|
a |
|
b/main_survival.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
|
|
|
3 |
import argparse |
|
|
4 |
import pdb |
|
|
5 |
import os |
|
|
6 |
import math |
|
|
7 |
|
|
|
8 |
# internal imports |
|
|
9 |
from utils.file_utils import save_pkl, load_pkl |
|
|
10 |
from utils.utils import * |
|
|
11 |
from utils.core_utils_survival import train |
|
|
12 |
from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset |
|
|
13 |
|
|
|
14 |
# pytorch imports |
|
|
15 |
import torch |
|
|
16 |
from torch.utils.data import DataLoader, sampler |
|
|
17 |
import torch.nn as nn |
|
|
18 |
import torch.nn.functional as F |
|
|
19 |
|
|
|
20 |
import pandas as pd |
|
|
21 |
import numpy as np |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def main(args): |
|
|
25 |
# create results directory if necessary |
|
|
26 |
if not os.path.isdir(args.results_dir): |
|
|
27 |
os.mkdir(args.results_dir) |
|
|
28 |
|
|
|
29 |
if args.k_start == -1: |
|
|
30 |
start = 0 |
|
|
31 |
else: |
|
|
32 |
start = args.k_start |
|
|
33 |
if args.k_end == -1: |
|
|
34 |
end = args.k |
|
|
35 |
else: |
|
|
36 |
end = args.k_end |
|
|
37 |
|
|
|
38 |
all_test_cindex = [] |
|
|
39 |
all_val_cindex = [] |
|
|
40 |
folds = np.arange(start, end) |
|
|
41 |
for i in folds: |
|
|
42 |
seed_torch(args.seed) |
|
|
43 |
train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False, |
|
|
44 |
csv_path='{}/splits_{}.csv'.format(args.split_dir, i)) |
|
|
45 |
|
|
|
46 |
datasets = (train_dataset, val_dataset, test_dataset) |
|
|
47 |
results, test_cindex, val_cindex = train(datasets, i, args) |
|
|
48 |
all_test_cindex.append(test_cindex) |
|
|
49 |
all_val_cindex.append(val_cindex) |
|
|
50 |
#write results to pkl |
|
|
51 |
filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i)) |
|
|
52 |
save_pkl(filename, results) |
|
|
53 |
|
|
|
54 |
final_df = pd.DataFrame({'folds': folds, 'test_cindex': all_test_cindex, 'val_cindex' : all_val_cindex}) |
|
|
55 |
|
|
|
56 |
if len(folds) != args.k: |
|
|
57 |
save_name = 'summary_partial_{}_{}.csv'.format(start, end) |
|
|
58 |
else: |
|
|
59 |
save_name = 'summary.csv' |
|
|
60 |
final_df.to_csv(os.path.join(args.results_dir, save_name)) |
|
|
61 |
|
|
|
62 |
# Generic training settings |
|
|
63 |
parser = argparse.ArgumentParser(description='Configurations for WSI Training') |
|
|
64 |
parser.add_argument('--data_root_dir', type=str, default=None, |
|
|
65 |
help='data directory') |
|
|
66 |
parser.add_argument('--max_epochs', type=int, default=200, |
|
|
67 |
help='maximum number of epochs to train (default: 200)') |
|
|
68 |
parser.add_argument('--lr', type=float, default=1e-4, |
|
|
69 |
help='learning rate (default: 0.0001)') |
|
|
70 |
parser.add_argument('--label_frac', type=float, default=1.0, |
|
|
71 |
help='fraction of training labels (default: 1.0)') |
|
|
72 |
parser.add_argument('--reg', type=float, default=1e-5, |
|
|
73 |
help='weight decay (default: 1e-5)') |
|
|
74 |
parser.add_argument('--seed', type=int, default=1, |
|
|
75 |
help='random seed for reproducible experiment (default: 1)') |
|
|
76 |
parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)') |
|
|
77 |
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)') |
|
|
78 |
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)') |
|
|
79 |
parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)') |
|
|
80 |
parser.add_argument('--split_dir', type=str, default=None, |
|
|
81 |
help='manually specify the set of splits to use, ' |
|
|
82 |
+'instead of infering from the task and label_frac argument (default: None)') |
|
|
83 |
parser.add_argument('--log_data', action='store_true', default=False, help='log data using tensorboard') |
|
|
84 |
parser.add_argument('--testing', action='store_true', default=False, help='debugging tool') |
|
|
85 |
parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping') |
|
|
86 |
parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam') |
|
|
87 |
parser.add_argument('--drop_out', action='store_true', default=False, help='enabel dropout (p=0.25)') |
|
|
88 |
parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce'], default='ce', |
|
|
89 |
help='slide-level classification loss function (default: ce)') |
|
|
90 |
parser.add_argument('--model_type', type=str, choices=['amil', 'mil'], default='amil', |
