|
a |
|
b/main.py |
|
|
1 |
<<<<<<< HEAD |
|
|
2 |
import os |
|
|
3 |
import cv2 |
|
|
4 |
import numpy as np |
|
|
5 |
from flask import Flask, render_template, request, jsonify, send_from_directory |
|
|
6 |
import torch |
|
|
7 |
from torchvision import transforms, models |
|
|
8 |
from PIL import Image |
|
|
9 |
from pytorch_grad_cam import GradCAM |
|
|
10 |
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image |
|
|
11 |
import uuid |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
app = Flask(__name__) |
|
|
15 |
|
|
|
16 |
# Class names |
|
|
17 |
class_names = ['Covid-19', 'Emphysema', 'Healthy', 'Pneumonia', 'Tuberculosis', 'Random'] |
|
|
18 |
|
|
|
19 |
# Load the pre-trained ResNet101 model |
|
|
20 |
model = models.resnet101(pretrained=False) |
|
|
21 |
model.fc = torch.nn.Linear(in_features=2048, out_features=len(class_names)) |
|
|
22 |
checkpoint_path = "resnet101_state_dict.pth" |
|
|
23 |
model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cpu'))) |
|
|
24 |
model.eval() |
|
|
25 |
|
|
|
26 |
# Image transformations |
|
|
27 |
transform = transforms.Compose([ |
|
|
28 |
transforms.Resize((224, 224)), |
|
|
29 |
transforms.ToTensor(), |
|
|
30 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
31 |
]) |
|
|
32 |
|
|
|
33 |
# Function to preprocess image |
|
|
34 |
def preprocess_image(image_path): |
|
|
35 |
image = Image.open(image_path).convert('RGB') |
|
|
36 |
return transform(image).unsqueeze(0) |
|
|
37 |
|
|
|
38 |
# Generate visualizations for Grad-CAM and other images |
|
|
39 |
def generate_visualizations(image_path): |
|
|
40 |
original_image = cv2.imread(image_path) |
|
|
41 |
original_image_rgb = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) |
|
|
42 |
|
|
|
43 |
# Grayscale image |
|
|
44 |
grayscale_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) |
|
|
45 |
|
|
|
46 |
# Histogram equalized image |
|
|
47 |
equalized_image = cv2.equalizeHist(grayscale_image) |
|
|
48 |
|
|
|
49 |
# Edge detection result |
|
|
50 |
edges_image = cv2.Canny(grayscale_image, 50, 150) |
|
|
51 |
|
|
|
52 |
# Segmented image |
|
|
53 |
_, segmented_image = cv2.threshold(grayscale_image, 127, 255, cv2.THRESH_BINARY) |
|
|
54 |
|
|
|
55 |
# Grad-CAM Visualization |
|
|
56 |
input_tensor = preprocess_image(image_path) |
|
|
57 |
target_layer = model.layer4[-1] # Last layer of ResNet101 |
|
|
58 |
cam = GradCAM(model=model, target_layers=[target_layer]) |
|
|
59 |
grayscale_cam = cam(input_tensor=input_tensor)[0] |
|
|
60 |
|
|
|
61 |
# Normalize the Grad-CAM output to range [0, 1] |
|
|
62 |
grayscale_cam = np.maximum(grayscale_cam, 0) |
|
|
63 |
grayscale_cam = grayscale_cam / np.max(grayscale_cam) |
|
|
64 |
|
|
|
65 |
# Apply the Grad-CAM heatmap on the image with a red color map |
|
|
66 |
input_image_rgb_resized = cv2.resize(original_image_rgb, (224, 224)) |
|
|
67 |
|
|
|
68 |
# Using a custom colormap (ensure red regions are highlighted) |
|
|
69 |
heatmap = cv2.applyColorMap(np.uint8(255 * grayscale_cam), cv2.COLORMAP_JET) |
|
|
70 |
grad_cam_image = cv2.addWeighted(input_image_rgb_resized, 0.7, heatmap, 0.3, 0) |
|
|
71 |
|
|
|
72 |
# Mask for ROI extraction (high-confidence areas are those with grayscale_cam > 0.5) |
|
|
73 |
roi_mask = (grayscale_cam > 0.5).astype(np.uint8) |
|
|
74 |
