--- a
+++ b/Evalution.ipynb
@@ -0,0 +1,520 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "provenance": []
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "language_info": {
+      "name": "python"
+    }
+  },
+  "cells": [
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "iXo6Nj7M5GK8"
+      },
+      "outputs": [],
+      "source": [
+        "import torch\n",
+        "import torchvision\n",
+        "import os\n",
+        "import glob\n",
+        "import time\n",
+        "import pickle\n",
+        "import sys\n",
+        "sys.path.append('/content/drive/MyDrive/Batoul_Code/')\n",
+        "sys.path.append('/content/drive/MyDrive/Batoul_Code/src')\n",
+        "\n",
+        "import pandas as pd\n",
+        "import numpy as np\n",
+        "import matplotlib.pyplot as plt\n",
+        "from pathlib import Patha\n",
+        "from PIL import Image\n",
+        "from sklearn.model_selection import train_test_split\n",
+        "\n",
+        "from data import LungDataset, blend, Pad, Crop, Resize\n",
+        "from data2 import LungDataset2, blend, Pad, Crop, Resize\n",
+        "\n",
+        "from  OurModel import CxlNet\n",
+        "\n",
+        "from  metrics import jaccard, dice,get_accuracy, get_sensitivity, get_specificity"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "in_channels=1\n",
+        "out_channels=2\n",
+        "batch_norm=True\n",
+        "upscale_mode=\"bilinear\"\n",
+        "image_size=512\n",
+        "def selectModel():\n",
+        "    return CxlNet(\n",
+        "            in_channels=in_channels,\n",
+        "            out_channels=out_channels,\n",
+        "            batch_norm=batch_norm,\n",
+        "            upscale_mode=upscale_mode,\n",
+        "            image_size=image_size)"
+      ],
+      "metadata": {
+        "id": "BGn0Pjmb5gRA"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "dataset_name=\"dataset\"\n",
+        "dataset_types={\"dataset\":\"png\",\"CT\":\"jpg\"}\n",
+        "dataset_type=dataset_types[dataset_name]\n",
+        "print(dataset_type)\n",
+        "image_size=512\n",
+        "split_file = \"/content/drive/MyDrive/Batoul_Code/splits.pk\"\n",
+        "list_data_file = \"/content/drive/MyDrive/Batoul_Code/list_data.pk\"\n",
+        "version=\"UNet\"\n",
+        "approach=\"contour\"\n",
+        "model = selectModel()\n",
+        "\n",
+        "base_path=\"/content/drive/MyDrive/Batoul_Code/\"\n",
+        "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
+        "device\n",
+        "\n",
+        "\n",
+        "\n",
+        "\n",
+        "data_folder = Path(base_path+\"input\", base_path+\"input/\"+dataset_name)\n",
+        "origins_folder = data_folder / \"images\"\n",
+        "masks_folder = data_folder / \"masks\"\n",
+        "masks_contour_folder = data_folder / \"masks_contour\"\n",
+        "masks_folder =masks_contour_folder\n",
+        "models_folder = Path(base_path+\"models\")\n",
+        "images_folder = Path(base_path+\"images\")\n"
+      ],
+      "metadata": {
+        "id": "5Sp6Ga1y50He"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
+        "models_folder = Path(base_path+\"models\")\n",
+        "model_name = \"unet-6v.pt\"\n",
+        "model_name=\"ournet_\"+version+\".pt\"\n",
+        "print(model_name)\n",
+        "model.load_state_dict(torch.load(models_folder / model_name, map_location=torch.device(\"cpu\")))\n",
+        "model.to(device)\n",
