import math
import os
import time
import xml.etree.ElementTree as ET
from xml.dom import minidom
import multiprocessing as mp
import cv2
import matplotlib.pyplot as plt
import numpy as np
import openslide
from PIL import Image
import pdb
import h5py
import math
from wsi_core.wsi_utils import savePatchIter_bag_hdf5, initialize_hdf5_bag, coord_generator, save_hdf5, sample_indices, screen_coords, isBlackPatch, isWhitePatch, to_percentiles
import itertools
from wsi_core.util_classes import isInContourV1, isInContourV2, isInContourV3_Easy, isInContourV3_Hard, Contour_Checking_fn
from utils.file_utils import load_pkl, save_pkl
Image.MAX_IMAGE_PIXELS = 933120000
class WholeSlideImage(object):
def __init__(self, path):
"""
Args:
path (str): fullpath to WSI file
"""
# self.name = ".".join(path.split("/")[-1].split('.')[:-1])
self.name = os.path.splitext(os.path.basename(path))[0]
self.wsi = openslide.open_slide(path)
self.level_downsamples = self._assertLevelDownsamples()
self.level_dim = self.wsi.level_dimensions
self.contours_tissue = None
self.contours_tumor = None
self.hdf5_file = None
def getOpenSlide(self):
return self.wsi
def initXML(self, xml_path):
def _createContour(coord_list):
return np.array([[[int(float(coord.attributes['X'].value)),
int(float(coord.attributes['Y'].value))]] for coord in coord_list], dtype = 'int32')
xmldoc = minidom.parse(xml_path)
annotations = [anno.getElementsByTagName('Coordinate') for anno in xmldoc.getElementsByTagName('Annotation')]
self.contours_tumor = [_createContour(coord_list) for coord_list in annotations]
self.contours_tumor = sorted(self.contours_tumor, key=cv2.contourArea, reverse=True)
def initTxt(self,annot_path):
def _create_contours_from_dict(annot):
all_cnts = []
for idx, annot_group in enumerate(annot):
contour_group = annot_group['coordinates']
if annot_group['type'] == 'Polygon':
for idx, contour in enumerate(contour_group):
contour = np.array(contour).astype(np.int32).reshape(-1,1,2)
all_cnts.append(contour)
else:
for idx, sgmt_group in enumerate(contour_group):
contour = []
for sgmt in sgmt_group:
contour.extend(sgmt)
contour = np.array(contour).astype(np.int32).reshape(-1,1,2)
all_cnts.append(contour)
return all_cnts
with open(annot_path, "r") as f:
annot = f.read()
annot = eval(annot)
self.contours_tumor = _create_contours_from_dict(annot)
self.contours_tumor = sorted(self.contours_tumor, key=cv2.contourArea, reverse=True)
def initSegmentation(self, mask_file):
# load segmentation results from pickle file
import pickle
asset_dict = load_pkl(mask_file)
self.holes_tissue = asset_dict['holes']
self.contours_tissue = asset_dict['tissue']
def saveSegmentation(self, mask_file):
# save segmentation results using pickle
asset_dict = {'holes': self.holes_tissue, 'tissue': self.contours_tissue}
save_pkl(mask_file, asset_dict)
def segmentTissue(self, seg_level=0, sthresh=20, sthresh_up = 255, mthresh=7, close = 0, use_otsu=False,
filter_params={'a_t':100}, ref_patch_size=512, exclude_ids=[], keep_ids=[]):
"""
Segment the tissue via HSV -> Median thresholding -> Binary threshold
"""
def _filter_contours(contours, hierarchy, filter_params):
"""
Filter contours by: area.
