[2507a0]: / Training.ipynb

Download this file

442 lines (442 with data), 17.8 kB

{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "fqPJUT863Ps2"
      },
      "outputs": [],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "#!unzip '/content/drive/MyDrive/Batoul_Code/input/CT/images.zip' -d '/content/drive/MyDrive/Batoul_Code/input/CT'"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "import torchvision\n",
        "import os\n",
        "import glob\n",
        "import time\n",
        "import pickle\n",
        "import sys\n",
        "sys.path.append('/content/drive/MyDrive/Batoul_Code/')\n",
        "sys.path.append('/content/drive/MyDrive/Batoul_Code/src')\n",
        "import pandas as pd\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "from pathlib import Path\n",
        "from PIL import Image\n",
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "\n",
        "from data import LungDataset, blend, Pad, Crop, Resize\n",
        "from  OurModel import  CxlNet\n",
        "from  metrics import jaccard, dice"
      ],
      "metadata": {
        "id": "N-IZfgid3Xwc"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "in_channels=1\n",
        "out_channels=2\n",
        "batch_norm=True\n",
        "upscale_mode=\"bilinear\"\n",
        "image_size=512\n",
        "def selectModel():\n",
        "    return CxlNet(\n",
        "            in_channels=in_channels,\n",
        "            out_channels=out_channels,\n",
        "            batch_norm=batch_norm,\n",
        "            upscale_mode=upscale_mode,\n",
        "            image_size=image_size)"
      ],
      "metadata": {
        "id": "J349vBjr31Ir"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "dataset_name=\"dataset\"\n",
        "dataset_type=\"png\"\n",
        "split_file = \"/content/drive/MyDrive/Batoul_Code/splits.pk\"\n",
        "version=\"CxlNet\"\n",
        "approach=\"contour\"\n",
        "model = selectModel()\n",
        "\n",
        "base_path=\"/content/drive/MyDrive/Batoul_Code/\"\n",
        "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
        "device\n",
        "\n",
        "data_folder = Path(base_path+\"input\", base_path+\"input/\"+dataset_name)\n",
        "origins_folder = data_folder / \"images\"\n",
        "masks_folder = data_folder / \"masks\"\n",
        "masks_contour_folder = data_folder / \"masks_contour\"\n",
        "models_folder = Path(base_path+\"models\")\n",
        "images_folder = Path(base_path+\"images\")\n",
        "\n",
        "\n"
      ],
      "metadata": {
        "id": "MhOSosnw4Q96"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#@title\n",
        "batch_size = 4\n",
        "torch.cuda.empty_cache()\n",
        "origins_list = [f.stem  for f in origins_folder.glob(f\"*.{dataset_type}\")]\n",
        "#masks_list = [f.stem  for f in masks_folder.glob(f\"*.{dataset_type}\")]\n",
        "masks_list = [f.stem  for f in masks_contour_folder.glob(f\"*.{dataset_type}\")]\n",
        "\n",
        "\n",
        "\n",
        "\n",
        "origin_mask_list = [(mask_name.replace(\"_mask\", \"\"), mask_name) for mask_name in masks_list]\n",
        "\n",
        "\n",
        "if os.path.isfile(split_file):\n",
        "    with open(split_file, \"rb\") as f:\n",
        "        splits = pickle.load(f)\n",
        "else:\n",
        "    splits = {}\n",
        "    splits[\"train\"], splits[\"test\"] = train_test_split(origin_mask_list, test_size=0.2, random_state=42)\n",
        "    splits[\"train\"], splits[\"val\"] = train_test_split(splits[\"train\"], test_size=0.1, random_state=42)\n",
        "    with open(split_file, \"wb\") as f:\n",
        "        pickle.dump(splits, f)\n",
        "\n",
        "val_test_transforms = torchvision.transforms.Compose([\n",
        "    Resize((image_size, image_size)),\n",
        "])\n",
        "\n",
        "train_transforms = torchvision.transforms.Compose([\n",
        "    Pad(200),\n",
        "    Crop(300),\n",
        "    val_test_transforms,\n",
        "])\n",
        "\n",
        "datasets = {x: LungDataset(\n",
        "    splits[x],\n",
        "    origins_folder,\n",
        "    #masks_folder,\n",
        "    masks_contour_folder,\n",
