|
a |
|
b/train_segmentation.py |
|
|
1 |
# Mask R-CNN model for lesion segmentation in chest CT scans |
|
|
2 |
# Torchvision detection package is locally re-implemented |
|
|
3 |
# by Alex Ter-Sarkisov@City, University of London |
|
|
4 |
# alex.ter-sarkisov@city.ac.uk |
|
|
5 |
# 2020 |
|
|
6 |
import argparse |
|
|
7 |
import time |
|
|
8 |
import pickle |
|
|
9 |
import torch |
|
|
10 |
import torchvision |
|
|
11 |
import numpy as np |
|
|
12 |
import os, sys |
|
|
13 |
import cv2 |
|
|
14 |
import models.mask_net as mask_net |
|
|
15 |
from models.mask_net.rpn_segmentation import AnchorGenerator |
|
|
16 |
from models.mask_net.faster_rcnn import FastRCNNPredictor, TwoMLPHead |
|
|
17 |
from models.mask_net.covid_mask_net import MaskRCNNHeads, MaskRCNNPredictor |
|
|
18 |
from torch.utils import data |
|
|
19 |
import torch.utils as utils |
|
|
20 |
import datasets.dataset_segmentation as dataset |
|
|
21 |
from PIL import Image as PILImage |
|
|
22 |
import matplotlib.pyplot as plt |
|
|
23 |
import matplotlib.patches as patches |
|
|
24 |
from matplotlib.patches import Rectangle |
|
|
25 |
import utils |
|
|
26 |
import config_segmentation as config |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
# main method |
|
|
30 |
def main(config, main_step): |
|
|
31 |
devices = ['cpu', 'cuda'] |
|
|
32 |
mask_classes = ['both', 'ggo', 'merge'] |
|
|
33 |
truncation_levels = ['0','1','2'] |
|
|
34 |
backbones = ['resnet50', 'resnet34', 'resnet18'] |
|
|
35 |
assert config.backbone_name in backbones |
|
|
36 |
assert config.mask_type in mask_classes |
|
|
37 |
assert config.truncation in truncation_levels |
|
|
38 |
|
|
|
39 |
# import arguments from the config file |
|
|
40 |
start_epoch, model_name, use_pretrained_resnet_backbone, num_epochs, save_dir, train_data_dir, val_data_dir, imgs_dir, gt_dir, batch_size, device, save_every, lrate, rpn_nms, mask_type, backbone_name, truncation = \ |
|
|
41 |
config.start_epoch, config.model_name, config.use_pretrained_resnet_backbone, config.num_epochs, config.save_dir, \ |
|
|
42 |
config.train_data_dir, config.val_data_dir, config.imgs_dir, config.gt_dir, config.batch_size, config.device, config.save_every, config.lrate, config.rpn_nms_th, config.mask_type, config.backbone_name, config.truncation |
|
|
43 |
|
|
|
44 |
assert device in devices |
|
|
45 |
if not save_dir in os.listdir('.'): |
|
|
46 |
os.mkdir(save_dir) |
|
|
47 |
|
|
|
48 |
if batch_size > 1: |
|
|
49 |
print("The model was implemented for batch size of one") |
|
|
50 |
if device == 'cuda' and torch.cuda.is_available(): |
|
|
51 |
device = torch.device('cuda') |
|
|
52 |
else: |
|
|
53 |
device = torch.device('cpu') |
|
|
54 |
|
|
|
55 |
print(device) |
|
|
56 |
|
|
|
57 |
# Load the weights if provided |
|
|
58 |
if config.pretrained_model is not None: |
|
|
59 |
pretrained_model = torch.load(config.pretrained_model, map_location = device) |
|
|
60 |
use_pretrained_resnet_backbone = False |
|
|
61 |
else: |
|
|
62 |
pretrained_model=None |
|
|
63 |
torch.manual_seed(time.time()) |
|
|
64 |
############################################################################################## |
|
|
65 |
# DATASETS + DATALOADERS |
|
|
66 |
# Alex: could be added in the config file in the future |
|
|
67 |
# parameters for the dataset |
|
|
68 |
dataset_covid_pars_train = {'stage': 'train', 'gt': os.path.join(train_data_dir, gt_dir), |
|
|
69 |
'data': os.path.join(train_data_dir, imgs_dir), 'mask_type':mask_type, 'ignore_small':True} |
|
|
70 |
datapoint_covid_train = dataset.CovidCTData(**dataset_covid_pars_train) |
|
|
71 |
|
|
|
72 |
dataset_covid_pars_eval = {'stage': 'eval', 'gt': os.path.join(val_data_dir, gt_dir), |
|
|
73 |
'data': os.path.join(val_data_dir, imgs_dir), 'mask_type':mask_type, 'ignore_small':True} |
|
|
74 |
datapoint_covid_eval = dataset.CovidCTData(**dataset_covid_pars_eval) |
