|
a |
|
b/train_classifier.py |
|
|
1 |
# COVID-CT-Mask-Net |
|
|
2 |
# I re-implemented Torchvision's detection library (Faster and Mask R-CNN) as a classifier |
|
|
3 |
# Alex Ter-Sarkisov @ City, University of London |
|
|
4 |
# alex.ter-sarkisov@city.ac.uk |
|
|
5 |
# |
|
|
6 |
import os |
|
|
7 |
import pickle |
|
|
8 |
import sys |
|
|
9 |
import sys |
|
|
10 |
import time |
|
|
11 |
|
|
|
12 |
import config_classifier |
|
|
13 |
import cv2 |
|
|
14 |
import datasets.dataset_classifier as dataset |
|
|
15 |
# IMPORT LOCAL IMPLEMENTATION OF TORCHVISION'S DETECTION LIBRARY |
|
|
16 |
import numpy as np |
|
|
17 |
import torch |
|
|
18 |
import torch.nn.functional as F |
|
|
19 |
import torchvision |
|
|
20 |
import utils |
|
|
21 |
from PIL import Image as PILImage |
|
|
22 |
# IMPORT LOCAL IMPLEMENTATION OF TORCHVISION'S DETECTION LIBRARY |
|
|
23 |
# Faster R-CNN interface |
|
|
24 |
import models.mask_net as mask_net |
|
|
25 |
from models.mask_net.faster_rcnn import FastRCNNPredictor, TwoMLPHead |
|
|
26 |
from models.mask_net.rpn import AnchorGenerator |
|
|
27 |
from torch.utils import data |
|
|
28 |
from torchvision import transforms |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
# main method |
|
|
32 |
def main(config, main_step): |
|
|
33 |
torch.manual_seed(time.time()) |
|
|
34 |
start_time = time.time() |
|
|
35 |
devices = ['cpu', 'cuda'] |
|
|
36 |
backbones = ['resnet50', 'resnet34', 'resnet18'] |
|
|
37 |
truncation_levels = ['0','1','2'] |
|
|
38 |
assert config.device in devices |
|
|
39 |
assert config.backbone_name in backbones |
|
|
40 |
assert config.truncation in truncation_levels |
|
|
41 |
|
|
|
42 |
start_epoch, pretrained_classifier, pretrained_segment, model_name, num_epochs, save_dir, train_data_dir, val_data_dir, \ |
|
|
43 |
batch_size, device, save_every, lrate, rpn_nms, roi_nms, backbone_name, truncation, roi_batch_size, n_c, s_features = \ |
|
|
44 |
config.start_epoch, config.pretrained_classification_model, \ |
|
|
45 |
config.pretrained_segmentation_model, \ |
|
|
46 |
config.model_name, config.num_epochs, config.save_dir, \ |
|
|
47 |
config.train_data_dir, config.val_data_dir, \ |
|
|
48 |
config.batch_size, config.device, config.save_every, \ |
|
|
49 |
config.lrate, config.rpn_nms_th, config.roi_nms_th, \ |
|
|
50 |
config.backbone_name, config.truncation, \ |
|
|
51 |
config.roi_batch_size, config.num_classes, config.s_features |
|
|
52 |
|
|
|
53 |
if pretrained_classifier is not None and pretrained_segment is not None: |
|
|
54 |
print("Not clear which model to use, switching to the classifier") |
|
|
55 |
pretrained_model = pretrained_classifier |
|
|
56 |
elif pretrained_classifier is not None and pretrained_segment is None: |
|
|
57 |
pretrained_model = pretrained_classifier |
|
|
58 |
else: |
|
|
59 |
pretrained_model = pretrained_segment |
|
|
60 |
|
|
|
61 |
if device == 'cuda' and torch.cuda.is_available(): |
|
|
62 |
device = torch.device('cuda') |
|
|
63 |
else: |
|
|
64 |
device = torch.device('cpu') |
|
|
65 |
############################################################################################## |
|
|
66 |
# DATASETS+DATALOADERS |
|
|
67 |
# Alex: could be added in the config file in the future |
|
|
68 |
# parameters for the dataset |
|
|
69 |
# 512x512 is the recommended image size input |
|
|
70 |
dataset_covid_pars_train_cl = {'stage': 'train', 'data': train_data_dir, 'img_size': (512,512)} |
|
|
71 |
datapoint_covid_train_cl = dataset.COVID_CT_DATA(**dataset_covid_pars_train_cl) |
|
|
72 |
# |
|
|
73 |
