a b/utils/eval_utils.py
1
import numpy as np
2
3
import torch
4
import torch.nn as nn
5
import torch.nn.functional as F
6
from models.model_mil import MIL_fc, MIL_fc_mc
7
from models.model_clam import CLAM_SB, CLAM_MB
8
import pdb
9
import os
10
import pandas as pd
11
from utils.utils import *
12
from utils.core_utils import Accuracy_Logger
13
from sklearn.metrics import roc_auc_score, roc_curve, auc
14
from sklearn.preprocessing import label_binarize
15
import matplotlib.pyplot as plt
16
17
def initiate_model(args, ckpt_path):
18
    print('Init Model')    
19
    model_dict = {"dropout": args.drop_out, 'n_classes': args.n_classes}
20
    
21
    if args.model_size is not None and args.model_type in ['clam_sb', 'clam_mb']:
22
        model_dict.update({"size_arg": args.model_size})
23
    
24
    if args.model_type =='clam_sb':
25
        model = CLAM_SB(**model_dict)
26
    elif args.model_type =='clam_mb':
27
        model = CLAM_MB(**model_dict)
28
    else: # args.model_type == 'mil'
29
        if args.n_classes > 2:
30
            model = MIL_fc_mc(**model_dict)
31
        else:
32
            model = MIL_fc(**model_dict)
33
34
    print_network(model)
35
36
    ckpt = torch.load(ckpt_path)
37
    ckpt_clean = {}
38
    for key in ckpt.keys():
39
        if 'instance_loss_fn' in key:
40
            continue
41
        ckpt_clean.update({key.replace('.module', ''):ckpt[key]})
42
    model.load_state_dict(ckpt_clean, strict=True)
43
44
    model.relocate()
45
    model.eval()
46
    return model
47
48
def eval(dataset, args, ckpt_path):
49
    model = initiate_model(args, ckpt_path)
50
    
51
    print('Init Loaders')
52
    loader = get_simple_loader(dataset)
53
    patient_results, test_error, auc, df, _ = summary(model, loader, args)
54
    print('test_error: ', test_error)
55
    print('auc: ', auc)
56
    return model, patient_results, test_error, auc, df
57
58
def summary(model, loader, args):
59
    acc_logger = Accuracy_Logger(n_classes=args.n_classes)
60
    model.eval()
61
    test_loss = 0.
62
    test_error = 0.
63
64
    all_probs = np.zeros((len(loader), args.n_classes))
65
    all_labels = np.zeros(len(loader))
66
    all_preds = np.zeros(len(loader))
67
68
    slide_ids = loader.dataset.slide_data['slide_id']
69
    patient_results = {}
70
    for batch_idx, (data, label) in enumerate(loader):
71
        data, label = data.to(device), label.to(device)
72
        slide_id = slide_ids.iloc[batch_idx]
73
        with torch.no_grad():
74
            logits, Y_prob, Y_hat, _, results_dict = model(data)
75
        
76
        acc_logger.log(Y_hat, label)
77
        
78
        probs = Y_prob.cpu().numpy()
79
80
        all_probs[batch_idx] = probs
81
        all_labels[batch_idx] = label.item()
82
        all_preds[batch_idx] = Y_hat.item()
83
        
84
        patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'prob': probs, 'label': label.item()}})
85
        
86
        error = calculate_error(Y_hat, label)
87
        test_error += error
88
89
    del data
90
    test_error /= len(loader)
91
92
    aucs = []
93
    if len(np.unique(all_labels)) == 1:
94
        auc_score = -1
95
96
    else: 
97
        if args.n_classes == 2:
98
            auc_score = roc_auc_score(all_labels, all_probs[:, 1])
99
        else:
100
            binary_labels = label_binarize(all_labels, classes=[i for i in range(args.n_classes)])
101
            for class_idx in range(args.n_classes):
102
                if class_idx in all_labels:
103
                    fpr, tpr, _ = roc_curve(binary_labels[:, class_idx], all_probs[:, class_idx])
104
                    aucs.append(auc(fpr, tpr))
105
                else:
106
                    aucs.append(float('nan'))
107
            if args.micro_average:
108
                binary_labels = label_binarize(all_labels, classes=[i for i in range(args.n_classes)])
109
                fpr, tpr, _ = roc_curve(binary_labels.ravel(), all_probs.ravel())
110
                auc_score = auc(fpr, tpr)
111
            else:
112
                auc_score = np.nanmean(np.array(aucs))
113
114
    results_dict = {'slide_id': slide_ids, 'Y': all_labels, 'Y_hat': all_preds}
115
    for c in range(args.n_classes):
116
        results_dict.update({'p_{}'.format(c): all_probs[:,c]})
117
    df = pd.DataFrame(results_dict)
118
    return patient_results, test_error, auc_score, df, acc_logger