[b77c15]: / datasets / dataset_h5.py

Download this file

172 lines (138 with data), 4.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from __future__ import print_function, division
import os
import torch
import numpy as np
import pandas as pd
import math
import re
import pdb
import pickle
from torch.utils.data import Dataset, DataLoader, sampler
from torchvision import transforms, utils, models
import torch.nn.functional as F
from PIL import Image
import h5py
from random import randrange
def eval_transforms(pretrained=False):
if pretrained:
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
else:
mean = (0.5,0.5,0.5)
std = (0.5,0.5,0.5)
trnsfrms_val = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
]
)
return trnsfrms_val
class Whole_Slide_Bag(Dataset):
def __init__(self,
file_path,
pretrained=False,
custom_transforms=None,
target_patch_size=-1,
):
"""
Args:
file_path (string): Path to the .h5 file containing patched data.
pretrained (bool): Use ImageNet transforms
custom_transforms (callable, optional): Optional transform to be applied on a sample
"""
self.pretrained=pretrained
if target_patch_size > 0:
self.target_patch_size = (target_patch_size, target_patch_size)
else:
self.target_patch_size = None
if not custom_transforms:
self.roi_transforms = eval_transforms(pretrained=pretrained)
else:
self.roi_transforms = custom_transforms
self.file_path = file_path
with h5py.File(self.file_path, "r") as f:
dset = f['imgs']
self.length = len(dset)
self.summary()
def __len__(self):
return self.length
def summary(self):
hdf5_file = h5py.File(self.file_path, "r")
dset = hdf5_file['imgs']
for name, value in dset.attrs.items():
print(name, value)
print('pretrained:', self.pretrained)
print('transformations:', self.roi_transforms)
if self.target_patch_size is not None:
print('target_size: ', self.target_patch_size)
def __getitem__(self, idx):
with h5py.File(self.file_path,'r') as hdf5_file:
img = hdf5_file['imgs'][idx]
coord = hdf5_file['coords'][idx]
img = Image.fromarray(img)
if self.target_patch_size is not None:
img = img.resize(self.target_patch_size)
img = self.roi_transforms(img).unsqueeze(0)
return img, coord
class Whole_Slide_Bag_FP(Dataset):
def __init__(self,
file_path,
wsi,
pretrained=False,
custom_transforms=None,
custom_downsample=1,
target_patch_size=-1
):
"""
Args:
file_path (string): Path to the .h5 file containing patched data.
pretrained (bool): Use ImageNet transforms
custom_transforms (callable, optional): Optional transform to be applied on a sample
custom_downsample (int): Custom defined downscale factor (overruled by target_patch_size)
target_patch_size (int): Custom defined image size before embedding
"""
self.pretrained=pretrained
self.wsi = wsi
if not custom_transforms:
self.roi_transforms = eval_transforms(pretrained=pretrained)
else:
self.roi_transforms = custom_transforms
self.file_path = file_path
with h5py.File(self.file_path, "r") as f:
dset = f['coords']
self.patch_level = f['coords'].attrs['patch_level']
self.patch_size = f['coords'].attrs['patch_size']
self.length = len(dset)
if target_patch_size > 0:
self.target_patch_size = (target_patch_size, ) * 2
elif custom_downsample > 1:
self.target_patch_size = (self.patch_size // custom_downsample, ) * 2
else:
self.target_patch_size = None
self.summary()
def __len__(self):
return self.length
def summary(self):
hdf5_file = h5py.File(self.file_path, "r")
dset = hdf5_file['coords']
for name, value in dset.attrs.items():
print(name, value)
print('\nfeature extraction settings')
print('target patch size: ', self.target_patch_size)
print('pretrained: ', self.pretrained)
print('transformations: ', self.roi_transforms)
def __getitem__(self, idx):
with h5py.File(self.file_path,'r') as hdf5_file:
coord = hdf5_file['coords'][idx]
img = self.wsi.read_region(coord, self.patch_level, (self.patch_size, self.patch_size)).convert('RGB')
if self.target_patch_size is not None:
img = img.resize(self.target_patch_size)
img = self.roi_transforms(img).unsqueeze(0)
return img, coord
class Dataset_All_Bags(Dataset):
def __init__(self, csv_path):
self.df = pd.read_csv(csv_path)
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
return self.df['slide_id'][idx]