07Arbv2LFDQ4cODdg2dOhQ7d69Ww0NDb/kEgEACLpu3brpD3/4g/r27atx48bps88+0wcffKDzzz/f+unTp48k6csvv9SAAQM0YsQIpaSk6Pe//71efPHFkN5nSwj9QoYNGyan06n8/Py2XgoAAL+oDh06qEOHH/686bFjx3TdddepsrIy4Gf37t0aNmyYwsPD5XK59N577yk5OVnPPvusevfurT179oRmbSGZFaf1+OOPa+DAgerdu7e1rW/fvtq4cWPAuI0bN+rSSy9VeHj4L71EAABCavDgwXrrrbfUq1cvK45OZbPZNHToUA0dOlQFBQXq2bOn3n77beXl5QV9PVwR+gWlpKRo8uTJWrx4sbXtnnvuUVlZmebPn6///Oc/WrlypZYsWaJ77723DVcKAEBoZGdn6/Dhw5o0aZI+/vhjffnll1q7dq2mTZumhoYGbd68WY899pi2bt2qffv26R//+IcOHTqkvn37hmQ9hNAv7JFHHlFjY6P1ePDgwXrjjTf0t7/9Tf3791dBQYEeeeQRTZ06te0WCQBAiCQkJGjjxo1qaGhQZmamUlJSlJubq9jYWIWFhcnhcGjDhg0aM2aMLr30Us2ZM0cLFy7U6NGjQ7IePjUGAACMxRUhAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsf4fQ/O4yZMaYUwAAAAASUVORK5CYII=",
335
      "text/plain": [
336
       "<Figure size 640x480 with 1 Axes>"
337
      ]
338
     },
339
     "metadata": {},
340
     "output_type": "display_data"
341
    }
342
   ],
343
   "source": [
344
    "Active['HeartDisease'].hist()"
345
   ]
346
  },
347
  {
348
   "cell_type": "code",
349
   "execution_count": 18,
350
   "metadata": {},
351
   "outputs": [
352
    {
353
     "data": {
354
      "text/plain": [
355
       "<AxesSubplot: >"
356
      ]
357
     },
358
     "execution_count": 18,
359
     "metadata": {},
360
     "output_type": "execute_result"
361
    },
362
    {
363
     "data": {
364
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNklEQVR4nO3df1DUdeLH8deCsEi14I8EGUm5q1SU/IFFZDlfE1l/XJNll5pTaqSXA01IZdEZaTZRdlaamv3Wm6s767q4UkJ2KPVS0qQo8dSzTsccW7QUVrGWFfb7R8PnXLEE243k/XzMMON+Pu9975uPf3ye89nPLja/3+8XAACAgcLaegEAAABthRACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYKwObb2AX7PGxkYdOHBAF1xwgWw2W1svBwAAtIDf79fRo0eVkJCgsLCfvuZDCP2EAwcOKDExsa2XAQAAzsJXX32lHj16/OQYQugnXHDBBZJ+OJAOhyOoc/t8PpWWliozM1MRERFBnRsAgHNBqM6FHo9HiYmJ1nn8pxBCP6Hp7TCHwxGSEIqOjpbD4SCEAABGCvW5sCW3tXCzNAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjNWhrRdguv5z18rbYGvrZbTY3sfHtvUSAAAIGq4IAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYrQqhwsJCXX755brgggvUrVs3jRs3Trt27QoY8/333ys7O1tdunTR+eefr/Hjx6u6ujpgzL59+zR27FhFR0erW7duuu+++3TixImAMevWrdPgwYNlt9t18cUXa8WKFc3Ws3TpUvXq1UtRUVFKS0vTli1bWr0WAABgrlaF0Pr165Wdna2PPvpILpdLPp9PmZmZqqurs8bMmjVL7777rt58802tX79eBw4c0I033mjtb2ho0NixY1VfX69NmzZp5cqVWrFihQoKCqwxe/bs0dixYzV8+HBVVlYqNzdXd9xxh9auXWuNWbVqlfLy8vTwww/rk08+0YABA+R0OnXw4MEWrwUAAJjN5vf7/Wf75EOHDqlbt25av369hg0bptraWl144YV6/fXXddNNN0mSdu7cqb59+6q8vFxXXnml3nvvPf3ud7/TgQMHFBcXJ0lavny57r//fh06dEiRkZG6//77tWbNGlVVVVmvNXHiRNXU1KikpESSlJaWpssvv1xLliyRJDU2NioxMVF33XWXHnjggRat5Uw8Ho9iYmJUW1srh8NxtofptHw+n4qLizV7S7i8Dbagzh1Kex8f29ZLAAC0E03nwjFjxigiIiJo87bm/N3h57xQbW2tJKlz586SpIqKCvl8PmVkZFhj+vTpo4suusiKj/LycqWkpFgRJElOp1MzZ87U9u3bNWjQIJWXlwfM0TQmNzdXklRfX6+Kigrl5+db+8PCwpSRkaHy8vIWr+VUXq9XXq/XeuzxeCT98B/l8/nO6hj9mKb57GFn3aFtItjHAQBgrqZzSqjOsS1x1iHU2Nio3NxcDR06VP3795ckud1uRUZGKjY2NmBsXFyc3G63NebkCGra37Tvp8Z4PB599913OnLkiBoaGk47ZufOnS1ey6kKCws1b968ZttLS0sVHR39Y4fiZ5k/pDEk84ZKcXFxWy8BANDOuFyuoM53/PjxFo896xDKzs5WVVWVPvzww7Od4lcnPz9feXl51mOPx6PExERlZmaG5K0xl8ulh7aGydt47rw1VjXX2dZLAAC0E03nwpEjRwb9rbGWOqsQysnJ0erVq7Vhwwb16NHD2h4fH6/6+nrV1NQEXImprq5WfHy8NebUT3c1fZLr5DGnfrqrurpaDodDHTt2VHh4uMLDw0875uQ5zrSWU9ntdtnt9mbbIyIigvofdDJvo+2cukcoVMcBAGCuYJ9nWzNXqz415vf7lZOTo7ffflvvv/++kpKSAvanpqYqIiJCZWVl1rZdu3Zp3759Sk9PlySlp6dr27ZtAZ/ucrlccjgcSk5OtsacPEfTmKY5IiMjlZqaGjCmsbFRZWVl1piWrAUAAJitVVeEsrOz9frrr+uf//ynLrjgAutem5iYGHXs2FExMTHKyspSXl6eOnfuLIfDobvuukvp6enWzcmZmZlKTk7WrbfeqgULFsjtdmvOnDnKzs62rsbceeedWrJkiWbPnq3bb79d77//vt544w2tWbPGWkteXp6mTJmiIUOG6IorrtAzzzyjuro6TZs2zVrTmdYCAADM1qoQeu655yRJ//d//xew/dVXX9XUqVMlSU8//bTCwsI0fvx4eb1eOZ1OLVu2zBobHh6u1atXa+bMmUpPT9d5552nKVOm6JFHHrHGJCUlac2aNZo1a5YWLVqkHj166KWXXpLT+b/7UyZMmKBDhw6poKBAbrdbAwcOVElJScAN1GdaCwAAMNvP+h6h9o7vEWqO7xECAATLr+F7hPhbYwAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWK0OoQ0bNui6665TQkKCbDabioqKAvZPnTpVNpst4GfUqFEBYw4fPqzJkyfL4XAoNjZWWVlZOnbsWMCYzz//XNdcc42ioqKUmJioBQsWNFvLm2++qT59+igqKkopKSkqLi4O2O/3+1VQUKDu3burY8eOysjI0O7du1v7KwMAgHaq1SFUV1enAQMGaOnSpT86ZtSoUfr666+tn7/+9a8B+ydPnqzt27fL5XJp9erV2rBhg2bMmGHt93g8yszMVM+ePVVRUaEnn3xSc+fO1QsvvGCN2bRpkyZNmqSsrCx9+umnGjdunMaNG6eqqiprzIIFC7R48WItX75cmzdv1nnnnSen06nvv/++tb82AABohzq09gmjR4/W6NGjf3KM3W5XfHz8afft2LFDJSUl+vjjjzVkyBBJ0rPPPqsxY8boT3/6kxISEvTaa6+pvr5er7zyiiIjI9WvXz9VVlbqqaeesoJp0aJFGjVqlO677z5J0vz58+VyubRkyRItX75cfr9fzzzzjObMmaPrr79ekvTnP/9ZcXFxKioq0sSJE1v7qwMAgHam1SHUEuvWrVO3bt3UqVMnXXvttXr00UfVpUsXSVJ5ebliY2OtCJKkjIwMhYWFafPmzbrhhhtUXl6uYcOGKTIy0hrjdDr1xBNP6MiRI+rUqZPKy8uVl5cX8LpOp9N6q27Pnj1yu93KyMiw9sfExCgtLU3l5eWnDSGv1yuv12s99ng8kiSfzyefz/fzD8xJmuazh/mDOm+oBfs4AADM1XROCdU5tiWCHkKjRo3SjTfeqKSkJH355Zd68MEHNXr0aJWXlys8PFxut1vdunULXESHDurcubPcbrckye12KykpKWBMXFycta9Tp05yu93WtpPHnDzHyc873ZhTFRYWat68ec22l5aWKjo6uqWHoFXmD2kMybyhcup9WAAA/Fwulyuo8x0/frzFY4MeQidfaUlJSdFll12m3/72t1q3bp1GjBgR7JcLqvz8/ICrTB6PR4mJicrMzJTD4Qjqa/l8PrlcLj20NUzeRltQ5w6lqrnOtl4CAKCdaDoXjhw5UhEREUGbt+kdnZYIyVtjJ/vNb36jrl276osvvtCIESMUHx+vgwcPBow5ceKEDh8+bN1XFB8fr+rq6oAxTY/PNObk/U3bunfvHjBm4MCBp12r3W6X3W5vtj0iIiKo/0En8zba5G04d0IoVMcBAGCuYJ9nWzNXyL9HaP/+/fr222+tGElPT1dNTY0qKiqsMe+//74aGxuVlpZmjdmwYUPAe3wul0u9e/dWp06drDFlZWUBr+VyuZSeni5JSkpKUnx8fMAYj8ejzZs3W2MAAIDZWh1Cx44dU2VlpSorKyX9cFNyZWWl9u3bp2PHjum+++7TRx99pL1796qsrEzXX3+9Lr74YjmdP7yl0rdvX40aNUrTp0/Xli1btHHjRuXk5GjixIlKSEiQJN1yyy2KjIxUVlaWtm/frlWrVmnRokUBb1vdfffdKikp0cKFC7Vz507NnTtXW7duVU5OjiTJZrMpNzdXjz76qN555x1t27ZNt912mxISEjRu3LifedgAAEB70Oq3xrZu3arhw4dbj5viZMqUKXruuef0+eefa+XKlaqpqVFCQoIyMzM1f/78gLecXnvtNeXk5GjEiBEKCwvT+PHjtXjxYmt/TEyMSktLlZ2drdTUVHXt2lUFBQUB3zV01VVX6fXXX9ecOXP04IMP6pJLLlFRUZH69+9vjZk9e7bq6uo0Y8YM1dTU6Oqrr1ZJSYmioqJa+2sDAIB2yOb3+8+tz2//gjwej2JiYlRbWxuSm6WLi4s1e0v4OXWP0N7Hx7b1EgAA7UTTuXDMmDFBv1m6pedv/tYYAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWq0Now4YNuu6665SQkCCbzaaioqKA/X6/XwUFBerevbs6duyojIwM7d69O2DM4cOHNXnyZDkcDsXGxiorK0vHjh0LGPP555/rmmuuUVRUlBITE7VgwYJma3nzzTfVp08fRUVFKSUlRcXFxa1eCwAAMFerQ6iurk4DBgzQ0qVLT7t/wYIFWrx4sZYvX67NmzfrvPPOk9Pp1Pfff2+NmTx5srZv3y6Xy6XVq1drw4YNmjFjhrXf4/EoMzNTPXv2VEVFhZ588knNnTtXL7zwgjVm06ZNmjRpkrKysvTpp59q3LhxGjdunKqqqlq1FgAAYC6b3+/3n/WTbTa9/fbbGjdunKQfrsAkJCTonnvu0b333itJqq2tVVxcnFasWKGJEydqx44dSk5O1scff6whQ4ZIkkpKSjRmzBjt379fCQkJeu655/THP/5RbrdbkZGRkqQHHnhARUVF2rlzpyRpwoQJqqur0+rVq631XHnllRo4cKCWL1/eorWcicfjUUxMjGpra+VwOM72MJ2Wz+dTcXGxZm8Jl7fBFtS5Q2nv42PbegkAgHai6Vw4ZswYRUREBG3e1py/g3qP0J49e+R2u5WRkWFti4mJUVpamsrLyyVJ5eXlio2NtSJIkjIyMhQWFqbNmzdbY4YNG2ZFkCQ5nU7t2rVLR44cscac/DpNY5pepyVrAQAAZusQzMncbrckKS4uLmB7XFyctc/tdqtbt26Bi+jQQZ07dw4Yk5SU1GyOpn2dOnWS2+0+4+ucaS2n8nq98nq91mOPxyPph2L1+Xw/9au3WtN89rCzviDXJoJ9HAAA5mo6p4TqHNsSQQ2hc11hYaHmzZvXbHtpaamio6ND8przhzSGZN5QOfWGdAAAfi6XyxXU+Y4fP97isUENofj4eElSdXW1unfvbm2vrq7WwIEDrTEHDx4MeN6JEyd0+PBh6/nx8fGqrq4OGNP0+ExjTt5/prWcKj8/X3l5edZjj8ejxMREZWZmhuQeIZfLpYe2hsnbeO7cI1Q119nWSwAAtBNN58KRI0cG/R6hlgpqCCUlJSk+Pl5lZWVWbHg8Hm3evFkzZ86UJKWnp6umpkYVFRVKTU2VJL3//vtqbGxUWlqaNeaPf/yjfD6fdWBcLpd69+6tTp06WWPKysqUm5trvb7L5VJ6enqL13Iqu90uu93ebHtERERQ/4NO5m20nVM3S4fqOAAAzBXs82xr5mr1zdLHjh1TZWWlKisrJf1wU3JlZaX27dsnm82m3NxcPfroo3rnnXe0bds23XbbbUpISLA+Wda3b1+NGjVK06dP15YtW7Rx40bl5ORo4sSJSkhIkCTdcsstioyMVFZWlrZv365Vq1Zp0aJFAVdr7r77bpWUlGjhwoXauXOn5s6dq61btyonJ0eSWrQWAABgtlZfEdq6dauGDx9uPW6KkylTpmjFihWaPXu26urqNGPGDNXU1Ojqq69WSUmJoqKirOe89tprysnJ0YgRIxQWFqbx48dr8eLF1v6YmBiVlpYqOztbqamp6tq1qwoKCgK+a+iqq67S66+/rjlz5ujBBx/UJZdcoqKiIvXv398a05K1AAAAc/2s7xFq7/geoeb4HiEAQLC0u+8RAgAAOJcQQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWEEPoblz58pmswX89OnTx9r//fffKzs7W126dNH555+v8ePHq7q6OmCOffv2aezYsYqOjla3bt1033336cSJEwFj1q1bp8GDB8tut+viiy/WihUrmq1l6dKl6tWrl6KiopSWlqYtW7YE+9cFAADnsJBcEerXr5++/vpr6+fDDz+09s2aNUvvvvuu3nzzTa1fv14HDhzQjTfeaO1vaGjQ2LFjVV9fr02bNmnlypVasWKFCgoKrDF79uzR2LFjNXz4cFVWVio3N1d33HGH1q5da41ZtWqV8vLy9PDDD+uTTz7RgAED5HQ6dfDgwVD8ygAA4BwUkhDq0KGD4uPjrZ+uXbtKkmpra/Xyyy/rqaee0rXXXqvU1FS9+uqr2rRpkz766CNJUmlpqf7973/rL3/5iwYOHKjRo0dr/vz5Wrp0qerr6yVJy5cvV1JSkhYuXKi+ffsqJydHN910k55++mlrDU899ZSmT5+uadOmKTk5WcuXL1d0dLReeeWVUPzKAADgHNQhFJPu3r1bCQkJioqKUnp6ugoLC3XRRRepoqJCPp9PGRkZ1tg+ffrooosuUnl5ua688kqVl5crJSVFcXFx1hin06mZM2dq+/btGjRokMrLywPmaBqTm5srSaqvr1dFRYXy8/Ot/WFhYcrIyFB5efmPrtvr9crr9VqPPR6PJMnn88nn8/2sY3KqpvnsYf6gzhtqwT4OAABzNZ1TQnWObYmgh1BaWppWrFih3r176+uvv9a8efN0zTXXqKqqSm63W5GRkYqNjQ14TlxcnNxutyTJ7XYHRFDT/qZ9PzXG4/Hou+++05EjR9TQ0HDaMTt37vzRtRcWFmrevHnNtpeWlio6OrplB6CV5g9pDMm8oVJcXNzWSwAAtDMulyuo8x0/frzFY4MeQqNHj7b+fdlllyktLU09e/bUG2+8oY4dOwb75YIqPz9feXl51mOPx6PExERlZmbK4XAE9bV8Pp9cLpce2homb6MtqHOHUtVcZ1svAQDQTjSdC0eOHKmIiIigzdv0jk5LhOStsZPFxsbq0ksv1RdffKGRI0eqvr5eNTU1AVeFqqurFR8fL0mKj49v9umupk+VnTzm1E+aVVdXy+FwqGPHjgoPD1d4ePhpxzTNcTp2u112u73Z9oiIiKD+B53M22iTt+HcCaFQHQcAgLmCfZ5tzVwh/x6hY8eO6csvv1T37t2VmpqqiIgIlZWVWft37dqlffv2KT09XZKUnp6ubdu2BXy6y+VyyeFwKDk52Rpz8hxNY5rmiIyMVGpqasCYxsZGlZWVWWMAAACCHkL33nuv1q9fr71792rTpk264YYbFB4erkmTJikmJkZZWVnKy8vTBx98oIqKCk2bNk3p6em68sorJUmZmZlKTk7Wrbfeqs8++0xr167VnDlzlJ2dbV2tufPOO/Xf//5Xs2fP1s6dO7Vs2TK98cYbmjVrlrWOvLw8vfjii1q5cqV27NihmTNnqq6uTtOmTQv2rwwAAM5RQX9rbP/+/Zo0aZK+/fZbXXjhhbr66qv10Ucf6cILL5QkPf300woLC9P48ePl9XrldDq1bNky6/nh4eFavXq1Zs6cqfT0dJ133nmaMmWKHnnkEWtMUlKS1qxZo1mzZmnRokXq0aOHXnrpJTmd/7t/ZcKECTp06JAKCgrkdrs1cOBAlZSUNLuBGgAAmMvm9/vPrc9v/4I8Ho9iYmJUW1sbkpuli4uLNXtL+Dl1j9Dex8e29RIAAO1E07lwzJgxQb9ZuqXnb/7WGAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjdWjrBQAAgODo9cCatl5Cq9jD/VpwRduugStCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNDSpUvVq1cvRUVFKS0tTVu2bGnrJQEAgF+Bdh9Cq1atUl5enh5++GF98sknGjBggJxOpw4ePNjWSwMAAG2s3YfQU089penTp2vatGlKTk7W8uXLFR0drVdeeaWtlwYAANpYh7ZeQCjV19eroqJC+fn51rawsDBlZGSovLy82Xiv1yuv12s9rq2tlSQdPnxYPp8vqGvz+Xw6fvy4OvjC1NBoC+rcofTtt9+29RIAAD+iw4m6tl5Cq3Ro9Ov48UZ9++23ioiICNq8R48elST5/f4zryFor/or9M0336ihoUFxcXEB2+Pi4rRz585m4wsLCzVv3rxm25OSkkK2xnNN14VtvQIAQHtySwjnPnr0qGJiYn5yTLsOodbKz89XXl6e9bixsVGHDx9Wly5dZLMF96qNx+NRYmKivvrqKzkcjqDODQDAuSBU50K/36+jR48qISHhjGPbdQh17dpV4eHhqq6uDtheXV2t+Pj4ZuPtdrvsdnvAttjY2FAuUQ6HgxACABgtFOfCM10JatKub5aOjIxUamqqysrKrG2NjY0qKytTenp6G64MAAD8GrTrK0KSlJeXpylTpmjIkCG64oor9Mwzz6iurk7Tpk1r66UBAIA21u5DaMKECTp06JAKCgrkdrs1cOBAlZSUNLuB+pdmt9v18MMPN3srDgAAU/wazoU2f0s+WwYAANAOtet7hAAAAH4KIQQAAIxFCAEAAGMRQgAAwFiEUAhNnTpVNptNjz/+eMD2oqKioH9TNQAAvxZ+v18ZGRlyOp3N9i1btkyxsbHav39/G6ysOUIoxKKiovTEE0/oyJEjbb0UAAB+ETabTa+++qo2b96s559/3tq+Z88ezZ49W88++6x69OjRhiv8H0IoxDIyMhQfH6/CwsIfHfPWW2+pX79+stvt6tWrlxYu5C+bAgDObYmJiVq0aJHuvfde7dmzR36/X1lZWcrMzNSgQYM0evRonX/++YqLi9Ott96qb775xnru3//+d6WkpKhjx47q0qWLMjIyVFdXF5J1EkIhFh4erscee0zPPvvsaS8DVlRU6Oabb9bEiRO1bds2zZ07Vw899JBWrFjxyy8WAIAgmjJlikaMGKHbb79dS5YsUVVVlZ5//nlde+21GjRokLZu3aqSkhJVV1fr5ptvliR9/fXXmjRpkm6//Xbt2LFD69at04033qhQfe0hX6gYQlOnTlVNTY2KioqUnp6u5ORkvfzyyyoqKtINN9wgv9+vyZMn69ChQyotLbWeN3v2bK1Zs0bbt29vw9UDAPDzHTx4UP369dPhw4f11ltvqaqqSv/617+0du1aa8z+/fuVmJioXbt26dixY0pNTdXevXvVs2fPkK+PK0K/kCeeeEIrV67Ujh07Arbv2LFDQ4cODdg2dOhQ7d69Ww0NDb/kEgEACLpu3brpD3/4g/r27atx48bps88+0wcffKDzzz/f+unTp48k6csvv9SAAQM0YsQIpaSk6Pe//71efPHFkN5nSwj9QoYNGyan06n8/Py2XgoAAL+oDh06qEOHH/686bFjx3TdddepsrIy4Gf37t0aNmyYwsPD5XK59N577yk5OVnPPvusevfurT179oRmbSGZFaf1+OOPa+DAgerdu7e1rW/fvtq4cWPAuI0bN+rSSy9VeHj4L71EAABCavDgwXrrrbfUq1cvK45OZbPZNHToUA0dOlQFBQXq2bOn3n77beXl5QV9PVwR+gWlpKRo8uTJWrx4sbXtnnvuUVlZmebPn6///Oc/WrlypZYsWaJ77723DVcKAEBoZGdn6/Dhw5o0aZI+/vhjffnll1q7dq2mTZumhoYGbd68WY899pi2bt2qffv26R//+IcOHTqkvn37hmQ9hNAv7JFHHlFjY6P1ePDgwXrjjTf0t7/9Tf3791dBQYEeeeQRTZ06te0WCQBAiCQkJGjjxo1qaGhQZmamUlJSlJubq9jYWIWFhcnhcGjDhg0aM2aMLr30Us2ZM0cLFy7U6NGjQ7IePjUGAACMxRUhAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsf4fQ/O4yZMaYUwAAAAASUVORK5CYII=",
365
      "text/plain": [
366
       "<Figure size 640x480 with 1 Axes>"
367
      ]
368
     },
369
     "metadata": {},
370
     "output_type": "display_data"
371
    }
372
   ],
373
   "source": [
374
    "Active['HeartDisease'].hist()"
375
   ]
376
  }
377
 ],
378
 "metadata": {
379
  "kernelspec": {
380
   "display_name": "Python 3",
381
   "language": "python",
382
   "name": "python3"
383
  },
384
  "language_info": {
385
   "codemirror_mode": {
386
    "name": "ipython",
387
    "version": 3
388
   },
389
   "file_extension": ".py",
390
   "mimetype": "text/x-python",
391
   "name": "python",
392
   "nbconvert_exporter": "python",
393
   "pygments_lexer": "ipython3",
394
   "version": "3.11.0"
395
  },
396
  "orig_nbformat": 4,
397
  "vscode": {
398
   "interpreter": {
399
    "hash": "9328ff5b7eb661541ab3edfa5748581be07fc9da53f0de3fac60dfd343d1146b"
400
   }
401
  }
402
 },
403
 "nbformat": 4,
404
 "nbformat_minor": 2
405
}