roi = cv2.bitwise_and(input_image_rgb_resized, input_image_rgb_resized, mask=roi_mask) |
|
|
75 |
|
|
|
76 |
# Generate unique file name |
|
|
77 |
file_id = str(uuid.uuid4()) |
|
|
78 |
|
|
|
79 |
# Save images to server and return file paths |
|
|
80 |
visualization_paths = { |
|
|
81 |
"original": f'/uploads/{file_id}_original.png', |
|
|
82 |
"grayscale": f'/uploads/{file_id}_grayscale.png', |
|
|
83 |
"equalized": f'/uploads/{file_id}_equalized.png', |
|
|
84 |
"edges": f'/uploads/{file_id}_edges.png', |
|
|
85 |
"segmented": f'/uploads/{file_id}_segmented.png', |
|
|
86 |
"grad_cam": f'/uploads/{file_id}_grad_cam.png', |
|
|
87 |
"roi": f'/uploads/{file_id}_roi.png' |
|
|
88 |
} |
|
|
89 |
|
|
|
90 |
# Create uploads directory if it doesn't exist |
|
|
91 |
os.makedirs('uploads', exist_ok=True) |
|
|
92 |
|
|
|
93 |
# Save the visualizations as images |
|
|
94 |
cv2.imwrite(f'uploads/{file_id}_original.png', original_image) |
|
|
95 |
cv2.imwrite(f'uploads/{file_id}_grayscale.png', grayscale_image) |
|
|
96 |
cv2.imwrite(f'uploads/{file_id}_equalized.png', equalized_image) |
|
|
97 |
cv2.imwrite(f'uploads/{file_id}_edges.png', edges_image) |
|
|
98 |
cv2.imwrite(f'uploads/{file_id}_segmented.png', segmented_image) |
|
|
99 |
cv2.imwrite(f'uploads/{file_id}_grad_cam.png', grad_cam_image) |
|
|
100 |
cv2.imwrite(f'uploads/{file_id}_roi.png', roi) |
|
|
101 |
|
|
|
102 |
return visualization_paths |
|
|
103 |
|
|
|
104 |
@app.route('/') |
|
|
105 |
def index(): |
|
|
106 |
return render_template('index.html') |
|
|
107 |
|
|
|
108 |
@app.route('/predict', methods=['POST']) |
|
|
109 |
def predict(): |
|
|
110 |
if 'file' not in request.files: |
|
|
111 |
return jsonify({"error": "No file part"}), 400 |
|
|
112 |
|
|
|
113 |
file = request.files['file'] |
|
|
114 |
if file.filename == '': |
|
|
115 |
return jsonify({"error": "No selected file"}), 400 |
|
|
116 |
|
|
|
117 |
image_id = str(uuid.uuid4()) |
|
|
118 |
file_path = os.path.join('uploads', f'{image_id}.png') |
|
|
119 |
os.makedirs('uploads', exist_ok=True) |
|
|
120 |
file.save(file_path) |
|
|
121 |
|
|
|
122 |
input_tensor = preprocess_image(file_path) |
|
|
123 |
with torch.no_grad(): |
|
|
124 |
output = model(input_tensor) |
|
|
125 |
predicted_class = output.argmax(dim=1).item() |
|
|
126 |
confidence_score = torch.nn.functional.softmax(output, dim=1)[0, predicted_class].item() * 100 |
|
|
127 |
|
|
|
128 |
result = { |
|
|
129 |
"predicted_class": class_names[predicted_class], |
|
|
130 |
"confidence_score": f"{confidence_score:.2f}%", |
|
|
131 |
} |
|
|
132 |
|
|
|
133 |
if class_names[predicted_class] == "Random": |
|
|
134 |
result["message"] = "Sorry... You inserted a Non X-ray image. Please try again with a chest x-ray image. Thank you." |
|
|
135 |
result["visualizations"] = None |
|
|
136 |
else: |
|
|
137 |
visualizations = generate_visualizations(file_path) |
|
|
138 |
result["visualizations"] = visualizations |
|
|
139 |
|
|
|
140 |
return jsonify(result) |
|
|
141 |
|
|
|
142 |
# To serve the images from the 'uploads' folder correctly |
|
|
143 |
@app.route('/uploads/<filename>') |
|
|
144 |
def uploaded_file(filename): |
|
|
145 |
return send_from_directory('uploads', filename) |
|
|
146 |
|
|
|
147 |
if __name__ == '__main__': |
|
|
148 |
app.run(debug=True) |
|
|
149 |
======= |
|
|
150 |
import os |
|
|
151 |
import cv2 |
|
|