|
|
75 |
############################################################################################### |
|
|
76 |
dataloader_covid_pars_train = {'shuffle': True, 'batch_size': batch_size} |
|
|
77 |
dataloader_covid_train = data.DataLoader(datapoint_covid_train, **dataloader_covid_pars_train) |
|
|
78 |
# |
|
|
79 |
dataloader_covid_pars_eval = {'shuffle': False, 'batch_size': batch_size} |
|
|
80 |
dataloader_covid_eval = data.DataLoader(datapoint_covid_eval, **dataloader_covid_pars_eval) |
|
|
81 |
############################################################################################### |
|
|
82 |
# MASK R-CNN model |
|
|
83 |
# Alex: these settings could also be added to the config |
|
|
84 |
if mask_type == "both": |
|
|
85 |
n_c = 3 |
|
|
86 |
else: |
|
|
87 |
n_c = 2 |
|
|
88 |
maskrcnn_args = {'min_size': 512, 'max_size': 1024, 'rpn_batch_size_per_image': 256, 'rpn_positive_fraction': 0.75, |
|
|
89 |
'box_positive_fraction': 0.75, 'box_fg_iou_thresh': 0.75, 'box_bg_iou_thresh': 0.5, |
|
|
90 |
'num_classes': None, 'box_batch_size_per_image': 256, 'rpn_nms_thresh': rpn_nms} |
|
|
91 |
|
|
|
92 |
# Alex: for Ground glass opacity and consolidatin segmentation |
|
|
93 |
# many small anchors |
|
|
94 |
# use all outputs of FPN |
|
|
95 |
# IMPORTANT!! For the pretrained weights, this determines the size of the anchor layer in RPN!!!! |
|
|
96 |
# pretrained model must have anchors |
|
|
97 |
if pretrained_model is None: |
|
|
98 |
anchor_generator = AnchorGenerator( |
|
|
99 |
sizes=tuple([(2, 4, 8, 16, 32) for r in range(5)]), |
|
|
100 |
aspect_ratios=tuple([(0.1, 0.25, 0.5, 1, 1.5, 2) for rh in range(5)])) |
|
|
101 |
else: |
|
|
102 |
print("Loading the anchor generator") |
|
|
103 |
sizes = pretrained_model['anchor_generator'].sizes |
|
|
104 |
aspect_ratios = pretrained_model['anchor_generator'].aspect_ratios |
|
|
105 |
anchor_generator = AnchorGenerator(sizes=sizes, aspect_ratios=aspect_ratios) |
|
|
106 |
print(anchor_generator, anchor_generator.num_anchors_per_location()) |
|
|
107 |
# num_classes:3 (1+2) |
|
|
108 |
# in_channels |
|
|
109 |
# 256: number if channels from FPN |
|
|
110 |
# For the ResNet50+FPN: keep the torchvision architecture, but with 128 features |
|
|
111 |
# For lightweights models: re-implement MaskRCNNHeads with a single layer |
|
|
112 |
box_head = TwoMLPHead(in_channels=256*7*7,representation_size=128) |
|
|
113 |
if backbone_name == 'resnet50': |
|
|
114 |
maskrcnn_heads = None |
|
|
115 |
box_predictor = FastRCNNPredictor(in_channels=128, num_classes=n_c) |
|
|
116 |
mask_predictor = MaskRCNNPredictor(in_channels=256, dim_reduced=256, num_classes=n_c) |
|
|
117 |
else: |
|
|
118 |
#Backbone->FPN->boxhead->boxpredictor |
|
|
119 |
box_predictor = FastRCNNPredictor(in_channels=128, num_classes=n_c) |
|
|
120 |
maskrcnn_heads = MaskRCNNHeads(in_channels=256, layers=(128,), dilation=1) |
|
|
121 |
mask_predictor = MaskRCNNPredictor(in_channels=128, dim_reduced=128, num_classes=n_c) |
|
|
122 |
|
|
|
123 |
maskrcnn_args['box_head'] = box_head |
|
|
124 |
maskrcnn_args['rpn_anchor_generator'] = anchor_generator |
|
|
125 |
maskrcnn_args['mask_head'] = maskrcnn_heads |
|
|
126 |
maskrcnn_args['mask_predictor'] = mask_predictor |
|
|
127 |
maskrcnn_args['box_predictor'] = box_predictor |
|
|
128 |
# Instantiate the segmentation model |
|
|
129 |
maskrcnn_model = mask_net.maskrcnn_resnet_fpn(backbone_name, truncation, pretrained_backbone=use_pretrained_resnet_backbone, **maskrcnn_args) |
|
|
130 |
# pretrained? |
|
|
131 |
print(maskrcnn_model.backbone.out_channels) |
|
|
132 |
if pretrained_model is not None: |
|
|
133 |
print("Loading pretrained weights") |
|
|
134 |
maskrcnn_model.load_state_dict(pretrained_model['model_weights']) |
|
|
135 |
if pretrained_model['epoch']: |
|
|
136 |
start_epoch = int(pretrained_model['epoch'])+1 |
|
|
137 |
