|
a/README.md |
|
b/README.md |
1 |
# DABC-Net |
1 |
# DABC-Net |
2 |
|
2 |
|
3 |
DABC-Net toolkit is designed for fast and robust pneumonia segmentation and prediction of COVID-19 progression on chest CT scans. |
3 |
DABC-Net toolkit is designed for fast and robust pneumonia segmentation and prediction of COVID-19 progression on chest CT scans.
|
4 |
The core of the toolkit, DABC-Net, is a novel deep learning (DL) network that combines a 2D U-net for intra-slice spatial information processing, and a recurrent LSTM network to leverage inter-slice context. |
4 |
The core of the toolkit, DABC-Net, is a novel deep learning (DL) network that combines a 2D U-net for intra-slice spatial information processing, and a recurrent LSTM network to leverage inter-slice context.
|
5 |
Compared to other popular volumetric segmentation networks such as 3D U-net, DABC-Net is much faster and more robust to CT scans with various slice thickness. |
5 |
Compared to other popular volumetric segmentation networks such as 3D U-net, DABC-Net is much faster and more robust to CT scans with various slice thickness. |
6 |
|
6 |
|
7 |
Based on DABC-Net segmentation, we can predict the disease progression, i.e. whether a specific patient will develop into a severe stage or not using his/her first two CT scans. |
7 |
Based on DABC-Net segmentation, we can predict the disease progression, i.e. whether a specific patient will develop into a severe stage or not using his/her first two CT scans.
|
8 |
This repository provides an implementation of DABC-Net (including graphical user interface), which can be potentially used to support early triage of severe patients |
8 |
This repository provides an implementation of DABC-Net (including graphical user interface), which can be potentially used to support early triage of severe patients |
9 |
|
9 |
|
10 |
<b>The main features:</b> |
10 |
<b>The main features:</b>
|
11 |
* Ready-to-use (You can run our toolkit with GUI and even no need to install Tensorflow or Python interpreter on your computer.) |
11 |
* Ready-to-use (You can run our toolkit with GUI and even no need to install Tensorflow or Python interpreter on your computer.)
|
12 |
* Run everywhere (Desktop app, Web or console) |
12 |
* Run everywhere (Desktop app, Web or console)
|
13 |
* Data Anonymization by deleting CT header file |
13 |
* Data Anonymization by deleting CT header file
|
14 |
* Fast segmentation |
14 |
* Fast segmentation
|
15 |
* Built-in multi-types uncertainty |
15 |
* Built-in multi-types uncertainty
|
16 |
* Prediction of patient progression: mild vs severe |
16 |
* Prediction of patient progression: mild vs severe
|
17 |
* Support for Covid-19 longitudinal study |
17 |
* Support for Covid-19 longitudinal study |
18 |
|
18 |
|
19 |
## Table of Contents |
19 |
## Table of Contents
|
20 |
* [Installation](#installation) |
20 |
* [Installation](#installation)
|
21 |
* [Quick start](#quick-start) |
21 |
* [Quick start](#quick-start)
|
22 |
+ [DABC-Net for desktop app](#dabc-net-for-desktop-app) |
22 |
+ [DABC-Net for desktop app](#dabc-net-for-desktop-app)
|
23 |
+ [DABC-Net for Colab](#dabc-net-for-colab) [](https://colab.research.google.com/github/Robin970822/DABC-Net-for-COVID-19/blob/master/DABC_pipeline_demo.ipynb) |
23 |
+ [DABC-Net for Colab](#dabc-net-for-colab) [](https://colab.research.google.com/github/Robin970822/DABC-Net-for-COVID-19/blob/master/DABC_pipeline_demo.ipynb)