+        "model.eval()\n",
+        "\n",
+        "\n",
+        "test_loss = 0.0\n",
+        "test_jaccard = 0.0\n",
+        "test_dice = 0.0\n",
+        "test_accuracy=0.0\n",
+        "test_sensitivity=0.0\n",
+        "test_specificity=0.0\n",
+        "batch_size = 4\n",
+        "\n",
+        "if os.path.isfile(list_data_file):\n",
+        "  with open(list_data_file, \"rb\") as f:\n",
+        "    list_data = pickle.load(f)\n",
+        "    origins_list=list_data[0]\n",
+        "    masks_list=list_data[1]\n",
+        "else:\n",
+        "  origins_list = [f.stem  for f in origins_folder.glob(f\"*.{dataset_type}\")]\n",
+        "  masks_list = [f.stem  for f in masks_folder.glob(f\"*.{dataset_type}\")]\n",
+        "  with open(list_data_file, \"wb\") as f:\n",
+        "    pickle.dump([origins_list,masks_list], f)\n",
+        "\n",
+        "\n",
+        "#origins_list = [f.stem for f in origins_folder.glob(\"*.png\")]\n",
+        "#masks_list = [f.stem for f in masks_folder.glob(\"*.png\")]\n",
+        "\n",
+        "\n",
+        "origin_mask_list = [(mask_name.replace(\"_mask\", \"\"), mask_name) for mask_name in masks_list]\n",
+        "\n",
+        "\n",
+        "\n",
+        "if os.path.isfile(split_file):\n",
+        "    with open(split_file, \"rb\") as f:\n",
+        "        splits = pickle.load(f)\n",
+        "else:\n",
+        "    splits = {}\n",
+        "    splits[\"train\"], splits[\"test\"] = train_test_split(origin_mask_list, test_size=0.2, random_state=42)\n",
+        "    splits[\"train\"], splits[\"val\"] = train_test_split(splits[\"train\"], test_size=0.1, random_state=42)\n",
+        "    with open(split_file, \"wb\") as f:\n",
+        "        pickle.dump(splits, f)\n",
+        "\n",
+        "val_test_transforms = torchvision.transforms.Compose([\n",
+        "    Resize((image_size, image_size)),\n",
+        "])\n",
+        "\n",
+        "if dataset_name!=\"dataset\":\n",
+        "  train_transforms = torchvision.transforms.Compose([\n",
+        "  Pad(200),\n",
+        "  Crop(300),\n",
+        "  val_test_transforms,\n",
+        "  ])\n",
+        "  datasets = {x: LungDataset2(\n",
+        "  splits[x],\n",
+        "  origins_folder,\n",
+        "  masks_folder,\n",
+        "  train_transforms if x == \"train\" else val_test_transforms,\n",
+        "  dataset_type=dataset_type\n",
+        "  ) for x in [\"train\", \"test\", \"val\"]}\n",
+        "else:\n",
+        "  train_transforms = torchvision.transforms.Compose([\n",
+        "  Pad(200),\n",
+        "  Crop(300),\n",
+        "  val_test_transforms,])\n",
+        "\n",
+        "  datasets = {x: LungDataset(\n",
+        "  splits[x],\n",
+        "  origins_folder,\n",
+        "  masks_folder,\n",
+        "  train_transforms if x == \"train\" else val_test_transforms,\n",
+        "  dataset_type=dataset_type\n",
+        "  ) for x in [\"train\", \"test\", \"val\"]}\n",
+        "\n",
+        "num_samples = 9\n",
+        "phase = \"test\"\n",
+        "print(len(datasets[phase]))\n",
+        "\n",
+        "dataloaders = {x: torch.utils.data.DataLoader(datasets[x], batch_size=batch_size) for x in [\"train\", \"test\", \"val\"]}\n",
+        "\n",
+        "for origins, masks in dataloaders[\"test\"]:\n",
+        "    num = origins.size(0)\n",
+        "\n",
+        "    origins = origins.to(device)\n",
+        "    masks = masks.to(device)\n",
+        "\n",
+        "    with torch.no_grad():\n",
