|
a |
|
b/create_splits_seq.py |
|
|
1 |
import pdb |
|
|
2 |
import os |
|
|
3 |
import pandas as pd |
|
|
4 |
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, Generic_MIL_Dataset, save_splits |
|
|
5 |
from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset |
|
|
6 |
import argparse |
|
|
7 |
import numpy as np |
|
|
8 |
|
|
|
9 |
parser = argparse.ArgumentParser(description='Creating splits for whole slide classification') |
|
|
10 |
parser.add_argument('--label_frac', type=float, default= 1.0, |
|
|
11 |
help='fraction of labels (default: 1)') |
|
|
12 |
parser.add_argument('--seed', type=int, default=1, |
|
|
13 |
help='random seed (default: 1)') |
|
|
14 |
parser.add_argument('--k', type=int, default=10, |
|
|
15 |
help='number of splits (default: 10)') |
|
|
16 |
parser.add_argument('--task', type=str, choices=[ |
|
|
17 |
'task_1_tumor_vs_normal', |
|
|
18 |
'task_2_tumor_subtyping', |
|
|
19 |
'task_3_survival_prediction', |
|
|
20 |
'task_3_survival_prediction_augmented', |
|
|
21 |
'task_3_survival_prediction_after_T', |
|
|
22 |
'task_4_tumor_grading_kat2', |
|
|
23 |
'task_4_tumor_grading_kat4', |
|
|
24 |
'task_5_tumor_subtyping', |
|
|
25 |
'task_6_survival_prediction_augmented', |
|
|
26 |
'task_7_tumor_grading_kat2_augmented', |
|
|
27 |
'task_7_tumor_grading_kat4_augmented', |
|
|
28 |
'task_8_tumor_subtyping_augmented', |
|
|
29 |
'task_9_survival_prediction_augmented_random']) |
|
|
30 |
parser.add_argument('--csv_path', type=str, default=None, help='Path to csv dataset.') |
|
|
31 |
parser.add_argument('--split_name', type=str, default=None, help='Name of split folder.') |
|
|
32 |
parser.add_argument('--val_frac', type=float, default= 0.1, |
|
|
33 |
help='fraction of labels for validation (default: 0.1)') |
|
|
34 |
parser.add_argument('--test_frac', type=float, default= 0.1, |
|
|
35 |
help='fraction of labels for test (default: 0.1)') |
|
|
36 |
|
|
|
37 |
args = parser.parse_args() |
|
|
38 |
|
|
|
39 |
if args.task == 'task_1_tumor_vs_normal': |
|
|
40 |
args.n_classes=2 |
|
|
41 |
dataset = Generic_WSI_Classification_Dataset(csv_path = 'dataset_csv/tumor_vs_normal_dummy_clean.csv', |
|
|
42 |
shuffle = False, |
|
|
43 |
seed = args.seed, |
|
|
44 |
print_info = True, |
|
|
45 |
label_dict = {'normal_tissue':0, 'tumor_tissue':1}, |
|
|
46 |
patient_strat=True, |
|
|
47 |
ignore=[]) |
|
|
48 |
|
|
|
49 |
elif args.task == 'task_2_tumor_subtyping': |
|
|
50 |
args.n_classes=3 |
|
|
51 |
dataset = Generic_WSI_Classification_Dataset(csv_path = 'dataset_csv/tumor_subtyping_dummy_clean.csv', |
|
|
52 |
shuffle = False, |
|
|
53 |
seed = args.seed, |
|
|
54 |
print_info = True, |
|
|
55 |
label_dict = {'subtype_1':0, 'subtype_2':1, 'subtype_3':2}, |
|
|
56 |
patient_strat= True, |
|
|
57 |
patient_voting='maj', |
|
|
58 |
ignore=[]) |
|
|
59 |
|
|
|
60 |
elif args.task == 'task_3_survival_prediction': |
|
|
61 |
args.n_classes=2 |
|
|
62 |
|
|
|
63 |
if args.csv_path == None: |
|
|
64 |
raise ValueError('Must provide a csv dataset file.') |
|
|
65 |
else: |
|
|
66 |
csv_path = args.csv_path |
|
|
67 |
|
|
|
68 |
dataset = Generic_WSI_Survival_Dataset(csv_path = csv_path, |
|
|
69 |
shuffle = False, |
|
|
70 |
seed = args.seed, |
|
|
71 |
print_info = True, |
|
|
72 |
label_dict = {'lebt':0, 'tod':1}, |
|
|
73 |
event_col = 'event', |
|
|
74 |
time_col = 'time', |
|
|
75 |
patient_strat=True, |
|
|
76 |
ignore=[]) |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
elif args.task == 'task_3_survival_prediction_augmented': |
|
|
80 |
args.n_classes=2 |
|
|
81 |
|
|
|
82 |
if args.csv_path == None: |
|
|
83 |
raise ValueError('Must provide a csv dataset file.') |
|
|