|
24 |
+ [DABC-Net for Website](#dabc-net-for-website) |
24 |
+ [DABC-Net for Website](#dabc-net-for-website)
|
25 |
* [Progress prediction](#progress-prediction) |
25 |
* [Progress prediction](#progress-prediction)
|
26 |
+ [Model](#model) |
26 |
+ [Model](#model)
|
27 |
+ [Usage](#usage) |
27 |
+ [Usage](#usage)
|
28 |
+ [Visualization of progress](#visualization-of-progress) |
28 |
+ [Visualization of progress](#visualization-of-progress)
|
29 |
* [Data](#data) |
29 |
* [Data](#data)
|
30 |
* [Tutorial](#tutorial) |
30 |
* [Tutorial](#tutorial) |
31 |
|
31 |
|
32 |
## Installation |
32 |
## Installation
|
33 |
If you run this toolkit with packaged desktop app, you can skip this step. |
33 |
If you run this toolkit with packaged desktop app, you can skip this step. |
34 |
|
34 |
|
35 |
An Nvidia GPU is needed for faster inference (about 16ms/slice on 1080ti gpu). |
35 |
An Nvidia GPU is needed for faster inference (about 16ms/slice on 1080ti gpu). |
36 |
|
36 |
|
37 |
Requirements: |
37 |
Requirements: |
38 |
|
38 |
|
39 |
* tensorflow-gpu == 1.15.4 |
39 |
* tensorflow-gpu == 1.15.4
|
40 |
* Keras == 2.2.4 |
40 |
* Keras == 2.2.4
|
41 |
* numpy == 1.16 |
41 |
* numpy == 1.16
|
42 |
* scikit-learn == 0.21.3 |
42 |
* scikit-learn == 0.21.3
|
43 |
* scikit-image == 0.14 |
43 |
* scikit-image == 0.14
|
44 |
* xgboost == 1.1.0 |
44 |
* xgboost == 1.1.0
|
45 |
* simpleitk == 2.0 |
45 |
* simpleitk == 2.0
|
46 |
* scipy == 1.1 |
46 |
* scipy == 1.1 |
47 |
|
47 |
|
48 |
Install dependencies: |
48 |
Install dependencies: |
49 |
|
49 |
|
50 |
``` |
50 |
```
|
51 |
cd path/to/repository/ |
51 |
cd path/to/repository/
|
52 |
pip install -r requirement.txt |
52 |
pip install -r requirement.txt
|
53 |
``` |
53 |
```
|
54 |
The project folder looks like this: |
54 |
The project folder looks like this: |
55 |
|
55 |
|
56 |
``` |
56 |
```
|
57 |
path |
57 |
path
|
58 |
├─ ... (Codes in DABC-Net-for-COVID-19 repository. Use download.sh to get following files) |
58 |
├─ ... (Codes in DABC-Net-for-COVID-19 repository. Use download.sh to get following files)
|
59 |
│ |
59 |
│
|
60 |
├─Input_data |
60 |
├─Input_data
|
61 |
│ 2020034797_0123_2949_20200123015940_4.nii.gz |
61 |
│ 2020034797_0123_2949_20200123015940_4.nii.gz
|
62 |
│ 2020034797_0125_3052_20200125111145_4.nii.gz |
62 |
│ 2020034797_0125_3052_20200125111145_4.nii.gz
|
63 |
│ ... |
63 |
│ ...
|
64 |
│ |
64 |
│
|
65 |
├─Output_data |
65 |
├─Output_data
|
66 |
│ │ |
66 |
│ │
|
67 |
│ ├─covid |
67 |
│ ├─covid
|
68 |
│ │ 2020034797_0123_2949_20200123015940_4.nii.gz |
68 |
│ │ 2020034797_0123_2949_20200123015940_4.nii.gz
|
69 |
│ │ 2020034797_0125_3052_20200125111145_4.nii.gz |
69 |
│ │ 2020034797_0125_3052_20200125111145_4.nii.gz
|
70 |
│ │ ... |
70 |
│ │ ...
|
71 |
│ │ |
71 |
│ │
|
72 |
│ ├─lung |
72 |
│ ├─lung
|
73 |
│ │ 2020034797_0123_2949_20200123015940_4.nii.gz |
73 |
│ │ 2020034797_0123_2949_20200123015940_4.nii.gz
|
74 |
│ │ 2020034797_0125_3052_20200125111145_4.nii.gz |
74 |
│ │ 2020034797_0125_3052_20200125111145_4.nii.gz
|
75 |
│ │ ... |
75 |
│ │ ...
|
76 |
│ │ |
76 |
│ │
|
77 |
│ └─uncertainty |
77 |
│ └─uncertainty
|
78 |
│ 2020034797_0123_2949_20200123015940_4_predictive_aleatoric.nii.gz |
78 |
│ 2020034797_0123_2949_20200123015940_4_predictive_aleatoric.nii.gz
|
79 |
│ 2020034797_0125_3052_20200125111145_4_sample_1.nii.gz |
79 |
│ 2020034797_0125_3052_20200125111145_4_sample_1.nii.gz
|
80 |
│ ... |
80 |
│ ...
