[b77c15]: / datasets / dataset_survival.py

Download this file

379 lines (299 with data), 15.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from __future__ import print_function, division
import os
import torch
import numpy as np
import pandas as pd
import math
import re
import pdb
import pickle
from scipy import stats
from torch.utils.data import Dataset
import h5py
from utils.utils import generate_split, nth
def save_splits(split_datasets, column_keys, filename, boolean_style=False):
splits = [split_datasets[i].slide_data['slide_id'] for i in range(len(split_datasets))]
if not boolean_style:
df = pd.concat(splits, ignore_index=True, axis=1)
df.columns = column_keys
else:
df = pd.concat(splits, ignore_index = True, axis=0)
index = df.values.tolist()
one_hot = np.eye(len(split_datasets)).astype(bool)
bool_array = np.repeat(one_hot, [len(dset) for dset in split_datasets], axis=0)
df = pd.DataFrame(bool_array, index=index, columns = ['train', 'val', 'test'])
df.to_csv(filename)
print()
class Generic_WSI_Survival_Dataset(Dataset):
def __init__(self,
csv_path: str = 'dataset_csv/ccrcc_clean.csv',
shuffle: bool = False,
seed: int = 7,
print_info: bool = True,
label_dict: dict = {},
filter_dict: dict = {},
ignore: list = [],
patient_strat: bool = False,
time_col: str = None,
event_col: str = None,
patient_voting: str = 'max'
):
"""Generic WSI dataset for survival analysis.
Args:
csv_path (str, optional): Path to csv file with annotation. Defaults to 'dataset_csv/ccrcc_clean.csv'.
shuffle (bool, optional): Whether to shuffle. Defaults to False.
seed (int, optional): Random seed. Defaults to 7.
print_info (bool, optional): Whether to print summary of dataset. Defaults to True.
label_dict (dict, optional): Dictionary with key-value pairs. Defaults to {}.
ignore (list, optional): List with labels to ignore. Defaults to [].
patient_strat (bool, optional): Whether to stratify patients. Defaults to False.
time_col (str, optional): Name of column with survival times. Defaults to None.
event_col (str, optional): Name of column with censorship status. Defaults to None.
patient_voting (str, optional): _description_. Defaults to 'max'.
"""
self.label_dict = label_dict
self.num_classes = len(set(self.label_dict.values()))
self.seed = seed
self.print_info = print_info
self.patient_strat = patient_strat
self.train_ids, self.val_ids, self.test_ids = (None, None, None)
self.data_dir = None
if not time_col:
time_col = 'time'
self.time_col = time_col
if not event_col:
event_col = 'event'
self.event_col = event_col
slide_data = pd.read_csv(csv_path)
slide_data = self.df_prep(slide_data, self.label_dict, ignore, self.event_col, self.time_col)
###shuffle data
if shuffle:
np.random.seed(seed)
np.random.shuffle(slide_data)
self.slide_data = slide_data
self.patient_data_prep(patient_voting)
self.cls_ids_prep()
if print_info:
self.summarize()
def cls_ids_prep(self):
# store ids corresponding each class at the patient or case level
self.patient_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.patient_cls_ids[i] = np.where(self.patient_data['event'] == i)[0]
# store ids corresponding each class at the slide level
self.slide_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.slide_cls_ids[i] = np.where(self.slide_data['event'] == i)[0]