84 |
else: |
|
|
85 |
csv_path = args.csv_path |
|
|
86 |
|
|
|
87 |
dataset = Generic_WSI_Survival_Dataset(csv_path = csv_path, |
|
|
88 |
shuffle = False, |
|
|
89 |
seed = args.seed, |
|
|
90 |
print_info = True, |
|
|
91 |
label_dict = {'lebt':0, 'tod':1}, |
|
|
92 |
event_col = 'event', |
|
|
93 |
time_col = 'time', |
|
|
94 |
patient_strat=True, |
|
|
95 |
ignore=[]) |
|
|
96 |
|
|
|
97 |
elif args.task == 'task_3_survival_prediction_after_T': |
|
|
98 |
args.n_classes=2 |
|
|
99 |
|
|
|
100 |
if args.csv_path == None: |
|
|
101 |
raise ValueError('Must provide a csv dataset file.') |
|
|
102 |
else: |
|
|
103 |
csv_path = args.csv_path |
|
|
104 |
|
|
|
105 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
106 |
shuffle = False, |
|
|
107 |
seed = args.seed, |
|
|
108 |
print_info = True, |
|
|
109 |
label_dict = {'lebt':0, 'tod':1}, |
|
|
110 |
label_col = 'Survival_after_T', |
|
|
111 |
patient_strat=True, |
|
|
112 |
ignore=[]) |
|
|
113 |
|
|
|
114 |
elif args.task == 'task_4_tumor_grading_kat2': |
|
|
115 |
args.n_classes=2 |
|
|
116 |
if args.csv_path == None: |
|
|
117 |
raise ValueError('Must provide a csv dataset file.') |
|
|
118 |
else: |
|
|
119 |
csv_path = args.csv_path |
|
|
120 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
121 |
shuffle = False, |
|
|
122 |
seed = args.seed, |
|
|
123 |
print_info = True, |
|
|
124 |
label_dict = {'G1 G2':0, 'G3 G4':1}, |
|
|
125 |
label_col = 'Grading_kat2', |
|
|
126 |
patient_strat=True, |
|
|
127 |
ignore=[]) |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
elif args.task == 'task_4_tumor_grading_kat4': |
|
|
131 |
args.n_classes=4 |
|
|
132 |
if args.csv_path == None: |
|
|
133 |
raise ValueError('Must provide a csv dataset file.') |
|
|
134 |
else: |
|
|
135 |
csv_path = args.csv_path |
|
|
136 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
137 |
shuffle = False, |
|
|
138 |
seed = args.seed, |
|
|
139 |
print_info = True, |
|
|
140 |
label_dict = {'niedriger Malignitätsgrad':0, 'mittlerer Malignitätsgrad':1, 'hoher Malignitätsgrad':2, 'sehr hoher Malignitätsgrad':3}, |
|
|
141 |
label_col = 'Grading_kat4', |
|
|
142 |
patient_strat=True, |
|
|
143 |
ignore=[]) |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
elif args.task == 'task_5_tumor_subtyping': |
|
|
147 |
args.n_classes=4 |
|
|
148 |
if args.csv_path == None: |
|
|
149 |
raise ValueError('Must provide a csv dataset file.') |
|
|
150 |
else: |
|
|
151 |
csv_path = args.csv_path |
|
|
152 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
153 |
shuffle = False, |
|
|
154 |
seed = args.seed, |
|
|
155 |
print_info = True, |
|
|
156 |
label_dict = {'Plattenepithelkarzinom':0, 'Adenokarzinom+BAC':1, 'grosszelliges Karzinom':2, 'NSCLC NOS':3}, |
|
|
157 |
label_col = 'Histo_kat6', |
|
|
158 |
patient_strat=True, |
|
|
159 |
ignore=[]) |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
elif args.task == 'task_6_survival_prediction_augmented': |
|
|
163 |
args.n_classes=2 |
|
|
164 |
if args.csv_path == None: |
|
|
165 |
raise ValueError('Must provide a csv dataset file.') |
|
|
166 |
else: |
|
|
167 |
csv_path = args.csv_path |
|
|
168 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
169 |
shuffle = False, |
|
|
170 |
seed = args.seed, |
|
|
171 |
print_info = True, |
|
|
172 |
label_dict = {'lebt':0, 'tod':1}, |
|
|
173 |
label_col = 'Survival_after_T', |
|
|
174 |
patient_strat=True, |
|
|
175 |
ignore=[]) |
|
|
176 |
|
|
|
177 |
elif args.task == 'task_7_tumor_grading_kat2_augmented': |
|
|
178 |
args.n_classes=2 |
|
|
179 |
if args.csv_path == None: |
|
|
180 |
raise ValueError('Must provide a csv dataset file.') |
|
|
181 |
else: |
|
|
