--- a +++ b/datasets/dataset_survival.py @@ -0,0 +1,378 @@ +from __future__ import print_function, division +import os +import torch +import numpy as np +import pandas as pd +import math +import re +import pdb +import pickle +from scipy import stats + +from torch.utils.data import Dataset +import h5py + +from utils.utils import generate_split, nth + +def save_splits(split_datasets, column_keys, filename, boolean_style=False): + splits = [split_datasets[i].slide_data['slide_id'] for i in range(len(split_datasets))] + if not boolean_style: + df = pd.concat(splits, ignore_index=True, axis=1) + df.columns = column_keys + else: + df = pd.concat(splits, ignore_index = True, axis=0) + index = df.values.tolist() + one_hot = np.eye(len(split_datasets)).astype(bool) + bool_array = np.repeat(one_hot, [len(dset) for dset in split_datasets], axis=0) + df = pd.DataFrame(bool_array, index=index, columns = ['train', 'val', 'test']) + + df.to_csv(filename) + print() + +class Generic_WSI_Survival_Dataset(Dataset): + def __init__(self, + csv_path: str = 'dataset_csv/ccrcc_clean.csv', + shuffle: bool = False, + seed: int = 7, + print_info: bool = True, + label_dict: dict = {}, + filter_dict: dict = {}, + ignore: list = [], + patient_strat: bool = False, + time_col: str = None, + event_col: str = None, + patient_voting: str = 'max' + ): + """Generic WSI dataset for survival analysis. + + Args: + csv_path (str, optional): Path to csv file with annotation. Defaults to 'dataset_csv/ccrcc_clean.csv'. + shuffle (bool, optional): Whether to shuffle. Defaults to False. + seed (int, optional): Random seed. Defaults to 7. + print_info (bool, optional): Whether to print summary of dataset. Defaults to True. + label_dict (dict, optional): Dictionary with key-value pairs. Defaults to {}. + ignore (list, optional): List with labels to ignore. Defaults to []. + patient_strat (bool, optional): Whether to stratify patients. Defaults to False. + time_col (str, optional): Name of column with survival times. Defaults to None. + event_col (str, optional): Name of column with censorship status. Defaults to None. + patient_voting (str, optional): _description_. Defaults to 'max'. + """ + self.label_dict = label_dict + self.num_classes = len(set(self.label_dict.values())) + self.seed = seed + self.print_info = print_info + self.patient_strat = patient_strat + self.train_ids, self.val_ids, self.test_ids = (None, None, None) + self.data_dir = None + + if not time_col: + time_col = 'time' + self.time_col = time_col + + if not event_col: + event_col = 'event' + self.event_col = event_col + + + slide_data = pd.read_csv(csv_path) + slide_data = self.df_prep(slide_data, self.label_dict, ignore, self.event_col, self.time_col) + + ###shuffle data + if shuffle: + np.random.seed(seed) + np.random.shuffle(slide_data) + + self.slide_data = slide_data + self.patient_data_prep(patient_voting) + self.cls_ids_prep() + + if print_info: + self.summarize() + + + def cls_ids_prep(self): + # store ids corresponding each class at the patient or case level + self.patient_cls_ids = [[] for i in range(self.num_classes)] + for i in range(self.num_classes): + self.patient_cls_ids[i] = np.where(self.patient_data['event'] == i)[0] + + # store ids corresponding each class at the slide level + self.slide_cls_ids = [[] for i in range(self.num_classes)] + for i in range(self.num_classes): + self.slide_cls_ids[i] = np.where(self.slide_data['event'] == i)[0] + + # TODO: Adapt this to survival analysis? + # --> if multiple slides from same patient would be available they would need to have the same event label anyway + def patient_data_prep(self, patient_voting='max'): + patients = np.unique(np.array(self.slide_data['case_id'])) # get unique patients + patient_labels = [] + + for p in patients: + locations = self.slide_data[self.slide_data['case_id'] == p].index.tolist() + assert len(locations) > 0 + label = self.slide_data['event'][locations].values + if patient_voting == 'max': + label = label.max() # get patient label (MIL convention) + elif patient_voting == 'maj': + label = stats.mode(label)[0] + else: + raise NotImplementedError + patient_labels.append(label) + + self.patient_data = {'case_id':patients, 'event':np.array(patient_labels)} + + + # TODO: Adapt this create dataframe valid