"""
filtered = []
# find indices of foreground contours (parent == -1)
hierarchy_1 = np.flatnonzero(hierarchy[:,1] == -1)
all_holes = []
# loop through foreground contour indices
for cont_idx in hierarchy_1:
# actual contour
cont = contours[cont_idx]
# indices of holes contained in this contour (children of parent contour)
holes = np.flatnonzero(hierarchy[:, 1] == cont_idx)
# take contour area (includes holes)
a = cv2.contourArea(cont)
# calculate the contour area of each hole
hole_areas = [cv2.contourArea(contours[hole_idx]) for hole_idx in holes]
# actual area of foreground contour region
a = a - np.array(hole_areas).sum()
if a == 0: continue
if tuple((filter_params['a_t'],)) < tuple((a,)):
filtered.append(cont_idx)
all_holes.append(holes)
foreground_contours = [contours[cont_idx] for cont_idx in filtered]
hole_contours = []
for hole_ids in all_holes:
unfiltered_holes = [contours[idx] for idx in hole_ids ]
unfilered_holes = sorted(unfiltered_holes, key=cv2.contourArea, reverse=True)
# take max_n_holes largest holes by area
unfilered_holes = unfilered_holes[:filter_params['max_n_holes']]
filtered_holes = []
# filter these holes
for hole in unfilered_holes:
if cv2.contourArea(hole) > filter_params['a_h']:
filtered_holes.append(hole)
hole_contours.append(filtered_holes)
return foreground_contours, hole_contours
img = np.array(self.wsi.read_region((0,0), seg_level, self.level_dim[seg_level]))
img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) # Convert to HSV space
img_med = cv2.medianBlur(img_hsv[:,:,1], mthresh) # Apply median blurring
# Thresholding
if use_otsu:
_, img_otsu = cv2.threshold(img_med, 0, sthresh_up, cv2.THRESH_OTSU+cv2.THRESH_BINARY)
else:
_, img_otsu = cv2.threshold(img_med, sthresh, sthresh_up, cv2.THRESH_BINARY)
# Morphological closing
if close > 0:
kernel = np.ones((close, close), np.uint8)
img_otsu = cv2.morphologyEx(img_otsu, cv2.MORPH_CLOSE, kernel)
scale = self.level_downsamples[seg_level]
scaled_ref_patch_area = int(ref_patch_size**2 / (scale[0] * scale[1]))
filter_params = filter_params.copy()
filter_params['a_t'] = filter_params['a_t'] * scaled_ref_patch_area
filter_params['a_h'] = filter_params['a_h'] * scaled_ref_patch_area
# Find and filter contours
contours, hierarchy = cv2.findContours(img_otsu, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) # Find contours
hierarchy = np.squeeze(hierarchy, axis=(0,))[:, 2:]
if filter_params: foreground_contours, hole_contours = _filter_contours(contours, hierarchy, filter_params) # Necessary for filtering out artifacts
self.contours_tissue = self.scaleContourDim(foreground_contours, scale)
self.holes_tissue = self.scaleHolesDim(hole_contours, scale)
#exclude_ids = [0,7,9]
if len(keep_ids) > 0:
contour_ids = set(keep_ids) - set(exclude_ids)
else:
contour_ids = set(np.arange(len(self.contours_tissue))) - set(exclude_ids)
self.contours_tissue = [self.contours_tissue[i] for i in contour_ids]
self.holes_tissue = [self.holes_tissue[i] for i in contour_ids]
def visWSI(self, vis_level=0, color = (0,255,0), hole_color = (0,0,255), annot_color=(255,0,0),
line_thickness=250, max_size=None, top_left=None, bot_right=None, custom_downsample=1, view_slide_only=False,
number_contours=False, seg_display=True, annot_display=True):
downsample = self.level_downsamples[vis_level]
scale = [1/downsample[0], 1/downsample[1]]
if top_left is not None and bot_right is not None:
top_left = tuple(top_left)
bot_right = tuple(bot_right)
w, h = tuple((np.array(bot_right) * scale).astype(int) - (np.array(top_left) * scale).astype(int))
region_size = (w, h)
else:
top_left = (0,0)
region_size = self.level_dim[vis_level]
img = np.array(self.wsi.read_region(top_left, vis_level, region_size).convert("RGB"))
if not view_slide_only:
offset = tuple(-(np.array(top_left) * scale).astype(int))
line_thickness = int(line_thickness * math.sqrt(scale[0] * scale[1]))
