[0fdc30]: / tma_utils / tma_baseline_models.py

Download this file

298 lines (226 with data), 11.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
Adapted from https://github.com/luisvalesilva/multisurv/blob/master/src/baseline_models.py
"""
import numpy as np
import pandas as pd
import torchtuples as tt
from lifelines import CoxPHFitter
from pycox.models import CoxPH
from pycox.models import CoxTime
from pycox.models import DeepHitSingle
from pycox.models import LogisticHazard
from pycox.models import MTLR
from pycox.preprocessing.feature_transforms import OrderedCategoricalLong
from pycox.models.cox_time import MixedInputMLPCoxTime, MLPVanillaCoxTime
from pysurvival.models.survival_forest import RandomSurvivalForestModel
from sklearn.preprocessing import StandardScaler
from sklearn_pandas import DataFrameMapper
class _BaseData:
def __init__(self, algorithm, data):
# # check data
# self._cols_standardize = ['Alter_bei_ED']
# self._cols_leave = ['Sex', 'Rauchen_kat', 'Ki_67_nukleär_kat']
# self._cols_categorical = ['Grading_kat4', 'Staging']
# self._cols_targets = ['time', 'event']
# cols = self._cols_standardize \
# + self._cols_leave \
# + self._cols_categorical \
# + self._cols_targets
# for group in data:
# for col in cols:
# if col not in data[group].columns:
# raise ValueError(f'{col} is missing in {group} data.')
# check data
self._cols_standardize = ['Alter_bei_ED']
self._cols_targets = ['time', 'event']
self._cols_leave = np.setdiff1d(data['train'].columns, self._cols_standardize + self._cols_targets).tolist()
# cols = self._cols_standardize \
# + self._cols_leave \
# + self._cols_targets
# for group in data:
# for col in cols:
# if col not in data[group].columns:
# raise ValueError(f'{col} is missing in {group} data.')
# check methods
self._lifelines_methods = ['CPH']
self._pysurvival_methods = ['RSF']
self._pycox_methods = ['DeepSurv', 'CoxTime', 'DeepHIT', 'Nnet-survival']
self._discrete_time_methods = ['DeepHIT', 'Nnet-survival']
methods = self._lifelines_methods \
+ self._pysurvival_methods \
+ self._pycox_methods
if not algorithm in methods:
raise ValueError(f'{algorithm} is not a recognized algorithm.')
self.data = data
self.algorithm = algorithm
# if self.algorithm in self._lifelines_methods:
# self.data = self._process_for_cph()
if self.algorithm in self._pycox_methods:
self.x, self.y, self.val = self._process_for_pycox()
def _process_for_cph(self):
def _get_data(df: pd.DataFrame) -> np.ndarray:
"""Creates dummies for the categorical variables."""
for col in self._cols_categorical:
one_hot = pd.get_dummies(df[col], prefix=col)
df = df.drop(col, axis=1)
df = df.join(one_hot)
return df
data = {group: _get_data(self.data[group]) for group in self.data}
return data
def _process_for_pycox(self):
standardize = [([col], StandardScaler()) for col in self._cols_standardize]
leave = [(col, None) for col in self._cols_leave]
x_mapper_float = DataFrameMapper(standardize + leave)
x_fit_transform = lambda df: tt.tuplefy(
x_mapper_float.fit_transform(df).astype('float32'),
)
x_transform = lambda df: tt.tuplefy(
x_mapper_float.transform(df).astype('float32'),
)
get_target = lambda df: (
df['time'].values.astype('float32'),
df['event'].values.astype('float32')
)
x_train = x_fit_transform(self.data['train'])
x_val = x_transform(self.data['val'])
x_test = x_transform(self.data['test'])
x = {'train': x_train, 'val': x_val, 'test': x_test}
y = {group: get_target(self.data[group]) for group in self.data}
val = tt.tuplefy(x['val'], y['val'])
return x, y, val
# def _process_for_pycox(self):
# standardize = [([col], StandardScaler()) for col in self._cols_standardize]
# leave = [(col, None) for col in self._cols_leave]
# categorical = [(col, OrderedCategoricalLong()) for col in self._cols_categorical]
# x_mapper_float = DataFrameMapper(standardize + leave)
# x_mapper_long = DataFrameMapper(categorical)
# x_fit_transform = lambda df: tt.tuplefy(
# x_mapper_float.fit_transform(df).astype('float32'),
# x_mapper_long.fit_transform(df).astype('int64')
# )
# x_transform = lambda df: tt.tuplefy(
# x_mapper_float.transform(df).astype('float32'),
# x_mapper_long.transform(df).astype('int64')
# )
# get_target = lambda df: (
# df['time'].values.astype('float32'),
# df['event'].values.astype('float32')
# )
# x_train = x_fit_transform(self.data['train'])
# x_val = x_transform(self.data['val'])
# x_test = x_transform(self.data['test'])
# x = {'train': x_train, 'val': x_val, 'test': x_test}
# y = {group: get_target(self.data[group]) for group in self.data}
# val = tt.tuplefy(x['val'], y['val'])
# return x, y, val
class _BaseModel(_BaseData):
