Diff of /HIMA/activity.ipynb [000000] .. [1caa3f]

Switch to side-by-side view

--- a
+++ b/HIMA/activity.ipynb
@@ -0,0 +1,405 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "heart_data = pd.read_csv('../heart_data.csv')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "heart_data['HeartDisease'] =  heart_data['HeartDisease']\n",
+    "allactive = heart_data['PhysicalActivity']\n",
+    "Active = heart_data[heart_data['PhysicalActivity']=='Yes']\n",
+    "notActive = heart_data[heart_data['PhysicalActivity']=='No']\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "count     319795\n",
+       "unique         2\n",
+       "top          Yes\n",
+       "freq      247957\n",
+       "Name: PhysicalActivity, dtype: object"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "allactive.describe()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>BMI</th>\n",
+       "      <th>PhysicalHealth</th>\n",
+       "      <th>MentalHealth</th>\n",
+       "      <th>SleepTime</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>247957.00000</td>\n",
+       "      <td>247957.000000</td>\n",
+       "      <td>247957.000000</td>\n",
+       "      <td>247957.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>27.81011</td>\n",
+       "      <td>2.377634</td>\n",
+       "      <td>3.488121</td>\n",
+       "      <td>7.100050</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>5.90583</td>\n",
+       "      <td>6.479349</td>\n",
+       "      <td>7.353138</td>\n",
+       "      <td>1.320686</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>12.02000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>23.74000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>26.79000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>7.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>30.79000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>8.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>94.85000</td>\n",
+       "      <td>30.000000</td>\n",
+       "      <td>30.000000</td>\n",
+       "      <td>24.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                BMI  PhysicalHealth   MentalHealth      SleepTime\n",
+       "count  247957.00000   247957.000000  247957.000000  247957.000000\n",
+       "mean       27.81011        2.377634       3.488121       7.100050\n",
+       "std         5.90583        6.479349       7.353138       1.320686\n",
+       "min        12.02000        0.000000       0.000000       1.000000\n",
+       "25%        23.74000        0.000000       0.000000       6.000000\n",
+       "50%        26.79000        0.000000       0.000000       7.000000\n",
+       "75%        30.79000        1.000000       3.000000       8.000000\n",
+       "max        94.85000       30.000000      30.000000      24.000000"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Active.describe()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Percentage of active people that don't have heart disease 92.9467609303226\n",
+      "Percentage of active people that have heart disease 7.053239069677404\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Percentage of active people that don't have heart disease\", 100 * Active[Active[\"HeartDisease\"] == \"No\"].size / Active.size )\n",