if self.contours_tissue is not None and seg_display:
if not number_contours:
cv2.drawContours(img, self.scaleContourDim(self.contours_tissue, scale),
-1, color, line_thickness, lineType=cv2.LINE_8, offset=offset)
else: # add numbering to each contour
for idx, cont in enumerate(self.contours_tissue):
contour = np.array(self.scaleContourDim(cont, scale))
M = cv2.moments(contour)
cX = int(M["m10"] / (M["m00"] + 1e-9))
cY = int(M["m01"] / (M["m00"] + 1e-9))
# draw the contour and put text next to center
cv2.drawContours(img, [contour], -1, color, line_thickness, lineType=cv2.LINE_8, offset=offset)
cv2.putText(img, "{}".format(idx), (cX, cY),
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 10)
for holes in self.holes_tissue:
cv2.drawContours(img, self.scaleContourDim(holes, scale),
-1, hole_color, line_thickness, lineType=cv2.LINE_8)
if self.contours_tumor is not None and annot_display:
cv2.drawContours(img, self.scaleContourDim(self.contours_tumor, scale),
-1, annot_color, line_thickness, lineType=cv2.LINE_8, offset=offset)
img = Image.fromarray(img)
w, h = img.size
if custom_downsample > 1:
img = img.resize((int(w/custom_downsample), int(h/custom_downsample)))
if max_size is not None and (w > max_size or h > max_size):
resizeFactor = max_size/w if w > h else max_size/h
img = img.resize((int(w*resizeFactor), int(h*resizeFactor)))
return img
def createPatches_bag_hdf5(self, save_path, patch_level=0, patch_size=256, step_size=256, save_coord=True, **kwargs):
contours = self.contours_tissue
contour_holes = self.holes_tissue
print("Creating patches for: ", self.name, "...",)
elapsed = time.time()
for idx, cont in enumerate(contours):
patch_gen = self._getPatchGenerator(cont, idx, patch_level, save_path, patch_size, step_size, **kwargs)
if self.hdf5_file is None:
try:
first_patch = next(patch_gen)
# empty contour, continue
except StopIteration:
continue
file_path = initialize_hdf5_bag(first_patch, save_coord=save_coord)
self.hdf5_file = file_path
for patch in patch_gen:
savePatchIter_bag_hdf5(patch)
return self.hdf5_file
def _getPatchGenerator(self, cont, cont_idx, patch_level, save_path, patch_size=256, step_size=256, custom_downsample=1,
white_black=True, white_thresh=15, black_thresh=50, contour_fn='four_pt', use_padding=True):
start_x, start_y, w, h = cv2.boundingRect(cont) if cont is not None else (0, 0, self.level_dim[patch_level][0], self.level_dim[patch_level][1])
print("Bounding Box:", start_x, start_y, w, h)
print("Contour Area:", cv2.contourArea(cont))
if custom_downsample > 1:
assert custom_downsample == 2
target_patch_size = patch_size
patch_size = target_patch_size * 2
step_size = step_size * 2
print("Custom Downsample: {}, Patching at {} x {}, But Final Patch Size is {} x {}".format(custom_downsample, patch_size, patch_size,
target_patch_size, target_patch_size))
patch_downsample = (int(self.level_downsamples[patch_level][0]), int(self.level_downsamples[patch_level][1]))
ref_patch_size = (patch_size*patch_downsample[0], patch_size*patch_downsample[1])
step_size_x = step_size * patch_downsample[0]
step_size_y = step_size * patch_downsample[1]
if isinstance(contour_fn, str):
if contour_fn == 'four_pt':
cont_check_fn = isInContourV3_Easy(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
elif contour_fn == 'four_pt_hard':
cont_check_fn = isInContourV3_Hard(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
elif contour_fn == 'center':
cont_check_fn = isInContourV2(contour=cont, patch_size=ref_patch_size[0])
elif contour_fn == 'basic':
cont_check_fn = isInContourV1(contour=cont)
else:
raise NotImplementedError
else:
assert isinstance(contour_fn, Contour_Checking_fn)
cont_check_fn = contour_fn
img_w, img_h = self.level_dim[0]
if use_padding:
stop_y = start_y+h
stop_x = start_x+w
else:
stop_y = min(start_y+h, img_h-ref_patch_size[1])
