from __future__ import print_function, division
import os
import torch
import numpy as np
import pandas as pd
import math
import re
import pdb
import pickle
from torch.utils.data import Dataset, DataLoader, sampler
from torchvision import transforms, utils, models
import torch.nn.functional as F
from PIL import Image
import h5py
from random import randrange
def eval_transforms(pretrained=False):
if pretrained:
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
else:
mean = (0.5,0.5,0.5)
std = (0.5,0.5,0.5)
trnsfrms_val = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
]
)
return trnsfrms_val
class Whole_Slide_Bag(Dataset):
def __init__(self,
file_path,
pretrained=False,
custom_transforms=None,
target_patch_size=-1,
):
"""
Args:
file_path (string): Path to the .h5 file containing patched data.
pretrained (bool): Use ImageNet transforms
custom_transforms (callable, optional): Optional transform to be applied on a sample
"""
self.pretrained=pretrained
if target_patch_size > 0:
self.target_patch_size = (target_patch_size, target_patch_size)
else:
self.target_patch_size = None
if not custom_transforms:
self.roi_transforms = eval_transforms(pretrained=pretrained)
else:
self.roi_transforms = custom_transforms
self.file_path = file_path
with h5py.File(self.file_path, "r") as f:
dset = f['imgs']
self.length = len(dset)
self.summary()
def __len__(self):
return self.length
def summary(self):
hdf5_file = h5py.File(self.file_path, "r")
dset = hdf5_file['imgs']
for name, value in dset.attrs.items():
print(name, value)
print('pretrained:', self.pretrained)
print('transformations:', self.roi_transforms)
if self.target_patch_size is not None:
print('target_size: ', self.target_patch_size)
def __getitem__(self, idx):
with h5py.File(self.file_path,'r') as hdf5_file:
img = hdf5_file['imgs'][idx]
coord = hdf5_file['coords'][idx]
img = Image.fromarray(img)
if self.target_patch_size is not None:
img = img.resize(self.target_patch_size)
img = self.roi_transforms(img).unsqueeze(0)
return img, coord
class Whole_Slide_Bag_FP(Dataset):
def __init__(self,
file_path,
wsi,
pretrained=False,
custom_transforms=None,
custom_downsample=1,
target_patch_size=-1
):
"""
Args:
file_path (string): Path to the .h5 file containing patched data.
pretrained (bool): Use ImageNet transforms
custom_transforms (callable, optional): Optional transform to be applied on a sample
custom_downsample (int): Custom defined downscale factor (overruled by target_patch_size)
target_patch_size (int): Custom defined image size before embedding
"""
self.pretrained=pretrained
self.wsi = wsi
if not custom_transforms:
self.roi_transforms = eval_transforms(pretrained=pretrained)
else:
self.roi_transforms = custom_transforms
self.file_path = file_path
with h5py.File(self.file_path, "r") as f:
dset = f['coords']
self.patch_level = f['coords'].attrs['patch_level']
self.patch_size = f['coords'].attrs['patch_size']
self.length = len(dset)
if target_patch_size > 0:
self.target_patch_size = (target_patch_size, ) * 2
elif custom_downsample > 1:
self.target_patch_size = (self.patch_size // custom_downsample, ) * 2
else:
self.target_patch_size = None
self.summary()
def __len__(self):
return self.length
def summary(self):
hdf5_file = h5py.File(self.file_path, "r")
dset = hdf5_file['coords']
for name, value in dset.attrs.items():
print(name, value)
print('\nfeature extraction settings')
print('target patch size: ', self.target_patch_size)
print('pretrained: ', self.pretrained)
print('transformations: ', self.roi_transforms)
def __getitem__(self, idx):
with h5py.File(self.file_path,'r') as hdf5_file:
coord = hdf5_file['coords'][idx]
img = self.wsi.read_region(coord, self.patch_level, (self.patch_size, self.patch_size)).convert('RGB')
if self.target_patch_size is not None:
img = img.resize(self.target_patch_size)
img = self.roi_transforms(img).unsqueeze(0)
return img, coord
class Dataset_All_Bags(Dataset):
def __init__(self, csv_path):
self.df = pd.read_csv(csv_path)
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
return self.df['slide_id'][idx]