--- a +++ b/main_survival.py @@ -0,0 +1,195 @@ +from __future__ import print_function + +import argparse +import pdb +import os +import math + +# internal imports +from utils.file_utils import save_pkl, load_pkl +from utils.utils import * +from utils.core_utils_survival import train +from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset + +# pytorch imports +import torch +from torch.utils.data import DataLoader, sampler +import torch.nn as nn +import torch.nn.functional as F + +import pandas as pd +import numpy as np + + +def main(args): + # create results directory if necessary + if not os.path.isdir(args.results_dir): + os.mkdir(args.results_dir) + + if args.k_start == -1: + start = 0 + else: + start = args.k_start + if args.k_end == -1: + end = args.k + else: + end = args.k_end + + all_test_cindex = [] + all_val_cindex = [] + folds = np.arange(start, end) + for i in folds: + seed_torch(args.seed) + train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False, + csv_path='{}/splits_{}.csv'.format(args.split_dir, i)) + + datasets = (train_dataset, val_dataset, test_dataset) + results, test_cindex, val_cindex = train(datasets, i, args) + all_test_cindex.append(test_cindex) + all_val_cindex.append(val_cindex) + #write results to pkl + filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i)) + save_pkl(filename, results) + + final_df = pd.DataFrame({'folds': folds, 'test_cindex': all_test_cindex, 'val_cindex' : all_val_cindex}) + + if len(folds) != args.k: + save_name = 'summary_partial_{}_{}.csv'.format(start, end) + else: + save_name = 'summary.csv' + final_df.to_csv(os.path.join(args.results_dir, save_name)) + +# Generic training settings +parser = argparse.ArgumentParser(description='Configurations for WSI Training') +parser.add_argument('--data_root_dir', type=str, default=None, + help='data directory') +parser.add_argument('--max_epochs', type=int, default=200, + help='maximum number of epochs to train (default: 200)') +parser.add_argument('--lr', type=float, default=1e-4, + help='learning rate (default: 0.0001)') +parser.add_argument('--label_frac', type=float, default=1.0, + help='fraction of training labels (default: 1.0)') +parser.add_argument('--reg', type=float, default=1e-5, + help='weight decay (default: 1e-5)') +parser.add_argument('--seed', type=int, default=1, + help='random seed for reproducible experiment (default: 1)') +parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)') +parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)') +parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)') +parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)') +parser.add_argument('--split_dir', type=str, default=None, + help='manually specify the set of splits to use, ' + +'instead of infering from the task and label_frac argument (default: None)') +parser.add_argument('--log_data', action='store_true', default=False, help='log data using tensorboard') +parser.add_argument('--testing', action='store_true', default=False, help='debugging tool') +parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping') +parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam') +parser.add_argument('--drop_out', action='store_true', default=False, help='enabel dropout (p=0.25)') +parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce'], default='ce', + help='slide-level classification loss function (default: ce)') +parser.add_argument('--model_type', type=str, choices=['amil', 'mil'], default='amil', + help='type of model (default: amil)') +parser.add_argument('--exp_code', type=str, help='experiment code for saving results') +parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling') +parser.add_argument('--model_size', type=str, choices=['small', 'big','tiny'], default='small', help='size of model, does not affect mil') +parser.add_argument('--task', type=str, choices=['task_3_survival_prediction']) +parser.add_argument('--csv_path', type=str, default=None, help='Path to csv dataset.') +parser.add_argument('--feature_dir', type=str, default=None, help='feature directory') +parser.add_argument('--n_iters', type=int, default=16, help='Number of iterations until cox loss is calculated') +args = parser.parse_args() +device=torch.device("cuda" if torch.cuda.is_available() else "cpu") + +def seed_torch(seed=7): + import random + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + if device.type == 'cuda': + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. + torch.backends.cudnn.benchmark = False + torch.backends.cudnn.deterministic = True + +seed_torch(args.seed) + +encoding_size = 1024 +settings = {'num_splits': args.k, + 'k_start': args.k_start, + 'k_end': args.k_end, + 'task': args.task, + 'max_epochs': args.max_epochs, + 'results_dir': args.results_dir, + 'lr': args.lr, + 'experiment': args.exp_code, + 'reg': args.reg, + 'label_frac': args.label_frac, + 'bag_loss': args.bag_loss, + 'seed': args.seed, + 'model_type': args.model_type, + 'model_size': args.model_size, + "use_drop_out": args.drop_out, + 'weighted_sample': args.weighted_sample, + 'opt': args.opt} + +print('\nLoad Dataset') + + +if args.task == 'task_3_survival_prediction': + + if args.csv_path == None: + raise ValueError('Must provide a csv dataset file.') + else: + csv_path = args.csv_path + + if args.feature_dir is not None: + feature_dir = args.feature_dir + else: + raise ValueError('Must provide feature directory.') + + dataset = Generic_MIL_Survival_Dataset(csv_path = csv_path, + data_dir= os.path.join(args.data_root_dir, feature_dir), + shuffle = False, + seed = args.seed, + print_info = True, + label_dict = {'lebt':0, 'tod':1}, + event_col = 'event', + time_col = 'time', + patient_strat=True, + ignore=[]) +else: + raise NotImplementedError + +if not os.path.isdir(args.results_dir): + os.mkdir(args.results_dir) + +args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed)) +if not os.path.isdir(args.results_dir): + os.mkdir(args.results_dir) + + +if args.split_dir is None: + raise ValueError('Must provide split_dir folder name.') +else: + args.split_dir = os.path.join('splits', '{}'.format(args.split_dir)) + +print('split_dir: ', args.split_dir) +assert os.path.isdir(args.split_dir) + +settings.update({'split_dir': args.split_dir}) + + +with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f: + print(settings, file=f) +f.close() + +print("################# Settings ###################") +for key, val in settings.items(): + print("{}: {}".format(key, val)) + +if __name__ == "__main__": + results = main(args) + print("finished!") + print("end script") + +