stop_x = min(start_x+w, img_w-ref_patch_size[0])
count = 0
for y in range(start_y, stop_y, step_size_y):
for x in range(start_x, stop_x, step_size_x):
if not self.isInContours(cont_check_fn, (x,y), self.holes_tissue[cont_idx], ref_patch_size[0]): #point not inside contour and its associated holes
continue
count+=1
patch_PIL = self.wsi.read_region((x,y), patch_level, (patch_size, patch_size)).convert('RGB')
if custom_downsample > 1:
patch_PIL = patch_PIL.resize((target_patch_size, target_patch_size))
if white_black:
if isBlackPatch(np.array(patch_PIL), rgbThresh=black_thresh) or isWhitePatch(np.array(patch_PIL), satThresh=white_thresh):
continue
patch_info = {'x':x // (patch_downsample[0] * custom_downsample), 'y':y // (patch_downsample[1] * custom_downsample), 'cont_idx':cont_idx, 'patch_level':patch_level,
'downsample': self.level_downsamples[patch_level], 'downsampled_level_dim': tuple(np.array(self.level_dim[patch_level])//custom_downsample), 'level_dim': self.level_dim[patch_level],
'patch_PIL':patch_PIL, 'name':self.name, 'save_path':save_path}
yield patch_info
print("patches extracted: {}".format(count))
@staticmethod
def isInHoles(holes, pt, patch_size):
for hole in holes:
if cv2.pointPolygonTest(hole, (pt[0]+patch_size/2, pt[1]+patch_size/2), False) > 0:
return 1
return 0
@staticmethod
def isInContours(cont_check_fn, pt, holes=None, patch_size=256):
if cont_check_fn(pt):
if holes is not None:
return not WholeSlideImage.isInHoles(holes, pt, patch_size)
else:
return 1
return 0
@staticmethod
def scaleContourDim(contours, scale):
return [np.array(cont * scale, dtype='int32') for cont in contours]
@staticmethod
def scaleHolesDim(contours, scale):
return [[np.array(hole * scale, dtype = 'int32') for hole in holes] for holes in contours]
def _assertLevelDownsamples(self):
level_downsamples = []
dim_0 = self.wsi.level_dimensions[0]
for downsample, dim in zip(self.wsi.level_downsamples, self.wsi.level_dimensions):
estimated_downsample = (dim_0[0]/float(dim[0]), dim_0[1]/float(dim[1]))
level_downsamples.append(estimated_downsample) if estimated_downsample != (downsample, downsample) else level_downsamples.append((downsample, downsample))
return level_downsamples
def process_contours(self, save_path, patch_level=0, patch_size=256, step_size=256, **kwargs):
save_path_hdf5 = os.path.join(save_path, str(self.name) + '.h5')
print("Creating patches for: ", self.name, "...",)
elapsed = time.time()
n_contours = len(self.contours_tissue)
print("Total number of contours to process: ", n_contours)
fp_chunk_size = math.ceil(n_contours * 0.05)
init = True
for idx, cont in enumerate(self.contours_tissue):
if (idx + 1) % fp_chunk_size == fp_chunk_size:
print('Processing contour {}/{}'.format(idx, n_contours))
asset_dict, attr_dict = self.process_contour(cont, self.holes_tissue[idx], patch_level, save_path, patch_size, step_size, **kwargs)
if len(asset_dict) > 0:
if init:
save_hdf5(save_path_hdf5, asset_dict, attr_dict, mode='w')
init = False
else:
save_hdf5(save_path_hdf5, asset_dict, mode='a')
return self.hdf5_file
def process_contour(self, cont, contour_holes, patch_level, save_path, patch_size = 256, step_size = 256,
contour_fn='four_pt', use_padding=True, top_left=None, bot_right=None):
start_x, start_y, w, h = cv2.boundingRect(cont) if cont is not None else (0, 0, self.level_dim[patch_level][0], self.level_dim[patch_level][1])
patch_downsample = (int(self.level_downsamples[patch_level][0]), int(self.level_downsamples[patch_level][1]))
ref_patch_size = (patch_size*patch_downsample[0], patch_size*patch_downsample[1])
img_w, img_h = self.level_dim[0]
if use_padding:
stop_y = start_y+h
stop_x = start_x+w
else:
stop_y = min(start_y+h, img_h-ref_patch_size[1]+1)
stop_x = min(start_x+w, img_w-ref_patch_size[0]+1)
print("Bounding Box:", start_x, start_y, w, h)
print("Contour Area:", cv2.contourArea(cont))
