a/README.md b/README.md
...
...
107
107
108
3. Choose the sform code name,  the default value is 'NIFTI_XFORM_SCANNER_ANAT'. Some scans without complete header files may loss this value(e.g. data from radiopaedia.org).In this case, please remember select sform name as 'OTHERS'. For more details about header files, please see this [site](https://brainder.org/2012/09/23/the-nifti-file-format/  "With a Title"). 
108
3. Choose the sform code name,  the default value is 'NIFTI_XFORM_SCANNER_ANAT'. Some scans without complete header files may loss this value(e.g. data from radiopaedia.org).In this case, please remember select sform name as 'OTHERS'. For more details about header files, please see this [site](https://brainder.org/2012/09/23/the-nifti-file-format/  "With a Title"). 
109
109
110
4. Click 'Run' button. After all the inference done, the progress bar window will be closed. 
110
4. Click 'Run' button. After all the inference done, the progress bar window will be closed. 
111
   
111
   
112
   ![fig.2](fig/fig2.png)   
112
113
   
114
   Here are some examples:
115
   ![fig.4](fig/fig4.png )
116
113
117
#### Uncertainty:
114
#### Uncertainty:
118
115
119
In DABC-Net, we approximate Bayersian inference using [DropBlock](http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks), a form of Monte Carlo dropout. For more details about aleatory and epistemic uncertainty, please refer to this [paper](https://pdfs.semanticscholar.org/146f/8844a380191a3f883c3584df3d7a6a56a999.pdf).
116
In DABC-Net, we approximate Bayersian inference using [DropBlock](http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks), a form of Monte Carlo dropout. For more details about aleatory and epistemic uncertainty, please refer to this [paper](https://pdfs.semanticscholar.org/146f/8844a380191a3f883c3584df3d7a6a56a999.pdf).
120
117