|
81 |
│ |
81 |
│
|
82 |
├─weight |
82 |
├─weight
|
83 |
│ model_05090017 |
83 |
│ model_05090017
|
84 |
│ ... |
84 |
│ ...
|
85 |
│ |
85 |
│
|
86 |
│ (following folders are required if you need longitudinal study) |
86 |
│ (following folders are required if you need longitudinal study)
|
87 |
│ |
87 |
│
|
88 |
├─meta |
88 |
├─meta
|
89 |
│ 2020035021.csv |
89 |
│ 2020035021.csv
|
90 |
│ |
90 |
│
|
91 |
└─model |
91 |
└─model
|
92 |
prediction.pkl |
92 |
prediction.pkl
|
93 |
... |
93 |
... |
94 |
|
94 |
|
95 |
``` |
95 |
``` |
96 |
|
96 |
|
97 |
## Quick Start |
97 |
## Quick Start |
98 |
|
98 |
|
99 |
### DABC-Net for desktop app |
99 |
### DABC-Net for desktop app
|
100 |
#### Inference: |
100 |
#### Inference:
|
101 |
1. Download and double click the DABC_Net.exe(Windows) or DABC_Mac(Mac OS) file. |
101 |
1. Download and double click the DABC_Net.exe(Windows) or DABC_Mac(Mac OS) file.
|
102 |
You can run our network even without installing Tensorflow or Python interpreter on you computer. |
102 |
You can run our network even without installing Tensorflow or Python interpreter on you computer.
|
103 |
The UI looks like this: |
103 |
The UI looks like this: |
104 |
|
104 |
|
105 |
 |
105 |
|
106 |
|
|
|
107 |
2. Type or select the input folder where you store nii/nii.gz format CT scans data. The output results will be saved in the folder you specified. |
106 |
2. Type or select the input folder where you store nii/nii.gz format CT scans data. The output results will be saved in the folder you specified. |
108 |
|
107 |
|
109 |
3. Choose the sform code name, the default value is 'NIFTI_XFORM_SCANNER_ANAT'. Some scans without complete header files may loss this value(e.g. data from radiopaedia.org).In this case, please remember select sform name as 'OTHERS'. For more details about header files, please see this [site](https://brainder.org/2012/09/23/the-nifti-file-format/ "With a Title"). |
108 |
3. Choose the sform code name, the default value is 'NIFTI_XFORM_SCANNER_ANAT'. Some scans without complete header files may loss this value(e.g. data from radiopaedia.org).In this case, please remember select sform name as 'OTHERS'. For more details about header files, please see this [site](https://brainder.org/2012/09/23/the-nifti-file-format/ "With a Title"). |
110 |
|
109 |
|
111 |
4. Click 'Run' button. After all the inference done, the progress bar window will be closed. |
110 |
4. Click 'Run' button. After all the inference done, the progress bar window will be closed.
|
112 |
|
111 |
|
113 |
 |
112 |

|
114 |
|
113 |
|
115 |
Here are some examples: |
114 |
Here are some examples:
|
116 |
 |
115 |
 |
117 |
|
116 |
|
118 |
#### Uncertainty: |
117 |
#### Uncertainty: |
119 |
|
118 |
|
120 |
In DABC-Net, we approximate Bayersian inference using [DropBlock](http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks), a form of Monte Carlo dropout. For more details about aleatory and epistemic uncertainty, please refer to this [paper](https://pdfs.semanticscholar.org/146f/8844a380191a3f883c3584df3d7a6a56a999.pdf). |
119 |
In DABC-Net, we approximate Bayersian inference using [DropBlock](http://papers.nips.cc/paper/8271-dropblock-a-regularization-method-for-convolutional-networks), a form of Monte Carlo dropout. For more details about aleatory and epistemic uncertainty, please refer to this [paper](https://pdfs.semanticscholar.org/146f/8844a380191a3f883c3584df3d7a6a56a999.pdf). |
121 |
|
120 |
|
122 |
1. Follow instructions from item(1-3) in the section above. |
121 |
1. Follow instructions from item(1-3) in the section above. |
123 |
|
122 |
|
124 |
2. Choose sample times (integer, e.g. 10). The network will sample 10 times to compute aleatory/epistemic uncertainty and get mean prediction outcome as final segmentation. |