if bot_right is not None:
stop_y = min(bot_right[1], stop_y)
stop_x = min(bot_right[0], stop_x)
if top_left is not None:
start_y = max(top_left[1], start_y)
start_x = max(top_left[0], start_x)
if bot_right is not None or top_left is not None:
w, h = stop_x - start_x, stop_y - start_y
if w <= 0 or h <= 0:
print("Contour is not in specified ROI, skip")
return {}, {}
else:
print("Adjusted Bounding Box:", start_x, start_y, w, h)
if isinstance(contour_fn, str):
if contour_fn == 'four_pt':
cont_check_fn = isInContourV3_Easy(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
elif contour_fn == 'four_pt_hard':
cont_check_fn = isInContourV3_Hard(contour=cont, patch_size=ref_patch_size[0], center_shift=0.5)
elif contour_fn == 'center':
cont_check_fn = isInContourV2(contour=cont, patch_size=ref_patch_size[0])
elif contour_fn == 'basic':
cont_check_fn = isInContourV1(contour=cont)
else:
raise NotImplementedError
else:
assert isinstance(contour_fn, Contour_Checking_fn)
cont_check_fn = contour_fn
step_size_x = step_size * patch_downsample[0]
step_size_y = step_size * patch_downsample[1]
x_range = np.arange(start_x, stop_x, step=step_size_x)
y_range = np.arange(start_y, stop_y, step=step_size_y)
x_coords, y_coords = np.meshgrid(x_range, y_range, indexing='ij')
coord_candidates = np.array([x_coords.flatten(), y_coords.flatten()]).transpose()
num_workers = mp.cpu_count()
if num_workers > 4:
num_workers = 4
pool = mp.Pool(num_workers)
iterable = [(coord, contour_holes, ref_patch_size[0], cont_check_fn) for coord in coord_candidates]
results = pool.starmap(WholeSlideImage.process_coord_candidate, iterable)
pool.close()
results = np.array([result for result in results if result is not None])
print('Extracted {} coordinates'.format(len(results)))
if len(results)>1:
asset_dict = {'coords' : results}
attr = {'patch_size' : patch_size, # To be considered...
'patch_level' : patch_level,
'downsample': self.level_downsamples[patch_level],
'downsampled_level_dim' : tuple(np.array(self.level_dim[patch_level])),
'level_dim': self.level_dim[patch_level],
'name': self.name,
'save_path': save_path}
attr_dict = { 'coords' : attr}
return asset_dict, attr_dict
else:
return {}, {}
@staticmethod
def process_coord_candidate(coord, contour_holes, ref_patch_size, cont_check_fn):
if WholeSlideImage.isInContours(cont_check_fn, coord, contour_holes, ref_patch_size):
return coord
else:
return None
def visHeatmap(self, scores, coords, vis_level=-1,
top_left=None, bot_right=None,
patch_size=(256, 256),
blank_canvas=False, canvas_color=(220, 20, 50), alpha=0.4,
blur=False, overlap=0.0,
segment=True, use_holes=True,
convert_to_percentiles=False,
binarize=False, thresh=0.5,
max_size=None,
custom_downsample = 1,
cmap='coolwarm'):
"""
Args:
scores (numpy array of float): Attention scores
coords (numpy array of int, n_patches x 2): Corresponding coordinates (relative to lvl 0)
vis_level (int): WSI pyramid level to visualize
patch_size (tuple of int): Patch dimensions (relative to lvl 0)
blank_canvas (bool): Whether to use a blank canvas to draw the heatmap (vs. using the original slide)
canvas_color (tuple of uint8): Canvas color
alpha (float [0, 1]): blending coefficient for overlaying heatmap onto original slide
blur (bool): apply gaussian blurring
overlap (float [0 1]): percentage of overlap between neighboring patches (only affect radius of blurring)
segment (bool): whether to use tissue segmentation contour (must have already called self.segmentTissue such that
self.contours_tissue and self.holes_tissue are not None
use_holes (bool): whether to also clip out detected tissue cavities (only in effect when segment == True)
convert_to_percentiles (bool): whether to convert attention scores to percentiles
binarize (bool): only display patches > threshold
threshold (float): binarization threshold
max_size (int): Maximum canvas size (clip if goes over)