# TODO: Adapt this to survival analysis?
# --> if multiple slides from same patient would be available they would need to have the same event label anyway
def patient_data_prep(self, patient_voting='max'):
patients = np.unique(np.array(self.slide_data['case_id'])) # get unique patients
patient_labels = []
for p in patients:
locations = self.slide_data[self.slide_data['case_id'] == p].index.tolist()
assert len(locations) > 0
label = self.slide_data['event'][locations].values
if patient_voting == 'max':
label = label.max() # get patient label (MIL convention)
elif patient_voting == 'maj':
label = stats.mode(label)[0]
else:
raise NotImplementedError
patient_labels.append(label)
self.patient_data = {'case_id':patients, 'event':np.array(patient_labels)}
# TODO: Adapt this create dataframe valid dataframe with columns case_id, slide_id, event, time
@staticmethod
def df_prep(data, label_dict, ignore, event_col, time_col):
if event_col != 'event':
data['event'] = data[event_col].copy()
if time_col != 'time':
data['time'] = data[time_col].copy()
mask = data['event'].isin(ignore)
data = data[~mask]
data.reset_index(drop=True, inplace=True)
for i in data.index:
key = data.loc[i, 'event']
data.at[i, 'event'] = label_dict[key]
return data
def __len__(self):
if self.patient_strat:
return len(self.patient_data['case_id'])
else:
return len(self.slide_data)
def summarize(self):
print("event column: {}".format(self.event_col))
print("label dictionary: {}".format(self.label_dict))
print("number of classes: {}".format(self.num_classes))
print("slide-level counts: ", '\n', self.slide_data['event'].value_counts(sort = False))
for i in range(self.num_classes):
print('Patient-LVL; Number of samples registered in class %d: %d' % (i, self.patient_cls_ids[i].shape[0]))
print('Slide-LVL; Number of samples registered in class %d: %d' % (i, self.slide_cls_ids[i].shape[0]))
def create_splits(self, k = 3, val_num = (25, 25), test_num = (40, 40), label_frac = 1.0, custom_test_ids = None):
settings = {
'n_splits' : k,
'val_num' : val_num,
'test_num': test_num,
'label_frac': label_frac,
'seed': self.seed,
'custom_test_ids': custom_test_ids
}
if self.patient_strat:
settings.update({'cls_ids' : self.patient_cls_ids, 'samples': len(self.patient_data['case_id'])})
else:
settings.update({'cls_ids' : self.slide_cls_ids, 'samples': len(self.slide_data)})
self.split_gen = generate_split(**settings)
def set_splits(self,start_from=None):
if start_from:
ids = nth(self.split_gen, start_from)
else:
ids = next(self.split_gen)
if self.patient_strat:
slide_ids = [[] for i in range(len(ids))]
for split in range(len(ids)):
for idx in ids[split]:
case_id = self.patient_data['case_id'][idx]
slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist()
slide_ids[split].extend(slide_indices)
self.train_ids, self.val_ids, self.test_ids = slide_ids[0], slide_ids[1], slide_ids[2]
else:
self.train_ids, self.val_ids, self.test_ids = ids
def get_split_from_df(self, all_splits, split_key='train'):
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True)
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(split.tolist())
df_slice = self.slide_data[mask].reset_index(drop=True)
split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes)
else:
split = None
return split
def get_merged_split_from_df(self, all_splits, split_keys=['train']):
merged_split = []
for split_key in split_keys:
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True).tolist()
merged_split.extend(split)
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(merged_split)
df_slice = self.slide_data[mask].reset_index(drop=True)
split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes)
else:
split = None
return split
def return_splits(self, from_id=True, csv_path=None):
if from_id:
if len(self.train_ids) > 0:
train_data = self.slide_data.loc[self.train_ids].reset_index(drop=True)
train_split = Generic_Split(train_data, data_dir=self.data_dir, num_classes=self.num_classes)
else:
train_split = None
if len(self.val_ids) > 0:
val_data = self.slide_data.loc[self.val_ids].reset_index(drop=True)
val_split = Generic_Split(val_data, data_dir=self.data_dir, num_classes=self.num_classes)
else:
val_split = None
if len(self.test_ids) > 0:
test_data = self.slide_data.loc[self.test_ids].reset_index(drop=True)
test_split = Generic_Split(test_data, data_dir=self.data_dir, num_classes=self.num_classes)
else:
test_split = None
else:
assert csv_path
all_splits = pd.read_csv(csv_path, dtype=self.slide_data['slide_id'].dtype) # Without "dtype=self.slide_data['slide_id'].dtype", read_csv() will convert all-number columns to a numerical type. Even if we convert numerical columns back to objects later, we may lose zero-padding in the process; the columns must be correctly read in from the get-go. When we compare the individual train/val/test columns to self.slide_data['slide_id'] in the get_split_from_df() method, we cannot compare objects (strings) to numbers or even to incorrectly zero-padded objects/strings. An example of this breaking is shown in https://github.com/andrew-weisman/clam_analysis/tree/main/datatype_comparison_bug-2021-12-01.
