Diff of /main_survival.py [000000] .. [0fdc30]

Switch to side-by-side view

--- a
+++ b/main_survival.py
@@ -0,0 +1,195 @@
+from __future__ import print_function
+
+import argparse
+import pdb
+import os
+import math
+
+# internal imports
+from utils.file_utils import save_pkl, load_pkl
+from utils.utils import *
+from utils.core_utils_survival import train
+from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset
+
+# pytorch imports
+import torch
+from torch.utils.data import DataLoader, sampler
+import torch.nn as nn
+import torch.nn.functional as F
+
+import pandas as pd
+import numpy as np
+
+
+def main(args):
+    # create results directory if necessary
+    if not os.path.isdir(args.results_dir):
+        os.mkdir(args.results_dir)
+
+    if args.k_start == -1:
+        start = 0
+    else:
+        start = args.k_start
+    if args.k_end == -1:
+        end = args.k
+    else:
+        end = args.k_end
+
+    all_test_cindex = []
+    all_val_cindex = []
+    folds = np.arange(start, end)
+    for i in folds:
+        seed_torch(args.seed)
+        train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False, 
+                csv_path='{}/splits_{}.csv'.format(args.split_dir, i))
+        
+        datasets = (train_dataset, val_dataset, test_dataset)
+        results, test_cindex, val_cindex  = train(datasets, i, args)
+        all_test_cindex.append(test_cindex)
+        all_val_cindex.append(val_cindex)
+        #write results to pkl
+        filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i))
+        save_pkl(filename, results)
+
+    final_df = pd.DataFrame({'folds': folds, 'test_cindex': all_test_cindex, 'val_cindex' : all_val_cindex})
+
+    if len(folds) != args.k:
+        save_name = 'summary_partial_{}_{}.csv'.format(start, end)
+    else:
+        save_name = 'summary.csv'
+    final_df.to_csv(os.path.join(args.results_dir, save_name))
+
+# Generic training settings
+parser = argparse.ArgumentParser(description='Configurations for WSI Training')
+parser.add_argument('--data_root_dir', type=str, default=None, 
+                    help='data directory')
+parser.add_argument('--max_epochs', type=int, default=200,
+                    help='maximum number of epochs to train (default: 200)')
+parser.add_argument('--lr', type=float, default=1e-4,
+                    help='learning rate (default: 0.0001)')
+parser.add_argument('--label_frac', type=float, default=1.0,
+                    help='fraction of training labels (default: 1.0)')
+parser.add_argument('--reg', type=float, default=1e-5,
+                    help='weight decay (default: 1e-5)')
+parser.add_argument('--seed', type=int, default=1, 
+                    help='random seed for reproducible experiment (default: 1)')
+parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)')
+parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
+parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
+parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)')
+parser.add_argument('--split_dir', type=str, default=None, 
+                    help='manually specify the set of splits to use, ' 
+                    +'instead of infering from the task and label_frac argument (default: None)')
+parser.add_argument('--log_data', action='store_true', default=False, help='log data using tensorboard')
+parser.add_argument('--testing', action='store_true', default=False, help='debugging tool')
+parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping')
+parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam')
+parser.add_argument('--drop_out', action='store_true', default=False, help='enabel dropout (p=0.25)')
+parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce'], default='ce',
+                     help='slide-level classification loss function (default: ce)')
+parser.add_argument('--model_type', type=str, choices=['amil', 'mil'], default='amil', 
+                    help='type of model (default: amil)')
+parser.add_argument('--exp_code', type=str, help='experiment code for saving results')
+parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling')
+parser.add_argument('--model_size', type=str, choices=['small', 'big','tiny'], default='small', help='size of model, does not affect mil')
+parser.add_argument('--task', type=str, choices=['task_3_survival_prediction'])
+parser.add_argument('--csv_path', type=str, default=None, help='Path to csv dataset.')
+parser.add_argument('--feature_dir', type=str, default=None, help='feature directory')
+parser.add_argument('--n_iters', type=int, default=16, help='Number of iterations until cox loss is calculated')
+args = parser.parse_args()
+device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+def seed_torch(seed=7):
+    import random
+    random.seed(seed)
+    os.environ['PYTHONHASHSEED'] = str(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    if device.type == 'cuda':
+        torch.cuda.manual_seed(seed)
+        torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
+    torch.backends.cudnn.benchmark = False
+    torch.backends.cudnn.deterministic = True
+
+seed_torch(args.seed)
+
+encoding_size = 1024
+settings = {'num_splits': args.k, 
+            'k_start': args.k_start,
+            'k_end': args.k_end,
+            'task': args.task,
+            'max_epochs': args.max_epochs, 
+            'results_dir': args.results_dir, 
+            'lr': args.lr,
+            'experiment': args.exp_code,
+            'reg': args.reg,
+            'label_frac': args.label_frac,
+            'bag_loss': args.bag_loss,
+            'seed': args.seed,
+            'model_type': args.model_type,
+            'model_size': args.model_size,
+            "use_drop_out": args.drop_out,
+            'weighted_sample': args.weighted_sample,
+            'opt': args.opt}
+
+print('\nLoad Dataset')
+
+
+if args.task == 'task_3_survival_prediction':
+
+    if args.csv_path == None:
+        raise ValueError('Must provide a csv dataset file.')
+    else:
+        csv_path = args.csv_path
+
+    if args.feature_dir is not None:
+        feature_dir = args.feature_dir
+    else:
+        raise ValueError('Must provide feature directory.')
+
+    dataset = Generic_MIL_Survival_Dataset(csv_path = csv_path,
+                        data_dir= os.path.join(args.data_root_dir, feature_dir),
+                        shuffle = False, 
+                        seed = args.seed, 
+                        print_info = True,
+                        label_dict = {'lebt':0, 'tod':1},
+                        event_col = 'event',
+                        time_col = 'time',
+                        patient_strat=True,
+                        ignore=[])
+else:
+    raise NotImplementedError
+    
+if not os.path.isdir(args.results_dir):
+    os.mkdir(args.results_dir)
+
+args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed))
+if not os.path.isdir(args.results_dir):
+    os.mkdir(args.results_dir)
+
+
+if args.split_dir is None:
+    raise ValueError('Must provide split_dir folder name.')
+else:
+    args.split_dir = os.path.join('splits', '{}'.format(args.split_dir))
+
+print('split_dir: ', args.split_dir)
+assert os.path.isdir(args.split_dir)
+
+settings.update({'split_dir': args.split_dir})
+
+
+with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f:
+    print(settings, file=f)
+f.close()
+
+print("################# Settings ###################")
+for key, val in settings.items():
+    print("{}:  {}".format(key, val))        
+
+if __name__ == "__main__":
+    results = main(args)
+    print("finished!")
+    print("end script")
+
+