        "    train_transforms if x == \"train\" else val_test_transforms,\n",
        "    dataset_type=dataset_type\n",
        ") for x in [\"train\", \"test\", \"val\"]}\n",
        "\n",
        "dataloaders = {x: torch.utils.data.DataLoader(datasets[x], batch_size=batch_size)\n",
        "               for x in [\"train\", \"test\", \"val\"]}\n",
        "\n",
        "print(len(dataloaders['train']))\n",
        "\n",
        "idx = 0\n",
        "phase = \"train\"\n",
        "\n",
        "plt.figure(figsize=(20, 20))\n",
        "origin, mask = datasets[phase][idx]\n",
        "\n",
        "pil_origin = torchvision.transforms.functional.to_pil_image(origin + 0.5).convert(\"RGB\")\n",
        "print(origin.size())\n",
        "print(mask.size())\n",
        "pil_origin.save(\"1.png\")\n",
        "\n",
        "\n",
        "print(mask.size())\n",
        "pil_mask = torchvision.transforms.functional.to_pil_image(mask.float())\n",
        "pil_mask.save(\"2.png\")\n",
        "plt.subplot(1, 3, 1)\n",
        "plt.title(\"origin image\")\n",
        "plt.imshow(np.array(pil_origin))\n",
        "\n",
        "plt.subplot(1, 3, 2)\n",
        "plt.title(\"manually labeled mask\")\n",
        "plt.imshow(np.array(pil_mask))\n",
        "\n",
        "plt.subplot(1, 3, 3)\n",
        "plt.title(\"blended origin + mask\")\n",
        "plt.imshow(np.array(blend(origin, mask)));\n",
        "\n",
        "plt.savefig(images_folder / \"data-example.png\", bbox_inches='tight')\n",
        "plt.show()\n",
        "train=True\n",
        "model_name = \"ournet_\"+version+\".pt\"\n",
        "if train==True:\n",
        "\n",
        "    if os.path.isfile(models_folder / model_name):\n",
        "      model.load_state_dict(torch.load(models_folder / model_name, map_location=torch.device(\"cpu\")))\n",
        "      print(\"load_state_dict\")\n",
        "\n",
        "    model = model.to(device)\n",
        "    # optimizer = torch.optim.SGD(unet.parameters(), lr=0.0005, momentum=0.9)\n",
        "    optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)\n",
        "\n",
        "    train_log_filename = base_path + \"train-log-\"+version+\".txt\"\n",
        "    epochs = 50\n",
        "    best_val_loss = np.inf\n",
        "\n",
        "\n",
        "    hist = []\n",
        "\n",
        "    for e in range(epochs):\n",
        "        start_t = time.time()\n",
        "\n",
        "        print(\"Epoch \"+str(e))\n",
        "        model.train()\n",
        "\n",
        "        train_loss = 0.0\n",
        "\n",
        "        for origins, masks in dataloaders[\"train\"]:\n",
        "            num = origins.size(0)\n",
        "\n",
        "            origins = origins.to(device)\n",
        "            #print(masks.size())\n",
        "            #if dataset_name!=\"dataset\":\n",
        "              #masks = masks.permute((0,3,1, 2))\n",
        "              #masks=masks[:,0,:,:]\n",
        "              #print(masks.size())\n",
        "\n",
        "            masks = masks.to(device)\n",
        "            optimizer.zero_grad()\n",
        "            outs = model(origins)\n",
        "            softmax = torch.nn.functional.log_softmax(outs, dim=1)\n",
        "            loss = torch.nn.functional.nll_loss(softmax, masks)\n",
        "            loss.backward()\n",
        "            optimizer.step()\n",
        "\n",
        "            train_loss += loss.item() * num\n",
        "            print(\".\", end=\"\")\n",
        "\n",
        "        train_loss = train_loss / len(datasets['train'])\n",
        "        print()\n",
        "\n",
        "        print(\"validation phase\")\n",
        "        model.eval()\n",
        "        val_loss = 0.0\n",
        "        val_jaccard = 0.0\n",
        "        val_dice = 0.0\n",
        "\n",
        "        for origins, masks in dataloaders[\"val\"]:\n",
        "            num = origins.size(0)\n",
        "            origins = origins.to(device)\n",
        "            masks = masks.to(device)\n",
        "\n",
        "            with torch.no_grad():\n",
        "                outs = model(origins)\n",
        "                softmax = torch.nn.functional.log_softmax(outs, dim=1)\n",