train_split = self.get_split_from_df(all_splits, 'train')
val_split = self.get_split_from_df(all_splits, 'val')
test_split = self.get_split_from_df(all_splits, 'test')
return train_split, val_split, test_split
def get_list(self, ids):
return self.slide_data['slide_id'][ids]
def getlabel(self, ids):
return self.slide_data['event'][ids]
def __getitem__(self, idx):
return None
def test_split_gen(self, return_descriptor=False):
if return_descriptor:
index = [list(self.label_dict.keys())[list(self.label_dict.values()).index(i)] for i in range(self.num_classes)]
columns = ['train', 'val', 'test']
df = pd.DataFrame(np.full((len(index), len(columns)), 0, dtype=np.int32), index= index,
columns= columns)
count = len(self.train_ids)
print('\nnumber of training samples: {}'.format(count))
labels = self.getlabel(self.train_ids)
unique, counts = np.unique(labels, return_counts=True)
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
df.loc[index[u], 'train'] = counts[u]
count = len(self.val_ids)
print('\nnumber of val samples: {}'.format(count))
labels = self.getlabel(self.val_ids)
unique, counts = np.unique(labels, return_counts=True)
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
df.loc[index[u], 'val'] = counts[u]
count = len(self.test_ids)
print('\nnumber of test samples: {}'.format(count))
labels = self.getlabel(self.test_ids)
unique, counts = np.unique(labels, return_counts=True)
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
df.loc[index[u], 'test'] = counts[u]
assert len(np.intersect1d(self.train_ids, self.test_ids)) == 0
assert len(np.intersect1d(self.train_ids, self.val_ids)) == 0
assert len(np.intersect1d(self.val_ids, self.test_ids)) == 0
if return_descriptor:
return df
def save_split(self, filename):
train_split = self.get_list(self.train_ids)
val_split = self.get_list(self.val_ids)
test_split = self.get_list(self.test_ids)
df_tr = pd.DataFrame({'train': train_split})
df_v = pd.DataFrame({'val': val_split})
df_t = pd.DataFrame({'test': test_split})
df = pd.concat([df_tr, df_v, df_t], axis=1)
df.to_csv(filename, index = False)
class Generic_MIL_Survival_Dataset(Generic_WSI_Survival_Dataset):
def __init__(self,
data_dir,
**kwargs):
super(Generic_MIL_Survival_Dataset, self).__init__(**kwargs)
self.data_dir = data_dir
self.use_h5 = False
def load_from_h5(self, toggle):
self.use_h5 = toggle
def __getitem__(self, idx):
slide_id = self.slide_data['slide_id'][idx]
event = self.slide_data['event'][idx]
time = self.slide_data['time'][idx]
if type(self.data_dir) == dict:
source = self.slide_data['source'][idx]
data_dir = self.data_dir[source]
else:
data_dir = self.data_dir
if not self.use_h5:
if self.data_dir:
full_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id))
features = torch.load(full_path)
return features, event, time
else:
return slide_id, event, time
else:
full_path = os.path.join(data_dir,'h5_files','{}.h5'.format(slide_id))
with h5py.File(full_path,'r') as hdf5_file:
features = hdf5_file['features'][:]
coords = hdf5_file['coords'][:]
features = torch.from_numpy(features)
return features, event, time, coords
class Generic_Split(Generic_MIL_Survival_Dataset):
def __init__(self, slide_data, data_dir=None, num_classes=2):
self.use_h5 = False
self.slide_data = slide_data
self.data_dir = data_dir
self.num_classes = num_classes
self.slide_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.slide_cls_ids[i] = np.where(self.slide_data['event'] == i)[0]
def __len__(self):
return len(self.slide_data)