+    "print(\"Percentage of active people that have heart disease\", 100 * Active[Active[\"HeartDisease\"] == \"Yes\"].size / Active.size )"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>BMI</th>\n",
+       "      <th>PhysicalHealth</th>\n",
+       "      <th>MentalHealth</th>\n",
+       "      <th>SleepTime</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>71838.000000</td>\n",
+       "      <td>71838.000000</td>\n",
+       "      <td>71838.000000</td>\n",
+       "      <td>71838.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>30.103974</td>\n",
+       "      <td>6.802876</td>\n",
+       "      <td>5.314374</td>\n",
+       "      <td>7.086806</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>7.441630</td>\n",
+       "      <td>11.014781</td>\n",
+       "      <td>9.618466</td>\n",
+       "      <td>1.777442</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>12.020000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>25.020000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>29.050000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>7.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>33.910000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>5.000000</td>\n",
+       "      <td>8.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>94.660000</td>\n",
+       "      <td>30.000000</td>\n",
+       "      <td>30.000000</td>\n",
+       "      <td>24.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                BMI  PhysicalHealth  MentalHealth     SleepTime\n",
+       "count  71838.000000    71838.000000  71838.000000  71838.000000\n",
+       "mean      30.103974        6.802876      5.314374      7.086806\n",
+       "std        7.441630       11.014781      9.618466      1.777442\n",
+       "min       12.020000        0.000000      0.000000      1.000000\n",
+       "25%       25.020000        0.000000      0.000000      6.000000\n",
+       "50%       29.050000        0.000000      0.000000      7.000000\n",
+       "75%       33.910000       10.000000      5.000000      8.000000\n",
+       "max       94.660000       30.000000     30.000000     24.000000"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "notActive.describe()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Percentage of non active people that don't have heart disease 86.24126506862663\n",
+      "Percentage of non active people  that have heart disease 13.758734931373368\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Percentage of non active people that don't have heart disease\", 100 * notActive[notActive[\"HeartDisease\"] == \"No\"].size / notActive.size )\n",
+    "print(\"Percentage of non active people  that have heart disease\", 100 * notActive[notActive[\"HeartDisease\"] == \"Yes\"].size / notActive.size )"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<AxesSubplot: >"
+      ]
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNklEQVR4nO3df1DUdeLH8deCsEi14I8EGUm5q1SU/IFFZDlfE1l/XJNll5pTaqSXA01IZdEZaTZRdlaamv3Wm6s767q4UkJ2KPVS0qQo8dSzTsccW7QUVrGWFfb7R8PnXLEE243k/XzMMON+Pu9975uPf3ye89nPLja/3+8XAACAgcLaegEAAABthRACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYKwObb2AX7PGxkYdOHBAF1xwgWw2W1svBwAAtIDf79fRo0eVkJCgsLCfvuZDCP2EAwcOKDExsa2XAQAAzsJXX32lHj16/OQYQugnXHDBBZJ+OJAOhyOoc/t8PpWWliozM1MRERFBnRsAgHNBqM6FHo9HiYmJ1nn8pxBCP6Hp7TCHwxGSEIqOjpbD4SCEAABGCvW5sCW3tXCzNAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjNWhrRdguv5z18rbYGvrZbTY3sfHtvUSAAAIGq4IAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYrQqhwsJCXX755brgggvUrVs3jRs3Trt27QoY8/333ys7O1tdunTR+eefr/Hjx6u6ujpgzL59+zR27FhFR0erW7duuu+++3TixImAMevWrdPgwYNlt9t18cUXa8WKFc3Ws3TpUvXq1UtRUVFKS0vTli1bWr0WAABgrlaF0Pr165Wdna2PPvpILpdLPp9PmZmZqqurs8bMmjVL7777rt58802tX79eBw4c0I033mjtb2ho0NixY1VfX69NmzZp5cqVWrFihQoKCqwxe/bs0dixYzV8+HBVVlYqNzdXd9xxh9auXWuNWbVqlfLy8vTwww/rk08+0YABA+R0OnXw4MEWrwUAAJjN5vf7/Wf75EOHDqlbt25av369hg0bptraWl144YV6/fXXddNNN0mSdu7cqb59+6q8vFxXXnml3nvvPf3ud7/TgQMHFBcXJ0lavny57r//fh06dEiRkZG6//77tWbNGlVVVVmvNXHiRNXU1KikpESSlJaWpssvv1xLliyRJDU2NioxMVF33XWXHnjggRat5Uw8Ho9iYmJUW1srh8NxtofptHw+n4qLizV7S7i8Dbagzh1Kex8f29ZLAAC0E03nwjFjxigiIiJo87bm/N3h57xQbW2tJKlz586SpIqKCvl8PmVkZFhj+vTpo4suusiKj/LycqWkpFgRJElOp1MzZ87U9u3bNWjQIJWXlwfM0TQmNzdXklRfX6+Kigrl5+db+8PCwpSRkaHy8vIWr+VUXq9XXq/XeuzxeCT98B/l8/nO6hj9mKb57GFn3aFtItjHAQBgrqZzSqjOsS1x1iHU2Nio3NxcDR06VP3795ckud1uRUZGKjY2NmBsXFyc3G63NebkCGra37Tvp8Z4PB599913OnLkiBoaGk47ZufOnS1ey6kKCws1b968ZttLS0sVHR39Y4fiZ5k/pDEk84ZKcXFxWy8BANDOuFyuoM53/PjxFo896xDKzs5WVVWVPvzww7Od4lcnPz9feXl51mOPx6PExERlZmaG5K0xl8ulh7aGydt47rw1VjXX2dZLAAC0E03nwpEjRwb9rbGWOqsQysnJ0erVq7Vhwwb16NHD2h4fH6/6+nrV1NQEXImprq5WfHy8NebUT3c1fZLr5DGnfrqrurpaDodDHTt2VHh4uMLDw0875uQ5zrSWU9ntdtnt9mbbIyIigvofdDJvo+2cukcoVMcBAGCuYJ9nWzNXqz415vf7lZOTo7ffflvvv/++kpKSAvanpqYqIiJCZWVl1rZdu3Zp3759Sk9PlySlp6dr27ZtAZ/ucrlccjgcSk5OtsacPEfTmKY5IiMjlZqaGjCmsbFRZWVl1piWrAUAAJitVVeEsrOz9frrr+uf//ynLrjgAutem5iYGHXs2FExMTHKyspSXl6eOnfuLIfDobvuukvp6enWzcmZmZlKTk7WrbfeqgULFsjtdmvOnDnKzs62rsbceeedWrJkiWbPnq3bb79d77//vt544w2tWbPGWkteXp6mTJmiIUOG6IorrtAzzzyjuro6TZs2zVrTmdYCAADM1qoQeu655yRJ//d//xew/dVXX9XUqVMlSU8//bTCwsI0fvx4eb1eOZ1OLVu2zBobHh6u1atXa+bMmUpPT9d5552nKVOm6JFHHrHGJCUlac2aNZo1a5YWLVqkHj166KWXXpLT+b/7UyZMmKBDhw6poKBAbrdbAwcOVElJScAN1GdaCwAAMNvP+h6h9o7vEWqO7xECAATLr+F7hPhbYwAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWK0OoQ0bNui6665TQkKCbDabioqKAvZPnTpVNpst4GfUqFEBYw4fPqzJkyfL4XAoNjZWWVlZOnbsWMCYzz//XNdcc42ioqKUmJioBQsWNFvLm2++qT59+igqKkopKSkqLi4O2O/3+1VQUKDu3burY8eOysjI0O7du1v7KwMAgHaq1SFUV1enAQMGaOnSpT86ZtSoUfr666+tn7/+9a8B+ydPnqzt27fL5XJp9erV2rBhg2bMmGHt93g8yszMVM+ePVVRUaEnn3xSc+fO1QsvvGCN2bRpkyZNmqSsrCx9+umnGjdunMaNG6eqqiprzIIFC7R48WItX75cmzdv1nnnnSen06nvv/++tb82AABohzq09gmjR4/W6NGjf3KM3W5XfHz8afft2LFDJSUl+vjjjzVkyBBJ0rPPPqsxY8boT3/6kxISEvTaa6+pvr5er7zyiiIjI9WvXz9VVlbqqaeesoJp0aJFGjVqlO677z5J0vz58+VyubRkyRItX75cfr9fzzzzjObMmaPrr79ekvTnP/9ZcXFxKioq0sSJE1v7qwMAgHam1SHUEuvWrVO3bt3UqVMnXXvttXr00UfVpUsXSVJ5ebliY2OtCJKkjIwMhYWFafPmzbrhhhtUXl6uYcOGKTIy0hrjdDr1xBNP6MiRI+rUqZPKy8uVl5cX8LpOp9N6q27Pnj1yu93KyMiw9sfExCgtLU3l5eWnDSGv1yuv12s99ng8kiSfzyefz/fzD8xJmuazh/mDOm+oBfs4AADM1XROCdU5tiWCHkKjRo3SjTfeqKSkJH355Zd68MEHNXr0aJWXlys8PFxut1vdunULXESHDurcubPcbrckye12KykpKWBMXFycta9Tp05yu93WtpPHnDzHyc873ZhTFRYWat68ec22l5aWKjo6uqWHoFXmD2kMybyhcup9WAAA/Fwulyuo8x0/frzFY4MeQidfaUlJSdFll12m3/72t1q3bp1GjBgR7JcLqvz8/ICrTB6PR4mJicrMzJTD4Qjqa/l8PrlcLj20NUzeRltQ5w6lqrnOtl4CAKCdaDoXjhw5UhEREUGbt+kdnZYIyVtjJ/vNb36jrl276osvvtCIESMUHx+vgwcPBow5ceKEDh8+bN1XFB8fr+rq6oAxTY/PNObk/U3bunfvHjBm4MCBp12r3W6X3W5vtj0iIiKo/0En8zba5G04d0IoVMcBAGCuYJ9nWzNXyL9HaP/+/fr222+tGElPT1dNTY0qKiqsMe+//74aGxuVlpZmjdmwYUPAe3wul0u9e/dWp06drDFlZWUBr+VyuZSeni5JSkpKUnx8fMAYj8ejzZs3W2MAAIDZWh1Cx44dU2VlpSorKyX9cFNyZWWl9u3bp2PHjum+++7TRx99pL1796qsrEzXX3+9Lr74YjmdP7yl0rdvX40aNUrTp0/Xli1btHHjRuXk5GjixIlKSEiQJN1yyy2KjIxUVlaWtm/frlWrVmnRokUBb1vdfffdKikp0cKFC7Vz507NnTtXW7duVU5OjiTJZrMpNzdXjz76qN555x1t27ZNt912mxISEjRu3LifedgAAEB70Oq3xrZu3arhw4dbj5viZMqUKXruuef0+eefa+XKlaqpqVFCQoIyMzM1f/78gLecXnvtNeXk5GjEiBEKCwvT+PHjtXjxYmt/TEyMSktLlZ2drdTUVHXt2lUFBQUB3zV01VVX6fXXX9ecOXP04IMP6pJLLlFRUZH69+9vjZk9e7bq6uo0Y8YM1dTU6Oqrr1ZJSYmioqJa+2sDAIB2yOb3+8+tz2//gjwej2JiYlRbWxuSm6WLi4s1e0v4OXWP0N7Hx7b1EgAA7UTTuXDMmDFBv1m6pedv/tYYAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWq0Now4YNuu6665SQkCCbzaaioqKA/X6/XwUFBerevbs6duyojIwM7d69O2DM4cOHNXnyZDkcDsXGxiorK0vHjh0LGPP555/rmmuuUVRUlBITE7VgwYJma3nzzTfVp08fRUVFKSUlRcXFxa1eCwAAMFerQ6iurk4DBgzQ0qVLT7t/wYIFWrx4sZYvX67NmzfrvPPOk9Pp1Pfff2+NmTx5srZv3y6Xy6XVq1drw4YNmjFjhrXf4/EoMzNTPXv2VEVFhZ588knNnTtXL7zwgjVm06ZNmjRpkrKysvTpp59q3LhxGjdunKqqqlq1FgAAYC6b3+/3n/WTbTa9/fbbGjdunKQfrsAkJCTonnvu0b333itJqq2tVVxcnFasWKGJEydqx44dSk5O1scff6whQ4ZIkkpKSjRmzBjt379fCQkJeu655/THP/5RbrdbkZGRkqQHHnhARUVF2rlzpyRpwoQJqqur0+rVq631XHnllRo4cKCWL1/eorWcicfjUUxMjGpra+VwOM72MJ2Wz+dTcXGxZm8Jl7fBFtS5Q2nv42PbegkAgHai6Vw4ZswYRUREBG3e1py/g3qP0J49e+R2u5WRkWFti4mJUVpamsrLyyVJ5eXlio2NtSJIkjIyMhQWFqbNmzdbY4YNG2ZFkCQ5nU7t2rVLR44cscac/DpNY5pepyVrAQAAZusQzMncbrckKS4uLmB7XFyctc/tdqtbt26Bi+jQQZ07dw4Yk5SU1GyOpn2dOnWS2+0+4+ucaS2n8nq98nq91mOPxyPph2L1+Xw/9au3WtN89rCzviDXJoJ9HAAA5mo6p4TqHNsSQQ2hc11hYaHmzZvXbHtpaamio6ND8przhzSGZN5QOfWGdAAAfi6XyxXU+Y4fP97isUENofj4eElSdXW1unfvbm2vrq7WwIEDrTEHDx4MeN6JEyd0+PBh6/nx8fGqrq4OGNP0+ExjTt5/prWcKj8/X3l5edZjj8ejxMREZWZmhuQeIZfLpYe2hsnbeO7cI1Q119nWSwAAtBNN58KRI0cG/R6hlgpqCCUlJSk+Pl5lZWVWbHg8Hm3evFkzZ86UJKWnp6umpkYVFRVKTU2VJL3//vtqbGxUWlqaNeaPf/yjfD6fdWBcLpd69+6tTp06WWPKysqUm5trvb7L5VJ6enqL13Iqu90uu93ebHtERERQ/4NO5m20nVM3S4fqOAAAzBXs82xr5mr1zdLHjh1TZWWlKisrJf1wU3JlZaX27dsnm82m3NxcPfroo3rnnXe0bds23XbbbUpISLA+Wda3b1+NGjVK06dP15YtW7Rx40bl5ORo4sSJSkhIkCTdcsstioyMVFZWlrZv365Vq1Zp0aJFAVdr7r77bpWUlGjhwoXauXOn5s6dq61btyonJ0eSWrQWAABgtlZfEdq6dauGDx9uPW6KkylTpmjFihWaPXu26urqNGPGDNXU1Ojqq69WSUmJoqKirOe89tprysnJ0YgRIxQWFqbx48dr8eLF1v6YmBiVlpYqOztbqamp6tq1qwoKCgK+a+iqq67S66+/rjlz5ujBBx/UJZdcoqKiIvXv398a05K1AAAAc/2s7xFq7/geoeb4HiEAQLC0u+8RAgAAOJcQQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWEEPoblz58pmswX89OnTx9r//fffKzs7W126dNH555+v8ePHq7q6OmCOffv2aezYsYqOjla3bt1033336cSJEwFj1q1bp8GDB8tut+viiy/WihUrmq1l6dKl6tWrl6KiopSWlqYtW7YE+9cFAADnsJBcEerXr5++/vpr6+fDDz+09s2aNUvvvvuu3nzzTa1fv14HDhzQjTfeaO1vaGjQ2LFjVV9fr02bNmnlypVasWKFCgoKrDF79uzR2LFjNXz4cFVWVio3N1d33HGH1q5da41ZtWqV8vLy9PDDD+uTTz7RgAED5HQ6dfDgwVD8ygAA4BwUkhDq0KGD4uPjrZ+uXbtKkmpra/Xyyy/rqaee0rXXXqvU1FS9+uqr2rRpkz766CNJUmlpqf7973/rL3/5iwYOHKjRo0dr/vz5Wrp0qerr6yVJy5cvV1JSkhYuXKi+ffsqJydHN910k55++mlrDU899ZSmT5+uadOmKTk5WcuXL1d0dLReeeWVUPzKAADgHNQhFJPu3r1bCQkJioqKUnp6ugoLC3XRRRepoqJCPp9PGRkZ1tg+ffrooosuUnl5ua688kqVl5crJSVFcXFx1hin06mZM2dq+/btGjRokMrLywPmaBqTm5srSaqvr1dFRYXy8/Ot/WFhYcrIyFB5efmPrtvr9crr9VqPPR6PJMnn88nn8/2sY3KqpvnsYf6gzhtqwT4OAABzNZ1TQnWObYmgh1BaWppWrFih3r176+uvv9a8efN0zTXXqKqqSm63W5GRkYqNjQ14TlxcnNxutyTJ7XYHRFDT/qZ9PzXG4/Hou+++05EjR9TQ0HDaMTt37vzRtRcWFmrevHnNtpeWlio6OrplB6CV5g9pDMm8oVJcXNzWSwAAtDMulyuo8x0/frzFY4MeQqNHj7b+fdlllyktLU09e/bUG2+8oY4dOwb75YIqPz9feXl51mOPx6PExERlZmbK4XAE9bV8Pp9cLpce2homb6MtqHOHUtVcZ1svAQDQTjSdC0eOHKmIiIigzdv0jk5LhOStsZPFxsbq0ksv1RdffKGRI0eqvr5eNTU1AVeFqqurFR8fL0mKj49v9umupk+VnTzm1E+aVVdXy+FwqGPHjgoPD1d4ePhpxzTNcTp2u112u73Z9oiIiKD+B53M22iTt+HcCaFQHQcAgLmCfZ5tzVwh/x6hY8eO6csvv1T37t2VmpqqiIgIlZWVWft37