+        "        outs = model(origins)\n",
+        "        softmax = torch.nn.functional.log_softmax(outs, dim=1)\n",
+        "        test_loss += torch.nn.functional.nll_loss(softmax, masks).item() * num\n",
+        "        outs = torch.argmax(softmax, dim=1)\n",
+        "        outs = outs.float()\n",
+        "        masks = masks.float()\n",
+        "        test_jaccard += jaccard(masks, outs).item() * num\n",
+        "        test_dice += dice(masks, outs).item() * num\n",
+        "        test_accuracy += get_accuracy(masks, outs) * num\n",
+        "        test_sensitivity += get_sensitivity(masks, outs) * num\n",
+        "        test_specificity += get_specificity(masks, outs) * num\n",
+        "    print(\".\", end=\"\")\n",
+        "\n",
+        "test_loss = test_loss / len(datasets[\"test\"])\n",
+        "test_jaccard = test_jaccard / len(datasets[\"test\"])\n",
+        "test_dice = test_dice / len(datasets[\"test\"])\n",
+        "test_accuracy = test_accuracy / len(datasets[\"test\"])\n",
+        "print()\n",
+        "print(f\"avg test loss: {test_loss}\")\n",
+        "print(f\"avg test jaccard: {test_jaccard}\")\n",
+        "print(f\"avg test dice: {test_dice}\")\n",
+        "print(f\"avg test accuracy: {test_accuracy}\")\n",
+        "print(f\"avg test sensitivity: {test_sensitivity}\")\n",
+        "print(f\"avg test specificity: {test_specificity}\")\n",
+        "\n",
+        "\n",
+        "\n",
+        "subset = torch.utils.data.Subset(\n",
+        "    datasets[phase],\n",
+        "    np.random.randint(0, len(datasets[phase]), num_samples)\n",
+        ")\n",
+        "random_samples_loader = torch.utils.data.DataLoader(subset, batch_size=2)\n",
+        "plt.figure(figsize=(20, 25))\n",
+        "\n",
+        "for idx, (origin, mask) in enumerate(random_samples_loader):\n",
+        "    plt.subplot((num_samples // 3) + 1, 3, idx + 1)\n",
+        "\n",
+        "    origin = origin.to(device)\n",
+        "    mask = mask.to(device)\n",
+        "\n",
+        "    with torch.no_grad():\n",
+        "        out = model(origin)\n",
+        "        softmax = torch.nn.functional.log_softmax(out, dim=1)\n",
+        "        out = torch.argmax(softmax, dim=1)\n",
+        "\n",
+        "        jaccard_score = jaccard(mask.float(), out.float()).item()\n",
+        "        dice_score = dice(mask.float(), out.float()).item()\n",
+        "\n",
+        "        origin = origin[0].to(\"cpu\")\n",
+        "        out = out[0].to(\"cpu\")\n",
+        "        mask = mask[0].to(\"cpu\")\n",
+        "        #plt.imshow(np.array(blend(origin, mask, out)))\n",
+        "        plt.imshow(np.array(blend(origin, out, out)))\n",
+        "        plt.title(f\"jaccard: {jaccard_score:.4f}, dice: {dice_score:.4f}\")\n",
+        "        print(\".\", end=\"\")\n",
+        "\n",
+        "plt.savefig(images_folder / \"obtained-results.png\", bbox_inches='tight')\n",
+        "plt.show()\n",
+        "print()\n",
+        "print(\"red area - predict\")\n",
+        "print(\"green area - ground truth\")\n",
+        "print(\"yellow area - intersection\")\n",
+        "\n",
+        "\n",
+        "model.load_state_dict(torch.load(models_folder / model_name, map_location=torch.device(\"cpu\")))\n",
+        "model.to(device)\n",
+        "model.eval()\n",
+        "\n",
+        "device\n",
+        "\n",
+        "#%%\n",
+        "\n",
