[dataset]
# tensor type (float or double)
tensor_type = float
task_type = seg
# input image directory
root_dir = coplenet_data/image
# list of images
test_csv = config/data_test.csv
# modality number
modal_num = 1
# data transforms
test_transform = [Pad]
# parameter of Pad
Pad_output_size = [1, 32, 32]
Pad_ceil_mode = True
Pad_inverse = True
[network]
# this section gives parameters for network
# type of network
net_type = COPLENet
# number of class, required for segmentation task
class_num = 2
in_chns = 1
bilinear = True
feature_chns = [32, 64, 128, 256, 512]
dropout = [0.0, 0.0, 0.3, 0.4, 0.5]
[training]
gpus = [0]
[testing]
gpus = [0]
ckpt_mode = 2
ckpt_name = coplenet_data/coplenet_pretrain.pt
output_dir = coplenet_data/result
evaluation_mode = True
test_time_dropout = False
# use test time augmentation
tta_mode = 0
sliding_window_enable = True
sliding_window_size = [20, None, None]
sliding_window_stride = [20, None, None]