dataset_covid_pars_eval_cl = {'stage': 'eval', 'data': val_data_dir, 'img_size': (512,512)} |
|
|
74 |
datapoint_covid_eval_cl = dataset.COVID_CT_DATA(**dataset_covid_pars_eval_cl) |
|
|
75 |
# |
|
|
76 |
dataloader_covid_pars_train_cl = {'shuffle': True, 'batch_size': batch_size} |
|
|
77 |
dataloader_covid_train_cl = data.DataLoader(datapoint_covid_train_cl, **dataloader_covid_pars_train_cl) |
|
|
78 |
# |
|
|
79 |
dataloader_covid_pars_eval_cl = {'shuffle': True, 'batch_size': batch_size} |
|
|
80 |
dataloader_covid_eval_cl = data.DataLoader(datapoint_covid_eval_cl, **dataloader_covid_pars_eval_cl) |
|
|
81 |
# |
|
|
82 |
##### LOAD PRETRAINED WEIGHTS FROM MASK R-CNN MODEL |
|
|
83 |
# This must be the full path to the checkpoint with the anchor generator and model weights |
|
|
84 |
# Assumed that the keys in the checkpoint are model_weights and anchor_generator |
|
|
85 |
ckpt = torch.load(pretrained_model, map_location=device) |
|
|
86 |
# keyword arguments |
|
|
87 |
# box_score_threshold:negative! |
|
|
88 |
# set both NMS thresholds to 0.75 to get adjacent RoIs |
|
|
89 |
# Box detections/image: batch size for the classifier |
|
|
90 |
# |
|
|
91 |
covid_mask_net_args = {'num_classes': None, 'min_size': 512, 'max_size': 1024, 'box_detections_per_img': roi_batch_size, |
|
|
92 |
'box_nms_thresh': roi_nms, 'box_score_thresh': -0.01, 'rpn_nms_thresh': rpn_nms} |
|
|
93 |
|
|
|
94 |
# copy the anchor generator parameters, create a new one to avoid implementations' clash |
|
|
95 |
sizes = ckpt['anchor_generator'].sizes |
|
|
96 |
aspect_ratios = ckpt['anchor_generator'].aspect_ratios |
|
|
97 |
anchor_generator = AnchorGenerator(sizes, aspect_ratios) |
|
|
98 |
# out_channels:256, FPN |
|
|
99 |
# num_classes:3 (1+2) |
|
|
100 |
box_head = TwoMLPHead(in_channels=256*7*7, representation_size=128) |
|
|
101 |
box_predictor = FastRCNNPredictor(in_channels=128, num_classes=n_c) |
|
|
102 |
|
|
|
103 |
covid_mask_net_args['rpn_anchor_generator'] = anchor_generator |
|
|
104 |
covid_mask_net_args['box_predictor'] = box_predictor |
|
|
105 |
covid_mask_net_args['box_head'] = box_head |
|
|
106 |
covid_mask_net_args['s_representation_size'] = s_features |
|
|
107 |
# Instantiate the model |
|
|
108 |
covid_mask_net_model = mask_net.fasterrcnn_resnet_fpn(backbone_name, truncation, **covid_mask_net_args) |
|
|
109 |
# which parameters to train? |
|
|
110 |
trained_pars = [] |
|
|
111 |
# if the weights are loaded from the segmentation model: |
|
|
112 |
if pretrained_classifier is None: |
|
|
113 |
for _n, _par in covid_mask_net_model.state_dict().items(): |
|
|
114 |
if _n in ckpt['model_weights']: |
|
|
115 |
print('Loading parameter', _n) |
|
|
116 |
_par.copy_(ckpt['model_weights'][_n]) |
|
|
117 |
# if the weights are loaded from the classification model |
|
|
118 |
else: |
|
|
119 |
covid_mask_net_model.load_state_dict(ckpt['model_weights']) |
|
|
120 |
if 'epoch' in ckpt.keys(): |
|
|
121 |
start_epoch = int(ckpt['epoch']) + 1 |
|
|
122 |
if 'model_name' in ckpt.keys(): |
|
|
123 |
model_name = str(ckpt['model_name']) |
|
|
124 |
|
|
|
125 |
# Evaluation mode, no labels! |
|
|
126 |
covid_mask_net_model.eval() |
|
|
127 |
# set the model to training mode without triggering the 'training' mode of Mask R-CNN |
|
|
128 |
# set up the optimizer |
|
|
129 |
utils.switch_model_on(covid_mask_net_model, ckpt, trained_pars) |
|
|
130 |
utils.set_to_train_mode(covid_mask_net_model) |
|
|
131 |
print(covid_mask_net_model) |
|
|
132 |
covid_mask_net_model = covid_mask_net_model.to(device) |
|