|
|
91 |
help='type of model (default: amil)') |
|
|
92 |
parser.add_argument('--exp_code', type=str, help='experiment code for saving results') |
|
|
93 |
parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling') |
|
|
94 |
parser.add_argument('--model_size', type=str, choices=['small', 'big','tiny'], default='small', help='size of model, does not affect mil') |
|
|
95 |
parser.add_argument('--task', type=str, choices=['task_3_survival_prediction']) |
|
|
96 |
parser.add_argument('--csv_path', type=str, default=None, help='Path to csv dataset.') |
|
|
97 |
parser.add_argument('--feature_dir', type=str, default=None, help='feature directory') |
|
|
98 |
parser.add_argument('--n_iters', type=int, default=16, help='Number of iterations until cox loss is calculated') |
|
|
99 |
args = parser.parse_args() |
|
|
100 |
device=torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
101 |
|
|
|
102 |
def seed_torch(seed=7): |
|
|
103 |
import random |
|
|
104 |
random.seed(seed) |
|
|
105 |
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
106 |
np.random.seed(seed) |
|
|
107 |
torch.manual_seed(seed) |
|
|
108 |
if device.type == 'cuda': |
|
|
109 |
torch.cuda.manual_seed(seed) |
|
|
110 |
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. |
|
|
111 |
torch.backends.cudnn.benchmark = False |
|
|
112 |
torch.backends.cudnn.deterministic = True |
|
|
113 |
|
|
|
114 |
seed_torch(args.seed) |
|
|
115 |
|
|
|
116 |
encoding_size = 1024 |
|
|
117 |
settings = {'num_splits': args.k, |
|
|
118 |
'k_start': args.k_start, |
|
|
119 |
'k_end': args.k_end, |
|
|
120 |
'task': args.task, |
|
|
121 |
'max_epochs': args.max_epochs, |
|
|
122 |
'results_dir': args.results_dir, |
|
|
123 |
'lr': args.lr, |
|
|
124 |
'experiment': args.exp_code, |
|
|
125 |
'reg': args.reg, |
|
|
126 |
'label_frac': args.label_frac, |
|
|
127 |
'bag_loss': args.bag_loss, |
|
|
128 |
'seed': args.seed, |
|
|
129 |
'model_type': args.model_type, |
|
|
130 |
'model_size': args.model_size, |
|
|
131 |
"use_drop_out": args.drop_out, |
|
|
132 |
'weighted_sample': args.weighted_sample, |
|
|
133 |
'opt': args.opt} |
|
|
134 |
|
|
|
135 |
print('\nLoad Dataset') |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
if args.task == 'task_3_survival_prediction': |
|
|
139 |
|
|
|
140 |
if args.csv_path == None: |
|
|
141 |
raise ValueError('Must provide a csv dataset file.') |
|
|
142 |
else: |
|
|
143 |
csv_path = args.csv_path |
|
|
144 |
|
|
|
145 |
if args.feature_dir is not None: |
|
|
146 |
feature_dir = args.feature_dir |
|
|
147 |
else: |
|
|
148 |
raise ValueError('Must provide feature directory.') |
|
|
149 |
|
|
|
150 |
dataset = Generic_MIL_Survival_Dataset(csv_path = csv_path, |
|
|
151 |
data_dir= os.path.join(args.data_root_dir, feature_dir), |
|
|
152 |
shuffle = False, |
|
|
153 |
seed = args.seed, |
|
|
154 |
print_info = True, |
|
|
155 |
label_dict = {'lebt':0, 'tod':1}, |
|
|
156 |
event_col = 'event', |
|
|
157 |
time_col = 'time', |
|
|
158 |
patient_strat=True, |
|
|
159 |
ignore=[]) |
|
|
160 |
else: |
|
|
161 |
raise NotImplementedError |
|
|
162 |
|
|
|
163 |
if not os.path.isdir(args.results_dir): |
|
|
164 |
os.mkdir(args.results_dir) |
|
|
165 |
|
|
|
166 |
args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed)) |
|
|
167 |
if not os.path.isdir(args.results_dir): |
|
|
168 |
os.mkdir(args.results_dir) |
|
|
169 |
|
|
|
170 |
|
|
|
171 |
if args.split_dir is None: |
|
|
172 |
raise ValueError('Must provide split_dir folder name.') |
|
|
173 |
else: |
|
|
174 |
args.split_dir = os.path.join('splits', '{}'.format(args.split_dir)) |
|
|
175 |
|
|
|
176 |
print('split_dir: ', args.split_dir) |
|
|
177 |
assert os.path.isdir(args.split_dir) |
|
|
178 |
|
|
|
179 |
settings.update({'split_dir': args.split_dir}) |
|
|
180 |
|
|
|
181 |
|
|
|
182 |
with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f: |
|
|
183 |
print(settings, file=f) |
|
|
184 |
f.close() |
|
|
185 |
|
|
|
186 |
print("################# Settings ###################") |
|
|
187 |
for key, val in settings.items(): |
|
|
188 |
print("{}: {}".format(key, val)) |
|
|
189 |
|
|
|
190 |
if __name__ == "__main__": |
|
|
191 |
results = main(args) |
|
|
192 |
print("finished!") |
|
|
193 |
print("end script") |
|
|
194 |
|
|
|
195 |
|