        "                val_loss += torch.nn.functional.nll_loss(softmax, masks).item() * num\n",
        "\n",
        "                outs = torch.argmax(softmax, dim=1)\n",
        "                outs = outs.float()\n",
        "                masks = masks.float()\n",
        "                val_jaccard += jaccard(masks, outs.float()).item() * num\n",
        "                val_dice += dice(masks, outs).item() * num\n",
        "\n",
        "            print(\".\", end=\"\")\n",
        "        val_loss = val_loss / len(datasets[\"val\"])\n",
        "        val_jaccard = val_jaccard / len(datasets[\"val\"])\n",
        "        val_dice = val_dice / len(datasets[\"val\"])\n",
        "        print()\n",
        "\n",
        "        end_t = time.time()\n",
        "        spended_t = end_t - start_t\n",
        "\n",
        "        with open(train_log_filename, \"a\") as train_log_file:\n",
        "            report = f\"epoch: {e + 1}/{epochs}, time: {spended_t}, train loss: {train_loss}, \\n\" \\\n",
        "                     + f\"val loss: {val_loss}, val jaccard: {val_jaccard}, val dice: {val_dice}\"\n",
        "\n",
        "            hist.append({\n",
        "                \"time\": spended_t,\n",
        "                \"train_loss\": train_loss,\n",
        "                \"val_loss\": val_loss,\n",
        "                \"val_jaccard\": val_jaccard,\n",
        "                \"val_dice\": val_dice,\n",
        "            })\n",
        "\n",
        "            print(report)\n",
        "            train_log_file.write(report + \"\\n\")\n",
        "\n",
        "            if val_loss < best_val_loss:\n",
        "                best_val_loss = val_loss\n",
        "                torch.save(model.state_dict(), models_folder / model_name)\n",
        "                print(\"model saved\")\n",
        "                train_log_file.write(\"model saved\\n\")\n",
        "            print()\n",
        "\n",
        "        #if val_jaccard >=0.9179:\n",
        "            #break\n",
        "    plt.figure(figsize=(15, 7))\n",
        "    train_loss_hist = [h[\"train_loss\"] for h in hist]\n",
        "    plt.plot(range(len(hist)), train_loss_hist, \"b\", label=\"train loss\")\n",
        "\n",
        "    val_loss_hist = [h[\"val_loss\"] for h in hist]\n",
        "    plt.plot(range(len(hist)), val_loss_hist, \"r\", label=\"val loss\")\n",
        "\n",
        "    val_dice_hist = [h[\"val_dice\"] for h in hist]\n",
        "    plt.plot(range(len(hist)), val_dice_hist, \"g\", label=\"val dice\")\n",
        "\n",
        "    val_jaccard_hist = [h[\"val_jaccard\"] for h in hist]\n",
        "    plt.plot(range(len(hist)), val_jaccard_hist, \"y\", label=\"val jaccard\")\n",
        "\n",
        "    plt.legend()\n",
        "    plt.xlabel(\"epoch\")\n",
        "    plt.savefig(images_folder / model_name.replace(\".pt\", \"-train-hist.png\"))\n",
        "\n",
        "    time_hist = [h[\"time\"] for h in hist]\n",
        "    overall_time = sum(time_hist) // 60\n",
        "    mean_epoch_time = sum(time_hist) / len(hist)\n",
        "    print(f\"epochs: {len(hist)}, overall time: {overall_time}m, mean epoch time: {mean_epoch_time}s\")\n",
        "\n",
        "    torch.cuda.empty_cache()\n",
        "else:\n",
        "\n",
        "    model_name = \"ournet_\"+version+\".pt\"\n",
        "    model.load_state_dict(torch.load(models_folder / model_name, map_location=torch.device(\"cpu\")))\n",
        "    model.to(device)\n",
        "    model.eval()\n",
        "\n",
        "    test_loss = 0.0\n",
        "    test_jaccard = 0.0\n",
        "    test_dice = 0.0\n",
        "\n",
        "    for origins, masks in dataloaders[\"test\"]:\n",
        "        num = origins.size(0)\n",
        "        origins = origins.to(device)\n",
        "        masks = masks.to(device)\n",
        "\n",
        "        with torch.no_grad():\n",
        "            outs = model(origins)\n",
        "            softmax = torch.nn.functional.log_softmax(outs, dim=1)\n",
        "            test_loss += torch.nn.functional.nll_loss(softmax, masks).item() * num\n",
        "\n",
        "            outs = torch.argmax(softmax, dim=1)\n",