123 |
2. Choose sample times (integer, e.g. 10). The network will sample 10 times to compute aleatory/epistemic uncertainty and get mean prediction outcome as final segmentation. |
125 |
|
124 |
|
126 |
3. Set 'threshold' to get binary output if you need. The default value is 0.5. If you want to save raw probability map from the last sigmoid activation layer of the network, just set threshold to 0. |
125 |
3. Set 'threshold' to get binary output if you need. The default value is 0.5. If you want to save raw probability map from the last sigmoid activation layer of the network, just set threshold to 0. |
127 |
|
126 |
|
128 |
4. 'Method' denotes what kind of uncertainty you want to save. |
127 |
4. 'Method' denotes what kind of uncertainty you want to save. |
129 |
|
128 |
|
130 |
 |
129 |
 |
131 |
|
130 |
|
132 |
Here are some examples: |
131 |
Here are some examples: |
133 |
|
132 |
|
134 |
 |
133 |
 |
135 |
|
134 |
|
136 |
#### Visualization: |
135 |
#### Visualization: |
137 |
|
136 |
|
138 |
* Raw: original CT scan |
137 |
* Raw: original CT scan
|
139 |
* Lung: output of lung segmentation(optional) |
138 |
* Lung: output of lung segmentation(optional)
|
140 |
* Lesion: output of lesion segmentation |
139 |
* Lesion: output of lesion segmentation |
141 |
|
140 |
|
142 |
Then, choose appropriate HU range (e.g. -1024~512) via right slide window. |
141 |
Then, choose appropriate HU range (e.g. -1024~512) via right slide window. |
143 |
|
142 |
|
144 |
 |
143 |
 |
145 |
|
144 |
|
146 |
#### Progress predict: |
145 |
#### Progress predict:
|
147 |
* Meta data: Csv format data. Put the path of data or click 'Demo' button to get an example. |
146 |
* Meta data: Csv format data. Put the path of data or click 'Demo' button to get an example.
|
148 |
* Method: Use First two scans / First three scans / First scan to predict the progress of disease. |
147 |
* Method: Use First two scans / First three scans / First scan to predict the progress of disease.
|
149 |
* Output path: (optional) Results will be saved to a text file. If this value is empty, file will save in working directory. |
148 |
* Output path: (optional) Results will be saved to a text file. If this value is empty, file will save in working directory. |
150 |
|
149 |
|
151 |
 |
150 |
 |
152 |
|
151 |
|
153 |
|
152 |
|
154 |
## DABC-Net for Colab |
153 |
## DABC-Net for Colab |
155 |
|
154 |
|
156 |
[](https://colab.research.google.com/github/Robin970822/DABC-Net-for-COVID-19/blob/master/DABC_pipeline_demo.ipynb) |
155 |
[](https://colab.research.google.com/github/Robin970822/DABC-Net-for-COVID-19/blob/master/DABC_pipeline_demo.ipynb) |
157 |
|
156 |
|
158 |
#### Inference: |
157 |
#### Inference:
|
159 |
1. Put your data in a folder. |
158 |
1. Put your data in a folder.
|
160 |
2. Select the input and output folder, and run following command: |
159 |
2. Select the input and output folder, and run following command:
|
161 |
``` |
160 |
```
|
162 |
DABC_infer(input_path, output_path, usage, sform_code) |
161 |
DABC_infer(input_path, output_path, usage, sform_code)
|
163 |
``` |
162 |
```
|
164 |
- nii_path: |
163 |
- nii_path:
|
165 |
- Input: Folder path of input data(nii or nii.gz format). |
164 |
- Input: Folder path of input data(nii or nii.gz format).
|
166 |
- Type: string |
165 |
- Type: string
|
167 |
- save_path: |
166 |
- save_path:
|
168 |
- Input: Folder path of output data(nii or nii.gz format). The segmentation results will be saved as nii.gz format. |
167 |
- Input: Folder path of output data(nii or nii.gz format). The segmentation results will be saved as nii.gz format.
|
169 |
- Type: string |
168 |
- Type: string
|
170 |
- usage: |
169 |
- usage:
|
171 |
- Input: Inference type. |
170 |
- Input: Inference type.