+        "origin_filename = base_path+ f\"input/{dataset_name}/images/ID00015637202177877247924_110.jpg\"\n",
+        "#origin_filename=base_path + \"external_samples/1.jpg\"\n",
+        "\n",
+        "origin = Image.open(origin_filename).convert(\"P\")\n",
+        "origin = torchvision.transforms.functional.resize(origin, (image_size, image_size))\n",
+        "origin = torchvision.transforms.functional.to_tensor(origin) - 0.5\n",
+        "\n",
+        "with torch.no_grad():\n",
+        "    origin = torch.stack([origin])\n",
+        "    origin = origin.to(device)\n",
+        "    out = model(origin)\n",
+        "    softmax = torch.nn.functional.log_softmax(out, dim=1)\n",
+        "    out = torch.argmax(softmax, dim=1)\n",
+        "\n",
+        "    origin = origin[0].to(\"cpu\")\n",
+        "    out = out[0].to(\"cpu\")\n",
+        "\n",
+        "\n",
+        "plt.figure(figsize=(20, 10))\n",
+        "\n",
+        "pil_origin = torchvision.transforms.functional.to_pil_image(origin + 0.5).convert(\"RGB\")\n",
+        "\n",
+        "plt.subplot(1, 2, 1)\n",
+        "plt.title(\"origin image\")\n",
+        "plt.imshow(np.array(pil_origin))\n",
+        "plt.show()\n",
+        "plt.subplot(1, 2, 2)\n",
+        "plt.title(\"blended origin + predict\")\n",
+        "plt.imshow(np.array(blend(origin, out)))\n",
+        "plt.show()\n"
+      ],
+      "metadata": {
+        "id": "jFpE8AwG5-Nm"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "\n",
+        "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
+        "models_folder = Path(base_path+\"models\")\n",
+        "\n",
+        "\n",
+        "\n",
+        "test_loss = 0.0\n",
+        "test_jaccard = 0.0\n",
+        "test_dice = 0.0\n",
+        "\n",
+        "batch_size = 4\n",
+        "\n",
+        "if os.path.isfile(list_data_file):\n",
+        "  with open(list_data_file, \"rb\") as f:\n",
+        "    list_data = pickle.load(f)\n",
+        "    origins_list=list_data[0]\n",
+        "    masks_list=list_data[1]\n",
+        "else:\n",
+        "  origins_list = [f.stem  for f in origins_folder.glob(f\"*.{dataset_type}\")]\n",
+        "  masks_list = [f.stem  for f in masks_folder.glob(f\"*.{dataset_type}\")]\n",
+        "  with open(list_data_file, \"wb\") as f:\n",
+        "    pickle.dump([origins_list,masks_list], f)\n",
+        "\n",
+        "\n",
+        "#origins_list = [f.stem for f in origins_folder.glob(\"*.png\")]\n",
+        "#masks_list = [f.stem for f in masks_folder.glob(\"*.png\")]\n",
+        "\n",
+        "\n",
+        "origin_mask_list = [(mask_name.replace(\"_mask\", \"\"), mask_name) for mask_name in masks_list]\n",
+        "\n",
+        "\n",
+        "\n",
+        "if os.path.isfile(split_file):\n",
+        "    with open(split_file, \"rb\") as f:\n",
+        "        splits = pickle.load(f)\n",
+        "else:\n",
+        "    splits = {}\n",
+        "    splits[\"train\"], splits[\"test\"] = train_test_split(origin_mask_list, test_size=0.2, random_state=42)\n",
+        "    splits[\"train\"], splits[\"val\"] = train_test_split(splits[\"train\"], test_size=0.1, random_state=42)\n",
+        "    with open(split_file, \"wb\") as f:\n",
+        "        pickle.dump(splits, f)\n",
+        "\n",
+        "val_test_transforms = torchvision.transforms.Compose([\n",
+        "    Resize((image_size, image_size)),\n",
+        "])\n",
+        "\n",
+        "if dataset_name!=\"dataset\":\n",