dqlffv2KT09XZKUnp6ubdu2BXy6y+VyyeFwKDk52Rpz8hxNY5rmiIyMVGpqasCYxsZGlZWVWWMAAACCHkL33nuv1q9fr71792rTpk264YYbFB4erkmTJikmJkZZWVnKy8vTBx98oIqKCk2bNk3p6em68sorJUmZmZlKTk7Wrbfeqs8++0xr167VnDlzlJ2dbV2tufPOO/Xf//5Xs2fP1s6dO7Vs2TK98cYbmjVrlrWOvLw8vfjii1q5cqV27NihmTNnqq6uTtOmTQv2rwwAAM5RQX9rbP/+/Zo0aZK+/fZbXXjhhbr66qv10Ucf6cILL5QkPf300woLC9P48ePl9XrldDq1bNky6/nh4eFavXq1Zs6cqfT0dJ133nmaMmWKHnnkEWtMUlKS1qxZo1mzZmnRokXq0aOHXnrpJTmd/7t/ZcKECTp06JAKCgrkdrs1cOBAlZSUNLuBGgAAmMvm9/vPrc9v/4I8Ho9iYmJUW1sbkpuli4uLNXtL+Dl1j9Dex8e29RIAAO1E07lwzJgxQb9ZuqXnb/7WGAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjdWjrBQAAgODo9cCatl5Cq9jD/VpwRduugStCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNDSpUvVq1cvRUVFKS0tTVu2bGnrJQEAgF+Bdh9Cq1atUl5enh5++GF98sknGjBggJxOpw4ePNjWSwMAAG2s3YfQU089penTp2vatGlKTk7W8uXLFR0drVdeeaWtlwYAANpYh7ZeQCjV19eroqJC+fn51rawsDBlZGSovLy82Xiv1yuv12s9rq2tlSQdPnxYPp8vqGvz+Xw6fvy4OvjC1NBoC+rcofTtt9+29RIAAD+iw4m6tl5Cq3Ro9Ov48UZ9++23ioiICNq8R48elST5/f4zryFor/or9M0336ihoUFxcXEB2+Pi4rRz585m4wsLCzVv3rxm25OSkkK2xnNN14VtvQIAQHtySwjnPnr0qGJiYn5yTLsOodbKz89XXl6e9bixsVGHDx9Wly5dZLMF96qNx+NRYmKivvrqKzkcjqDODQDAuSBU50K/36+jR48qISHhjGPbdQh17dpV4eHhqq6uDtheXV2t+Pj4ZuPtdrvsdnvAttjY2FAuUQ6HgxACABgtFOfCM10JatKub5aOjIxUamqqysrKrG2NjY0qKytTenp6G64MAAD8GrTrK0KSlJeXpylTpmjIkCG64oor9Mwzz6iurk7Tpk1r66UBAIA21u5DaMKECTp06JAKCgrkdrs1cOBAlZSUNLuB+pdmt9v18MMPN3srDgAAU/wazoU2f0s+WwYAANAOtet7hAAAAH4KIQQAAIxFCAEAAGMRQgAAwFiEUAhNnTpVNptNjz/+eMD2oqKioH9TNQAAvxZ+v18ZGRlyOp3N9i1btkyxsbHav39/G6ysOUIoxKKiovTEE0/oyJEjbb0UAAB+ETabTa+++qo2b96s559/3tq+Z88ezZ49W88++6x69OjRhiv8H0IoxDIyMhQfH6/CwsIfHfPWW2+pX79+stvt6tWrlxYu5C+bAgDObYmJiVq0aJHuvfde7dmzR36/X1lZWcrMzNSgQYM0evRonX/++YqLi9Ott96qb775xnru3//+d6WkpKhjx47q0qWLMjIyVFdXF5J1EkIhFh4erscee0zPPvvsaS8DVlRU6Oabb9bEiRO1bds2zZ07Vw899JBWrFjxyy8WAIAgmjJlikaMGKHbb79dS5YsUVVVlZ5//nlde+21GjRokLZu3aqSkhJVV1fr5ptvliR9/fXXmjRpkm6//Xbt2LFD69at04033qhQfe0hX6gYQlOnTlVNTY2KioqUnp6u5ORkvfzyyyoqKtINN9wgv9+vyZMn69ChQyotLbWeN3v2bK1Zs0bbt29vw9UDAPDzHTx4UP369dPhw4f11ltvqaqqSv/617+0du1aa8z+/fuVmJioXbt26dixY0pNTdXevXvVs2fPkK+PK0K/kCeeeEIrV67Ujh07Arbv2LFDQ4cODdg2dOhQ7d69Ww0NDb/kEgEACLpu3brpD3/4g/r27atx48bps88+0wcffKDzzz/f+unTp48k6csvv9SAAQM0YsQIpaSk6Pe//71efPHFkN5nSwj9QoYNGyan06n8/Py2XgoAAL+oDh06qEOHH/686bFjx3TdddepsrIy4Gf37t0aNmyYwsPD5XK59N577yk5OVnPPvusevfurT179oRmbSGZFaf1+OOPa+DAgerdu7e1rW/fvtq4cWPAuI0bN+rSSy9VeHj4L71EAABCavDgwXrrrbfUq1cvK45OZbPZNHToUA0dOlQFBQXq2bOn3n77beXl5QV9PVwR+gWlpKRo8uTJWrx4sbXtnnvuUVlZmebPn6///Oc/WrlypZYsWaJ77723DVcKAEBoZGdn6/Dhw5o0aZI+/vhjffnll1q7dq2mTZumhoYGbd68WY899pi2bt2qffv26R//+IcOHTqkvn37hmQ9hNAv7JFHHlFjY6P1ePDgwXrjjTf0t7/9Tf3791dBQYEeeeQRTZ06te0WCQBAiCQkJGjjxo1qaGhQZmamUlJSlJubq9jYWIWFhcnhcGjDhg0aM2aMLr30Us2ZM0cLFy7U6NGjQ7IePjUGAACMxRUhAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsf4fQ/O4yZMaYUwAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Active['HeartDisease'].hist()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<AxesSubplot: >"