if 'model_name' in pretrained_model.keys(): |
|
|
138 |
model_name = str(pretrained_model['model_name']) |
|
|
139 |
|
|
|
140 |
# Set to training mode |
|
|
141 |
print(maskrcnn_model) |
|
|
142 |
maskrcnn_model.train().to(device) |
|
|
143 |
|
|
|
144 |
optimizer_pars = {'lr': lrate, 'weight_decay': 1e-3} |
|
|
145 |
optimizer = torch.optim.Adam(list(maskrcnn_model.parameters()), **optimizer_pars) |
|
|
146 |
if pretrained_model is not None and 'optimizer_state' in pretrained_model.keys(): |
|
|
147 |
optimizer.load_state_dict(pretrained_model['optimizer_state']) |
|
|
148 |
|
|
|
149 |
start_time = time.time() |
|
|
150 |
if start_epoch>0: |
|
|
151 |
num_epochs += start_epoch |
|
|
152 |
print("Start training, epoch = {:d}".format(start_epoch)) |
|
|
153 |
for e in range(start_epoch, num_epochs): |
|
|
154 |
train_loss_epoch = main_step("train", e, dataloader_covid_train, optimizer, device, maskrcnn_model, save_every, |
|
|
155 |
lrate, model_name, None, None) |
|
|
156 |
eval_loss_epoch = main_step("eval", e, dataloader_covid_eval, optimizer, device, maskrcnn_model, save_every, lrate, model_name, anchor_generator, save_dir) |
|
|
157 |
print( |
|
|
158 |
"Epoch {0:d}: train loss = {1:.3f}, validation loss = {2:.3f}".format(e, train_loss_epoch, eval_loss_epoch)) |
|
|
159 |
end_time = time.time() |
|
|
160 |
print("Training took {0:.1f} seconds".format(end_time - start_time)) |
|
|
161 |
|
|
|
162 |
|
|
|
163 |
def step(stage, e, dataloader, optimizer, device, model, save_every, lrate, model_name, anchors, save_dir): |
|
|
164 |
epoch_loss = 0 |
|
|
165 |
for b in dataloader: |
|
|
166 |
optimizer.zero_grad() |
|
|
167 |
X, y = b |
|
|
168 |
if device == torch.device('cuda'): |
|
|
169 |
X, y['labels'], y['boxes'], y['masks'] = X.to(device), y['labels'].to(device), y['boxes'].to(device), y[ |
|
|
170 |
'masks'].to(device) |
|
|
171 |
images = [im for im in X] |
|
|
172 |
targets = [] |
|
|
173 |
lab = {} |
|
|
174 |
# THIS IS IMPORTANT!!!!! |
|
|
175 |
# get rid of the first dimension (batch) |
|
|
176 |
# IF you have >1 images, make another loop |
|
|
177 |
# REPEAT: DO NOT USE BATCH DIMENSION |
|
|
178 |
lab['boxes'] = y['boxes'].squeeze_(0) |
|
|
179 |
lab['labels'] = y['labels'].squeeze_(0) |
|
|
180 |
lab['masks'] = y['masks'].squeeze_(0) |
|
|
181 |
if len(lab['boxes']) > 0 and len(lab['labels']) > 0 and len(lab['masks']) > 0: |
|
|
182 |
targets.append(lab) |
|
|
183 |
else: |
|
|
184 |
pass |
|
|
185 |
# avoid empty objects |
|
|
186 |
if len(targets) > 0: |
|
|
187 |
loss = model(images, targets) |
|
|
188 |
total_loss = 0 |
|
|
189 |
for k in loss.keys(): |
|
|
190 |
total_loss += loss[k] |
|
|
191 |
if stage == "train": |
|
|
192 |
total_loss.backward() |
|
|
193 |
optimizer.step() |
|
|
194 |
else: |
|
|
195 |
pass |
|
|
196 |
epoch_loss += total_loss.clone().detach().cpu().numpy() |
|
|
197 |
epoch_loss = epoch_loss / len(dataloader) |
|
|
198 |
if not (e+1) % save_every and stage == "eval": |
|
|
199 |
model.eval() |
|
|
200 |
state = {'epoch': str(e+1), 'model_name':model_name, 'model_weights': model.state_dict(), |
|
|
201 |
'optimizer_state': optimizer.state_dict(), 'lrate': lrate, 'anchor_generator':anchors} |
|
|
202 |
if model_name is None: |
|
|
203 |
print(save_dir, "mrcnn_covid_segmentation_model_ckpt_" + str(e+1) + ".pth") |
|
|
204 |
torch.save(state, os.path.join(save_dir, "mrcnn_covid_segmentation_model_ckpt_" + str(e+1) + ".pth")) |
|
|
205 |
else: |
|
|
206 |
torch.save(state, os.path.join(save_dir, model_name + "_ckpt_" + str(e+1) + ".pth")) |
|
|
207 |
|
|
|
208 |
model.train() |
|
|
209 |
return epoch_loss |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
# run the training of the segmentation algoithm |
|
|
213 |
if __name__ == '__main__': |
|
|
214 |
config_train = config.get_config_pars("trainval") |
|
|
215 |
main(config_train, step) |
|
|
216 |
|
|
|
217 |
|
|
|
218 |
|