--- a +++ b/config_classifier.py @@ -0,0 +1,45 @@ +# SEGMENTATION MODEL CONFIG +import argparse + +import utils + + +def get_config_pars_classifier(stage): + parser_ = argparse.ArgumentParser( + description='arguments for training COVID-CT-Mask-Net on CNCB dataset') + + parser_.add_argument("--device", type=str, default='cpu') + parser_.add_argument("--model_name", type=str, default=None) + parser_.add_argument("--num_classes", type=int, default=None, help="This refers to the number of classes in the segmentation mode, so either 2 or 3") + parser_.add_argument("--rpn_nms_th", type=float, default=0.75, help="Both at train and test stages") + parser_.add_argument("--roi_nms_th", type=float, default=0.75, help="Both at train and test stages") + parser_.add_argument("--backbone_name", type=str, default='resnet50', help="One of resnet50, resnet34, reesnet18") + parser_.add_argument("--truncation", type=str, default="0", help="One of 0,1,2 for no truncation, last block, two last blocks") + parser_.add_argument("--roi_batch_size", type=int, default=256, help="RoI batch size output, input in the S classifier module") + parser_.add_argument("--s_features", type=int, default=None, help="Number of features in the S classification module") + + if stage == "trainval": + parser_.add_argument("--start_epoch", type=str, default=0) + parser_.add_argument("--num_epochs", type=int, default=50) + parser_.add_argument("--pretrained_classification_model", type=str, default=None) + parser_.add_argument("--pretrained_segmentation_model", type=str, default=None, + help="Either this or pretrained classifier must be defined!") + parser_.add_argument("--save_dir", type=str, default="saved_models", + help="Directory to save checkpoints") + parser_.add_argument("--train_data_dir", type=str, default='../covid_data/cncb/train_large', + help="Path to the training data. Must contain images and binary masks") + parser_.add_argument("--val_data_dir", type=str, default='../covid_data/cncb/new_/val', + help="Path to the validation data. Must contain images and binary masks") + parser_.add_argument("--batch_size", type=int, default=8, help="Implemented only for batch size = 1") + parser_.add_argument("--save_every", type=int, default=10) + parser_.add_argument("--lrate", type=float, default=1e-5, help="Learning rate") + + elif stage == "test": + parser_.add_argument("--ckpt", type=str, + help="Checkpoint file in .pth format. " + "Must contain the following keys: model_weights, optimizer_state, anchor_generator") + parser_.add_argument("--test_data_dir", type=str, default='../covid_data/cncb/ncov-ai.big.ac.cn/download/test', + help="Path to the test data. Must contain images and may contain binary masks") + + model_args = parser_.parse_args() + return model_args