+        "  train_transforms = torchvision.transforms.Compose([\n",
+        "  #Pad(200),\n",
+        "  #Crop(300),\n",
+        "  #val_test_transforms,\n",
+        "  ])\n",
+        "  datasets = {x: LungDataset2(\n",
+        "  splits[x],\n",
+        "  origins_folder,\n",
+        "  masks_folder,\n",
+        "  train_transforms if x == \"train\" else val_test_transforms,\n",
+        "  dataset_type=dataset_type\n",
+        "  ) for x in [\"train\", \"test\", \"val\"]}\n",
+        "else:\n",
+        "  train_transforms = torchvision.transforms.Compose([\n",
+        "  Pad(200),\n",
+        "  Crop(300),\n",
+        "  val_test_transforms,])\n",
+        "\n",
+        "  datasets = {x: LungDataset(\n",
+        "  splits[x],\n",
+        "  origins_folder,\n",
+        "  masks_folder,\n",
+        "  train_transforms if x == \"train\" else val_test_transforms,\n",
+        "  dataset_type=dataset_type\n",
+        "  ) for x in [\"train\", \"test\", \"val\"]}\n",
+        "\n",
+        "\n",
+        "def mask_to_class_rgb1(mask):\n",
+        "        #print('----mask->rgb----')\n",
+        "  mask = torch.from_numpy(np.array(mask))\n",
+        "  mask = torch.squeeze(mask)  # remove 1\n",
+        "\n",
+        "  class_mask = mask\n",
+        "\n",
+        "  class_mask = class_mask.permute(2, 0, 1).contiguous()\n",
+        "  h, w = class_mask.shape[1], class_mask.shape[2]\n",
+        "  mask_out = torch.zeros((h, w))\n",
+        "\n",
+        "  threshold=200\n",
+        "  for i in range(0,3):\n",
+        "    class_mask[i][class_mask[i] < threshold] = 0\n",
+        "\n",
+        "  for i in range(2, 3):\n",
+        "    mask_out[class_mask[i] >= threshold]=1\n",
+        "  return mask_out\n",
+        "\n",
+        "\n",
+        "def mask_to_class_rgb(mask):\n",
+        "        #print('----mask->rgb----')\n",
+        "  mask = torch.from_numpy(np.array(mask))\n",
+        "  mask = torch.squeeze(mask)  # remove 1\n",
+        "\n",
+        "  class_mask = mask\n",
+        "\n",
+        "  class_mask = class_mask.permute(2, 0, 1).contiguous()\n",
+        "  h, w = class_mask.shape[1], class_mask.shape[2]\n",
+        "  mask_out = torch.zeros((h, w))\n",
+        "\n",
+        "  threshold=200\n",
+        "  for i in range(0,3):\n",
+        "    class_mask[i][class_mask[i] < threshold] = 0\n",
+        "\n",
+        "  for i in range(2, 3):\n",
+        "    mask_out[class_mask[i] >= threshold]=1\n",
+        "  return mask_out\n",
+        "\n",
+        "def getitem2(path):\n",
+        "  mask = Image.open(path)\n",
+        "  mask = mask_to_class_rgb(mask)\n",
+        "  mask=mask.long()\n",
+        "  #mask = (torch.tensor(mask) > 128).long()\n",
+        "  return mask\n",
+        "\n",
+        "def getitem1(path):\n",
+        "  mask = Image.open(path)\n",
+        "  mask = mask.resize((image_size,image_size))\n",
+        "  mask = np.array(mask)\n",
+        "  mask = (torch.tensor(mask) > 128).long()\n",
+        "  return mask\n",
+        "\n",
+        "\n",
+        "idx=1\n",
+        "phase = \"test\"\n",
+        "fig = plt.figure(figsize=(20, 10))\n",
+        "input=0\n",
+        "if dataset_name!=\"dataset\":\n",
+        "  samples=[\"ID00015637202177877247924_110.jpg\",\n",
+        "           \"ID00009637202177434476278_173.jpg\",\n",
+        "           \"ID00009637202177434476278_316.jpg\",\n",
+        "           \"ID00009637202177434476278_204.jpg\",]\n",