152 |
import numpy as np |
|
|
153 |
from flask import Flask, render_template, request, jsonify, send_from_directory |
|
|
154 |
import torch |
|
|
155 |
from torchvision import transforms, models |
|
|
156 |
from PIL import Image |
|
|
157 |
from pytorch_grad_cam import GradCAM |
|
|
158 |
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image |
|
|
159 |
import uuid |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
app = Flask(__name__) |
|
|
163 |
|
|
|
164 |
# Class names |
|
|
165 |
class_names = ['Covid-19', 'Emphysema', 'Healthy', 'Pneumonia', 'Tuberculosis', 'Random'] |
|
|
166 |
|
|
|
167 |
# Load the pre-trained ResNet101 model |
|
|
168 |
model = models.resnet101(pretrained=False) |
|
|
169 |
model.fc = torch.nn.Linear(in_features=2048, out_features=len(class_names)) |
|
|
170 |
checkpoint_path = "resnet101_state_dict.pth" |
|
|
171 |
model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cpu'))) |
|
|
172 |
model.eval() |
|
|
173 |
|
|
|
174 |
# Image transformations |
|
|
175 |
transform = transforms.Compose([ |
|
|
176 |
transforms.Resize((224, 224)), |
|
|
177 |
transforms.ToTensor(), |
|
|
178 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
179 |
]) |
|
|
180 |
|
|
|
181 |
# Function to preprocess image |
|
|
182 |
def preprocess_image(image_path): |
|
|
183 |
image = Image.open(image_path).convert('RGB') |
|
|
184 |
return transform(image).unsqueeze(0) |
|
|
185 |
|
|
|
186 |
# Generate visualizations for Grad-CAM and other images |
|
|
187 |
def generate_visualizations(image_path): |
|
|
188 |
original_image = cv2.imread(image_path) |
|
|
189 |
original_image_rgb = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) |
|
|
190 |
|
|
|
191 |
# Grayscale image |
|
|
192 |
grayscale_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) |
|
|
193 |
|
|
|
194 |
# Histogram equalized image |
|
|
195 |
equalized_image = cv2.equalizeHist(grayscale_image) |
|
|
196 |
|
|
|
197 |
# Edge detection result |
|
|
198 |
edges_image = cv2.Canny(grayscale_image, 50, 150) |
|
|
199 |
|
|
|
200 |
# Segmented image |
|
|
201 |
_, segmented_image = cv2.threshold(grayscale_image, 127, 255, cv2.THRESH_BINARY) |
|
|
202 |
|
|
|
203 |
# Grad-CAM Visualization |
|
|
204 |
input_tensor = preprocess_image(image_path) |
|
|
205 |
target_layer = model.layer4[-1] # Last layer of ResNet101 |
|
|
206 |
cam = GradCAM(model=model, target_layers=[target_layer]) |
|
|
207 |
grayscale_cam = cam(input_tensor=input_tensor)[0] |
|
|
208 |
|
|
|
209 |
# Normalize the Grad-CAM output to range [0, 1] |
|
|
210 |
grayscale_cam = np.maximum(grayscale_cam, 0) |
|
|
211 |
grayscale_cam = grayscale_cam / np.max(grayscale_cam) |
|
|
212 |
|
|
|
213 |
# Apply the Grad-CAM heatmap on the image with a red color map |
|
|
214 |
input_image_rgb_resized = cv2.resize(original_image_rgb, (224, 224)) |
|
|
215 |
|
|
|
216 |
# Using a custom colormap (ensure red regions are highlighted) |
|
|
217 |
heatmap = cv2.applyColorMap(np.uint8(255 * grayscale_cam), cv2.COLORMAP_JET) |
|
|
218 |
grad_cam_image = cv2.addWeighted(input_image_rgb_resized, 0.7, heatmap, 0.3, 0) |
|
|
219 |
|
|
|
220 |
# Mask for ROI extraction (high-confidence areas are those with grayscale_cam > 0.5) |
|
|
221 |
roi_mask = (grayscale_cam > 0.5).astype(np.uint8) |
|
|
222 |
roi = cv2.bitwise_and(input_image_rgb_resized, input_image_rgb_resized, mask=roi_mask) |