|
172 |
- Type: string, 'lung' or 'covid'(default) |
171 |
- Type: string, 'lung' or 'covid'(default)
|
173 |
- sform_code: |
172 |
- sform_code:
|
174 |
- Input: Coordinate system. In general, some scans without header files(e.g. data from radiopaedia.org) got 'NIFTI_XFORM_UNKNOWN' sform code. |
173 |
- Input: Coordinate system. In general, some scans without header files(e.g. data from radiopaedia.org) got 'NIFTI_XFORM_UNKNOWN' sform code.
|
175 |
- Type: bool, 1 for 'NIFTI_XFORM_SCANNER_ANAT'(default) or 0 for 'OTHERS'. |
174 |
- Type: bool, 1 for 'NIFTI_XFORM_SCANNER_ANAT'(default) or 0 for 'OTHERS'.
|
176 |
|
175 |
|
177 |
#### Uncertainty: |
176 |
#### Uncertainty:
|
178 |
``` |
177 |
```
|
179 |
DABC_uncertainty(nii_filename, save_filename, sample_value, uncertainty, sform_code) |
178 |
DABC_uncertainty(nii_filename, save_filename, sample_value, uncertainty, sform_code)
|
180 |
``` |
179 |
```
|
181 |
- nii_filename: |
180 |
- nii_filename:
|
182 |
- Input: Path of input data(nii or nii.gz format). |
181 |
- Input: Path of input data(nii or nii.gz format).
|
183 |
- Type: string |
182 |
- Type: string
|
184 |
- save_filename: |
183 |
- save_filename:
|
185 |
- Input: Folder path of output data(nii or nii.gz format). |
184 |
- Input: Folder path of output data(nii or nii.gz format).
|
186 |
- Type: string |
185 |
- Type: string
|
187 |
- sample_value: |
186 |
- sample_value:
|
188 |
- Input: number of Monte carlo samples. |
187 |
- Input: number of Monte carlo samples.
|
189 |
- Type: int |
188 |
- Type: int
|
190 |
- uncertainty: |
189 |
- uncertainty:
|
191 |
- Input: Choose uncertainty. The results will be saved as nii.gz format. |
190 |
- Input: Choose uncertainty. The results will be saved as nii.gz format.
|
192 |
- Type: string, 'Predictive','Aleatoric','Epistemic' or 'Both' |
191 |
- Type: string, 'Predictive','Aleatoric','Epistemic' or 'Both'
|
193 |
- sform_code: |
192 |
- sform_code:
|
194 |
- Input: Coordinate system. In general, some scans without header files(e.g. data from radiopaedia.org) got 'NIFTI_XFORM_UNKNOWN' sform code. |
193 |
- Input: Coordinate system. In general, some scans without header files(e.g. data from radiopaedia.org) got 'NIFTI_XFORM_UNKNOWN' sform code.
|
195 |
- Type: bool, 1 for 'NIFTI_XFORM_SCANNER_ANAT'(default) or 0 for 'OTHERS'. |
194 |
- Type: bool, 1 for 'NIFTI_XFORM_SCANNER_ANAT'(default) or 0 for 'OTHERS'.
|
196 |
|
195 |
|
197 |
|
196 |
|
198 |
For more detail, please refer to [notebook](https://colab.research.google.com/github/Robin970822/DABC-Net-for-COVID-19/blob/master/DABC_pipeline_demo.ipynb). |
197 |
For more detail, please refer to [notebook](https://colab.research.google.com/github/Robin970822/DABC-Net-for-COVID-19/blob/master/DABC_pipeline_demo.ipynb). |
199 |
|
198 |
|
200 |
## DABC-Net for Website |
199 |
## DABC-Net for Website |
201 |
|
200 |
|
202 |
|
201 |
|
203 |
- [ ] Update by Dec 20 |
202 |
- [ ] Update by Dec 20 |
204 |
|
203 |
|
205 |
# Progress prediction |
204 |
# Progress prediction |
206 |
|
205 |
|
207 |
## Model |
206 |
## Model
|
208 |
### Feature |
207 |
### Feature
|
209 |
Feature we used: |
208 |
Feature we used: |
210 |
|
209 |
|
211 |
| Feature | Scan | |
210 |
| Feature | Scan |
|
212 |
| ------------------------- | ------------ | |
211 |
| ------------------------- | ------------ |
|
213 |
| Left lesion volume | scan0 & scan1| |
212 |
| Left lesion volume | scan0 & scan1|
|
214 |
| Left lung volume | scan0 & scan1| |
213 |
| Left lung volume | scan0 & scan1|
|
215 |
| Left lesion ratio | scan0 & scan1| |
214 |
| Left lesion ratio | scan0 & scan1|