182 |
csv_path = args.csv_path |
|
|
183 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
184 |
shuffle = False, |
|
|
185 |
seed = args.seed, |
|
|
186 |
print_info = True, |
|
|
187 |
label_dict = {'G1 G2':0, 'G3 G4':1}, |
|
|
188 |
label_col = 'Grading_kat2', |
|
|
189 |
patient_strat=True, |
|
|
190 |
ignore=[]) |
|
|
191 |
|
|
|
192 |
elif args.task == 'task_7_tumor_grading_kat4_augmented': |
|
|
193 |
args.n_classes=4 |
|
|
194 |
if args.csv_path == None: |
|
|
195 |
raise ValueError('Must provide a csv dataset file.') |
|
|
196 |
else: |
|
|
197 |
csv_path = args.csv_path |
|
|
198 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
199 |
shuffle = False, |
|
|
200 |
seed = args.seed, |
|
|
201 |
print_info = True, |
|
|
202 |
label_dict = {'niedriger Malignitätsgrad':0, 'mittlerer Malignitätsgrad':1, 'hoher Malignitätsgrad':2, 'sehr hoher Malignitätsgrad':3}, |
|
|
203 |
label_col = 'Grading_kat4', |
|
|
204 |
patient_strat=True, |
|
|
205 |
ignore=[]) |
|
|
206 |
|
|
|
207 |
elif args.task == 'task_8_tumor_subtyping_augmented': |
|
|
208 |
args.n_classes=4 |
|
|
209 |
if args.csv_path == None: |
|
|
210 |
raise ValueError('Must provide a csv dataset file.') |
|
|
211 |
else: |
|
|
212 |
csv_path = args.csv_path |
|
|
213 |
dataset = Generic_WSI_Classification_Dataset(csv_path = csv_path, |
|
|
214 |
shuffle = False, |
|
|
215 |
seed = args.seed, |
|
|
216 |
print_info = True, |
|
|
217 |
label_dict = {'Plattenepithelkarzinom':0, 'Adenokarzinom+BAC':1, 'grosszelliges Karzinom':2, 'NSCLC NOS':3}, |
|
|
218 |
label_col = 'Histo_kat6', |
|
|
219 |
patient_strat=True, |
|
|
220 |
ignore=[]) |
|
|
221 |
elif args.task == 'task_9_survival_prediction_augmented_random': |
|
|
222 |
args.n_classes=2 |
|
|
223 |
dataset = Generic_WSI_Classification_Dataset(csv_path = '/home/ammeling/projects/TMA/annotations/aug_survival_prediction_random.csv', |
|
|
224 |
shuffle = False, |
|
|
225 |
seed = args.seed, |
|
|
226 |
print_info = True, |
|
|
227 |
label_dict = {'lebt':0, 'tod':1}, |
|
|
228 |
label_col = 'Survival_Status', |
|
|
229 |
patient_strat=True, |
|
|
230 |
ignore=[]) |
|
|
231 |
|
|
|
232 |
|
|
|
233 |
else: |
|
|
234 |
raise NotImplementedError |
|
|
235 |
|
|
|
236 |
num_slides_cls = np.array([len(cls_ids) for cls_ids in dataset.patient_cls_ids]) |
|
|
237 |
val_num = np.round(num_slides_cls * args.val_frac).astype(int) |
|
|
238 |
test_num = np.round(num_slides_cls * args.test_frac).astype(int) |
|
|
239 |
|
|
|
240 |
if __name__ == '__main__': |
|
|
241 |
if args.label_frac > 0: |
|
|
242 |
label_fracs = [args.label_frac] |
|
|
243 |
else: |
|
|
244 |
label_fracs = [0.1, 0.25, 0.5, 0.75, 1.0] |
|
|
245 |
|
|
|
246 |
if args.split_name is not None: |
|
|
247 |
split_name = args.split_name |
|
|
248 |
else: |
|
|
249 |
split_name = '' |
|
|
250 |
|
|
|
251 |
for lf in label_fracs: |
|
|
252 |
split_dir = 'splits/'+ str(args.task) +'_{}_{}'.format(split_name, int(lf * 100)) |
|
|
253 |
os.makedirs(split_dir, exist_ok=True) |
|
|
254 |
dataset.create_splits(k = args.k, val_num = val_num, test_num = test_num, label_frac=lf) |
|
|
255 |
for i in range(args.k): |
|
|
256 |
dataset.set_splits() |
|
|
257 |
descriptor_df = dataset.test_split_gen(return_descriptor=True) |
|
|
258 |
splits = dataset.return_splits(from_id=True) |
|
|
259 |
save_splits(splits, ['train', 'val', 'test'], os.path.join(split_dir, 'splits_{}.csv'.format(i))) |
|
|
260 |
save_splits(splits, ['train', 'val', 'test'], os.path.join(split_dir, 'splits_{}_bool.csv'.format(i)), boolean_style=True) |
|
|
261 |
descriptor_df.to_csv(os.path.join(split_dir, 'splits_{}_descriptor.csv'.format(i))) |
|
|
262 |
|
|
|
263 |
|
|
|
264 |
|