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjNklEQVR4nO3df1DUdeLH8deCsEi14I8EGUm5q1SU/IFFZDlfE1l/XJNll5pTaqSXA01IZdEZaTZRdlaamv3Wm6s767q4UkJ2KPVS0qQo8dSzTsccW7QUVrGWFfb7R8PnXLEE243k/XzMMON+Pu9975uPf3ye89nPLja/3+8XAACAgcLaegEAAABthRACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYKwObb2AX7PGxkYdOHBAF1xwgWw2W1svBwAAtIDf79fRo0eVkJCgsLCfvuZDCP2EAwcOKDExsa2XAQAAzsJXX32lHj16/OQYQugnXHDBBZJ+OJAOhyOoc/t8PpWWliozM1MRERFBnRsAgHNBqM6FHo9HiYmJ1nn8pxBCP6Hp7TCHwxGSEIqOjpbD4SCEAABGCvW5sCW3tXCzNAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjNWhrRdguv5z18rbYGvrZbTY3sfHtvUSAAAIGq4IAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYrQqhwsJCXX755brgggvUrVs3jRs3Trt27QoY8/333ys7O1tdunTR+eefr/Hjx6u6ujpgzL59+zR27FhFR0erW7duuu+++3TixImAMevWrdPgwYNlt9t18cUXa8WKFc3Ws3TpUvXq1UtRUVFKS0vTli1bWr0WAABgrlaF0Pr165Wdna2PPvpILpdLPp9PmZmZqqurs8bMmjVL7777rt58802tX79eBw4c0I033mjtb2ho0NixY1VfX69NmzZp5cqVWrFihQoKCqwxe/bs0dixYzV8+HBVVlYqNzdXd9xxh9auXWuNWbVqlfLy8vTwww/rk08+0YABA+R0OnXw4MEWrwUAAJjN5vf7/Wf75EOHDqlbt25av369hg0bptraWl144YV6/fXXddNNN0mSdu7cqb59+6q8vFxXXnml3nvvPf3ud7/TgQMHFBcXJ0lavny57r//fh06dEiRkZG6//77tWbNGlVVVVmvNXHiRNXU1KikpESSlJaWpssvv1xLliyRJDU2NioxMVF33XWXHnjggRat5Uw8Ho9iYmJUW1srh8NxtofptHw+n4qLizV7S7i8Dbagzh1Kex8f29ZLAAC0E03nwjFjxigiIiJo87bm/N3h57xQbW2tJKlz586SpIqKCvl8PmVkZFhj+vTpo4suusiKj/LycqWkpFgRJElOp1MzZ87U9u3bNWjQIJWXlwfM0TQmNzdXklRfX6+Kigrl5+db+8PCwpSRkaHy8vIWr+VUXq9XXq/XeuzxeCT98B/l8/nO6hj9mKb57GFn3aFtItjHAQBgrqZzSqjOsS1x1iHU2Nio3NxcDR06VP3795ckud1uRUZGKjY2NmBsXFyc3G63NebkCGra37Tvp8Z4PB599913OnLkiBoaGk47ZufOnS1ey6kKCws1b968ZttLS0sVHR39Y4fiZ5k/pDEk84ZKcXFxWy8BANDOuFyuoM53/PjxFo896xDKzs5WVVWVPvzww7Od4lcnPz9feXl51mOPx6PExERlZmaG5K0xl8ulh7aGydt47rw1VjXX2dZLAAC0E03nwpEjRwb9rbGWOqsQysnJ0erVq7Vhwwb16NHD2h4fH6/6+nrV1NQEXImprq5WfHy8NebUT3c1fZLr5DGnfrqrurpaDodDHTt2VHh4uMLDw0875uQ5zrSWU9ntdtnt9mbbIyIigvofdDJvo+2cukcoVMcBAGCuYJ9nWzNXqz415vf7lZOTo7ffflvvv/++kpKSAvanpqYqIiJCZWVl1rZdu3Zp3759Sk9PlySlp6dr27ZtAZ/ucrlccjgcSk5OtsacPEfTmKY5IiMjlZqaGjCmsbFRZWVl1piWrAUAAJitVVeEsrOz9frrr+uf//ynLrjgAutem5iYGHXs2FExMTHKyspSXl6eOnfuLIfDobvuukvp6enWzcmZmZlKTk7WrbfeqgULFsjtdmvOnDnKzs62rsbceeedWrJkiWbPnq3bb79d77//vt544w2tWbPGWkteXp6mTJmiIUOG6IorrtAzzzyjuro6TZs2zVrTmdYCAADM1qoQeu655yRJ//d//xew/dVXX9XUqVMlSU8//bTCwsI0fvx4eb1eOZ1OLVu2zBobHh6u1atXa+bMmUpPT9d5552nKVOm6JFHHrHGJCUlac2aNZo1a5YWLVqkHj166KWXXpLT+b/7UyZMmKBDhw6poKBAbrdbAwcOVElJScAN1GdaCwAAMNvP+h6h9o7vEWqO7xECAATLr+F7hPhbYwAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWK0OoQ0bNui6665TQkKCbDabioqKAvZPnTpVNpst4GfUqFEBYw4fPqzJkyfL4XAoNjZWWVlZOnbsWMCYzz//XNdcc42ioqKUmJioBQsWNFvLm2++qT59+igqKkopKSkqLi4O2O/3+1VQUKDu3burY8eOysjI0O7du1v7KwMAgHaq1SFUV1enAQMGaOnSpT86ZtSoUfr666+tn7/+9a8B+ydPnqzt27fL5XJp9erV2rBhg2bMmGHt93g8yszMVM+ePVVRUaEnn3xSc+fO1QsvvGCN2bRpkyZNmqSsrCx9+umnGjdunMaNG6eqqiprzIIFC7R48WItX75cmzdv1nnnnSen06nvv/++tb82AABohzq09gmjR4/W6NGjf3KM3W5XfHz8afft2LFDJSUl+vjjjzVkyBBJ0rPPPqsxY8boT3/6kxISEvTaa6+pvr5er7zyiiIjI9WvXz9VVlbqqaeesoJp0aJFGjVqlO677z5J0vz58+VyubRkyRItX75cfr9fzzzzjObMmaPrr79ekvTnP/9ZcXFxKioq0sSJE1v7qwMAgHam1SHUEuvWrVO3bt3UqVMnXXvttXr00UfVpUsXSVJ5ebliY2OtCJKkjIwMhYWFafPmzbrhhhtUXl6uYcOGKTIy0hrjdDr1xBNP6MiRI+rUqZPKy8uVl5cX8LpOp9N6q27Pnj1yu93KyMiw9sfExCgtLU3l5eWnDSGv1yuv12s99ng8kiSfzyefz/fzD8xJmuazh/mDOm+oBfs4AADM1XROCdU5tiWCHkKjRo3SjTfeqKSkJH355Zd68MEHNXr0aJWXlys8PFxut1vdunULXESHDurcubPcbrckye12KykpKWBMXFycta9Tp05yu93WtpPHnDzHyc873ZhTFRYWat68ec22l5aWKjo6uqWHoFXmD2kMybyhcup9WAAA/Fwulyuo8x0/frzFY4MeQidfaUlJSdFll12m3/72t1q3bp1GjBgR7JcLqvz8/ICrTB6PR4mJicrMzJTD4Qjqa/l8PrlcLj20NUzeRltQ5w6lqrnOtl4CAKCdaDoXjhw5UhEREUGbt+kdnZYIyVtjJ/vNb36jrl276osvvtCIESMUHx+vgwcPBow5ceKEDh8+bN1XFB8fr+rq6oAxTY/PNObk/U3bunfvHjBm4MCBp12r3W6X3W5vtj0iIiKo/0En8zba5G04d0IoVMcBAGCuYJ9nWzNXyL9HaP/+/fr222+tGElPT1dNTY0qKiqsMe+//74aGxuVlpZmjdmwYUPAe3wul0u9e/dWp06drDFlZWUBr+VyuZSeni5JSkpKUnx8fMAYj8ejzZs3W2MAAIDZWh1Cx44dU2VlpSorKyX9cFNyZWWl9u3bp2PHjum+++7TRx99pL1796qsrEzXX3+9Lr74YjmdP7yl0rdvX40aNUrTp0/Xli1btHHjRuXk5GjixIlKSEiQJN1yyy2KjIxUVlaWtm/frlWrVmnRokUBb1vdfffdKikp0cKFC7Vz507NnTtXW7duVU5OjiTJZrMpNzdXjz76qN555x1t27ZNt912mxISEjRu3LifedgAAEB70Oq3xrZu3arhw4dbj5viZMqUKXruuef0+eefa+XKlaqpqVFCQoIyMzM1f/78gLecXnvtNeXk5GjEiBEKCwvT+PHjtXjxYmt/TEyMSktLlZ2drdTUVHXt2lUFBQUB3zV01VVX6fXXX9ecOXP04IMP6pJLLlFRUZH69+9vjZk9e7bq6uo0Y8YM1dTU6Oqrr1ZJSYmioqJa+2sDAIB2yOb3+8+tz2//gjwej2JiYlRbWxuSm6WLi4s1e0v4OXWP0N7Hx7b1EgAA7UTTuXDMmDFBv1m6pedv/tYYAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADBWq0Now4YNuu6665SQkCCbzaaioqKA/X6/XwUFBerevbs6duyojIwM7d69O2DM4cOHNXnyZDkcDsXGxiorK0vHjh0LGPP555/rmmuuUVRUlBITE7VgwYJma3nzzTfVp08fRUVFKSUlRcXFxa1eCwAAMFerQ6iurk4DBgzQ0qVLT7t/wYIFWrx4sZYvX67NmzfrvPPOk9Pp1Pfff2+NmTx5srZv3y6Xy6XVq1drw4YNmjFjhrXf4/EoMzNTPXv2VEVFhZ588knNnTtXL7zwgjVm06ZNmjRpkrKysvTpp59q3LhxGjdunKqqqlq1FgAAYC6b3+/3n/WTbTa9/fbbGjdunKQfrsAkJCTonnvu0b333itJqq2tVVxcnFasWKGJEydqx44dSk5O1scff6whQ4ZIkkpKSjRmzBjt379fCQkJeu655/THP/5RbrdbkZGRkqQHHnhARUVF2rlzpyRpwoQJqqur0+rVq631XHnllRo4cKCWL1/eorWcicfjUUxMjGpra+VwOM72MJ2Wz+dTcXGxZm8Jl7fBFtS5Q2nv42PbegkAgHai6Vw4ZswYRUREBG3e1py/g3qP0J49e+R2u5WRkWFti4mJUVpamsrLyyVJ5eXlio2NtSJIkjIyMhQWFqbNmzdbY4YNG2ZFkCQ5nU7t2rVLR44cscac/DpNY5pepyVrAQAAZusQzMncbrckKS4uLmB7XFyctc/tdqtbt26Bi+jQQZ07dw4Yk5SU1GyOpn2dOnWS2+0+4+ucaS2n8nq98nq91mOPxyPph2L1+Xw/9au3WtN89rCzviDXJoJ9HAAA5mo6p4TqHNsSQQ2hc11hYaHmzZvXbHtpaamio6ND8przhzSGZN5QOfWGdAAAfi6XyxXU+Y4fP97isUENofj4eElSdXW1unfvbm2vrq7WwIEDrTEHDx4MeN6JEyd0+PBh6/nx8fGqrq4OGNP0+ExjTt5/prWcKj8/X3l5edZjj8ejxMREZWZmhuQeIZfLpYe2hsnbeO7cI1Q119nWSwAAtBNN58KRI0cG/R6hlgpqCCUlJSk+Pl5lZWVWbHg8Hm3evFkzZ86UJKWnp6umpkYVFRVKTU2VJL3//vtqbGxUWlqaNeaPf/yjfD6fdWBcLpd69+6tTp06WWPKysqUm5trvb7L5VJ6enqL13Iqu90uu93ebHtERERQ/4NO5m20nVM3S4fqOAAAzBXs82xr5mr1zdLHjh1TZWWlKisrJf1wU3JlZaX27dsnm82m3NxcPfroo3rnnXe0bds23XbbbUpISLA+Wda3b1+NGjVK06dP15YtW7Rx40bl5ORo4sSJSkhIkCTdcsstioyMVFZWlrZv365Vq1Zp0aJFAVdr7r77bpWUlGjhwoXauXOn5s6dq61btyonJ0eSWrQWAABgtlZfEdq6dauGDx9uPW6KkylTpmjFihWaPXu26urqNGPGDNXU1Ojqq69WSUmJoqKirOe89tprysnJ0YgRIxQWFqbx48dr8eLF1v6YmBiVlpYqOztbqamp6tq1qwoKCgK+a+iqq67S66+/rjlz5ujBBx/UJZdcoqKiIvXv398a05K1AAAAc/2s7xFq7/geoeb4HiEAQLC0u+8RAgAAOJcQQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWEEPoblz58pmswX89OnTx9r//fffKzs7W126dNH555+v8ePHq7q6OmCOffv2aezYsYqOjla3bt1033336cSJEwFj1q1bp8GDB8tut+viiy/WihUrmq1l6dKl6tWrl6KiopSWlqYtW7YE+9cFAADnsJBcEerXr5++/vpr6+fDDz+09s2aNUvvvvuu3nzzTa1fv14HDhzQjTfeaO1vaGjQ2LFjVV9fr02bNmnlypVasWKFCgoKrDF79uzR2LFjNXz4cFVWVio3N1d33HGH1q5da41ZtWqV8vLy9PDDD+uTTz7RgAED5HQ6dfDgwVD8ygAA4BwUkhDq0KGD4uPjrZ+uXbtKkmpra/Xyyy/rqaee0rXXXqvU1FS9+uqr2rRpkz766CNJUmlpqf7973/rL3/5iwYOHKjRo0dr/vz5Wrp0qerr6yVJy5cvV1JSkhYuXKi+ffsqJydHN910k55++mlrDU899ZSmT5+uadOmKTk5WcuXL1d0dLReeeWVUPzKAADgHNQhFJPu3r1bCQkJioqKUnp6ugoLC3XRRRepoqJCPp9PGRkZ1tg+ffrooosuUnl5ua688kqVl5crJSVFcXFx1hin06mZM2dq+/btGjRokMrLywPmaBqTm5srSaqvr1dFRYXy8/Ot/WFhYcrIyFB5efmPrtvr9crr9VqPPR6PJMnn88nn8/2sY3KqpvnsYf6gzhtqwT4OAABzNZ1TQnWObYmgh1BaWppWrFih3r176+uvv9a8efN0zTXXqKqqSm63W5GRkYqNjQ14TlxcnNxutyTJ7XYHRFDT/qZ9PzXG4/Hou+++05EjR9TQ0HDaMTt37vzRtRcWFmrevHnNtpeWlio6OrplB6CV5g9pDMm8oVJcXNzWSwAAtDMulyuo8x0/frzFY4MeQqNHj7b+fdlllyktLU09e/bUG2+8oY4dOwb75YIqPz9feXl51mOPx6PExERlZmbK4XAE9bV8Pp9cLpce2homb6MtqHOHUtVcZ1svAQDQTjSdC0eOHKmIiIigzdv0jk5LhOStsZPFxsbq0ksv1RdffKGRI0eqvr5eNTU1AVeFqqurFR8fL0mKj49v9umupk+VnTzm1E+