|
216 |
| Left consolidation volume | scan0 & scan1| |
215 |
| Left consolidation volume | scan0 & scan1|
|
217 |
| Left weighted volume | scan0 & scan1| |
216 |
| Left weighted volume | scan0 & scan1|
|
218 |
| Left z-position | scan0 & scan1| |
217 |
| Left z-position | scan0 & scan1|
|
219 |
| Right lesion volume | scan0 & scan1| |
218 |
| Right lesion volume | scan0 & scan1|
|
220 |
| Right lung volume | scan0 & scan1| |
219 |
| Right lung volume | scan0 & scan1|
|
221 |
| Right lesion ratio | scan0 & scan1| |
220 |
| Right lesion ratio | scan0 & scan1|
|
222 |
| Right consolidation volume| scan0 & scan1| |
221 |
| Right consolidation volume| scan0 & scan1|
|
223 |
| Right weighted volume | scan0 & scan1| |
222 |
| Right weighted volume | scan0 & scan1|
|
224 |
| Right z-position | scan0 & scan1| |
223 |
| Right z-position | scan0 & scan1|
|
225 |
| Age | scan0 & scan1| |
224 |
| Age | scan0 & scan1|
|
226 |
| Sex | scan0 & scan1| |
225 |
| Sex | scan0 & scan1| |
227 |
|
226 |
|
228 |
### Base learner |
227 |
### Base learner
|
229 |
Base learners we used: |
228 |
Base learners we used: |
230 |
|
229 |
|
231 |
| Base learner | MinMaxScaler Necessity | Feature Importance | |
230 |
| Base learner | MinMaxScaler Necessity | Feature Importance |
|
232 |
| ------------ | ---------------------- | ------------------ | |
231 |
| ------------ | ---------------------- | ------------------ |
|
233 |
|SVM | True | False | |
232 |
|SVM | True | False |
|
234 |
|MLP | True | False | |
233 |
|MLP | True | False |
|
235 |
|Logistic Regression | True | False | |
234 |
|Logistic Regression | True | False |
|
236 |
|Naive Bayes | False | False | |
235 |
|Naive Bayes | False | False |
|
237 |
|Random Forest | False | True | |
236 |
|Random Forest | False | True |
|
238 |
|Adaboost | False | True | |
237 |
|Adaboost | False | True |
|
239 |
|Gradient Boost | False | True | |
238 |
|Gradient Boost | False | True |
|
240 |
|XGBoost | False | True | |
239 |
|XGBoost | False | True | |
241 |
|
240 |
|
242 |
#### MinMaxScalar |
241 |
#### MinMaxScalar
|
243 |
For base learners sensitive to data normalization(svm, mlp, ...), we provide the min max normalization based on our training dataset. The weights without min max scalar (TODO) are also provided with fewer base learners and lower performance. |
242 |
For base learners sensitive to data normalization(svm, mlp, ...), we provide the min max normalization based on our training dataset. The weights without min max scalar (TODO) are also provided with fewer base learners and lower performance. |
244 |
|
243 |
|
245 |
## Usage |
244 |
## Usage
|
246 |
### Prediction |
245 |
### Prediction
|
247 |
``` |
246 |
```
|
248 |
pred = predict_base_learners(base_learners, feature) |
247 |
pred = predict_base_learners(base_learners, feature)
|
249 |
``` |
248 |
```
|
250 |
- base_learners: |
249 |
- base_learners:
|
251 |
- Input: Trained base learners. |
250 |
- Input: Trained base learners.
|
252 |
- Type: dict, shape: {key: learner}, key: name of learner, learner: sklearn learner. |
251 |
- Type: dict, shape: {key: learner}, key: name of learner, learner: sklearn learner.
|
253 |
- feature: |
252 |
- feature:
|
254 |
- Input: Preprocessed features. |
253 |
- Input: Preprocessed features.
|
255 |
- Type: array, shape: m x n, m: number of samples, n: number of features. |
254 |
- Type: array, shape: m x n, m: number of samples, n: number of features.
|
256 |
- pred: |
255 |
- pred:
|
257 |
- Output: Probability predicted of base learners. |
256 |
- Output: Probability predicted of base learners.