custom_downsample (int): additionally downscale the heatmap by specified factor
cmap (str): name of matplotlib colormap to use
"""
if vis_level < 0:
vis_level = self.wsi.get_best_level_for_downsample(32)
downsample = self.level_downsamples[vis_level]
scale = [1/downsample[0], 1/downsample[1]] # Scaling from 0 to desired level
if len(scores.shape) == 2:
scores = scores.flatten()
if binarize:
if thresh < 0:
threshold = 1.0/len(scores)
else:
threshold = thresh
else:
threshold = 0.0
##### calculate size of heatmap and filter coordinates/scores outside specified bbox region #####
if top_left is not None and bot_right is not None:
scores, coords = screen_coords(scores, coords, top_left, bot_right)
coords = coords - top_left
top_left = tuple(top_left)
bot_right = tuple(bot_right)
w, h = tuple((np.array(bot_right) * scale).astype(int) - (np.array(top_left) * scale).astype(int))
region_size = (w, h)
else:
region_size = self.level_dim[vis_level]
top_left = (0,0)
bot_right = self.level_dim[0]
w, h = region_size
patch_size = np.ceil(np.array(patch_size) * np.array(scale)).astype(int)
coords = np.ceil(coords * np.array(scale)).astype(int)
print('\ncreating heatmap for: ')
print('top_left: ', top_left, 'bot_right: ', bot_right)
print('w: {}, h: {}'.format(w, h))
print('scaled patch size: ', patch_size)
###### normalize filtered scores ######
if convert_to_percentiles:
scores = to_percentiles(scores)
scores /= 100
######## calculate the heatmap of raw attention scores (before colormap)
# by accumulating scores over overlapped regions ######
# heatmap overlay: tracks attention score over each pixel of heatmap
# overlay counter: tracks how many times attention score is accumulated over each pixel of heatmap
overlay = np.full(np.flip(region_size), 0).astype(float)
counter = np.full(np.flip(region_size), 0).astype(np.uint16)
count = 0
for idx in range(len(coords)):
score = scores[idx]
coord = coords[idx]
if score >= threshold:
if binarize:
score=1.0
count+=1
else:
score=0.0
# accumulate attention
overlay[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]] += score
# accumulate counter
counter[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]] += 1
if binarize:
print('\nbinarized tiles based on cutoff of {}'.format(threshold))
print('identified {}/{} patches as positive'.format(count, len(coords)))
# fetch attended region and average accumulated attention
zero_mask = counter == 0
if binarize:
overlay[~zero_mask] = np.around(overlay[~zero_mask] / counter[~zero_mask])
else:
overlay[~zero_mask] = overlay[~zero_mask] / counter[~zero_mask]
del counter
if blur:
overlay = cv2.GaussianBlur(overlay,tuple((patch_size * (1-overlap)).astype(int) * 2 +1),0)
if segment:
tissue_mask = self.get_seg_mask(region_size, scale, use_holes=use_holes, offset=tuple(top_left))
# return Image.fromarray(tissue_mask) # tissue mask
if not blank_canvas:
# downsample original image and use as canvas
img = np.array(self.wsi.read_region(top_left, vis_level, region_size).convert("RGB"))
else:
# use blank canvas
img = np.array(Image.new(size=region_size, mode="RGB", color=(255,255,255)))
#return Image.fromarray(img) #raw image
print('\ncomputing heatmap image')
print('total of {} patches'.format(len(coords)))
twenty_percent_chunk = max(1, int(len(coords) * 0.2))
if isinstance(cmap, str):
cmap = plt.get_cmap(cmap)
for idx in range(len(coords)):
if (idx + 1) % twenty_percent_chunk == 0:
print('progress: {}/{}'.format(idx, len(coords)))
score = scores[idx]
coord = coords[idx]
if score >= threshold:
# attention block
raw_block = overlay[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]]
# image block (either blank canvas or orig image)
img_block = img[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]].copy()
# color block (cmap applied to attention block)
color_block = (cmap(raw_block) * 255)[:,:,:3].astype(np.uint8)