dataframe with columns case_id, slide_id, event, time + @staticmethod + def df_prep(data, label_dict, ignore, event_col, time_col): + if event_col != 'event': + data['event'] = data[event_col].copy() + + if time_col != 'time': + data['time'] = data[time_col].copy() + + mask = data['event'].isin(ignore) + data = data[~mask] + data.reset_index(drop=True, inplace=True) + for i in data.index: + key = data.loc[i, 'event'] + data.at[i, 'event'] = label_dict[key] + + return data + + def __len__(self): + if self.patient_strat: + return len(self.patient_data['case_id']) + + else: + return len(self.slide_data) + + def summarize(self): + print("event column: {}".format(self.event_col)) + print("label dictionary: {}".format(self.label_dict)) + print("number of classes: {}".format(self.num_classes)) + print("slide-level counts: ", '\n', self.slide_data['event'].value_counts(sort = False)) + for i in range(self.num_classes): + print('Patient-LVL; Number of samples registered in class %d: %d' % (i, self.patient_cls_ids[i].shape[0])) + print('Slide-LVL; Number of samples registered in class %d: %d' % (i, self.slide_cls_ids[i].shape[0])) + + def create_splits(self, k = 3, val_num = (25, 25), test_num = (40, 40), label_frac = 1.0, custom_test_ids = None): + settings = { + 'n_splits' : k, + 'val_num' : val_num, + 'test_num': test_num, + 'label_frac': label_frac, + 'seed': self.seed, + 'custom_test_ids': custom_test_ids + } + + if self.patient_strat: + settings.update({'cls_ids' : self.patient_cls_ids, 'samples': len(self.patient_data['case_id'])}) + else: + settings.update({'cls_ids' : self.slide_cls_ids, 'samples': len(self.slide_data)}) + + self.split_gen = generate_split(**settings) + + def set_splits(self,start_from=None): + if start_from: + ids = nth(self.split_gen, start_from) + + else: + ids = next(self.split_gen) + + if self.patient_strat: + slide_ids = [[] for i in range(len(ids))] + + for split in range(len(ids)): + for idx in ids[split]: + case_id = self.patient_data['case_id'][idx] + slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist() + slide_ids[split].extend(slide_indices) + + self.train_ids, self.val_ids, self.test_ids = slide_ids[0], slide_ids[1], slide_ids[2] + + else: + self.train_ids, self.val_ids, self.test_ids = ids + + def get_split_from_df(self, all_splits, split_key='train'): + split = all_splits[split_key] + split = split.dropna().reset_index(drop=True) + + if len(split) > 0: + mask = self.slide_data['slide_id'].isin(split.tolist()) + df_slice = self.slide_data[mask].reset_index(drop=True) + split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes) + else: + split = None + + return split + + def get_merged_split_from_df(self, all_splits, split_keys=['train']): + merged_split = [] + for split_key in split_keys: + split = all_splits[split_key] + split = split.dropna().reset_index(drop=True).tolist() + merged_split.extend(split) + + if len(split) > 0: + mask = self.slide_data['slide_id'].isin(merged_split) + df_slice = self.slide_data[mask].reset_index(drop=True) + split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes) + else: + split = None + + return split + + + def return_splits(self, from_id=True, csv_path=None): + + + if from_id: + if len(self.train_ids) > 0: + train_data = self.slide_data.loc[self.train_ids].reset_index(drop=True) + train_split = Generic_Split(train_data, data_dir=self.data_dir, num_classes=self.num_classes) + + else: + train_split = None + + if len(self.val_ids) > 0: + val_data = self.slide_data.loc[self.val_ids].reset_index(drop=True) + val_split = Generic_Split(val_data, data_dir=self.data_dir, num_classes=self.num_classes) + + else: + val_split = None + + if len(self.test_ids) > 0: + test_data = self.slide_data.loc[self.test_ids].reset_index(drop=True) + test_split = Generic_Split(test_data, data_dir=self.data_dir, num_classes=self.num_classes) + + else: + test_split = None + + + else: + assert csv_path + all_splits = pd.read_csv(csv_path, dtype=self.slide_data['slide_id'].dtype) # Without "dtype=self.slide_data['slide_id'].dtype", read_csv() will convert all-number columns to a numerical type. Even if we convert numerical columns back to objects later, we may lose zero-padding in the process; the columns must be correctly read in from the get-go. When we compare