|
258 |
- Type: array, shape: m x k, m: number of samples, k: number of base learners. |
257 |
- Type: array, shape: m x k, m: number of samples, k: number of base learners. |
259 |
|
258 |
|
260 |
## Visualization of progress |
259 |
## Visualization of progress
|
261 |
Here are some examples: |
260 |
Here are some examples: |
262 |
|
261 |
|
263 |
#### Progression curve of severe patient: |
262 |
#### Progression curve of severe patient: |
264 |
|
263 |
|
265 |
 |
264 |
 |
266 |
|
265 |
|
267 |
#### Progression curve of mild patient: |
266 |
#### Progression curve of mild patient: |
268 |
|
267 |
|
269 |
 |
268 |
 |
270 |
|
269 |
|
271 |
x-axis: time(day), y-axis: lesion ratio |
270 |
x-axis: time(day), y-axis: lesion ratio |
272 |
|
271 |
|
273 |
##### Visualization of different time point scans |
272 |
##### Visualization of different time point scans |
274 |
|
273 |
|
275 |
 |
274 |
 |
276 |
|
275 |
|
277 |
 |
276 |
 |
278 |
|
277 |
|
279 |
# Data |
278 |
# Data |
280 |
|
279 |
|
281 |
Dataset with Expert Annotations and Benchmark |
280 |
Dataset with Expert Annotations and Benchmark
|
282 |
* [1] - Ma Jun, Ge Cheng, Wang Yixin, An Xingle, Gao Jiantao, … He Jian. (2020). COVID-19 CT Lung and Infection Segmentation Dataset (Version Verson 1.0) [Data set]. Zenodo. [DOI](https://zenodo.org/record/3757476) |
281 |
* [1] - Ma Jun, Ge Cheng, Wang Yixin, An Xingle, Gao Jiantao, … He Jian. (2020). COVID-19 CT Lung and Infection Segmentation Dataset (Version Verson 1.0) [Data set]. Zenodo. [DOI](https://zenodo.org/record/3757476) |
283 |
|
282 |
|
284 |
Data Sources |
283 |
Data Sources
|
285 |
* [2] - Paiva, O., 2020. CORONACASES.ORG - Helping Radiologists To Help People In More Than 100 Countries! \| Coronavirus Cases - 冠状病毒病例. [online] Coronacases.org. Available at: [link](https://Coronacases.org) [Accessed 20 March 2020]. |
284 |
* [2] - Paiva, O., 2020. CORONACASES.ORG - Helping Radiologists To Help People In More Than 100 Countries! \| Coronavirus Cases - 冠状病毒病例. [online] Coronacases.org. Available at: [link](https://Coronacases.org) [Accessed 20 March 2020].
|
286 |
* [3] - Glick, Y., 2020. Viewing Playlist: COVID-19 Pneumonia \| Radiopaedia.Org. [online] Radiopaedia.org. Available at: [link](https://Radiopaedia.org) [Accessed 20 April 2020]. |
285 |
* [3] - Glick, Y., 2020. Viewing Playlist: COVID-19 Pneumonia \| Radiopaedia.Org. [online] Radiopaedia.org. Available at: [link](https://Radiopaedia.org) [Accessed 20 April 2020]. |
287 |
|
286 |
|
288 |
# Notes |
287 |
# Notes |
289 |
|
288 |
|
290 |
Acknowledgements: We thank [COVID-19-CT-Seg-Benchmark repository](https://github.com/JunMa11/COVID-19-CT-Seg-Benchmark) for providing covid-19 segmentation dataset and benchmark. We also thank this [repository](https://github.com/EdwinZhang1970/Python/tree/master/tkinter-pack%20Demo) for providing us ideas for designing ui. |
289 |
Acknowledgements: We thank [COVID-19-CT-Seg-Benchmark repository](https://github.com/JunMa11/COVID-19-CT-Seg-Benchmark) for providing covid-19 segmentation dataset and benchmark. We also thank this [repository](https://github.com/EdwinZhang1970/Python/tree/master/tkinter-pack%20Demo) for providing us ideas for designing ui. |
291 |
|
290 |
|
292 |
Disclaimer: This toolkit is only for research purpose and not approved for clinical use. |
291 |
Disclaimer: This toolkit is only for research purpose and not approved for clinical use. |
293 |
|
292 |
|