--- a +++ b/README.md @@ -0,0 +1,39 @@ +# Learning from ambiguous labels for lung nodule malignancy prediction + +This repo contains the official implementation of our paper: Learning from ambiguous labels for lung nodule malignancy prediction, which proposes a multi-view 'divide-and-rule' (MV-DAR) model to learn from both reliable and ambiguous annotations for lung nodule malignancy prediction on chest CT scans. The implementation of DAR model is released. +<p align="center"><img src="https://raw.githubusercontent.com/Merrical/DAR/master/MVDAR_overview.png" width="90%"></p> + +#### [Paper on IEEE](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705525) +#### [Paper on arXiv](https://arxiv.org/pdf/2104.11436.pdf) + +### Requirements +This repo was tested with Ubuntu 20.04.4 LTS, Python 3.8, PyTorch 1.9.0, and CUDA 10.1. +We suggest using virtual env to configure the experimental environment. + +1. Clone this repo: + +```bash +git clone https://github.com/Merrical/DAR.git +``` + +2. Create experimental environment using virtual env: + +```bash +virtualenv .env --python=3.8 # create +source .env/bin/activate # activate +pip install -r requirements.txt +``` + +### Bibtex +``` +@article{liao2022learning, + title={Learning from ambiguous labels for lung nodule malignancy prediction}, + author={Liao, Zehui and Xie, Yutong and Hu, Shishuai and Xia, Yong}, + journal={IEEE Transactions on Medical Imaging}, + year={2022}, + publisher={IEEE} +} +``` + +### Contact Us +If you have any questions, please contact us ( merrical@mail.nwpu.edu.cn ). \ No newline at end of file