the individual train/val/test columns to self.slide_data['slide_id'] in the get_split_from_df() method, we cannot compare objects (strings) to numbers or even to incorrectly zero-padded objects/strings. An example of this breaking is shown in https://github.com/andrew-weisman/clam_analysis/tree/main/datatype_comparison_bug-2021-12-01. + train_split = self.get_split_from_df(all_splits, 'train') + val_split = self.get_split_from_df(all_splits, 'val') + test_split = self.get_split_from_df(all_splits, 'test') + + return train_split, val_split, test_split + + def get_list(self, ids): + return self.slide_data['slide_id'][ids] + + def getlabel(self, ids): + return self.slide_data['event'][ids] + + def __getitem__(self, idx): + return None + + def test_split_gen(self, return_descriptor=False): + + if return_descriptor: + index = [list(self.label_dict.keys())[list(self.label_dict.values()).index(i)] for i in range(self.num_classes)] + columns = ['train', 'val', 'test'] + df = pd.DataFrame(np.full((len(index), len(columns)), 0, dtype=np.int32), index= index, + columns= columns) + + count = len(self.train_ids) + print('\nnumber of training samples: {}'.format(count)) + labels = self.getlabel(self.train_ids) + unique, counts = np.unique(labels, return_counts=True) + for u in range(len(unique)): + print('number of samples in cls {}: {}'.format(unique[u], counts[u])) + if return_descriptor: + df.loc[index[u], 'train'] = counts[u] + + count = len(self.val_ids) + print('\nnumber of val samples: {}'.format(count)) + labels = self.getlabel(self.val_ids) + unique, counts = np.unique(labels, return_counts=True) + for u in range(len(unique)): + print('number of samples in cls {}: {}'.format(unique[u], counts[u])) + if return_descriptor: + df.loc[index[u], 'val'] = counts[u] + + count = len(self.test_ids) + print('\nnumber of test samples: {}'.format(count)) + labels = self.getlabel(self.test_ids) + unique, counts = np.unique(labels, return_counts=True) + for u in range(len(unique)): + print('number of samples in cls {}: {}'.format(unique[u], counts[u])) + if return_descriptor: + df.loc[index[u], 'test'] = counts[u] + + assert len(np.intersect1d(self.train_ids, self.test_ids)) == 0 + assert len(np.intersect1d(self.train_ids, self.val_ids)) == 0 + assert len(np.intersect1d(self.val_ids, self.test_ids)) == 0 + + if return_descriptor: + return df + + def save_split(self, filename): + train_split = self.get_list(self.train_ids) + val_split = self.get_list(self.val_ids) + test_split = self.get_list(self.test_ids) + df_tr = pd.DataFrame({'train': train_split}) + df_v = pd.DataFrame({'val': val_split}) + df_t = pd.DataFrame({'test': test_split}) + df = pd.concat([df_tr, df_v, df_t], axis=1) + df.to_csv(filename, index = False) + + +class Generic_MIL_Survival_Dataset(Generic_WSI_Survival_Dataset): + def __init__(self, + data_dir, + **kwargs): + + super(Generic_MIL_Survival_Dataset, self).__init__(**kwargs) + self.data_dir = data_dir + self.use_h5 = False + + def load_from_h5(self, toggle): + self.use_h5 = toggle + + def __getitem__(self, idx): + slide_id = self.slide_data['slide_id'][idx] + event = self.slide_data['event'][idx] + time = self.slide_data['time'][idx] + + if type(self.data_dir) == dict: + source = self.slide_data['source'][idx] + data_dir = self.data_dir[source] + else: + data_dir = self.data_dir + + if not self.use_h5: + if self.data_dir: + full_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id)) + features = torch.load(full_path) + return features, event, time + + else: + return slide_id, event, time + + else: + full_path = os.path.join(data_dir,'h5_files','{}.h5'.format(slide_id)) + with h5py.File(full_path,'r') as hdf5_file: + features = hdf5_file['features'][:] + coords = hdf5_file['coords'][:] + + features = torch.from_numpy(features) + return features, event, time, coords + + +class Generic_Split(Generic_MIL_Survival_Dataset): + def __init__(self, slide_data, data_dir=None, num_classes=2): + self.use_h5 = False + self.slide_data = slide_data + self.data_dir = data_dir + self.num_classes = num_classes + self.slide_cls_ids = [[] for i in range(self.num_classes)] + for i in range(self.num_classes): + self.slide_cls_ids[i] = np.where(self.slide_data['event'] == i)[0] + + def __len__(self): + return len(self.slide_data) +