from torchvision import transforms
import pandas as pd
import numpy as np
import time
import pdb
import PIL.Image as Image
import h5py
from torch.utils.data import Dataset
import torch
from wsi_core.util_classes import Contour_Checking_fn, isInContourV1, isInContourV2, isInContourV3_Easy, isInContourV3_Hard
def default_transforms(mean = (0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
t = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)])
return t
def get_contour_check_fn(contour_fn='four_pt_hard', cont=None, ref_patch_size=None, center_shift=None):
if contour_fn == 'four_pt_hard':
cont_check_fn = isInContourV3_Hard(contour=cont, patch_size=ref_patch_size, center_shift=center_shift)
elif contour_fn == 'four_pt_easy':
cont_check_fn = isInContourV3_Easy(contour=cont, patch_size=ref_patch_size, center_shift=0.5)
elif contour_fn == 'center':
cont_check_fn = isInContourV2(contour=cont, patch_size=ref_patch_size)
elif contour_fn == 'basic':
cont_check_fn = isInContourV1(contour=cont)
else:
raise NotImplementedError
return cont_check_fn
class Wsi_Region(Dataset):
'''
args:
wsi_object: instance of WholeSlideImage wrapper over a WSI
top_left: tuple of coordinates representing the top left corner of WSI region (Default: None)
bot_right tuple of coordinates representing the bot right corner of WSI region (Default: None)
level: downsample level at which to prcess the WSI region
patch_size: tuple of width, height representing the patch size
step_size: tuple of w_step, h_step representing the step size
contour_fn (str):
contour checking fn to use
choice of ['four_pt_hard', 'four_pt_easy', 'center', 'basic'] (Default: 'four_pt_hard')
t: custom torchvision transformation to apply
custom_downsample (int): additional downscale factor to apply
use_center_shift: for 'four_pt_hard' contour check, how far out to shift the 4 points
'''
def __init__(self, wsi_object, top_left=None, bot_right=None, level=0,
patch_size = (256, 256), step_size=(256, 256),
contour_fn='four_pt_hard',
t=None, custom_downsample=1, use_center_shift=False):
self.custom_downsample = custom_downsample
# downscale factor in reference to level 0
self.ref_downsample = wsi_object.level_downsamples[level]
# patch size in reference to level 0
self.ref_size = tuple((np.array(patch_size) * np.array(self.ref_downsample)).astype(int))
if self.custom_downsample > 1:
self.target_patch_size = patch_size
patch_size = tuple((np.array(patch_size) * np.array(self.ref_downsample) * custom_downsample).astype(int))
step_size = tuple((np.array(step_size) * custom_downsample).astype(int))
self.ref_size = patch_size
else:
step_size = tuple((np.array(step_size)).astype(int))
self.ref_size = tuple((np.array(patch_size) * np.array(self.ref_downsample)).astype(int))
self.wsi = wsi_object.wsi
self.level = level
self.patch_size = patch_size
if not use_center_shift:
center_shift = 0.
else:
overlap = 1 - float(step_size[0] / patch_size[0])
if overlap < 0.25:
center_shift = 0.375
elif overlap >= 0.25 and overlap < 0.75:
center_shift = 0.5
elif overlap >=0.75 and overlap < 0.95:
center_shift = 0.5
else:
center_shift = 0.625
#center_shift = 0.375 # 25% overlap
#center_shift = 0.625 #50%, 75% overlap
#center_shift = 1.0 #95% overlap
filtered_coords = []
#iterate through tissue contours for valid patch coordinates
for cont_idx, contour in enumerate(wsi_object.contours_tissue):
print('processing {}/{} contours'.format(cont_idx, len(wsi_object.contours_tissue)))
cont_check_fn = get_contour_check_fn(contour_fn, contour, self.ref_size[0], center_shift)
coord_results, _ = wsi_object.process_contour(contour, wsi_object.holes_tissue[cont_idx], level, '',
patch_size = patch_size[0], step_size = step_size[0], contour_fn=cont_check_fn,
use_padding=True, top_left = top_left, bot_right = bot_right)
if len(coord_results) > 0:
filtered_coords.append(coord_results['coords'])
coords=np.vstack(filtered_coords)
self.coords = coords
print('filtered a total of {} coordinates'.format(len(self.coords)))
# apply transformation
if t is None:
self.transforms = default_transforms()
else:
self.transforms = t
def __len__(self):
return len(self.coords)
def __getitem__(self, idx):
coord = self.coords[idx]
patch = self.wsi.read_region(tuple(coord), self.level, self.patch_size).convert('RGB')
if self.custom_downsample > 1:
patch = patch.resize(self.target_patch_size)
patch = self.transforms(patch).unsqueeze(0)
return patch, coord