|
133 |
total_trained_pars = sum([x.numel() for x in trained_pars]) |
|
|
134 |
print("Total trained pars {0:d}".format(total_trained_pars)) |
|
|
135 |
optimizer_pars = {'lr': lrate, 'weight_decay': 1e-3} |
|
|
136 |
optimizer = torch.optim.Adam(trained_pars, **optimizer_pars) |
|
|
137 |
if pretrained_classifier is not None and 'optimizer_state' in ckpt.keys(): |
|
|
138 |
optimizer.load_state_dict(ckpt['optimizer_state']) |
|
|
139 |
|
|
|
140 |
if start_epoch>0: |
|
|
141 |
num_epochs += start_epoch |
|
|
142 |
print("Start training, epoch = {:d}".format(start_epoch)) |
|
|
143 |
for e in range(start_epoch, num_epochs): |
|
|
144 |
train_loss_epoch = main_step("train", e, dataloader_covid_train_cl, optimizer, device, covid_mask_net_model, |
|
|
145 |
save_every, lrate, model_name, None, None) |
|
|
146 |
eval_loss_epoch = main_step("eval", e, dataloader_covid_eval_cl, optimizer, device, covid_mask_net_model, |
|
|
147 |
save_every, lrate, model_name, anchor_generator, save_dir) |
|
|
148 |
print( |
|
|
149 |
"Epoch {0:d}: train loss = {1:.3f}, validation loss = {2:.3f}".format(e, train_loss_epoch, eval_loss_epoch)) |
|
|
150 |
end_time = time.time() |
|
|
151 |
print("Training took {0:.1f} seconds".format(end_time - start_time)) |
|
|
152 |
|
|
|
153 |
|
|
|
154 |
def step(stage, e, dataloader, optimizer, device, model, save_every, lrate, model_name, anchors, save_dir): |
|
|
155 |
epoch_loss = 0 |
|
|
156 |
for id, b in enumerate(dataloader): |
|
|
157 |
optimizer.zero_grad() |
|
|
158 |
X, y = b |
|
|
159 |
if device == torch.device('cuda'): |
|
|
160 |
X, y = X.to(device), y.to(device) |
|
|
161 |
# some batches are less than batch_size |
|
|
162 |
batch_s = X.size()[0] |
|
|
163 |
batch_scores = [] |
|
|
164 |
# input all images in the batch into COVID-Mask-Net to get B scores |
|
|
165 |
for id in range(batch_s): |
|
|
166 |
image = [X[id]] # remove the batch dimension |
|
|
167 |
predict_scores = model(image) |
|
|
168 |
batch_scores.append(predict_scores[0]['final_scores']) |
|
|
169 |
# batchify scores/image and compute binary cross-entropy loss |
|
|
170 |
batch_scores = torch.stack(batch_scores) |
|
|
171 |
batch_loss = F.binary_cross_entropy_with_logits(batch_scores, y) |
|
|
172 |
if stage == "train": |
|
|
173 |
batch_loss.backward() |
|
|
174 |
optimizer.step() |
|
|
175 |
else: |
|
|
176 |
pass |
|
|
177 |
epoch_loss += batch_loss.clone().detach().cpu().numpy() |
|
|
178 |
epoch_loss = epoch_loss / len(dataloader) |
|
|
179 |
if not (e+1) % save_every and stage == "eval": |
|
|
180 |
model.eval() |
|
|
181 |
state = {'epoch': str(e+1), 'model_weights': model.state_dict(), |
|
|
182 |
'optimizer_state': optimizer.state_dict(), 'lrate': lrate, 'anchor_generator': anchors, |
|
|
183 |
'model_name': model_name} |
|
|
184 |
if model_name is None: |
|
|
185 |
torch.save(state, os.path.join(save_dir, "covid_ct_mask_net_ckpt_" + str(e+1) + ".pth")) |
|
|
186 |
else: |
|
|
187 |
torch.save(state, os.path.join(save_dir, model_name + "_ckpt_" + str(e+1) + ".pth")) |
|
|
188 |
utils.set_to_train_mode(model) |
|
|
189 |
return epoch_loss |
|
|
190 |
|
|
|
191 |
|
|
|
192 |
# run the training |
|
|
193 |
if __name__ == '__main__': |
|
|
194 |
config_train = config_classifier.get_config_pars_classifier("trainval") |
|
|
195 |
if config_train.pretrained_classification_model is None and config_train.pretrained_segmentation_model is None: |
|
|
196 |
print("You must have at least one pretrained model!") |
|
|
197 |
sys.exit(0) |
|
|
198 |
else: |
|
|
199 |
main(config_train, step) |