|
|
223 |
|
|
|
224 |
# Generate unique file name |
|
|
225 |
file_id = str(uuid.uuid4()) |
|
|
226 |
|
|
|
227 |
# Save images to server and return file paths |
|
|
228 |
visualization_paths = { |
|
|
229 |
"original": f'/uploads/{file_id}_original.png', |
|
|
230 |
"grayscale": f'/uploads/{file_id}_grayscale.png', |
|
|
231 |
"equalized": f'/uploads/{file_id}_equalized.png', |
|
|
232 |
"edges": f'/uploads/{file_id}_edges.png', |
|
|
233 |
"segmented": f'/uploads/{file_id}_segmented.png', |
|
|
234 |
"grad_cam": f'/uploads/{file_id}_grad_cam.png', |
|
|
235 |
"roi": f'/uploads/{file_id}_roi.png' |
|
|
236 |
} |
|
|
237 |
|
|
|
238 |
# Create uploads directory if it doesn't exist |
|
|
239 |
os.makedirs('uploads', exist_ok=True) |
|
|
240 |
|
|
|
241 |
# Save the visualizations as images |
|
|
242 |
cv2.imwrite(f'uploads/{file_id}_original.png', original_image) |
|
|
243 |
cv2.imwrite(f'uploads/{file_id}_grayscale.png', grayscale_image) |
|
|
244 |
cv2.imwrite(f'uploads/{file_id}_equalized.png', equalized_image) |
|
|
245 |
cv2.imwrite(f'uploads/{file_id}_edges.png', edges_image) |
|
|
246 |
cv2.imwrite(f'uploads/{file_id}_segmented.png', segmented_image) |
|
|
247 |
cv2.imwrite(f'uploads/{file_id}_grad_cam.png', grad_cam_image) |
|
|
248 |
cv2.imwrite(f'uploads/{file_id}_roi.png', roi) |
|
|
249 |
|
|
|
250 |
return visualization_paths |
|
|
251 |
|
|
|
252 |
@app.route('/') |
|
|
253 |
def index(): |
|
|
254 |
return render_template('index.html') |
|
|
255 |
|
|
|
256 |
@app.route('/predict', methods=['POST']) |
|
|
257 |
def predict(): |
|
|
258 |
if 'file' not in request.files: |
|
|
259 |
return jsonify({"error": "No file part"}), 400 |
|
|
260 |
|
|
|
261 |
file = request.files['file'] |
|
|
262 |
if file.filename == '': |
|
|
263 |
return jsonify({"error": "No selected file"}), 400 |
|
|
264 |
|
|
|
265 |
image_id = str(uuid.uuid4()) |
|
|
266 |
file_path = os.path.join('uploads', f'{image_id}.png') |
|
|
267 |
os.makedirs('uploads', exist_ok=True) |
|
|
268 |
file.save(file_path) |
|
|
269 |
|
|
|
270 |
input_tensor = preprocess_image(file_path) |
|
|
271 |
with torch.no_grad(): |
|
|
272 |
output = model(input_tensor) |
|
|
273 |
predicted_class = output.argmax(dim=1).item() |
|
|
274 |
confidence_score = torch.nn.functional.softmax(output, dim=1)[0, predicted_class].item() * 100 |
|
|
275 |
|
|
|
276 |
result = { |
|
|
277 |
"predicted_class": class_names[predicted_class], |
|
|
278 |
"confidence_score": f"{confidence_score:.2f}%", |
|
|
279 |
} |
|
|
280 |
|
|
|
281 |
if class_names[predicted_class] == "Random": |
|
|
282 |
result["message"] = "Sorry... You inserted a Non X-ray image. Please try again with a chest x-ray image. Thank you." |
|
|
283 |
result["visualizations"] = None |
|
|
284 |
else: |
|
|
285 |
visualizations = generate_visualizations(file_path) |
|
|
286 |
result["visualizations"] = visualizations |
|
|
287 |
|
|
|
288 |
return jsonify(result) |
|
|
289 |
|
|
|
290 |
# To serve the images from the 'uploads' folder correctly |
|
|
291 |
@app.route('/uploads/<filename>') |
|
|
292 |
def uploaded_file(filename): |
|
|
293 |
return send_from_directory('uploads', filename) |
|
|
294 |
|
|
|
295 |
if __name__ == '__main__': |
|
|
296 |
app.run(debug=True) |
|
|
297 |
>>>>>>> 5676c55 (Add ResNet101 model using Git LFS) |