def __init__(self, algorithm, data):
super().__init__(algorithm, data)
def _get_discrete_time_net(self, label_transf, net_args):
self.y['train'] = label_transf.fit_transform(*self.y['train'])
self.y['val'] = label_transf.transform(*self.y['val'])
self.val = (self.x['val'], self.y['val'])
net = tt.practical.MLPVanilla(
out_features=label_transf.out_features, **net_args)
return net
def _model_factory(self, n_trees=None, n_input_features=None, n_neurons=None, penalizer=0.0):
if self.algorithm == 'CPH':
return CoxPHFitter(penalizer=penalizer)
elif self.algorithm == 'RSF':
return RandomSurvivalForestModel(num_trees=n_trees)
elif self.algorithm in self._pycox_methods:
# create embeddings for categorical variables
# num_embeddings = self.x['train'][0].max(0) + 1
# embedding_dims = num_embeddings // 2
net_args = {
'in_features': n_input_features,
'num_nodes': n_neurons,
'batch_norm': True,
'dropout': 0.2,
# 'embedding_dims': embedding_dims,
# 'num_embeddings': num_embeddings
}
if self.algorithm == 'DeepSurv':
net = tt.practical.MLPVanilla(
out_features=1, output_bias=False, **net_args)
model = CoxPH(net, tt.optim.Adam)
return model
if self.algorithm == 'CoxTime':
net = MLPVanillaCoxTime(**net_args)
model = CoxTime(net, tt.optim.Adam)
return model
if self.algorithm in self._discrete_time_methods:
num_durations = 10
print(f' {num_durations} equidistant time intervals')
if self.algorithm == 'DeepHit':
labtrans = DeepHitSingle.label_transform(num_durations)
net = self._get_discrete_time_net(labtrans, net_args)
model = DeepHitSingle(net, tt.optim.Adam, alpha=0.2, sigma=0.1,
duration_index=labtrans.cuts)
return model
if self.algorithm == 'Nnet-survival':
labtrans = LogisticHazard.label_transform(num_durations)
net = self._get_discrete_time_net(labtrans, net_args)
model = LogisticHazard(net, tt.optim.Adam(0.01),
duration_index=labtrans.cuts)
return model
else:
raise Exception('Unrecognized model.')
class Baseline(_BaseModel):
def __init__(self,
algorithm: str,
data: dict,
n_trees: int = None,
n_neurons: int = None,
penalizer: float = 0.0) -> None:
"""Fit baseline models.
Args:
algorithm (str): Name of algorithm.
data (dict): Dict of pandas DataFrames with keys 'train', 'val', and 'test'.
n_trees (int, optional): Number of trees. Defaults to None.
n_neurons (int, optional): Number of neurons. Defaults to None.
penalizer (float, optional): Penalty for coefficients during regression. Defaults to 0.0.
"""
super().__init__(algorithm, data)
model_factory_args = {}
if self.algorithm == 'CPH':
model_factory_args['penalizer'] = penalizer
if self.algorithm == 'RSF':
model_factory_args['n_trees'] = n_trees
elif self.algorithm in self._pycox_methods:
model_factory_args['n_input_features'] = self.x['train'][0].shape[1]
model_factory_args['n_neurons'] = n_neurons
self.model = self._model_factory(**model_factory_args)
def fit(self, **kwargs):
if self.algorithm == 'CPH':
self.model.fit(
self.data['train'], duration_col='time', event_col='event',
**kwargs
)
elif self.algorithm == 'RSF':
self.model.fit(
self.data['train'].drop(self._cols_targets, axis=1).values.astype('float32'),
self.data['train']['time'].values.astype('float32'),
self.data['train']['event'].values.astype('int64')
)
elif self.algorithm in self._pycox_methods:
lrfinder = self.model.lr_finder(
self.x['train'], self.y['train'], tolerance=2)
# Set LR as ~half of highest LR before training loss explosion
lr = lrfinder.get_best_lr() * 0.4
if len(str(lr)) > 5:
lr = round(lr, 4)
print(' Learning rate', lr)
print(' Batch size', kwargs['batch_size'])
self.model.optimizer.set_lr(lr)
print()
if self.algorithm == 'CoxTime':
val_data = self.val.repeat(10).cat()
else:
val_data = self.val
self.training_log = self.model.fit(
self.x['train'], self.y['train'], epochs=200,
callbacks=[tt.callbacks.EarlyStopping()],
val_data=val_data, **kwargs)
if not self.algorithm in self._discrete_time_methods:
_ = self.model.compute_baseline_hazards()