if segment:
# tissue mask block
mask_block = tissue_mask[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]]
# copy over only tissue masked portion of color block
img_block[mask_block] = color_block[mask_block]
else:
# copy over entire color block
img_block = color_block
# rewrite image block
img[coord[1]:coord[1]+patch_size[1], coord[0]:coord[0]+patch_size[0]] = img_block.copy()
#return Image.fromarray(img) #overlay
print('Done')
del overlay
if blur:
img = cv2.GaussianBlur(img,tuple((patch_size * (1-overlap)).astype(int) * 2 +1),0)
if alpha < 1.0:
img = self.block_blending(img, vis_level, top_left, bot_right, alpha=alpha, blank_canvas=blank_canvas, block_size=1024)
img = Image.fromarray(img)
w, h = img.size
if custom_downsample > 1:
img = img.resize((int(w/custom_downsample), int(h/custom_downsample)))
if max_size is not None and (w > max_size or h > max_size):
resizeFactor = max_size/w if w > h else max_size/h
img = img.resize((int(w*resizeFactor), int(h*resizeFactor)))
return img
def block_blending(self, img, vis_level, top_left, bot_right, alpha=0.5, blank_canvas=False, block_size=1024):
print('\ncomputing blend')
downsample = self.level_downsamples[vis_level]
w = img.shape[1]
h = img.shape[0]
block_size_x = min(block_size, w)
block_size_y = min(block_size, h)
print('using block size: {} x {}'.format(block_size_x, block_size_y))
shift = top_left # amount shifted w.r.t. (0,0)
for x_start in range(top_left[0], bot_right[0], block_size_x * int(downsample[0])):
for y_start in range(top_left[1], bot_right[1], block_size_y * int(downsample[1])):
#print(x_start, y_start)
# 1. convert wsi coordinates to image coordinates via shift and scale
x_start_img = int((x_start - shift[0]) / int(downsample[0]))
y_start_img = int((y_start - shift[1]) / int(downsample[1]))
# 2. compute end points of blend tile, careful not to go over the edge of the image
y_end_img = min(h, y_start_img+block_size_y)
x_end_img = min(w, x_start_img+block_size_x)
if y_end_img == y_start_img or x_end_img == x_start_img:
continue
#print('start_coord: {} end_coord: {}'.format((x_start_img, y_start_img), (x_end_img, y_end_img)))
# 3. fetch blend block and size
blend_block = img[y_start_img:y_end_img, x_start_img:x_end_img]
blend_block_size = (x_end_img-x_start_img, y_end_img-y_start_img)
if not blank_canvas:
# 4. read actual wsi block as canvas block
pt = (x_start, y_start)
canvas = np.array(self.wsi.read_region(pt, vis_level, blend_block_size).convert("RGB"))
else:
# 4. OR create blank canvas block
canvas = np.array(Image.new(size=blend_block_size, mode="RGB", color=(255,255,255)))
# 5. blend color block and canvas block
img[y_start_img:y_end_img, x_start_img:x_end_img] = cv2.addWeighted(blend_block, alpha, canvas, 1 - alpha, 0, canvas)
return img
def get_seg_mask(self, region_size, scale, use_holes=False, offset=(0,0)):
print('\ncomputing foreground tissue mask')
tissue_mask = np.full(np.flip(region_size), 0).astype(np.uint8)
contours_tissue = self.scaleContourDim(self.contours_tissue, scale)
offset = tuple((np.array(offset) * np.array(scale) * -1).astype(np.int32))
contours_holes = self.scaleHolesDim(self.holes_tissue, scale)
contours_tissue, contours_holes = zip(*sorted(zip(contours_tissue, contours_holes), key=lambda x: cv2.contourArea(x[0]), reverse=True))
for idx in range(len(contours_tissue)):
cv2.drawContours(image=tissue_mask, contours=contours_tissue, contourIdx=idx, color=(1), offset=offset, thickness=-1)
if use_holes:
cv2.drawContours(image=tissue_mask, contours=contours_holes[idx], contourIdx=-1, color=(0), offset=offset, thickness=-1)
# contours_holes = self._scaleContourDim(self.holes_tissue, scale, holes=True, area_thresh=area_thresh)
tissue_mask = tissue_mask.astype(bool)
print('detected {}/{} of region as tissue'.format(tissue_mask.sum(), tissue_mask.size))
return tissue_mask