[2507a0]: / OurModel.py

Download this file

85 lines (67 with data), 3.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torchvision
import torch.nn.functional as F
import pandas as pd
import numpy as np
class Block(torch.nn.Module):
def __init__(self, in_channels, mid_channel, out_channels, max_pool_kernel_size, batch_norm=False):
super().__init__()
self.max_pool_kernel_size=max_pool_kernel_size
self.conv1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=mid_channel, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(in_channels=mid_channel, out_channels=out_channels, kernel_size=3, padding=1)
self.batch_norm = batch_norm
if batch_norm:
self.bn1 = torch.nn.BatchNorm2d(mid_channel)
self.bn2 = torch.nn.BatchNorm2d(out_channels)
self.bn3 = torch.nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv1(x)
if self.batch_norm:
x = self.bn1(x)
x = torch.nn.functional.relu(x, inplace=True)
x = self.conv2(x)
if self.batch_norm:
x = self.bn2(x)
x = torch.nn.functional.relu(x, inplace=True)
if self.max_pool_kernel_size!=1:
x = torch.nn.functional.max_pool2d(x, kernel_size=self.max_pool_kernel_size)
if self.batch_norm:
x = self.bn3(x)
out = x
return out
class CxlNet(torch.nn.Module):
def up(self, x, size):
return torch.nn.functional.interpolate(x, size=size, mode=self.upscale_mode)
def down(self, x):
return torch.nn.functional.max_pool2d(x, kernel_size=2)
def __init__(self, in_channels, out_channels, batch_norm=False, upscale_mode="nearest",image_size=512):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.batch_norm = batch_norm
self.upscale_mode = upscale_mode
self.image_size=image_size
self.enc1 = Block(in_channels, 32, 64,2, batch_norm)
self.enc2 = Block(64, 64, 64, 2, batch_norm)
self.enc3 = Block(64, 128, 128, 2, batch_norm)
self.enc4 = Block(128, 256, 256, 2, batch_norm)
#self.enc3 = Block(256, 128, 128, 2, batch_norm)
#self.enc4 = Block(128, 64, 64, 2, batch_norm)
self.dec3 = Block(512, 256, 256, 1, batch_norm)
self.dec2 = Block(256, 128, 128, 1, batch_norm)
self.dec1 = Block(128, 64, 64, 1, batch_norm)
self.dec0 = Block(64, 32, out_channels, 1, batch_norm)
def forward(self, x):
enc1 = self.enc1(x)
enc2 = self.enc2(enc1)
enc3 = self.enc3(enc2)
enc4 = self.enc4(enc3)
outOfDec3 = self.dec3(torch.cat([enc1,
self.up(enc2, enc1.size()[-2:]),
self.up(enc3, enc1.size()[-2:]),
self.up(enc4, enc1.size()[-2:]),
], 1))
outOfDec2 = self.dec2(self.up(outOfDec3, (self.image_size,self.image_size)))
outOfDec1 = self.dec1(outOfDec2)
outOfDec0 = self.dec0(outOfDec1)
return outOfDec0