[0fdc30]: / utils / eval_utils.py

Download this file

119 lines (97 with data), 4.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.model_mil import MIL_fc, MIL_fc_mc
from models.model_clam import CLAM_SB, CLAM_MB
import pdb
import os
import pandas as pd
from utils.utils import *
from utils.core_utils import Accuracy_Logger
from sklearn.metrics import roc_auc_score, roc_curve, auc
from sklearn.preprocessing import label_binarize
import matplotlib.pyplot as plt
def initiate_model(args, ckpt_path):
print('Init Model')
model_dict = {"dropout": args.drop_out, 'n_classes': args.n_classes}
if args.model_size is not None and args.model_type in ['clam_sb', 'clam_mb']:
model_dict.update({"size_arg": args.model_size})
if args.model_type =='clam_sb':
model = CLAM_SB(**model_dict)
elif args.model_type =='clam_mb':
model = CLAM_MB(**model_dict)
else: # args.model_type == 'mil'
if args.n_classes > 2:
model = MIL_fc_mc(**model_dict)
else:
model = MIL_fc(**model_dict)
print_network(model)
ckpt = torch.load(ckpt_path)
ckpt_clean = {}
for key in ckpt.keys():
if 'instance_loss_fn' in key:
continue
ckpt_clean.update({key.replace('.module', ''):ckpt[key]})
model.load_state_dict(ckpt_clean, strict=True)
model.relocate()
model.eval()
return model
def eval(dataset, args, ckpt_path):
model = initiate_model(args, ckpt_path)
print('Init Loaders')
loader = get_simple_loader(dataset)
patient_results, test_error, auc, df, _ = summary(model, loader, args)
print('test_error: ', test_error)
print('auc: ', auc)
return model, patient_results, test_error, auc, df
def summary(model, loader, args):
acc_logger = Accuracy_Logger(n_classes=args.n_classes)
model.eval()
test_loss = 0.
test_error = 0.
all_probs = np.zeros((len(loader), args.n_classes))
all_labels = np.zeros(len(loader))
all_preds = np.zeros(len(loader))
slide_ids = loader.dataset.slide_data['slide_id']
patient_results = {}
for batch_idx, (data, label) in enumerate(loader):
data, label = data.to(device), label.to(device)
slide_id = slide_ids.iloc[batch_idx]
with torch.no_grad():
logits, Y_prob, Y_hat, _, results_dict = model(data)
acc_logger.log(Y_hat, label)
probs = Y_prob.cpu().numpy()
all_probs[batch_idx] = probs
all_labels[batch_idx] = label.item()
all_preds[batch_idx] = Y_hat.item()
patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'prob': probs, 'label': label.item()}})
error = calculate_error(Y_hat, label)
test_error += error
del data
test_error /= len(loader)
aucs = []
if len(np.unique(all_labels)) == 1:
auc_score = -1
else:
if args.n_classes == 2:
auc_score = roc_auc_score(all_labels, all_probs[:, 1])
else:
binary_labels = label_binarize(all_labels, classes=[i for i in range(args.n_classes)])
for class_idx in range(args.n_classes):
if class_idx in all_labels:
fpr, tpr, _ = roc_curve(binary_labels[:, class_idx], all_probs[:, class_idx])
aucs.append(auc(fpr, tpr))
else:
aucs.append(float('nan'))
if args.micro_average:
binary_labels = label_binarize(all_labels, classes=[i for i in range(args.n_classes)])
fpr, tpr, _ = roc_curve(binary_labels.ravel(), all_probs.ravel())
auc_score = auc(fpr, tpr)
else:
auc_score = np.nanmean(np.array(aucs))
results_dict = {'slide_id': slide_ids, 'Y': all_labels, 'Y_hat': all_preds}
for c in range(args.n_classes):
results_dict.update({'p_{}'.format(c): all_probs[:,c]})
df = pd.DataFrame(results_dict)
return patient_results, test_error, auc_score, df, acc_logger