        "            outs = outs.float()\n",
        "            masks = masks.float()\n",
        "            test_jaccard += jaccard(masks, outs).item() * num\n",
        "            test_dice += dice(masks, outs).item() * num\n",
        "        print(\".\", end=\"\")\n",
        "\n",
        "    test_loss = test_loss / len(datasets[\"test\"])\n",
        "    test_jaccard = test_jaccard / len(datasets[\"test\"])\n",
        "    test_dice = test_dice / len(datasets[\"test\"])\n",
        "\n",
        "    print()\n",
        "    print(f\"avg test loss: {test_loss}\")\n",
        "    print(f\"avg test jaccard: {test_jaccard}\")\n",
        "    print(f\"avg test dice: {test_dice}\")\n",
        "\n",
        "    num_samples = 9\n",
        "    phase = \"test\"\n",
        "\n",
        "    subset = torch.utils.data.Subset(\n",
        "        datasets[phase],\n",
        "        np.random.randint(0, len(datasets[phase]), num_samples)\n",
        "    )\n",
        "    random_samples_loader = torch.utils.data.DataLoader(subset, batch_size=1)\n",
        "    plt.figure(figsize=(20, 25))\n",
        "\n",
        "    for idx, (origin, mask) in enumerate(random_samples_loader):\n",
        "        plt.subplot((num_samples // 3) + 1, 3, idx + 1)\n",
        "\n",
        "        origin = origin.to(device)\n",
        "        mask = mask.to(device)\n",
        "\n",
        "        with torch.no_grad():\n",
        "            out = model(origin)\n",
        "            softmax = torch.nn.functional.log_softmax(out, dim=1)\n",
        "            out = torch.argmax(softmax, dim=1)\n",
        "\n",
        "            jaccard_score = jaccard(mask.float(), out.float()).item()\n",
        "            dice_score = dice(mask.float(), out.float()).item()\n",
        "\n",
        "            origin = origin[0].to(\"cpu\")\n",
        "            out = out[0].to(\"cpu\")\n",
        "            mask = mask[0].to(\"cpu\")\n",
        "\n",
        "            plt.imshow(np.array(blend(origin, mask, out)))\n",
        "            plt.title(f\"jaccard: {jaccard_score:.4f}, dice: {dice_score:.4f}\")\n",
        "            print(\".\", end=\"\")\n",
        "            plt.show()\n",
        "    plt.savefig(images_folder / \"obtained-results.png\", bbox_inches='tight')\n",
        "    print()\n",
        "    print(\"red area - predict\")\n",
        "    print(\"green area - ground truth\")\n",
        "    print(\"yellow area - intersection\")\n",
        "\n",
        "\n",
        "\n",
        "    model_name = \"ournet_\"+version+\".pt\"\n",
        "    model.load_state_dict(torch.load(models_folder / model_name, map_location=torch.device(\"cpu\")))\n",
        "    model.to(device)\n",
        "    model.eval()\n",
        "\n",
        "    device\n",
        "\n",
        "    # %%\n",
        "\n",
        "    origin_filename = \"input/dataset/images/CHNCXR_0042_0.png\"\n",
        "\n",
        "    origin = Image.open(origin_filename).convert(\"P\")\n",
        "    origin = torchvision.transforms.functional.resize(origin, (200, 200))\n",
        "    origin = torchvision.transforms.functional.to_tensor(origin) - 0.5\n",
        "\n",
        "    with torch.no_grad():\n",
        "        origin = torch.stack([origin])\n",
        "        origin = origin.to(device)\n",
        "        out = model(origin)\n",
        "        softmax = torch.nn.functional.log_softmax(out, dim=1)\n",
        "        out = torch.argmax(softmax, dim=1)\n",
        "\n",
        "        origin = origin[0].to(\"cpu\")\n",
        "        out = out[0].to(\"cpu\")\n",
        "\n",
        "    plt.figure(figsize=(20, 10))\n",
        "\n",
        "    pil_origin = torchvision.transforms.functional.to_pil_image(origin + 0.5).convert(\"RGB\")\n",
        "\n",
        "    plt.subplot(1, 2, 1)\n",
        "    plt.title(\"origin image\")\n",
        "    plt.imshow(np.array(pil_origin))\n",
        "\n",
        "    plt.subplot(1, 2, 2)\n",
        "    plt.title(\"blended origin + predict\")\n",
        "    plt.imshow(np.array(blend(origin, out)))\n",
        "    plt.show()\n"
      ],
      "metadata": {
        "id": "sGk2UEtw4JLr"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}