Diff of /OurModel.py [000000] .. [2507a0]

Switch to unified view

a b/OurModel.py
1
import torch
2
import torchvision
3
import torch.nn.functional as F
4
5
import pandas as pd
6
import numpy as np
7
8
9
class Block(torch.nn.Module):
10
    def __init__(self, in_channels, mid_channel, out_channels, max_pool_kernel_size, batch_norm=False):
11
        super().__init__()
12
13
14
        self.max_pool_kernel_size=max_pool_kernel_size
15
        self.conv1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=mid_channel, kernel_size=3, padding=1)
16
        self.conv2 = torch.nn.Conv2d(in_channels=mid_channel, out_channels=out_channels, kernel_size=3, padding=1)
17
18
        self.batch_norm = batch_norm
19
        if batch_norm:
20
            self.bn1 = torch.nn.BatchNorm2d(mid_channel)
21
            self.bn2 = torch.nn.BatchNorm2d(out_channels)
22
            self.bn3 = torch.nn.BatchNorm2d(out_channels)
23
24
    def forward(self, x):
25
        x = self.conv1(x)
26
        if self.batch_norm:
27
            x = self.bn1(x)
28
        x = torch.nn.functional.relu(x, inplace=True)
29
30
        x = self.conv2(x)
31
        if self.batch_norm:
32
            x = self.bn2(x)
33
        x = torch.nn.functional.relu(x, inplace=True)
34
35
        if self.max_pool_kernel_size!=1:
36
            x = torch.nn.functional.max_pool2d(x, kernel_size=self.max_pool_kernel_size)
37
        if self.batch_norm:
38
            x = self.bn3(x)
39
        out = x
40
        return out
41
42
 
43
44
45
class CxlNet(torch.nn.Module):
46
    def up(self, x, size):
47
        return torch.nn.functional.interpolate(x, size=size, mode=self.upscale_mode)
48
49
    def down(self, x):
50
        return torch.nn.functional.max_pool2d(x, kernel_size=2)
51
52
53
    def __init__(self, in_channels, out_channels, batch_norm=False, upscale_mode="nearest",image_size=512):
54
        super().__init__()
55
        self.in_channels = in_channels
56
        self.out_channels = out_channels
57
        self.batch_norm = batch_norm
58
        self.upscale_mode = upscale_mode
59
        self.image_size=image_size
60
        self.enc1 = Block(in_channels, 32, 64,2, batch_norm)
61
        self.enc2 = Block(64, 64, 64, 2, batch_norm)
62
        self.enc3 = Block(64, 128, 128, 2, batch_norm)
63
        self.enc4 = Block(128, 256, 256, 2, batch_norm)
64
        #self.enc3 = Block(256, 128, 128, 2, batch_norm)
65
        #self.enc4 = Block(128, 64, 64, 2, batch_norm)
66
67
        self.dec3 = Block(512, 256, 256, 1, batch_norm)
68
        self.dec2 = Block(256, 128, 128, 1, batch_norm)
69
        self.dec1 = Block(128, 64, 64, 1, batch_norm)
70
        self.dec0 = Block(64, 32, out_channels, 1, batch_norm)
71
    def forward(self, x):
72
        enc1 = self.enc1(x)
73
        enc2 = self.enc2(enc1)
74
        enc3 = self.enc3(enc2)
75
        enc4 = self.enc4(enc3)
76
        outOfDec3 = self.dec3(torch.cat([enc1,
77
                                    self.up(enc2, enc1.size()[-2:]),
78
                                    self.up(enc3, enc1.size()[-2:]),
79
                                    self.up(enc4, enc1.size()[-2:]),
80
        ], 1))
81
82
        outOfDec2 = self.dec2(self.up(outOfDec3, (self.image_size,self.image_size)))
83
        outOfDec1 = self.dec1(outOfDec2)
84
        outOfDec0 = self.dec0(outOfDec1)
85
        return outOfDec0