+        "  masks = [mask_name.replace(\"_\", \"_mask_\").replace(\"images\", \"masks\") for mask_name in samples]\n",
+        "\n",
+        "else:\n",
+        "  samples=[\"CHNCXR_0060_0.png\",\n",
+        "           \"CHNCXR_0074_0.png\",\n",
+        "           \"CHNCXR_0129_0.png\",\n",
+        "           \"CHNCXR_0167_0.png\",]\n",
+        "  masks = [mask_name.replace(\"_0.png\", \"_0_mask.png\").replace(\"images\", \"masks\") for mask_name in samples]\n",
+        "\n",
+        "\n",
+        "samples=[base_path + f\"input/{dataset_name}/images/\"+ sample_name for sample_name in samples]\n",
+        "masks=[base_path + f\"input/{dataset_name}/masks/\"+ mask_name for mask_name in masks]\n",
+        "models=[\"ResNetDUCHDC\",\"OueNetNew3\",\"NestedUNet\",\"ResNetDUC\",\"FCN_GCN\",\"SegNet2\",\"UNet\"]\n",
+        "\n",
+        "for input in range(0,len(samples)) :\n",
+        "  for m in range(0,len(models)):\n",
+        "    origin_filename = samples[input]\n",
+        "    origin = Image.open(origin_filename).convert(\"P\")\n",
+        "    origin = torchvision.transforms.functional.resize(origin, (image_size, image_size))\n",
+        "    origin = torchvision.transforms.functional.to_tensor(origin) - 0.5\n",
+        "    if dataset_name!=\"dataset\":\n",
+        "      mask= getitem2(masks[input])\n",
+        "    else:\n",
+        "      mask= getitem1(masks[input])\n",
+        "    version=models[m]\n",
+        "    if dataset_name!=\"dataset\":\n",
+        "      version=version+\"_\"+dataset_name\n",
+        "    model = selectModel(models[m])\n",
+        "    model_name=\"ournet_\"+version+\".pt\"\n",
+        "    model.load_state_dict(torch.load(models_folder / model_name, map_location=torch.device(\"cpu\")))\n",
+        "    model.to(device)\n",
+        "    with torch.no_grad():\n",
+        "        origin = torch.stack([origin])\n",
+        "        origin = origin.to(device)\n",
+        "        out = model(origin)\n",
+        "        softmax = torch.nn.functional.log_softmax(out, dim=1)\n",
+        "        out = torch.argmax(softmax, dim=1)\n",
+        "\n",
+        "        origin = origin[0].to(\"cpu\")\n",
+        "        out = out[0].to(\"cpu\")\n",
+        "\n",
+        "    pil_origin = torchvision.transforms.functional.to_pil_image(origin + 0.5).convert(\"RGB\")\n",
+        "    plt.subplots_adjust(hspace=0)\n",
+        "    if m==0:\n",
+        "      ax=fig.add_subplot(len(samples), len(models)+2,idx)\n",
+        "      ax.set_axis_off()\n",
+        "      #plt.title(\"origin image\")\n",
+        "      plt.imshow(np.array(pil_origin))\n",
+        "      idx=idx+1\n",
+        "      ax=fig.add_subplot(len(samples), len(models)+2,idx)\n",
+        "      ax.set_axis_off()\n",
+        "      plt.imshow(np.array(blend(origin, mask,amount=0.4)))\n",
+        "      idx=idx+1\n",
+        "    ax=fig.add_subplot(len(samples), len(models)+2,idx)\n",
+        "    ax.set_axis_off()\n",
+        "    #plt.title(\"blended origin + predict\")\n",
+        "    plt.imshow(np.array(blend(origin, out,amount=0.5)))\n",
+        "    #plt.savefig(images_folder / f\"results/{version} {input}\", bbox_inches='tight')\n",
+        "    idx=idx+1\n",
+        "\n",
+        "plt.show()\n"
+      ],
+      "metadata": {
+        "id": "ksO_-uVR6V4F"
+      },
+      "execution_count": null,
+      "outputs": []
+    }
+  ]
+}
\ No newline at end of file