Diff of /datasets/wsi_dataset.py [000000] .. [0fdc30]

Switch to side-by-side view

--- a
+++ b/datasets/wsi_dataset.py
@@ -0,0 +1,121 @@
+from torchvision import transforms
+import pandas as pd
+import numpy as np
+import time
+import pdb
+import PIL.Image as Image
+import h5py
+from torch.utils.data import Dataset
+import torch
+from wsi_core.util_classes import Contour_Checking_fn, isInContourV1, isInContourV2, isInContourV3_Easy, isInContourV3_Hard
+
+def default_transforms(mean = (0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
+    t = transforms.Compose(
+                        [transforms.ToTensor(),
+                         transforms.Normalize(mean = mean, std = std)])
+    return t
+
+def get_contour_check_fn(contour_fn='four_pt_hard', cont=None, ref_patch_size=None, center_shift=None):
+    if contour_fn == 'four_pt_hard':
+        cont_check_fn = isInContourV3_Hard(contour=cont, patch_size=ref_patch_size, center_shift=center_shift)
+    elif contour_fn == 'four_pt_easy':
+        cont_check_fn = isInContourV3_Easy(contour=cont, patch_size=ref_patch_size, center_shift=0.5)
+    elif contour_fn == 'center':
+        cont_check_fn = isInContourV2(contour=cont, patch_size=ref_patch_size)
+    elif contour_fn == 'basic':
+        cont_check_fn = isInContourV1(contour=cont)
+    else:
+        raise NotImplementedError
+    return cont_check_fn
+
+
+
+class Wsi_Region(Dataset):
+    '''
+    args:
+        wsi_object: instance of WholeSlideImage wrapper over a WSI
+        top_left: tuple of coordinates representing the top left corner of WSI region (Default: None)
+        bot_right tuple of coordinates representing the bot right corner of WSI region (Default: None)
+        level: downsample level at which to prcess the WSI region
+        patch_size: tuple of width, height representing the patch size
+        step_size: tuple of w_step, h_step representing the step size
+        contour_fn (str): 
+            contour checking fn to use
+            choice of ['four_pt_hard', 'four_pt_easy', 'center', 'basic'] (Default: 'four_pt_hard')
+        t: custom torchvision transformation to apply 
+        custom_downsample (int): additional downscale factor to apply 
+        use_center_shift: for 'four_pt_hard' contour check, how far out to shift the 4 points
+    '''
+    def __init__(self, wsi_object, top_left=None, bot_right=None, level=0, 
+                 patch_size = (256, 256), step_size=(256, 256), 
+                 contour_fn='four_pt_hard',
+                 t=None, custom_downsample=1, use_center_shift=False):
+        
+        self.custom_downsample = custom_downsample
+
+        # downscale factor in reference to level 0
+        self.ref_downsample = wsi_object.level_downsamples[level]
+        # patch size in reference to level 0
+        self.ref_size = tuple((np.array(patch_size) * np.array(self.ref_downsample)).astype(int)) 
+        
+        if self.custom_downsample > 1:
+            self.target_patch_size = patch_size
+            patch_size = tuple((np.array(patch_size) * np.array(self.ref_downsample) * custom_downsample).astype(int))
+            step_size = tuple((np.array(step_size) * custom_downsample).astype(int))
+            self.ref_size = patch_size
+        else:
+            step_size = tuple((np.array(step_size)).astype(int))
+            self.ref_size = tuple((np.array(patch_size) * np.array(self.ref_downsample)).astype(int)) 
+        
+        self.wsi = wsi_object.wsi
+        self.level = level
+        self.patch_size = patch_size
+            
+        if not use_center_shift:
+            center_shift = 0.
+        else:
+            overlap = 1 - float(step_size[0] / patch_size[0])
+            if overlap < 0.25:
+                center_shift = 0.375
+            elif overlap >= 0.25 and overlap < 0.75:
+                center_shift = 0.5
+            elif overlap >=0.75 and overlap < 0.95:
+                center_shift = 0.5
+            else:
+                center_shift = 0.625
+            #center_shift = 0.375 # 25% overlap
+            #center_shift = 0.625 #50%, 75% overlap
+            #center_shift = 1.0 #95% overlap
+        
+        filtered_coords = []
+        #iterate through tissue contours for valid patch coordinates
+        for cont_idx, contour in enumerate(wsi_object.contours_tissue): 
+            print('processing {}/{} contours'.format(cont_idx, len(wsi_object.contours_tissue)))
+            cont_check_fn = get_contour_check_fn(contour_fn, contour, self.ref_size[0], center_shift)
+            coord_results, _ = wsi_object.process_contour(contour, wsi_object.holes_tissue[cont_idx], level, '', 
+                            patch_size = patch_size[0], step_size = step_size[0], contour_fn=cont_check_fn,
+                            use_padding=True, top_left = top_left, bot_right = bot_right)
+            if len(coord_results) > 0:
+                filtered_coords.append(coord_results['coords'])
+        
+        coords=np.vstack(filtered_coords)
+
+        self.coords = coords
+        print('filtered a total of {} coordinates'.format(len(self.coords)))
+        
+        # apply transformation
+        if t is None:
+            self.transforms = default_transforms()
+        else:
+            self.transforms = t
+
+    def __len__(self):
+        return len(self.coords)
+    
+    def __getitem__(self, idx):
+        coord = self.coords[idx]
+        patch = self.wsi.read_region(tuple(coord), self.level, self.patch_size).convert('RGB')
+        if self.custom_downsample > 1:
+            patch = patch.resize(self.target_patch_size)
+        patch = self.transforms(patch).unsqueeze(0)
+        return patch, coord