aVVdXy+FwqGPHjgoPD1d4ePhpxzTNcTp2u112u73Z9oiIiKD+B53M22iTt+HcCaFQHQcAgLmCfZ5tzVwh/x6hY8eO6csvv1T37t2VmpqqiIgIlZWVWft37dqlffv2KT09XZKUnp6ubdu2BXy6y+VyyeFwKDk52Rpz8hxNY5rmiIyMVGpqasCYxsZGlZWVWWMAAACCHkL33nuv1q9fr71792rTpk264YYbFB4erkmTJikmJkZZWVnKy8vTBx98oIqKCk2bNk3p6em68sorJUmZmZlKTk7Wrbfeqs8++0xr167VnDlzlJ2dbV2tufPOO/Xf//5Xs2fP1s6dO7Vs2TK98cYbmjVrlrWOvLw8vfjii1q5cqV27NihmTNnqq6uTtOmTQv2rwwAAM5RQX9rbP/+/Zo0aZK+/fZbXXjhhbr66qv10Ucf6cILL5QkPf300woLC9P48ePl9XrldDq1bNky6/nh4eFavXq1Zs6cqfT0dJ133nmaMmWKHnnkEWtMUlKS1qxZo1mzZmnRokXq0aOHXnrpJTmd/7t/ZcKECTp06JAKCgrkdrs1cOBAlZSUNLuBGgAAmMvm9/vPrc9v/4I8Ho9iYmJUW1sbkpuli4uLNXtL+Dl1j9Dex8e29RIAAO1E07lwzJgxQb9ZuqXnb/7WGAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjdWjrBQAAgODo9cCatl5Cq9jD/VpwRduugStCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFiEEAAAMBYhBAAAjEUIAQAAYxFCAADAWIQQAAAwFiEEAACMRQgBAABjEUIAAMBYhBAAADAWIQQAAIxFCAEAAGMRQgAAwFhGhNDSpUvVq1cvRUVFKS0tTVu2bGnrJQEAgF+Bdh9Cq1atUl5enh5++GF98sknGjBggJxOpw4ePNjWSwMAAG2s3YfQU089penTp2vatGlKTk7W8uXLFR0drVdeeaWtlwYAANpYh7ZeQCjV19eroqJC+fn51rawsDBlZGSovLy82Xiv1yuv12s9rq2tlSQdPnxYPp8vqGvz+Xw6fvy4OvjC1NBoC+rcofTtt9+29RIAAD+iw4m6tl5Cq3Ro9Ov48UZ9++23ioiICNq8R48elST5/f4zryFor/or9M0336ihoUFxcXEB2+Pi4rRz585m4wsLCzVv3rxm25OSkkK2xnNN14VtvQIAQHtySwjnPnr0qGJiYn5yTLsOodbKz89XXl6e9bixsVGHDx9Wly5dZLMF96qNx+NRYmKivvrqKzkcjqDODQDAuSBU50K/36+jR48qISHhjGPbdQh17dpV4eHhqq6uDtheXV2t+Pj4ZuPtdrvsdnvAttjY2FAuUQ6HgxACABgtFOfCM10JatKub5aOjIxUamqqysrKrG2NjY0qKytTenp6G64MAAD8GrTrK0KSlJeXpylTpmjIkCG64oor9Mwzz6iurk7Tpk1r66UBAIA21u5DaMKECTp06JAKCgrkdrs1cOBAlZSUNLuB+pdmt9v18MMPN3srDgAAU/wazoU2f0s+WwYAANAOtet7hAAAAH4KIQQAAIxFCAEAAGMRQgAAwFiEUAhNnTpVNptNjz/+eMD2oqKioH9TNQAAvxZ+v18ZGRlyOp3N9i1btkyxsbHav39/G6ysOUIoxKKiovTEE0/oyJEjbb0UAAB+ETabTa+++qo2b96s559/3tq+Z88ezZ49W88++6x69OjRhiv8H0IoxDIyMhQfH6/CwsIfHfPWW2+pX79+stvt6tWrlxYu5C+bAgDObYmJiVq0aJHuvfde7dmzR36/X1lZWcrMzNSgQYM0evRonX/++YqLi9Ott96qb775xnru3//+d6WkpKhjx47q0qWLMjIyVFdXF5J1EkIhFh4erscee0zPPvvsaS8DVlRU6Oabb9bEiRO1bds2zZ07Vw899JBWrFjxyy8WAIAgmjJlikaMGKHbb79dS5YsUVVVlZ5//nlde+21GjRokLZu3aqSkhJVV1fr5ptvliR9/fXXmjRpkm6//Xbt2LFD69at04033qhQfe0hX6gYQlOnTlVNTY2KioqUnp6u5ORkvfzyyyoqKtINN9wgv9+vyZMn69ChQyotLbWeN3v2bK1Zs0bbt29vw9UDAPDzHTx4UP369dPhw4f11ltvqaqqSv/617+0du1aa8z+/fuVmJioXbt26dixY0pNTdXevXvVs2fPkK+PK0K/kCeeeEIrV67Ujh07Arbv2LFDQ4cODdg2dOhQ7d69Ww0NDb/kEgEACLpu3brpD3/4g/r27atx48bps88+0wcffKDzzz/f+unTp48k6csvv9SAAQM0YsQIpaSk6Pe//71efPHFkN5nSwj9QoYNGyan06n8/Py2XgoAAL+oDh06qEOHH/686bFjx3TdddepsrIy4Gf37t0aNmyYwsPD5XK59N577yk5OVnPPvusevfurT179oRmbSGZFaf1+OOPa+DAgerdu7e1rW/fvtq4cWPAuI0bN+rSSy9VeHj4L71EAABCavDgwXrrrbfUq1cvK45OZbPZNHToUA0dOlQFBQXq2bOn3n77beXl5QV9PVwR+gWlpKRo8uTJWrx4sbXtnnvuUVlZmebPn6///Oc/WrlypZYsWaJ77723DVcKAEBoZGdn6/Dhw5o0aZI+/vhjffnll1q7dq2mTZumhoYGbd68WY899pi2bt2qffv26R//+IcOHTqkvn37hmQ9hNAv7JFHHlFjY6P1ePDgwXrjjTf0t7/9Tf3791dBQYEeeeQRTZ06te0WCQBAiCQkJGjjxo1qaGhQZmamUlJSlJubq9jYWIWFhcnhcGjDhg0aM2aMLr30Us2ZM0cLFy7U6NGjQ7IePjUGAACMxRUhAABgLEIIAAAYixACAADGIoQAAICxCCEAAGAsQggAABiLEAIAAMYihAAAgLEIIQAAYCxCCAAAGIsQAgAAxiKEAACAsf4fQ/O4yZMaYUwAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Active['HeartDisease'].hist()"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.0"
+  },
+  "orig_nbformat": 4,
+  "vscode": {
+   "interpreter": {
+    "hash": "9328ff5b7eb661541ab3edfa5748581be07fc9da53f0de3fac60dfd343d1146b"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}